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Abstract
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Doctor of Philosophy

An inquiry into diffusion processes over interaction networks

by Andrei C. Rusu

This thesis aims to develop a comprehensive framework for modelling and controlling
diffusion processes over interaction networks, striving to inform and improve public
health policies against viral epidemics. Our work introduces four main contributions:
(1) a new modelling technique that captures the heterogeneity and uncertainty of
contact patterns and evaluates the impact of different testing and tracing strategies,
which can be utilized in conjunction with any compartmental formulation to study
complex spreading dynamics. Using this technique, we introduce and simulate a
novel epidemiological model, SEIR-T, showing that contact tracing in a COVID-19
epidemic can be effective despite suboptimal digital uptakes or pervasive interview
ineffciencies; (2) a versatile and cost-effective approach to optimizing the allocation of
testing, tracing and vaccination resources based on the network structure and
epidemic dynamics, which ranks individuals based on their role in the network and
the epidemic state, being adaptable to the budget and risk preferences of regional
policy makers, while still breaking high-risk transmission chains; (3) a reinforcement
learning-based agent, underpinned by a highly transferable graph neural architecture,
that can fnd optimal epidemic control policies from simulation data, outperforming
standard heuristic approaches by up to 15% in the containment rate, while far
surpassing more standard random samplers by margins of 50% or more; and (4) a
range of visualization tools that can aid in understanding and communicating the
effects of public health interventions to policy makers and the populace, which
include prediction explanation and state visualization techniques for scrutinizing the
learning-based policies introduced, and other tools the authorities can use to assess
the cost-beneft trade-off of enacting different combinations of interventions. The
simulation-control framework we introduce is particularly fexible and can effectually
model the spread of various pathogens or analogous diffusion processes, such as
information dissemination. Similarly, the learned epidemic policies are versatile and
easily transferable to a wide range of diffusion scenarios and network structures.

http://www.southampton.ac.uk
https://www.feps.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:a.rusu@soton.ac.uk




v

Contents

List of Figures ix

List of Tables xv

Declaration of Authorship xvii

Acknowledgements xix

Defnitions and Abbreviations xxiii

1 Introduction 1
1.1 Diffusion processes: Overview . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Findings and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Modelling the diffusion in pathogen epidemics . . . . . . . . . . . . . . . 7
1.4 Going beyond pathogen diffusion . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Information diffusion problem . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Modelling the diffusion of information . . . . . . . . . . . . . . . 13

2 Graphs: Generation and Modelling 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Network generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Network heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Machine learning with network data . . . . . . . . . . . . . . . . . . . . . 24
2.6 Kernel methods and graph kernels . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Explaining graph neural networks . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Applications of graph-based ML to diffusion processes . . . . . . . . . . 31

2.9.1 Identifying patient zero . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9.2 Controlling the diffusion dynamics with GNNs and RL . . . . . . 32
2.9.3 Further related work in graph-based ML for diffusion processes . 34

3 Modelling Contact Tracing 37
3.1 Problem overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Compartmental model outline . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Network propagation mechanism . . . . . . . . . . . . . . . . . . 40



vi CONTENTS

3.3.3 Simulation overview . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Metrics under consideration . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Variation induced by population size . . . . . . . . . . . . . . . . 47
3.4.2 Initial exploration of tracing overlap in larger populations . . . . 49
3.4.3 Hospitalizations and deaths when improving tracing overlaps . . 52
3.4.4 Effects of average degree and app uptake . . . . . . . . . . . . . . 54
3.4.5 Combining digital tracing with an imperfect manual process . . . 56
3.4.6 Contact tracing effciency in a real social network . . . . . . . . . 60

3.5 Case study conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 EpiCURB: Epidemic Control Using RL for Budget allocation 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Related work and Background . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Epidemic modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.4 Combinatorial action spaces . . . . . . . . . . . . . . . . . . . . . . 74
4.2.5 Infuencing graph dynamics . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Simulating epidemics . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Network confgurations . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.3 Control setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.4 Baseline agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.5 Learning agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.5.2 Reinforcement learning routines . . . . . . . . . . . . . . 82

4.3.6 Simulation-control framework pseudocode . . . . . . . . . . . . . 84
4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Initial comparison of learning-based variants . . . . . . . . . . . . 88
4.4.2 Prioritizing testing in static graphs . . . . . . . . . . . . . . . . . . 88
4.4.3 Prioritizing testing in dynamic graphs . . . . . . . . . . . . . . . . 90
4.4.4 Testing performance analysis . . . . . . . . . . . . . . . . . . . . . 91
4.4.5 Targeted test and trace programmes . . . . . . . . . . . . . . . . . 93
4.4.6 Agents interacting with different spreading dynamics . . . . . . . 95

4.5 Targeting vaccination campaigns . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 Execution time analysis for test prioritization . . . . . . . . . . . . . . . . 97
4.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Conclusions and Future Perspectives 101
5.1 Summary of principal contributions . . . . . . . . . . . . . . . . . . . . . 101
5.2 Broader impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Impact on pathogen epidemiology . . . . . . . . . . . . . . . . . . 103
5.2.2 Impact on information diffusion . . . . . . . . . . . . . . . . . . . 104

5.3 Limitations and future perspectives . . . . . . . . . . . . . . . . . . . . . 105
5.3.1 Future work needed to address current limitations . . . . . . . . 105



viiCONTENTS

5.3.2 Future directions inspired by preliminary fndings and related
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix A Additional Review Material on Graph-based Machine Learning 111
Appendix A.1 Graph-level kernels . . . . . . . . . . . . . . . . . . . . . . . . . 111
Appendix A.2 Alternative approaches for building GNNs . . . . . . . . . . . 112
Appendix A.3 More graph-based ML applications to diffusion processes . . 114

Appendix A.3.1 Modelling the region-to-region spread of COVID-19 . 114
Appendix A.3.2 Temporal graph kernels for diffusion processes . . . . 116

Appendix B Modelling Contact Tracing: Supporting Information 119
Appendix B.1 Open-source model and data . . . . . . . . . . . . . . . . . . . 119
Appendix B.2 Simulation statistics . . . . . . . . . . . . . . . . . . . . . . . . 119
Appendix B.3 Further analysis of noteworthy trends . . . . . . . . . . . . . . 120

Appendix C Informing Policy using EpiCURB 123
Appendix C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Appendix C.2 Policy choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Appendix C.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Appendix C.4 Cost-based balancing of public health interventions . . . . . . 128
Appendix C.5 Inspecting the latent space of learning-based agents . . . . . . 131
Appendix C.6 Explaining the decisions taken by the GNN ranker . . . . . . 132
Appendix C.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . 134

Appendix D EpiCURB: Supporting Material 135
Appendix D.1 Open-source model . . . . . . . . . . . . . . . . . . . . . . . . . 135
Appendix D.2 Markov chain Monte Carlo epidemic model ftting . . . . . . 135

Appendix E Tools and Preliminary Experiments 139
Appendix E.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Appendix E.2 Employed or explored network datasets . . . . . . . . . . . . . 139
Appendix E.3 Preliminary benchmarking of graph-based ML methods . . . 140

Bibliography 143





ix

List of Figures

1.1 The SEIZ information diffusion model. Diagram of possible transitions
is given on the left, while the characteristic ODE equations are presented
on the right. The possible system states are: S (Susceptible), E (exposed),
I (infectious), and Z (skeptic). Source: Jin et al. (2013). . . . . . . . . . . .

2.1 Graph neural networks intuition. Every node in the input graph de-
termines a separate compute graph. The squares represent neural net-
works with shared weights Wl and biases towards the current represent-
ation Bl per each layer l. In this context, layers refer to hops within the
network, i.e. for each vertex v, layer 0 are its node features xv, layer 1
aggregates information from its immediate neighborhood (features from
adjacent nodes and their common edges) according to W1 and B1 etc.
Source: Leskovec (2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Visualization of the RL+GNN approach. In this toy example, the rank-
ing module receives as input a sequence G1, ..., G5, constructs a temporal
multi-graph from this, and feeds it to the actor ranking module. The lat-
ter outputs a probability distribution over actions, which ultimately gets
sampled by the actor. The blue node is chosen in this scenario and then
gets isolated, the resulting new state being aggregated to the original in-
put to obtain the next timestamp t = 6. At the same time, the ranking
module’s parameters are updated according to a PPO loss involving the
reward of this new state (based on the RL criterion above) and the critic’s
feedback. Source: Meirom et al. (2021). . . . . . . . . . . . . . . . . . . . .

3.1 The SEIR-T Compartmental Model for COVID-19. Each node in the
interaction network has 2 allocated variables: an infection state and a
tracing status. The infection states from top to bottom are: S - suscept-
ible; E - exposed but not infectious; Ip - infectious, presymptomatic; Ia -
infectious, asymptomatic; Is - infectious, symptomatic; H - hospitalized;
R - recovered/removed; D - dead. At any point in time, a node’s tracing
status can either be T (traced and isolated) or N (not traced/isolated or
non-compliant). Each state transition has a certain time-dependent prob-
ability pS1→S2; the edge labels here represent both pS1→S2 , and the λ rate of∆t
the corresponding exponential to sample from in the continuous-time
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Final state of an epidemic simulation over a dual topology. Infection
spreads with respect to the neighborhoods of the frst network (here a SF
graph); the second network represents a digital tracing view at uptake
r = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

27

33

41

41



x LIST OF FIGURES

3.3 Final state of an epidemic simulation over a triad topology. Infection
spreads with respect to the neighborhoods of the frst network (here a
SW graph); the second network represents a digital tracing view at up-
take r = 0.5, while the third a manual tracing view with overlap Γ = 0.5. 42

3.4 Uncertainty of simulation results w.r.t. the infection peak. Averages
from 80-100 runs involving different population sizes, K = 10, τt = τr =
0.1, pa = 0.2. On top, boxplots with quartiles represented via whiskers,
medians via orange lines, and averages via green triangles; standard de-
viations given below. The left-hand side shows absolute values, whereas
on the right all variation levels are scaled down by N. . . . . . . . . . . . 48

3.5 ER network – Peak suppression (left) and the time of peak (right) at
various tracing network overlaps. Values are averaged over 105 runs,
representing results for N = 10000, K = 10, pa = 0.2. The suppression
is calculated by subtracting the average maximal infected point given by
each parameter confguration from the average point obtained with no
tracing (τt = 0, colored in black). Excepting τr = 0.001 and τt = 0.01,
which produce inconclusive and noisy results, the effectiveness of an
epidemic containment strategy expectedly scales with the testing and
the tracing rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 ER network – Epidemic evolution over time given a less effcient (left)
and a more effective (right) testing regimes. Results averaged over 105
simulations, obtained for N = 10000, K = 10, pa = 0.2. As the contact
tracing rate increases, the accuracy of the network given by Γ becomes
more important for ‘fattening’ the curves. The case with no contact tra-
cing (τt = 0) is colored in black. . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 ER network – Heatmaps of achieved peak suppression for various test-
ing and tracing rates. N = 10000, K = 10, pa = 0.2. Averaged over 105
runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 SF network – Hospitalizations and total deaths over time. Setting τr =
0.1, N = 10000 and K = 10. Each row represents a different community:
adults only, seniors only, and mixed (adjusted rates based on UK demo-
graphics). The 95% confdence intervals resulted from 105 runs are dis-
played around each line. The case with no contact tracing (τt = 0) is
colored in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 ER network – Uptake rate r against peak suppression. Suppression is
difference in peak to no tracing, i.e. τt = 0. N = 1000, pa = 0.2, η = .001.
K = 10 given on the left, K = 20 on the right. The case with no tracing
(τt = 0) is colored in black. Lines are plotted with the 95% confdence
intervals from 750 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 ER network – Epidemic evolution over time for τr = 0.1 N = 1000 and
K = 20. Results averaged over 750 runs. No tracing (τt = 0) is given in
black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



LIST OF FIGURES xi

3.11 HK network – Uptake rate r against peak suppression. The results here
correspond to networks generated with parameters N = 1000, mHK =
10, p△ = 0.2, pa = 0.2, η = .001. On the left, we present a scenario
in which only digital tracing is conducted, whereas the next 3 columns
represent simulations with a combination of digital tracing on a second
network, and manual tracing over a third network with various over-
laps: 0.1, 0.55, 1. The 95% confdence intervals are also displayed. The
case with no tracing (τt = 0) is colored in black. . . . . . . . . . . . . . . . 57

3.12 HK network – Uptake rate r against the effective reproduction num-
ber. Results here correspond to networks generated with N = 1000,
mHK = 10, p△ = 0.2, pa = 0.2, η = .001. On the left, we present
scenarios in which only digital tracing is conducted, whereas the next
columns represent simulations with a combination of digital tracing on
a second network, and manual tracing over a third network with various
overlaps: 0.1, 0.55, 1. The case with no tracing (τt = 0) is colored in black. 58

3.13 HK network – Contour plots of Re based on the level of manual tra-
cing overlap Γ and digital tracing uptake r. The results here are for a
networks generated with parameters N = 1000, mHK = 10, p△ = 0.2,
pa = 0.2, η = .001. Each line represents a different testing level τr, while
the columns correspond to a moderate (left) and effcient (right) level of
tracing effort and isolation compliance given by τt. . . . . . . . . . . . . . 59

3.14 Social Evolution – Uptake rate r against peak suppression. The results
here correspond to the real Social Evolution network, dynamic over the
studied period of 31 weeks, pa = 0.2, η = .001. On the left, we have a
scenario in which only digital tracing is conducted, whereas the next 3
columns represent simulations with a combination of digital tracing on a
second network, and manual tracing over a third network with various
overlaps: 0.1, 0.55, 1. The 95% confdence intervals are displayed. No
tracing case is colored in black. . . . . . . . . . . . . . . . . . . . . . . . . 61

3.15 Social Evolution – Uptake rate r against the effective reproduction
number. The results here correspond to the data-driven Social Evolution
network, pa = 0.2, η = .001. On the left, we have a scenario in which
only digital tracing is conducted, whereas the next columns represent
simulations with a combination of digital tracing on a second network,
and manual tracing over a third network with various overlaps: 0.1, 0.55,
1. No tracing case is colored in black. . . . . . . . . . . . . . . . . . . . . . 62

3.16 Social Evolution – Contour plots of Re based on the level of manual tra-
cing overlap Γ and digital tracing uptake r. The results here correspond
to the real Social Evolution network, dynamic over the studied period of
31 weeks, pa = 0.2, η = .001. Each line represents a different testing rate
τr, while the columns showcase a less effcient (left), a moderate (center-
left), an effcient (center-right) and a very effcient (right) level of tracing
effort and isolation compliance τt. . . . . . . . . . . . . . . . . . . . . . . 63

3.17 Social Evolution – Uptake rate r against peak suppression, for differ-
ent pa values. The results here correspond to the real Social Evolution
network, dynamic over the studied period of 31 weeks, η = .001, and
either pa = 0.2 (on the left of each pair) or pa = 0.5 (on the right of each
pair). The left-quadrant pairs represent a triad network scenario with
manual overlap Γ = 0.1, while the right quadrant shows Γ = 0.5. 95%
confdence intervals are displayed. No tracing case is colored in black. . 64



xii LIST OF FIGURES

3.18 Social Evolution – Contour plots of Re based on the level of manual
tracing overlap Γ and digital tracing uptake r, for different pa values.
The results here correspond to the data-driven Social Evolution network
when η = .001, with each pair of charts describing pa = 0.2 on the left
and pa = 0.5 on the right. Each line represents a different testing level τr,
while the columns showcase combinations of one pa value together with
a level of tracing effort given by τt. . . . . . . . . . . . . . . . . . . . . . . 65
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Chapter 1

Introduction

1.1 Diffusion processes: Overview

The concept of diffusion is paramount to multiple felds of study, including physics,
chemistry, biology, sociology and economics, being broadly defned as the movement
of a substance, physical quantity or set of entities from a locus of higher concentration
(or cardinality) to a region of lower density. This motion is dictated by the direction of
a specifc gradient and is often nonlinear in nature, being colloquially associated with
a ‘spreading out’ phenomenon. If unopposed, the diffusion process induces a gradual
mixing of the diffused quantity in the space it acts upon, eventually resulting in a
uniform distribution across the latter.

When used by itself, the term usually refers to particle diffusion, which designates the
thermal motion of molecules exerting a stochastic force on their surrounding particles,
ultimately propelling them into a Brownian motion (Adamczyk, 2013). The resulting
fux of molecules is governed by the concentration gradient, the causal relationship
between these variables being mathematically described via Fick’s laws (Fick, 1855).
In the closely-related biological context, diffusion represents the net fow of particles
through the semipermeable cell membranes, a vital form of passive transportation of
both amino acids and nutrients across any living organism (Clark et al., 2018). In
thermal engineering, on the other hand, the diffusion of heat is of central interest,
constituting a type of heat transfer governed by the temperature gradient and
described via the analogue of Fick’s laws, the Fourier’s law (Fourier, 1822). The latter
gives rise to the heat equation, one of the most important differential equations in
physics and engineering disciplines.

On the other hand, this thesis explores and examines diffusion processes from a
public-health and sociological perspective, providing modelling solutions to
important open problems in the feld, such as estimating the effect of external
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interventions for impeding them or optimizing the resource allocation for such
interventions when they are scarce. These processes can take many different forms,
but they typically appear as epidemics that propagate through various channels across
some network of human interactions. In the conventional sense, epidemics refer to an
increase, often abrupt, in the number of reported cases of a studied disease above the
threshold value expected within a given area, commonly known as the endemic level
(CDC, 2020). Throughout history, human health and society have faced serious
challenges from epidemics, such as the notorious Plagues or the 1918 infuenza
pandemic, which have stimulated extensive research on their dynamics and
prediction. A prominent example in our recent history is the global health crisis
triggered by COVID-19, which has prompted the development and application of
several novel methods to estimate its impacts and inform policy interventions (Tolles
and Luong, 2020). In Section 1.3, we provide essential background on the most
explored epidemic models for studying diffusion processes, including agent-based,
equation-based, and data-driven models. What is more, we compare and contrast
their key advantages and disadvantages, while also surveying some of their important
applications and results.

When the diffusion process occurs over graphs, one should note that its dynamics are
infuenced not only by the specifc features and mechanisms of the process itself, but
also by the underlying network structure. While classic Erdős–Rényi graphs (Erdős and
Rényi, 1959) can offer a preliminary insight into the diffusion behavior, they may fail
to capture the properties of several social networks, such as the deviation from
Poisson degree distributions and the presence of preferential attachment (Newman
et al., 2002; Barabási, 2015). As such, more refned construction models are often
required to account for these patterns of human interaction: growth models can build
preferential attachment networks with power-law degree distributions (Barabási and
Albert, 1999; Albert and Barabasi, 2002; Holme and Kim, 2002), rewiring approaches
can construct small-world graphs featuring high clustering coeffcients (Watts and
Strogatz, 1998; Wang and Chen, 2003), while the confguration model can encompass
any data-driven degree distributions (Bollobás, 1980; Newman et al., 2001). Since the
network topology infuences the epidemic outcome signifcantly, it is possible to
exploit the signals stemming from this structural information to analyze or even
control its evolution. Chapter 2 reviews the most popular graph generation
approaches, surveys common network heuristics, and then introduces two main
families of machine learning algorithms for extracting insights from a network’s
structure: graph kernels (Kriege et al., 2020) and graph neural networks (Zhou et al.,
2020). While focusing on the latter, our survey also describes several of their recent
applications to modelling diffusion processes over interaction graphs that have either
stimulated or directly impacted our work.



31.1. Diffusion processes: Overview

Building on these introductory chapters, our main chapters aim to address two crucial
research questions:

1. How feasible is contact tracing as an epidemic control strategy considering the challenges
of interview processes in manual tracing and application adoption in digital solutions?

2. How can we learn policies that maximize the effect of testing, tracing and vaccination
under budget constraints?

Chapter 3 introduces our frst contribution to the feld, published as Rusu et al. (2021),
which outlines a new individual mean-feld setup that can analyze the interaction
between two competing diffusion processes over arbitrary social graphs: the spread of
the SARS-Cov-2 virus, characterized by a specialized compartmental formulation, and
the propagation of contact tracing, aided by the strength of the testing strategy
underpinning it. The introduced framework, adapted from the work of Farrahi et al.
(2014), can address from a modelling perspective four of the open questions
formulated by Anglemyer et al. (2020) in their Cochrane Review, shedding light on the
effcacy of contact tracing systems against COVID-19: (1) the combined effects of
digital and manual tracing can be studied via the proposed triad network method,
which can realistically simulate the manual and digital tracing processes even when
contacts are missed or individuals do not install the tracing application; (2) people
with poor mobile network access can be factored in by the degree of overlap
parameter, which controls the accuracy of the manual tracing graph; (3) individuals
that have privacy concerns can be modelled via the application adoption rate; (4) the
ethical and economical repercussions of false positives and false negatives of tracing
can be scrutinized through the statistics our model readily captures, showcasing the
existence of a trade-off between the number of people who are prevented from
becoming infected and those who are wrongfully traced and isolated.

Conversely, Chapter 4 introduces an alternative approach to conducting pathogen
testing, contact tracing and vaccination that is adaptable to the budgeting
requirements and risk tolerances of regional policy makers, limiting the aforesaid false
positives, while still breaking the high-risk transmission chains. The chapter,
published as Rusu et al. (2022), introduces several agents that can rank individuals
based on their role in their interaction network and the epidemic state over which this
diffuses, demonstrating that testing, isolating or immunizing just the top-ranked
individuals can attain adequate levels of containment without incurring the costs
associated with the ineffciencies of conventional strategies. In addition, it compares
the containment rates achieved by each of the policies we consider, demonstrating that
a reinforcement learning actor, adapted from the graph neural architecture of Meirom
et al. (2021) but effciently trained via eligibility traces (Sutton and Barto, 2018),
outperforms competitive network heuristics by up to 15%, while far surpassing the
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standard random samplers by margins of 50% or more. The performance of the agents
under scrutiny is evaluated on multiple network topologies and epidemic parameters,
generated by both our individual-based mean-feld model and a standard agent-based
model, confrming the consistent superiority of the reinforcement learning policy.

All in all, the recent pandemic has shown the challenges of making complex public
health decisions when limited evidence of their individual impact is available. In
Appendix C, we present several simulation-based visualization techniques that can
help policy makers evaluate the effects and impact of distinct interventions, whether
they are implemented by human or autonomous agents. First, we use balancing
contour plots to illustrate the trade-off between the infection reach and different
combinations of public health measures, leveraging data from multiple grid-based
simulations. Equipped with a cost-based estimate of ‘moving’ within this space,
public authorities can directly employ these plots to decide where additional efforts
are worth spending. Second, we demonstrate how a human-in-the-loop could
visualize and assess the epidemic state and a control policy’s effectiveness when the
latter is suggested by a deep learning agent, as described in Chapter 4. And third, we
utilize several local interpretable models to generate fgures that display how each
feature value impacts the decision-making process of an autonomous agent. Our
analysis reveals the importance of heuristic features at the beginning and towards the
end of an outbreak, with the epidemic state information steering interventions
in-between these phases. This chapter contains material that has been accepted for
publication in the IEEE Pervasive Computing journal (Rusu et al., 2023).

It should be noted that, despite our focus on SARS-CoV-2 as a case study, the models
developed in this thesis could be applied to other infectious diseases or diffusion
processes with little to no adjustments to their internal mechanisms. In Chapter 5, we
detail the wider impact of our methods, with potential applications spanning from
future pathogen epidemics to analyzing information diffusion. Despite their
differences, the latter is mechanistically equivalent to the former, as argued in
Section 1.4, with individuals being ‘susceptible’ to getting ‘infected’ by a given piece
of information, having a chance to also become ‘infectious’ themselves. As such, the
term epidemic acquires a broader meaning in this sociological context, where it can
denote any persistent and widespread phenomenon that can induce a form of social
contagion. This formulation enables important problems, such as infuence
maximization or rumor detection in social media, to be solved using well-established
epidemiological frameworks (Bettencourt et al., 2006; Jin et al., 2013; Kumar et al.,
2020). Section 1.4.2 surveys some of the most popular mathematical models for
information diffusion, while Section 5.2 further explains the mechanisms by which
our epidemic simulation framework can be applied to this domain. In particular, we
highlight the equivalence of testing and tracing programmes with monitoring and
feedback processes in the informational domain. Moreover, we show how the problem
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of controlling the spread of viruses can be formulated as an infuence maximization
task, enabling the use of the control agents introduced here to fnd optimal solutions.

1.2 Findings and contributions

The principal fndings, contributions and developments outlined in this thesis are
summarized in the following:

• A new model for simulating COVID-19 outbreaks based on triad topologies is
introduced, enabling the study of realistic scenarios involving testing, manual
and digital tracing: limited application uptakes, staffng ineffciencies, poor
contact recollection of index cases etc. Using this, we show that digital tracing
remains an effective pathogen control mechanism even at achievable uptakes
(i.e. < 50%) when combined with adequate levels of testing and manual tracing.

• A novel compartmental formulation is proposed, called SEIR-T, which separates
the traced/isolated status from the infection states, thus ensuring the disease
progression is independent of the tracing mechanism. This aspect gives
versatility to our methodology, enabling it to be directly applicable to any
existing compartmental descriptions of diffusion processes.

• The introduced simulation setup can be used to answer from a modelling
perspective four of the open problems formulated by Anglemyer et al. (2020),
including the necessity for models to consider mobile network and internet
access issues, and the prevalence of tracing false positives. The latter are shown
to be alarmingly numerous when tracing efforts are blindly scaled up for the
purpose of achieving swift containments, motivating the employment of more
targeted strategies.

• The control methodology of Meirom et al. (2021) is extended to accommodate
the concurrent prioritization of testing, tracing, and vaccination in COVID-19
epidemics diffusing over interaction networks, in the presence of budgeting
constraints. We call the resulting simulation-control framework EpiCURB.

• A new reinforcement learning agent, backed by graph neural networks, is
demonstrated to attain up to 15% higher containment rates than competitive
heuristics, and more than 50% compared to standard random samplers. The
reasons for its success are hypothesized to be the superior timing of detection
and the swift identifcation of nodes with high-risk transmission potential,
factors which get examined in-depth.

• A novel and effcient adaptation of the Proximal Policy Optimization algorithm
(Schulman et al., 2017), which enables online learning through eligibility traces,
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is proposed, constituting the foundation of the reinforcement learning procedure
that supports our targeted methodology for testing, tracing, and vaccination.

• A simple yet effective improvement to any type of epidemic control agents is
presented: recollection of negative test results. This signifcantly increases the
fraction of people that are prevented from infection.

• Several interventional strategies are assessed in their ability to control epidemics
generated by either a multi-site mean-feld or an agent-based model. The
reinforcement learning policy is shown to work equally well in both setups.

• An effective approach to evaluate the impact of individual public health
interventions when they are implemented in combination is proposed:
generating contour plots that depict the efforts invested in each measure against
the resulting containment level. This can aid policy makers in determining the
optimal resource allocation for every intervention given a target infection reach,
complementing prioritization strategies that depend on an input budget.

• Different visualization techniques for assessing the epidemic state and the
deployed deep learning control agent are presented. Ranging from node
embedding projections to dendrograms, these can inform policy makers of the
pathogen’s reach across the graph, the agent’s overall performance, and the
communities or regions most at risk. Starting from the latter, a novel and
effective baseline for targeting mass vaccination campaigns is proposed.

• The GraphLIME method (Huang et al., 2022) is introduced as a dependable tool
for explaining the decisions that are made by a graph neural network control
agent, making them accessible for audit and public scrutiny. This technique
allows us to establish the infuence of network heuristics in the decision-making
process, while revealing the periods when the epidemic state information
becomes pivotal.

The following publications, awards and submissions are based on these contributions:

• Journal paper titled ‘Modelling digital and manual contact tracing for
COVID-19. Are low uptakes and missed contacts deal-breakers?’, published in
PLOS ONE (Rusu et al., 2021).

• Conference paper titled ‘Flattening the curve through reinforcement learning
driven test and trace policies’, published in the 16th EAI International Conference
on Pervasive Computing Technologies for Healthcare, and recipient of the Best Paper
Award (Rusu et al., 2022).

• Manuscript titled ‘EpiCURB: Learning to Derive Epidemic Control Policies’,
accepted for publication in IEEE Pervasive Computing (Rusu et al., 2023).
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1.3 Modelling the diffusion in pathogen epidemics

Pathogen epidemics are among the most prominently studied diffusion processes over
interaction networks, as they exemplify how infections pervade among individuals
over time and space, and how interventions can infuence their patterns and
consequences. The objective of epidemic modelling is to develop and implement
mathematical or computational models that can simulate the transmission of
infectious diseases in a population, and the impact of measures enacted to control or
mitigate them. These can provide insights into the dynamics and features of
epidemics, such as their transmission modes, growth rates, durations, and others.
They can also assist in forecasting the future trajectory and impact of pathogen
diffusion, as well as inform policy choices and public health actions.

There exist different types of epidemic models, depending on the level of detail,
complexity, and realism they are built to incorporate. Some of the most prevalent and
infuential types are:

• Equation-based models (EBMs): These are mathematical models that use a set
of differential equations to describe the average behavior or trends of the
epidemic across different compartments, which typically separate individuals
based on their health status. One of the most widely-used EBMs for modelling
epidemics is the Susceptible-Infectious-Recovered (SIR) model, which Kermack
et al. (1927) developed based on the earlier work of Ross (1916), to investigate
the dynamics of highly-contagious diseases such as malaria and plague. The
ordinary differential equations (ODEs) associated with this model can be
consulted in Eq 1.1, where S is the number of susceptible individuals, I the
number of infectious, and R the number of recovered/removed, β the
transmission rate, and γ the recovery rate. EBMs can be adapted or modifed in
various ways to account for more realistic and/or pathogen-specifc scenarios
(e.g. Zika (Aik et al., 2017), Ebola (Berge et al., 2017), SARS-CoV-2 (Zhao and
Chen, 2020; He et al., 2020; Giordano et al., 2020)). As such, one can add more
compartments (e.g. exposed but not yet infectious – E state in the SEIR
formulation of Eq 1.2, asymptomatic, symptomatic, hospitalized), remove some
of them (e.g. SI, SEI – no recovery possible), or cycle back to certain states (e.g.
SIS, SIRS – nodes return to being susceptible after a while) to represent different
stages or types of infection (Zhao and Chen, 2020; He et al., 2020; Giordano et al.,
2020; Meirom et al., 2021). One can also incorporate public health interventions
into these models, such as vaccination, quarantine, isolation, and social
distancing, that can signifcantly infuence the dynamics of the simulated disease
(Dashtbali and Mirzaie, 2021; Prabakaran et al., 2021). Furthermore, one can
relax the assumptions of constant parameters, allowing for time-varying
transmission rates (Kucharski et al., 2020; Jing et al., 2021). There exist three
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main approaches to solving EBMs: analytical methods, which use mathematical
techniques to fnd exact or approximate solutions in terms of functions or series
(Kermack et al., 1927); numerical integration, which uses algorithms to
approximate the solutions by discrete values (Okabe and Shudo, 2020); and
stochastic simulation, which applies random processes to model the dynamics of
the system as continuous-time Markov chains (Allen, 2017; Farrahi et al., 2015).
The analytical methods usually have lower computational costs, but they may
have limited applicability or feasibility for systems with higher complexity or
nonlinearity (Kolk and Lerman, 1992). Numerical integration methods, on the
other hand, enable the study of complex dynamics that cannot be described
analytically, but their main limitation lies in the accumulation of approximation
errors over time, impacting the accuracy of long-term predictions (Boyce et al.,
2022). Lastly, a stochastic simulation of an EBM for epidemics requires sampling
from the distribution of the inter-transition time of an individual to a different
health state (Farrahi et al., 2015), thus refecting the intrinsic randomness and
variability of the underlying diffusion process. This hybrid approach is suitable
for modelling scenarios with individual-level interactions, heterogeneity, or
stochastic events, yet it also entails more intricacy and computational demand
(expanded upon in the description of hybrid models).

dS
= −βSI

dS dt
= −βSI dEdt = βSI − ϵE

dtdI (1.2)= βSI − γI (1.1) dIdt = ϵE− γI
dtdR

= γI dRdt = γI
dt

(1) SIR model (2) SEIR model

• Agent-based models (ABMs): Also called individual-based models (Railsback
and Grimm, 2011), these involve computational representations of autonomous
agents, their behavior and interactions within a given dynamic environment,
where each agent can have its own attributes and rules. ABMs can capture the
dynamics of complex systems and phenomena, refect the heterogeneity and
adaptability of individual behavior, and model the feedback effects of the
simulated environment. They can also incorporate different types of agents,
such as humans, animals, vectors etc., depending on the nature of the disease
and its hosts. ABMs are often used to study scenarios that involve spatial or
temporal variations, behavioral changes, or stochastic events. To do so, they
often account for either the interaction network structure of the population,
ignoring other details about physical locations, or an explicit spatial
representation of the population, where agents can move and interact. A
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network-based ABM simulates the disease dynamics in discrete time intervals
using a graph representation of individuals as nodes and their contacts as edges
(Abueg et al., 2021; Meirom et al., 2021). At every time increment, a Bernoulli
trial with predefned probabilities is performed for each link and each vertex of
the network, the outcome of which determines the execution of interaction-level
(e.g. transmission, contact tracing) and individual-level events (e.g. recovery,
testing, isolation, vaccination). The probabilities for the former may be
infuenced by factors such as contact frequency and duration, often encoded as
edge weights. In contrast, spatial models (Railsback and Grimm, 2011) use a
spatial grid (Nardini et al., 2021) or a continuous space (Nadini et al., 2020) to
represent the physical environment where individuals are located, with contact
patterns governing the pathogen diffusion. Simulations of the latter can be done
through both continuous- and discrete-time approaches. Compared to EBMs,
ABMs tend to be relatively complex and resource-intensive to simulate, the
involved cost often being justifed by their degree of granularity and ability to
monitor public health interventions at the individual level (Sukumar and
Nutaro, 2012). Government-advising groups in the UK decided to employ this
paradigm early on in the COVID-19 pandemic to estimate the effects of such
interventions (Ferguson et al., 2020; Hinch et al., 2020b). A more recent study
analyzed the combined effects of manual tracing with digital solutions, at
various application uptakes, via a rich yet scalable ABM ftted to mobility data
from several counties in Washington (Abueg et al., 2021).

• Data-driven models: These are models that rely on empirical data to ft or
calibrate their parameters or functions, employing statistical or machine learning
(ML) techniques to infer or forecast the epidemic trends. These models can
utilize various data sources, such as case reports and hospital records (Murray,
2020; Fritz et al., 2022), mobility data (Kapoor et al., 2020; Lozano et al., 2021) or
social media data (Ansell and Dalla Valle, 2023; Lucas et al., 2023), depending on
their availability and quality. They can also employ different methodologies,
such as parametric curve ftting (Lozano et al., 2021), regression analysis (Fritz
et al., 2022), autoregressive time series analysis (Reinhart et al., 2021; Murray,
2020; Adiga et al., 2020), or deep learning (Lozano et al., 2021; Kapoor et al.,
2020; Panagopoulos et al., 2021; Lucas et al., 2023), according to their objectives
and assumptions.

