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Abstract

A primary challenge in organic molecular crystal structure prediction (CSP) is accu-

rately ranking the energies of potential structures. While high-level solid-state density

functional theory (DFT) methods allow for mostly reliable discrimination of the low

energy structures, their high computational cost is problematic because of the need

to evaluate tens to hundreds of thousands of trial crystal structures to fully explore

typical crystal energy landscapes. Consequently, lower-cost but less accurate empir-

ical force fields are often used, sometimes as the first stage of a hierarchical scheme

involving multiple stages of increasingly accurate energy calculations. Machine learned

interatomic potentials (MLIPs), trained to reproduce the results of ab initio methods

with computational cost close to that of force fields, can improve the efficiency of CSP

by reducing or eliminating the need for costly DFT calculations. Here, we investigate

active learning methods for training MLIPs with CSP datasets. The combination of

active learning with the well-developed sampling methods from CSP yields potentials
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in a highly automated workflow that are relevant over a wide range of the crystal pack-

ing space. To demonstrate these potentials, we illustrate efficiently re-ranking large,

diverse crystal structure landscapes to near-DFT accuracy from force field-based CSP,

improving the reliability of the final energy ranking. Furthermore, we demonstrate how

these potentials can be extended to more accurately model structures far from lattice

energy minima through additional on-the-fly training within Monte Carlo simulations.

Introduction

Molecular crystals are prevalent across a diverse range of materials applications, includ-

ing opto-electronics, pharmaceuticals, and energetic materials.1–3 The desirable properties

of these materials are often strongly tied to the crystal structure—the arrangement of the

molecules in the crystal lattice—and changes solely in the crystal structure can greatly af-

fect a wide range of the physio-chemical properties of the crystals. This is seen clearly in

polymorphs, which are crystals of the same compound but with different crystal structures.4

The properties of polymorphs often differ substantially, such that the unexpected appear-

ance of a polymorph can result in loss of control over material properties; the example of

polymorphism in the drug Ritonavir illustrates the impact that this can have in pharmaceu-

tical materials.5 Polymorphs also offer an opportunity since they allow for materials to be

potentially tuned to achieve enhanced properties.6 Thus, predicting the crystal structure of

molecular crystals has become a highly coveted goal and crystal structure prediction (CSP)

is one of the primary challenges in materials science and computational chemistry.

CSP methods can conceptually be divided into two parts: first, the high-dimensional

lattice energy space is comprehensively sampled to identify all relevant low energy, stable

structures; and thereafter, the structures are ranked in terms of how likely they are to be

observed. In general, the crystal structures are ranked based on thermodynamic stability.

The resulting predicted landscapes typically contain hundreds to thousands of unique struc-

tures. As evidenced by the CSP blind tests, the best sampling methods have achieved matu-
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rity and reliably locate matches to experimental structures for rigid and moderately flexible

molecules.7–10 By contrast, determining the relative energy ranking of predicted organic crys-

tal structures remains a notable challenge with often hundreds of distinct structures being

within the typical energy range of polymorphism (̃ 7-8 kJ mol−1)11 above the global energy

minimum. Differentiating these structures relies predominately on accurately evaluating the

subtle balance of weak intermolecular interactions that holds organic crystals together. Ad-

ditionally, thermal and entropic effects can be important for polymorphs close in energy.

High level ab initio calculations provide a measure of consistency in identifying the balance

of intermolecular forces.12–18 However, these calculations have considerable computational

cost and therefore are typically only applied to a subset of the predicted landscape, or are

restricted to researchers with access to very large-scale computing resources.

The large cost of DFT calculations has resulted in pairwise atom-atom force fields with

simple functional forms and multipole electrostatics remaining a fundamental part of CSP

methods.19 Indeed, because of the high number of crystal structures that must be evaluated,

the initial energy surface that is sampled during the first stage of organic CSP is inevitably

a force field energy surface. The effectiveness of CSP in finding good geometric matches

to experimental structures thus reflects the generally good structures generated by these

force fields. The relative energies calculated using the force fields applied during structure

generation are equally important and, if not the final energies themselves, are the basis

for selecting structures for further, higher level calculations. Therefore, it is desirable that

these computationally cheaper methods are still as accurate as possible. However, fitting

force fields that have high accuracy across diverse structures is challenging due to the simple

functional form and compromises are often required.

A promising pathway to achieving the required high level accuracy of organic CSP at

low cost is through the use of machine learned interatomic potentials (MLIPs) which, fol-

lowing training on ab initio reference data, can estimate energies and forces with the same

level of accuracy but at a fraction of the cost.20–24 Recent developments in both theory and
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computing hardware have led to MLIPs being widely adopted across materials modelling,

including in CSP.25–29 Their adoption for organic CSP, however, has been slower than other

areas due to the unique challenges of these materials. Moreover, modern MLIPs in general

rely on an axiom that the total energy can be decomposed into a sum of atomic energies,

which are predicted based on local atomic environment descriptors. This particularly works

well when the interaction is well-screened beyond the cutoff radius or when the bonding

is homogeneous, as in inorganic materials. However, it cannot accurately capture interac-

tions that occur on different scales, including the diversity of intermolecular interactions in

organic crystals. Hence, while modern MLIPs excel at describing short range interactions,

they often completely neglect the longer range interactions, including long-range dispersion

and electrostatics, that extend beyond typical, computationally feasible cutoffs for the local

atomic environment. Overcoming this limitation in order to capture all the relevant interac-

tions in organic crystals requires either a more complex MLIP method,30–32 or alternatively

incorporation of a physical baseline that incorporates the missing long-range interactions.

