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Regularization that incorporates the linear combination of empirical loss and explicit regularization terms

as the loss function has been frequently used for many machine learning tasks. The explicit regularization

term is designed in different types, depending on its applications. While regularized learning often boost the

performance with higher accuracy and faster convergence, the regularization would sometimes hurt the em-

pirical loss minimization and lead to poor performance. To deal with such issues in this work, we propose

a novel strategy, namely Gradients Orthogonal Decomposition (GrOD), that improves the training procedure

of regularized deep learning. Instead of linearly combining gradients of the two terms, GrOD re-estimates a

new direction for iteration that does not hurt the empirical loss minimization while preserving the regular-

ization affects, through orthogonal decomposition. We have performed extensive experiments to use GrOD

improving the commonly used algorithms of transfer learning [2], knowledge distillation [3], and adversarial

learning [4]. The experiment results based on large datasets, including Caltech 256 [5], MIT indoor 67 [6],

CIFAR-10 [7], and ImageNet [8], show significant improvement made by GrOD for all three algorithms in all

cases.
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1 INTRODUCTION

Deep learning has been widely used as a major workhorse for a variety of pattern recognition
applications, such as image classification [7, 8], face recognition [9, 10], human parsing [11, 12],
biomarker identification [13, 14], and spatiotemporal pattern mining [15, 16]. In many real-world
practices of deep learning [17], regularization has been frequently used to improve the perfor-
mance of deep neural networks training through incorporating explicit regularization terms be-
yond empirical loss minimization (see also in Chapter 7 of [17]). To regularize the training of
deep neural networks, a simple yet effective approach is to build a regularization term to augment
the empirical loss through weighted linear combination. Such weights are typically used to make
tradeoff between empirical loss and model complexity.

Compared to the regularized statistical learning [18] that was originally proposed to avoid over-
fitting, regularization nowadays is redesigned in deep learning to enable a wide range of novel
learning applications, such as knowledge transfer from pre-trained neural networks [2, 19–21],
knowledge distillation via Teacher–Student training [3, 22], and adversarial learning for robust-
ness [4, 23]. While the use of regularization yielding deep learning with better performance and
new functionalities, regularized deep learning might sometimes hurt the performance deep neu-
ral network and achieve even worse performance than empirical loss minimization (ERM) [18],
especially when regularizer weight is inappropriately large.

1.1 Our Observations

While one can fix the over-regularization issue through lowering the regularizer weight for sta-
tistical learning, such problem is still tough for regularized deep learning [17]. For example, us-
ing the starting point as the reference (SPAR) (i.e., incorporating an L2-norm regularizer that
constrains the distance between the parameter and the starting point of optimization [2]) is fre-
quently used to fine-tune deep neural networks for deep transfer learning. Using an inappropriate
pre-trained model for SPAR leads to even worse performance than the one from scratch [24, 25],
as the L2-norm regularization with the start point of optimization would affect the local minimum
points that the learning procedure finally converges to, while the selection of poor local minimum
points may significantly hurt the generalization performance of deep learning.

We specify above observation using an example based on L2-SP [2] shown in Figure 1. The Black
Line refers to the empirical loss descent flow of common gradient-based learning algorithms with
pre-trained weights as the start point. It shows that with the empirical loss gradients as the descent
direction, such method quickly converges to a local minimum in a narrow cone, which is usually
considered as an over-fitting solution. In the meanwhile, the Blue Line demonstrates the possible
empirical loss descending path of L2-SP algorithm, where a strong regularization blocks the learn-
ing algorithm to continue lowering the empirical loss while traversing the area around the point
of pre-trained weights. An ideal case has been illustrated as the Red Line, where L2-SP regular-
izer helps the learning algorithm to avoid the over-fitting solutions. The overall descent direction
adapting L2-SP regularizer with respect to empirical loss leads to generalizable solutions. There
thus needs a method to make both empirical loss and regularizer continue descending to boost
the performance of deep transfer learning. Thus, the new technique to balance the regularization
term and the empirical loss in the deep learning procedure is needed.
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Fig. 1. Flows of descent directions on the empirical loss. Black Line: the flow via gradient descent direction

of empirical loss (i.e., gradient of empirical loss) from a common starting point, where the descent direction

quickly leads the learning procedure converged to a local minimum without considering the regularization

term and hence may over-fit; Blue Line: the flow via the descent direction linearly combining gradients

of empirical loss and the regularization term, where the regularization term diminishes the minimization of

empirical loss; and Red Line: the flow via the descent direction balancing the gradients of empirical loss and

the regularzation term, where the descent direction leads to a flat area with low empirical loss (i.e., potentials

of improved generalizability).

1.2 Our Contributions

Motivated by above observations, simple yet effective training paradigm, namely Gradients Or-

thogonal Decomposition (GrOD), which provides a new descent direction estimator for the reg-
ularized learning of over-parameterized deep neural networks. GrOD follows a simple Empirical

Risk Minimization (ERM) Preserved descent direction principle—in every iteration of the learning
procedure, the empirical loss of regularized deep learning should descend as fast as the one based
on ERM. Specifically, GrOD decomposes the gradients of the regularizer term and removes the part
that is opposed to the empirical loss gradients. With remaining parts combined, the regularizer and
empirical loss terms are expected to be “minimized simultaneously” while the minimization of em-
pirical loss is more preferred in GrOD.

Inspired by the observation that regularizer may hurt the model’s fitting by preventing empirical
loss descending, we proposed a novel regularized deep learning framework GrOD that improves
regularized deep learning with a better balance between the gradients of loss function and the reg-
ularization term—i.e., with better fitness to the training data without simply degrading the weight
of regularization term. During the learning procedure, when the angle between the empirical loss
gradient and the regularizer gradient is large (larger than 90◦), GrOD decomposes the regularizer
gradients into two components: hurting part (parallel to empirical loss gradients) and safely regu-
larized part (vertical to empirical loss gradients), discards the hurting part and preserves the safely
regularized part. In this way, it will preserve regularization affects without preventing empirical
loss descending.

In terms of methodology, the most relevant work to our study is Gradient Episodic Memory

(GEM) for continual learning [26], which continuously learn the new task using the well-trained
models for past tasks. In terms of objectives, GrOD aims at lowering the effects of regularization
from hurting ERM, while GEM prevents the ERM from hurting regularization effects (i.e., the
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accuracy on old tasks). In terms of algorithms, in every iteration of learning, GEM estimates
the descent direction with respect to the gradients of the new task and all past tasks using a
time-consuming Quadratic Program (QP), while GrOD re-estimates the descent direction
from the gradients of the regularizer term and the empirical loss term with low-complexity
orthogonal decomposition. All in all, GEM can be considered as a special case of GrOD using
L2-SP regularizer [2] based on two tasks.

Extensive experiments have been performed using state-of-the-art algorithms for deep trans-
fer learning [2], knowledge distillation [3], and adversarial learning [4] tasks, on top of a wide
range of deep learning benchmark datasets including Caltech, MIT indoor 67, CIFAR-10, Fash-
ion MNIST, and ImageNet. The experiments show that GrOD always improves the performance
of the three tasks. Specifically, for transfer learning tasks, GrOD has improved the L2-SP algo-
rithm [2] with 0.1%–7% higher accuracy (even transferring from the network pre-trained by inap-
propriate datasets). Through knowledge distillation [3], the network trained by GrOD outperforms
the vanilla one with 0.5%–5% higher accuracy through aligning the generated feature maps. For
adversarial learning task, GrOD has been evaluated to enhance the state-of-the-art algorithm [4]
with significant Pareto-improvement in both accuracy and robustness. Besides, the gradients di-
rection analysis based on the experiments verified our assumptions about the descent direction’s
performance during neural network’s training process.

2 RELATED WORK AND BACKGROUNDS

In this section, we first introduced the preliminary setting of regularized deep learning, then intro-
ducing the regularization term for deep transfer learning, knowledge distillation, and adversarial
learning that would be used in our studies.