• Hybrid models: The techniques reviewed above are often integrated in order to
account for the complexity and heterogeneity that characterize the dynamics of
an epidemic. Hybrid models can leverage the strengths and overcome the
limitations of each individual method, providing more realistic or fexible
representations of the diffusion process. Notable examples here include:
enhancing compartmental models with agent-based features through the use of
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contact networks, thus generating epidemic trajectories based on multi-site
mean-feld formulations, appearing as either individual-based mean-felds
(IBMF), described via ODEs (Newman, 2010; Pastor-Satorras et al., 2015; Shah
et al., 2020) or probabilistic equations of state transitions (Huerta and Tsimring,
2002; Farrahi et al., 2014, 2015), or pair approximation mean-felds (e.g.
degree-based method of Pastor-Satorras et al. (2015), cluster-based approach of
Huerta and Tsimring (2002); Newman (2010)); agent-based models employing
compartmental formulations to track the state of the individuals (Abueg et al.,
2021; Meirom et al., 2021; Hinch et al., 2020b); deriving time-varying
transmission rates in EBMs (Di Domenico et al., 2020; Kucharski et al., 2020; Jing
et al., 2021) or ABMs (Abueg et al., 2021) from real case reports or hospital
records; inferring appropriate compartmental parameters using machine
learning (Arik et al., 2020) or Bayesian techniques (Liu et al., 2020a; Flaxman
et al., 2020); utilizing employment (Abueg et al., 2021) or demographic data
(Riley and Ferguson, 2006) to generate or calibrate the interaction networks over
which the epidemics spread; deriving meta-population models using networks
obtained from mobility datasets that connect and permit the movement of
agents between subpopulations, individually modelled by separate EBMs
(Poletto et al., 2013; Rahmadani and Lee, 2020; Chang et al., 2021). Given a
transmission rate β, a recovery rate γ, and the adjacency matrix A of the
interaction network, the ODEs of an IBMF SIR model (Newman, 2010;
Pastor-Satorras et al., 2015) track across time the average probabilities Si, Ii and
Ri for any vertex i to be in each of the characteristic epidemic states:

dSi dIi dRi= −βSi ∑ Ai,j Ij = βSi ∑ Ai,j Ij − γIi = γIi (1.3)
dt dt dtj j

Despite its high degree of granularity, the ODE formulation in Eq 1.3 may still be
inadequate for modelling the complex dynamics that often underlies epidemics,
as it relies on approximations and assumptions that can fail to capture the
intricacy and uncertainty of the corresponding diffusion process. As discussed in
Newman (2010), the contact network and the infection events may be subject to
variability and stochasticity, which can signifcantly infuence the dynamics and
outcomes of the simulated epidemic. Moreover, numerical or analytical methods
that directly solve the system may yield unacceptable errors or inaccuracies.
These aspects require a more sophisticated modelling approach that can account
for the correlations between the state probabilities of different nodes.

In Chapter 3, we introduce a novel IBMF hybrid model for the SARS-CoV-2 virus
that is stochastically simulated, thus accounting for the intrinsic randomness
and fuctuations of the viral transmission, while preserving the mathematical
rigor of EBMs. Building on the previous work of Farrahi et al. (2014) and Huerta
and Tsimring (2002), our experimental setup studies the antagonist interaction
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between the spread of the SARS-Cov-2 virus and contact tracing. In this context,
we present a compartmental formulation that captures the evolution of both
processes across every node of the network, simulating them in continuous time
using numerical methods. What is more, we analyze their behavior under
different scenarios and parameter settings, deriving important public-health
conclusions about the overall containment effcacy of “test and trace” strategies.
In contrast, Chapter 4 carries out a comparative analysis of the performance of
heuristic-based and learned epidemic control strategies on both the IBMF model
introduced in this thesis, as well as an ABM setup, revealing the inherent
modelling transferability that exists between these approaches.

1.4 Going beyond pathogen diffusion

Zooming out from the pathogen epidemic case study, we remark there are a
considerable number of examples in the literature of exploiting epidemiological
models to analyze other domains that involve complex systems with interacting
agents, such as information diffusion, viral marketing, cybersecurity, or network
analysis. For example, Jin et al. (2013) use the SEIZ compartmental model for
information diffusion to study the propagation of fake news on Twitter, while Mutlu
et al. (2021) employ it to predict how the information would cascade on the platform
by taking into account the cognitive processing depth of users. In the context of viral
marketing, Gonçalves et al. (2017) utilize the SIR model to analyze the mathematical
properties of a viral campaign. In the cybersecurity domain, Pastor-Satorras and
Vespignani (2001) employ an SIS model to study the spread of computer viruses,
while Prakash et al. (2012) use the SI formulation to detect the source of malware in a
network and how to trace back the infection path using the former’s topology. In
network analysis, Fanti and Viswanath (2017) leverage a network-based diffusion
model to infer the hidden identities of Bitcoin users from their message patterns in the
blockchain, and how to deanonymize them using deep learning techniques. In
addition to analyzing the state of the system and/or its agents, methods for node-level
intervention have been suggested or indicated as feasible for most of these domains.
For example, in information diffusion and viral marketing, it is often of interest to
maximize the spread of positive infuence or minimize the spread of negative
infuence by selecting the optimal set of nodes to initiate or block a diffusion process
(Kempe et al., 2003; Meirom et al., 2021). Analogous to real epidemics, one may want
to minimize the risk of infection or maximize the robustness of a computer network by
removing or immunizing the most vulnerable or infuential nodes. In network
analysis, one may want to maximize the anonymity or minimize the traceability of
nodes by hiding or revealing their identities and relationships (Fanti and Viswanath,
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2017). These subset selection problems can be formulated and solved using similar
techniques to those we introduce in Chapter 4.

In the following subsections, we extensively explore the domain of information
diffusion, which is both the most well-studied and the most amenable after pathogen
epidemics to the simulation-control methods presented in this work. What is more,
we provide a detailed overview of some of the principal modelling techniques for
analyzing how information propagates in different settings.

1.4.1 Information diffusion problem

The problem of information diffusion appears in many different contexts as it
represents a central mechanism for knowledge sharing, learning, and idea adoption.
With the rise of the web and social media, people started to get exposed to an
unprecedented amount of new information, thus opening up the potential for
exploiting parts of this data fow for marketing purposes (Even-Dar and Shapira, 2007)
or political gains (Anderson, 2017), shaping people’s perception about given products,
ideologies or even historical events (Klein, 2020) in the process. This informational
fow has also been shown to be a good predictor of human behavior, even in the
absence of complete profle data (Bagrow et al., 2019). As such, predicting how a piece
of information would spread through a social network, and potentially maximizing its
infuence on individuals, is of utmost importance for social sciences, civic engagement,
business and electoral campaigns (Arnaboldi et al., 2016). At the same time, in today’s
world, it becomes increasingly more crucial for the worldwide community to combat
malicious acts in the processes of information diffusion, arising from the spread of
fabricated news, violent extremist propaganda, and other dangerous content.

One of the most important and well-studied problems in information diffusion is
infuence maximization (Kempe et al., 2003; Wang et al., 2013; More and Lingam, 2019;
Kimura et al., 2009). The objective in this domain is to identify the best set I of nodes
from a given graph that, when “activated”/“infected”, would maximize the extent of
the information diffusion, often under constraints like limited budgets or time. For
preventing malicious acts, it is often enough to detect and eliminate the malignant
content, yet some situations require a more signifcant intervention to curb their
negative effects, such as removing the perpetrator from the social network or fnely
understanding the nature of the spreading dynamics. To fnd the optimal set of
infuencers I in the network, a standard hill-walking procedure is typically employed,
maximizing at every iteration the expression ι(I ∪ {v}) over all the nodes v, where ι(.)
measures the infuence degree of the input set (Kempe et al., 2003; Kimura et al., 2009).
This algorithm requires a reliable way to repeatedly evaluate ι, while also assuming
that adding one node at a time to I will converge to a good solution. A common yet
ineffcient approach to estimate ι is to run simulations of the underlying propagation
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model, choosing the current elements of I as infection seeds, and measuring the
resulting information reach (Kempe et al., 2003). More resource-effective approaches
have also been proposed, with notable examples including heuristic-based (Kimura
et al., 2009) and node centrality-based methods (More and Lingam, 2019). In analogy
with the problem of identifying optimal test subjects in pathogen outbreaks, these
methods employ various criteria or techniques to rank the nodes and select the seed
set, a task that can be substantially enhanced by deep learning models (refer to
Section 2.9.2 and Chapter 4 for more details).

Going beyond social networks, information diffusion can be seen as a universal
mechanism that transfers data among nodes in a graph, regardless of the nature of the
vertices or the data. For instance, information diffusion can occur when a node
aggregates information from its adjacent nodes to fll in missing values or update
outdated entries. Another prominent example is given by the transmission of stimuli
charges from one neuron to another in biological or artifcial neural networks.

1.4.2 Modelling the diffusion of information

Among the most common ways of modelling information diffusion, we note three
signifcant directions:

• Random walks: A common way to model information diffusion over networks
is by employing Markov random walks (Neumann et al., 2016). Given an initial
state W0 = vi, i.e. the source vertex, the one-step transition probabilities encoded
in T, with Tj,k = P(Wt+1 = vk |Wt = vj), defne a random walk on the network,
starting at vi and ending after t f iterations: Wi = {Wt | t ∈ [t0, t f ] and W0 = vi}.
When no prior information about the probabilities is known, it is customary to
set T to the normalized graph Laplacian L̂rw

= D−1A, where D is the degree
matrix (more on notations in Section 2.2). In this context, each node typically
carries a d-dimensional representation X0 ∈ RN×d of its prior information at
time t0. For example, if the goal is to spread labels across the network, these
vectors can be formed such that yi = arg max X0(i, :) is the class of node vi. The
standard unconditioned diffusion process, given by Xt+1 = TXt, has the
downside of converging to a constant steady-state, which is rarely informative.
As a result, a predefned number of iterations is often used as a criterion for
early stopping (Szummer and Jaakkola, 2002). Another major downside of the
former method stems from the fact that connected vertices always inherit and
retransmit their most recent update. One could restrict this behavior by making
the transition matrix T̂ describe an absorbing random walk (see Eq 1.4), thus
allowing for a set of diffused elements S to ‘stick’ to the nodes that receive them.
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Such a procedure can safely be used for label propagation in a semi-supervised
learning setting, where class changes after the initial labelling are to be avoided.⎧

0⎪⎨ i ∈ S and i ̸= j

T̂i,j = 1 i ∈ S and i = j (1.4)⎪⎩Ti,j otherwise

Zhou et al. (2003) proposed a modelling technique that combines ideas from the
approaches above, leading to a formulation that performs a weighted
summation of the old and new representations. Let the transformation matrix be

ˆ symT = L = D− 2
1
AD−

1
2 , with α a tunable parameter, and Y a prior information

matrix (e.g. Y = X0), then the improved diffusion process becomes:

Xt+1 = αTXt + (1− α)Y (1.5)

Beyond their application to the domain of information diffusion, the ideas
discussed here underlie many graph learning algorithms as well, such as
diffusion kernels and graph neural networks (see Chapter 2 and Appendix A).
For instance, the GCN model of Kipf and Welling (2017) draws inspiration from
Zhou et al. (2003), Eq 1.5 resembling a linear GCN layer with a skip-connection.

• Epidemiological framework: The random walk approaches described above are
effective in tasks where the dynamics T of the diffusion process is static, and it is
either known or entirely dependent on the network structure (e.g. deterministic
label propagation). However, for problems with a high degree of stochasticity,
such as analyzing infuence maximization (Wang et al., 2013) or identifying
rumors (Jin et al., 2013) in social networks, it is often preferable to deduce the
underlying dynamics, and then represent it in a fexible, easily replicable format
that allows for further simulations of increasingly more complex scenarios.
Well-studied epidemiological frameworks are a convenient way to achieve all
these goals. In particular, compartmental models have successfully been applied
to a broad range of information diffusion problems. Despite their simplicity, they
tend to provide accessible descriptions of the modelled dynamical systems based
on mathematical equations, ensuring both reproducibility and rigor. Following
the analogy with epidemic modelling, this domain has also adopted both
non-graph and hybrid graph-based compartmental formulations (Li et al., 2019).

The standard SIR model has also become a popular non-graph model for
information diffusion (Li et al., 2019), but it is usually better suited for cases
where the spread of information is transmitted exactly once by each individual,
such as general news (Abdullah and Wu, 2011), rumors (Sudbury, 1985; Yan
et al., 2022), or memes (Wang and Wood, 2011) that are both attractive and
ephemeral. That being said, the model presents some limitations in describing
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FIGURE 1.1: The SEIZ information diffusion model. Diagram of possible transitions
is given on the left, while the characteristic ODE equations are presented on the right.
The possible system states are: S (Susceptible), E (exposed), I (infectious), and Z (skep-

tic). Source: Jin et al. (2013).

the general case of information diffusion, as it assumes that individuals exposed
to an idea will necessarily adopt and propagate it (Bettencourt et al., 2006). This
assumption can lead to poor data fts in some cases (Rui et al., 2018; Jin et al.,
2013), aspect that has motivated the emergence of many extensions that can also
model the concept of indecision/skepticism, such as SPIR (Rui et al., 2018), SEIZ
(Bettencourt et al., 2006; Jin et al., 2013), SHIR (Liu et al., 2016), and others.

The SEIZ compartmental formulation, illustrated in Fig 1.1, draws inspiration
from the SEIR model, allowing for an ‘incubation’ period to exist before an
affected node spreads any information further. Instead of recovering, nodes in
SEIZ are allowed to be ‘skeptics’ to what they read or hear (state Z), effectively
stopping the spread through their corresponding pathways. Entering in contact
with either infectious (βI rate) or skeptics (bZ rate) leads to different outcome
probabilities, with susceptible vertices having a chance to become exposed,
directly infectious, or skeptics as a result. The basic SEIZ model assumes that
individuals interact on a fully connected graph, and no hybrid variants that
incorporate heterogeneous topologies have been proposed thus far. Jin et al.
(2013) used the SEIZ model to study how true and false news spread on Twitter.
They chose eight stories, four real and four fake, and estimated the SEIZ
parameters for each one by ftting the predicted number of infectious users to
the actual number of tweets sent at each time point, using a non-linear least
squares algorithm. They found that the rate of believing and sharing a story,

(1−p)β+(1−l)bRSI = , is signifcantly higher for true news than for rumors, sinceρ+ϵ

the latter are generally less likely to be believed, but more likely to be rampantly
shared by adopters.

In contrast, graph-based epidemiological models have received signifcantly less
attention from the information diffusion literature, mostly due to the diffculty of
recovering complete network structures (Li et al., 2019; Choudhury et al., 2010).
Nevertheless, some studies have used graph-based formulations to study
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various aspects of information diffusion. For instance, Kumar and Sinha (2021)
combine a Bass approach (Bass, 1969) for modelling idea adoption with a
spreading mechanism based on SIS to investigate how information propagates
over social networks. Similarly, Zhan et al. (2019) use the SI model to investigate
the impact of temporal networks on the effciency of the diffusion process, while
Matsubara et al. (2012) extend it to analyze “spikes”, which are the abrupt surges
of activity or popularity that a piece of information can exhibit. Despite the
prevalent use of social infuence models for solving infuence maximization
tasks, some studies have also employed the SI model or its variants to simulate
the underlying diffusion process (Wang et al., 2013; More and Lingam, 2019).

• Social infuence models: Another conventional method for understanding how
information propagates through a network, predominantly used for social
infuence problems, is to simulate either the Independent Cascades (IC) or the
Linear Threshold (LT) models (Kempe et al., 2003). The former involves a
continuous mechanism, akin to the SI/SIR dynamics on networks, where each
“active” node has a one-time opportunity of activating its “inactive” neighbors,
determined by a fxed probability that does not depend on previous events. The
strong link between the two modelling approaches is also acknowledged by
Kimura et al. (2009), being an important motivator for the emergence of
equivalent epidemiological formulations for addressing such tasks (Wang et al.,
2013; More and Lingam, 2019). In contrast, LT posits that each node has a
threshold that indicates the proportion of its neighbors who must adopt a piece
of information before it does so itself (Granovetter, 1978; Watts et al., 2007).
Similar to IC, the diffusion process is stochastic, with updates taking place in
discrete time steps, and ending when no more adoptions are feasible. At each
time increment, every node that has not adopted the information examines the
fraction of its neighbors who have done so. If the fraction is equal to or higher
than its personal threshold, the adoption is said to have occurred.
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Chapter 2

Graphs: Generation and Modelling

2.1 Introduction

This chapter provides the essential background and literature review for generating
and modelling network data, focusing on the techniques frequently utilized for
studying diffusion processes. After introducing some general notation necessary for
examining our work, we survey the most popular approaches for generating graph
data, as well as two of the most widely-used methods for solving graph-based
problems: network heuristics and machine learning algorithms. The generation
approaches we discuss here enable us to analyze how the pathogen may diffuse across
a broad range of interaction patterns, offering a realistic view of the heterogeneous
spreading dynamics characteristic of respiratory diseases. The graph-based heuristics
and machine learning methods, on the other hand, are pivotal for the control
framework we propose in Chapter 4, as they are employed for ranking all network
participants with the aim of recommending public health measures that effectively
lower infection rates, while also adhering to strict budgeting constraints. Graph
neural networks (GNNs) and their more expressive variants represent one of the key
focuses of this thesis, as they enable us to effectually leverage the information
contained within the interaction networks’ complex structures and features. This
aspect is essential for the success of our fnal solution to choosing the most benefcial
interventions: a reinforcement learning (RL) agent, adapted from the work of Meirom
et al. (2021), reviewed in Section 2.9.2, that exceeds all the competitors we benchmark
in terms of containment levels.
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2.2 Notations

A static graph G is a tuple (V(G), E(G)), where V and E are general-purpose
functions mapping any such G to its sets of vertices and edges, respectively. The
corresponding nodes and links may also have feature vectors fv(.) ∈ Rk associated
with them, usually stacked as rows in a design matrix X (more common for nodes),
and/or labels l(.), where l : V(G) ∪ E(G) ↦→ Σ is a map to some common alphabet Σ.
We assume without loss of generality that an edge’s weight wG(v, u) = Av,u is the frst
(and sometimes the only) element of its feature vector, where A denotes the adjacency
matrix of graph G. Although link-weighted versions exist for many network-related
quantities and algorithms, it is common for unweighted variants to be used instead,
where every weight is effectively assumed to be 1. Unless explicitly stated otherwise,
we employ the unweighted version of these routines in this thesis.

Aside from the adjacency matrix A, all graphs can also be represented via the degree
matrix D (diagonal matrix containing the degrees of each vertex), the graph Laplacian
L = D− A, or a variant of the normalized graph Laplacian: Lsym = D− 2

1
LD−

1
2 or

Lrw = D−1L. For directed graphs, we can redefne the above by replacing D with the
in-degree Din or out-degree Dout matrices. If a specifc routine only works on directed
networks, an undirected graph can be made directed by doubling its set of edges such
that the resulting in-degree and out-degree of each vertex stays equal:
Din = Dout = D. When self-loops are artifcially added to all nodes, the prior
quantities are denoted with ‘∼’ (e.g. Ã = A + λI, for λ ≥ 1). Some algorithms also use
a modifed version of the aforementioned Laplacians: L̂ = I − L. We say that two
networks G1 and G2 are isomorphic, denoted with G1 ≃ G2, if a bijection
ψ : V(G1) ↦→ V(G2) exists, such that (v, u) ∈ E(G1) if and only if (ψ(v), ψ(u)) ∈ E(G2).
Determining network isomorphism is neither NP-complete, nor is there any known
polynomial-time algorithm for solving it (Schöning, 1988). A classic heuristic for
obtaining approximate solutions for this problem, which unfortunately provides no
guarantees, is the Weisfeiler-Lehman (WL) test (Weisfeiler and Lehman, 1968). This
involves iteratively refning the labels of all nodes by aggregating information from
their neighbors, followed by a comparison of the fnal representations of the networks
to be compared. As the number of nodes k that get updated at once in each iteration
grows, the k-WL test becomes increasingly more powerful. Aside from testing
isomorphism, this heuristic plays a central role in deriving several graph kernels and
in characterizing the expressivity of graph neural networks. As a matter of fact, a frm
link between 1-WL and standard GNN models has recently been established (Xu et al.,
2019). This link has resulted in the development of architectures that attain the
expressivity level of 1-WL, and techniques that overcome some of its limitations, both
of which are exploited by our modelling solution in Chapter 4. The 1-WL label update
rule for iteration i can be mathematically written as follows:
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li(v) = relabel((li−1(v), sort({li−1(u) | u ∈ NG(v)}))) (2.1)

Each node v has a particular neighborhood in the network it is part of, denoted with
NG(v) = {u ∈ V(G) | (v, u) ∈ E(G)}. This neighborhood determines the degree of v in
graph G, degG(v) = Dv,v = |NG(v)|. The degree distribution of graph G, given by

1P(degG(v) = x) = ∑v
n
=1 I(degG(v) = x), where I is the indicator function, is a usefuln

measure for characterizing its heterogeneity and the diversity of its connectivity
patterns. We denote the set of all paths from node v to any node u as PG(v, u), with
σG(v, u) = |PG(v, u)|, and defne the shortest path distance between them as
dG(v, u) = minp∈PG(v,u) ∑(a,b)∈p wG(a, b). The latter is used by several network
heuristic methods (see Section 2.4).

If there are no predefned vertex labels, a few iterations of the WL update rule can be
run, using default values in-place of the missing ones (e.g. degG(v)). If a network of
interest changes over time, we can model each individual time snapshot as a static
graph Gt. As such, the quantities defned above can be repurposed for dynamic
networks by annotating them with the corresponding timestamp as a subscript (or
superscript when further indexing is needed).

Two approaches that we touch upon in this thesis, diffusion kernels (Kondor and
Lafferty, 2002) and graph neural diffusion (Chamberlain et al., 2021), are directly
associated with the heat diffusion equation in physics and its homogeneous variant
(i.e. when the diffusivity is a constant scalar – g(u, t) = c). As such, we remind the
reader of these expressions in Eqs 2.2 and 2.3, where x(., t) represents the distribution
of some property u ∈ U at time t, while ∇, div and△ are the gradient, divergence,
and Laplace operators, respectively.

∂x(u, t)
= div[g(u, t)∇x(u, t)] (2.2)

∂t
∂x(u, t)

= div[c∇x(u, t)] = c△x(u, t) (2.3)
∂t

2.3 Network generation

Network generation methods are techniques that can create graphs with certain
properties and characteristics, such as size, density, degree distribution, clustering
coeffcient, community structure, and many others. These methods can be classifed
into different categories based on their underlying principles and assumptions: (1)
random graph models, where the edges are randomly assigned between nodes and no
further constraint is put on the topology; (2) growth models, where the nodes and
edges are added sequentially according to some factors like the desired degree
distribution or ftness of the graph; (3) rewiring models, where the connections of an
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existent network are altered according to specifc rules; (4) geometric models, where
the spatial position of the nodes guides the creation of edges; and (5) learning models,
where GANs or evolutionary algorithms optimize the set of links according to real
data. We present a brief survey of some of the most prevalent classical graph
generation methods, which we employ extensively throughout our thesis:

• Erdős-Renyi model: Developed by Paul Erdős and Alfred Renyi in 1959 (Erdős
and Rényi, 1959), this is probably the most prevalent method for generating
random networks. There exist two distinct formulations of the Erdős-Renyi (ER)
model: G(N, M) and G(N, p). The former creates a network with N nodes and
M randomly chosen edges, while the latter creates a network with N vertices
and connects each pair of nodes with probability p, thus having an expected
number of edges equal to pN(N−1) . The average degree K of the graphs can be2

virtually fxed by using the frst formulation, with M = NK . The ER model2

represents a useful tool for analyzing various problems in combinatorics and
probability (Bollobas´ , 2001; Janson et al., 2011), computer science (Mitzenmacher
and Upfal, 2005), physics (Albert and Barabasi, 2002), biology, or social sciences
(Newman and Park, 2003). It is worth mentioning that, although the
epidemiological literature has widely adopted it, this graph model can be
unsuitable for capturing the interaction patterns of certain real social networks
(Newman et al., 2002). However, the inherent ability to accommodate the
characteristics of randomly mixed populations (Keeling and Eames, 2005) makes
the ER graphs adequate vehicles for studying pathogen outbreaks in public
places, such as stores or mass transit conveyances (Abueg et al., 2021). Random
mixing models, in turn, have been shown to offer acceptable estimates of the
total epidemic size when the transmission probability is high or the infectious
period is relatively small (Smieszek et al., 2009), as has been the case for several
COVID-19 breakouts. As such, we consider this graph generation method an
acceptable baseline for analyzing the spread of SARS-CoV-2, employing it
extensively in Chapter 3 to study the effects of contact tracing.

• Confguration model: First introduced by Béla Bollobás in 1980 (Bollobás, 1980),
and later extended in Newman et al. (2001) and Newman (2003), this approach
builds random graphs from an arbitrary degree sequence, expected as a
parameter. In Chapter 4, we sample multiple such sequences from a degree
distribution ftted to real contact tracing data in order to obtain realistic
estimates of our control method’s effectiveness.

• Barabási-Albert model: First described by Albert-László Barabási and Réka
Albert in 1999 (Barabási and Albert, 1999), this represents a popular growth
model that utilizes a preferential attachment mechanism to generate scale-free
(SF) graphs, which feature power-law degree distributions. The method receives
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N and an integer m1 as parameters, and constructs networks by sequentially
attaching new nodes, each with m1 edges preferentially attached to the high
degree vertices, which eventually become hubs. The average degree can be
virtually fxed by using a modifed variant, called dual Barabási-Albert (Moshiri,
2018), which expects N, K, and 2 integers m1 and m2 as parameters. For each
new node added to the graph, there will be m1 incident edges with probability p,
or m2 edges with probability 1− p, that are preferentially attached to existing
nodes, where p gets calculated according to:

NK− 2m2(N −max(m1, m2))p = .
2(N −max(m1, m2))(m1 −m2)

It is a known fact that the SARS-CoV-2 virus is an overdispersed infectious agent
(Endo et al., 2020; Adam et al., 2020), and like many other pathogens with a high
epidemic potential (Lloyd-Smith et al., 2005), its diffusion is largely driven by
‘superspreading’ events (Lewis, 2021). As such, SF graphs tend to offer a
sounder representation of the viral transmission pathways than other network
classes since superspreaders can be adequately modelled as the aforesaid hubs
(Zenk et al., 2020; Kojaku et al., 2021). Consequently, this generation approach
offers an appropriate benchmark for training control agents to handle more
heterogeneous diffusion dynamics, such as that of COVID-19 (see Chapter 4).

• Watts-Strogatz model: Introduced by Duncan J. Watts and Steven Strogatz in
1998 (Watts and Strogatz, 1998), this is a widely-used rewiring model that
produces graphs with several small-world (SW) properties, including short
average path lengths and large clustering coeffcients, which are highly
representative of real interaction networks. The Watts-Strogatz method
generates a ring of size N, then creates clusters by joining each node to its knn

nearest neighbors, after which shortcuts are made by rewiring edges with
probability pr. Clusters have been shown to be an important transmission
catalyst of the SARS-CoV-2 virus (Liu et al., 2020b), and thus modelling them
may offer more realistic representations of the spreading mechanism.

• Holme-Kim model: Proposed by Holme and Kim (2002), this approach expects
N, one integer mHK, and a probability p△ as parameters, growing the graph by
adding mHK incident edges for each new node, with a chance p△ to construct a
triangle from every new edge. This process creates networks that exhibit both SF
and SW properties, making the Holme-Kim (HK) method an ideal instrument
for capturing the spreading dynamics of respiratory diseases, such as COVID-19,
since the generated graphs would typically feature both superspreaders and
realistically-high clustering coeffcients. This generation method is the focus of a
detailed exploration in Chapter 3, where it is used to assess the impact of contact
tracing strategies.
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• Stochastic-block model: Developed by Holland et al. (1983), this is a rewiring
model that partitions the nodes into disjoint blocks of sizes s, and then assign
edges between vertices according to a parameter matrix of probabilities P that
controls the intra- and inter-block connectivities. This method can be used to
create fexible clusters, which have internal connections determined by the
diagonal elements of P and external links governed by the off-diagonal elements
of P, enabling a more realistic modelling of small communities that aids our
demonstration of the advantages of more targeted public health interventions
(for more details, refer to Section 4.4.4).

2.4 Network heuristics

Network problems often require fnding satisfactory solutions in a timely and feasible
manner. Network heuristics are methods that enable the discovery of such solutions
by making use of sensible rules, derived from experience or intuition. They do not
ensure optimality, but they frequently achieve suffciency in a wide range of diffcult
problems. Within the broad spectrum of applications, we note fnding appropriate
strategies for testing (Meirom et al., 2015) and vaccinating against a pathogen
(Preciado et al., 2014), routing data (Tounsi, 2021), or maximizing social infuence
(Murata and Koga, 2018), making a computer network more effcient or secure (Sun
et al., 2022), and analyzing a graph’s structure or function (Gupta et al., 2016). One can
divide network heuristics into three categories, based on where they operate:
node-level, edge-level and graph-level.

Heuristics acting at the node level focus on the properties or characteristics of
individual vertices and how they affect the network structure or function. For
example, node-level heuristics can measure the centrality of vertices, which refects
their importance or infuence in the graph based on different criteria. They can also
help us understand the roles and behaviors these nodes exhibit in the network. For
instance, one possible application of these measures is to use them for ranking the
vertices in a contact tracing network, and selecting the most ‘infuential’ set for testing
or vaccination prioritization. We show in Chapter 4 that this strategy can result in
signifcantly higher containment rates than standard random samplers.

Commonly-used node-level heuristics include:

• Degree centrality (Freeman, 1978): The number (or fraction) of edges connected
to the parameter node v, i.e. cD(G, v) = degG(v). Nodes with higher degree
centrality are more infuential or connected in the network.

• Betweenness centrality (Freeman, 1978): The number (or fraction) of shortest
paths between any pair of vertices that pass through the node v, i.e.
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σG(s,t|v)cB(G, v) = ∑s ̸=v ̸=t σG(s,t) . Nodes with higher betweenness centrality are more
central or bridging in the network.

• Closeness centrality (Freeman, 1978): The inverse of the average distance from a
node v to all other vertices in the network, i.e. cC(G, v) =

∑N−
N
1
−1 . Nodes

u=1 dG(v,u)
with higher closeness centrality are more accessible or reachable in the network.

• Katz centrality (Katz, 1953): Computes the centrality of node v based on the
centralities of its neighbors, i.e. cK(G, v) = αK ∑u Av,ucK(G, u) + βK, where αK

and βK are parameters. Nodes with higher Katz centrality are more connected or
active in the network.

• Eigenvector centrality (Bonacich, 1972): A special case of Katz centrality where
αK = λ−1 and βK = 0, with λmax being the largest eigenvalue of the adjacencymax

matrix A. Nodes with higher eigenvector centrality are more infuential or
prestigious in the network.

• PageRank (Brin and Page, 1998): A variant of the eigenvector centrality that
accounts for the direction and quality of edges, combined with a random jump
assumption. Can be obtained from the Katz centrality by setting βK = 1−

N
αK and

replacing A with AD−1, with αK usually fxed at 0.85. Nodes with higherout

PageRank are more authoritative or popular in the network.

• Clustering coeffcient (Watts and Strogatz, 1998): The fraction of possible
2TG(v)triangles through the parameter node v that exist, i.e. cc(G, v) = ,degG(v)(degG(v)−1)

where TG(v) is is the number of triangles through vertex v. Nodes with higher
clustering coeffcient are more embedded or clustered in the network.

In contrast, edge-level heuristics make decisions based on the attributes of the links in
a network, often forming paths through the graph. For instance, a heuristic operating
at the edge level might be applied to identify which paths are most vulnerable or
valuable for an attacker to exploit (Chae et al., 2022). Classic approaches for fnding
minimum spanning trees, such as Prim’s (Prim, 1957) and Kruskal’s algorithms
(Kruskal, 1956), or shortest paths dG(v, u), e.g. Dijkstra’s algorithm (Dijkstra, 1959),
can also be considered edge-level heuristics. Finally, graph-level heuristics consider
the global structure or behavior of the network as a whole and how it affects its
performance or resilience. They are frequently employed to measure the centralization
of networks, which indicates the degree of concentration or inequality of ties among
nodes (Padgett and Ansell, 1993; Simmons et al., 2018). These heuristics can also help
optimize network design or confguration, based on some predefned criteria that
refect the desired properties or objectives. For example, the small-world networks we
utilize here must by defnition feature high graph-level clustering coeffcients, which
describe their average local cohesion, and low values for the average shortest-path
length heuristic, which measures its global effciency (Watts and Strogatz, 1998).
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2.5 Machine learning with network data

Many of the challenging problems in the growing feld of data science involve the
study of relationships between structured objects. In bioinformatics, data concerning
molecular networks, which serve as the backbone of molecular activity, is commonly
used to predict a protein’s function and interaction patterns, or even infer some of the
functionalities that the complex cellular machinery performs (Sharan and Ideker,
2006). Manipulating this structure at more granular levels has also enabled scientists
to fnd new drugs and treatments for common diseases (Bongini et al., 2021; Wu et al.,
2021). Optimization problems in mathematics and physics can often be represented
via networks, thus becoming solvable via nonspecifc frameworks (Toenshoff et al.,
2020; Cappart et al., 2021). Aggregating travel data for traffc prediction and
estimating times of arrival naturally renders large datasets of connected structured
objects, which ought to be leveraged using effcient graph models (Lange and Perez,
2020). In the context of social interaction networks, numerous such structures have
been processed using machine learning in order to understand their patterns and
evolutionary nature (Kumar et al., 2006), improve recommender systems (Fan et al.,
2019), or predict likely links to emerge in the process (Dong et al., 2013; Yuan et al.,
2019), among many other use cases.

Similar to the network heuristics discussed earlier, we can formulate different ML
tasks involving network data based on the desired layer of abstraction: the node level
(e.g. node classifcation), the edge level (e.g. link prediction) or the graph level (e.g.
graph isomorphism). These tasks can be effectively solved by learning algorithms that
can exploit both the network structure and the labels associated with the afferent
nodes and edges. Graph kernels and graph neural networks are two of the most
popular examples of such approaches. These techniques are discussed in greater
detail in the subsequent sections, where their theoretical foundations and some of
their notable variants are presented.

2.6 Kernel methods and graph kernels

Kernel methods are classic machine learning algorithms that learn from encoding the
similarities between all pairs of datapoints, rather than using feature representations of
the data directly. More formally, let k : D× D ↦→ R be a continuous symmetric
function which measures the similarity between all pairs of datapoints
(xi, xj) ∈ D× D. Then k is said to be a valid kernel on D if it can also act as the inner
product of some arbitrary Hilbert spaceH (Gretton, 2019), i.e. for a specifc feature
map ϕ : D ↦→ H, k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩ . H can in theory be infnitely dimensional,H ( )∥xi−xj∥2

as is the case with RBF kernels of the form kRBF(xi, xj) = exp − , but by2σ2
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utilizing a mapping from the cross product of the original domain to the inner product
ofH, one can leverage the expressivity of this higher-dimensional space without
explicitly operating on its elements (i.e. the kernel trick) (Mohri et al., 2018). The
downside of such an implicit approach is that all similarities need to be precomputed
and stored in a Gram matrix K, with Ki,j = k(xi, xj), operation which can be expensive
for large datasets. By construction, k has to be positive semi-defnite (p.s.d.), fulflling
Mercer’s condition, and due to Moore-Aronszajn theorem (Aronszajn, 1950), the
correspondingH is always unique, acting as a reproducing kernel Hilbert space
(RKHS) of functions. The latter is essential for solving optimization problems via the
kernel trick, yet learning with indefnite kernels is occasionally possible (Luss and
d’Aspremont, 2008; Gu and Guo, 2012; Johansson and Dubhashi, 2015).

Currently, there exists a large spectrum of effcient kernelized methods suitable for
most common learning objectives: supervised classifcation and regression (e.g. SVMs,
Gaussian processes (Rasmussen, 2004)), statistical dependence testing or distance
measurement (e.g. HSIC (Gretton et al., 2005)), unsupervised dimensionality
reduction (e.g. kernel Principal Component Analysis – PCA (Schölkopf et al., 1997)),
clustering (e.g. kernel k-means (Tzortzis and Likas, 2008)), density estimation (e.g.
KDE (Silverman, 1986)), and many others. HSIC (or Hilbert-Schmidt Independence
Criterion) is a kernel-based method to quantify the statistical dependence of two
random variables. It can be used for feature selection and model ftting, as well as for
explaining predictions, as we describe in Section 2.8 and empirically demonstrate in
Appendix C.6. HSIC is based on the idea of embedding the joint and marginal
distributions of the input random variables into an RKHS, and then computing the
distance between the embeddings using the Hilbert-Schmidt norm (Gretton et al.,
2005). Given two variables X and Y of size N, their afferent Gram matrices KX, KY, and

⊺the centering matrix H = IN − N
1 1N1N , where IN is the N-dimension identity matrix

and 1N is the N-dimension vector of ones, the empirical approximation of HSIC for
(X, Y) can be written as Eq 2.4, while its normalized variant takes the form of Eq 2.5.

