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A B S T R A C T

The widespread adoption of effective hybrid closed loop systems would represent an important milestone of
care for people living with type 1 diabetes (T1D). These devices typically utilise simple control algorithms
to select the optimal insulin dose for maintaining blood glucose levels within a healthy range. Online
reinforcement learning (RL) has been utilised as a method for further enhancing glucose control in these
devices. Previous approaches have been shown to reduce patient risk and improve time spent in the target
range when compared to classical control algorithms, but are prone to instability in the learning process,
often resulting in the selection of unsafe actions. This work presents an evaluation of offline RL for developing
effective dosing policies without the need for potentially dangerous patient interaction during training. This
paper examines the utility of BCQ, CQL and TD3-BC in managing the blood glucose of the 30 virtual patients
available within the FDA-approved UVA/Padova glucose dynamics simulator. When trained on less than a
tenth of the total training samples required by online RL to achieve stable performance, this work shows that
offline RL can significantly increase time in the healthy blood glucose range from 61.6±0.3% to 65.3±0.5% when
compared to the strongest state-of-art baseline (𝑝 < 0.001). This is achieved without any associated increase in
low blood glucose events. Offline RL is also shown to be able to correct for common and challenging control
scenarios such as incorrect bolus dosing, irregular meal timings and compression errors. The code for this work
is available at: https://github.com/hemerson1/offline-glucose.
1. Introduction

Type 1 diabetes (T1D) is an autoimmune disease characterised by
an insufficiency of the hormone insulin, which is required for blood
glucose regulation. People with T1D must regularly monitor their blood
glucose levels and estimate the correct dosage of insulin and carbo-
hydrate intake to avoid dangerous instances of low and high blood
glucose. This includes taking bolus insulin to account for ingested meal
carbohydrates, in addition to adjusting basal insulin to account for
fluctuations between meals. Hybrid closed loop systems provide an
opportunity for people with T1D to automatically regulate their basal
insulin dosing [1–3]. These devices consist of an insulin pump con-
nected to a continuous glucose monitor (CGM) by a control algorithm.
The CGM measures the blood glucose level of the user and the control
algorithm uses the CGM data to instruct the insulin pump to deliver the
required dosage. This process repeats at regular intervals and corrects
for deviations in blood glucose from some target blood glucose range
or value. Trials of these devices in adults and pediatrics have shown a
significant association between the use of hybrid closed loop systems
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and improvements to time spent in the recommended blood glucose
range [4–6]. Hartnell et al. provides a detailed overview of existing
closed loop devices and their functionality [7].

The majority of commercially available hybrid closed loop systems
utilise predictive integral derivative (PID) controllers or model pre-
dictive controllers (MPC) [8]. These algorithms are robust and easily
interpretable, but limit the efficacy of the devices. PID algorithms are
prone to overestimating insulin doses following meals and are unable to
easily incorporate additional factors which affect blood glucose, such as
insulin activity, time of day and exercise [9,10]. In contrast, MPCs typ-
ically utilise linear or simplified models of glucose dynamics, which are
unable to capture the full complexity of the task [11,12]. Reinforcement
learning (RL) has been proposed as a means of addressing this problem;
through which a decision-making agent learns the optimal sequence of
actions to take in order to maximise some concept of reward. In glucose
control, RL algorithms have demonstrated an ability to learn sophisti-
cated and personalised control policies for individual patients. These
policies often outperform their PID and MPC counterparts when trained
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and evaluated in simulators of glucose dynamics, but are impractical
for clinical use in their present state [13–15]. Current approaches
predominantly utilise online RL algorithms, which require interaction
with a patient or simulator during training to develop control policies
and learn via a process akin to trial and error. These agents typically
start with a poor understanding of their environment and are prone to
learning instability [16,17], both of which could feasibly contribute to
the selection of dangerous insulin doses. This facet of online RL limits
its utility in real-world hybrid closed loop systems; highlighting the
necessity for methods capable of learning accurate dosing policies from
clinically obtainable quantities of glucose data without the associated
risk.