A common approach to including a physical baseline is with ∆-learning which, rather

than learning total energies, focuses on learning the difference between a lower level method,

such as a force field or Density Functional based Tight Binding (DFTB), and the higher

level method, such as DFT. With the appropriate choice of the baseline, ∆-learning com-

bines the accurate description of long-range effects with the high-level accuracy of MLIPs for

short range interactions, which can increase the accuracy of the final model with less data.33

The validity of this approach has been demonstrated for organic crystals, with further ex-

tensions including multimer corrections and training separate models for the intramolecular

and intermolecular components.34–37

Accurate MLIPs are also highly dependent on the training data collected. This is because

the non-physical functional form of MLIPs means they are typically only accurate interpo-

lating within regions of the energy surface covered by the training data. Consequently,

generating comprehensive, representative, and diverse datasets is a non-trivial problem and
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a key concern for MLIP development. On one hand, large datasets allow MLIPs to cover a

wide region of the energy landscape with high accuracy. On the other hand, large datasets

are unfavorable because large numbers of expensive ab initio calculations are required and

the computational cost of MLIP training increases. Furthermore, large randomly sampled

datasets might introduce biases towards common configurations. A common approach to

avoid these pitfalls is to apply an active learning approach, where structures are iteratively

added to the training set from a large pool of candidates based on the model’s predictions,

with the model being retrained after each iteration to update the predictions.25,38–48 There

are various implementations of active learning. However, for MLIPs active learning often

involves estimating the uncertainty of the predictions and adding structures with high uncer-

tainty. Previous studies have found that active learning can significantly reduce the training

set size required to achieve a certain level of accuracy of MLIP, reducing computational costs

proportionally.38

Because active learning cannot increase the scope of the MLIP beyond that covered by

the set of candidates, generating robust candidate datasets is still important. Molecular

dynamics is one common method for generating these datasets. However, in the context of

MLIPs for solid state systems, CSP landscapes can provide more diverse candidates, covering

a wide scope of the potential energy surface (PES) and largely free of selection biases. As

well as improving the efficiency of future CSP studies, MLIP training to CSP landscapes can

leverage the excellent resource of already published CSP landscapes for those interested in

developing MLIPs for crystal structure modelling.

In this contribution, we investigate how best to develop MLIPs, specifically neural net-

work potentials (NNPs), from organic CSP landscapes. We begin by examining active learn-

ing on a CSP landscape of oxalic acid (Fig. 1a), investigating the effects of hyperparameters

and strategies on the size and quality of the selected training set. From this we identify an ef-

ficient approach combining active learning with ∆-learning. Thereafter, we demonstrate this

approach through correcting to the DFT level CSP landscapes of resorcinol (Fig. 1b) and
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Figure 1: The compounds considered in this study: oxalic acid (a), resorcinol (b) and TTBI
(c).

triptycene-tris(benzimidazolone) (TTBI, Fig. 1c), each containing thousands of structures.

Finally, we detail how the potentials can be extended to describe structures far from the

CSP minima by combining on-the-fly training with Monte-Carlo simulations. The scheme

presented here provides access to MLIPs relevant over a wide scope of the crystal packing

space and with the exacting accuracy required for organic CSP in a simple, efficient, and

highly automated workflow.

Methods

An overview of the workflow described here is shown in Figure 2. The fundamental idea

consists of NNPs trained by active learning using query-by-committee (QBC) techniques to

identify high uncertainty structures in CSP landscapes and Monte Carlo trajectories. The

CSP landscapes can be explicitly calculated for this purpose or re-used from prior studies.

In this work, only the oxalic acid landscape was calculated for the purpose of training NNPs.

The more computationally demanding landscapes for resorcinol and TTBI were taken from

earlier works.49,50 All landscapes were originally generated by a quasi-random sampling of the

crystal packing space using our Global Lattice Energy Explorer (GLEE) code.51 The initial

trial structures were generated from rigid molecules and lattice energy minimized using an

empirically-parametrized exp-6 potential consisting of the FIT52–54 parameters for describing

intermolecular exchange-repulsion and dispersion combined with atom-centered multipoles
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Figure 2: Overview of the workflow detailed. Starting from an initial CSP landscape the
active learning flowchart describes how the final training set is produced. committee NNPs
trained on this training set can then extended through on-the-fly training. The overview of
the on-the-fly training and flowcharts for the trajectory and trainer subroutines are shown.
Each subsection is automated and thus from CSP to on-the-fly training can be achieved with
minimal intervention.

obtained from a distributed multipole analysis55 (DMA) of the DFT-calculated molecular

electron density (FIT+DMA). In the case of resorcinol, to account for the conformational

flexibility, crystal structures were generated using a pool of rigid conformations and, following

rigid-molecule lattice energy minimization, were fully relaxed at the dispersion-corrected

DFTB level (DFTB-D3). Further details are provided in the supporting information.

Reference energies and forces were calculated with DFT using the PBE exchange corre-
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lation functional with the D3(BJ) dispersion correction (PBE-D3). This method is widely

used as a first DFT approximation for molecular crystal lattice energies10 The calculated

reference data was used to train NNPs of the Behler-Parinello high-dimensional NNP form56

as implemented in the n2p2 code.57,58 The input to the NNPs are vectors of radial and angu-

lar atom-centered symmetry functions (ACSFs). ACSFs were selected from a larger set by a

CUR decomposition following the procedure detailed by Imbalzano et al.,59 which offers an

improvement over a general set of symmetry functions (Table S1). For oxalic acid, a total

of 64 radial and angular symmetry functions per element were selected, while for TTBI and

resorcinol 128 total symmetry functions were selected. In all cases a maximum radial cutoff

of 8.0 Å was used. Further details of the reference calculations and NNP models are provided

in the supporting information.