HSIC(X, Y) = (N − 1)−2tr(KX HKY H) (2.4)

NHSIC(X, Y) = tr(KX HKY H) (2.5)

The feld of graph kernels has been rapidly evolving since the early 2000s, with many
variants being developed and applied to different domains (Kriege et al., 2020). Like
several network heuristics, these kernels can operate at the graph, the subcomponent,
or the node level. Higher-order structures generally require the aggregation of
lower-level (or base) kernels to form the fnal representations. Although this thesis
does not directly employ them, we present for completeness several such aggregation
mechanisms in Appendix A.1. Among the common examples of base p.s.d. kernels,
we fnd the vertex-level label and feature kernels kvl(x, y) = k(l(x), l(y)) and
kv f (x, y) = k( fv(x), fv(y)), where k can be a Kronecker delta, linear or RBF kernel, and
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the pair-level shortest path kernel ksp((u, v), (w, z)) = max(0, c− |d(u, v)− d(w, z)|)
(Borgwardt and Kriegel, 2005), where c is set via cross-validation and k(., .) = 0 if
either path does not exist. More generally, however, one can construct custom p.s.d.
Gram matrices from any symmetrical matrix M via the exponentiation: Kβ = eβM,
with β a free parameter (Kondor and Lafferty, 2002). By differentiating the above w.r.t.

dβ, a differential equation dβ Kβ = MKβ with initial condition Kβ(0) = IN arises. This
indicates a gradual process that can transform Kβ into a structure-aware kernel matrix,
provided that the chosen generator M carries such information within. By setting
M = −L, we can obtain a node-level heat diffusion kernel, whose name alludes to the
similarity between the resulting differential form and the heat equation in Eq 2.3. The
computation of the afferent Gram matrix requires the diagonalization of M as
H = QΛQ−1, followed by the exponentiation of the diagonal matrix of eigenvalues:

βHKβ = e = QeβΛQ−1 (2.6)

As part of our initial evaluation of graph-based methods, partially reproduced in
Appendix E.3, we train several SVMs with various confgurations of the heat diffusion
kernel. These experiments show that graph kernels, although competitive in some
cases, tend to lack expressiveness in node-level tasks compared to recent GNN
models. As such, the rest of this thesis will focus on the latter family, using the former
only as a source of comparison, while outlining possibilities for further investigation.

2.7 Graph neural networks

Graph neural networks are state-of-the-art deep learning algorithms for graphs that
can generate node embeddings based on the knowledge contained within the
neighborhood of each vertex. The earliest studies in the space of GNNs defned the
model as two functions: a transition function fθ , and an output function oθ (Gori et al.,
2005; Scarselli et al., 2009). The frst expresses the dependence between a node v and
its neighborhood, while the latter controls how the fnal outputs are produced. Both of
these are learned by neural networks using backpropagation through time, and can be
expressed in vectorized form as follows:

X(t + 1) = Fθ(X(t), Y) Ŷ(t + 1) = Oθ(X(t + 1), Y),

where X encompasses the node representations, Y are some labels, and Ŷ are the
predicted outputs. The two functions form the basis of what later came to be known
as the message-passing paradigm (Gilmer et al., 2017), which quickly became dominant
in the feld due to its effectiveness and computational effciency (Bronstein, 2022). By
stacking multiple GNN layers, multiple rounds of message passing can be performed,
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FIGURE 2.1: Graph neural networks intuition. Every node in the input graph determ-
ines a separate compute graph. The squares represent neural networks with shared
weights Wl and biases towards the current representation Bl per each layer l. In this
context, layers refer to hops within the network, i.e. for each vertex v, layer 0 are its
node features xv, layer 1 aggregates information from its immediate neighborhood
(features from adjacent nodes and their common edges) according to W1 and B1 etc.

Source: Leskovec (2021).

resembling WL updates. The node embeddings become increasingly more refned as
the aggregated representations that reach them contain information stretching to more
hops away (see Fig 2.1 for details). Adding nonlinearities. such as the standard ReLU
function (Nair and Hinton, 2010), between layers is a common practice, and these
typically improve the expressivity of the embeddings.

That being said, with increasing depths, conventional GNN architectures frequently
suffer from feature oversmoothing (Hoang and Maehara, 2019; Oono and Suzuki, 2019)
and bottlenecks (Alon and Yahav, 2022). As a result, unlike CNNs, GNNs often
demand fewer layers for elevated performances. The frst of these common issues
occurs when the information gathered from numerous GNN layers makes node
embeddings too smooth to be distinguished from each other, problem tightly
connected to the equivalence between classic GNN architectures and low-pass
fltering (Hoang and Maehara, 2019). The second issue is a natural consequence of
having to ft the knowledge acquired from long-range hops into a fxed-dimensional
vector, operation analogous to using CNNs with oversized receptive felds. This
bottleneck effect can be partially mitigated by replacing the last GNN layer with a
fully-adjacent (FA) layer that connects all nodes, thus easing information fow and
preventing long-range signals from getting lost (Oono and Suzuki, 2019). Recently,
models that learn more diverse information-fow pathways that are not constrained
by the graph structure have also been proposed. These techniques facilitate building
deep GNN architectures that signifcantly lessen oversmoothing and bottlenecks (e.g.
GRAND by Chamberlain et al. (2021), described in more detail in Appendix A.2, or
Neural Sheaf Diffusion by Bodnar et al. (2022)).

After the introduction of Graph Convolutional Networks (GCN) (Kipf and Welling,
2017), this model and its several variants have quickly become the norm in
graph-based learning. The original GCN model is based on earlier work on spectral
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graph convolutional neural networks by Bruna et al. (2014), but it circumvents the
ineffcient eigendecomposition of the graph Laplacian by utilizing a linear layer-wise
model, as shown in Eq 2.7, where the parameters at layer l are Θl (this quantity
encompasses both Wl and Bl from the illustration in Fig 2.1).

X(l+1) ˆ symX(l)Θl= L (2.7)

Hamilton et al. (2018) bring forward a generalization of the formulation above that
allows representations to be aggregated in more than a single way (see Eq 2.8), thus

(l)increasing the overall fexibility of the model. In the GraphSAGE equation below, xv

is the representation of node v at layer l, || is the concatenation operator, Wl and Bl are
the weights of layer l, while AGG is a generalized aggregator function, which can be
an AveragePool, a SumPool, a MaxPool, or even an arbitrary operator (e.g. Multi-Layer
Perceptron – MLP, Long-Short Term Memory network – LSTM). The authors of
GraphSAGE also propose a layer-wise neighborhood subsampling technique that
makes learning on large networks more feasible.

(l+1) (l)xv = (Wl · AGG({xu | u ∈ NG(v)}) || Blxv ) (2.8)

The training performance on large-scale graphs can also beneft from simpler GNN
models, which bypass the message passing routine by propagating the initial X

ˆ symthrough powers of graph operators (e.g. L ), before utilizing an MLP to get the fnal
outputs. This type of model is sometimes known as Graph-Augmented MLP
(GA-MLP), and has been shown to be effcient at distinguishing most pairs of
non-isomorphic graphs, albeit failing to be as expressive as classic message-passing
GNNs (Chen et al., 2020). One of the most common examples of GA-MLPs is the SGC
model described by Eq 2.9, which completely eliminates all nonlinearities (i.e. X(L) is
the fnal output) in favor of using a single linear transformation of the node features X
and a power-law formulation of the graph Laplacian (Wu et al., 2019). Similar in
nature is the Graph Filter Neural Network (gfNN), which works by applying an MLP
on top of X(L) (Hoang and Maehara, 2019). SIGN (Scalable Inception Graph Neural
Networks) by Frasca et al. (2020) takes a slightly different approach by precomputing

ˆ iall the transforms L X up to a given power k (i.e. i ≤ k), and then training a more
effcient MLP by inputting these transformations. That being said, the standard GNNs
tend to have a better expressivity, being the natural choice for smaller networks.

X(L) = (D̃− 2
1

ÃD̃− 2
1

)kXΘ (2.9)

The general aggregation mechanism of GraphSAGE, which is common for most GNN
architectures, equally weighs all the neighboring information unless an arbitrary
operator is used. Motivated by the accomplishments of attention mechanisms in
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natural language processing (Brown et al., 2020; Devlin et al., 2019; Vaswani et al.,
2017) and computer vision (Bao et al., 2021; Khan et al., 2022), multiple variants of
GNNs that use learned attention weights to compute weighted averages of the
neighborhood representations have been suggested (Veličković et al., 2018; Dwivedi
and Bresson, 2021; Brody et al., 2022). The Graph Attention Network (GAT) proposed
by Veličković et al. (2018) leverages a variant of the multi-headed Bahdanau attention
(Bahdanau et al., 2016) to obtain superior node embeddings. Its layer update rule is
given by Eq 2.13, where α are node-level attention coeffcients and W is a learned
parameter matrix. In order to compute the coeffcient αv,u of node v to its neighbor u, a
softmax over NG(v) is performed over the scores ev,u (refer to Eq 2.12). These scores
can be calculated via either the original formulation (Eq 2.10) or the more expressive

(l)GATv2 variant (Eq 2.11) (Brody et al., 2022), where || is the concatenation operator, xv
(l)and xu are current node representations, while a is a learned vector.

GATe = LeakyReLU(aT[Wx(l) ||Wx(l)])v,u v u

GATv2 (l) (l)e = aTLeakyReLU([W ||W][x || x ])v,u v u

(2.10)

(2.11)

αv,u = softmaxu∈NG(v)(ev,u) (2.12)
(l+1)xv = σ(Σu∈NG(v)αv,uWx(l)u ) (2.13)

Aside from assessing their performance empirically, the expressive power of GNNs is
often quantifed using the WL test. The similarity of GNNs and the 1-WL update rule
has initially been noted by Xu et al. (2019). However, the authors have demonstrated
that the standard AveragePool and MaxPool neighborhood aggregators make models
that are strictly less powerful than 1-WL. To overcome this limitation, they propose a
new architecture, the Graph Isomorphism Network (GIN), that can be as powerful as
the 1-WL procedure. A GIN layer takes the form of Eq 2.14.

X(l+1) = MLP(ÃX(l)) (2.14)

Developing GNNs that are more expressive than 1-WL has been the focus of major
efforts since the introduction of GIN, with many approaches now existing: breaking
node symmetries by augmenting the features with random values (Sato et al., 2021),
modifying the message passing rule (Beaini et al., 2021), or changing the input graph
structure (e.g. k-GNN by Morris et al. (2020), Invariant Graph Networks (IGN) by
Maron et al. (2019)). Though computationally intensive, the latter have been shown to
exactly match the expressive power of k-WL. Surprisingly, however, their performance
on benchmark datasets has consistently trailed behind more classic GNN architectures
(Dwivedi et al., 2020; Bronstein, 2020). In contrast, the other approaches do not
signifcantly affect runtimes and frequently enhance performances.
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The preliminary analysis of GNN formulations presented in Appendix E.3 indicates a
slight advantage for GAT and GCN on the standard Planetoid datasets: Cora, Citeseer
and PubMed (Yang et al., 2016). However, since the performance differences among
these tend to be small and inconsistent, the architectural experiments are repeated for
the node ranking problem of Chapter 4. The latter reveal that a combination of the
improved GATv2 and GIN renders superior results overall. The fnal training
procedure we use is further enhanced by employing several of the techniques and
good practices we detail above for mitigating oversmoothing and bottlenecks, such as
low layer counts, fnal FA layers, and random node features. For more details on our
epidemic control model, please refer to Section 4.3.5.

2.8 Explaining graph neural networks

A widely-used approach for explaining predictions in deep learning involves
perturbing the inputs and ftting local explainable models to each data point and its
corresponding perturbations. LIME (Ribeiro et al., 2016) and SHAP (Lundberg and
Lee, 2017) are two popular examples of this methodology. Although the above are
directly applicable to GNNs, they do not possess the capability to leverage the
structural information of graph data or capture nonlinear relationships between the
inputs and the outputs. To solve these limitations, GraphLIME has been proposed
(Huang et al., 2022). GraphLIME replaces the local perturbations matrix with stacked
node features selected from a node’s neighborhood, ftting multiple nonlinear
interpretable models using HSIC (see Section 2.6). In Appendix C, we utilize
GraphLIME to explain the testing decision taken by an RL epidemic control agent,
making them accessible for auditing processes.

The GraphLIME criterion can be written as Eq 2.15, where β1, . . . , βd ≥ 0 are the
Ȳ are

the normalized doubly-centered Gram matrices describing the kernel space created
from the feature inputs and the model’s outputs, respectively, while ||.||F designates
the Frobenius norm. The equivalent form of the criterion, shown in Eq 2.16, where fk

is the k-th feature vector and y is the output vector, clearly isolates the (normalized)
empirical HSIC values for each feature-feature and feature-output pair, highlighting
the minimum redundancy maximum relevancy nature (Peng et al., 2005) of the

¯feature importances, d is the number of features, ρ is the Lasso coeffcient, andK

GraphLIME solution. That is, ∀m, n ∈ [1, d], NHSIC( fm, y) = tr( YK̄
(m) ¯ ) is to be

maximized in order to better capture the variation in the output space, while
KK̄

(m) ¯ (n)

redundancies between each feature pair.
NHSIC( fm, fn) = tr( ) gets minimized to reduce the informational
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d1∥Ȳ− ¯ (m)
βmK ∥2

F + ρ∥β∥1∑min (2.15)
2β∈Rd

m=1
d d1

∑ βmβnNHSIC( fm, fn)− ∑
m,n=1 m=1

βmNHSIC( fm, y) +
1
2
+ ρ∥β∥1 (2.16)min

β∈Rd 2

2.9 Applications of graph-based ML to diffusion processes

2.9.1 Identifying patient zero

One of the important open problems in network science is to identify the source(s) of a
diffusion process, be it a viral outbreak, a rumor, or a cyberattack (Shah et al., 2020;
Waniek et al., 2022). This problem has profound implications for various domains,
including but not limited to public health, social media, and cybersecurity. By fnding
the origin of the diffusion, sometimes called ‘patient zero’, one can estimate the basic
reproduction number R0 of an epidemic, isolate and quarantine the most infuential
spreaders, or detect and counteract the malicious actors who disseminate false
information. Most methods proposed for this task can trace back the diffusion from a
single node, while others can handle multiple sources as well (Shelke and Attar, 2019).
Typically, all these approaches rely on preexisting knowledge about the interaction
graph’s structure. A notable exception, however, is the contact tracing procedure
proposed by Waniek et al. (2022), which applies the model we introduce in Chapter 3
and a depth-based contact search that simulates tracing interviews to locate (or
approximate the region of) ‘patient zero’.

When the full interaction network is known, GNNs can be employed to pinpoint the
infection origin. For example, Shah et al. (2020) train several GCN models using
epidemic simulation data derived from the IBMF model described in Eq 1.3 to identify
the region of ‘patient zero’. Using one-hot representations of the states of each node at
time t as feature vectors, the proposed GCNs can perform well in predicting the
source node or the source neighborhood of the diffusion. By constraining the analysis
of the dynamics to the early stages of the spread (i.e. t→ 0, Si → 1, Ii ≈ 1− Si and
Ri ≈ 0), the authors also defne a time horizon after which the average infection

log N βλ1probability is statistically no different than 1: tmax ≈ , where R0 = is the
γ(R0−1) γ

pathogen’s basic reproduction number. After tmax is passed, detecting ‘patient zero’
should in theory become considerably harder, irrespective of the method utilized.
That being said, the authors fail to emphasize that this result does not necessarily hold
beyond the early stages of an outbreak for all network types. For instance, in a line
graph, tmax would not be enough to ensure (almost) all the vertices get infected.
Nonetheless, the success of their GCN approach has signifcantly motivated our
application of GNNs for epidemic control in Chapter 4.
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2.9.2 Controlling the diffusion dynamics with GNNs and RL

As we highlight in Section 3.5, testing, tracing or vaccinating individuals at random
may not be the most suitable public health strategy when only a limited number of
resources are effectively available. Instead, it would be desirable to rank and target
candidates based on their potential to generate large infection cascades. This problem
is similar in nature to infuence maximization, in that one attempts to maximize the
gains of a generalized campaign by infuencing a bounded set of vertices. The
incomplete observability of the interaction graph environment represents the main
challenge of this task, as it is often impossible to have access to all the node states
when the periodic decisions have to be made. Given this partial view, an optimal
policy needs to balance the infection/infuence potential of each individual with the
probability they become affected.

Meirom et al. (2021) introduce a novel actor-critic RL model to address the problem of
ranking individuals for testing during an epidemic or maximizing infuence in a social
network. Their control framework for the frst use case is diagrammed in Fig 2.2,
while a more thorough outline is provided in the subsequent paragraphs. We extend
this work in Chapter 4 and Appendix C to enable the inclusion of contact tracing and
vaccination prioritization, proposing different visualization techniques for assessing
the controlled diffusion process state, and improving runtimes by training the
underlying deep learning module online. What is more, we apply the updated
method on more realistic COVID-19 scenarios, demonstrating transferability between
the IBMF model presented in Chapter 3 and a pure ABM setup. For more details
regarding our epidemic control model, please refer to Section 4.3.

In this setting, we consider an social graph whose structure changes over time, while
its set of vertices remains fxed: Gt = (V , E(Gt)), where V = V(G0) = ... = V(GT). The
observable environment is organized as a temporal multi-graph with timestamped
edges constructed by aggregating all the known Gt′ up to time t – denoted in this thesis
with Gt′≤t – and the already-observed vertex states. The authors employ a single-layer
GNN to track the diffusion dynamics in Gt (i.e. network D updates representations in
the neighborhood of positively-tested nodes), and another k-layer GNN to account for
the overall structure and long-range dependencies of Gt′≤t (i.e. network I updates
representations in the entire connected component across time of a positively-tested
vertex). This model formulation can readily utilize any fne-grained transmission
probabilities Tv,u(t) available by casting them as aggregation weights in D,
At

v,u = Tv,u(t), and edge features in I. Conversely, if Tv,u(t) cannot be reliably
estimated, the authors suggest dropping network D from the architecture. In addition
to these probabilities, I uses the time delay of each edge in Gt′≤t as a separate feature.

At every time step t, both the actor and the critic are aware of: Gt′≤t, a percentage of the
node states at t = 0, as well as all the past test results. That is, for each 0 < t′ < t, the
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FIGURE 2.2: Visualization of the RL+GNN approach. In this toy example, the rank-
ing module receives as input a sequence G1, ..., G5, constructs a temporal multi-graph
from this, and feeds it to the actor ranking module. The latter outputs a probability
distribution over actions, which ultimately gets sampled by the actor. The blue node is
chosen in this scenario and then gets isolated, the resulting new state being aggregated
to the original input to obtain the next timestamp t = 6. At the same time, the ranking
module’s parameters are updated according to a PPO loss involving the reward of this
new state (based on the RL criterion above) and the critic’s feedback. Source: Meirom

et al. (2021).

actor already chose a set of vertices for testing a(t′), thus knowing at time t whether
any v ∈ a(t′) has previously been infected. The RL agent is optimized using a
Proximal Policy Optimization loss (Schulman et al., 2017), with actions sampled by the
actor based on the vertex scores st output by the ranking module. The latter is
effectively an MLP over the node features, the outputs of the 2 GNNs dt ∈ D(.),
it ∈ I(.), as well as the fnal hidden representation of the previous timestamp ht−1.
Every selected action at time t reveals the infection status of a given node v, while also
detaching its edges in case of a positive test result. To encourage exploration, the
score-to-probability function for sampling av from the action space A (i.e. actor
choosing v for testing) is given by Eq 2.18, where st is obtained from Eq 2.17, while the
episodic parameter ϵep can be tweaked to smooth out the sampling distribution.

ht = MLPθG(ht−1, fv(t), dt, it)

st = MLPθF(ht, ht−1, fv(t)) (2.17)
xt,vP(A = av) = , with xt,v = st,v −min st,u + ϵep (2.18)

u∑u xt,u

The RL optimization criterion the authors utilize takes the form
min ∑t γt(I(t) + E(t)), where the I(t) + E(t) term represents the total number ofr

infected up until time t in a SEI model (i.e. no recovery permitted), while γr is a



34 Chapter 2. Graphs: Generation and Modelling

discount factor. Note that we denote the discount factor with a subscript to avoid
confusion with recovery rate γ. The work employs a critic that has an almost identical
architecture to the ranking model, but with a separate set of parameters and a single
scalar output: the initial input of MLPθF gets through an element-wise MaxPool
operation on rows before being fed through its layers, thus outputting a system state
value rather than a vector. In contrast, we suggest in Chapter 4 that the actor and the
critic share the embedding layers, implementation detail that reduces training time
considerably by design while still being effective.

Compared to more conventional supervised learning (SL) or network heuristics, the
RL testing model of Meirom et al. (2021) is shown to attain a remarkable performance
w.r.t. the epidemic outcome. That being said, the authors neglect two important
mechanisms of public health policy in their analysis: namely, the possibility of
quarantining individuals based on contact tracing and conferring immunity through
vaccination. Since their agents can isolate nodes or mark them as immune only after a
positive test result has been recorded, their framework is not suffciently lifelike. As
previous studies have demonstrated (Abueg et al., 2021; Ferretti et al., 2020), and we
confrm in Chapter 3, the effects of viral epidemics are signifcantly reduced when
contact tracing is employed. At the same time, vaccination has been proven to be
effective in preventing infections (Andrews et al., 2022; Bruxvoort et al., 2021;
Lopez Bernal et al., 2021). Our approach in Chapter 4 aims to optimize the efforts for
each of these interventions, limiting the extent of viral epidemics in a more realistic
way, while striving for resource effciency.

2.9.3 Further related work in graph-based ML for diffusion processes

Besides the above-mentioned works, we also acknowledge several related studies that
have applied GNN architectures in distinct contexts involving diffusion processes:
infection forecasting (Kapoor et al., 2020; Panagopoulos et al., 2021; Wang et al.,
2020b), detection and screening (Yu et al., 2021), full population state estimation
(Tomy et al., 2022), and vaccination policy optimization (Jhun, 2021). Among these
applications, infection forecasting with GNNs has attracted a lot of attention after
several companies have shared population mobility datasets to support research and
policy making during the COVID-19 pandemic. This data is usually anonymized and
aggregated at the level of geographical regions, and thus the modelled graphs in this
context represent networks of communities or regions, rather than human
interactions. For more information about this use case, please consult Appendix A.3.1.

Despite the potential of graph kernels for studying diffusion processes, this area has
received little attention in comparison to GNNs. A rare example of such an effort,
Oettershagen et al. (2021) develops several methods to transform temporal networks
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into suitable representations for applying graph kernels to model and classify
diffusion processes. These methods are discussed in more detail in Appendix A.3.2.
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Chapter 3

Modelling Contact Tracing

3.1 Problem overview

The epidemic started in Wuhan, China by the SARS-CoV-2 virus has uncontrollably
spread through communities all around the world, rapidly becoming a major global
threat which, as of August 2023, was responsible for more than 769 million infected
people and 6.9 million deaths (WHO, 2023). Prompted by the scale of this disease,
cross-disciplinary teams started working against the clock to develop reliable
pathogen spreading models that could be used to assess the effectiveness of different
public health interventions. Since imposing a general lockdown proved economically
unbearable for most countries, the attention signifcantly shifted to less restrictive yet
partially successful measures, such as educating the public to socially distance,
deploying large-scale testing, and quarantining contacts through various tracing
mechanisms (Dighe et al., 2020). The latter proved rather challenging for the
traditional interview-based approaches, mostly attributable to staffng problems and
poor recollection on the part of the interviewees (Garry et al., 2021). As a result, digital
alternatives were quickly sought after by several governments. These were
successfully deployed in many states, most of them relying on either a Bluetooth
solution, such as the Exposure Notifcation system (GAEN) (Google and Apple, 2020),
or a geolocation-based software, similar to the Integrated Disease Surveillance
Programme in India (Garg et al., 2020). That being said, the effciency of these
strategies remains largely dependent on the application adoption rates and the
behavioral patterns of their userbase (i.e. self-isolation compliance, respecting the
usage guidance, keeping the tracing device turned on etc.). Although some have
suggested an application uptake of at least 50% would be needed at the population
level to contain the epidemic (Ferretti, 2020), others showed via simulations that 60%
would be enough to stop the spread without requiring further interventions (Hinch
et al., 2020a). Nonetheless, the adoption levels generally quoted in the literature as
‘suffcient’ remain mostly unattainable due to privacy concerns and internet access
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limitations. The picture gets even more intricate when the aforementioned behavioral
issues are widespread in the active users’ communities or if inadequate testing
regimes and manual tracing procedures are employed.

Motivated by the limited evidence we have on the success of contact tracing in the
face of such challenges, this chapter proposes four key advancements:

1. We build on the seminal work of Farrahi et al. (2014) and propose a new
multi-site (or individual-based) mean-feld model to analyze the joint impact of the
aforesaid limitations on the effcacy of contact tracing, looking at varied
scenarios involving various degrees of manual tracing network overlap Γ and
digital tracing adoption r through the use of triad topologies. Our code is made
publicly available to facilitate further experimentation (refer to Appendix B.1).

2. We propose separating the ‘traced’ status from the infection states, thus allowing
for a node to get isolated at all times, unless it has reached a fnal state, i.e.
recovered or dead, while also ensuring self-isolation can end due to
non-compliance or term expiration, all without impacting an individual’s
normal disease progression. This modelling choice also makes our approach
directly compatible with most of the other compartmental models.

3. We conduct a thorough analysis of numerous parameter settings and network
topologies, including synthetic graphs generated using the methods we describe
in Section 2.3, such as Erdős–Rényi (Erdős and Rényi, 1959), scale-free (Holme
and Kim, 2002; Barabási, 2015), and small-world networks (Watts and Strogatz,
1998; Wang and Chen, 2003). Furthermore, we simulate similar outbreaks over a
real social graph constructed from the Social Evolution dataset, which captures
the proximity and location of several students who participated in a location
tracking experiment (Madan et al., 2012). By comparing the simulated contact
tracing outcomes in these two settings, we offer valuable insights into how
various modelling parameters can affect the success of contact tracing.

4. We show that the effectiveness of contact tracing is infuenced by not only the
accuracy of the tracing network, but also by several other factors, such as the
testing rates, tracing reliability, staffng and delays, public-health communiqués,
isolation conformity, among others, and that fnding an optimal confguration of
these factors given a country’s epidemiological situation is crucial for a swift
viral containment. Additionally, we demonstrate that signifcant reductions in
the peak of infections and the total number of deaths can be achieved even when
lower uptakes are registered (r < 0.4) or the interviewing process misses several
contacts (Γ ≤ 0.5), given small tracing delays and the appropriate levels of
testing and self-isolation compliance. Finally, we observe that the combined
effects of manual and digital tracing can drive the effective reproduction number
Re below 1 even when neither is very effcient.
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3.2 Related work

As discussed in Section 1.3, many compartmental formulations have been proposed
for the SARS-CoV-2 virus – e.g. SIDARTHE (Giordano et al., 2020), SUQC (Zhao and
Chen, 2020), SEIR with added quarantined and hospitalized compartments (He et al.,
2020) etc. This chapter introduces a variation of the compartmental model proposed
by the French National Institute of Health and Medical Research to study the impact
of lockdown exit strategies on the spread of COVID-19 (Di Domenico et al., 2020).

That being said, individual-level public health interventions have typically been
investigated using ABMs (Ferguson et al., 2020; Hinch et al., 2020b). A prominent
example, Abueg et al. (2021) investigate the combined effects of manual tracing with
digital solutions, at various application uptakes, via a rich yet scalable ABM ftted to
mobility data from different counties in Washington. Their work provides one of the
most robust modelling evidences for the effcacy of digital tracing, even when the
latter operates at lower levels of application adoption.

At the intersection of these two paradigms lies the category of individual-based
mean-feld models, which combine the mathematical rigour and superior
generalizability of EBMs with the ability to leverage locality information regarding
every individual. Similar to certain ABMs, the infection spreads over a predefned
network that can either be random (Rozhnova and Nunes, 2009) or inferred from real
data (Farrahi et al., 2014), yet unlike ABMs, the dynamics are fully characterized by
state transition equations. By stochastically simulating a similar model, Huerta and
Tsimring explore the effects of contact tracing in a generic epidemic scenario (Huerta
and Tsimring, 2002; Tsimring and Huerta, 2003). Farrahi et al. (2014) take their idea a
step further by restricting the tracing propagation to a subset of the infection network,
thus accounting for the inherently noisy nature of this process. Despite their powerful
modelling capabilities, both approaches are limited by the underlying compartmental
formulation they consider (i.e. SIRT), which makes several unrealistic assumptions
that do not generalize to real viral diseases: inter alia, the recovery is conditioned on
tracing, susceptibles can never be wrongfully isolated, and a traced person remains
noninfectious for the full duration of the epidemic. Our modelling approach fxes
these issues by separating the traced/isolated status from the infection state, thus
allowing the ‘active’ nodes (i.e. not hospitalized, recovered or dead) to become traced
or exit self-isolation after a certain amount of time without changing their afferent
disease progression. Concurrently, this modifcation enables one to simulate the
effects of contact tracing independently of the compartmental model utilized.

Branching process models, which have gained popularity in the last few years (Jacob,
2010; Lashari and Trapman, 2018), have also been applied to study the effects of
manual contact identifcation used in conjunction with digital tracing solutions at
various uptakes on the spread of COVID-19 (Plank et al., 2020). The corresponding
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simulations show that an effective manual tracing needs to be coupled with an
application uptake of at least 75% to achieve containment, although smaller adoption
rates can decrease the reproduction number Re if combined with other public health
interventions. Our results are in accordance with the latter observation, but they also
show that, given the right testing and tracing regimes (including an adequate
self-isolation compliance), lower and achievable adoption levels are often enough to
signifcantly reduce the viral diffusion, subject to the network’s connectivity patterns.

3.3 Methodology

3.3.1 Compartmental model outline

Given the increasing evidence that basic SIR frameworks are unable to capture the
complexity and heterogeneity of SARS-CoV-2 epidemics (Moein et al., 2021), we
introduce a novel compartmental formulation that accounts for several of its
particular features. We show a representation of this model in Fig 3.1, where the state
transitions are labelled with their corresponding time-dependent probabilities. The
model attains a fnal confguration when all non-susceptible nodes become either
recovered (R) or dead (D). A description of the epidemic parameters utilized, together
with the values we consider for each of them, can be consulted in Table 3.1.

3.3.2 Network propagation mechanism

We use a predefned network for the infection spread, and a subnetwork for each type
of contact tracing: one for the manual and another for the digital process. This method
enables us to simulate either one tracing strategy alone, called dual topology – Fig 3.2,
or both concomitantly, called triad topology – Fig 3.3. Connected vertices in the true
infection graph are to be considered ‘close contacts’, as previously defned by
authoritative institutions like the CDC (CDC, 2020).

The tracing graphs represent subset views of the true contacts network, where missing
edges correspond to application misuse in the digital setting or contacts not recalled in
the manual interviewing process, while isolated vertices account for individuals that
never run a government’s digital solution or are effectively unreachable. Be that as it
may, people can at times overestimate the number or the duration of their social
interactions (Mastrandrea et al., 2015), and thus it is possible that tracers are
occasionally pursuing erroneous links. Even though our model can simulate ‘false’
contacts, similarly to Farrahi et al. (2014), we consider their occurrence quite rare
during a global pandemic (and thus negligible), since the public health staff tends to
be better trained, while the general public pays more attention to their interactions.
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FIGURE 3.1: The SEIR-T Compartmental Model for COVID-19. Each node in the in-
teraction network has 2 allocated variables: an infection state and a tracing status. The
infection states from top to bottom are: S - susceptible; E - exposed but not infectious;
Ip - infectious, presymptomatic; Ia - infectious, asymptomatic; Is - infectious, symp-
tomatic; H - hospitalized; R - recovered/removed; D - dead. At any point in time, a
node’s tracing status can either be T (traced and isolated) or N (not traced/isolated or
non-compliant). Each state transition has a certain time-dependent probability pS1→S2;
the edge labels here represent both pS1→S2 , and the λ rate of the corresponding exponen-∆t

tial to sample from in the continuous-time simulations.
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FIGURE 3.2: Final state of an epidemic simulation over a dual topology. Infection
spreads with respect to the neighborhoods of the frst network (here a SF graph); the

second network represents a digital tracing view at uptake r = 0.5.
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TABLE 3.1: Compartmental model parameters used in our simulations.

Parameter Value(s) used Description

β 0.0791 Transmission rate corresponding to R0 = 3.18. Obtained via maximum likeli-
hood estimation performed on hospitalization data by Di Domenico et al. (2020).

KX

Ir

R

0.5

Function mapping nodes to the total number/weight of connections to neigh-
boring nodes in state X ∈ {Ip, Ia, Is, T} for a given network.

Relative infectiousness of Ip and Ia compared to Is. This is still disputed: ≈
0.5 according to Grassly et al. (2020) and Di Domenico et al. (2020), but weak
evidence as per McEvoy et al. (2021).

ϵ−1 3.7 Latency period, measured in days. Source: Di Domenico et al. (2020).

pa 0.2/0.5 Probability of being asymptomatic. Disputed value: 0.2 used by Di Domenico
et al. (2020) and Mizumoto et al. (2020), but 0.5 according to Keller et al. (2020)
or Oran and Topol (2020).

µ−1
p 1.5 Presymptomatic period, measured in days. Source: Ferretti et al. (2020).

ph 0.1/0.2 Probability of being hospitalized for adults and seniors (assumed almost 0 for
children). Equivalent to pss in Di Domenico et al. (2020).

γ−1 2.3 Infectious period considering the mean generation time 6.6 days.
Di Domenico et al. (2020).

Source:

λH−R 0.083/0.033 Daily rate of recovery for adults and seniors (assumed almost 0 for children).
Source: Etalab (2020).

λH−D .0031/.0155 Daily rate of deaths for adults and seniors (assumed almost 0 for children).
Source: Etalab (2020).

τt [0-0.5] Contact tracing rate. Encompasses multiple related phenomena: the tracing
latency/effciency due to staffng/server reliability, depending on the type of
tracing; the likelihood of remaining isolated given the number of traced neigh-
bors. Ranges from no tracing (0) to every 2 days on average (0.5).

τr (0-0.5] Testing / Random tracing rate. Ranges from almost no testing (0.001) to every 2
days on average (0.5).

Tr 0.8 Relative probability for Ia to be tested positive (against Is). Assume testing E
and Ip rarely happens or results in false negatives most of the time.

η 0/0.001 Non-compliance / Self-isolation exit rate. Scaled by the time elapsed since the
beginning of isolation, tcurrent − ttraced.



433.3. Methodology

We control the subsetting of the infection graph via two interlinked parameters: the
K−Zrem N−Nutndegree of overlap Γ = K and the uptake rate r = N , variables which ultimately

determine the values of Nutn and Nute (refer to Eq 3.1). To be more explicit, the input Γ
and the infection network’s mean degree K are utilized to calculate Zrem, the average
number of edges per node to get hidden from a tracing view. The latter effectively

NZremcorresponds to marking as untraceable Nute = 2 of the edges in the interaction
graph. Similarly, the selected r and the total number of nodes N are used to establish
how many vertices are to be made completely untraceable in a particular tracing
subnetwork: Nutn = N(1− r). This chapter showcases simulations in which the frst
of these two parameters describes the accuracy of manual tracing, whereas the second
quantifes the adoption of a digital solution. That being said, our model supports
exploring more complex scenarios, where both the overlap and the uptake can be
varied for a single tracing view. A full description of the network-related variables
involved in our modelling procedure can be consulted in Table 3.2.

NZrem NK(1− Γ)
Nutn = N(1− r) Nute = = (3.1)

2 2

Throughout our experiments, we assume a ‘traced’ individual (i.e. having tracing
status T) automatically enters self-isolation, thus making it impossible to infect others
or get infected unless it reaches the ‘non-isolating’ status N. This can happen either as
recommended by authorities, after 14 days, or wrongfully, with a probability of η

scaled by the time elapsed since isolating. In addition, we presume that a node’s
probability to get infected proportionately increases with the amount of infectious
neighbors it has in the contacts network, while the likelihood of being traced and
compliant with self-isolation recommendations is directly proportional to the number
of adjacent T nodes it has within each of the tracing subnetworks.

TABLE 3.2: Network-generation parameters.

Parameter Value(s) used Description

N N Population size of the infection network.

K 10/20 Average degree of the infection network. This is only confgurable in the ER
experiments.

mHK 10 Random edges to add for each new node in the Holme-Kim networks (Holme
and Kim, 2002).

p△ 0.2 Probability of completing a triangle after adding a random edge.