This work presents a proof-of-concept in silico study on the use of
offline RL for glucose control, in which an RL agent learns without en-
vironmental interaction during training and instead learns from a static
dataset of demonstrations collected under another agent. This entails a
rigorous analysis of the offline RL algorithms: batch constrained deep
Q-learning (BCQ) [18], conservative Q-learning (CQL) [19] and twin
delayed deep deterministic policy gradient with behavioural cloning
(TD3-BC) [20] in their ability to develop safe and high performing
insulin dosing strategies in hybrid closed loop systems. The presented
algorithms are trained and tested across a cohort of 30 virtual patients
(10 children, 10 adolescents and 10 adults) and their performance and
sample-efficiency is scrutinised with respect to the current strongest
online RL and control baselines. Practical limitations such as missing
CGM data and suboptimally set PID parameters are also explored, as
these are common features of real-world blood glucose data. To ensure
the reliable and effective operation of offline RL in the worst-case
scenarios, safety is scrutinised across a range of realistic and common
control events. This includes overdosing in mealtime insulin, sporadic
and irregular meal events and erroneous compression lows caused
by force on the CGM insertion site. This work shows that offline RL
can yield more effective and safer insulin dosing policies without the
patient interaction required by prior RL approaches. Furthermore, this
method also utilises significantly smaller samples of data making it
more applicable for use in real patients. The presented results provide a
foundational overview of the advantages and limitations of using offline
RL in glucose control tasks and will provide a reference for future
research seeking to integrate offline RL in hybrid closed loop systems
before trialling on real-world patients in a controlled setting.

2. Related work

Offline RL is an area of increasing interest in healthcare due to
the safety concerns associated with incorrect decision-making [21].
Previous healthcare research has focused on developing lung cancer
protocols from samples of historical data [22], identifying optimal
recommendations for sepsis treatment [23] and facilitating RL policy
evaluation in an offline medical setting [24].

Despite the prevalence of offline RL in other domains of medicine,
its use in glucose control has been limited [25]. Javad et al. used
a q-learning algorithm trained offline on samples of clinical data to
select the optimal daily basal dose for patients of a given demo-
graphic [26]. Shi et al. presented an offline q-learning approach trained
on the OhioT1DM dataset for selecting discrete doses of basal insulin
at hourly intervals [27]. Similarly, Li et al. used a model-based RL
algorithm to learn the blood glucose dynamics of patients recovering
from diabetic ketoacidosis [28]. This learned model was then used
to train an online q-learning algorithm to select the optimal basal
dose at three hour intervals over a 24-hour period. Although these
approaches presented methods for learning dosing policies offline, the
timeframe over which they act would be insufficient for managing
the short-term blood glucose fluctuations associated with meals and
exercise. The most significant application of offline RL for hybrid closed
loop systems was presented in Fox, in which the methods BCQ and
bootstrapping error accumulation reduction (BEAR) were compared to
2

online RL approaches trained on an imperfect simulator of a single
adult patient [29]. Analysis showed that although offline RL was capa-
ble of developing competent control policies, the achieved performance
was less than that obtained using an online approach trained on an
imperfect simulator.

Blood glucose forecasting is an integral aspect of T1D manage-
ment [30], consequently significant research has been focused on ex-
tending established control algorithms using blood glucose prediction
models derived via supervised learning. This has included using quan-
tile regression to predict upper and lower bounds on future blood
glucose values [31], bolstering fuzzy logic controllers with neural net-
work prediction [32] and leveraging a pair neural networks to forecast
blood glucose and select insulin doses based on the predictions [33].
A number of these approaches have also been experimentally vali-
dated within animal trials [34,35]. Of particular note, Chen et al.
trains a behavioural cloning agent on the insulin doses of an MPC
demonstrator; providing a sample-efficient alternative of learning in-
sulin dosing strategies without the risk of dangerous action selection
during training. Supervised learning has also been used in hybrid
closed loop systems for functions secondary to insulin dosing, such as
hypoglycemia prediction [36] and detecting unreported carbohydrate
consumption [37].