2.1 Regularized Deep Learning

Deep convolutional networks usually consist of a great number of parameters that need fit to
the dataset. For example, ResNet-110 has more than one million free parameters. The size of free
parameters causes the risk of over-fitting. Regularized deep learning is the technique to reduce this
risk by constraining the parameters within a limited space with respect to a set of regularization
terms. The general learning problem is usually formulated as follow.

Definition 1 (Regularized Deep Learning). Let’s first denote the dataset for the desired task as
D = {(x1,y1), (x2,y2), (x3,y3) . . . , (xn ,yn)}, where totallyn tuples are offered and each tuple (xi ,yi )

refers to the input image and its label in the dataset, x ∈ RD , y ∈ {1, 2, . . . ,N } for multi-class
classification, and D is the dimensionality of the input data. We then denote ω ∈ Rd be the
d-dimensional parameter vector containing all d parameters of the training model. Furthermore,
given a regularization term Ω(ω) : Rd → R

d , one estimates the parameter of target network
through the regularized deep learning paradigms. The optimization object with regularized deep

learning is to obtain the minimizer of L(ω) :

min
w
L(ω) =

{
1

n

n∑
i=1

L(z(xi ,ω),yi ) + λ · Ω(ω)

}
, (1)

where (i) the first term
∑n

i=1 L(z(xi ,ω),yi ) refers to the empirical loss of data fitting while (ii) the
second term Ω(ω) characterizes the affects for transfer learning, knowledge distillation, adversarial
learning, and so on. z maps RD × Rd to {1, 2, . . . ,N }. The tuning parameter λ > 0 balances the
tradeoff between the empirical loss and the regularizer.
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2.2 Transfer Learning

When the training dataset size is relatively small, we often need to transfer knowledge learned
from large datasets to small tasks [27–31]. Given the weights of a deep neural network pre-trained
by a large dataset (e.g., ImageNet), a recent work [2] proposed to first use pre-trained weights as
the starting point of the training procedure, then leverages the squared Euclid distance from the
training weights to the pre-trained weights as the regularization term for deep transfer learning.
Such approach “helps” the training procedure find a generalizable solution with higher accuracy,
even based on a small set.

In terms of regularization, given the weights (denoted as Ωs ) of a neural network pre-trained
from a large dataset, L2-SP [2] algorithm uses the squared-euclidean distance from ω to the pre-
trained weights ωs of source network (listed in Equation (2)) to constrain the learning procedure
where

Ω(ω) = ‖ω − ωs ‖
2
2 . (2)

In terms of optimization procedure, L2-SP makes the learning procedure start from the pre-trained
weights (i.e., using ωs to initialize the learning procedure).

In addition to above regularization, other methods have been used for deep transfer learning,
including [19, 32–36]. As early as in 2014, authors in [32] reported their observation of significant
performance improvement through directly reusing weights of the pre-trained source network to
the target task, when training a large CNN with tremendous number of filters and parameters.
However, in the meanwhile of reusing all pre-trained weights, the target network might be over-
loaded by learning tons of inappropriate features (that cannot be used for classification in the target
task), while the key features of the target task have been probably ignored. In this way, Yosinki
et al. [37] proposed to understand whether a feature can be transferred to the target network,
through quantifying the “transferability” of features from each layer considering the performance
gain. Furthermore, Huh et al. [19] made empirical study on analyzing features that CNN learned
from ImageNet dataset to other computer vision tasks, so as to detail the factors effecting deep
transfer learning accuracy. In recent days, this line of research has been further developed with
increasing number of algorithms and tools that can improve the performance of deep transfer
learning, including subset selection [33, 38], sparse transfer [34], filter distribution constraining
[35], parameter transfer [36], and transfer learning over manifolds [39]. Moreover, [29] studies the
memorability of images using transfer learning, while authors in [30, 40] work on the knowledge
transfer crossing the modalities. The overall survey on transfer learning can be found in [25, 41].

2.3 Knowledge Distillation

To achieve similar goals, instead of adopting the weights in a straightforward approach, authors [3]
propose to use so-called knowledge distillation mechanism, where given a pre-trained network as
the teacher network it considers the training objective as a student network that learns from the
teacher. More specific, the squared Euclid distance between feature maps generated by the convo-
lutional layers of the teacher and student networks are used as regularization [22]. The feature-
wise knowledge distillation algorithm proposed in [3] enables effective knowledge transfer through
learning the behaviors of the pre-trained network, as a gift of knowledge distillation. Similar mech-
anism is also used for neural network compression [42], using the original network as the teacher
and the compression target model as the student with feature map quantization.

Given the training dataset {(x1,y1), . . . , (xn ,yn)} and N filters in the teacher/student networks
for knowledge distillation, the knowledge distillation algorithm [3] models the regularization as
the aggregation of squared-euclidean distances between feature maps outputted by the N filters
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of the teacher/student networks, such that

Ω(ω) =
1

n

N∑
j=1

n∑
i=1

��Fj (ω, xi ) − Fj (ωs, xi )
��2

2
, (3)

where Fj (ω, xi )) refers to the feature map outputted by the jth filter (1 ≤ j ≤ N ) of the target
network based on weight w using input image xi (1 ≤ i ≤ n).

In terms of methodologies, the knowledge distillation was originally proposed to compress deep
neural networks [22, 31, 43] through teacher–student network training, where the teacher and
student networks are usually based on the same task [22]. In terms of inductive transfer learn-
ing, authors in [3] were first to investigate the possibility of using the distance of intermediate
results (e.g., feature maps generated by the same layers) of source and target networks as the reg-
ularization term. Furthermore, [44] proposed to use the distance between activation maps as the
regularization term for so-called “attention transfer”. Notice in our experiment settings, we mainly
focus on the applications of knowledge distillation to knowledge transfer, i.e., the source model is
pre-trained using other datasets.

2.4 Adversarial Learning

In addition to the accuracy improvement, there frequently needs to enhance the robustness of deep
learning under adversarial attacks [45, 46]. With a strategy to perturb the training data for adver-
sarial samples generation, [46] proposed to incorporate the training loss based on the generated
adversarial samples via Fast Gradient Sign Method (FGSM) as the regularization term to aug-
ment the loss for deep adversarial learning. Reference [4] indicated that instead of FGSM, using
adversarial examples generated by Projected Gradient Descent (PGD, [47]) on the negative loss
function will obtain a more robust model.

Given the training dataset {(x1,y1), . . . , (xn ,yn)}, one state-of-the-art adversarial learning algo-
rithm [4], studied in this article, first synthesizes the adversarial samples set {(x′1,y1), . . . , (x

′
n ,yn)},

through perturbation. Then, the algorithm proposes to use the empirical loss based on adversarial
samples as the objective function to minimize where

L(ω) =
1

n

n∑
i=1

L(z(x′i ,ω),yi ). (4)

Using first-order taylor expansion, we can approximate (4) as the regularized form

L(ω) =
1

n

n∑
i=1

L(z(x′i ,ω),yi )

≈
1

n

n∑
i=1

[
L(z(xi ,ω),yi ) + (x

′
i − xi )

∂

∂x
L(z(xi ,ω),yi )

]

=
1

n

n∑
i=1

L(z(xi ,ω),yi )

+

{
1

n

n∑
i=1

(x′i − xi )
∂

∂x
L(z(xi ,ω),yi )

}

=
1

n

n∑
i=1

L(z(xi ,ω),yi ) + λ · Ω(ω).

(5)

Thus, the regularization part of adversarial training is Ω(ω) = 1
n

∑n
i=1(x

′
i − xi )

∂
∂x

L(z(xi ,ω),yi )

with λ = 1. Specifically, a pre-trained model using the original dataset is frequently required as
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the target network for defense, where the gradients and/or Hessian matrices of the loss function are
used to perturb the input space of the training data with optional noise to the labels. One can also
generate the perturbations for adversarial learning under black–box/derivative–free settings [48,
49]. In addition to the empirical loss over the perturbed set, knowledge distillation over feature
maps can also be adopted for defense [50, 51]. More definitions and details could be found in a
comprehensive survey [52].