Γ [.1, 1] Degree of overlap between infection network and a tracing subgraph. Used to
calculate Zrem, which in turn reveals Nute (number of untraceable links).

r [.1, 1] Uptake rate (between infection network and a tracing subgraph). Used to cal-
culate Nutn (number of untraceable nodes).
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3.3.3 Simulation overview

The baseline simulations in this chapter are performed on Erd˝ enyi randomos–R´
graphs with varying population sizes and average degrees. Despite the limitations of
this class of networks, as discussed in Section 2.3, Tsimring and Huerta (2003) argue
that the epidemic dynamics of their model remains “qualitatively similar” between ER
realizations and the empirically-based class of SW graphs, since both have
well-defned epidemic thresholds. Given that we implement tracing in an analogous
manner, we can also anticipate similar levels of tracing effciency for both graph
generation approaches. At the same time, we consider our modelling choice of
sampling nodes for contact tracing according to their count of isolated neighbors to be
similar in essence to the frequency-based tracing procedure proposed by Kojaku et al.
(2021), and thus we expect superspreaders within SF graphs to be preferentially
targeted by our control framework, avoiding potential imbalances the corresponding
hubs may cause. It is, therefore, sensible to assume the simulation mechanism we
employ remains suitable for assessing the effects of tracing over a broader range of
network models, beyond ER. We provide further evidence for this in a series of
additional experiments on more realistic SF and SW networks, presented in
Sections 3.4.3 and 3.4.5, offering a more comprehensive analysis of our model.

In contrast to the above, Section 3.4.6 investigates the effects of digital and manual
tracing in a viral outbreak simulated over a real social network, representing a
tightly-connected community of 74 students and graduates from MIT who agreed to
have their location and interactions monitored via WLAN and Bluetooth scans over
an entire academic year (detailed exploratory analyses of the dataset can be examined
in Madan et al. (2012) and Farrahi et al. (2014)). In our simulations, this dynamic
network changes daily over a period of 31 weeks, its links being weighted by the
aggregated number of Bluetooth proximities recorded between their corresponding
corner points on each particular day. In the static settings presented thus far, KX

represents a function mapping nodes to the total number of neighbors in state
X ∈ {Ip, Ia, Is, T} (see Fig 3.1). To account for the dynamic weights present in this
dataset, however, all KX terms get replaced by a time-dependent function Kt

X, given
by Eq 3.2, where Knorm = 10 is a normalization factor that ensures the average function
value remains above 1, wt

X(n) is the sum of edge weights incoming from those
neighbors of node n which are in state X at time t, while < W > is the overall static
average weight. The latter represents an average over days of the average total weight
per node, calculated using Eq 3.3, where D = 216 is the number of days within the
considered 31-week period, N = 74 is the number of nodes for which we have contact
data, and wt(n) is the total weighted degree of node n at time t, irrespective of state.
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Knorm · wt
X(n)

Kt
X(n) = (3.2)

< W >

∑D ∑N wt(n)t n< W > = (3.3)
D · N

In this work, the time intervals between two state changes of the same type (i.e.
matching source and target compartments) are assumed to form an exponential
distribution, with the λ rate equal to the corresponding transition label displayed in
Fig 3.1. Choosing this distribution for timing the infection propagation, in particular,
keeps our approach in line with many previous epidemiological works relying on
compartmental formulations (Kröger and Schlickeiser, 2020; Farrahi et al., 2014; Ma,
2020), while also being in accordance with the fndings of different cohort studies
involving wearable tracking devices that have reported roughly-exponential decays in
their participants’ histogram of interactions (Stehlé et al., 2011; Farrahi et al., 2015). We
acknowledge similar cohort studies have found heavier-tailed distributions based on
power laws to be more compatible with the time intervals between successive
interactions, citing the bursty nature of social dynamics as the determining factor
(Cattuto et al., 2010; Starnini et al., 2013). However, the corresponding data ft has
often proved imperfect, while extensive comparisons against exponentials have rarely
been performed. In the epidemiological setting, more realistic and fexible
distributions for the infection waiting times have been suggested, such as Erlang, a
special case of the Gamma distribution (Krylova and Earn, 2013; Liu et al., 2020a), or
Weibull, a generalization of the latter (Streftaris and Gibson, 2012; Lipsitch et al., 2003;
Van Mieghem and Liu, 2019). These can effectively model the non-Markovian nature
of some epidemics, but they typically require more parameters to be estimated,
making the analysis of the diffusion process more diffcult. That being said, the more
convenient exponentials have been shown to provide a particularly good ft to
epidemiological data when the pathogen’s mean generation time is correctly fxed
(Krylova and Earn, 2013) or the mean infection duration is smaller (Vergu et al., 2010).
Both of these conditions should hold for the SARS-CoV-2 outbreaks we investigate.

For effciency, we simulate the COVID-19 epidemics using Gillespie’s algorithm
(Gillespie, 1977), which has been shown to be stochastically exact to and faster than
the Monte Carlo method (MC) for both static and dynamic network-based diffusion
processes (Vestergaard and Génois, 2015). Compared to a continuous-time MC
simulation, which entails sampling the next transition for all the possible state
changes, discarding all but the most ‘recent’ event (Farrahi et al., 2015), Gillespie’s
procedure directly draws the time elapsed until the next transition and identifes the
state change most likely to have taken place within that period. A detailed
pseudocode for our event sampling procedure is provided in Algorithm 1.
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Algorithm 1 Pseudocode for event sampling. Minimum-time event is sampled
directly. Rates get recalculated only for last updated node and its neighbors.

1: global variables
2: t ▷ Current global time of the simulation
3: nu ▷ Node ID of the last transition update
4: NI ▷ The infection contacts network
5: NT ▷ List of tracing networks (IDs 0 and 1)
6: I f ▷ Getter of possible infection propensity functions
7: Tf ▷ Getter of possible tracing propensity functions
8: λ ▷ Dict mapping nodes to possible transitions (rate, Sto)
9: end global variables

10: procedure SAMPLE NEXT EVENT

11: ▷ Collect nodes that need rates updating: last and neighbors
12: update nodes← NI .neighbors(nu) ∪{nu}
13: ▷ Update λ for update nodes
14: for each n ∈ update nodes do
15: λ.pop(n) ▷ Invalidate node in the dict of rates
16: SI ← NI .state(n) ▷ Get current infection state
17: ST ← NT.state(n) ▷ Get current tracing state
18: ▷ Update rates based on node state and the true network
19: for each ( fr, Sto) ∈ I f (SI) do ▷ fr is a rate function
20: ▷ rate based on neighborhood of n in NI and a scalar
21: rate← fr(NI , n)
22: ▷ Add (rate, state) to the λ dictionary of rates
23: λ(n)← λ(n) ∪ {(rate, Sto)}
24: end for
25: ▷ Update rates based on tracing state and 2 tracing nets
26: for each ( fr, Sto) ∈ Tf (ST) do
27: ▷ ratei depends on tracing neighborhood of NT(i)
28: rate0, rate1 ← fr(NT(0), n), fr(NT(1), n)
29: λ(n)← λ(n) ∪ {(rate0, Sto), (rate1, Sto)}
30: end for
31: end for
32: ▷ Convert λ into 2 lists related by the map: rate < − > (node, Sto)
33: rs, nts← convert(λ)
34: ▷ Gillespie sampling of the minimum exponential time
35: λmin ← ∑rate∈rs(rate)
36: tmin ∼ Exp(λmin)

37: ▷ Next time point is the current t + the minimum sampled
38: tu ← t + tmin

39: ▷ Categorical sampling of the actual transition
rs(k)40: idu ∼ P(X = k) = ▷ Base rate over sum of ratesλmin

41: nu, Su = nts(idu) ▷ Change last-updated node
42: Spast = NI .state(nu)
43: ▷ Create Event e dictionary which shall be used to update the network states,

neighborhood counts and the epidemic stats
44: e = {(”id”, nu), (” f rom”, Spast), (”to”, Su), (”time”, tu)}
45: return e
46: end procedure
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3.3.4 Metrics under consideration

Aside from scrutinizing the number of individuals in each compartment over time
(please also refer to Appendix B for more such evaluations), we assess the effcacy of
different contact tracing strategies (Cθ;τt , under different τt) by looking at their
achieved peak suppression Psup throughout all our simulations, thus comparing them
against the corresponding no-tracing scenario (Cθ;τt=0) in which all parameters θ but τt

are left unchanged. Mathematically, this can be expressed through Eq 3.4, where Imax

is a function mapping parameter confgurations Cθ to the average peak of infections
recorded across multiple runs.

Psup = Imax(Cθ;τt=0)− Imax(Cθ;τt) (3.4)

Since the inception of the COVID-19 pandemic, the majority of the literature on
epidemiological modelling and public-health messages alike have analyzed different
nonpharmaceutical interventions in relation with their impact on Re, the effective
reproduction number (Kajitani and Hatayama, 2021; Di Domenico et al., 2020). For the
more realistic scenarios we explore in Sections 3.4.5 and 3.4.6, we also estimate the Re

value after t = 7 days since t0. To do so, we input the recorded exponential growth
rate λ to Eq 3.5, thus following the Wallinga and Lipsitch methodology (Wallinga and
Lipsitch, 2007). The generation time distribution for our simulated SARS-CoV-2
epidemics is assumed to be Gamma(α = 1.87, β = 0.28) (Cereda et al., 2020), its
moment-generating function being denoted with M(.). To calculate λ from the
incidence rate c(t) recorded within time window [t0, t0 + t], we use Eq 3.6 together
with the initial number of infected c(t0).

1 1 λ
R = = = (1 + )α (3.5)

M(−λ) (1− −λ )−α β
β

log c(t)− log c(t0)c(t) = c(t0)eλt =⇒ λ = (3.6)
t

3.4 Results and discussion

3.4.1 Variation induced by population size

Our initial simulations using ER graphs have suggested the degree of variability
across runs scales with the number of nodes. To confrm this, we design an experiment
in which we vary the population size, N ∈ {200, 500, 1000, 2000, 5000, 10000, 20000},
while keeping the other parameters fxed at: average degree K = 10, dual network
tracing with uptake r = 0.5 (overlap Γ implicitly derived), asymptomatic probability
pa = 0.2, contact tracing rate τr = 0.1, and testing rate τr = 0.1, with one infectious
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FIGURE 3.4: Uncertainty of simulation results w.r.t. the infection peak. Averages
from 80-100 runs involving different population sizes, K = 10, τt = τr = 0.1, pa = 0.2.
On top, boxplots with quartiles represented via whiskers, medians via orange lines,
and averages via green triangles; standard deviations given below. The left-hand side
shows absolute values, whereas on the right all variation levels are scaled down by N.

individual set for time t0. We note that, for τr = τt > β, contact tracing is expected to
engulf the infection percolation in the limit. However, by choosing an uptake value
considerably smaller than 1, we ensure our variance analysis remains signifcant since
many of the randomly-generated tracing views end up producing a much slower
discontinuation of the otherwise quickly-contained infection cascades. This results in
a high probability for fnite outbreaks to occur during the early stages of the
simulations (i.e. above the epidemic threshold for enough time).

The statistics in Fig 3.4 represent averages over several simulations conducted with
each of the 10 different network initializations picked by a random sampler, fltering
out those iterations which registered less than three overall infected (for a total of
80-100 simulations overall per each value of N). This data confrms the absolute
variance in peaks of infection increases as the network expands, aspect which can be
explained by the growing difference between early-stopped and full-blown outbreaks.
As the size increases, however, the uncertainty in estimating the relative percentage of

√1these maximal points decreases accordingly (following ≈ ). Consequently, a choice
N

of N = 1000 yields a reasonable standard deviation of nearly 3% of N, while
N = 10000 produces a smaller variability of < 1% across runs. As such,
N ∈ [1000, 10000] represents a statistically precise range for our model, given a
randomly-mixed population, while also being computationally more effcient than
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larger values. To ensure representativeness, we use both extremes in our experiments,
with the remark that we adjust for the corresponding difference in variances by
simulating 7 different networks with 15 random seeds each for N = 10000, but 50
networks with 15 seeds for N = 1000. We note this precision result may not hold for
structured populations, but we adopt these setups in our SF/SW experiments as well
for consistency.

3.4.2 Initial exploration of tracing overlap in larger populations

Going forward, we want to assess the effect of varying a tracing network’s accuracy
(i.e. overlap) in an outbreak involving a large community of N = 10000 individuals.
To achieve this, we use the following parameter confguration: an average degree
K = 10, dual network tracing with overlap Γ ∈ {0.1, 0.2, ..., 1} (uptake r is implicitly
derived), asymptomatic probability pa = 0.2, a tracing rate τt ∈ {0.01, 0.04, 0.07, 0.1}, a
testing rate τr ∈ {.001, 0.01, 0.04, 0.07, 0.1}, and a non-compliance rate η = 0 (assuming
everybody self-isolates until they are no longer infectious), with a single Ip node
sampled at time t0. The epidemic outcomes get averaged over 105 runs, as aforesaid.

Fig 3.5 shows that a sub-optimal test rate, such as τr = 0.001, leads to inconclusive
results, where the variance induced by the stochasticity of the process shadows any
beneft obtained through contact tracing. With better testing, clearer patterns start to
emerge: The higher the contact tracing rate, the better the peak suppression is and the
faster it gets approached (according to Fig 3.6). As τr becomes even more effective,
smaller tracing network overlaps are needed to swiftly reduce that maximum point.

Looking at the tracing rate, a moderate value of τt ∈ {0.04, 0.07} achieves a delay in
the peak for smaller Γ, but this can occasionally lead to a prolonged epidemic,
especially for overlaps in the ‘noise’ region, such as Γ = 0.11, since the
initially-uninfected areas may get incorrectly traced, so the epidemic has the chance to
gain momentum once those individuals exit self-isolation. In contrast, noticeable
reductions with no such side effect can be observed for Γ ≥ 0.5. On the other hand, a
small value of τt = 0.01 seems unable to produce any positive outcome. In real life, the
latter scenario would occur if the tracing programme was very slow, missing too
many contacts as a consequence, or if the digital contacts application failed to
promptly notify many of its active users. Another noteworthy occurrence in Fig 3.6 is
the bimodality of some curves. This effect has been previously noted for larger tracing
rates and overlaps (Farrahi et al., 2014), being a rare artefact of peak reductions that
happen too rapidly and cannot be further sustained by a τt < β.

Aside from outlining the effects of different testing strategies and tracing network
overlaps, this experiment also hints at which parts of τr’s and τt’s parameter spaces
are more relevant for exploration. To aid our search, we plot heatmaps of the achieved
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FIGURE 3.5: ER network – Peak suppression (left) and the time of peak (right) at
various tracing network overlaps. Values are averaged over 105 runs, representing
results for N = 10000, K = 10, pa = 0.2. The suppression is calculated by subtracting
the average maximal infected point given by each parameter confguration from the
average point obtained with no tracing (τt = 0, colored in black). Excepting τr = 0.001
and τt = 0.01, which produce inconclusive and noisy results, the effectiveness of an
epidemic containment strategy expectedly scales with the testing and the tracing rates.
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FIGURE 3.6: ER network – Epidemic evolution over time given a less effcient (left)
and a more effective (right) testing regimes. Results averaged over 105 simulations,
obtained for N = 10000, K = 10, pa = 0.2. As the contact tracing rate increases,
the accuracy of the network given by Γ becomes more important for ‘fattening’ the

curves. The case with no contact tracing (τt = 0) is colored in black.

peak suppression for different levels of overlap (see Fig 3.7), and observe, as a result,
that signifcant outcomes (i.e. distinguishable from simulation noise for Γ ≈ 0.5 and
beyond) are obtained when τt ≥ 0.1 and τr ≥ 0.04, while values ≥ 0.1 for both
parameters should fall within the ‘adequate’ region of a large spectrum of Γ values.
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FIGURE 3.7: ER network – Heatmaps of achieved peak suppression for various test-
ing and tracing rates. N = 10000, K = 10, pa = 0.2. Averaged over 105 runs.

3.4.3 Hospitalizations and deaths when improving tracing overlaps

While keeping τr = 0.1 and τt ∈ {0.1, 0.2}, we explore how varying the tracing
overlap Γ infuences the number of hospitalizations and deaths in our model. Using
multiple Barabási-Albert networks, with N = 10000 and average degree K = 10, an
asymptomatic probability of pa = 0.2, and a non-compliance rate η = 0.001 (with
automatic isolation exit after 14 days), we follow the evolution of current
hospitalizations and total deceased across time for three age-based groups. To avoid
runs in which the epidemic gets quickly contained by chance, the simulation starts
with 10% of the nodes in the Ip state – c(t0) = 10% of N.

As such, Fig 3.8 displays on each row the epidemic outcome of a different groups: one
consisting only of adults, another with seniors only, and a mixed-age group
representative for the United Kingdom. To model the latter, we calculate ph, λH−R, and
λH−D by averaging the values corresponding to each age group (i.e. adults, seniors
and children), using recent demographic estimates as weights (Roskams, 2022). As
expected, the ratio between different tracing policies remains fairly consistent across
all age groups. Additionally, an inverse relationship can be observed between the
degree of overlap and both hospitalization and death counts; as the former increases,
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FIGURE 3.8: SF network – Hospitalizations and total deaths over time. Setting τr =
0.1, N = 10000 and K = 10. Each row represents a different community: adults
only, seniors only, and mixed (adjusted rates based on UK demographics). The 95%
confdence intervals resulted from 105 runs are displayed around each line. The case

with no contact tracing (τt = 0) is colored in black.

the latter two decrease. Compared to no tracing, an effcient programme running at a
rate τt = 0.2 and benefting from an infection network coverage Γ ≥ 0.7 is shown to
reduce the hospitalization peak by more than half an order of magnitude (on a log-10
plot), resulting in many saved lives. The close proximity (or even overlap for Γ = 0.7,
τt = 0.1 and Γ = 0.4, τt = 0.2) of some curves pertaining to contrasting parameter
confgurations, where the differences between τt and Γ are of opposite signs, suggests
that public health personnel can often compensate for the lower network accuracies
by increasing their tracing rate (and vice-versa).
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FIGURE 3.9: ER network – Uptake rate r against peak suppression. Suppression is
difference in peak to no tracing, i.e. τt = 0. N = 1000, pa = 0.2, η = .001. K = 10 given
on the left, K = 20 on the right. The case with no tracing (τt = 0) is colored in black.

Lines are plotted with the 95% confdence intervals from 750 runs.

3.4.4 Effects of average degree and app uptake

Further, we analyze the impact of the application uptake in scenarios with different
average degrees (K ∈ 10, 20), and more appropriate testing and tracing strategies – i.e.
τt, τr ∈ {0.05, 0.1, 0.2, 0.5}. For this trial, we set N = 1000, the asymptomatic
probability to pa = 0.2, and the non-compliance rate to η = 0.001 (with automatic
isolation exit after 14 days), selecting a single Ip node as the infection seed. The results
are averaged over 750 simulations to reduce the variance induced by the smaller N.
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FIGURE 3.10: ER network – Epidemic evolution over time for τr = 0.1 N = 1000 and
K = 20. Results averaged over 750 runs. No tracing (τt = 0) is given in black.

Fig 3.9 shows the peak suppression achieved by each strategy given a specifc
adoption level. For τt = 0.05, uptakes r ≤ 0.5 generally render results within the noise
region. Improving the contact tracing rate, however, leads to a noticeable decrease of
this maximal point, even at smaller adoption levels. This is particularly true in the
larger average degree case. Interestingly, deploying a wider-scale testing programme
alone (τr = 0.5) seems to lead to a considerable spread reduction, which makes contact
tracing less benefcial at achievable uptakes (even entirely proftless in the scenario
where K = 10).

Our fndings indicate that a testing rate of τr = 0.1 remains suitable in conjunction
with different contact-isolation regimes not only for the previous experiment with
N = 10000, but also for these smaller scale scenarios. Further examining the effect of
such a testing regime on the evolution of the spread (see Fig 3.10), it transpires that the
epidemic curves signifcantly ‘fatten’ for uptakes r ≥ 0.4, the effect becoming more
apparent as the contact tracing rate increases.

Interestingly, our epidemic data suggests that higher uptakes do not always guarantee
better epidemic outcomes (e.g. r = 1 ends up with a higher peak than r ∈ {0.8, 0.9} for
τr ≥ 0.2). This effect arises from the early isolation of a large number of susceptibles
(scenario akin to a partial lockdown), which ends up exerting a signifcant and
unpredictable infuence on the transmission chain when these individuals eventually
resume their social interactions.
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3.4.5 Combining digital tracing with an imperfect manual process

In this section, we study a more realistic scenario in which digital solutions
complement an inherently imperfect interview-based tracing system. To that end, a
triad network topology is employed, with digital tracing happening at a rate of τ

1
t

days
on average, over one subgraph given by the uptake r ∈ {0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1},
while the manual process gets carried at a slower pace of 2 + 1 days on average, overτt

a third network view whose edges have been randomly removed according to the
degree of overlap Γ ∈ {0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1}. For the purpose of this
experiment, we make use of a more representative graph structure for the
SARS-CoV-2 transmission based on the Holme-Kim model (Holme and Kim, 2002),
which features both a SF degree distribution and a SW clustering coeffcient. The
network parameters chosen here are: N = 1000, mHK = 10 (number of random edges
to add for each new node; this replaces K in Eq 3.1 for calculating Nute) and p△ = 0.2
(probability of making a triangle after adding a random edge). The simulation starts
with 10% of the nodes in the Ip state. The other parameters remain unchanged from
the previous section, including the number of total runs.

The most notable trend in Figs 3.11 and 3.12 is the monotonicity of each curve with
respect to r, while the differences in the epidemic outcome between different τt values
are considerably more apparent than in the previous experiment. This is a direct
consequence of the increased number of infected people selected for time t0, which
prevents simulations from averaging over too many early-stopped runs. Considering
the scale that the COVID-19 pandemic has reached and the unavoidable presence of a
delay between the infection onset and the debut of tracing, scenarios such as this one
are more likely to occur, and therefore of a greater interest (Hinch et al., 2020b;
Hellewell et al., 2020).

Fig 3.11 shows the degree of peak suppression achieved by utilizing digital and
manual tracing solutions when compared to a scenario in which no contact tracing is
performed. These results suggest that, as the effcacy of the interview-based process
increases (i.e. less contacts get missed), lower and achievable application adoption
rates (20-50%) are suffcient to effectively reduce the maximal point of the epidemic.
When the tracers are eventually able to ‘see’ the full network of contacts (Γ = 1),
varying r no longer impacts the spread signifcantly, as should be expected. In
contrast, a very good testing regime (τr ≥ 0.2) can partially compensate for an
ineffcient manual tracing system (Γ = 0.1) within the aforementioned uptake range.

Our estimate of R = 3.20 for minimal interventions (i.e. τr = 0.05 and no tracing)
during this scenario’s frst week falls within the confdence interval of the basic
reproduction number R0 ∈ [3.09, 3.24] derived in Di Domenico et al. (2020) by
applying the next-generation approach (Diekmann et al., 1990) on a model fairly
similar to ours. Fig 3.12 demonstrates that with good testing regimes (τr ≥ 0.1) and a
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FIGURE 3.11: HK network – Uptake rate r against peak suppression. The results here
correspond to networks generated with parameters N = 1000, mHK = 10, p△ = 0.2,
pa = 0.2, η = .001. On the left, we present a scenario in which only digital tracing
is conducted, whereas the next 3 columns represent simulations with a combination
of digital tracing on a second network, and manual tracing over a third network with
various overlaps: 0.1, 0.55, 1. The 95% confdence intervals are also displayed. The

case with no tracing (τt = 0) is colored in black.

reasonable manual tracing in place (Γ ≥ 0.5), achievable uptake levels are enough to
limit Re to a value close to 1. In contrast, digital tracing alone fails to signifcantly
reduce the spread unless both the testing and the adoption rates are very high.
Similarly to what could be observed in Fig 3.11, uptakes play a minor role in the
infection proliferation if tracers are able to track the whole contact network eventually,
yet this scenario is rather unlikely in real life. Interestingly, most of the trends outlined
in the peak suppression charts are faithfully mirrored by the evolution of Re in the frst
week of the simulation. This confrms that effcient contact tracing in the early stages
of an outbreak is essential for containing a virus like SARS-CoV-2 (Shah et al., 2020).

Even though peak suppression remains a good metric for assessing the benefts of
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FIGURE 3.12: HK network – Uptake rate r against the effective reproduction num-
ber. Results here correspond to networks generated with N = 1000, mHK = 10,
p△ = 0.2, pa = 0.2, η = .001. On the left, we present scenarios in which only digital
tracing is conducted, whereas the next columns represent simulations with a combin-
ation of digital tracing on a second network, and manual tracing over a third network
with various overlaps: 0.1, 0.55, 1. The case with no tracing (τt = 0) is colored in black.

public interventions, policy makers are more often interested in what combinations of
these measures can quickly bring Re to acceptable levels. With this in mind, we plot
the contour lines of the Re values produced by multiple confgurations of
interview-based network overlaps, testing and digital tracing adoption rates (see
Fig 3.13, but also Fig B.5). In line with previous work (Mancastroppa et al., 2021), most
confgurations reveal that scaling up the process of manual tracing has larger benefts
than improving the application usage rates. Given the estimated uptake rates in 2020 of
GPAW (2020), Finland and Iceland had around 40%, Ireland had 35%, the UK had
30%, and Germany and Norway had 27% of their populations participating in digital
tracing. In this case, a high contact tracing rate (τt = 0.5) combined with an effective
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testing regime (τr ≥ 0.2) can lower Re below 1 even if tracers fail to identify up to half
the contacts (Γ ≥ 0.5). Should adoption improve to 50%, the aforesaid effect would be
obtained with a testing rate half as good. In contrast, a moderate tracing rate only
becomes effective when a large-scale testing programme gets deployed (τr ≥ 0.5) or
bigger uptakes are achieved (r > 50%). We note the quoted uptakes are based on total
download counts, which may not always refect the true number of active users.
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FIGURE 3.13: HK network – Contour plots of Re based on the level of manual tracing
overlap Γ and digital tracing uptake r. The results here are for a networks generated
with parameters N = 1000, mHK = 10, p△ = 0.2, pa = 0.2, η = .001. Each line
represents a different testing level τr, while the columns correspond to a moderate
(left) and effcient (right) level of tracing effort and isolation compliance given by τt.
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3.4.6 Contact tracing effciency in a real social network

Lastly, we evaluate the ability of digital tracing to curb an epidemic simulated over a
real social network, in the presence or the absence of manual contact tracing. In this
scenario, both the population size N and the average degree K are data-driven, with
the latter also changing dynamically (N = 74, Kt0 = 5.62 at time t0). Given that the
network represents a tightly-knit community (static average degree Kstatic > 60), we
investigate a broader range of testing and tracing rates: τr ∈ {0.1, 0.2, 0.5, 1, 1.5},
τt ∈ {0.1, 0.2, 0.5, 1, 1.5, 2}. The uptakes r, the overlaps Γ, and the initial incidence c(t0)

are left unchanged from the last passage, while the relative delay between digital and
manual tracing is kept at 2 days on average. The probability of becoming an
asymptomatic case following exposure is fxed at pa = 0.2 for the purpose of our
initial discussion, but a comparison to the case in which pa = 0.5 can be consulted at
the end of this section.

The trends in Figs 3.14 and 3.15 follow the same pattern as those in Figs 3.11 and 3.12,
respectively. This is because there is a positive and consistent relationship between the
testing and tracing rates, and the achieved containment. At the same time, with an
adequate overlap γ ≥ 0.5, low and achievable uptakes consistently attain signifcant
peak reductions. These confgurations drive the Re estimate of the frst week below 1.5
even when the testing rate is smaller than 0.5. In contrast, with higher uptakes, the
degree of overlap becomes less infuential for the epidemic outcome. Interestingly, the
benefts of increasing the tracing effort τt beyond the value of 1 remain minimal across
all parameter confgurations.

Fig 3.16 shows the 2D contours of the estimated Re value during the frst 7 days of the
simulation for the entire parameter range, except for τt which is kept ≤ 1 based on the
previous observation. When comparing to Fig 3.13, we can see that a signifcantly
faster testing strategy is needed in this case to contain the epidemic and force Re

below 1. This is a consequence of dealing with outbreaks in such a densely-connected
community, where the virus spreads too quickly to afford testing at lower rates than
0.5, if the objective is to maintain Re subunitary. Similarly, an effcient τt ≥ 0.5 is
necessary for achievable uptakes to attain the aforesaid goal. Therefore, when public
health resources are scarce, it is advisable to limit the movement or impose lockdown
measures within such hubs.
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FIGURE 3.14: Social Evolution – Uptake rate r against peak suppression. The res-
ults here correspond to the real Social Evolution network, dynamic over the studied
period of 31 weeks, pa = 0.2, η = .001. On the left, we have a scenario in which
only digital tracing is conducted, whereas the next 3 columns represent simulations
with a combination of digital tracing on a second network, and manual tracing over
a third network with various overlaps: 0.1, 0.55, 1. The 95% confdence intervals are

displayed. No tracing case is colored in black.
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FIGURE 3.15: Social Evolution – Uptake rate r against the effective reproduction
number. The results here correspond to the data-driven Social Evolution network,
pa = 0.2, η = .001. On the left, we have a scenario in which only digital tracing
is conducted, whereas the next columns represent simulations with a combination of
digital tracing on a second network, and manual tracing over a third network with

various overlaps: 0.1, 0.55, 1. No tracing case is colored in black.
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FIGURE 3.16: Social Evolution – Contour plots of Re based on the level of manual
tracing overlap Γ and digital tracing uptake r. The results here correspond to the real
Social Evolution network, dynamic over the studied period of 31 weeks, pa = 0.2, η =
.001. Each line represents a different testing rate τr, while the columns showcase a less
effcient (left), a moderate (center-left), an effcient (center-right) and a very effcient

(right) level of tracing effort and isolation compliance τt.
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Finally, we investigate whether the effcacy of tracing appreciably changes when
different pa values are considered. An asymptomatic node is assumed to be less
infectious – rI = 0.5, but also less likely to get tested positive – rT = 0.8, so the
epidemic dynamics should signifcantly differ when varying this probability.
Remarkably, however, we observe the benefts of contact tracing do not signifcantly
fuctuate across the two studied values in the majority of the scenarios under scrutiny
(see Figs 3.17 and 3.18). As shown in Fig 3.18, the most apparent differences in Re are
registered when less accurate tracing networks (Γ, r < 0.5) and less effective testing
rates (τr < 0.5) are employed. That is to say a suboptimal ‘test and trace’ policy leads
to more people getting infected when pa = 0.2, yet the afferent higher rate of average
infectiousness can be offset by the smaller likelihood of nodes testing positive in the
pa = 0.5 setting, ultimately leading to minimal differences for more adequate policies.
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FIGURE 3.17: Social Evolution – Uptake rate r against peak suppression, for dif-
ferent pa values. The results here correspond to the real Social Evolution network,
dynamic over the studied period of 31 weeks, η = .001, and either pa = 0.2 (on the left
of each pair) or pa = 0.5 (on the right of each pair). The left-quadrant pairs represent a
triad network scenario with manual overlap Γ = 0.1, while the right quadrant shows
Γ = 0.5. 95% confdence intervals are displayed. No tracing case is colored in black.
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FIGURE 3.18: Social Evolution – Contour plots of Re based on the level of manual
tracing overlap Γ and digital tracing uptake r, for different pa values. The results
here correspond to the data-driven Social Evolution network when η = .001, with
each pair of charts describing pa = 0.2 on the left and pa = 0.5 on the right. Each
line represents a different testing level τr, while the columns showcase combinations

of one pa value together with a level of tracing effort given by τt.
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3.5 Case study conclusion

Drawing on the seminal work of Farrahi et al. (2014), we introduce a new
methodology that can assess how “test and trace” strategies might impact the
transmission dynamics of complex viral epidemics, such as those caused by
COVID-19. Following a comprehensive analysis of our model’s parameters, the
procedures described here can be utilised to predict how the SARS-CoV-2 virus would
spread through those communities where some indication of the interview-based
network overlap and/or the digital tracing uptake exists. To facilitate such endeavors,
we make our entire codebase open-source.

The approach we propose can address from a modelling perspective four of the open
questions formulated by Anglemyer et al. (2020) in their Cochrane Review: the
combined effects of digital and manual tracing can be studied via the triad network
topology, populations with poor access to the internet may be factored in by the degree
of overlap Γ, individuals that have privacy concerns or accessibility issues can be
represented in the system via the application adoption rate r, while the repercussions
of balancing false positives and false negatives of tracing can be assessed through the
statistics our simulations readily capture (for examples, please consult Fig B.2 and
Fig B.1). Consequently, the model we put forward is versatile enough to answer many
important research questions, beyond what we demonstrate here.

The simulations we conduct show that digital tracing remains a viable solution for
reducing the peak of an outbreak, as well as the effective reproduction number Re,
even when its adoption levels are lower. At the same time, a less effcient
interview-based process, which misses up to half the contacts, can still contain the
spread if coupled with achievable application uptakes (i.e. 30-40%) and appropriate
testing regimes. This is because the overlap Γ, our measure of network recovery in
manual tracing, has more impact when increased than the uptake of the digital
method, which makes the aforementioned range for the adoption rate adequate. This
fnding corroborates the argument of Mancastroppa et al. (2021) that manual tracing is
generally more effective than digital methods, even though the former presumes
substantial delays. For highly-connected communities, the scale of the testing strategy
becomes appreciably more important for the effectiveness of ‘test and trace’
programmes. In this case, the peak reduction is strongly correlated with the speed and
the impact of the tracing system, and the corresponding public-health communiques.
The faster and more effcient the latter are, the more likely the involved communities
are to comply with the self-isolation recommendations issued by authorities, as more
of their contacts get traced and isolated (facets essentially captured by the τt rate).

We would like to emphasize that the parameter ranges under scrutiny in this chapter
are by no means exhaustive. Therefore, we leave for future exploration studying the
effects of extensively varying the average degrees of the random networks, the
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non-compliance rates, the initial infections, or the variant-specifc asymptomatic and
hospitalization probabilities. Looking at such diverse scenarios would allow one to
better estimate the shortfalls of contact tracing when different variants of concern are
circulating, discover factors that may have introduced signifcant ineffciencies into the
strategies adopted by many countries (e.g. high non-compliance levels (Lewis, 2020)),
while also ensuring the variability induced by early-stopped simulations is curbed.

We appreciate that our modelling approach, which utilizes random testing and
frequency-based contact tracing, may not be the most optimal or have the highest
level of realism for the implementation of “test and trace” programmes. A more
effcient strategy would be to direct mass-testing campaigns to the graph hubs or
dynamically adapt tracing efforts in the highly-impacted regions of the diffusive
space, thus improving the epidemic outcome. To fnely control the network dynamics
in such an informed manner, we can employ a combination of graph neural networks
and gradient-based reinforcement learning techniques. Please refer to the next chapter
for more details on this alternative methodology.

Future work could leverage mobility datasets recorded during the COVID-19
pandemic to infer a broader range of network structures, or derive time-dependent
estimates of the transmission rate, as previously described in Liu et al. (2020a).
Additionally, all the viral-specifc parameters could be tailored to the epidemiological
situation of a country of interest by ftting them to governmental data reporting on the
number of COVID-19 hospitalizations or deaths recorded there. An example of ftting
a simpler SEIR compartmental formulation to the death counts registered in various
US states is given in Appendix D.2.
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Chapter 4

EpiCURB: Epidemic Control Using
RL for Budget allocation

4.1 Introduction

The recent outbreak of the SARS-CoV-2 virus has signifcantly transformed the way
we strategize and respond to the spread of infectious diseases. Extreme control
measures like full-scale lockdowns were shown to have adverse effects on the
worldwide economy and human well-being (Joffe, 2021; Knox et al., 2022), with
opposition against such disruptive interventions sharply growing across 2021 among
the adults living in the United Kingdom.1 In response, less rigid health policies, such
as encouraging the public to practice social distancing, deploying comprehensive
testing schemes, and conducting large-scale contact tracing (Dighe et al., 2020), were
enacted to reduce the burden of infection rates. Despite the advent of highly effective
vaccines (Andrews et al., 2022; Bruxvoort et al., 2021; Lopez Bernal et al., 2021),
governments around the world continued to provide extensive fnancial support for
testing and tracing systems for several more months, fueled by evidence of their
previous success (Fetzer and Graeber, 2021; Matrajt and Leung, 2020). Prompted by
the emergence of milder SARS-CoV-2 variants (Sigal, 2022), concerns about the
limitations (Mercer and Salit, 2021) or the societal impact (Clair et al., 2021;
Martinez-Garcia et al., 2022) of these programmes, and growing evidence of public
non-compliance (Davis et al., 2021), many administrations were later forced to adjust
their resource allocation strategy for these programmes. In early 2022, the United
Kingdom implemented the “living with COVID” strategy, which aimed to reduce
costs and avoid major disruptions, such as the ‘pingdemic’ crisis that resulted from

1Surveys by YouGov: https://tinyurl.com/yougov-early, https://tinyurl.com/yougov-attitudes.

https://tinyurl.com/yougov-early
https://tinyurl.com/yougov-attitudes
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the widespread self-isolation of people through the NHS COVID-19 application
(Pandit et al., 2022; Rimmer, 2021). Unfortunately, the indiscriminate reduction of
public health efforts did not yield the desired outcome in the initial phases, as
evidenced by the signifcant resurgence in cases that ensued,2 a trend that rapidly
spread throughout Europe (Henley, 2022). At the same time, with the gradual waning
of vaccine protection over time (Ferdinands, 2022; Leung and Wu, 2022), and an
apparent decrease in demand for further vaccine doses among healthy adults (Smith,
2022; Su et al., 2022), similar surges remain a possibility in the future.