Query-By-Committee

As pure mathematical functions, neural networks do not natively estimate uncertainties

in their predictions and thus various methods have been developed to provide these. A

common approach with NNPs, and the one we use here, is to create committee neural

network potentials (cNNP) and obtain uncertainties via QBC. This involves training an

ensemble of n individual models, the committee, using the same dataset but with random

variations in the initialisation of each member. Predictions are then made by averaging over

the predictions of the individual members; for example energies are estimated as

E cNNP (x) =
1

n

n∑
i=1

Ei(x) (1)

where x is the descriptor vector for a given structure and Ei is the energy predicted by

member i of a committee of n members. The uncertainty is derived from the standard

deviation (σ) of the prediction between committee members. Since the true values will be

precisely defined, high standard deviations imply high errors for one or more of the members,
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indicating the model is extrapolating beyond the training data and so reflecting the random

variation between committee members. In addition to the uncertainty measure, by averaging

over predictions, cNNPs have also been shown to have higher accuracy compared to a single

NNP.47 The caveat of cNNPs is an increased cost in training and predictions. This increase

can be minimized through parallelization and by storing ACSF vectors.

Active Learning from CSP Landscapes

Candidates indicated to have high uncertainty by QBC suggest regions of the configura-

tional space that have not been learned sufficiently accurately given the current training set.

Therefore, applying this to CSP landscapes we iteratively add predicted structures with high

uncertainty to the training set. For the initial iteration, before the cNNP is first trained, we

sample the candidates either randomly or by farthest point sampling (FPS), wherein addi-

tional structures are selected based on the maximum distance in the descriptor space from

the previously selected structures (the first structure is selected randomly). While ideally

the model would be retrained after each new structure is added to the training set, this has

an impractically high computational cost in most cases and thus we define a batch size for

how often the cNNP is retrained, i.e. the number of structures added at each iteration of

active learning.

Another important parameter is the threshold for defining high uncertainty, σ̂, which

determines the structures that are added to the training set. Setting this parameter depends

on the desired accuracy of the final model, but is typically complicated by not knowing

the relationship between the variance in the cNNP predictions and the true error a priori.

Here we define the uncertainty directly as the standard deviation of the cNNP prediction

and set an uncertainty threshold in terms of the target energy units, kJ mol-1 per molecule

(abbreviated as kJ mol-1 hereafter). While the uncertainties are uncalibrated, we find that a

threshold of 1 - 2 kJ mol-1, which is based on typical energy differences between polymorphs,11

provides good accuracy for the systems studied. Candidates above the uncertainty threshold
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are added to the training set until either there are no more candidates or the percentage

of candidates above the uncertainty threshold is below a specified target. Additionally, a

maximum training set size can be set. The scheme is summarized in Figure 2 (top panel).

On-The-Fly Training

The on-the-fly training scheme we propose here (the bottom panel of Figure 2) is based

on threshold Monte Carlo (MC) simulations for sampling the configurational space. This

method has been applied to molecular crystals using empirical force fields and DFTB to

characterize the global structure of crystal energy landscapes60 and to reduce overprediction

of polymorphism.49 These simulations involve regular MC sampling of the configurational

space, but with the distinguishing feature of an energy lid, which is defined relative to

the energy of the initial configuration from which the simulation was initiated. During the

simulation MC moves are accepted if and only if the energy of the resulting structure is below

the current energy lid. Consequently, the energy lid effectively constrains the simulation to

explore only regions accessible below the lid, thereby providing a high level of control over

the trajectory.

With on-the-fly training, each MC step is first evaluated by a cNNP. If the uncertainty

of the predicted energy is above the specified threshold, the step is further evaluated by the

reference method, in this case PBE-D3, and the configuration is added to the training set.

The cNNP is constantly retrained as structures are added to the training set to ensure reliable

uncertainties and avoid adding redundant structures. For the MC simulations described here

we use a rigid molecule moveset consisting of molecular rotations and translations as well as

unit cell lengths, angles, and volume changes. Conformational moves can be added to explore

intramolecular perturbations to the crystal structure. Further details of the simulations are

provided in the supporting information.
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Results

Table 1: Average MAE, RMSE, and dataset size with standard deviations from 5-fold cross-
validation of combinations of active learning hyperparameters evaluated by training cNNPs
with an oxalic acid CSP landscape. The cNNPs were trained either on total energy (E)/forces
(F ) or the difference between the CSP values and the reference values (∆E/∆F ), i.e. ∆-
learning. All entries used an uncertainty cutoff of 1.0 kJ mol-1 with candidates selected by
highest uncertainty.