2.5 Discussion on the Connection to Our Work

Compared to above work and other transfer learning studies, our work aims at providing a
generic descent direction estimation strategy that improves the performance of regularization-based
deep transfer learning. The intuition of GrOD is, per iteration during the learning procedure, re-
estimating a new direction of loss descending that addresses the affect of regularizers while making
the empirical loss reduction/minimization not hurt. In our work, we demonstrated the capacity of
GrOD working with two most recent deep transfer learning regularizers—L2-SP [2] and Knowl-
edge distillation [3], which are based on two typical deep learning philosophies (i.e., constraining
weights and feature maps, respectively), using a wide range of transfer learning tasks. The consis-
tent performance boosts with GrOD in all cases of experiments suggests that GrOD can improve
above regularization-based deep transfer learning with higher accuracy.

Other techniques, including continual learning [20, 21], attention mechanism for CNN mod-
els [44, 53–55], and so on, can also improve the performance of knowledge transfer between tasks.
We believe our work made complementary contributions in this area. All in all, we appreciate the
contributions made by these studies. Furthermore, compared to the earlier version of this man-
uscript [1], we have made significant contributions to extend the previous work that primarily
focuses on deep transfer learning, to improve the regularized deep learning in general cases. New
regularized deep learning applications, such as knowledge distillation and adversarial learning,
have been studied here. This manuscript includes our most recent efforts on improving deep trans-
fer learning, adversarial learning, and network distilling with GrOD, from both theoretical and
empirical aspects. Additional experiments with new results have been provided to demonstrate
our new findings.

3 GROD: GRADIENT ORTHOGONAL DECOMPOSITION

In this section, we formalize the technical details of our research, then present the design of our
solution GrOD.

3.1 Definitions, Intuitions, and Assumptions

Prior to presenting of the algorithms, this section introduces the settings of the problem.

Definition 2 (Descent Directions). Gradient-based learning algorithms are frequently used for
regularized deep learning to minimize the loss function listed in Equation (1). In each iteration of
learning procedure, the algorithms estimate a descent direction d(ω), such as stochastic gradient,
based on the optimization objective ω that approximates the gradient, such that

d(ω) ≈ ∇L(ω)

=

n∑
i=1

∇L(z(xi ,ω),yi ) + λ∇Ω(ω)

= ∇J (ω) + λ · ∇Ω(ω),

(6)

where ∇J (ω) =
∑n

i=1 ∇L(z(xi ,ω),yi ) refers to the gradient of empirical loss based on training set
and ∇Ω(ω) is the gradient of regularization term all based on optimization objective ω.
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Following the above definition, we reduce our research problem as finding a new descent di-
rection based on the gradients of the empirical loss and the regularizer term. The new descent
direction is expected to preserve the effects of regularization, while avoiding to hurt the empirical
loss minimization. Due to the affect of regularization Ω(ω,ωs ), the angle between the actual de-
scent direction d(ω) and the gradient of empirical loss∇J (ω), i.e.,�(d(ω),∇J (ω)), would be large. It
is intuitive to state that when �(d(ω),∇J (ω) is large, the descent direction cannot effectively lower
the empirical loss and causes the potential performance bottleneck of deep transfer learning. We
thus formulate the technical problem with following assumptions specified.

Assumption 1 (Effective Empirical Loss Minimization). It is reasonable to assume that the

actual descent direction d̂(ω) having a smaller angle with the gradient of empirical loss, i.e., a smaller

�(̂d(ω),∇J (ω)), can lower the empirical loss more efficiently.

Assumption 2 (Regularization Effect Preservation). It is also reasonable to assume the ac-

tual descent direction d̂(ω) having a smaller angle with the gradient of regualrizer’s term, i.e., a smaller

�(̂d(ω),∇Ω(ω)), could strengthen the effects of regularization for deep learning.

3.2 Problem Formulation

Based on above definitions and assumptions, in our research, we propose a new direction descent

algorithm—every iteration of the algorithm re-estimates a new descent direction d̂ to effectively
lower the training loss based on the optimization object ω while preserving the effect of regular-
izer Ω(ω) (Assumption 2). Note that, to avoid the use of any threshold for bounding the two

angles between d̂ and ∇J (ω) and between d̂ and ∇Omeдa(ω), we formulate the research problem
as follows.

3.2.1 ERM-Effective Descent Direction. We formulate the research problem as finding an ERM-
Effective Descent Direction as follow.

Definition 3 (ERM-effective Descent Direction). We define the ERM-Effective descent direction
d(ω) as a direction derived from the overall loss gradient ∇L(ω) and could descend the empirical
loss J (ω) as fast as the one using the gradient of empirical loss ∇J (ω). Such that

d(ω) = arg min
d

‖d − ∇L(ω)‖22 s .t . J (ω − ϵd) ≤ J (ω − ϵ∇J (ω)), (7)

where ϵ denotes the learning rate.

Such ERM-effective descent direction d(ω) can be estimated by solving the constrained opti-
mization problem (7). Intuitively, optimization (7) aims at finding the descent direction which is
close to the overall loss gradients and lowers the empirical loss no less than using the empirical
loss gradient as the descent direction in the iteration with ω.

3.2.2 Low-Complexity ERM-Effective Descent Direction via Relaxed Constraint Programming.

While the proposed descent direction straightforwardly meets our assumptions, the computation
complexity to solve the constrained programming is high. Thus, we relax the constrained program-
ming problem through the first-order approximation.

Assumption 3 (Relaxation with First-order Taylor Approximation). For simplicity, we
assume the loss function would enjoy a tight first-order approximation based on Taylor expansion,
such that with ‖Δ‖22 close to zero, J (ω + Δ) ≈ J (ω) + 〈∇J (ω),Δ〉 + o(‖Δ‖22),where 〈·, ·〉 denotes the
inner product. Thus, with a varnishing learning rate ϵ and any descent direction d, there should have
J (ω − ϵd) ≈ J (ω) − 〈d,∇J (ω)〉.
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Definition 4 (ERM-Effective Descent Direction via Relaxed Constraint Programming). Based on
above assumption, we can rewrite the problem in (7) into the relaxed constraint programming
problem as follow.

d(ω) = arg min
d

‖d − ∇L(ω)‖22 s .t . 〈d,∇J (ω)〉 ≥ ‖∇J (ω)‖22 . (8)

In this work, we intend to solve the problem in (8) by orthogonal decomposition of regularization
gradients ∇Ω(ω).

ALGORITHM 1: GrOD: Descent Direction Estimation

1: procedure GrOD(D,ωt,b, λ)
2: /*Stochastic Gradients Estimations*/
3: Bt ∼ D sampling a mini-batch of b random samples from the training dataset

4: ∇ Ĵt estimating stochastic gradient of J (ω) at the point ωt using the mini-batch Bt

5: ∇Ω̂t estimating stochastic gradient of Ωt (ω) at the point ωt using the mini-batch Bt

6: /*descent direction Correction*/
7: if �(∇ Ĵt ,∇Ω̂t ) ≤ 90◦ then

8: d̂t ← ∇Jt + λ · ∇Ω̂t

9: else

10: d̂t ← ∇ Ĵt + λ · [∇Ω̂t −
〈∇ Ĵt ,∇Ω̂t 〉

‖∇ Ĵt ‖
2
2

· ∇ Ĵt ]

11: end if

12: return d̂t

13: end procedure

3.3 GrOD: Descent Direction Estimation via Orthogonal Decompositions

In this section, we presented the design of GrOD as a descent direction estimator that solves the
relaxed constraint programming problem addressed in Section 3.1.2. Given the empirical loss func-
tion J (ω), the regularization term Ω(ω), the set of training data D = {(x1,y1), (x2,y2), . . . , (xn ,yn)},
the mini-batch size b and the regularization coefficient λ, we propose to use Algorithm 1 to esti-
mate the descent direction at the point ωt for the t th iteration of regularized deep learning.

With such descent direction estimator, the learning algorithm is capable of replacing the original
stochastic gradient estimators used in stochastic gradient descent (SGD), Momentum and/or
Adam for deep learning. Specifically, for each (e.g., the t th) iteration of learning procedure, GrOD

estimates the gradients of empirical loss and regularization term (i.e., ∇ Ĵt and ∇Ω̂t ) separately as
follows.