In this chapter, we introduce EpiCURB, a novel approach for enacting “test, trace and
vaccinate” programmes that allows them to adjust to the budget and risk criteria of a
region, while minimizing the transmission chains generated by the underlying viral
diffusion. While we analyze several approaches for targeting the aforementioned
processes in a COVID-19 setting under strict budget constraints, we demonstrate that
a reinforcement learning agent can discover effcient and generalizable policies that
outperform the other baselines in terms of the achieved containment rates. We
evaluate our fndings on various scenarios of epidemic, budget and contact network
confgurations, demonstrating the adaptability of our proposed method. Furthermore,
we show that even the static non-learning agents substantially surpass conventional
untargeted strategies, especially when enhanced with negative test recollection.

The chapter introduces three main novel contributions to this feld, as follows:

1. We devise new strategies for targeting public health measures in pragmatic
contexts where minimizing the economic and societal costs remains a priority,
concomitantly restricting the testing, tracing and vaccinating efforts to
higher-risk individuals. To that end, we present a range of novel and existing
policies that are implemented or learned by specialized agents using centrality,
neighborhood or epidemic state factors, and contrast them with conventional
methods, such as sampling based on randomness, acquaintance or contact
frequency. Our RL agent, backed by a graph neural architecture inspired from
the development of Meirom et al. (2021), is shown to outperform competitive
heuristics in all three tasks by up to 15% in the containment rate, while far
surpassing the standard random samplers by margins of 50% or more, despite
being trained using a simple test prioritization setup with partially observable
information. By clustering the resulting node embedding space, a novel
community-based strategy for vaccination is also shown to be highly effective.

2. We assess our approach on a wide range of epidemic scenarios simulated by two
COVID-specifc transmission dynamics: the individual-based multi-site

2Infection survey by ONS: https://tinyurl.com/ons-covid19.

https://tinyurl.com/ons-covid19
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mean-feld model introduced in Chapter 3 and a standard agent-based model,
featuring diffusion parameters adapted from Di Domenico et al. (2020) to an
SEIR compartmental formulation. The performance of the introduced agents is
evidenced across these diverse settings, confrming not only their transferability
between the aforesaid modelling families, but also the merit of the RL policy.

3. In addition to analyzing the numerical results and epidemic curves resulted
from simulating our control policies over multiple interaction networks, we also
appraise the decision taken by the corresponding learning-based agents,
studying the mechanism by which they are arrived at and the reasons
underpinning their success. For such a system to be deployed in the real world,
policy makers need to be reasonably confdent the model produces sensible
outputs. At the same time, testing, isolation and vaccination decisions have to be
explainable and verifable when audited or contested. Here, we scrutinize two
central factors that determine the RL agent’s performance: quality of candidate
selection and timing of detection. This analysis is extended in Appendix C,
where we employ GraphLIME (Huang et al., 2022) to offer explanations for the
actions taken by our agent’s GNN module, putting into perspective its
competitive adaptability.

4.2 Related work and Background

4.2.1 Epidemic modelling

We simulate viral epidemics using a modifed version of the framework introduced in
Chapter 3, which relies on the original SEIR compartmental formulation but retains
the capacity to leverage an individual’s locality information through contact graphs
and mean effects (Farrahi et al., 2014; Huerta and Tsimring, 2002). For completeness,
we also investigate our policies in a standard agent-based setup, similar in spirit to the
network-based approaches proposed in recent works (Abueg et al., 2020; Meirom
et al., 2021). In both cases, we employ the dynamics parameters published by
Di Domenico et al. (2020) for the SARS-CoV-2 virus. For more details regarding these
epidemic modelling methods, please refer to Section 1.3.

4.2.2 Graph neural networks

Our framework leverages ideas from GATv2 (Brody et al., 2022) and GIN (Xu et al.,
2019) to attain expressive power and computational effciency, as per Bronstein (2022).
Additionally, we attempt to limit the impact of feature oversmoothing (Hoang and
Maehara, 2019; Oono and Suzuki, 2019) and bottlenecks (Alon and Yahav, 2022) by
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employing randomised node features, keeping the number of GNN layers reduced,
and utilizing a fnal FA layer. More details about these approaches and other GNN
architectures can be consulted in Section 2.7.

4.2.3 Reinforcement learning

Sequential decision processes are often modelled via Markov Decision Processes
(MDPs) of the form (S , A, P ,R) (Puterman, 1994), where S is a state space, A is an
action space, P is a transition probability matrix, whileR is a reward function for the
state-action pairs. Agents sample actions from their policy at ∼ π(a|st; θ), with a ∈ A,
and θ the acting parametrization, then execute them, transitioning to different states
st+1 and earning rewards Rt, according to the environment-specifc mappings P and
R. Partially Observable MDPs (POMDPs) of the form (S , A, P ,R, Ω, O) are a
generalization of MDPs (Kaelbling et al., 1998; ˚ om, 1965), where the agent canAstr¨
only observe ot ∼ O(o|st, at) instead of the true state st, where o ∈ Ω. In some
scenarios, such as the one we examine, the observation ot can eventually approach a
reasonable estimate of st, enabling the agent to act appropriately despite the partial
observability of the environment. In these cases, conventional MDP solvers can be
used effectively by substituting st with ot in their corresponding equations. For
notational convenience, we will keep using st instead of ot throughout this chapter.

One of the main goals of RL is to solve MDPs (and by extension some POMDPs) by
predicting and/or maximizing the γr-discounted returns of future rewards until the
end of the episode T, Gγr = ∑i

T
=1 γi−1Rt+i (Sutton and Barto, 2018). The predictiont r

task is routinely achieved through supervision using a w-parameterized model of the
value function V(st|w) that predicts Gγr . The maximization task is equivalent to fndingt

the optimal policy π∗ that maximizes Gγr . One way to achieve this is to estimate thet

action-value function Qπ(st, at|θ), which is the expected return if the agent chooses
action at in state st, and follows the policy π(a|st; θ) thereafter. The optimal policy π∗

is typically a greedy policy, related to the action-value function through the relation:⎧⎨1 if a = arg maxa′ Qπ∗(st, a′|θ∗)
π∗(a|st; θ∗) = ⎩0 otherwise.

To approximate the value functions V or Q, one commonly implements update steps
on w or θ, correspondingly, relying on the true returns Gγr (see Eq 4.1 for V), or somet

intermediary bootstrapped values as regression targets (see Eq 4.2 for V). The former
of these methods is known as the Monte Carlo (MC) algorithm, and it has been proven
to be effective despite its considerable limitations, such as the slow offine learning
and high variance (Sutton, 1988; Sutton and Barto, 2018). These drawbacks stem from
the fact that MC requires the full episode to be run before any parameter update. A
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variation of MC featuring search trees has been used to derive competitive policies in
2-player board games (Silver et al., 2016, 2017). In contrast, the online temporal
difference (TD) learning method casts the sum of Rt and the current estimate of the
next-step return Gt

γ
+
r

1 as a regression target, lowering the variance and speeding up
training at the cost of inducing more bias (van Hasselt et al., 2021). The difference
between this target and the current estimate is often called the TD error, denoted as
δ

γr . Using a delayed parameter set wD, where D marks the delay (w0 = w), to computet

the target values is a common technique used to reduce their variance by making
them more stable and less correlated with the current estimates (Mnih et al., 2013). TD
learning constitutes the basis for many RL algorithms to date, such as the on-policy
SARSA (Rummery and Niranjan, 1994; Sutton and Barto, 2018) and the off-policy
Q-learning (Watkins, 1989), which proved successful in multiple settings: reaching or
outperforming human-level performance at board and video games (Mnih et al., 2013,
2015), robotic path planning (Harwin and P., 2019), autonomous car driving (Kiran
et al., 2021), and many others. The bias-variance trade-off in these approaches can be
controlled in the alternative TD(λ) formulation by varying the λ parameter, with the
λ-return G(γr ,λ) used as target (Sutton and Barto, 2018). The latter can also be used tot

ˆ (γr ,λ)
obtain a Generalized Advantage Estimate (GAE), A in Eq 4.3, with the specialt

cases λ = 0 in Eq 4.2, when the advantage is equal to the TD error, and λ = 1 in Eq 4.1,
when the minuend of the RHS term is Gγr (Schulman et al., 2018). The advantaget

function, in its various forms, quantifes the relative beneft of an action over the
expected action for a given state, being a key component of policy gradient methods.

ˆ (γr ,1)
A (at; w) = Gγr −V(st; w) (4.1)t t

ˆ (γr ,0)
A (at; w) = δ

γr(w) = Rt + γrV(st+1; wD)−V(st; w) (4.2)t t

ˆ (γr ,λ)
T

At (at; w) = Gt
(γr ,λ) −V(st; w) = ∑(γrλ)lδt

γ
+
r

l(w) (4.3)
l=0

Approaches that directly optimize both θ and w are called actor-critics (Konda and
Tsitsiklis, 1999), and have become the preferred algorithmic choice when faster
convergence rates are sought after and sample effciency is not required. Recent years
have seen actor-critic methods, such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017) and Deep Deterministic Policy Gradient (DDPG) (Fujimoto
et al., 2018; Lillicrap et al., 2019), achieve state-of-the-art results across a wide range of
challenging tasks (Lazaridis et al., 2020; Schulman et al., 2017). A commonly adopted
strategy for these models is to use the same parameter set in both components
(Schulman et al., 2017), i.e. w = θ, which can enrich the learned representations while
also increasing the training effciency. Although online implementations are possible,
as is the case with the model we introduce in Section 4.3.5.2, actor-critics are
traditionally trained using MC.
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Assuming w = θ, we reproduce the standard PPO equations in Eqs 4.5 to 4.8, where E
is the ratio clipping parameter that limits the deviation of a new policy from the old
policy, clip(.) is a function that clips its argument to the specifed range, Ht(θ) is an
entropy regularizer that encourages exploration (Haarnoja et al., 2018), while c1 and c2

are coeffcients that control the importance of the value function error and the entropy
regularizer, respectively. The frst term in Eq 4.7, given by Eq 4.5, is the clipped
surrogate objective, which aims to maximize the expected return while bounding the
policy ratio in Eq 4.4. The second term, which in Eq 4.6 is represented as the squared
advantage function when λ = 1, corresponds to a squared-error loss for the value
function that evaluates how closely it matches the discounted return. Finally, the third
term represents the entropy bonus, which adds a small amount of randomness to the
policy to prevent premature convergence to suboptimal policies.

π(at|st; θ′)
rt(θ

′) = (4.4)
π(at|st; θ)

LCLIP ˆ (γr ,λ) ˆ (γr ,λ)
(θ′) = min[rt(θ

′)A (at; θ′), clip(rt(θ
′), 1− E , 1 + E)A (at; θ′)] (4.5)t t t

LVF ˆ (γr ,1)
(θ′) = [A (at; θ′)]2 Ht(θ

′) = − ∑ π(a|st; θ′) log π(a|st; θ′) (4.6)t t
a∈A

LPPO(θ′) = Et[−LCLIP(θ′) + c1LVF(θ′)− c2Ht(θ
′))] (4.7)t t t

LPPOθ = arg min (θ′) (4.8)t
θ′

The training process of a standard PPO agent proceeds as follows: The actor acts with
a policy parameterized by θ for the full duration of an episode, recording in an
episodic replay buffer B∞ the visited states, their evaluations by the critic, the actions
taken, and the log-probabilities of those actions stemming from the policy. At the end

ˆ (γr ,λ)
of the episode, the recorded information is used to calculate Gγr and A , ∀t, thent t

everything is batched and used within a multi-epoch optimization procedure that
minimizes LPPO. The optimized parameter set is assigned to θ after all these epochs
have elapsed, and the resulting policy is ready to be evaluated on a new episode. This
process is repeated for the set amount of episodes.

4.2.4 Combinatorial action spaces

Learning policies in environments with combinatorial action spaces, such as the one
we investigate here, has traditionally been considered a diffcult undertaking. In spite
of this, RL methods proved to be effective in instances like multiple item (Song et al.,
2019) or thread popularity selection (He et al., 2019). In the context of epidemics, an
RL system based on multi-armed bandits and demographics data was recently
introduced by the Greek authorities to prioritize the COVID-19 testing allocations at
border control (Bastani et al., 2021). For classic combinatorial problems, such as the
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travel salesman (TSP) and its vehicle routing variants, RL approaches have also been
shown to perform well (Bello et al., 2017; Delarue et al., 2020; Kool et al., 2018).
Incorporating graph embeddings into the RL agents have generally lead to improved
solvers, outcompeting other learning methods (Dai et al., 2017; Joshi et al., 2019). More
recently, an RL model relying on GATs was used to solve a wide range of complex
selection tasks, from varying skills to escape mazes to choosing appropriate tools for a
given goal (Jain et al., 2022).

4.2.5 Infuencing graph dynamics

The problem of infuencing diffusion processes over networks has been extensively
studied in many different settings, most notably for optimizing immunization
strategies (Preciado et al., 2014), solving infuence maximization (Murata and Koga,
2018), or targeting pathogen testing (Meirom et al., 2015). It has long been established
that random vaccination policies tend to be suboptimal, and even simple heuristics
like acquaintance sampling can outperform them (Cohen et al., 2003; Miller and
Hyman, 2007). Centrality-based strategies were also explored in this context, with
PageRank (Chung et al., 2009), eigenvector (Masuda, 2009) or betweenness centrality
(Salathé and Jones, 2010) becoming popular choices. Recently, a modelling study
showed that vaccinating younger groups, akin to heuristic-based approaches, after the
over 80s could have been a superior alternative to the widely-adopted strict age-based
prioritization against the highly contagious Delta variant of SARS-CoV-2 (B.1.617.2)
(Keeling et al., 2023). For infuence maximization, degree-based strategies were shown
to render competitive results (e.g. LIR by Liu et al. (2017), degree discount by Chen
et al. (2009)). Over time, however, multiple authors have identifed problem instances
where any centrality measure used by itself can lead to suboptimal results (Braha and
Bar-Yam, 2006; Preciado et al., 2014). The question of which heuristic to use for what
problem has since become a focal point in many application domains. As an
alternative, RL techniques have been proposed for mixing different heuristics in an
optimal manner, thus reducing the impact of the aforementioned drawbacks (Meirom
et al., 2021; Tian et al., 2020). Node targeting for inferring the state of a spreading
process remains less explored in the literature, but effcient heuristics that exploit the
epidemic state knowledge regarding a vertex’s neighborhood have proven to be more
successful than centralities (Meirom et al., 2018, 2015). The domain of prioritizing
contact tracing, however, remains largely uninvestigated to date, but recent work
suggests that isolating subsets of individuals based on the frequency of appearing in
the vicinity of positive cases can lead to similar levels of containment as naively
isolating every contact (Kojaku et al., 2021).

Meirom et al. (2021) introduce an RL model that can derive general control policies for
diffusion processes over networks, using test prioritization and infuence



76 Chapter 4. EpiCURB: Epidemic Control Using RL for Budget allocation

maximization as illustrations. A GNN-based controller, cast in an actor-critic
framework detailed in Section 2.9.2, learns effective policies using simulated data,
integrating local and long-distance information over time. The elegance of the
approach stems from the fact that the training process is not conditioned on having
the full epidemic state made available to the agent. The work also shows that it is
possible to learn a policy on small networks (e.g. 1000) and deploy it on larger graphs
featuring similar statistics (e.g. 50000, the size of a small city). Our study builds on
this versatile control methodology, but differs from it in several key aspects: First, we
extend the problem formulation to cover prioritizing testing, tracing, and vaccination,
modifying the framework to rank nodes only from eligible subsets. This allows us to
add a simple extension to our agents that signifcantly improves performance:
removing recently-tested negative individuals from the action space. Second, we
deepen the control analysis, using longer evaluation episodes, plotting epidemic
curves, and revealing the key factors that underlie the RL agent’s success. Third, we
use COVID-specifc spreading parameters and analyze the behavior of the policies
beyond agent-based modelling. Finally, we perform several algorithmic changes
aimed at improving effciency, as detailed in Section 4.3.4.

4.3 Methodology

4.3.1 Simulating epidemics

Several epidemics are simulated using an SEIR compartmental formulation together
with COVID-specifc parameters: a base infection rate of β = 0.0791 and an average
exposed duration of ϵ = 3.7 days. The viral infection diffuses over multiple interaction
network confgurations, of various sizes, with events getting generated by either a
multi-site mean-feld or an agent-based model. Irrespective of the model, we allow all
disease-unrelated events to be time-discretized, that is selecting an action or updating
the active links set takes place every tu days, with tu set to 1. To eliminate random
fuctuations that might obscure the comparative effectiveness of different control
strategies, most of our experiments assume that nodes remain infectious for the whole
duration of an episode unless they get isolated (i.e. recovery rate γ = 0). Intuitively,
the impact of this assumption becomes signifcant only when the control scenario
becomes oversaturated (i.e. the testing budget k and/or the recovery rate γ are large
enough for most policies to achieve containment). For completeness, however, we also
report epidemic outcomes for varying γ in Section 4.4.2, while Section 4.4.4 uses the
same γ range to extract generalizable insights about the RL testing policy. We remark
that these parameters could also be adjusted to ft the data trends of specifc regions of
interest, and we exemplify one possible approach to achieve this in Appendix D.2.
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Most epidemics in this chapter are simulated using the multi-site mean-feld model
introduced in Chapter 3, relying on exponential waiting times effciently sampled via
Gillespie’s algorithm. The SEIR-based state transition probabilities for a given node v
are defned as follows:

p(S→ E) = βKI△t = β ∑u At Iu(t)△tv,u

p(E→ I) = ϵ−1△t (4.9)

p(I → R) = γ△t,

where At is the time-dependent weighted adjacency matrix, Iu(t) is the infection
indicator function of node u evaluated at time t, ∑u At Iu(t) describes the mean-feldv,u

infection effect over node v, while△t is a short time interval.

In contrast, our agent-based models loop through all the edges (v, u) at every time
increment, checking whether an infection event occurs over that connection, according
to the transmission probability βAt Iu(t). Concurrently, every node v gets visited,v,u

and the appropriate transition events get executed if the node waiting times
dv ∼ N (ϵ, 1), rv ∼ N ( 1

ρ , 1) have depleted.

4.3.2 Network confgurations

The performance of the proposed public-health interventions is evaluated across
multiple network confgurations derived from various sources, such as classic random
graph models (Erdős–Rényi, dual Barabási-Albert, Holme-Kim – discussed in
Section 2.3), interaction data originating from the Social Evolution dataset (refer to
Chapter 3 for details on how the weighted dynamic network is built), and contact
tracing data partially conveyed in Meirom et al. (2021). Since the latter source
anonymized the data so that it can only be accessed indirectly through its degree and
edge infection probability distributions (reproduced in Eq 4.10), we employ a
confguration model to reconstruct samples of the original interactions.

−0.36P(degGt(v) = x) = 2.68 · N (−4.44, 11.18) + 3.2 · 10−3 · x
(4.10)

P(At = x) = .47 · N (0.41, 0.036) + .53 · Be(5.05, 20.02)v,u

For dynamic graphs, the diffusion process depends on the current temporal snapshot
of the graph, Gt. In contrast, in a static graph, the diffusion process is independent of
time and operates on the entire graph G, such that Gt = G for any t. Every edge (v, u)
of Gt features a transmission weight At , and we calculate that interaction’sv,u

transmission potential by scaling the base infection rate β with this weight. If the latter
cannot be inferred or directly sampled from the available data, as is the case for the
random graph models, we assume At ∼ U (0.5, 1). Typically, the resulting artifcialv,u
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FIGURE 4.1: Block diagram of our simulation-control framework. The Agent is
passed as a parameter to the Simulator instance, which is responsible for delegating
calls to the control(.) method of the Agent once enough time has passed and other
preset conditions are met (e.g. minimum infection threshold). The control(.) function
performs preliminary node flterings, then calls control test(.), control trace(.) and con-
trol vax(.). These methods are responsible for producing node rankings for testing,
tracing and vaccinating, respectively, exhibiting a different logic in each Agent sub-
type. Every MeasureAgent decides the fnal ranking via a node-level score. Both the
SLAgent and RLAgent feature pluggable and trainable weights, sharing an identical
evaluation mode. Combinations of agent behaviors for each of the three tasks can be
selected by utilizing a MixAgent. Further details about each type of agent can be con-

sulted in Sections 4.3.4 and 4.3.5.

networks are also static in nature. To simulate dynamic links in this case, a random
fraction of edges is sampled at every time increment. The fraction is assumed to be
uniformly distributed according to U (0.4, 0.8).

It should be noted that, in practice, the graph connections required for producing the
fne-grained control policies described here would need to be inferred from
specialized monitoring systems, such as digital tracing mechanisms (Meirom et al.,
2021) or GPS-based mobility trackers (Serafno et al., 2022). Recently, large-scale
contact tracing data has been used to reconstruct such transmission networks for the
state of New York (Pei et al., 2022). After acquiring and anonymizing this interaction
data, our method has the advantage of requiring no further personal information.

4.3.3 Control setup

Each epidemic is allowed to progress until at least ca days have passed since the
simulation began and a minimum of ci nodes become infected before the agent
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commences its interventions. In the frst day of control, the agent is informed at
random about the status of a proportion ck of the infected population, after which it is
only allowed to test k individuals and isolate kc contacts of recently-detected positive
nodes (i.e. in the previous 6 timestamps) per day. As the actor is not aware of a node’s
state unless it is a part of ck or it got tested recently, the environment is partially
observable. In this work, we fx ca = 5, ci = 5% and ck = 25%, while the budgets are
varied between experiments. A block diagram of our framework, which also
illustrates the class hierarchy of the agents, is provided in Fig 4.1.

At evaluation, each agent is tasked to select the top-k nodes to test, top-kc contacts to
isolate, and top-kv people to vaccinate at every time increment, according to their
knowledge of the epidemic and graph states. Consequently, this constitutes an
instance of the subset selection problem (Rayner et al., 2019), where nodes that are
found to be positive, or that become traced/vaccinated by the system, are marked as
isolating/immune, becoming incapable of infecting other participants. In principle,
those individuals remain disconnected from the graph, yet we allow messages to
continue fowing through their connections during the training phase of the
learning-based agents. Importantly, the process of tracing is assumed to be carried
with delays shorter than a day, which typically implies that a contact tracing
application is deployed and running (Ferretti et al., 2020; Wymant et al., 2021).
Moreover, we presume the detected positives and the traced vertices acquire
immunity during self-isolation, either via exposure or vaccination. The immunity
delay following vaccination without tracing is set to 21 days, the recommended
timeframe between two doses of BNT162b2 (Polack et al., 2020) or mRNA-1273 (Baden
et al., 2021), after which the immune response normally peaks. To evaluate a policy’s
effcacy, we compare the fraction of nodes it kept healthy through the entire epidemics
(i.e. complement of the attack rate), and the corresponding infection curves.

4.3.4 Baseline agents

In this work, we investigate a wide variety of baseline agents, each of which utilizes a
distinct heuristic: random sampling (also designated randag), acquaintance sampling (or
acq), centrality-based ranking (e.g. degree or deg, eigenvector or eig, PageRank or prank,
closeness, betweenness), and neighborhood-based ranking (or neigh). The latter exploits
some limited epidemic state information, targeting the nodes that have the highest
number of positively-detected neighbors in their 2-hops vicinity via lexicographic
ordering (Meirom et al., 2015).

In addition to the above, rule-based agents can also leverage another source of
information: the occurrence frequency of nodes in the immediate proximity of
identifed cases. This leads to two new baselines specifcally-designed for tracing:
frequency, which randomly samples nodes with probabilities proportional to the
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individual frequencies, being equivalent to the tracing mechanism studied in the
mean-feld approach of Chapter 3, and backward, which greedily picks the nodes with
the highest registered frequencies (i.e. the approach of Kojaku et al. (2021)).

We also propose a simple yet powerful extension to all agents: recollection of recent
negative test results. This effectively restricts the action space to untested nodes in the
past tn days, speeding up the network exploration. We set tn = 3, an appropriate
timeline for COVID-19 (Smith et al., 2021) that also renders good results empirically.

4.3.5 Learning agents

4.3.5.1 Overview

Our learning-based agents leverage two GNN components, a single-layered Diffusion
module and a long-range Information module, followed by an MLP that computes the
nodes embedding space ht, and another MLP that produces the per-node ranking
score. In spite of this, our proposed solution features several improvements or
simplifcations: First and foremost, we utilize a second output MLP, parallel to the
frst, that produces a full state score using the same embedding space as the latter.
Secondly, we employ a GATv2 layer in the Diffusion module to leverage attention
when aggregating embeddings from the immediate neighborhood of each node in the
current snapshot Gt, and 3 GIN layers followed by an FA layer in the Information
module to improve the model’s expressivity and the long-range information fow for
the corresponding temporal graph Gt′≤t used as input. Finally, after experimenting
with different normalization schemes for mitigating the previously-reported issue of
exploding hidden states ht, we propose the usage of standard scaling and clipping the
gradient to a value of 0.5, which leads to suffciently stable training behaviors. More
details about our neural architecture can be consulted in Fig 4.2.

In addition to the architectural aspects described above, we carefully scrutinize
different combinations of node features, choosing the following fnal set for training
our policies: the degree and eigenvector centralities, the number of infected vertices in
the 1-hop and 2-hop neighborhoods, fve random features for breaking the structure
symmetries, and four features related to the test state: a one-hot vector of size 3,
marking the test status of node i at the previous timestamp (i.e. untested, negative or
positive), and a binary value marking whether the vertex has ever tested positive. To
allow for the hidden states to incorporate information from these features before the
training commences, we disable gradient updates for the frst uinterim = 11 passes, as
suggested by Kapturowski et al. (2022) for stabilizing the learning process.

The ranking of nodes can be performed using either SL or RL agents, with little to no
changes to the underlying neural network architecture. The SL agent is trained as a
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FIGURE 4.2: Neural architecture for the learning-based control agents. At each
time increment t, the graph node features xt = fv(t) and connections get passed to
the Information and Diffusion modules, producing the outputs it and dt, respect-
ively. The Information component has 3 GIN layers and a fnal FA layer, inter-
connected by Dropout, ReLU and LayerNorm. The Diffusion module has a single
GATv2 layer, followed by Dropout, ReLU and LayerNorm. it, dt, and the node hid-
den states from the previous timestamp ht−1 are utilized as inputs for the MLP that
outputs the new standard-scaled hidden states ht. By using xt, ht, and ht−1, two
parallel MLPs produce the per-node action-values of the actor mt = Q(st, at), and
the state value of the critic vt = V(st). The latter is obtained by applying a Max-
Pool per rows before passing the inputs to the afferent MLP. The RLAgent uses the
mt output to rank and sample nodes, and the vt output to receive feedback, both
being key components of the PPO objective. The SLAgent feeds mt directly into a
cross-entropy loss, using the infection indicators Iv(t) as labels. MLP sketch source:

https://www.gabormelli.com/RKB/File:2NNw.png.

simple node classifer by optimizing a binary cross-entropy loss on the infection status
of each vertex, with the output space representing the next-step infection likelihood.
In contrast, our RL agent gets optimized via a surrogate PPO objective, which only
needs access to the total number of infected at each time point, ultimately solving for
the criterion in Eq 4.11, where E(t), I(t) and R(t) are the number of exposed,
infectious and recovered, respectively, at time t, with t ≥ t0. We note that an agent may
further beneft from receiving both the infection labels and counts during training, but
investigating such a confguration remains beyond the scope of our current analysis.

T
γt−t0min ∑ r (E(t) + I(t) + R(t)) (4.11)

t=t0

Assuming the embedding space of a learning-based agent is informative enough, we
posit that clustering it can reveal potential targets for mass public health interventions,
such as vaccination campaigns. Following this logic, we propose a new baseline,

https://www.gabormelli.com/RKB/File:2NNw.png
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called cluster or clust, which ranks nodes according to the infection likelihood of their
corresponding clusters. The likelihood can be obtained from past data by aggregating
confrmed infections to date or by predicting via an SL agent, or from future data
when the simulation can be rolled forward in time. This method has several benefts
over directly using the SL/RL prediction values, as follows:

• It protects the privacy and security of individuals by avoiding singling them out
based on their infuence, preventing potential manipulations from other actors.

• It allows for versatility and fexibility in grouping nodes based on different
criteria or objectives, depending on the scenario or context of the intervention.

• It reduces the impact of noise or uncertainty in the individual ranking values,
which may arise from measurement errors, incomplete data, or dynamic changes
in the network, thus making the intervention process more stable and reliable.

• It simplifes the network and the intervention process by grouping nodes into
clusters, making the approach more scalable, especially for larger graphs.

• It provides backup and redundancy for the intervention in case certain
individuals are not responsive to it (e.g. refusing vaccination), by having
multiple nodes with the same ranking value in each cluster, increasing the
chances of success in the real world.

4.3.5.2 Reinforcement learning routines

To simplify the notation, we use θ to denote the set of all the parameters of the ranking
module, which comprises the MLP heads for both the actor and the critic, as well as
the previous-step node hidden states ht−1, with the mention that the latter always
have a zero gradient. In contrast to the original formulation, Eqs 4.13 to 4.18 describe
our proposed modifcation of PPO that allows for optimizing the objective in a
memory-effcient online manner. In particular, we replace all advantage functions

ˆ (γr ,0)
with the single-step advantage, A (at; θ), and introduce an intermediary operationt

that accumulates the gradients of the modifed loss into an unifed eligibility trace
(Sutton and Barto, 2018), in a similar fashion to Kobayashi (2022), ultimately obtaining

ˆ (γr ,λ)
a backward-view approximation of the GAE, A . Before accumulating them in thet

trace, the gradients in Eq 4.16 can be adjusted by x = δ
γr(θ′), as suggested byt

Kobayashi (2022), alluding to the original mathematical form of online actor-critics
given by Sutton and Barto (2018). However, in our environment, we observe better
results when we assign x = 1. Next, the current value of the updated trace Et gets
multiplied in Eq 4.17 by δ

γr(θ′), and the outcome is altered by the function transform(.)t

in accordance with the chosen optimization routine (e.g. Adam by Kingma and Ba
(2017), AdamW by Loshchilov and Hutter (2019)). Finally, ∆t can accumulate
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gradients across multiple time increments (uinterim = 11 in our experiments) to reduce
the variance associated with updating the neural network after each step. We note

SARSAthat, by considering rt = r from Eq 4.12, we can eliminate the requirement oft

storing st in memory for the subsequent timestamp, while retaining the benefts of the
policy ratio clipping. The premise of this simplifcation is that substantial variations
between st+1 and st are infrequent, condition which aligns with our environment,
resulting in negligible differences between the two ratios. Based on previous work and
our own analysis, we choose to fx γr = 0.99, λ = 0.97, E = 0.2, c1 = 0.5, c2 = 0.01,
and update the target value network every D = 5 episodes across all our experiments.

π(at|st+1; θ′)SARSAr (θ′) = (4.12)t π(at|st; θ)

LOCLIP ˆ (γr ,0) ˆ (γr ,0)
(θ′) = min[rt(θ

′)A (at; θ′), clip(rt(θ
′), 1− E , 1 + E)A (at; θ′)] (4.13)t t t

LOVF ˆ (γr ,0)
(θ′) = [A (at; θ′)]2 Ht(θ

′) = − ∑ π(a|st; θ′) log π(a|st; θ′) (4.14)t t
a∈A

LOPPO(θ′) = −LOCLIP(θ′) + c1LOVF(θ′)− c2Ht(θ
′) (4.15)t t t

∇θ′LOPPO(θ′)tEt = γrλEt−1 + , with x = δ
γr(θ′) or x = 1 (4.16)tx

∆t

θn+1 =

⎧⎨⎩
= ∆t−1 + transform(δγr

t

θn − ∆t

(θ′)Et) (4.17)

if t mod uinterim = 0
(4.18)

θn otherwise.

In each step t, the agent’s ranking module outputs the actor’s raw node likelihoods mt

and the critic’s evaluation of state st, vt, using the current parameters θn. An action at

is then sampled according to π and mt, while its corresponding log-probability,
log π(at|st; θn), is calculated. At the same time, the agent receives the reward Rt−1 for
its previous action at−1, as the Simulator reveals the total number of infected. Using
these quantities, we outline below two alternative approaches that can be used for the
online parameter iteration in Eq 4.18. Note that we increment the subscript of θ only
when the parameters of the ranking module itself are updated, regardless of the fact
that ht−1 changes at every timestamp.

1. For every t ≥ 1, the gradients in Et−1 and ∆t−1 are accumulated according to
LOPPO(θ′). The latter is computed using v(st−1; θ′) and v(st; θD), given the oldt−1

SARSAstate st−1 in the single-step buffer, Rt−1, and either rt−1 or rt−1 , given the old
log-probability log π(at−1|st−1; θ) recorded in the buffer. The current state st, the
action taken at, and its corresponding log-probability then continue to replace
the contents of the buffer for the subsequent timestamps in a loop, becoming
their estimates for t− 1, for the rest of the episode. When uinterim iterations have
elapsed since the last update, but after the action at has been sampled, the agent’s
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policy gets updated to θn+1 according to the information present in ∆t, including
the gradients pertaining to the current timestamp. As such, θ′ has continued to
be θn from the last update until the step that follows this new update, when it
becomes θn+1. Consequently, the steps t + 1, where t mod ninterim = 0, have
θ = θn as the acting policy, but use θ′ = θn+1 to compute the gradients.

2. On even control timestamps, the current information, including at,
log π(at|st; θn), and the evaluation vt, is added to the single-step buffer,
becoming the estimates for t− 1 in the subsequent step. The gradients, however,
are only computed on the odd control timestamps, getting accumulated in Et−1

and ∆t−1 according to LOPPO(θ′), with parameter updates happening after everyt−1

uinterim interval has elapsed. In this formulation, both the acting policy θ and the
policy to be updated θ′ correspond to a version of θn, thus having the same
ranking module parameters, but differing in the previous-step hidden states h.
As a consequence, we can use vt−1 from the buffer to compute the gradients w.r.t.
LOVF SARSA

t−1 , while employing the alternative ratio r to avoid the requirement oft−1

adding the previous state to the buffer. If rt−1 is utilized, however, the policy
needs to be re-evaluated at st−1 to compute the afferent log-probabilities.

When implemented in our epidemic setting, both of these techniques generate
adequate policies, surpassing the other baselines considered. However, the second
approach seems to yield better and more stable results. As such, we reproduce results
only for the latter training approach in this thesis, but we acknowledge that other
contexts might beneft more from the former method.

To ensure suffcient exploration during training, the RL policy π passes the raw
outputs mt through a softmax(.) function with temperature parameter ϵep, starting
from ϵ0 = 0.5 and decaying every episode by 0.99. We note that more complex
strategies could also be suitable here, including the transforms proposed by Mei et al.
(2020) or Meirom et al. (2021), but our simple alternative has proven to be suffciently
effective at exploring the state space. During evaluation, the sampling process is
turned off, greedy actions are taken instead, and the edges connected to
positively-identifed vertices are masked before being fed to the Information module,
thus limiting feature oversmoothing. In contrast, the single-layer Diffusion GNN is
allowed to ‘observe’ the aforesaid links, yet only for the last snapshot, enabling the
features associated with recent positive detections to propagate through the network.

4.3.6 Simulation-control framework pseudocode

The logic behind our epidemic control framework in the continuous-time simulation
scenario is outlined in Algorithm 2. The class hierarchy of the agents, together with
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TABLE 4.1: Legend for the control framework pseudocode.

Name(s) Description(s)

M, MD GNN-based ranking and target models (shared across epidemics).

Econ f Episode confguration. Consists of tuples mapping an episode ID ep to its exploration-control
variable ϵep.

Scon f Simulation confguration. Enumerated type that defnes the maximum network, infection and
event seeds, which in turn control the range of the loops over each seeded confguration.

snet, sin f , sev Interaction network, infection and event seeds.