Entry Training Quantity Committee Size % Uncertain Target Batch Size Energy MAE (kJ mol-1) Energy RMSE (kJ mol-1) Final Training Set Size

1 E 6 10.0 30 1.11 (0.05) 1.74 (0.18) 852 (24)

2 E, F 6 10.0 30 1.08 (0.10) 1.50 (0.13) 546 (40)

3 ∆E 6 10.0 30 1.09 (0.11) 1.47 (0.18) 205 (53)

4 ∆E, ∆F 6 10.0 30 0.92 (0.06) 1.20 (0.07) 216 (22)

5 ∆E 6 2.5 30 0.89 (0.11) 1.21 (0.20) 354 (72)

6 ∆E 6 5.0 30 0.97 (0.06) 1.29 (0.10) 252 (45)

7 ∆E 2 5.0 30 1.19 (0.18) 1.61 (0.26) 168 (65)

8 ∆E 18 5.0 30 0.90 (0.06) 1.20 (0.12) 288 (41)

9 ∆E 6 5.0 15 1.01 (0.05) 1.37 (0.17) 216 (15)

10 ∆E 6 5.0 60 0.90 (0.08) 1.38 (0.43) 320 (45)

Optimising Active Learning for CSP Landscapes

A primary consideration when developing machine learned models is determining an ap-

propriate set of hyperparameters. For an MLIP there are hyperparameters for the model,

such as the network architecture of NNPs, as well as hyperparameters for the descriptor,

for example the radial cutoff. Active learning has its own hyperparameters, including the

batch size and uncertainty threshold, and also a query strategy. In order to apply active

learning efficiently with CSP datasets we first investigated optimising the hyperparameters

and selection strategy. The aim was to identify the approach that yields the smallest training

set that accurately captures the whole landscape, as measured by small test errors, and does

so consistently with minimal variation.

The dataset we chose for these studies was a predicted landscape for oxalic acid containing

1965 crystal structures. We chose this landscape because oxalic acid is a known challenging

system for empirical force fields61 and thus learning either the total energy or ∆-learning the
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correction from force field to DFT will be meaningful tests. Furthermore, the small size of

the oxalic acid structures meant calculating the entire dataset at the target level, PBE-D3,

was possible, and thus results were able to be verified through 5-fold cross-validation.

Hyperparameters

The hyperparameters we chose to investigate for optimisation were: the target quantity, the

committee size, the batch size, and the target percentage of structures above the uncertainty

threshold. The results of varying these parameters individually with 5-fold cross validation

are shown in Table 1. In all cases the uncertainty threshold was set at 1.0 kJ mol-1 and

structures were added to the training set by highest uncertainty.

The most influential hyperparameter on the final training set is the training quantity

(compare entries 1-4, Table 1). ∆-learning dramatically reduces the size of the training set,

by up to 76%, while achieving similar if not better accuracy than learning the total energy

(or energy and forces). Importantly, the improvement was similar if restricted to training

only on the energy differences without forces, which is expected to be a common application

since atomic forces are often not stored with CSP landscapes. However, if atomic forces are

available, including these in the training is likely worthwhile and would yield an improved

description of the energy surface around the lattice energy minima, which may be important

for further calculations beyond the lattice energy correction, for example calculations of

vibrational modes. Compared to the training quantity, the other hyperparameters are less

significant, yet tuning these parameters does offer notable improvements, particularly in

the efficiency. For example, we found that a large NNP committee of 18 members does

not offer significant improvement over a smaller committee of 6 members despite incurring

significantly greater costs. The improved average errors with the 18 member committee are

within that expected due solely to a larger committee (Figure S2), suggesting the dataset

chosen by active learning is not higher quality. Moreover, while smaller committees could

provide adequate results they were found to generally underestimate the standard deviation
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(Table S3) and thus the uncertainty. Similar trends of diminishing returns are observed in

the other hyperparameters studied. Overall, we identify the parameters of entry 6 as the

best balance between accuracy and cost and we use these settings in the following sections.

Table 2: Results of 5-fold cross validation for the active learning strategies evaluated by
training cNNPs with an oxalic acid CSP landscape. All cases used the active learning
hyperparameters in entry 6 of table 1 with the uncertainty threshold of 1 kJ mol−1.

Strategy Energy MAE (kJ mol-1) Energy RMSE (kJ mol-1) Final Dataset Size

Random 0.86 (0.04) 1.20 (0.13) 320 (36)
Highest Uncertainty 0.97 (0.06) 1.29 (0.10) 252 (45)
Highest Uncertainty FPS 0.96 (0.10) 1.33 (0.16) 288 (67)

Figure 3: Learning curves in energy MAE (left) and energy RMSE (right) from 5-fold cross
validation for the three strategies. Average values across the 5 folds are indicated by solid lines
while the shaded area represents one standard deviation. Active learning hyperparameters
are the same as entry 6 of table 1, except the uncertainty cutoff was decreased to 0.5 kJ mol-1
to extend the active learning to training set size of 600 across folds.

Query Strategies

We also investigated different strategies for adding candidates to the training set, beginning

with comparing active learning random sampling and highest uncertainty sampling. The

former involves evaluating each candidate once, in random order, and adding those above
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the uncertainty threshold to the training set, retraining when reaching the batch size. By

contrast, highest uncertainty sampling, which is the most common strategy for MLIPs,

evaluates all remaining candidates each iteration and adds the candidates with the highest

uncertainty to the training set. Additionally, we implemented a strategy combining highest

uncertainty and farthest point sampling. This strategy, which sampled candidates above the

uncertainty threshold by FPS starting from the candidate with the highest uncertainty, was

intended to reduce redundancy in the training set that may arise when sampling by highest

uncertainty with a batch size greater than one.