— Acute Angle: When the angle between gradients of empirical loss and regularization term

is acute, i.e., �(∇ Ĵt ,∇Ω̂t ) ≤ 90◦, GrOD uses the original stochastic gradient as the descent
direction (such as Line 8 in Algorithm 1). In such case, we believed the effect of regularization
might not over-penalize the empirical loss minimization procedure.

— Obtuse Angle: On the other hand, when the angle is obtuse, GrOD decomposes the gradi-

ent of regularization term ∇Ω̂t to two orthogonal directions, where the first direction is
orthogonal with the gradient of empirical loss while the second direction parallelizing with

the empirical loss gradient (i.e., 〈∇ Ĵt ,∇Ω̂t 〉

| |∇ Ĵt | |
2
2

· ∇ Ĵt ). GrOD truncates the direction against the

gradient of empirical loss (i.e., ∇Ω̂t −
〈∇ Ĵt ,∇Ω̂t 〉

| |∇ Ĵt | |
2
2

· ∇ Ĵt ), and further compose the orthogonal

direction with gradient of empirical loss as the actual descent direction (as shown in Line 10
of Algorithm 1).
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Note that the complexity of GrOD for descent direction estimation is low. Given the two gradient

vectors ∇ Ĵt and ∇Ω̂t , GrOD uses Line 10 of Algorithm 1 to estimate the descent direction, where
the inner-product of two vectors, scalar-vector-product, and some vector addition/subtraction op-
erations are used. Thus the computational complexity of Line 10 of GrOD for descent direction
estimation is O(d), where d refers to the number of dimensions.

To understand the theoretical properties of GrOD, please refer to Section 3.4 for our analysis.
For empirical validation, please refer to Section 4.5.2, where the experiment results validate the
effect of the gradient orthogonal decomposition to the regularized deep learning.

3.4 Understanding the Effects of GrOD for Regularization

Based on the algorithm introduced in Algorithm 1, we can make lemmas as follow.

Lemma 1 (Acute Angle with Gain). In the tth iteration of GrOD, given (1) an positive regu-

larizer’s weight λ > 0, (2) the empirical loss gradient ∇ Ĵt , (3) the regularizer’s gradient ∇Ω̂t , and (4)

the actual descent direction d̂t computed by GrOD, the angle between the actual descent direction d̂t

and the empirical loss gradient ∇ Ĵt is acute, and the inner product of d̂t and ∇ Ĵt is larger than the

squared norm of ∇ Ĵt , such that

〈̂dt,∇ Ĵt 〉 ≥
��∇ Ĵt ��2

2
. (9)

Above lemma could be obtained using the proof as follow.

Proof. We prove above two lemmas in two cases

— When �(∇Ω̂t ,∇ Ĵt ) ≤ 90◦ (i.e., 〈∇Ω̂t ,∇ Ĵt 〉 ≥ 0), then d̂t = ∇Ω̂t + λ · ∇ Ĵt and 〈̂dt,∇ Ĵt 〉 =

〈∇ Ĵt ,∇ Ĵt 〉 + λ · 〈∇ Ĵt ,∇Ω̂t 〉 ≥ ‖∇ Ĵt ‖
2
2 ≥ 0.

— Else when�(∇Ω̂t ,∇ Ĵt ) > 90◦ ((i.e., 〈∇Ω̂t ,∇ Ĵt 〉 < 0)), then d̂t = ∇ Ĵt+λ·[∇Ω̂t−
〈∇ Ĵt ,∇Ω̂t 〉
‖∇ Ĵt ‖

2
2

·∇ Ĵt ]

and 〈̂dt,∇ Ĵt 〉 = 〈∇ Ĵt ,∇ Ĵt 〉 + λ · [〈∇ Ĵt ,∇Ω̂t 〉 −
〈∇ Ĵt ,∇Ω̂t 〉

‖∇ Ĵt ‖
2
2

· 〈∇ Ĵt ,∇ Ĵt 〉] = ‖∇ Ĵt ‖
2
2 ≥ 0.

In above two cases, there has 〈̂dt,∇ Ĵt 〉 ≥ ‖∇ Ĵt ‖
2
2 ≥ 0 and thus �(̂dt,∇ Ĵt ) ≤ 90◦ (acute angle). �

Lemma 2 (Strengthened Descent Direction). There has ‖d̂t ‖
2
2 ≥ ‖∇ Ĵ + λ · ∇Ω̂t ‖

2
2 — i.e., the

norm of GrOD descent direction is longer than the original loss gradient.

Proof.

— When �(∇Ω̂t ,∇ Ĵt ) ≤ 90◦ (i.e., 〈∇Ω̂t ,∇ Ĵt 〉 ≥ 0), then d̂t = ∇Ω̂t + λ · ∇ Ĵt . Thus ‖d̂t ‖
2
2 =

‖∇ Ĵ + λ · ∇Ω̂t ‖
2
2 .

— Else when�(∇Ω̂t ,∇ Ĵt ) > 90◦ ((i.e., 〈∇Ω̂t ,∇ Ĵt 〉 < 0)), then d̂t = ∇ Ĵt+λ·[∇Ω̂t−
〈∇ Ĵt ,∇Ω̂t 〉

‖∇ Ĵt ‖
2
2

·∇ Ĵt ].

Let decompose Ω̂t into two orthogonal vectors Ω̂x =
〈∇ Ĵt , Ω̂t 〉

‖∇ Ĵt ‖
2
2

∇ Ĵt and Ω̂y = Ω̂t −
〈∇ Ĵt , Ω̂t 〉

‖∇ Ĵt ‖
2
2

∇ Ĵt

subject to the direction and the orthogonal direction of ∇ Ĵt . Then, we have

‖∇ Ĵ + λ · ∇Ω̂t ‖
2
2

=‖∇ Ĵ + λ · ∇Ω̂x + λ · ∇Ω̂y ‖
2
2 , Consider the orthogonal directions

=‖∇ Ĵ + λ · ∇Ω̂x ‖
2
2 + ‖λ · ∇Ω̂y ‖

2
2
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=

�����
(
1 + λ

〈∇ Ĵt , Ω̂t 〉

‖∇ Ĵt ‖
2
2

)
· ∇ Ĵt

�����
2

2

+ ‖λ · ∇Ω̂y ‖
2
2 , as 〈∇Ω̂t ,∇ Ĵt 〉 < 0

≤‖∇ Ĵt ‖
2
2 + ‖λ · ∇Ω̂y ‖

2
2 , Consider the orthogonal directions

=‖d̂t ‖
2
2 .

(10)

�

Finally, we could obtain our theoretical result as follow.

Proposition 1 (The GrOD Descent Direction is an ERM-Effective Descent Direction
via Relaxed Constraint Programming). We argue that in every tth iteration, given a positive

regualrizer’s weight λ, suppose the empirical loss gradient ∇ Ĵt and the regularizer’s gradient ∇Ω̂t ,

the actual descent direction d̂t computed by GrOD should be a solution of problem (8) in Definition 4.

Proof. Lemma 1 proves that the GrOD descent direction d̂t satisfies �(̂dt,∇ Ĵt ) ≤ 90◦ — the

constraint of problem (8) in Definition 4. Thus, here, we reduce our proof to test whether d̂t is a

minimizer of ‖d − (∇ Ĵt + λ · ∇Ω̂t )‖
2
2 among all possible vectors satisfying the constraint. We test

this proposition in following two cases.

— When �(∇Ω̂t ,∇ Ĵt ) ≤ 90◦, then d̂t = ∇ Ĵt + λ · ∇Ω̂t (as Line 8 in Algorithm 1). Thus, ‖d̂t −

(∇ Ĵt + λ · ∇Ω̂t )‖
2
2 = 0 (minimal) in this case.