Np, Sp, Ap Interaction network, Simulator and Agent hyperparameters. Ap contains the sampling strategy
st and learning rate lr.

N, S, A Interaction network, Simulator and Agent main objects.

icu, ieu Iterators for time-discretized events: dynamic control and edge-updating interaction events.

e, te Interaction event enumerated type and its corresponding time of occurrence.

kt, kc, kv Daily budgets for testing, tracing, and vaccination.

ct, cc, cv Sensible candidates to rank for testing, tracing, and vaccination.

nt, nc, nv Nodes chosen by the agent for testing, tracing, and vaccination.

d Boolean that determines whether the action is sampled or greedily taken from top-k ranking.

sg Sampling strategy employed by the RLAgent. This can be one of the following: ‘softmax’, ‘escort-
transform’ Mei et al. (2020), ‘nvidia-explore’ Meirom et al. (2021).

m Node ranking scores computed by a specifc agent.

v Epidemic state score computed by the GNN ranking model.

B∞, B1 Single-step for online training, and episodic replay buffer for offine training of an RLAgent.

O Optimizer object that updates parameters according to a predefned rule (e.g. Adam, AdamW).

a, log πa Sampled action and its corresponding log of probability.

Rt−1 Reward of previous action taken (i.e. for action sampled and executed at time t− 1).

their high-level logic, can be consulted in Algorithm 3. Refer to Table 4.1 for details
regarding the variables involved in these routines.
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Algorithm 2 Simulation-control logic.
1: global variables
2: M, MD ▷ GNN ranking model and target model
3: end global variables
4: procedure RUN EPIDEMIC(Econ f , Scon f , Np, Sp, Ap)
5: for each (ep, ϵep) ∈ Econ f do ▷ Episode ID and ϵep
6: for snet ∈ {0, . . . , Scon f .MAX NET SEED} do
7: ▷ N has all node states and edges over time
8: N ← INIT NET(Np, snet)
9: for sin f ∈ {0, . . . , Scon f .MAX INF SEED} do

10: S← INIT SIMULATOR(Sp, sin f , N)
11: A← INIT AGENT(Ap, M, MD, ep, ϵep)
12: icu ← 0 ▷ Iterator for control update
13: ieu ← 0 ▷ Iterator for edge update
14: for sev ∈ {0, . . . , Scon f .MAX EVENT} do
15: e← S.SAMPLE NEXT EVENT()
16: te ← e.TIME
17: S.RUN EVENT(e, N)
18: if S.DO CONTROL(N, te, icu) then
19: icu ← ⌊te⌋ ▷ Floor function
20: (np, nc, nv)← A.CONTROL(N, icu)
21: S.UPDATE STATES(N, np, nc, nv)
22: icu ← icu + 1
23: end if
24: if S.DO UPDATE EDGES(N, te, ieu) then
25: ieu ← ⌊te⌋
26: N.UPDATE EDGES(ieu)
27: ieu ← ieu + 1
28: end if
29: end for
30: ▷ Log and update offine parameters (if any)
31: A.FINISH(N)
32: end for
33: end for
34: end for
35: end procedure
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Algorithm 3 Control agents’ hierarchy. Algorithm 4 RL online routines.
36: struct AGENT
37: kt, kc, kv ▷ Budgets for testing, tracing, and vaccination
38: t, tp, tn ▷ Control time; positive & negative test recollection
39: procedure CONTROL(N, icu)
40: t← icu ▷ Set current control time
41: ▷ Find candidates based on time t, states in N, and tn
42: ct ← CANDIDATE TEST(N, tn, t)
43: ▷ Calls CONTROL ALL by default; can be overridden
44: nt ← CONTROL TEST(N, ct, kt)
45: ▷ Test and split nodes into positives & negatives
46: (np, nn)← TEST NODES(N, nt)
47: UPDATE KNOWLEDGE(np, nn, tp, tn)
48: cc ← CANDIDATE TRACE(N, tp, t) ▷ Filter tp contacts
49: nc ← CONTROL TRACE(N, cc, kc)
50: cv ← CANDIDATE VAX(N, np, nc, t) ▷ Except np, nc
51: nv ← CONTROL VAX(N, cv, kv)
52: return (np, nc, nv)
53: end procedure
54: end struct
55: struct MEASUREAGENT(AGENT)
56: d ▷ Boolean controlling if sampling or top-k ranking
57: procedure CONTROL ALL(N, c, k)
58: ▷ Compute score for each node in c; RL samples k nodes
59: m← COMPUTE MEASURES(N, c, k)
60: if d then
61: return c[ARGTOPK(m, k)] ▷ Heap sort for top-k
62: else
63: return m ▷ In this case, m is a list of sampled nodes
64: end if
65: end procedure
66: end struct
67: struct SLAGENT(MEASUREAGENT)
68: lr ▷ Learning rate; if 0, evaluation mode is assumed
69: procedure COMPUTE MEASURES(N, c, k)
70: if lr > 0 then
71: (m, v)← M.FORWARD(N) ▷ Message passing
72: BACKPROP LOSS(N, m) ▷ BCE on infection status
73: else
74: (m, v)← M.FORWARD(SUBGRAPH(N, c))
75: end if
76: return m
77: end procedure
78: end struct
79: struct RLAGENT(MEASUREAGENT)
80: lr ▷ Learning rate; if 0, evaluation mode is assumed
81: sg ▷ Action sampling strategy (e.g. softmax)
82: ϵep ▷ Action sampling noise (i.e. softmax temperature)
83: B∞ ▷ Episodic replay buffer; if null, conduct online learning
84: B1 ▷ Single-step replay buffer for online learning
85: procedure COMPUTE MEASURES(N, c, k)
86: if lr > 0 then
87: ▷ Reward of previous action (if any)
88: Rt−1 ←−N.NUM INFECTED()
89: (m, v)← M.FORWARD(N) ▷ Message passing
90: (a, log πa)← SAMPLE(m, c, k, sg, ϵep) ▷ Sample action
91: ▷ Existence of B∞ determines training online/offine
92: if B∞ is null then
93: ONLN TRAIN(Rt−1, N, a, log πa, m, v)
94: else
95: ▷ Add (Rt−1, st, at, log πat , Vt) to replay buffer
96: B∞.ADD(Rt−1, N, a, log πa, v)
97: end if
98: m← a
99: else
100: (m, v)← M.FORWARD(SUBGRAPH(N, c))
101: end if
102: return m
103: end procedure

105: struct RLAGENT ONE(RLAGENT)
106: O ▷ Optimizer object that updates parameters
107: procedure ONLN TRAIN(Rt−1, N, a, log πa, m, v)
108: if B1 is not empty then
109: ▷ Evaluate state st using the target policy
110: (mD, vD)← MD.FORWARD(N)
111: ▷ Evaluate st−1 with current policy
112: (mA, vA)← M.FORWARD(B1.N)
113: ▷ Infer policy ratio, entropy, TD-error
114: rt−1 = GET RATIO(mA, sg, B1.a, B1.log πa)
115: H = GET ENTROPY(mA, sg)
116: δt−1 ← Rt−1 + vD − vA
117: ▷ Calculate and accumulate gradients
118: BACKPROP LOSS(rt−1, δt−1,H)
119: if t mod uinterim = 0 then
120: O.step()
121: end if
122: B1.CLEAR()
123: end if
124: B1.ADD(N, a, log πa)
125: end procedure
126: end struct
127: struct RLAGENT TWO(RLAGENT)
128: icont ▷ Special iterator for control that starts at 0

SARSA129: ralt ▷ Boolean for using rt or standard rt
130: procedure ONLN TRAIN(Rt−1, N, a, log πa, m, v)
131: if icont mod 2 = 1 then
132: (mD, vD)← MD.FORWARD(N)
133: if ralt then
134: ▷ Use likelihoods for st and old V
135: mA ← m
136: vA ← B1.v
137: else
138: ▷ Evaluate st−1 with current policy
139: (mA, vA)← M.FORWARD(B1.N)
140: end if
141: ▷ Infer policy ratio, entropy, TD-error
142: rt−1 = GET RATIO(mA, sg, B1.a, B1.log πa)
143: H = GET ENTROPY(mA, sg)
144: δt−1 ← Rt−1 + vD − vA
145: ▷ Calculate and accumulate gradients
146: BACKPROP LOSS(rt−1, δt−1,H)
147: if t mod uinterim = 0 then
148: O.step()
149: end if
150: else
151: B1.ADD(Rt−1, N, a, log πa, v)
152: end if
153: icont ← icont + 1
154: end procedure
155: end struct

104: end struct
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FIGURE 4.3: Number of infected during training (left) and fraction kept healthy
during evaluation (right) of learning- and heuristic-based agents. This is reported
for dual Barabási-Albert networks with N = 1000 and mean degree ≈ 3. Test budget
set to k = 2. The left panel shows results for a single network for consistency, while the
right panel provides boxplots from 7 different networks and 7 infection seeds, marking
the Q1, Q2 and Q3 quartiles, the means, and the extremity points without outliers
from these runs. All agents have recollection of negative test results. Since the training
behavior of the SL and RL agents tends to fuctuate across episodes and confgurations,

we plot the average curves and standard deviations from multiple seeded runs.

4.4 Results and discussion

4.4.1 Initial comparison of learning-based variants

Comparing the containment levels achieved by the SL and RL agents during training
with the centrality-based actors with recollection reveals a signifcant performance
difference, as evidenced by Fig 4.3. While the RL policy outperforms all baselines in
several episodes, even before entering evaluation mode (i.e. when exploration would
be disabled), the SL policy falls short. The former’s inadequacy is also apparent in the
evaluation plot of Fig 4.3, as well as in the ample comparison of Meirom et al. (2021).
This may be a consequence of not optimizing directly against the infection counts,
while also lacking exploration mechanisms in training. As such, we opt to confne our
analysis to the policies generated by RL, comparing them against the other baselines.

In our environment, two reward functions are possible for the RL agent: the negative
of the infected count or the susceptible count at time t (denoted in plots as rl and rlpos,
respectively). The performance between the two can vary due to numerical reasons,
but these differences tend to be small (see Fig 4.4). As a consequence, we only display
the former in our tables of results for providing a better readability.

4.4.2 Prioritizing testing in static graphs

Next, we investigate our agents’ performance in the context of targeted testing
campaigns. To that end, we record the fraction of nodes kept healthy throughout
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FIGURE 4.4: Infection control performance on different static network architectures
and sizes, with a budget of k = 2. Uncertainties are shown as boxplots.

several epidemics, diffused across numerous static network topologies, when the
budget of daily testing k is fxed, while kc and kv are set to 0. As stated before, most of
our setups assume nodes do not spontaneously become uninfectious (i.e. γ = 0), but,
for completeness, we also present results for different recovery rates in Table 4.2.

Despite being trained for only 50 episodes on a single epidemic confguration
spanning a preferential attachment network of 1000 nodes, our RL agent consistently
outperforms the other baselines across a wide range of different network sizes (see
Table 4.3), wiring confgurations (Fig 4.4), and budgets (Fig 4.5). Interestingly, the
learning-based agents pose a great generalization capability when the daily budgets
scale with the number of nodes, enabling their deployment in larger networks,
irrespective of the training graph size, and without a signifcant loss in effcacy.

TABLE 4.2: Fraction kept healthy with budget k = 1% and different recovery rates.
Average over 5 seeded runs for each of the considered 5 realizations of dual Barabási-
Albert networks with N = 1000 nodes and a mean degree of approximately 3. ‘w/ R’

denotes agents with recollection of recent negative test results.

Agents γ = 0 γ = 0.01 γ = 0.02 γ = 0.03

Degree 0.555 ± 0.027 0.616 ± 0.034 0.662 ± 0.039 0.697 ± 0.039

Degree (w/ R) 0.744 ± 0.032 0.769 ± 0.028 0.801 ± 0.028 0.847 ± 0.025

PageRank (w/ R) 0.720 ± 0.026 0.755 ± 0.023 0.792 ± 0.037 0.834 ± 0.039

RL 0.822 ± 0.033 0.846 ± 0.026 0.876 ± 0.026 0.897 ± 0.026
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FIGURE 4.5: Infection control performance on different static network architectures
with varying budgets. The uncertainties are shown as boxplots.

TABLE 4.3: Fraction kept healthy with budget k = 1% and different population
sizes. Average over 5 seeded runs for each of the considered 5 realizations of dual
Barabási-Albert networks with a mean degree of approximately 3. ‘w/ R’ denotes
agents with recollection of recent negative test results. Here, a single model is trained
for 50 episodes on a network of size 1000, but its policy is able to generalize to appre-

ciably larger graphs.

Agents N = 1000 N = 2000 N = 5000 N = 20000

Degree 0.555 ± 0.027 0.552 ± 0.017 0.567 ± 0.027 0.557 ± 0.005

Degree (w/ R) 0.744 ± 0.032 0.736 ± 0.027 0.737 ± 0.025 0.746 ± 0.009

PageRank (w/ R) 0.720 ± 0.026 0.724 ± 0.021 0.729 ± 0.021 0.725 ± 0.008

RL 0.822 ± 0.033 0.811 ± 0.024 0.821 ± 0.025 0.803 ± 0.026

4.4.3 Prioritizing testing in dynamic graphs

In practice, a human’s interaction patterns are prone to change over time. While the
previous section presents scenarios in which the links between nodes remain fxed
throughout the simulation, Fig 4.6 features boxplots summarizing the average results
obtained by our agents on several preferential attachment networks where the set of
active edges changes every day. The RL agent is retrained to adapt to this dynamic
context, restricting the GNN message passing routine to the most recent connections
only. A parameter tb controls how far back in time the restriction applies, and from
our analysis, better results are achieved when this is set to less than 3 days, i.e. the
input temporal graph takes the form Gtb≤t′≤t.
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FIGURE 4.6: Infection control performance on dynamic network architectures. Suffx
‘nor’ shows variants with no recollection.

TABLE 4.4: Fraction kept healthy for a 1000-node network built from real tracing
statistics. Results are averaged over 5 runs for each of the 5 realizations of a confgur-

ation model using these statistics.

Agents k = 20 k = 50

Acquaintance (w/ R) 0.465 ± 0.086 0.736 ± 0.085

Degree (w/ R) 0.406 ± 0.020 0.746 ± 0.025

Eigenvector (w/ R) 0.186 ± 0.013 0.409 ± 0.026

PageRank (w/ R) 0.363 ± 0.016 0.668 ± 0.039

RL 0.506 ± 0.029 0.831 ± 0.047

The top performing policies are also evaluated on dynamic networks built using the
contact tracing statistics published by Meirom et al. (2021). The resulting mean
containment rates are shown in Table 4.4.

4.4.4 Testing performance analysis

Consistent with the fndings of Meirom et al. (2021), we note that the RL approach
does not always test the most positive nodes among the agents, yet it still surpasses
the other methods in terms of the epidemic outcome. We believe this seemingly
paradoxical result can be attributed to two determining factors: individuals that are
more likely to initiate threatening transmission cascades get targeted frst, and the
timing of detection is faster on average. Using the most competitive heuristic method
as a reference, the degree centrality agent with negative test recollection, we
investigate their mechanisms and occurrence.
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(A) Degree w/ R: a high degree node is targeted. (B) Degree w/ R: all communities get infected.

(C) RL: a high degree node is targeted. (D) RL: only frst community stays infected.

FIGURE 4.7: Visualization of the spread for the degree w/ R and the RL agents.
This corresponds to a stochastic-block network Holland et al. (1983) with three com-
munities. Susceptibles are green (light), infectious red (darker), and detected blue (the
darkest). Initially, the two policies target the same nodes, but later on the RL agent

preferentially tests the bridges.

Being a direct consequence of the node feature set, the frst determinant is arguably
the most easily grasped by intuition: a node with a high degree and/or eigenvector
centrality that is in the vicinity of several positive cases is more likely to be both a
superspreader and among the top-ranked vertices by our learning-based agents. This
goes further for the RL agents, however, as they can also infer transmission risk
patterns that are not readily quantifable, possibly spanning over long temporal and
graph ranges. Fig 4.7 illustrates a scenario where an RL tester initially targets the same
node as the degree-directed policy, but subsequently proceeds to testing the bridging
vertices, despite never computing any time-consuming betweenness centrality. By
focusing on the more probable initiators of long transmission chains, the pathogen is
effectively confned to the frst cluster, whereas the degree agent appears incapable of
averting the infection of every community.

While the second factor can be reliably quantifed numerically, its relative impact on
transmission can often be obscured by higher recovery rates. We plot in Fig 4.8 the
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FIGURE 4.8: Detection-infection time lag histograms. Results are summed up across
49 simulated epidemics, and displayed per each recovery rate γ.

histogram of time lags between infection and detection by each testing agent recorded
across 49 epidemic seeds under different recovery regimes, setting N = 1000, k = 5,
and kc = kv = 0. While the degree agent is shown to be effective at detecting
individuals within the frst 4 days of infection, its performance drops signifcantly
beyond this timeframe. In contrast, the RL agent keeps identifying high numbers of
infections within 10 days of exposure, after which point a lighter tail emerges. As
such, the two approaches end up detecting a similar number of positive nodes within
the frst 2 weeks of infection, despite the fact that the RL policy tests and isolates less
people on average (see Fig 4.9). As the recovery rate increases, however, these
differences become less pronounced, yet the gain in isolation effciency remains above
10% for γ ≤ 0.05.

4.4.5 Targeted test and trace programmes

Next, we investigate the extent to which different combinations of agents tasked with
conducting testing and contact tracing, under the constraints of a fxed budget, can
reduce the spread of a pathogen. For this problem, we train RL agents for either 50 or
200 episodes on the same testing task as before, comparing the resulting policies
against the proposed baselines. Tables 4.5 and 4.6 confrm the RL tester improves the
overall quality of ‘test and trace’ programmes, irrespective of the chosen tracer. That
being said, employing the same agent to perform the ranking of contacts as well
generally improves the containment.
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FIGURE 4.9: Cumulative detection within X days since exposure. Second row dis-
plays results normalized by the average total number of detected.
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FIGURE 4.10: Averaged epidemic curves and standard deviations during test and
trace control. These are for 5000 nodes dual Barabási-Albert graphs featuring a mean
degree of approximately 3, with a daily testing budget of k = 1% and no tracing on the
left, and k = 10 with a limit of kc = 25 traced contacts on the right. Results displayed

for two RL agents: one trained for 50, and the other for 200 episodes.

We also inspect the averaged epidemic curves associated with these targeted test and
trace campaigns when N = 5000. The results obtained by each agent in the full
environment is shown on the second column of Fig 4.10, with the frst serving as a
test-only reference. As stated before, heuristics with recollection bring large
improvements over random policies, yet the RL agents outcompete them in most
setups. Note the performance of k = 50 tests is similar to k = 10 tests, but tracing up to
kc = 25 contacts every day. While the balance between these processes will depend on
various factors (see Appendix C), these results highlight the effectiveness of tracing.
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TABLE 4.5: Percentage of nodes kept healthy for graphs of size 1000 and an approx-
imate mean degree of 3 (or mHK = 3 for Holme-Kim), with budgets set to k = 2,
kc = 5. Averages over 5 runs for each of the considered 5 realizations of the following:
dual Barabasi-Albert with´ m1 = 5, m2 = 1 (BA 5-1) and m1 = 10, m2 = 1 (BA 10-1),

Holme-Kim (HK), and Erdős–Rényi (ER).

Agents (Test + Trace) BA 5-1 BA 10-1 HC ER

Random + Random 0.389 + 0.044 0.446 ± 0.060 0.131 ± 0.023 0.199 ± 0.023
Random + Frequency 0.387 ± 0.033 0.465 ± 0.059 0.202 ± 0.030 0.195 ± 0.022

Acquaintance (w/ R) + Random 0.541 ± 0.054 0.657 ± 0.054 0.212 ± 0.031 0.215 ± 0.017

Acquaintance (w/ R) + Frequency 0.582 ± 0.055 0.674 ± 0.059 0.228 ± 0.040 0.217 ± 0.021

Acquaintance (w/ R) + Backward 0.591 ± 0.056 0.769 ± 0.080 0.213 ± 0.039 0.208 ± 0.019

Acquaintance (w/ R) + RL 0.644 ± 0.048 0.806 ± 0.058 0.248 ± 0.038 0.217 ± 0.018

Degree (w/ R) + Degree 0.764 ± 0.038 0.915 ± 0.032 0.528 ± 0.053 0.333 ± 0.037

RL + Random 0.818 ± 0.034 0.882 ± 0.026 0.542 ± 0.050 0.438 ± 0.043
RL + Frequency 0.832 ± 0.035 0.890 ± 0.033 0.567 ± 0.054 0.448 ± 0.048

RL + Backward 0.849 ± 0.033 0.923 ± 0.023 0.590 ± 0.058 0.434 ± 0.047
RL + Degree 0.853 ± 0.034 0.928 ± 0.014 0.614 ± 0.055 0.453 ± 0.039

RL + RL 0.876 ± 0.025 0.936 ± 0.009 0.620 ± 0.050 0.451 ± 0.039

TABLE 4.6: Percentage of nodes kept healthy when controlling epidemics over a
dynamic real interaction network. Graph consists of 74 vertices, and is reconstructed
from the Social Evolution dataset Madan et al. (2012). Averages over 5 runs for each

of the considered 5 infection seeds. Test budget is k = 2.

Agents (Test + Trace) kc = 2 kc = 4

Random + Frequency 0.511 ± 0.130 0.659 ± 0.114

Acquaintance (w/ R) + Frequency 0.494 ± 0.113 0.649 ± 0.089

Acquaintance (w/ R) + Backward 0.522 ± 0.115 0.654 ± 0.126

Neighborhood (w/ R) 0.620 ± 0.108 0.704 ± 0.107

Degree 0.614 ± 0.107 0.741 ± 0.084

Degree (w/ R) 0.636 ± 0.104 0.750 ± 0.084

RL 0.711 ± 0.089 0.773 ± 0.069

4.4.6 Agents interacting with different spreading dynamics

To assess the generalization capability of the agents, we compare their achieved
containment rates when controlling epidemics generated by both a multi-site
mean-feld and an agent-based model run with similar hyperparameters. In this case,
the RL agent reuses the parameters it learned from the previous experiments.

Despite the fact that the control mechanism in the mean-feld case requires discretizing
a continuous-time process, we observe minor differences between the two simulation
approaches (Tables 4.7 and 4.8). This result confrms not only that the two models are
analogous, but also that our agents transfer well across these spreading dynamics.
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TABLE 4.7: Fraction kept healthy for 2000 nodes and an average degree of approxim-
ately 3. Results represent averages over 5 runs for each of the considered 5 instances
of a dual Barabási-Albert model (m1 = 10, m2 = 1). Testing budget is k = 2 and no

contact tracing is conducted.

Agents Multi-site mean-feld Agent-based

Random 0.164 ± 0.037 0.195 ± 0.034
Acquaintance (w/ R) 0.251 ± 0.033 0.263 ± 0.035

Degree 0.390 ± 0.032 0.394 ± 0.029

Degree (w/ R) 0.443 ± 0.032 0.457 ± 0.034

RL 0.468 ± 0.035 0.477 ± 0.034

TABLE 4.8: Fraction kept healthy for 2000 nodes and an average degree of approxim-
ately 3. Results represent averages over 5 runs for each of the considered 5 instances

of a dual Barabási-Albert model (m1 = 10, m2 = 1). Budgets are k = 2 and kc = 10.

Agents (Test + Trace)

Random + Random

RL + RL

Multi-site mean-feld

0.372 ± 0.035

0.911 ± 0.020

Agent-based

0.371 ± 0.042

0.882 ± 0.018

Acquaintance (w/ R) + Backward 0.633 ± 0.046 0.627 ± 0.053

Degree (w/ R) + Degree 0.841 ± 0.034 0.809 ± 0.028

RL + Backward 0.867 ± 0.029 0.851 ± 0.030
RL + Degree 0.889 ± 0.026 0.856 ± 0.025

4.5 Targeting vaccination campaigns

By coordinating vaccination with population testing, we enable our agents to explore
the state space under realistic conditions. Besides ranking the nodes in the general
population by varying kv, we take inspiration from our tracing results and propose
alternative formulations for each control policy that restrict the ranking pool to the
contacts of newly-detected infected (using kc, denoted with prefx ‘ct’ in Fig 4.11). As
such, we set k = 5, and interchange between (kc = 0, kv = Bv) and (kc = Bv, kv = 0),
where Bv is the vaccination budget per time increment (fxed at 5 days in this study).
We consider the tester to be an RL actor operating over a dual Barabási-Albert
network of 1000 nodes, and introduce a hard limit for the possible vaccinations to
model stricter budgeting requirements. Fig 4.11 shows the boxplots of the
containments obtained by our vaccination agents under two distinct budget schemes.
Strikingly, the contacts-restricted policies appear to consistently outcompete their
counterparts, demonstrating the benefts of a fner-grained control strategy. The RL
actor continues to be the top performer in both settings, however, while its latent
space quality is further confrmed by the competitiveness of the clust approach, which
becomes a viable alternative to the degree- and learning-based solutions.

By targeting and isolating high-risk individuals, testing effectiveness reduces the
benefts of a vaccination policy to a similar degree as it does for a targeted contact
tracing strategy. As shown in Fig 4.12, the attack rate differences among three heuristic
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FIGURE 4.11: Infection control performance when prioritizing vaccination. First 7
agents utilize kc, while the rest use kv. The total budget of vaccines is capped at 100.
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FIGURE 4.12: Attack rate when varying the vaccination fraction. The attack rate is
the percentage of nodes getting infected from a given population, representing the
complement of the fraction kept healthy analyzed in the rest of this chapter. The dif-
ferences between the heuristic policies become smaller when testing with an RL agent

(second column), as opposed to conducting no testing (frst column).

agents noticeably decrease when an RL actor tests k = 5 individuals daily, as opposed
to no testing. The vaccination fraction has a negligible effect on this outcome, which is
magnifed when a single policy governs both processes, as the testing quality and the
information gathered by it deteriorate over time due to the competing immunization.

4.6 Execution time analysis for test prioritization

Finally, we compare the mean execution time for running epidemics using each of our
testing agents in Table 4.9. These results corresponds to the wall clock time recorded
on an average Windows machine equipped with an Intel i7-7700 CPU, an NVIDIA
RTX 3060 GPU and 32GB of RAM. As can be observed, the learning agents maintain a
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TABLE 4.9: Average wall clock time per epidemic during evaluation. Confguration:
dual Barabási-Albert networks of 2000 nodes, an average degree ≈ 3, and a daily

testing budget of k = 2.

Agents Wall time (s) Agents Wall time (s)

Random 1.12 Acquaintance (w/ R) 1.12

Degree 3.23 Degree (w/ R) 3.19

Closeness (w/ R) 787.33 Betweenness (w/ R) 1176.32

Eigenvector (w/ R) 7.8 Pagerank (w/ R) 6.39

Neighborhood (w/ R) 1.49 RL/SL 15.92

low evaluation time of a few seconds, which is comparable to ad-hoc agents like
eigenvector centrality and PageRank. In contrast, the policies backed by the closeness
or the betweenness centrality have slower runtimes, being infeasible for big graphs.

4.7 Conclusion and future work

In this chapter, we show how policies for controlling an epidemic through targeted
testing, tracing and vaccination in a resource-limited environment can be learned
using expressive graph neural networks that can integrate both local and long range
infection dynamics. Across many different scenarios, a policy inferred by a
reinforcement learning agent outperforms a wide range of ad-hoc rules drawing from
the connectivity properties of the underlying interaction graph, achieving
containment rates of up to 15% higher than degree-based solutions with recollection,
and more than 50% higher than random samplers. Interestingly, our agent also
exhibits strong transferability, with one model trained on small preferential
attachment networks being able to control the viral diffusion on several graphs of tens
of thousands of vertices and diverse linkage patterns. While building on previous
efforts (Meirom et al., 2021), we explore the role of contact tracing and vaccination,
compare different ways of modelling the infection spread (multi-site mean-feld
versus agent-based), and scrutinize a varied set of heuristics. Analyzing more
complex epidemic confgurations and assessing the EpiCURB framework on further
realistic scenarios represent natural extensions to this work. Moreover, investigating
whether the SL policy can be improved by also feeding it information about the
infection counts during training, or whether the RL actor benefts from knowing the
infection labels represents an interesting venue for future exploration.

Building on the above, Appendix C outlines how the EpiCURB framework, coupled
with appropriate visualization tools, can be used to inform decision-making in
epidemiology. In essence, the aforementioned supplement illustrates how policy
makers can approach the problem of fnding the optimal level of public health
interventions when these are deployed in packages, guiding the allocation of
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resources for each measure according to the balance of budgets and epidemic
outcomes. Additionally, it examines how the learning-based agents we introduce here
can act as a platform for decision making in realistic settings where auditing is
necessary, presenting several methods that can be used to evaluate their performance,
such as mapping and grouping their latent space, or scrutinizing their decisions
through applying local explainable models to each sampled node. By partitioning this
embedding space, the authorities could further devise smarter public health policies
that can effectively target the clusters of the population most at risk.

A logical next step for this research area would be to test the suggested methods in a
more diverse range of epidemic control scenarios. Some of these should ideally aim to
evaluate the agent’s ability to make real-time decisions, which would require a careful
examination of the suitable infrastructural solutions necessary to support this.
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Chapter 5

Conclusions and Future Perspectives

5.1 Summary of principal contributions

Diffusion processes appear as a central theme in a broad range of different subjects,
and this fact is not surprising, considering that many real-world phenomena, from the
atomic to the human level, can be characterized by cascades of ‘spreading’ over time
from a specifc source to one or multiple targets. One crucial aspect in studying any
form of diffusion is the placement of the target points relative to the source in the
model of the space where it occurs. In physics and chemistry, many problems
involving diffusion phenomena can be formulated and solved in a Hilbert space,
which is endowed with a metric that determines how the Laplacian operator and the
diffusion equation are defned and computed, ultimately allowing the calculation of
the diffused quantity in each region. In contrast, analyzing diffusion processes in the
sociology or public health domains can be challenging due to the lack of a standard
metric space to measure their operation. In this context, interaction graphs represent a
natural choice for depicting the relative location of individuals without relying on a
specifc metric. These can facilitate the development of effective applications that have
the potential to signifcantly impact our society, such as producing precise predictions
of future epidemic states, simulating varied counterfactual scenarios, or assessing the
benefts of different public health intervention strategies.

A case study we extensively analyze throughout this thesis concerns the spread of the
SARS-CoV-2 virus, responsible as of August 2023 for more than 6.9 million deaths.
One of the major contributions we bring forward in this feld is a novel
individual-based mean-feld model that represents contact tracing as an antagonist
diffusion process to the viral spread. Building on the seminal work of Farrahi et al.
(2014), our model allows us to capture the dynamics of infection and tracing in a
realistic way, and to evaluate the impact of different outbreak control strategies.
Unlike the interaction network over which the virus diffuses, contact tracing can only



102 Chapter 5. Conclusions and Future Perspectives

access and intervene in the limited subset of it that is observable. This limitation arises
primarily from the low adoption rates of tracing applications and the poor
effectiveness of tracing interviews, which are widespread in our society. On the other
hand, many people are known to ignore the self-isolation recommendations issued by
authorities after testing positive or being in contact with an infected person. In spite of
these challenges, we use simulations to show that contact tracing, especially when
supported by digital solutions, can effectively lower the peak and the effective
reproduction number Re of a COVID-19 outbreak, notwithstanding suboptimal
adoption rates and pervasive interview ineffciencies. In addition, these simulations
corroborate the claim of Mancastroppa et al. (2021) by revealing that the epidemic
outcome is frequently more profoundly impacted by improving the precision of the
manual tracing network than that of digital methods, as the latter are unavoidably
restricted by unreachable individuals. Our methodology, explained in detail in
Chapter 3, can address from a modelling perspective several of the open problems
about tracing raised by Anglemyer et al. (2020), such as the need for models to
account for internet or phone access issues and the prevalence of tracing false
positives, while also being highly adaptable and easily compatible with other kinds of
diffusion processes that can be expressed through compartmental formulations.

The signals stemming from the interaction network over which the diffusion occurs
feature learnable patterns that ought to be leveraged to grasp and manage its
dynamics. Of particular interest to this thesis is the reinforcement learning technique
of Meirom et al. (2021), which we extend in Chapter 4 to devise EpiCURB, a
simulation-control framework for studying heuristic- and learning-based epidemic
mitigation strategies. These come in the form of prioritized testing, tracing and
vaccination programmes, having as goal the limitation of economic and societal costs
(e.g. false positives) with the maximum diffusion suppression effciency. Using the
COVID-19 pandemic as an example, we reveal that various RL-backed policies
outperform ad-hoc methods by up to 15% in containment rates, while far surpassing
standard random strategies by more than 50%. This result is attributed to the superior
timing of detection and candidate selection that the learned strategy exhibits, factors
which we analyze in depth. Interestingly, control policies derived by RL agents are
also transferable between network confgurations, with models trained on graphs of
one thousand nodes shown to perform similarly on larger networks containing tens of
thousands of vertices. On the other hand, we demonstrate that incorporating recent
negative test results into any targeted testing strategy can signifcantly enhance its
performance. Finally, we show that restricting the pool of vaccination based on contact
tracing further improves the containment rates of a targeted immunization campaign.

In conclusion, our current investigation aims to relay the signifcance of systematically
examining diffusion processes, in their various forms, over interaction networks. In
particular, a major objective of this thesis is to demonstrate that the outcomes of
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spreading phenomena, such as viral epidemics, contact tracing, or information
dissemination, are strongly infuenced not only by the diffusion dynamics, but also by
the underlying interaction network structure. By jointly exploiting these two factors,
we show the one can obtain more realistic models of these phenomena, and devise
effcient strategies for controlling their evolution. This marks the end of our discussion
regarding the main fndings and contributions of this document. That being said, we
note that our work opens up new possibilities for future research that could explore
more facets of the relationship between these factors, as well as address important
open questions pertaining to future epidemics or other analogous diffusion processes.
To support this further, the following sections offer a comprehensive overview of the
broader impact and the possible future directions arising from our work.

5.2 Broader impact

5.2.1 Impact on pathogen epidemiology

In previous chapters, we have introduced several approaches that can be used to
study, predict, and control viral epidemics. Most importantly, we have shown how
epidemics can be simulated when a range of different control strategies needs to be
scrutinized. Given the inherent limitations of contact tracing, taking the form of
suboptimal application adoption rates and pervasive interview ineffciencies, it is
desirable to obtain realistic approximations of the impact this intervention has on the
spread. Using the recent pandemic as an example, we have demonstrated how our
new compartmental formulation, SEIR-T, can be integrated with individual-based
models to investigate the dynamics of SARS-CoV-2 under different testing and tracing
strategies, while acknowledging the limitations mentioned above. Our proposed
individual-based mean-feld framework, which separates the traced status from the
disease progression state, is directly applicable to any other epidemic, past and future,
provided that it can be appropriately described via a compartmental model.

In addition to contact tracing, we have also explored other types of public health
interventions that can help contain the spread of a pathogen: mask mandates, partial
lockdowns, reduction of mixing or targeted ‘test, trace and vaccinate’ programmes.
Adequately balancing these measures is paramount for containing a pathogen when
the least amount of impact on the society is sought after. Using simulated COVID-19
outbreaks, we have outlined some of the options that authorities have at their disposal
when these interventions are to be implemented cost-effectively, evaluating their
effects using suitable visualization tools that depict the resulting containment rates. To
address the issue of false positives that unavoidably arises when node-level
interventions are deployed, we have advocated for the use of reinforcement learning
agents, exploiting information from the interaction network structure through graph
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neural networks to prioritize individuals for testing, tracing and vaccination.
Additionally, we have revealed that using a learned control policy for these tasks
outperforms heuristic-based methods, while demonstrating how policy makers could
explore the former’s latent space and its decision-making process to further optimize
its outcomes. Analogously to the individual-based setup described above, the
methods we have proposed for controlling and visualizing outbreaks are also general
and independent of the type of pathogen studied.