Comparing these strategies by 5-fold cross validation, we found their performance to

be similar (Table 2). On average the highest uncertainty sampling converged fastest, but

with the smaller dataset also had on average higher errors than random sampling. The

training curves (Fig. 3) make the differences between strategies clearer. Here we found the

highest uncertainty sampling had faster convergence with significantly smaller variance as

measured by both MAE and RMSE. By contrast, random sampling RMSE converged slower

and with higher variance even at large dataset sizes. Interestingly, the highest uncertainty

FPS strategy did not show improvement over regular highest uncertainty sampling. This

may indicate that the weighting of FPS and highest uncertainty sampling needs adjusting.

Nevertheless, the results suggests that there is no significant benefit of the strategy over

regular highest uncertainty sampling, which from the oxalic acid results is the best of the

three strategies for training cNNPs from CSP datasets.

Correcting Low-Level CSP landscapes to ab initio Level

Due to the exacting accuracy required, a primary task in organic CSP is correcting lower

level landscapes to higher levels of theory. This may also include re-optimization of the

geometries of predicted structures. However, single point corrections are also common, where

the geometries not updated when energies are re-evaluated at the higher level. The latter

correction is especially relevant for MLIPs trained by ∆-learning from CSP landscapes. To
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investigate this application, we applied our active learning workflow detailed in the previous

section to the CSP landscapes of two challenging systems – TTBI and resorcinol – and then

used the resulting training set to train cNNPs to generate corrected landscapes. The final

cNNPs consisted of 18 members since these provide slightly better prediction averages over

the 6 member committees used in the active learning (Figure S2) and has negligible cost

post-active learning.

Figure 4: FIT+DMA landscape (left) and cNNP re-ranked landscape (right) for TTBI. Error
bars on cNNP energies correspond to the standard deviation in the committee predictions.
Structures with energies beyond 250 kJ mol-1 above the global minimum have been omitted
for clarity. Structures marked with an X correspond to experimentally observed polymorphs.
Yellow markers indicate structures with high uncertainty (> 6 kJ mol-1) which were evaluated
directly with the target method.

triptycene-tris(benzimidazolone) (TTBI)

The first application we describe is for TTBI, a triptycene derivative with five known

polymorphs and a propensity for forming highly porous, hydrogen-bonded organic frame-

works.50,62,63 The initial landscape used to train the cNNP was reported by Zhu et. al.50

and was produced using the FIT+DMA potential, which does an adequate job at identifying
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the experimental structures and separating them from the bulk of the predicted structures.

However, the relative energy differences between the polymorphs are questionable with the

gap between the global energy minimum structure (corresponding to the densely-packed ϵ

polymorph) and the least dense porous γ polymorph at nearly 100 kJ mol-1. Although solvent

incorporated in the voids was shown to stabilize the porous polymorphs during growth,63

the FIT+DMA polymorph energy differences seem unreasonably large energy. The relative

energies are also sensitive to the calculation method: DFTB-D3 optimization reduces the

energy gap between the polymorphs,50 as do predictions using the W99+DMA force field.63

Understanding the achievable energetic range for metastable crystal structures with attrac-

tive properties is important for developing CSP for materials discovery. However, calculating

higher level energies for such CSP landscapes has thus far been too computationally expen-

sive due to both the large size of the structures and the scale of the landscape: the TTBI

CSP landscape used here contains 14997 distinct structures. Furthermore, the landscape

exhibits a diverse range of structures covering a very wide density range and from primarily

dispersion-bound structures to hydrogen bonded structures: this diversity in intermolecular

interactions is a further challenge to training a MLIP to predict accurate energies.

Considering the results of our hyperparameter and strategy tests, we performed the ac-

tive learning with a committee of 6 NNPs, training on ∆E, and adding structures by highest

uncertainty. Due to the larger size of the structures (46 atoms/molecule), the uncertainty

threshold was set at 2 kJ mol-1 per molecule and batch size set to five structures. Fur-

thermore, to focus the potential towards the lower energy structures we applied a cutoff at

110 kJ mol-1 above the global energy minimum, which gave 2220 candidate structures for

training and included all matches to the experimental polymorphs.

With these settings, the active learning converged in 185 structures, corresponding to less

than 10% of the candidates and only 1.2% of the total landscape. The corrected landscape

calculated with the final potential is presented in Figure 4, the uncertainties represented by

error bars on each structure. Despite the energy cutoff and small training set, the potential
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achieves good accuracy across the entire landscape: only 9 out of the 14997 structures had

uncertainties above 6 kJ mol-1. The energies of these structures were computed directly with

PBE-D3. Pleasingly, the correction yields a considerable reduction in the energy range of

the experimentally observed polymorphs, the gap between the global minimum and the low

density (α, β and γ) polymorphs reducing to less than 50 kJ mol-1, which is in line with the

solvation stabilization estimated for these structures.64 Comparing the corrected energies to

calculated PBE-D3 energies for 92 of the lowest energy structures on the initial landscape

(16 of which were selected by active learning), we find an MAE of 3.1 kJ mol-1 and an RMSE

of 4.1 kJ mol-1 (Figure S3). In terms of energy rankings, following the correction all five

known polymorphs are ranked in the 30 lowest energy structures with the biggest change

in rank being observed for the very low density γ polymorph, which dropped from 647th

to 21st on the landscape. This remarkably good ranking of the polymorphs with such a

minimal training set is highly encouraging for the application of the active learning workflow

to other diverse, large scale landscapes, and highlights the advantage of the correction even

for landscapes where the low level method is initially thought to perform reasonably well.