— Else when �(∇Ω̂t ,∇ Ĵt ) > 90◦, then d̂t = ∇ Ĵt + λ · [∇Ω̂t −
〈∇ Ĵt ,∇Ω̂t 〉

‖∇ Ĵt ‖
2
2

· ∇ Ĵt ] (as Line 10 in

Algorithm 1). Let decompose Ω̂t into two orthogonal vectors Ω̂x =
〈∇ Ĵt , Ω̂t 〉

‖∇ Ĵt ‖
2
2

∇ Ĵt and Ω̂y =

Ω̂t −
〈∇ Ĵt , Ω̂t 〉

‖∇ Ĵt ‖
2
2

∇ Ĵt subject to the direction and the orthogonal direction of ∇ Ĵt , and thus,

���̂dt − (∇ Ĵt + λ · ∇Ω̂t )

���2

2
=

�����λ ·
〈
∇ Ĵt ,∇Ω̂t

〉��∇ Ĵt ��2

2

· ∇ Ĵt

�����
2

2

= λ2‖Ω̂x ‖
2
2 . (11)

In the meanwhile, we can obtain an inequality as follow.

‖d̂t − (∇ Ĵt + λ · ∇Ω̂t )‖
2
2 , Consider Lemma 2 and triangle

≥ ‖d̂t ‖
2
2 − ‖∇ Ĵt + λ · ∇Ω̂t ‖

2
2

= ‖d̂t ‖
2
2 − ‖∇ Ĵt + λ · ∇Ω̂x + λ · ∇Ω̂y ‖

2
2 , Consider (∇ Ĵt + λ · ∇Ωx ) ⊥ ∇Ω̂y

= ‖d̂t ‖
2
2 − (‖∇ Ĵt + λ · ∇Ω̂x ‖

2
2 + ‖λ · ∇Ω̂y ‖

2
2 ), Consider

〈∇ Ĵt , Ω̂t 〉

‖∇ Ĵt ‖
2
2

< 0 in this case

= ‖d̂t ‖
2
2 − (‖∇ Ĵt ‖

2
2 − ‖λ · ∇Ω̂x ‖

2
2 + ‖λ · ∇Ω̂y ‖

2
2 ), Consider ∇ Ĵt ⊥ ∇Ω̂y

= ‖d̂t ‖
2
2 − (‖∇ Ĵt + λ · ∇Ω̂y ‖

2
2 − ‖λ · ∇Ω̂x ‖

2
2 )

= λ2‖∇Ω̂x ‖
2
2

(12)

Consider (11) and (12), we can conclude that d̂t is the solution of problem (8) while λ2‖∇Ω̂x ‖
2
2 =

{mind ‖d − ∇L(ω)‖
2
2 s .t . 〈d,∇J (ω)〉 ≥ ‖∇J (ω)‖

2
2 }. �

In this way, we could conclude GrOD is the solution that we desire in problem (8). Further-
more, from the perspectives of descent directions, we also find that the behavior of GrOD is not
achievable through tuning the weight of the regularizer alone.
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Proposition 2 (GrOD is Not Achievable by Tuning the Weight of the Regularizer). In
the tth iteration of GrOD, given (1) any two positive weights of the regularizer ∀λ1, λ2 > 0 for
GrOD and the vanilla loss for regularized deep learning respectively, (2) the empirical loss gradient

∇ Ĵt with ‖∇ Ĵt ‖
2
2 > 0, and (3) the regularizer’s gradient ∇Ω̂t with with ‖∇Ω̂t ‖

2
2 > 0, we denote the

GrOD descent direction based on λ1 as d̂t (λ1) and the vanilla regularized loss as ∇ Ĵt + λ2 · ∇Ω̂t . We

argue that, when �(∇ Ĵt ,∇Ω̂t ) > 90◦, for any positive weights λ1 and λ2, there has

d̂t (λ1) � ∇ Ĵt + λ2 · ∇Ω̂t . (13)

In this way, we say the descent direction of GrOD is not achievable by vanilla gradient of loss for
regularized deep learning for any pair of weights for regularizers.

Proof. Let decompose Ω̂t into two orthogonal vectors Ω̂x =
〈∇ Ĵt , Ω̂t 〉

‖∇ Ĵt ‖
2
2

∇ Ĵt and Ω̂y = Ω̂t −

〈∇ Ĵt , Ω̂t 〉

‖∇ Ĵt ‖
2
2

∇ Ĵt subject to the direction and the orthogonal direction of ∇ Ĵt . Since �(∇ Ĵt ,∇Ω̂t ) > 90◦

and ‖ Ĵt ‖
2
2 > 0 and ‖Ω̂t ‖

2
2 > 0, there thus has 〈∇ Ĵt , Ω̂t 〉 < 0 and ‖Ω̂x ‖

2
2 > 0. Given any two positive

weights ∀λ1, λ2 > 0 we can obtain the inequality as follow.���̂dt (λ1) − (∇ Ĵt + λ2 · ∇Ω̂t )

���2

2
, Consider �(∇ Ĵt ,∇Ω̂t ) > 90◦

=

�����λ1 · (∇Ω̂t −

〈
∇ Ĵt ,∇Ω̂t

〉
‖∇ Ĵt ‖

2
2

· ∇ Ĵt ) − λ2 · ∇Ω̂t

�����
2

2

=

���(λ1 − λ2) · (∇Ω̂x + ∇Ω̂y ) − λ1 · Ω̂x

���2

2

=

���(λ1 − λ2) · ∇Ω̂y − λ2 · ∇Ω̂x

���2

2
, Consider ∇Ω̂x ⊥ ∇Ω̂y

=

���(λ1 − λ2) · ∇Ω̂y

���2

2
+ ‖λ2 · ∇Ω̂x ‖

2
2

>0.

(14)

In this way, we can conclude that d̂t (λ1) � ∇ Ĵt +λ2 ·∇Ω̂t , for ∀λ1, λ > 0, when �(∇ Ĵt ,∇Ω̂t ) > 90◦,

‖ Ĵt ‖
2
2 > 0 and ‖Ω̂t ‖

2
2 > 0. �

To interpret the theoretical results, we use an example to visualize our intuition. Figure 2 illus-
trates an example of GrOD descent direction estimation, when the angles between gradients of
empirical loss and regularization term is obtuse (>90◦). As shown in Figure 2(a), the effect of reg-
ularization term forms a direction that might slow down the empirical loss descending. As shown
in Figure 2(b), GrOD decomposes the gradient of regularization term and truncates the conflicted
direction for the actual descent direction estimation. On the other hand, the angle between the
actual descent direction and regularization gradient and the angle between the actual descent di-
rection and empirical loss gradient are both acute (≤90◦), so as to secure the regularization effect
while ensuring empirical loss descending. In this way, we can understand GrOD as the solution
to the relaxed constraint programming problem for ERM-preserved descent direction estimation
addressed in Section 3.2. Furthermore, in this example, due to the truncated direction of the regu-
larizer’s gradient, the GrOD descent direction cannot be achieved by any linear combinations of
ERM loss gradient and the regularizer’s gradient.
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Fig. 2. Example of GrOD descent direction estimation.

4 EXPERIMENT

In this section, we report our experiment results for GrOD with three types of regularized deep
learning paradigms, i.e., L2-SP for transfer learning [2], knowledge distillation [3], and adversarial
training [46].

4.1 Dataset and Experiment Setups

In transfer learning and knowledge distillation experiments, we used the ResNet-18 [56] as our
base model with three widely used source datasets including ImageNet [8], Places 365 [57], and
Stanford Dogs 120 [58] for weights pre-training. To evaluate the performance of transfer learning,
we selected four datasets as the target datasets. These are Caltech 256 [5], MIT Indoors 67 [6], Flow-
ers 102 [59], and CIFAR-10 [7]. Note that, we follow the same settings used in [2] for Caltech 256
setup, where 30 or 60 samples randomly drawn from each category for training with 20 remaining
samples for testing. In adversarial training experiments, we used a small model consisting of two
CNN layers and two fully connected layers with Fashion MNIST [60], while the ResNet-18 with
CIFAR-10. Table 1 presents the statistics on some basic facts of all the datasets used in experiments.

4.1.1 Source/Target Tasks Pairing. Above configuration leads to 15 source/target task pairs,
where regularization would hurt the performance of transfer learning in some of these cases. For
example, the image contents of ImageNet and CIFAR-10 are quite similar, in this way, the knowl-
edge transfer from ImageNet to CIFAR-10 could improve the performance. On the other hand, the
images in Stanford Dog 120 and MIT Indoor 67 are quite different, e.g., dogs v.s. indoor scenes; then
the regularization based on pre-trained weights of Stanford Dog 120 task would hurt the learning
of MIT Indoor 67 task.