5.2.2 Impact on information diffusion

Going beyond pathogen epidemics, the model presented in Chapter 3 can also be
employed for studying information diffusion by considering testing and contact
tracing as analogies for monitoring and feedback. Monitoring and feedback are the
processes of tracking and evaluating how many people have received or accessed the
information of interest, and how they have reacted or behaved after receiving or
accessing it. These processes help measure the reach and impact of the information
disseminated by different sources, and how they have infuenced the opinions,
reactions, or behaviors of the people who have come in contact with it. In this context,
contact tracing represents the process of identifying and reaching out to the people
who have been exposed to or infuenced by the information from a given set of seed
nodes. Based on this knowledge, one can target personalized incentives or messages
to further propagate the desired content. Modelling contact tracing can therefore help
one target the most relevant and receptive audience for his/her information diffusion
strategy, increasing its effectiveness. As such, by simulating our ‘test and trace’ model
with an appropriate compartmental formulation, such as SEIZ, we can estimate the
expected number of people who would be exposed to or infuenced by a given piece
of information. Moreover, we can thoroughly scrutinize the impact of utilizing
different levels of testing and contact tracing, while considering the pervasive effect of
incompletely reconstructing the network of interactions. Finally, we can compare and
contrast different diffusion strategies by analyzing the metrics captured by the
monitoring and feedback processes, choosing the most suitable plan of action for any
given scenario. By applying our model in this manner, one can design and optimize
the information diffusion pertaining to any context that can be accurately represented
via a compartmental formulation.

Infuence maximization problems are a further domain of application that our work
could address beyond its original scope. This could be realized through utilizing the
epidemic control strategies we propose in Chapter 4, following some minor
amendments. First of all, the information diffusion process must be describable
through a graph-based model, as discussed in Section 1.4.2. Secondly, since the
objective of infuence maximization is to identify the optimal set of interventions that



1055.3. Limitations and future perspectives

can facilitate the diffusion process rather than hinder it, the formulation of the goal
γt−t0needs to change accordingly: max ∑∞

r I(t), where I(t) is the total number oft=t0

infuenced individuals by time t, and γr is a discount factor. Thirdly, if the underlying
diffusion formulation does not include an exposed/indecisive node state, the model
needs to account for the possibility that the intervention fails (i.e. adoption occurs with
a certain probability). Lastly, a separate mechanism for testing (i.e. observing whether
the information was adopted) has to be established so that the agents can (partially)
perceive the current state. This can be either stochastic or governed by a testing
prioritization policy. Meirom et al. (2021) provide an excellent example of applying
such a setup for solving infuence maximization. In particular, they employ the IC and
LT models to simulate the social infuence process, a random tester to explore the state
space, while allocating interventions, with a fxed probability of success, according to
various policies. In this context, they demonstrate that RL agents sill outperform
standard heuristic strategies, regardless of the network confguration utilized. Their
setup could easily be improved, however, by using a targeted testing process, thus
ensuring that vital information about the diffusive state is captured early, and by
analyzing alternative spreading formulations, such as SEIZ, which could offer a more
realistic picture of the information dissemination process in online social networks.

5.3 Limitations and future perspectives

5.3.1 Future work needed to address current limitations

Apart from our main fndings, this thesis also identifes some important limitations
and challenges of applying epidemiological models over graphs for examining and
optimizing diffusion processes, such as data availability and quality, parameter
estimation and uncertainty, model calibration and validation, among others.
Therefore, future research is needed to tackle these issues and enhance the
applicability and reliability of the approaches presented here.

First and foremost, our fndings and conclusions are based on the premise that
simulation data can be extrapolated to the real world. Nonetheless, despite our best
efforts to simulate realistic and diverse scenarios, it is possible that our environments,
and by extension the results, do not always match the reality. The network and
parameter confgurations studied here, for instance, are by no means exhaustive. As
such, future research is required to establish the connectivity patterns and parameter
ranges that more faithfully describe the transmission chains within each region of
interest. Collecting more contact tracing data to reconstruct the true social interaction
pathways would constitute a solid initial step, followed by ftting the epidemiological
parameters to the hospitalization and death counts recorded in the target area in order
to provide more reliable estimates of the impact of various public health interventions,
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as well as a more representative training setup for the learning-based agents. For
enabling the full potential of the latter, future work should also consider a stronger
decoupling of the control agent’s logic from the simulation engine, which is currently
limited in our own implementation. Furthermore, for real-time decision making, the
agent’s infrastructure should ideally be scalable and resilient, while being able to
rapidly ingest new information about test results and connectivity shifts to adjust its
policy, by leveraging suitable technologies such as stream processing frameworks,
NoSQL databases, and cloud computing services.

Aside from the epidemiological parameter values curated from the literature, we have
had to make several assumptions about the appropriate ranges for previously
undefned or loosely-defned parameters. A prominent example is represented by the
τr and τt rates, which were frst introduced in Huerta and Tsimring (2002), later
adopted by Farrahi et al. (2014), but seldom fully reconciled with real epidemic data.
As we highlight in Section 3.4, the effectiveness of a “test and trace” strategy within
our IBMF simulation framework heavily depends on the difference in value between β

and both τr and τt, with the latter having the potential to mislead if they are set to
excessively high values, creating the false impression that these interventions can
single-handedly contain any outbreak. Consequently, we have chosen to present
results for a wide range of bounded values in Chapter 3, targeted for each individual
scenario, aiming to provide a comprehensive and unbiased understanding of their
effects. That being said, our analysis could be improved by calibrating these rates
according to measurements of contact frequency or by ftting them to observed
epidemic curves, alongside other unknown diffusion parameters. Future endeavors
could also explore further confgurations for the relative probability of getting tested
positive, rT, and the non-compliance rate η, parameters that we introduce, but for
which we only consider a single assignment for simplicity.

Our framework also has the limitation of employing a stochastic process for creating
the visible tracing subviews. In contrast, the patterns of contact recollection, tracing
effectiveness and application uptakes in the real world are not completely random,
but infuenced by many factors, such as socio-economical ones, pathogen prevalence,
perceived risk, data collection awareness, privacy concerns, and others. As such, our
fndings regarding the network overlap and adoption levels in Chapter 3 should not
be interpreted in terms of absolutes, but rather they should serve as indicators of their
relative impact on the spread under the assumption that the aforementioned factors
become negligible upon averaging. Future endeavors could test whether the latter is
true by verifying whether epidemic outcomes signifcantly shift under more accurate
subview derivation regimes (e.g. derived from contact tracing data or calibrated
according to mobile tracking information). Considering the high complexity of the
control problem under scrutiny, we make a further simplifcation in Chapter 4 by
assuming a complete recovery of the transmission network, which is largely consistent
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with previous work. It would be desirable, however, to extend the evaluation of the
control agents beyond this premise, by introducing a dual/triad topology
confguration, where the agents can only observe a partial and noisy infection graph.
This would make the problem more realistic and challenging, while testing the
robustness of the proposed agents.

Focusing on our key modelling choices, we additionally highlight some areas of
potential improvement where systematic ablation studies could further reveal the
impact of different modules and parameters on the epidemic outcome. To begin with,
we suggest that a comparison between exponentials and more general Gamma
distributions for the event waiting times within our IBMF models would be very
valuable, as the assumption of exponentials, although justifed by the literature in our
setup, may be too optimistic for certain pathogen outbreaks. Going forward, we
remark that our conclusions in Chapter 4 on the effciency of SL and RL agents in
controlling outbreaks are based on the presupposition that using the same architecture
and diffusion setup ensures a fair benchmarking. However, one could also argue that
a fairer comparison would require the same input signals for both agents. This could
be explored in future ablation studies by augmenting the SL agent objective to
concomitantly optimize against the total infection counts or the RL actor loss with a
cross-entropy term on the set of infection labels. Finally, we acknowledge our neural
network architectural choices have been based on literature recommendations and
preliminary experimentation with general node classifcation and outbreak control
tasks, rather than a more rigorous ablation analysis. As such, future research would be
needed to assess the performance of other popular GNN confgurations in the
EpiCURB framework, including but not limited to GRAND-generated models (see
Appendix A.2) and Graph Transformers (Dwivedi and Bresson, 2021).

As a fnal point, we would like to emphasize the potential of the policy visualization
techniques we propose in Appendix C to enhance agent-guided outbreak control,
while also recognizing the limited scope of our current experimentation approach.
The latter signifcantly relies on several assumptions, such as a constant value for
infectiousness reduction in mask wearers, or the ability of authorities to deploy
interventions in certain subpopulations or to achieve a fxed contact reduction
percentage (relative to a past reference point). For this reason, we believe subsequent
work should explore these simulation-based visualization methods across more
diverse and realistic epidemic confgurations, analyzing the impact of the parameters
associated with each public health measure (e.g. by quantifying how the infectiousness
varies due to mask wearing or establishing reliable criteria for deterministically
dividing the population into percentiles), performing cost-beneft assessments to root
the scaling of interventional efforts into actionable decisions, expanding our clustering
analysis to determine the features that contribute to each grouping, and performing a
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temporal analysis of the feature importances obtained from GraphLIME in order to
fnd hidden patterns that can better describe an agent’s decision-making process.

5.3.2 Future directions inspired by preliminary fndings and related works

As outlined in Section 5.2, the epidemiological models studied in this thesis are
suitable for analyzing the dynamics of diffusion processes across different domains.
While the preceding chapters have exemplifed the merits and utility of our proposed
modelling and control methods using the COVID-19 pandemic as a case study, we
remark that these approaches are fexible enough to accommodate other contexts that
involve comparable dissemination phenomena over graphs. For instance, they can be
applied to other infectious diseases, past and future, as well as to information
propagation, viral marketing, cybersecurity, or computer network analysis.

GNNs and graph kernels have imposed themselves as two of the most versatile and
effcient tools for exploiting the structure of networks in predictive problems. In
Chapter 2, and continuing in Appendix A, we discuss both methods at length,
highlighting the theoretical concepts behind the most popular variants of these
algorithmic frameworks and their current limitations. GNNs are widely regarded as
superior to kernel-based methods in graph learning tasks, but there are few studies
that reliably compare both approaches across a wide range of settings to be confdent
of such a conclusion. Based on our preliminary comparison in Table E.1, GATs and
GCNs appear to slightly outperform the other baselines in vertex classifcation.
However, SVMs with the simple diffusion kernel and a linear kernel on the features
perform unexpectedly well on the Cora dataset (Yang et al., 2016), raising the question
of whether more complex Gram matrices can compete with GNNs. The context of
diffusion processes, in particular, remains relatively unexplored by kernelized
methods, possibly due to the challenge of capturing temporal signals from the data. It
has been claimed, however, that graph transformations based on temporal random
walks could address this issue (refer to Appendix A.3.2). As such, given multiple
connectivity patterns, based on both artifcial and real interaction networks (e.g. Social
Evolution, Haggle or Infectious datasets – see Appendix E.2), and simulations of
stochastic compartmental models over these connections, we propose that future
work could evaluate whether the most promising graph kernels to date, such as the
WL, WL-OA or propagation kernels, can be combined with the aforementioned
transformations to outperform GNN-based solutions, similar to our SL agent in
Chapter 4, in answering epidemiological questions of the form: ‘How many people
will get infected in total?’; ‘Can the prediction be improved as the process unfolds?’;
‘What types of signals do the models need, and how often?’; ‘If a model offers
adequate predictions, can we verify whether it faithfully captures the underlying
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outbreak dynamics by reftting a compartmental model to its outputs, followed by
quantifying the estimation errors?’.

The response to future epidemics could further beneft from a deeper investigation
into aggregated mobility datasets that capture the inter-regional fux of people (see
examples in Appendix E.2). In earlier studies (Kapoor et al., 2020; Wang et al., 2020b;
Panagopoulos et al., 2021), these datasets have been used to construct spatio-temporal
graph structures that can facilitate disease prediction, as outlined in Appendix A.3.1.
Unlike prior work, however, we suggest a more general approach to this setting,
framing it as a semi-supervised learning task where communities with no reliable
infection forecasting depend on GNN models to aggregate such information from the
“neighboring” regions based on their associated mobility. Although GCNs and their
variants have been shown to be particularly effective for semi-supervised problems
(Kipf and Welling, 2017; Zhou et al., 2020) or partially observable environments (see
Chapter 4), most epidemiological studies involving GNNs and mobility datasets
assume the complete historical infection data is available to predict future outcomes.
This scenario may be too optimistic with respect to the reliability of each region’s
estimates. Moreover, transferring such models to countries where only some regions
report daily epidemic data could be challenging, even if those areas are scarce and
possess rich mobility information. As such, a partially-labelled setting would be more
suitable and realistic in this context, allowing for zones with no reliable estimate to be
masked and predicted for. Furthermore, once a graph-based learning algorithm is
trained, we posit that adjusting the parameters of an appropriate epidemiological
meta-population model to its predictions could prove fruitful, leveraging the inferred
dynamics to forecast future epidemic trends in an easily reproducible manner.

Another domain that offers a notable example of further applications for the methods
we introduce in this thesis is that of information diffusion. Ranging from label
propagation in graphs featuring non-human actors to news dissemination over online
social networks, the applications of information diffusion models are both numerous
and of great importance. In particular, predicting and partially controlling the
information fow over social media can often make the difference between a successful
or a failing campaign, sometimes even in the absence of profle-specifc data (Bagrow
et al., 2019). Be it for enriching political discourses (Anderson, 2017), maximizing the
reach of viral marketing (Even-Dar and Shapira, 2007), or stopping malicious actors
from distributing harmful content, modelling the nodes and their interactions in a
social network has many far-reaching implications. In this thesis, we have conducted
a preliminary survey of various information diffusion models, and have observed that
the epidemiological approaches generally exhibit a remarkable effcacy in this context,
especially for discriminating between true and false news or for investigating social
infuence. However, we have also noted that these models tend to be confned to a
complete graph setting in the literature. Taking all the above into account, we consider
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that a fruitful future research direction in this domain would be to leverage data from
Twitter APIs on various types of news, both authentic and fabricated, related to highly
contentious topics (e.g. COVID-19 vaccines) to create graph representations, and
analyze their properties using our network-based simulation-control framework. In
this regard, the Twitter Tennis graph datasets (see Appendix E.2) can serve as
benchmarks for comparing the performance of different learning methodologies.
Likewise, the IBMF approach outlined in Chapter 3 could also offer valuable insights
into the problem of information diffusion by drawing analogies between the testing
and contact tracing processes in viral outbreaks and the monitoring and feedback
mechanisms in the latter, thus representing another potential direction for subsequent
work. Finally, we envisage that the reinforcement learning agents we rigorously
examine in Chapter 4, together with the complementary visualization techniques
presented in Appendix C, could enable the generation and evaluation of effective
infuence maximization campaigns in complex networks, leading to more optimal
solutions than conventional hill-walking techniques were able to offer in the past.
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Appendix A

Additional Review Material on
Graph-based Machine Learning

A.1 Graph-level kernels

One of the most common approaches for constructing graph-level kernels using
information from lower-level kernels is the R-Convolution method (Haussler, 1999).
Let ∈r be the binary relation ‘is subcomponent of’. Then the standard R-Convolution
kernel on the graphs X and Y can be written as Eq A.1. One also has the option to
swap the sums in Eq A.1 to other aggregating operators, giving rise to different
mapping functions ϕ (e.g. max in optimal assignment kernels (Fröhlich et al., 2005)).

kG(X, Y) = ∑ ∑ k(x, y) (A.1)
x∈r X y∈r Y

Not all graph-level kernels use the R-Convolution model, however. These methods
are often unable to leverage the kernel trick, relying on explicitly deriving the ϕ

mapping instead. We note that this does not necessarily lead to worse performances,
as in fact, many such approaches are computationally faster than implicit schemes
(Kriege et al., 2019). In particular, instead of using Kronecker δ base kernels, it is
usually more advantageous to bin the node labels (or the discrete hashes of the feature
vectors), and produce graph embeddings from counting the bin sizes (Neumann et al.,
2016). Important mentions here are the Graphlet kernel (Shervashidze et al., 2009),
which creates network representations ϕ(.) that contain the number of occurrences of
common subgraph patterns – known as graphlets (Przulj et al., 2004), the WL kernel
(Shervashidze et al., 2011), which stacks in each graph’s ϕ(.) the histogram of labels
resulted from running i iterations of k-WL updates, the propagation kernel (Neumann
et al., 2016), which replaces 1-WL with a custom propagation scheme like random
walks, or the WL-OA (WL optimal assignment) kernel of Kriege et al. (2016). The latter
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has been shown to perform particularly well across a vast range of graph classifcation
tasks, albeit being slightly slower to compute than some of the alternatives (Kriege
et al., 2020). By letting B(X, Y) be the set of all bijections between the nodes of some
networks X and Y, the optimal assignment graph kernel can be written as:

kG-OA(X, Y) = max ∑ k(x, y) (A.2)
B∈B(X,Y) (x,y)∈B

The above formulation is not always p.s.d. unless the base kernel k is strong (Kriege
et al., 2016). WL-OA uses a strong node-level comparator based on 1-WL updates,
given by the equation k(x, y) = ∑h

i=0 δ(li(x), li(y)), where li(x) is the 1-WL assignment
of node x at iteration i. Computing kG−OA with this Kronecker delta base kernel has
been shown to be equivalent to the histogram intersection kernel in Eq A.3, where Σ is
the image of the node label function (i.e. the set of all labels), while Xh and Yh are the
lists of nodes in graphs X and Y, respectively, that have been assigned the label h in
one of the 1-WL iterations. With this equivalence in mind, kG-WLOA can be linearly
calculated from the ϕ representations of the WL kernel defned above, because these
directly encode the histograms of WL labels stemmed from every iteration.

kG-WLOA(X, Y) = ∑ min{|Xh|, |Yh|} (A.3)
h∈Σ

Adding further complexity to any of these representations is also possible by applying
a hyperbolic kernel on top (e.g. RBF). In this case, the Euclidean distance in the
original RBF formulation gets replaced by a distance metric defned by the lower-level
kernel (see Eq A.4), giving rise to the formulation in Eq A.5 (Kriege et al., 2020).√⃦⃦ ⃦⃦

dk(xi, xj) = ϕ(xi)− ϕ(xj) = k(xi, xi) + k(xj, xj)− 2k(xi, xj) (A.4)H

kG-RBF(X, Y) = exp(−dkG(X, Y)2/2σ2) (A.5)

A.2 Alternative approaches for building GNNs

Here we discuss the GRAND approach for constructing GNNs with a continuous
depth that limits the impact of oversmoothing and bottlenecks. In the spirit of Neural
ODEs (Chen et al., 2018), GRAND utilizes the time parameter in the heat diffusion
equation (refer to Eq 2.3) as a continuous analogy to the GNN layers. Given a network
G with N vertices, the node features X(t) at depth t, and A an N × N attention matrix
mirroring the structure of the adjacency of G (i.e. Ai,j = 0 for (i, j) ̸∈ E(G)), the
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FIGURE A.1: Illustration of different discretization schemes for Eq A.6. From left
to write, the schemes are explicit Euler, 4th order Runge-Kutta, and implicit Euler.

Source: Chamberlain et al. (2021).

diffusion partial differential equation w.r.t. the GNN depth becomes:

∂
X(t) = (A(X(t))− I)X(t) = Ā(X(t))X(t) (A.6)

∂t ( )
1 (WKxi(t))TWQxj(t)A(X(t))i,j = ∑ softmax (A.7)
h h dk

The attention matrix in the general case of the GRAND-nl formulation can be obtained
as an expectation over multiple attention heads, as in Eq A.7, where Wk and WQ are
learned matrices that are time-independent (i.e. shared among layers), dk is a
hyperparameter, while xi(t) and xj(t) are node features at depth t. The attention
mechanism utilized here is the scaled dot product attention (Vaswani et al., 2017),
which the authors claim outperforms the Bahdanau attention variant of GAT. As a
special case of GRAND-nl, GRAND-l utilizes a constant A(X(t))=A, making the

Aobjective in Eq A.6 solvable with eigendecomposition: X(t) = e ¯ tX(0).

The fnal GRAND model is summarized by Eq A.8. In this formulation, Linearϕ(X) is
an linear encoder layer of the initial node features X which outputs the frst time-point
value X(0). Starting from X(0), the integral term gets solved iteratively by temporal
discretization using any established ODE solver, with ∂X(t) approximated at each∂t

timestamp t using the GNN layer outlined by Eq A.6 (also check Fig A.1). Finally, a
prediction Ŷ is obtained by feeding the sum between X(0) and this approximated
integral to Linearψ(.), a linear decoder layer. The total depth T of the architecture need
not be specifed a priori when using adaptive time step ODE solvers, offering GRAND
a signifcant advantage compared to more common techniques for building GNNs.( ∫ T )

∂X(t)
Ŷ = Linearψ X(0) + dt X(0) = Linearϕ(X) (A.8)

0 ∂t
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The authors experiment with multiple types of time discretization in GRAND by
considering different ODE solvers and varying the step sizes: explicit and implicit
Euler, explicit Adams-Bashforth, implicit Adams-Moulton (Hairer et al., 1993; Butcher,
2000), and adaptive Runge-Kutta 4/5 (Press and Teukolsky, 1992). Their analysis
suggests that implicit schemes with large step sizes (τ > 0.25) remain stable and
achieve high test accuracies considerably faster than adaptive explicit algorithms,
while the latter schemes with fxed step sizes greater than 0.005 diverge away from
appropriate solutions.

Given that WK and WQ are shared among all the layers, GRAND uses less parameters
than GCN, GAT, or other similar models. At the same time, performance-wise,
GRAND achieves competitive results when compared with the aforementioned
architectures in a series of node classifcation benchmarks, being the highest
performer across the majority of the datasets considered by Chamberlain et al. (2021).
As the authors concede, however, this design choice may constrain the model’s
capacity to attain its maximum potential, while foregoing it would signifcantly
increase the computational demands.

A.3 More graph-based ML applications to diffusion processes

A.3.1 Modelling the region-to-region spread of COVID-19

Since the COVID-19 pandemic started, many companies have open-sourced data
concerning mobility trends of mobile phone users in order to help the research
community and various government offcials better understand and plan against its
spread. Among the main sources of such data (for more information please refer to
Ilin et al. (2021)), we note Google 1, Facebook 2, SafeGraph 3, and Cuebiq 4. This type
of data is typically anonymized and aggregated on geographical regions, showing
either differences in mobility through various public places or places of interest (POI),
sometimes relative to a value considered normal, or daily/weekly fows of population
from a source place to a target region. The exact locations and interactions of
individuals that are part of such datasets are usually masked, an overview of the
mobility across an entire neighborhood/area being provided instead. This aspect
gives rise to generalized epidemic networks, which no longer have individuals as
nodes and interactions as edges, but rather entire communities as vertices, and the
mobility fows between them as links. For such networks, simple graph-based

1Google COVID-19 Community Mobility Reports: https://www.google.com/covid19/mobility/
2Facebook Data for Good: https://dataforgood.fb.com/docs/covid19/
3SafeGraph COVID-19 Data: https://www.safegraph.com/covid-19-data-consortium
4Cuebiq Data for Good: https://www.cuebiq.com/about/data-for-good

https://www.google.com/covid19/mobility/
https://dataforgood.fb.com/docs/covid19/
https://www.safegraph.com/covid-19-data-consortium
https://www.cuebiq.com/about/data-for-good
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FIGURE A.2: Spatio-temporal input graph. White node from Day 10 gets an aggreg-
ated representation from its neighbors at the current timestamp, as well as its images

from previous days (i.e. red-flled vertices). Source: Kapoor et al. (2020).

compartmental models are no longer suitable, and meta-population ODE-based
formulations are often used instead (Rahmadani and Lee, 2020; Chang et al., 2021).

Recently, many works have turned to GNNs to leverage this type of data for
improving the forecasts related to the spread of SARS-CoV-2 (Kapoor et al., 2020;
Wang et al., 2020b; Panagopoulos et al., 2021). In this setting, the prediction problem
represents a regression task that takes as input a time series of graphs Gt−k, ..., Gt

describing the extent of the epidemic in each particular location, and the varying
mobility between these regions, and outputs forecast values for indexes {t + 1, ...}. To
model the spatio-temporal nature of this sequence, Kapoor et al. (2020) use a GCN that
operates on networks with temporal edge connections to previous timestamps, while
Panagopoulos et al. (2021) propose three approaches: GNNs with shared weights for
each time index, GNNs combined with LSTMs (Hochreiter and Schmidhuber, 1997),
and GNNs with shared weights and transfer learning between regions.

The skip-connection model proposed by Kapoor et al. (2020) is summarized in Eq A.9,
where H(0) is obtained by feeding the concatenation of all temporal node features Xt

to an MLP, H(l+1) is the GCN layer’s output with H(0) concatenated to it, while P is
the fnal prediction. This model is trained with a mean squared logarithmic error
(MSLE), which receives as input a graph that manifests as 100 stacked layers of
mobility networks recorded at each time index (i.e. 100 days), with each node at time t
having links to its image at the previous 7 time steps (see visualization in Fig A.2).

H(0) = MLP(Xt||Xt−1||...Xt−d)

H(l+1) = σ(D−
1
2 AD−

1
2 H(l)Wl)||H(0) (A.9)

P = MLP(H(L))
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A.3.2 Temporal graph kernels for diffusion processes

In this section, we review the methods proposed by Oettershagen et al. (2021) for
transforming dynamic networks into alternative representations that enable the use of
graph kernels to model diffusion processes. The authors employ these techniques to
perform two classifcation tasks based on multiple time series of network states of the
form G0, ..., GT: (1) predict whether the labels of an input sequence got assigned via
node-to-node spreading or not; (2) predict the most likely diffusion process, from a
predefned set, to have generated the labels in that time series. The frst of these
approaches entails reducing the temporal graph to a static representation as follows:
Reduce all temporal links between nodes u and v to a single edge labelled by the time
index of its frst appearance. Next, create a second labelling map l′ which assigns to v
the time index of its frst label update, or a value 0 if the latter stays constant over
time. The time indexes need to be global for the whole operation. Finally, the
compression step is followed by the kernel computation. The representations in this
case remain small throughout the process, O(|V(G)|2), but they are generally lossy.

Many popular static graph kernels, including random walk, shortest path and WL,
can be formulated in terms of walks (or traversals) along the vertices and edges of the
input networks. The main idea behind the other two methods is to replace these static
traversals with temporal walks. The latter produce several label sequences of the form
Ls(wv) = (l(v1, t1), l(e(v1,v2), t1), l(v2, t1 + 1), l(v2, t2), ..., l(vl−1, tl−1), l(e(vl−1,vl), tl−1), l(vl , tl),
where l is a labelling function for both nodes and links along wv. This formulation
accommodates some waiting time at each vertex, with labels for a given node
appearing both at ti−1 + 1 and ti. Note the temporal walk wv must be valid for the
corresponding Ls(wv) to exist (i.e. wv can follow only hops that are available at each
individual timestamp). Comparing counts of walks indexed by Ls(wv) effectively
renders a temporal random-walk kernel. The authors show that stochastically
sampling wv, followed by computing the corresponding Gram matrices and training
SVMs with them, performs well empirically without being too resource-intensive.

The second representation method, Directed Line graph expansion (DL), builds on the
ideas above by constructing a new graph formed of pairs of vertices (nt ) forvu, nt

uv

every edge (v, u) present in Gt, with links dictated by possible temporal walks
between them, i.e. (nt ) for any i > 0. A special labelling function gets createdvu, nt+i

uz

l′(nt ) = (l(v, t), l(u, t + 1)), respecting the temporal walk conditions mentionedvu

before. The authors prove that any static kernel operating on DL-transformed
networks is equivalent to using a temporal walk kernel on their original structures.
The main limitation of this method is that the size of the resulting graph grows
quadratically in the number of edges: O(|E(G)|2).

The fnal approach creates a representation formed of time-vertices (v, t), where the
labels are preserved and the connections mirror the fow of time (i.e. node (v, t)
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connected to (u, t′) only if t < t′). Any edge (v, u) in the original graph generates at
most four time-vertices connected by exactly two edges: ((v, t), (u, t + 1)) and
((u, t), (v, t + 1)). If waiting times at nodes do exist, further links are added to the new
graph structure to make the temporal walk complete. The method, called Static
Expansion (SE), requires appreciably less memory than DL, O(|E(G)|, without being
as lossy as the frst approach.

The experimental setup used by Oettershagen et al. (2021) involves numerous
network datasets onto which the SI compartmental model is simulated. In problem
(1), several SVMs with WL and random walk kernels are applied to the proposed
alternative representations of the graph sequences, learning to distinguish between
valid simulations and random system states (i.e. stochastic infections without the
point-to-point condition). In contrast, exercise (2) predictors are trained to classify
instances generated by separate SI diffusion processes, featuring different
transmission rates. The authors show that DL and SE achieve competitive accuracies
in both tasks across the whole range of considered datasets, outperforming both static
kernels and general temporal walk kernels.

That being said, the biggest limitation of the work of Oettershagen et al. (2021) is the
restricted scope of the experiments conducted with these graph transformation
methods. In the context of epidemics, it is rarely of practical use to perform binary
classifcation of diffusion dynamics. Nonetheless, the ability to accurately perform the
aforementioned task may indicate that complex signals from the temporal data are
being learned. An interesting venue for further exploration would be to utilize
state-of-the-art kernels, such as the WL, WL-OA or propagation kernels presented in
Appendix A.1, in conjunction with either the DL or the SE transformation, to solve
more important problems in diffusion, such as infection forecasting.
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Appendix B

Modelling Contact Tracing:
Supporting Information

B.1 Open-source model and data

The open-source implementation of the simulator can be consulted at:
https://github.com/andrei-rusu/contact-tracing-model.

The statistics our simulations captured can be analyzed in full by following:
https://doi.org/10.6084/m9.figshare.14101946.

B.2 Simulation statistics

Aside from the metrics analyzed in the main chapters, our individual-based model
can readily be used to analyze various other statistics about the simulated epidemic:
the total number and peak of hospitalization and death, the total of people that have
isolated or have recovered, tracing false positives (Fig B.1) and false negatives
(Fig B.2), the number of non-compliant nodes, the tracing efforts (Farrahi et al., 2014),
the incidence and growth rates registered over a variable window size etc.

Both Fig B.1 and Fig B.2 give an alternative view of the repercussions a country can
face if contact tracing is too zealous or too slow. If excessively many people get
incorrectly isolated (false positives), the resulting socio-economic burden may
signifcantly disrupt a community. If, on the other hand, tracing is very ineffcient, the
infectious population (false negatives) will spread the disease uncontrollably,
ultimately leading to many hospitalizations and deaths. The right balance needs to be
struck between these two for a ‘test and trace’ strategy to be deemed successful.

https://github.com/andrei-rusu/contact-tracing-model
https://doi.org/10.6084/m9.figshare.14101946
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B.3 Further analysis of noteworthy trends

As previously discussed, the values ascribed to the overlap Γ and the uptake r dictate
whether a contact tracing rate τt is effective. The trends imposed by these quantities
on τt can be further scrutinized in Fig B.3 and Fig B.4. At the 0.5 level, both show the
ability to noticeably infuence the infection curves obtained by τt ≥ 0.04. The peak
differences reached by the same tracing rates become substantial at the extreme points.

When studying the combined effects of manual tracing at different Γ and digital
tracing at various r on the effective reproduction number Re, it is often desirable to
visualize the corresponding three-dimensional trends. To that end, we plot in Fig B.5
the 3D surface of the aforesaid variables belonging to the experiment in Section 3.4.5.
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FIGURE B.1: Tracing false positives. The amount of susceptibles being incorrectly
traced and isolated. Results here correspond to the last experiment, with N = 1000,

Holme-Kim graph topology and 10% initial infected.
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FIGURE B.2: Tracing false negatives. Number of infectious people not traced. Results
correspond to a Holme-Kim graph topology with N = 1000 and 10% initial infected.
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FIGURE B.3: The overlap infuencing the effcacy of contact tracing rates. Results for
N = 10000, random graph topology with mean degree K = 10. τr fxed at 0.04.
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FIGURE B.4: Uptake infuencing the effcacy of contact tracing rates. Results for
N = 1000, random graph topology with mean degree K = 10. τr fxed at 0.05.

Digital uptake r

0.2 0.4 0.6 0.8 1.0 Manual overlap 
0.2 0.4 0.6 0.8 1.0

R
 d

ur
in

g 
W

ee
k 

1

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Less effective testing r=0.05
t = 0.1
t = 0.2
t = 0.5

Digital uptake r

0.2 0.4 0.6 0.8 1.0 Manual overlap 

0.2
0.4

0.6
0.81.0

R
 d

ur
in

g 
W

ee
k 

1

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Moderate testing r=0.1
t = 0.1
t = 0.2
t = 0.5

Digital uptake r

0.2 0.4 0.6 0.8 1.0 Manual overlap 
0.2 0.4 0.6 0.8 1.0

R
 d

ur
in

g 
W

ee
k 

1

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Effective testing r=0.2
t = 0.1
t = 0.2
t = 0.5

Digital uptake r

0.2 0.4 0.6 0.8 1.0 Manual overlap 

0.2
0.4

0.6
0.8

1.0

R
 d

ur
in

g 
W

ee
k 

1

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Very effective testing r=0.5
t = 0.1
t = 0.2
t = 0.5

FIGURE B.5: Reproduction number Re vs. uptake r vs. overlap Γ. Results correspond
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Appendix C

Informing Policy using EpiCURB

C.1 Introduction

The COVID-19 pandemic has prompted many countries to implement various
non-pharmaceutical public health interventions (NPIs) to prevent the spread of the
virus and protect their populations. Effective as they may have been, these policies
have rarely been popular among the population, and have faced intense scrutiny ever
since. Given the choice between implementing interventions that entail signifcant
economic and social costs or allowing the virus to spread uncontrollably, authorities
faced diffcult decisions that could have impacted many lives. Balancing NPIs
between their individual effectiveness and limitations, their co-occurrence and
potentially inficting major unintended consequences has been a persistent challenge
for authorities around the globe (Herby et al., 2023; Hopman and Mehtar, 2020). In
this chapter, we demonstrate how simulation-based methods, relying on the EpiCURB
framework presented in Chapter 4, along with suitable visualization tools can support
policy makers in optimizing these decisions and the budgets allocated for each
intervention. Additionally, we explore different techniques that they can apply to
manage interventions decided by learning-based control agents, providing assurances
for audit and the public alike. As such, here we put forward three key advancements:

1. We design a simulation setup that policy makers can easily utilize to examine
the impact of individual NPIs when combined with other interventions. We also
suggest appropriate visualization tools that can inform them where additional
resources would need to be deployed to achieve a given infection threshold.
Equipped with a cost-based model of increasing the strength/stringency of each
intervention, authorities would ultimately be able on the basis of these results to
determine which action is more cost-effective.
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2. When interventions are prioritized via learning-based agents, their
corresponding embedding space often contains insightful information about the
epidemic state. We propose visualizations for this learned space that policy
makers can employ to identify at-risk regions where mass interventions with
limited budgets, such as vaccination campaigns, should be deployed. Thesse
plots can also aid users in establishing when an agent starts underperforming.

3. We illustrate how policy makers can investigate the factors underpinning the
decisions taken by the learning-based control agents, as well as devise or justify
their strategy to auditing bodies, using a deep learning explanation technique
designed for graph neural networks: GraphLIME (Huang et al., 2022).

C.2 Policy choices

According to IOM (2020), by June 2020, 219 countries, territories or areas had
implemented at least one form of mobility restriction, affecting billions of people in
total. These stringent measures represent some of the most controversial decisions that
authorities have taken, as they have limited the public’s social interactions, as well as
affected the economy and society (Brodeur et al., 2021; Donnelly, 2023). Stay-at-home
orders (also known as lockdowns) are NPIs that restrict the movement and interaction
of people within a community, often with the exception of essential activities, such as
obtaining food, healthcare, work, or physical activity. The extent and duration of these
orders can widely differ depending on the context (e.g. availability of vaccines) and
the authorities’ objectives (e.g. bring the effective reproduction number R under 1).
For instance, some stay-at-home orders may target specifc segments of the
population, such as the elderly or those with underlying health conditions, while
others may encompass the entire population. Some lockdowns may be partial,
affecting only certain areas or sectors, while others may be total, impacting the whole
country or region (Haider et al., 2020; Islam et al., 2020). The effectiveness and impact
of stay-at-home orders have been widely debated and studied in the literature.
Several works have found that these measures were pivotal for reducing the caseload
of COVID-19, and thus implicitly preventing numerous deaths (Flaxman et al., 2020;
Hsiang et al., 2020; Ferguson et al., 2020). What is more, some studies have suggested
that the timing of introducing lockdowns is crucial for their effectiveness and that
delaying or relaxing them too early can lead to disproportionally more deaths
(Ferguson et al., 2020; Davies et al., 2021; Mishra et al., 2021; Booth, 2021). In stark
contrast, a few authors have challenged these fndings and argued that stay-at-home
orders had little to no effect on the COVID-19 mortality (Chaudhry et al., 2020;
Bendavid et al., 2021; Allen, 2022; Herby et al., 2023). Claiming to be the frst
comprehensive analysis of NPIs across 180 countries using data from 2020, Herby et al.
(2023) have argued that lockdowns had no clear impact on COVID-19 excess deaths or
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mortality rates compared with countries that imposed them later, less stringently, or
not at all. By the authors’ claim, one of the main contributing factors to this result has
been the emergence of voluntary behavioral changes among the population, which
have signifcantly contributed to the reported reduction in mixing, irrespective of
enforced measures. The work has also pointed out that lockdowns had profoundly
negative effects on economic growth, mental health, education, civil liberties, and
democracy. Despite being praised by some media outlets and commentators for
challenging the conventional wisdom on stay-at-home orders and providing evidence
for alternative approaches to managing viral outbreaks (Donnelly, 2023), the study has
been criticized by several experts for its methodological faws, data quality issues,
causal inference problems, and ideological bias (Sample and Geddes, 2023). Most
notably, the meta-analysis fails to consider the timing of mandate enactment (Sample
and Geddes, 2023), which is a critical factor for their effectiveness according to the
literature (Ferguson et al., 2020; Davies et al., 2021; Mishra et al., 2021; Booth, 2021). A
salient example is the UK government’s lockdowns policy, which has faced frequent
criticism for its suboptimal timing, as well as its laxity and inconsistency, that may
have ultimately undermined its overall effectiveness (Ferguson et al., 2020; Booth,
2021). In this chapter, we highlight how a simulation-based method, underpinned by
the EpiCURB framework introduced in Chapter 4, can be applied to determine the
optimal stringency levels and timing for interventions like lockdowns, taking into
account the observed reductions in social mixing, driven by either voluntary
behavioural change or imposed limits on gatherings.