Resorcinol

We next investigated applying the active learning workflow to resorcinol, a small organic

molecule that has been well-studied as an example of conformational polymorphism. The

initial CSP landscape, which was calculated from a pool of conformations and relaxed at

the DFTB-D3 level, contains matches to the observed α and β polymorphs. The molecules

in these polymorphs differ conformationally by rotation of one hydroxyl group 180◦, trans-

forming between syn-syn and syn-anti conformations. This conformational flexibility means

that, whereas the models trained for oxalic acid and TTBI were effectively intermolecular

potentials, correcting the resorcinol landscape requires training a model that describes both

intramolecular and intermolecular energy corrections. To add to this, the DFTB-D3 de-

scription of the relative energies of the resorcinol structures contains clear deficiencies and
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Figure 5: DFTB-D3 landscape (left) and cNNP re-ranked landscape (right) for resorcinol.
Error bars on cNNP energies correspond to the standard deviation in the committee pre-
dictions. Structures marked with an X correspond to experimentally observed polymorphs.
Yellow circles indicate structures with high uncertainty (> 6 kJ mol-1) which were evaluated
directly with the target DFT method.

correlates poorly with the target PBE-D3 relative energies (Figure S2), which increases the

difficulty of learning the correction. It is also notable that the DFTB-D3 landscape incor-

rectly ranks the β polymorph lower in energy than the α polymorph, opposite to the expected

order.

While the smaller size of the resorcinol structures means directly calculating the higher

level landscape is possible, the large size of the landscape, containing 8808 structures, means

this would still be quite costly. Therefore, this landscape is suitable for applying the active

learning workflow, and moreover, considering the conformational flexibility and poor relative

energies we envisaged this landscape to be a significant test of the active learning workflow

and the resulting NNP.

The active learning was performed with the same settings as for TTBI, except in this

case the uncertainty threshold was set to 1.0 kJ mol-1 and the batch size to 15 structures. A

cutoff at 65 kJ mol-1 above the global minimum was applied, resulting in a candidate pool
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of 2487 structures, which contained matches to both the α and β polymorphs.

With these settings, active learning completed after adding 780 structures, i.e. 31% of

the candidates and 9% of the total landscape. This is significantly higher than seen for oxalic

acid or TTBI, illustrating the impact of a poor correlation between the baseline (DFTB-D3)

and target (PBE-D3) methods, increasing the complexity of the function that the model is

attempting to fit. The corrected landscape evaluated with the final potential is presented

in figure 5. Out of the 8808 structures, 19 had uncertainties above 6 kJ mol-1 and were

evaluated directly with the target method. Examining these structures, most were only

slightly above the threshold and the predicted energies were close to the computed energies,

suggesting that the cutoff at 6 kJ mol-1 may have been tighter than needed.

Comparing the corrected with the initial DFTB-D3 landscapes, we can see many of the

deficiencies from the baseline (DFTB-D3) landscape have been eliminated. The structures

corresponding to the experimentally observed polymorphs are now among the lowest energy

structures on the landscape and in the correct expected order of stability, the α polymorph

being the global minimum and the β polymorph ranked slightly higher. The CSP structures

that were predicted with low energies and high densities by DFTB-D3 have been corrected to

higher energies, and now are the highest energy structures on the landscape, emphasizing the

very poor description of these structures on the initial landscape. Despite the large correc-

tion required, for the vast majority of the landscape the potential estimates the corrections

with low uncertainty, the mean uncertainty being 1.51 kJ mol-1. Moreover, comparing the

corrected energies to the calculated PBE-D3 energies for the 300 lowest energy structures

on the initial landscape (106 of which were selected by active learning), we find an MAE of

0.4 kJ mol-1 and an RMSE of 0.6 kJ mol-1 (Figure S2). The only notable exceptions are the

low density CSP structures, which have larger uncertainties. This is due to these structures

being some of the highest energy structures on the initial landscape and thus relatively few

ended up in the set of candidates for active learning. Nevertheless, despite not training

on many of these low density structures, considering the energy range of the landscape the

19



uncertainties are not excessive. Overall, the potential has performed exceedingly well con-

sidering the difficulty of the landscape and has notably succeeded in learning the combined

intramolecular and intermolecular correction to a high standard.

On-the-fly Training

Figure 6: Correlation of FIT+DMA, CSP trained cNNP, and the CSP trained cNNP with
additional Monte Carlo on-the-fly training with the PBE-D3 reference for a set of unmini-
mized accepted structures sampled from FIT+DMA MC trajectories of the α (top) and β
(below) polymorphs of oxalic acid.

The potentials so far presented have been trained exclusively on energy minima of pre-

computed CSP landscapes and consequently have a limited description of the energy surface

beyond these points. Here we look at how we can improve the description of the PES

through on-the-fly training within Monte Carlo simulations. We demonstrate this using the

300 lowest energy structures from the CSP landscape predicted for oxalic acid.
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Before we can begin the simulations we first need to determine which structures to sample

with the MC trajectories. Ideally we want to select structures that are diverse and well-

separated on the energy surface such that the simulations cover as much of the energy surface

as possible with the fewest number of trajectories. Redundant structures that occupy similar

regions of the energy surface will add little to improving the MLIP while increasing the

computational cost. The area of the energy surface that will be covered by each trajectory

is difficult to determine a priori, however, using farthest point sampling we can ensure that

our selected structures represent a diverse set. Thus, we selected 10 structures from the

set of 300 oxalic acid structures by FPS in the descriptor space starting from the lowest

energy structure, which also is the match to the β polymorph. On-the-fly training from

these structures with an uncertainty threshold of 2.0 kJ mol-1 yielded 1636 structures from

the MC trajectories that were added to the training set.