4.1.2 Pre-Trained Models and Weights. Furthermore, to obtain the pre-trained weights of all
source tasks, we adopt the pre-trained models of ImageNet,1 Place 365,2 and Stanford Dog 1203

released online. We found an interesting fact that the pre-trained models of Place 365 and Stanford
Dog 120 were trained from the pre-trained model of ImageNet. In this way, the pre-trained models
for Place 365 and Stanford Dog 120 have been already enhanced by the ImageNet.

4.1.3 Image Classification Tasks Setups. In transfer learning and knowledge distillation task, all
images are re-sized to 256× 256 and re-scaled to [−2, 2] for each channel, following with data aug-
mentation operations of random mirror and random crop to 224 × 224. We use a batch size of 64,

1https://github.com/pytorch/vision/tree/master/torchvision/models.
2https://github.com/CSAILVision/places365.
3https://github.com/stormy-ua/dog-breeds-classification.
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Table 1. Statistics on Datasets

Datasets Domains # Train/Test

ImageNet Visual objects 1,419K+/100K
Place 365 Indoor scenes 10,000K+

Stanford Dog 120 Dogs 12K/8.5K
CIFAR-10 Visual objects 50K/10K

Caltech 256 Visual objects 30K+
MIT Indoors 67 Indoor scenes 5K+/1K+

Flowers 102 Flowers 1K+/6K+
Fashion-MNIST Clothes 50K/60K

SGD with the momentum of 0.9 is used for optimizing all models [61]. The learning rate for base
model starts with 0.01 and is divided by 10 after 6,000 iterations. The Training is terminated with
8,000 iterations for Caltech 256, MIT Indoor 67 and Flowers 102, terminates with 20,000 iterations
for CIFAR-10 (i.e., 18 epochs). The pre-trained weights obtained from the source task were not
only used as the initialization of the model, i.e., starting point of optimization. Under the best con-
figuration, each experiment is repeated five times. We report the average accuracy with standard
deviations. In adversarial training task, all images are resized to 224 × 224 and re-scaled to [−2, 2],
with random horizontal flips.

4.1.4 Hyper-Parameter Tuning for Regularizer Weights. The regularizer weights for all experi-
ments have been tuned best using cross validation or follow the default settings from the officially
release codes of models. Our latter experiments would show that, with the same hyper-parameter
settings, GrOD does not always outperform the overall loss gradients descent. To compare with
varying hyper-parameters, our experiment results addressed in Section 4.4 will demonstrate the
effectiveness of GrOD that outperforms common regularized deep learning dominantly for adver-
sarial learning with varying regularizer weights.

4.2 Performance of GrOD on Transfer Learning with L2-SP [2]

In this section, we report the results of overall performance comparison based on the above tasks
using L2-SP [2] and its variant based on GrOD for knowledge transfer from pre-trained models.
We primarily focus on evaluating the performance improvement contributed by GrOD on top of
L2-SP, comparing to the vanilla implementations. Both source and target tasks are trained on a
typical ResNet-18 architecture. The knowledge transfer from ImageNet to all target tasks seems
all good, as ImageNet contains more than 1,000 classes of images with more categories covered
and rich features offered. However, the performance of knowledge transfer from Stanford Dog 120
to MIT Indoor 67 might be quite limited or even negatively affected the learning procedure, as
these two datasets contain quite different images—dogs v.s. indoor scenes. Further discussion on
the negative transfer effects would be addressed in Section 4.2.2.

4.2.1 Overall Comparison. We present accuracy of all source/target pairs in Table 2. GrOD im-
proves the performance of deep transfer learning in all of the above cases. For example, for the
CIFAR-10 (target task) with ImageNet (source task), L2-SP algorithm achieved 93.30% accuracy,
while GrOD (L2-SP) has improved the accuracy to 96.41% (with more than 3.1% accuracy improve-
ment). To the best of our knowledge, it has the best known result [62] for CIFAR-10 training
on ResNet-18 from ImageNet sources with only 18 epochs. Even, using Stanford Dog 120 as the
source task can perform similar as the ones sourcing from ImageNet, since the pre-trained model
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Table 2. Accuracy Comparison on Knowledge Transfer from Different Source Datasets

Caltech 256 MIT Indoors 67 Flowers 102 CIFAR-10

Source Dataset ImageNet [8]

Fine-Tune [37] 82.68 ± 0.20 76.73 ± 0.77 90.24 ± 0.31 96.40 ± 0.4
L2-SP [2] 83.69 ± 0.09 75.11 ± 0.43 88.96 ± 0.21 93.30 ± 0.16

GrOD +L2-SP [2] 84.14 ± 0.08 77.46 ± 0.29 90.68 ± 0.31 96.41 ± 0.11

Source Dataset Places 365 [57]

Fine-Tune [37] 73.13 ± 0.20 82.64 ± 0.16 83.77 ± 0.68 89.35 ± 0.59
L2-SP [2] 66.99 ± 0.20 84.09 ± 0.09 77.66 ± 0.13 89.78 ± 0.05

GrOD + L2-SP [2] 73.32 ± 0.1 84.09 ± 0.09 84.11 ± 0.06 90.85 ± 0.11

Source Dataset Stanford Dogs 120 [58]

Fine-Tune [37] 82.29 ± 0.04 75.69 ± 0.21 90.20 ± 0.39 96.34 ± 0.13
L2-SP [2] 83.44 ± 0.23 74.64 ± 0.07 88.14 ± 0.06 94.16 ± 0.10

GrOD + L2-SP [2] 83.84 ± 0.08 76.46 ± 0.22 89.98 ± 0.04 96.39 ± 0.08

of Standford Dog 120 was pre–pre–trained from ImageNet. Overall GrOD significantly improves
the performance of L2-SP in all transfer learning settings that we evaluated.

An interesting facts observed in the experiments is that, on top of the both algorithms and 15
source/task pairs, using Stanford Dog 120 as the source task can perform similar as the ones sourc-
ing from ImageNet. We consider it is due to the reason that the public release of Stanford Dog
120 pre-trained model is pre-trained from ImageNet, while the size of Stanford Dog 120 dataset is
relatively small (i.e., it cannot “wash out” the knowledge obtained from ImageNet while preserv-
ing the knowledge from the both ImageNet/Stanford Dog 120 datasets). In this way, knowledge
transferring from Stanford Dog 120 can be as good as those based on ImageNet. In the meanwhile,
GrOD can still improve the performance of L2-SP, gaining 0.12%∼2.2% higher accuracy with low
variance, even given the well-trained Stanford Dog 120 model.

4.2.2 Performance with Negative Transfer Effect. According to the results presented in Table 2,
we find negative transfer may happen in the cross-domain cases “Visual Objects/Dogs⇔ Indoor
Scenes” (please refer to the domain definitions in Table 1), while GrOD can improve the perfor-
mance of L2-SP to relieve such negative effects. Two detailed cases are addressed as follow.

— Cases of Negative Transfer. For bothL2-SP algorithms, when using ImageNet and Stanford
Dogs 120 as the source task while transferring to MIT Indoors 67 as the target task, we can
observe significant performance degradation comparing to knowledge transfer from Place
365 to MIT Indoor 67. For example (Case I), the accuracy of MIT Indoor 67 using L2-SP is
84.09% based on pre-trained weights of Place 365, while the accuracy would be degraded
to 75.11% and 74.64% under the same settings with ImageNet and Stanford Dog 120 as the
pre-trained models, respectively. Furthermore, we also observe the similar negative transfer
effects, when using Place 365 as source while transfer to the target tasks based on Caltech
256, Flower 102, and CIFAR-10. For example (Case II), the accuracy on Flowers 102 is 77.66%
using Place 365 as source, while sourcing from ImageNet and Stanford Dog can achieve as
high as 88.96% and 88.14%, respectively, all based on L2-SP.