Mask mandates have also been the subject of extensive debates throughout the
COVID-19 pandemic (Picheta, 2021; Tufekci, 2023), with several countries choosing a
more relaxed yet inconsistent approach to this issue (Smith et al., 2020; Baker, 2021;
Rolander, 2021). Early studies have indicated masks have a signifcant positive effect
on the spread of SARS-CoV-2, with infuential meta-analysis placing the pooled
relative risk (RR, proportion of infected among the masked group divided by the
proportion of infected among the unmasked group) or the odds ratio (OR, divided
odds of getting infected versus not getting infected from both groups) at 0.34 (Chu
et al., 2020) or 0.38 (Li et al., 2021). The works later summarized in the comment paper
of Brooks and Butler (2021) have added to the body of evidence regarding their
effectiveness, with notable mentions including the natural experiments of Mitze et al.
(2020), which report a 47% decrease in the infection growth rate after the introduction
of mask mandates in Germany, and Karaivanov et al. (2021), which estimate a
25%-40% decline in the weekly diagnoses following these mandates in Canada. Lab
studies have also confrmed that masks signifcantly reduce the transmission of
viral-infused droplets, with the common surgical and cotton masks shown to block
around 50% when the spreader wears it, and 20%-40% when the receiver uses it (Ueki
et al., 2020). More recently, however, a Cochrane review that sparked public debate
has pointed to the lack of reliable randomized control trials in the aforementioned
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works, concluding that existing evidence on mask effciency and of higher certainty is
limited, and points to an insignifcant effect of wearing them (Jefferson et al., 2023).
The review’s controversial conclusions have been met with considerable criticism
(Tufekci, 2023; McDonald, 2023), mostly targeted at the inclusion of a majority of
pre-pandemic studies in the meta-analysis underpinning them. Moreover, as the
authors admit themselves, the relatively low adherence observed in the scrutinized
trials ‘hampers drawing frm conclusions’. Indeed, compliance with mask
recommendations is known to have been strikingly low in previous viral outbreaks,
and it has continued to be low during the COVID-19 pandemic in countries like the
UK and Netherlands, while others have seen signifcant surges in their uptake (Royal
Society, 2020). These compliance rates have been signifcantly infuenced by the level
of perceived risk and trust among the population of each country, which has often
been adversely affected by the lack of clear and consistent guidance from the
authorities and scientifc bodies in those regions, and the insuffcient evidence on the
isolated benefts of masking compared to other preventive measures, such as hand
hygiene or reducing social contacts (Royal Society, 2020). Undoubtedly, the task of
disentangling the effect of each intervention remains very challenging (Donnelly,
2023), and without this knowledge, consistency and compliance with mandates may
be compromised. Our simulation-based method can shed some light on this issue,
enabling policy makers to evaluate the impact of masking in combination with other
interventions, as well as to identify the optimal balance between their coverage or
adoption. Furthermore, the visualizations we propose can facilitate more coherent
public health policies that can ultimately enhance the civic compliance with them.

For an epidemic control strategy to be successful in the absence of vaccines or total
lockdowns, testing and contact tracing have to be effciently conducted by the
authorities. As exemplifed in Chapter 3, however, ‘test and trace’ programmes often
suffer from potentially crippling inadequacies. First of all, manual tracing is upper
bounded by staff numbers and their effciency, leading to intrinsic delays (Ferretti
et al., 2020), with memory fallacies of positively-tested individuals often ensuing
(Garry et al., 2021; Mancastroppa et al., 2021). Digital tracing, on the other hand, is
rarely optimally adopted by populations, with issues such as smartphone access,
Bluetooth reliability or privacy concerns being important determining factors
(Anglemyer et al., 2020; Mancastroppa et al., 2021; Chen and Thio, 2021). Anglemyer
et al. (2020) highlight the importance of understanding how manual and digital
contact tracing complement each other in controlling the spread of SARS-CoV-2, and
suggest further research on their combined effects is required. Other studies introduce
modelling frameworks aimed at exploring how different levels of tracing effciency
affect the epidemic outcomes (see Mancastroppa et al. (2021) and Chapter 3). Using
the same simulation framework and visualization setup as for other interventions, we
investigate the trade-off between manual and digital tracing that policy makers can
take into account when distributing resources for contact tracing. In contrast, the
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second inadequacy stems from the costs associated with running widespread testing
and tracing programmes, both in terms of monetary (Mason et al., 2022) and human
resources (Pandit et al., 2022; Rimmer, 2021). In Chapter 4, we advocate for the use of
reinforcement learning-based agents to maximize these interventions’ impact under
limited budgets. In this chapter, we take the idea a step forward by illustrating how
the balancing of budgets can be optimized to achieve a desired containment level, in a
similar fashion to the other studied interventions.

When these policy choices become informed by learning-based control agents, their
internal knowledge can offer policy makers an important overview of the epidemic
state, as well as provide indications of their current performance status. First of all,
t-SNE projections of their embedding space ht can be used for real-time tracking of the
disease transmission, aiding in understanding where and when additional public
health efforts are needed. Compared to analyzing raw numerical infection data, this
approach allows for individual-level interventions to be monitored, while compared
to full network visualizations, such as Figs 3.2, 3.3 and 4.7, it can be utilized for
tracking signifcantly larger populations. Secondly, dendrograms describing the
clustering of ht, as well as the infection likelihood of each cluster, can inform policy
makers where group-level interventions would be more effective. For a specifc
example of enacting such interventions, refer to the usage of the clust baseline for
controlling group-based vaccination in Chapter 4. Finally, the performance of the
control agent itself can be scrutinized by inspecting the t-SNE structures described
above across time, as well as the cluster cardinalities displayed in the aforementioned
dendrograms. When new infections constantly fll this space, nodes rarely get
grouped according to their known infection status, or the hierarchical clusters display
abnormal characteristics (e.g. most vertices shown as belonging to one cluster,
infections appearing in most regions etc.), the agent exhibits signs of suboptimal
performance, and thus might require further training.

Despite their effcacy and potential to offoad policy makers of some of their duties,
we believe learning-based control agents should not have the fnal say in these
sensitive decisions. As such, for any given day in the controlled epidemic, policy
makers should have the option to analyze explanations for the control decisions taken
by the GNN-based rankers. In Appendix C.6, we showcase how the GraphLIME
algorithm (Huang et al., 2022) can be used to explain our reinforcement learning
policy’s decisions by ftting multiple interpretable nonlinear models to the raw
action-values that the underlying deep learning model outputs. The resulting feature
importances demonstrate the agent focuses on the information conferred by the
network heuristics at the beginning of the simulation, when limited other information
exists, then switches its focus to the epidemic state features to test nodes more
effectively. Conversely, when the process approaches equilibrium, the emphasis
reverts back to the degree and eigenvector centralities.
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C.3 Methodology

We utilize the EpiCURB framework introduced in Chapter 4 to simulate several
epidemics over weighted interaction networks with an average degree of
approximately 3, studying a range of different outbreak control and intervention
assessment strategies that policy makers may consider. The edge weights are sampled
from U (0.5, 1), and correspond to various degrees of transmissibility an interaction
can have, based on its duration and distancing. The pathogen spreads according to the
individual-based mean-feld mechanics described in Chapter 3, following an SEIR

1compartmental formulation with β = 0.0791, ϵ = 3.7 , and γ = 0.05.

When interventions are prioritized by an RL agent, the epidemic is allowed to progress
unhinged until ca = 5 days and ci = 5% infections have been fulflled. We train these
agents according to the routines described in Section 4.3.5, and study their behavior
under different budgeting schemes. The rest of the studied interventions occur
stochastically across the network, and begin after 5 individuals have been exposed to
the pathogen. To simulate different levels of mixing reduction, we effectively remove
a varying proportion of the edges from the infection network. For mask mandates, we
assume a percentage of compliant wearers among the population, considering their
interactions to have a 50% lower infection weight than the original sampled value (or
75% if both contacts use one). Stay-at-home orders presume the targeted fraction of
the nodes and their household immediately discontinue their social patterns, stopping
the disease from being transmitted to/from these hubs. Finally, modelling the
trade-off between digital and manual tracing is based on the overlap Γ and uptake r
parameters introduced in Chapter 3, occurring under the setting τr = τt = 0.05.

To draw the latent space of the RL agent, we use the t-SNE mappings (van der Maaten
and Hinton, 2008) produced by scikit-learn (Pedregosa et al., 2011), using PCA as the
embedding initialization. To cluster the node embeddings, we employ the
HierarchicalClustering routine of scikit-learn. Lastly, to explain the predictions made by
the RL agent, we utilize the GraphLIME method with kRBF kernels for both the feature
and the output spaces.

C.4 Cost-based balancing of public health interventions

Outbreak simulations are a useful tool for determining the impact of different public
health interventions. However, when modelling various policy options
simultaneously, there is no clear indication of which interventions need more efforts
or the expected costs associated with enhancing them. Here, we showcase how a
simple yet powerful simulation-based method can guide the authorities in making
these diffcult decisions.
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FIGURE C.1: Contour plots of the containment levels (i.e. percentage of population
kept healthy) achieved by combinations of different public health interventions.
This fgure illustrates how policy makers can assess and allocate resources to each
measure, according to the desired level of containment. The plots on the frst row
have marked the reference points mentioned in text, with arrows delineating the space
of effort-increase actions needed to reach the next infection threshold. The Digital-
Manual tracing plot also highlights the most important region of the space, where
uptakes are between 20-50%, overlaps are between 10-60%, and 10-15% increases in
each direction leads to ≈ 8% less infections. Contours are obtained by averaging 50-
100 simulations, and applying a Gaussian flter to remove remnant stochastic noise.

Our approach entails creating a visual space whereby the policy makers can easily
study the impact of increasing/decreasing the effort/expenditure for each type of
intervention. This space can take many different shapes, such as contour or 3D plots,
depicting the infuence that combinations of interventions at different strengths have
on the simulated epidemic outcome. For example, Fig C.1 illustrates the average
fraction of individuals kept healthy from 50-100 epidemic runs over several
Holme-Kim networks of N = 2000 nodes, mHK = 3 and p△ = 0.2, when the following
interventions occur simultaneously: reducing mixing and stay-at-home orders;
reducing mixing and mask mandates; classic digital and manual tracing processes,
underpinned by a random testing procedure; or RL-targeted testing and tracing.
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A policy maker would thus be presented with several choices of the form: if the goal is
to achieve a 10-15% reduction in the spread, would it be preferred to move along the X
axis or the Y axis? For example, assume that various factors, such as voluntary
behavioral changes, closing entertainment venues, schools etc., have reduced the
social mixing by about 33% of the pre-epidemic level, and that about 20% of the
investigated community have been advised to stay at home (e.g. over 70s). The frst
plot of Fig C.1 shows that a 10% average reduction in the spread can be achieved either
by further reducing the social mixing by 7.5%, or by increasing the fraction of people
staying at home by 12% of the total population. Similarly, the second plot shows that
increasing the mask wearing fraction from 27% to 41% has a comparable effect to
decreasing the social mixing by more than 25%, resulting in 15% less infections
overall. By applying a transparent cost-beneft analysis that accounts for the economic
and social implications of scaling up interventions, authorities can use such simulated
outcomes to determine which of them are most effective to implement or expand.

A key consideration for allocating resources for testing and tracing is the presence of
diminishing returns: as the desired infection reach becomes more stringent, the
required budget increase has to be larger to achieve it. The third plot of Fig C.1
illustrates this point clearly. Additionally, the latter also reveals that, for the parameter
confguration under consideration, a reduction of about 8% in the pathogen attack rate
is achieved by increasing either the digital tracing adoption rates within the acceptable
and feasible region (20-50%, see Section 3.4.5) or the manual tracing coverage in the
moderate range (10-60%) by approximately 10-15% (with smaller effects for the
uptake, however). Here, a cost-based assessment can establish which of these actions
is more advantageous in each particular circumstance. For example, at lower adoption
levels (i.e. < 30%), the uptake can be more viable to improve, since simple usability or
privacy enhancements could be enough to attract more users. In contrast, beyond a
certain threshold, increasing the adoption of any application is far more challenging,
while improving the staffng of the manual process could become more achievable.

Finally, the last plot of Fig C.1 presents the daily budgeting trade-off between testing
and digital tracing when an RL agent is tasked to prioritize both processes. Using such
visualizations maximizes the benefts of utilizing our targeted approach for epidemic
control since policy makers can optimize the budgets allocated for each intervention
in a direct manner. When tests in the studied community are insuffcient, rationalizing
them without compromising on the epidemic outcome is possible by increasing the
number of contacts that are to be isolated accordingly. Conversely, if the testing
budget is less strict, more contacts can be allowed to continue their normal behavior.
The analysis reveals that the two processes have a similar dependence on the budget
allocation, highlighting not only the signifcance of contact tracing, but also the
importance of balancing the two for an effective pathogen containment.
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FIGURE C.2: t-SNE plots of the node hidden states ht and dendrograms of their hier-
archical clustering into 7 groups. The frst column shows a GNN ranker after training,
while the second column shows the same model with initial parameter values. We plot
multiple day intervals for a network of N = 700 nodes, fxing the daily testing budget
to k = 5. The latent space of the trained ranker is informative, often grouping the new
infected (red) close to the recent negatives (green), while pushing most detected indi-
viduals (blue) to specifc regions. In contrast, the untrained model is unable to cluster

the nodes in a meaningful manner, with infections constantly soaring.

C.5 Inspecting the latent space of learning-based agents

Given the superior performance exhibited by the learning-based control agents
presented in Chapter 4, it is sensible to assume the afferent node hidden states ht

encode insightful patterns that underpin their success. The frst column of Fig C.2
showcases multiple t-SNE mappings and dendrograms corresponding to the node
embeddings ht of an RL agent during different time periods of an epidemic simulation
over a Barabási-Albert network with 700 nodes. We note that the detected positives
(colored in blue) have a tendency to be grouped together, while the new infections
(colored in red) get pushed to a handful of clusters within the same region as the
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recent negative tests (colored in green). Judging by the infection likelihood pertaining
to each of the dendrogram’s clusters, which can be obtained by averaging past data or
by predicting with an SL agent, policy makers can identify groups at risk that should
be prioritized for focused health interventions, such as localized mask mandates or
mass vaccination campaigns.

By comparison, the second column displays similar plots, but this time for an
untrained model with randomly initialized parameters. As a consequence of using the
message passing routines of GNNs, the afferent embedding space presents some
structure even before model training. However, one can observe there are no
boundaries that clearly delimit a specifc vertex category in this space, while the
infection counts remain very high throughout all intervals. In fact, by controlling
testing with the trained model, only 147 out of the simulated 700 people eventually
get infected, while the untrained model is unable to prevent more than 600 overall
infections. These visualizations, together with the quantitative assessment of the
simulation performance, can thus act as strong indicators for the necessity of
(re)training the model.

C.6 Explaining the decisions taken by the GNN ranker

For any given day in the controlled epidemic, one can generate GraphLIME
explanations for the decisions taken by the learning-based agents. Fig C.3a presents
the GraphLIME feature importances for day 9 of an epidemic simulation over a
Barabási-Albert network, revealing that the RL agent preferentially attends to the
centrality features in the early stages of the outbreak when it possess limited
information about the diffusion state. However, as soon as the tester records several
positive individuals in the vicinity of a vertex, the rank of the latter markedly
increases. After neighborhoods become flled with detected infections, the agent starts
targeting the affected sectors, thus switching its focus to the epidemic state features
(see Fig C.3b). As the results in Chapter 4 also suggest, the degree remains an effective
predictor of a node’s importance during the entire diffusion process. Interestingly, the
untested fag is often correlated with the action scores during the frst 30 days of the
simulation, which may indicate the agent favors exploring unknown sectors in certain
scenarios, while in others it reinforces the testing of recently-targeted regions.

In the later stages, the fag indicating whether a node has ever tested positive gains
more importance for its neighbors’ rank. Conversely, the number of infected within
the immediate hops becomes highly correlated with the degree centrality and this fag,
thus providing less additional information compared to earlier days. GraphLIME
recognizes this by reducing the relative importance of the corresponding features (see
Fig C.4). Fig C.4a also illustrates that the random features intermittently play a role in



C.6. Explaining the decisions taken by the GNN ranker 133

(A) Initial predictions. (B) Early midway predictions.

FIGURE C.3: Feature importances βip in the earlier stages. (a) Initially, the agent
does not possess enough information about the epidemic state, and therefore mostly
focuses on the centrality features. (b) After a while, the agent starts attending to the
epidemic state features as well, such as the previously untested or the positive fags,
and the number of infected neighbors. Top row displays each node’s feature values,

while neighborhood averages are shown underneath.

ip

(A) Later midway predictions. (B) Final-days predictions.

FIGURE C.4: Feature importances βip in the fnal stages. (a) The epidemic state fea-
tures continue to be important predictors of a node’s rank in the fnal segment of the
simulation, while the degree centrality remains the top predictor. (b) In the fnal days,
both the degree and the eigenvector centrality become again the most important fea-
tures for ranking vertices, with the epidemic state information either smoothing out

or becoming highly correlated with the latter.

the agent’s decision making, by encoding information that is often missing from the
other features. As the simulation advances, the epidemic state features begin
converging to similar values due to the underlying diffusion process and the message
passing iterations, reducing their discriminability potential. The random features, in
contrast, encode positional and structural information that is specifc to each network
confguration, enhancing the expressiveness of the agent’s state representation. By
augmenting the set of features with these additional values, the agent can single out
different nodes and identify their roles in the graph, adjusting its policy accordingly.
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As the epidemic process nears an equilibrium state, in the fnal days of the simulation,
when most nodes are either recovered or isolated, both centrality measures emerge as
the dominant predictors once again. Fig C.4b corroborates this observation.

C.7 Conclusion and future work

This chapter demonstrates how EpiCURB and appropriate visualization techniques
can be used to inform various aspects of decision-making in epidemic control. As
such, network-based simulations can reveal the suitable stringency/strength level of
each public health intervention required for attaining the desired degree of
containment. When standard packages of measures are deployed, our approach can
inform policy makers where additional resources should be allocated. Balancing these
interventions in terms of the associated budgets and outcomes is paramount for the
effective functioning of a society during severe pathogen outbreaks, and therefore
implementing and assessing our proposed framework on specifc real-world scenarios
could make us better prepared for future epidemics.

When learning-based autonomous agents are utilized as a platform for public health
decision making, their performance has to be closely monitored by the authorities.
Here, we bring forward different visualization techniques for addressing this
requirement, enabling policy makers to audit every node-level decisions through local
perturbation-based models or inspect the epidemic state and the agents’ status
through clustering their latent space. The latter could also facilitate the identifcation
of groups most at risk for the purpose of targeting mass health interventions, such as
vaccination campaigns. Future work could expand on our clustering analysis,
determining the features that contribute to each grouping, as well as enhancing the
proposed approaches for targeting clusters (e.g. adding demographic components).
Furthermore, we hypothesize that a temporal analysis of the feature importances
obtained from GraphLIME could reveal hidden patterns that better account for the
agents’ decision-making process, which could ultimately enhance our understanding
of their internal mechanisms, and thus their utility.
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Appendix D

EpiCURB: Supporting Material

D.1 Open-source model

The link for the simulator implementation can be found in Appendix B.1. The
open-source code for the control agents under scrutiny can be analyzed via accessing:
https://github.com/andrei-rusu/control-diffusion.

D.2 Markov chain Monte Carlo epidemic model ftting

By using Markov chain Monte Carlo (MCMC) algorithms, the EpiCURB framework
can be adjusted to the specifc epidemiological context of different countries or
regions, ultimately facilitating the design of realistic targeted programmes for testing,
tracing, and vaccinating. The actual state of the pathogen diffusion process is typically
refected more accurately by the total number of hospitalizations and deaths in the
target area than by the number of confrmed infections (Hyafl and Moriña, 2021;
Wang et al., 2022), as the latter often represents only a small fraction of the real
infection count (Giattino, 2020). Hence, the former are customary used as dependent
variables for parameter estimation. For instance, the COVID-19 base transmission rate
that we use throughout this thesis is derived from hospitalization data from the
Île-de-France region (Di Domenico et al., 2020).

In Fig D.1, we present multiple illustrative examples of ftting the SEIR
individual-based mean-feld model outlined in Section 4.3.1 to the number of
COVID-19 deaths reported between 12 January 2020 and 11 July 2020 in different US
states.1 The underlying spreading networks are assumed to be Barabási-Albert graphs

1COVID-19 infection data from the United States: https://covidtracking.com

https://github.com/andrei-rusu/control-diffusion
https://covidtracking.com
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FIGURE D.1: Mortality curve ftting using MCMC. Data represents COVID-19 deaths
recorded in 4 US states. Simulations performed via the IBMF model of Section 4.3.1.

featuring 10000-20000 nodes and 3-10 average degree, empirically adjusted based on
population estimates from each region. To obtain predictions of the number of deaths
from the SEIR formulation, we assume that a fraction ρD of the R compartment dies.
While keeping the exposed duration fxed at ϵ−1 = 3.7 days, the set of parameters we
ft consists of: the transmission rate β, the recovery rate γ, the number of infections at
time t0, and the death fraction ρD. We obtain the fnal parameter estimates after
running several drawing and tuning steps using standard MCMC routines provided
by the PyMC library. We use the Metropolis-Hastings algorithm (Hastings, 1970) to
sample the posterior of the frst three parameters, but we use the No-U-Turn Sampler
(NUTS) method (Homan and Gelman, 2014) to sample the posterior of ρD, since its
gradient can be calculated given the simulated cardinality of the R compartment.

As can be noted from the results above, our model provides a reasonable ft to the
given data, largely matching the trends observed in it. Nevertheless, the model
exhibits some limitations in dealing with highly irregular regions of the space, which
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may stem from data inaccuracies, such as the absence of change between days 52 and
75 in the Wyoming case, or the low death toll recorded between days 34 and 90 in the
case of Alaska, surrounded by sharp increases. For reference, we also present an
example where the ft is less precise overall. We posit that the curve misalignment in
the case of North Dakota is attributable to two factors: the long initial period with no
recorded deaths makes it diffcult for the model to adjust to the subsequent steep rise,
and the size of the network simulated is too small to accurately refect the more
complex viral diffusion patterns recorded for this state.
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Appendix E

Tools and Preliminary Experiments

E.1 Tools

Generating network data in this thesis has been carried out using the networkx library
(Hagberg et al., 2008). For normalizing data, clustering routines, and training simple
predictors like SVMs, we have used scikit-learn (Pedregosa et al., 2011) from the
classic machine learning toolbox. The GNN models have been implemented using
PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey and Lenssen, 2019). Training
has been completed using PyTorch and PyTorch Lightning routines (Falcon et al.,
2021). Heavier compute tasks have been performed via submitting SLURM jobs to the
Iridis 5 HPC. Finally, experiment logging has been done using Tensorboard (Abadi
et al., 2016) and the Neptune AI logger (neptune.ai, 2020).

E.2 Employed or explored network datasets

• Static graph benchmark datasets for node classifcation: Cora, Citeseer, Pubmed,
ogbn-arxiv. Citation networks proposed by Yang et al. (2016) and Wang et al.
(2020a), widely-used in the graph-based ML literature. Nodes are documents,
while edges are citations. Available in PyTorch Geometric and the Open Graph
Benchmark (Hu et al., 2020).

• Static graph benchmark datasets for graph classifcation: AIDS, COX2, MUTAG
contain networks derived from small molecules, where class labels encode a
biological property (e.g. toxicity). ENZYMES, PROTEINS, DD represent various
macromolecules rendered by different graph models. REDDIT-BINARY,
IMDB-BINARY are derived from social networks. All were collected and curated
by Kersting et al. (2016), being directly accessible from PyTorch Geometric.
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• Raw aggregated mobility data and co-location maps during the COVID-19
pandemic: Google COVID-19 Community Mobility Reports, Facebook Data For Good,
Cuebiq Data For Good, SafeGraph. Refer to Appendix A.3.1 for more details.

• Dynamic graph datasets describing various diffusion processes: Mobility data
and per-region infection estimates: Covid19 England, Chickenpox Hungary. Twitter
data of ‘tweets’ sent between tennis players and news companies: Twitter Tennis
RG and UO. For more details, please refer to Rozemberczki et al. (2021).

• Small-scale social networks data derived by wearable devices / phone GPS
sensing: Social Evolution (see Section 3.3.3 and Madan et al. (2012)) and Reality
Mining (Eagle and Pentland, 2006) involve students from MIT and their
approximated interactions. Haggle represents contacts between people measured
by carried wireless devices (Kunegis, 2013). Highscool contains the temporal
network of contacts between students in a high school in Marseilles (Fournet
and Barrat, 2014).

• Larger social networks of contacts: Infectious (Isella et al., 2011) contains the daily
dynamic contact networks collected during the Infectious SocioPatterns event
that took place at the Science Gallery in Dublin.

E.3 Preliminary benchmarking of graph-based ML methods

To get started with graph-based machine learning, we have trained several popular
GNN architectures and SVM classifers on the Planetoid datasets: Cora, Citeseer and
PubMed (Yang et al., 2016). For SVMs, we have precomputed node-level heat
diffusion kernels, as presented in Section 2.6. For computing the GNN accuracies, we
have used either 2 or 3 layers of ReLU- or ELU-activated GCN, GAT, GIN and
GraphSAGE with mean aggregation formulations, utilizing an FA layer after these.
All hyperparameters have been empirically chosen, except for the initial learning rate
that was tuned using PyTorch Lightning (Falcon et al., 2021). The optimization has
been performed over a cross-entropy criterion with a Lasso penalty, using the AdamW
optimizer (Loshchilov and Hutter, 2019), a varying weight decay, early-stopping
based on validation accuracy, and a cosine annealing learning rate scheduler. The
standard train-validation-test splits has been utilized in each case.

The test results we have obtained from 15 different GNN weight initializations,
together with the best performing solution found by the SVM, can be consulted in
Table E.1. For GNNs, we provide both the average accuracies, and the standard errors
of the means as uncertainty bounds. We observe that the SVM can effectively extract
some structural features from the Cora dataset, even though it employs a simple
kernel, and it achieves this much more rapidly than any GNN. However, it is unable
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TABLE E.1: Test accuracies on node classifcation.

Model Cora Citeseer PubMed

GCN 81.20 ± 0.38 68.86 ± 0.27 77.93 ± 0.15
GAT 81.71 ± 0.33 69.26 ± 0.50 77.67 ± 0.12
GIN 80.77 ± 0.32 65.61 ± 0.27 77.42 ± 0.51

GraphSAGE (mean agg.) 80.56 ± 0.27 69.68 ± 0.32 77.02 ± 0.16
SVM (diffusion kernel) 72.70 50.70 OOM

to replicate this result for Citeseer, probably due to the latter being a signifcantly
harder dataset (as evidenced by the outcomes of the other models). For PubMed, due
to its large number of nodes, the matrix exponentiation needed for computing the heat
diffusion kernel could not be performed within our memory bounds.
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O. Kiss, F. Beres, G. López, N. Collignon, and R. Sarkar. PyTorch Geometric
Temporal: Spatiotemporal Signal Processing with Neural Machine Learning
Models. arXiv:2104.07788 [cs], June 2021. URL http://arxiv.org/abs/2104.07788.

G. Rozhnova and A. Nunes. SIRS Dynamics on Random Networks: Simulations and
Analytical Models. In J. Zhou, editor, Complex Sciences, Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 792–797, Berlin, Heidelberg, 2009. Springer. ISBN 978-3-642-02466-5. .

X. Rui, F. Meng, Z. Wang, G. Yuan, and C. Du. SPIR: The potential spreaders involved
SIR model for information diffusion in social networks. Physica A: Statistical
Mechanics and its Applications, 506(C):254–269, 2018. URL
https://ideas.repec.org//a/eee/phsmap/v506y2018icp254-269.html.

G. Rummery and M. Niranjan. On-Line Q-Learning Using Connectionist Systems.
Technical Report CUED/F-INFENG/TR 166, November 1994.

A. C. Rusu, R. Emonet, and K. Farrahi. Modelling digital and manual contact tracing
for COVID-19. Are low uptakes and missed contacts deal-breakers? PLOS ONE, 16
(11):e0259969, November 2021. ISSN 1932-6203. .

https://www.bloomberg.com/news/articles/2021-02-23/swedish-face-mask-skepticism-fades-as-infection-rates-rise
https://www.bloomberg.com/news/articles/2021-02-23/swedish-face-mask-skepticism-fades-as-infection-rates-rise
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/populationandhouseholdestimatesenglandandwales/census2021
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/populationandhouseholdestimatesenglandandwales/census2021
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/populationandhouseholdestimatesenglandandwales/census2021
https://royalsociety.org/-/media/policy/projects/set-c/set-c-facemasks.pdf
https://royalsociety.org/-/media/policy/projects/set-c/set-c-facemasks.pdf
http://arxiv.org/abs/2104.07788
https://ideas.repec.org//a/eee/phsmap/v506y2018icp254-269.html
https://Bloomberg.com


172 BIBLIOGRAPHY

A. C. Rusu, K. Farrahi, and M. Niranjan. Flattening the curve through reinforcement
learning driven test and trace policies. In 16th EAI International Conference on
Pervasive Computing Technologies for Healthcare (12/12/22 - 14/12/22), December 2022.
URL https://eprints.soton.ac.uk/473363/.

A. C. Rusu, K. Farrahi, and M. Niranjan. EpiCURB: Learning to derive epidemic
control policies. IEEE Pervasive Computing, November 2023. ISSN 1536-1268. .
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J. Månsson, A. M. M. Herrera, F. Marinho, A. H. Mirkuzie, A. T. Misganaw,
L. Monasta, P. Naik, S. Nomura, E. G. O’Brien, J. K. O’Halloran, L. T. Olana, S. M.
Ostroff, L. Penberthy, R. C. R. Jr, G. Reinke, A. L. P. Ribeiro, D. F. Santomauro, M. I.
Schmidt, D. H. Shaw, B. S. Sheena, A. Sholokhov, N. Skhvitaridze, R. J. D. Sorensen,

https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ


177BIBLIOGRAPHY

E. E. Spurlock, R. Syailendrawati, R. Topor-Madry, C. E. Troeger, R. Walcott,
A. Walker, C. S. Wiysonge, N. A. Worku, B. Zigler, D. M. Pigott, M. Naghavi, A. H.
Mokdad, S. S. Lim, S. I. Hay, E. Gakidou, and C. J. L. Murray. Estimating excess
mortality due to the COVID-19 pandemic: A systematic analysis of
COVID-19-related mortality, 2020–21. The Lancet, 399(10334):1513–1536, April 2022.
ISSN 0140-6736, 1474-547X. .

K. Wang, Z. Shen, C. Huang, C.-H. Wu, Y. Dong, and A. Kanakia. Microsoft Academic
Graph: When experts are not enough. Quantitative Science Studies, 1(1):396–413,
February 2020a. ISSN 2641-3337. .

L. Wang, X. Ben, A. Adiga, A. Sadilek, A. Tendulkar, S. Venkatramanan, A. Vullikanti,
G. Aggarwal, A. Talekar, J. Chen, B. Lewis, S. Swarup, A. Kapoor, M. Tambe, and
M. Marathe. Using Mobility Data to Understand and Forecast COVID19 Dynamics.
medRxiv, page 2020.12.13.20248129, December 2020b. .

L. Wang and B. C. Wood. An epidemiological approach to model the viral
propagation of memes. Applied Mathematical Modelling, 35(11):5442–5447, November
2011. ISSN 0307-904X. .

X. F. Wang and G. R. Chen. Complex networks: Small-world, scale-free and beyond.
IEEE Circuits and Systems Magazine, 3(1):6–20, 2003. ISSN 1531-636X. .

Y. Wang, W. Huang, L. Zong, T. Wang, and D. Yang. Infuence maximization with limit
cost in social network. Science China Information Sciences, 56(7):1–14, July 2013. ISSN
1869-1919. .

M. Waniek, P. Holme, K. Farrahi, R. Emonet, M. Cebrian, and T. Rahwan. Trading
contact tracing effciency for fnding patient zero. Scientifc Reports, 12(1):22582,
December 2022. ISSN 2045-2322. .

C. Watkins. Learning From Delayed Rewards. January 1989.

D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442, June 1998. ISSN 1476-4687. .

D. J. Watts, P. S. Dodds, and J. D. s. a. e. a. T. E. served as associate editor for this
article. Infuentials, Networks, and Public Opinion Formation. Journal of Consumer
Research, 34(4):441–458, 2007. ISSN 0093-5301. .

B. Y. Weisfeiler and A. A. Lehman. The reduction of a graph to canonical form and the
algebra which appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.
URL https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

WHO. WHO Coronavirus (COVID-19) Dashboard, August 2023. URL
https://covid19.who.int.

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://covid19.who.int


178 BIBLIOGRAPHY

F. Wu, T. Zhang, A. H. de Souza Jr., C. Fifty, T. Yu, and K. Q. Weinberger. Simplifying
Graph Convolutional Networks. arXiv:1902.07153 [cs, stat], June 2019. URL
http://arxiv.org/abs/1902.07153.

Y. Wu, M. Gao, M. Zeng, F. Chen, M. Li, and J. Zhang. BridgeDPI: A Novel Graph
Neural Network for Predicting Drug-Protein Interactions. arXiv:2101.12547 [cs,
q-bio], January 2021. URL http://arxiv.org/abs/2101.12547.

C. Wymant, L. Ferretti, D. Tsallis, M. Charalambides, L. Abeler-Dörner, D. Bonsall,
R. Hinch, M. Kendall, L. Milsom, M. Ayres, C. Holmes, M. Briers, and C. Fraser. The
epidemiological impact of the NHS COVID-19 app. Nature, 594(7863):408–412, June
2021. ISSN 1476-4687. .

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How Powerful are Graph Neural Networks?
In arXiv:1810.00826 [Cs, Stat], February 2019. URL
http://arxiv.org/abs/1810.00826.

Z. Yan, X. Zhou, and R. Du. An enhanced SIR dynamic model: The timing and
changes in public opinion in the process of information diffusion. Electronic
Commerce Research, September 2022. ISSN 1572-9362. .

Z. Yang, W. W. Cohen, and R. Salakhutdinov. Revisiting Semi-Supervised Learning
with Graph Embeddings. arXiv:1603.08861 [cs], May 2016. URL
http://arxiv.org/abs/1603.08861.

X. Yu, S. Lu, L. Guo, S.-H. Wang, and Y.-D. Zhang. ResGNet-C: A graph convolutional
neural network for detection of COVID-19. Neurocomputing, 452:592–605, September
2021. ISSN 0925-2312. .

W. Yuan, K. He, D. Guan, L. Zhou, and C. Li. Graph kernel based link prediction for
signed social networks. Information Fusion, 46:1–10, March 2019. ISSN 1566-2535. .

L. Zenk, G. Steiner, M. Pina e Cunha, M. D. Laubichler, M. Bertau, M. J. Kainz,
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