To illustrate the improvement of the potential we first ran simple downhill Monte Carlo

simulations on the 300 oxalic acid structures (Figure S4). These simulations, which only

accept Monte Carlo moves that decrease the energy, are relatively localized, constrained

effectively to the initial energy basin. Nevertheless, using the initial cNNP trained on CSP

minima we find that only 9 CSP structures remain stable after 1500 MC steps. The other 291

trajectories were terminated early due to high uncertainties in energy predictions in excess

of 50 kJ mol-1. By contrast, performing the same simulations with the on-the-fly trained

cNNP 299 trajectories remain stable.

To further qualify the differences in the potential, we generated a test set of 1000 un-

minimized structures, randomly sampled from FIT+DMA MC simulations of the α and β

polymorphs. The MC simulations sampled an energy up to 20 kJ mol-1 above the initial

energy and were sampled evenly such that 500 structures were from the α polymorph trajec-

tory and 500 were from the β polymorph trajectory. The correlations of energies for these

structures calculated by PBE-D3 against those calculated by FIT+DMA, the cNNP trained

on CSP minima, and the cNNP with on-the-fly training are shown in Figure 6. Consider-
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ing first FIT+DMA, there is a notable and pronounced systematic underestimation of the

energies for the α polymorph structures and yet simultaneously a systematic overestimation

for the β polymorph structures. These inconsistent errors reflect the difficulty in accurately

capturing the oxalic acid energy surface with the simple functional form and thus emphasizes

the limitations of the the FIT potential for this system.

By contrast, the cNNP trained on CSP minima does not exhibit similar systematic errors,

and for most structures achieves low errors. Indeed, for the structures sampled from the

β polymorph trajectory the model achieves a significantly lower MAE than FIT+DMA.

However, the limitation of this model, and the cause of the unstable downhill MC trajectories,

is a small number of structures that the model returns excessively large errors for, often more

than 100 kJ mol-1. The effect of these outliers can be seen in the RMSEs, which are multiple

times larger than the MAEs. Pleasingly, the uncertainties on the outlier predictions are

similarly large. For example, removing structures with uncertainties above 10 kJ mol-1 for

the α trajectory structures, which corresponds to 72 structures (from 500 total), we find the

underlying MAE and RMSE to be 1.56 and 2.03 kJ mol-1, respectively. Therefore, while the

extrapolation of the model is better than expected for the majority of structures, highlighting

the broad relevance of potentials trained on CSP minima, the prevalence of outliers suggests

an incomplete description of the energy surface.

Improving this description is the aim of the on-the-fly training and comparing the cor-

relations before and after on-the-fly training there is a clear improvement. Not only are all

outliers eliminated, but also the errors across the test set are significantly reduced, resulting

in notably lower MAEs. Considering the α polymorph was not among the initial structures in

the on-the-fly training, the improved accuracy for these structures is particularly impressive.

For comparison, if we do include an on-the-fly simulation initiated from the α polymorph,

the resulting model achieves an MAE of just 0.5 kJ mol-1 on the same structures (Figure S5).

The possibility to further improve the accuracy with further sampling is also evident in the

subtle trend of larger errors at higher energies, which suggests the sampling at these energies
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could be insufficient. However, this is not unexpected considering the on-the-fly training

trajectories were shorter than the trajectories the test structures were sampled from, and

moreover, may have sampled different regions due to the different energy models.

Beyond accuracy, we were also interested in improving the efficiency of the on-the-fly

sampling, which seemed achievable considering the generally good accuracy of the cNNP

trained on CSP minima, implying that only a small number of structures with high uncer-

tainties need to be added to the training set to yield a robust potential. To investigate this we

repeated the first on-the-fly training starting from the same 10 structures but with a higher

uncertainty threshold of 10 kJ mol-1. This change resulted in only 91 structures being added

to the training set, a reduction of 95% compared to the on-the-fly training with a 2 kJ mol-1

threshold. Despite the smaller training set, the model performs well. The correlation plots

of this model (Figure S6) show it still achieves a significant improvement compared to the

model trained only on CSP lattice energy minima, and importantly, eliminates the outliers,

which suggests a robust description of the energy surface. Of course, the average errors

are not as small as with the 2 kJ mol-1 uncertainty threshold, but considering the reduced

computational cost, it could be a worthwhile compromise, allowing longer, higher energy

trajectories and/or more trajectories during the on-the-fly training.

Discussion

The diversity of structures typically found on organic CSP landscapes provides a great

resource for training MLIPs that are relevant across a wide scope of the lattice energy

surface. The results presented here demonstrate how active learning combined with ∆-

learning provides an efficient workflow to generate MLIPs from these datasets. The resulting

potentials can be applied directly to correct the energies of CSP structures to higher levels

of theory or can be extended by on-the-fly training within MC simulations to accurately

describe the energy surface beyond the local energy minima.
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The presented workflow should be generally useful for organic CSP and can help address

the often prohibitive costs associated with the DFT ranking of predicted structures.10 For

instance, training to the TTBI landscape was completed at a cost of 1498 CPU hours, which

is conservatively estimated to be a 155 fold reduction compared to evaluating the landscape

directly at the target (PBE-D3) level of theory. In real time, this corresponds to the dif-

ference between 20 hours and 130 days using 80 Intel(R) Xeon(R) Gold 6248 CPU cores

@ 2.50GHz. Similar efficiency was observed for resorcinol with the cost of the corrected

landscape estimated at 1293 CPU hours. The on-the-fly sampling is likewise notably effi-

cient. The initial sampling, which added 1636 structures to the training set, corresponds

to only 3.6% of the structures evaluated during the simulations. However, as shown in the

results, if willing to accept lower accuracy a similarly robust potential can be achieved with

considerably less sampling and thus cost.