— Relieving Negative Transfer Effects. We believe performance degradation appeared in
Cases I and II is due to the negative transfer, as the domains of these datasets are quite
different. GrOD can however relieve such negative transfer cases. GrOD+L2-SP [2] can
achieve 84.11% on Flowers 102 dataset even when sourcing from Place 365—i.e., achieving 7%
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Table 3. Classification Accuracy Comparison for Knowledge Distillation from Teacher Networks

Pre-Trained by Various Datasets

Caltech 256 MIT Indoors 67 Flowers 102 CIFAR-10

Distilling a Teacher Network Pre-trained by ImageNet [8]

KnowDist [3] 82.93 ± 0.08 78.05 ± 0.32 90.43 ± 0.4 96.43 ± 0.08
GrOD +KnowDist [3] 83.27 ± 0.4 78.77 ± 0.31 90.91 ± 0.4 96.57 ± 0.2

Distilling a Teacher Network Pre-trained by Places 365 [57]

KnowDist [3] 72.8 ± 0.22 83.29 ± 0.42 83.50 ± 0.26 94.96 ± 0.05
GrOD + KnowDist [3] 73.18 ± 0.24 84.40 ± 0.41 84.12 ± 0.56 95.02 ± 0.13

Distilling a Teacher Network Pre-trained by Stanford Dogs 120 [58]

KnowDist [3] 82.73 ± 0.26 76.36 ± 0.19 89.86 ± 0.07 96.11 ± 0.53
GrOD + KnowDist [3] 82.85 ± 0.27 76.74 ± 0.26 90.29 ± 0.34 96.41 ± 0.18

accuracy improvement, comparing to vanilla L2-SP under the same settings. For the rest
negative transfer cases, GrOD can still improve the performance, with around 2% higher
accuracy, comparing to the vanilla implementations of L2-SP. In this way, we conclude that
GrOD can improve the performance of L2-SP in negative transfer cases with higher accuracy.

Note that we don’t intend to claim that GrOD could eliminate the negative transfer effects in parts.
It, however, improves the performance of regularization-based deep transfer learning, even with
inappropriate source/target pairs. Such accuracy improvement can marginally solve the problem
of negative transfer effects.

4.3 Performance of GrOD on Feature-Wise Knowledge Distillation with [3]

We report the results of overall performance comparison based on the aforementioned tasks using
Feature-wise Knowledge Distillation [3, 22] and its variant based on GrOD for Teacher–Student
training of deep neural networks. We also focus on evaluating the performance improvement con-
tributed by GrOD on top of Knowledge Distillation (denoted as “KnowDist” in this article), com-
paring to [3]. We use a ResNet-18 pre-trained on ImageNet as the Teacher Network.

We present the overall accuracy comparisons in Table 3. GrOD improves the performance of
Teacher–Student training in all Student networks (also ResNet-18) training. For example, to train
a Student network using CIFAR-10 dataset, common Knowledge distillation achieves 96.43% accu-
racy while GrOD further improves the accuracy to 96.57%. These two numbers are quite closed
to the state-of-the-art performance of ResNet-18 on CIFAR-10 datasets (without using additional
training or data augmentation methods ) [62]. As it has been shown in 3, GrOD brings significant
improvement in all tasks. We test the performance of GrOD based on other Teacher networks
(based on different datasets). GrOD achieves performance improvement in all cases, on top of [3].

4.4 Performance of GrOD on Adversarial Learning with Advt [4]

In this section, we report the results of performance comparison based on Fashion MNIST and
CIFAR-10 under, adversarial learning settings, using advt [4] and its variant based on GrOD. We
also focus on evaluating the performance improvement contributed by GrOD on top of advt. We
use a simple two-layer CNN4 and a ResNet-18 for this experiment.

4.4.1 Adversarial Learning Setups with GrOD. The experiment setups for adversarial learning
with GrOD are a bit different from previous settings. Reference [46] found training with an adver-
sarial objective function with regularization in Equation (4). To generate the perturbation more

4https://github.com/ashmeet13/FashionMNIST-CNN.
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Fig. 3. Overall performance of Adversarial Learning with GrOD: (a) Robustness vs. Accuracy of the models

on Fashion MNIST datasets with varying λ (regularizer weight) and fixed perturbation size ϵ = 0.05; and

(b) Robustness of the model trained on CIFAR-10 with varying perturbation size ϵ ∈ [0, 0.1].

efficiently, [4] provides the state-of-the-art of adversarial learning that uses PGD [47] to generate
adversarial examples, where two key factors ϵ and λ control the level of noise in adversarial attacks
and strength of regularization affects to the adversarial learning.

In this way, one can make tradeoff between accuracy and robustness of the model through
tuning the regularization coefficient λ and attacking strength ϵ . We can further adopt GrOD to get
better accuracy while reserve robustness. Note that we model the gradient of regularization term
as the∇Ω(ω) = 1

n

∑n
i=1 ∇ωL(z(xi ,ω),yi )−

1
n

∑n
i=1 ∇ωL(z(xi ,ω),yi ) to remove the major component

in parallel with the original loss.

4.4.2 Experimental Results. We tested the adversarial training with GrODon Fashion-
MNIST [60] and CIFAR-10, respectively. All the images’ are re-scaled to [−2, 2]. All adversarial
examples are generated via [4] with seven steps. Figure 3 presents the results of experiment re-
sults for adversarial training with MNIST and CIFAR-10 datasets.

For Fashion MNIST dataset, we set step size for noise ϵ = 0.05 with varying regulariztion co-
efficient λ, so as to see whether GrOD can improve the performance of advt [4] with enhanced
robustness (i.e., the accuracy based on adversarial samples) and accuracy (i.e., the accuracy based
on original testing samples). The results show that GrOD can achieve “Pareto–improvement” on
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Fig. 4. Empirical loss minimization.

top of advt. When, both algorithms achieve the same accuracy, GrOD leads to higher robustness.
When they behave with same robustness, advt(GrOD) outperforms advt with higher accuracy.
Note that, without adversarial attack, the evaluated CNN can obtain 0.92 accuracy on testing sets.

For the experiments based on the CIFAR-10 dataset, we fix the regularization coefficient while
varying the step size ϵ for adversarial attack from 0 to 0.1. The experiment shows that advt(GrOD)
can always outperform advt under the same level of noise (perturbation) for adversarial attacks.
Generally, experiments based on both datasets demonstrated significant improvement of GrOD

in adversarial learning tasks on top of state-of-the-art [4].

4.5 Case Studies

We report the results of the following two case studies that provide further evidences supporting
that GrOD works in the way that we assumed.

4.5.1 Empirical Loss Minimization. As was elaborated in the Introduction section, we suspect
that using regularizer might restrict the learning procedure from lowering the empirical loss. Such
restriction helps the regularized deep learning to avoid over-fitting, but in the meanwhile, hurts
the learning procedure. Following the insight we hope to study trends of empirical loss part mini-
mization with and without GrOD in L2-SP [2] case. Note that the empirical loss here is NOT the
training loss, it refers to the data fitting error part of the training loss.

Figure 4 illustrates the trends of both empirical loss and testing loss, with increasing number
of iterations, based on both L2-SP and GrOD(L2-SP), for Places 365 =⇒ MIT Indoors 67 case. As
was expected, the empirical loss of both vanilla L2-SP and GrOD(L2-SP) reduces with the number
of iterations, while the empirical loss of L2-SP is always higher than that of GrOD(L2-SP). In the
meanwhile, GrOD(L2-SP) always enjoys a lower testing loss than vanilla L2-SP. The phenomena in-
dicate that, comparing vanilla L2-SP to GrOD(L2-SP), the L2-SP regularization term would restrict
the procedure of empirical loss minimization and finally hurt the learning procedure with lower
testing accuracy. Furthermore, we also observed that GrOD could be further improved through
early stopping.

4.5.2 Angles Between Descent Directions. The intuition of GrOD design is based on the two
assumptions made in Section 3.2—it is possible to find a new descent direction that is very closed
to the direction of empirical loss gradient (Assumption 1), while always shares an angle with the
gradient of regularization term as small as the original descent direction (Assumption 2).
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Fig. 5. �(̂d(ωt ),∇Ω(ωt )) vs. �(̂d(ωt ),∇J (ωt )) over the Number of Iterations t with varying ωt : Blue line

represents vanilla implementations of L2-SP and advt, Red line represents the GrOD-based solutions; Dash

line represents �(̂d(ωt ),∇Ω(ωt )), and Solid line represents �(̂d(ωt ),∇J (ωt )).

Figure 5 plots the comparison of the two types of angles with the L2-SP and advt algorithms
with and without GrOD. The results showed that with GrOD both algorithms always enjoy a
smaller angle between the actual descent direction and the (stochastic) gradient of empirical loss,

i.e.,�(̂d(ω),∇J (ω)) of both algorithms with GrOD is smaller than the vanilla ones. We thus con-
firm the validity of Assumption 1. To demonstrate the validity of Assumption 2, we measure

�(̂d(ω),∇Ω(ω)) for the two cases using L2-SP and advt algorithms on CIFAR-10. It shows that
no matter whether GrOD is used, the trends of angles over the number of iterations are quite
similar for the same algorithm under the same settings. Please note that values of angles highly
depend on the choice of hyper-parameters (e.g., λ for L2-SP). However, we still can verify that, by
design, the angles between the GrOD’s actual descent direction and the empirical loss’s gradient
are always acute.

5 DISCUSSION

In this article, we proposed GrOD, which can improve regularized deep learning through orthog-
onal decomposition of loss gradients. We have included extensive experiments using regularized
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learning paradigms [2–4] for knowledge transfer, knowledge distillation, and adversarial training.
In this section, we discuss several open issues in this work.

5.1 Performance Improvement of GrOD and Analysis

All in all, the performance improvement made by GrOD on top of L2-SP [2], KnowDist [3], and
Adversarial Learning [4] is quite marginal. However, we hope to point out that the performance
improvements consistently exist in all cases, especially relieving the “negative transfer” where
the use of regularizer hurts the transfer learning. Please note that, in our study, we include the
experiments based on inappropriate pairs of source and target datasets/pre-trained models for
knowledge transfer and knowledge distillation (e.g., in Tables 2 and 3) while most of existing works
uses ImageNet as the source datasets or pre-trained models only.

With inappropriate pairs of source and target datasets/pre-trained models, the regularized learn-
ing with L2-SP or Distll might hurts the performance compared to directly fine-tuning from pre-
trained weights. In all negative transfer cases, GrOD improves the performance of regularized
knowledge transfer or knowledge distillation while always achieving performance better than
vanilla fine-tuning. Furthermore, for the adversarial training with Advt regularization [4], GrOD

achieves better tradeoff between accuracy and robustness, with Pareto dominance in these two fac-
tors, under varying strength of perturbation. Again our theoretical analysis in Section 3.4 clearly
states how GrOD could ensure the effectiveness of ERM learning procedure while preserving the
regularization effects (Proposition 1), which solicits the performance improvement. Note that our
theoretical analysis relies on two assumptions made in Section 3.1, we conducted case studies with
experiments to validate these two assumptions empirically.

5.2 Stability of GrOD Performance

Though GrOD enjoys higher accuracy on average, in some cases, it also incorporates higher vari-
ances. For example, in Table 2, with weights pre-trained by ImageNet, GrOD(L2-SP) achieves
90.86% with 0.31% STD for the target task based on Flower 102, while L2-SP achieves 88.96% with
0.21% STD in the same settings. It is obvious that GrOD incorporates with higher variances, how-
ever the lower bound of confidence intervals of GrOD is still higher than the upper bound of
confidence interval of the original algorithm. Furthermore, we also tried to hack the weight decay
using GrOD, the results showed that GrOD cannot improve weight decay. (Note that the weight
decay, i.e., the L2-regularization, has been frequently considered as a stabilizer [63, 64] of the train-
ing procedure in a regularization of Ridge-style.) We believe both of these observations are due
to the use of orthogonal decomposition on stochastic gradient. In practical deep learning, stochas-
tic gradients—the noisy evaluation of loss functions’ derivatives, have been used to accelerate the
learning procedure with mini-batch sampling. However, the gradient noise [65] after orthogonal
decomposition might perturbate the training procedure and leads to instability.

5.3 Hyper-Parameters Tuning and Fair Comparisons

In our experiments, to enable fair comparisons, we use hyper-parameters, including learning rates
and the weights of regularizers, according to the default settings released from the open-source
implementation of the algorithms [2–4] (most of which were tuned best through cross validations
in their research). In the same set of experiments, both GrOD and the original algorithms used the
same set of hyper-parameters, especially the weights of regularizers for fair comparisons. Note
that the performance of GrOD could be further improved through tuning the hyper-parameters
(rather than the use of default ones).
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Furthermore, our theoretical analysis also shows that the descent direction of GrOD is not
achievable through tuning the weight of regularizers’ term (Proposition 2). That means, no matter
how one sets the hyper-parameters for vanilla regularized deep learning, the algorithm based on
the vanilla loss gradient of regularized deep learning could not behave as same as GrOD.

5.4 Connections to Optimization Algorithms

Note that GrOD strategy is derived from the common stochastic gradient estimation used in sto-
chastic gradient based learning algorithms, such as SGD, Momentum, conditioned SGD, Adam,
and so on. It can be consider as an alternative approach for descent direction estimation on top of
vanilla stochastic gradient estimation, where you can still use natural gradient-alike method to con-
dition the descent direction or adopt Momentum-alike acceleration methods to replace the weight
updating mechanism. We are not intending to compare GrOD with any gradient-based learning
algorithms, as the contributions are complementary. One can freely use GrOD to improve any
gradient-based optimization algorithms with the descent direction corrected.

Furthermore, according to the ERM-Effective descent direction assumption, GrOD can further
lower the empirical loss while preserving regularization effects simultaneously, as the finally de-
scent direction will be close to the both empirical loss gradient and regularizer gradient. Our later
on experiment based on adversarial learning will show that no matter how regularizer weights are
fine-tuned, GrOD can still outperform the traditional regularized deep learning algorithms that
linearly combine the gradients of the two terms as the descent direction. In future work, we intend
to study the asymptotic properties and convergence performance of GrOD, using Neural Tangent
Kernel as the proxy [66] to lower the complexity in non-convex optimization analysis.

5.5 Improving Advanced Regularization Methods and Other Applications

Please be advised that the regularized deep learning algorithms for transfer learning (L2-SP) [2],
knowledge distillation [3], and adversarial training [4] are not the state-of-the-art algorithms in
the fields. In future work, we are interested in incorporating with more advanced methods, such
as DELTA and its variants [24, 67], BSS [68], Co-Tuning [69], learning without forgetting [21],
and deep ensemble learning [70], where more advanced and complicated regularizers have been
proposed incorporating constrained features, singular value decomposition, category relationship,
and so on. In future work, we would study the use of GrOD and its variants to improve regularized
learning, especially focusing on applications other than image classification, such as segmentation
& parsing [10, 12], regularized graphical learning [15, 16, 71], and network interpretability [72, 73].

6 CONCLUSIONS

In this article, we studied a descent direction estimation strategy GrOD that improves the common
regularized deep learning techniques with applications to transfer learning [2], knowledge distil-
lation [3], and adversarial learning [4]. Significant improvements have been observed compared
to the existing methods that simply aggregates empirical loss for data fitting and regularization
terms through linear combination, such as [2–4].

Specifically, we designed a new method to re-estimate a new direction for loss descending
based on the (stochastic) gradient estimation of empirical loss and regularizers, where orthogonal
decomposition has been made on the gradient of regularization terms, so as to eliminate the
conflicted direction against the empirical loss descending. The design of the algorithm is based on
an intuitive assumption made by us, namely ERM-preserved descent direction, where in the every
iteration of the learning procedure, the empirical loss of regularized deep learning is expected
to descend as fast as the one based on empirical loss minimization. We have conducted extensive
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experiments to evaluate GrOD using several real-world datasets based on classical convolutional
neural networks. The experiment results and comparisons show that GrOD significantly improves
the state-of-the-art algorithms for the three applications with higher accuracy and robustness.
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