These results focused on achieving a first approximation of the DFT landscape, which is

a common part of organic CSP workflows. For some systems higher level rankings, including

free energy corrections, are important65 In such cases, low energy structures from the MLIP

corrected landscape can be selected for these calculations as is typically done. However,

with further training, such as the on-the-fly training including atom forces, we envisage

the MLIPs themselves could be used for these calculations. MLIPs that accurately predict

vibrational spectra have been demonstrated in other studies and thus we are reasonably

confident the MLIPs we have presented could be extended to high level rankings of organic

crystals including free energies.

The workflow developed here is applied to a pre-computed CSP landscape. Therefore, the

methodology can be applied to existing legacy or published landscapes, as well as new CSP

studies. However, the requirement for a pre-computed CSP structure set means that a ‘good

enough’ baseline model is required. Where the baseline is an empirically parameterized force

field, molecules with less common functional groups or elements might be less well modelled

by common empirical force fields; therefore, either developing tailored force field parameters
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or using higher level and likely more expensive methods, such as DFTB, might still be

required to generate the initial landscape. A further consideration is that the potentials

generated with the methods presented here are reliable at local minima on the lattice energy

surface and, when on-the-fly training to Monte Carlo trajectories is included, are accurate

in the local region of the lattice energy surface. Thus, as shown in the on-the-fly training

results the potentials can achieve lattice energy minimizations from good starting structures.

However, properties and behaviour that require a broader description of the lattice energy

surface, such as transitions between polymorphs, might require the potential to extrapolate

beyond its training, so risks loss of accuracy.

An alternative approach, which addresses both issues, would be to train the MLIP on-

the-fly at the structure-generation stage of CSP, so that the training sees high energy con-

figurations and can correct for deficiencies in the force field while the landscape is being

generated. This type of approach has been demonstrated for inorganic CSP25,29 where the

CSP search is frequently performed at the ab initio level, and so leads to a stronger impetus

to improve efficiency in this stage. Due to the large range of interactions explored in CSP

of organic molecules, we expect that a similar approach would result in much larger training

datasets relative to what is needed when aiming to model the lattice energy minima and

their local regions.

Beyond the scope of the MLIPs, the variability in the active learning results is also

notable. As shown in the results for oxalic acid, even when using the optimal parameters

and strategy identified, we found significant variation in the training sets selected. This is

especially clear when the active learning was repeated while keeping all parameters except the

starting structures constant (Table S2). While ML models have inherent variability due to

stochastic elements involved in training, considering the most expensive part of developing

MLIPs is typically in generating the reference data, minimizing variation in the selected

training set should be a priority and is worth further study.

Another area for future development is to automatically partition the lattice energy into
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intramolecular and intermolecular contributions, to improve the model’s applicability to

flexible molecules. Our results for resorcinol illustrate that a single model can accurately

capture the intramolecular and intermolecular components of a landscape with limited con-

formations. However, other studies have found that the difference in scale between inter-

and intramolecular interactions means that capturing both with a single model is often

limiting, and that training separate intermolecular and intramolecular models yields im-

proved performance.46,66 Partitioning the energy will also make applying the workflow over

multiple landscapes more practical, which could allow for training transferable rather than

system-specific models. The development of universal models for organic molecules38,67–70

and inorganic materials,71–73 has produced impressive results with good transferability; sim-

ilar models for organic crystals could have an important impact in the field of CSP.

Conclusions

Computational efficiency is an important aspect of crystal structure prediction and its prac-

tical applications. As seen in the recent blind tests, the increasing use of high level quantum

chemistry calculations for correcting initial CSP landscapes has led to dramatic increases

in computational costs. Notably, these increasing costs are causing a disparity between re-

searchers and groups that have access to large-scale computational resources and those that

do not, and so limits the impact of these methods in polymorph screening, crystal engineer-

ing and materials discovery. In this context, accurate MLIPs have arrived with fortuitous

timing and with the potential to reduce the cost of organic CSP without compromising on

the necessary high-level accuracy.

The workflow we have presented here is a further step towards integrating MLIPs into

organic CSP. By combining active learning and ∆-learning, leveraging the lower level energies

describing the landscapes, which are available at no added computational cost beyond the

crystal structure search, we have demonstrated a highly efficient and automatable method

26



for generating MLIPs from CSP landscapes. As shown for oxalic acid and resorcinol, active

learning from a force field or DFTB baseline can achieve errors at or below 1 kJ mol−1, using

approximately 10 % of the landscape for training. We converged active learning at errors

of 3-4 kJ mol−1, as being acceptable over a much broader energy range of predicted crystal

structures using only 1.2% of structures for training.

Furthermore, we have illustrated how these potentials can be readily extended to points

on the lattice energy surface far from the initial CSP structures through on-the-fly training

within Monte Carlo simulations. The resulting potential yielding stable crystal structure

optimizations. Future studies will investigate training separate models for the intramolecular

and intermolecular components towards an improved description of conformationally flexible

systems, applying transfer learning and multi-fidelity approaches to reach higher levels of

theory efficiently, and a more advanced training scheme to reduce variability in the active

learning. Our results here further exemplify the potential of MLIPs to accelerate organic

molecular CSP, and with the improvement in MLIP models and descriptors ongoing there is

still much more to be realized.
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