Within online RL, several attempts have been made to address
concerns around safety and learning instability in glucose control. Fox
et al. employed a transfer learning approach to develop dosing policies
from a general patient population before fine-tuning them on target
patients [15]. Lim et al. used a PID controller to guide an online RL
algorithm in the early stages of its learning; progressively introducing
a greater proportion of RL agent actions [38]. Zhu et al. developed
an online RL algorithm capable of integration with a dual hormone
pump, allowing control of both insulin and glucagon dosing and hence
for low blood glucose corrections to be made through glucagon infu-
sion [39]. These approaches all showed comparable or reduced time
spent in the potentially dangerous low blood glucose range when
contrasted with MPC and PID algorithms, but are limited by their
reliance on glucose dynamics simulators. These simulators represent a
simplification of true blood glucose dynamics; with almost all unable
to incorporate common events such as exercise, stress and illness. In
moving towards use in real-world hybrid closed loop systems, online RL
performance is likely to deteriorate as latent variables start to influence
the environment [40]. In addition, glucose dynamics simulators allow
for unlimited training data generation. Of the approaches highlighted
which explicitly stated their sample size, the algorithms used 7000 days
(>19 years) [15] and 1530 days (>4 years) [39] of simulated data to
develop personalised dosing policies. In an in vivo setting, allowing
an RL algorithm to control a patient’s blood glucose for several years
without any associated guarantee of safety would be unethical.

This work represents the first rigorous evaluation of offline RL
for glucose control; contrasting the performance of a diverse range
of state-of-the-art algorithms in a comprehensive cohort of virtual
patients. Evaluation is performed for a combined 41,660 virtual days
(>114 years) and the presented algorithms are evaluated inline with
the current clinical guidance for assessing patient glucose control. This
analysis holds a particular focus on exploring the practical and safety
limitations of offline RL within hybrid closed loop systems. In silico
evaluation of this nature is essential in justifying trials of offline RL for
glucose control in real patient populations.

3. Materials and methods

3.1. Problem formulation

The task of glucose control in hybrid closed loop systems can be
modelled as a partially observable Markov decision process (POMDP)
described by (, , 𝛺,  , , ). In each timestep 𝑡, the agent in a single
state 𝑠 ∈ , describing the current environment, interacts with the
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environment via an action 𝑎 ∈  and receives a reward 𝑟 = (𝑠) ∈ R
pecifying the optimality of the action, before transitioning into a new
tate 𝑠′ ∈  with transition probability 𝑃 (𝑠′|𝑠, 𝑎) =  (𝑠, 𝑎, 𝑠′). In a
OMDP, the agent is unable to directly view the next state 𝑠′ ∈ ,
nd instead receives an observation 𝑜 ∈ 𝛺 determined by probability
(𝑜′|𝑠′, 𝑎) = (𝑜′, 𝑠′, 𝑎) which provides insight into the next state [41].

n the glucose control setting, the state and action are defined by the
atient blood glucose value 𝑔𝑡 and by the basal insulin dose 𝑖𝑡 in that
imestep. The partial observability of the state results from the inherent
oise in the CGM devices used to make blood glucose measurements
nd the dependency of blood glucose values on historical data, such as
ngested carbohydrates 𝑐𝑡, bolus doses 𝑏𝑡 and previous blood glucose
alues [42]. Contextual information was incorporated in this work by
tilising the following state:

𝑡 = [𝑔𝑡, 𝑔𝑡−1, 𝑔𝑡−2,… , 𝑔𝑡−8, 𝐼𝑡,𝑀𝑡]. (1)

his representation consists of a rolling window of measured blood
lucose values updated every three minutes using the past four hours
f blood glucose data spaced at 30-minute intervals, with 𝑔𝑡 being
he blood glucose in the current timestep and 𝑔𝑡−8 being the blood
lucose four hours prior. An estimation of the combined insulin activity
f basal and bolus insulin (insulin-on-board) 𝐼𝑡 and an estimation of
arbohydrate activity 𝑀𝑡 are also included and given by [43]:

𝑡 =
𝑁
∑

𝑡′=0

(

1 − 𝑡′

𝑁 + 1

)

[

𝑏𝑡−𝑡′ + 𝑖𝑡−𝑡′
]

, (2)

𝑀𝑡 =
𝑁
∑

𝑡′=0

(

1 − 𝑡′

𝑁 + 1

)

[

𝑐𝑡−𝑡′
]

, (3)

where 𝑁 represents the number of prior timesteps the algorithm con-
siders in its decision-making. This representation simplifies true insulin
and carbohydrate activity by assuming that they decay linearly to zero
over a four hour period. This state was selected in place of the full se-
quence of blood glucose, carbohydrate and insulin data utilised in other
approaches to reduce state dimensionality and to avoid modifying the
offline RL methods to incorporate recurrency [14,15,39]. The reward
for the agent was given by the negative of the Magni risk function,
which models the clinical risk for a given blood glucose value [44].
An additional penalty of −1e5 was added for blood glucose values
beyond the physiologically feasible range of 10 to 1000 mg/dl. This
modification is several orders of magnitude larger than the obtainable
reward under the Magni risk function and was included as an incentive
for the agent to not purposefully terminate the environment and avoid
future negative reward. The parameters for the risk function are given
as follows [15]:

𝑟𝑖𝑠𝑘(𝑔𝑡) = 10 ⋅
(

3.5506 ⋅
(

log
(

𝑔𝑡
)0.8353 − 3.7932

))2
. (4)

A reward function of this form ensures that low blood glucose events
are punished more severely than high blood glucose events; reflecting
the greater immediate risk low blood glucose events pose to patient
health. The reward is at a maximum when blood glucose is approxi-
mately in the centre of the target range (70–180 mg/dl). This reward
function was selected as prior work found it resulted in the greatest
empirical performance [15], however alternative reward functions for
glucose control are referenced in Tejedor et al. [45].

3.2. Offline reinforcement learning

RL algorithms learn the optimal series of actions to take in a given
environmental state to maximise the agent’s total reward received. This
state–action mapping is referred to as the agent’s policy and is updated
from demonstrations of interactions with the chosen environment.
Typically, environmental demonstrations are generated in an online
manner, in which the agent takes actions in the environment and
updates its understanding in parallel. However in offline RL, the agent
3

is incapable of environmental interaction during the training procedure
and instead must rely on samples generated by a demonstrator in a
retrospective or simulated dataset, such as a PID algorithm, to build
an understanding of the POMDP [21]. RL methods can be broadly
divided into model-free and model-based, which are distinguished by
the use of a dynamics model through which the transition probability
is approximated. Alternatively, model-free approaches often estimate
the Q-function, which defines the expected future reward of the agent
when taking action 𝑎 in state 𝑠 and then continuing to make decisions
using the learned policy 𝜋(𝑠):

𝑄𝜋 =

[ ∞
∑

𝑖=𝑡+1
𝛾 𝑖𝑟(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1) ∣ 𝑠, 𝑎

]

, (5)

where 𝛾 ∈ [0, 1) weights the agent’s future reward. In the simplest form,
an agent updates its approximation of the Q-function via the Bellman
equation:

𝑄(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼) ⋅𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 ⋅
(

𝑟𝑡 + 𝛾 ⋅max
𝑎

𝑄(𝑠𝑡+1, 𝑎)
)

, (6)

here 𝛼 ∈ (0, 1] is the learning rate. The agent then utilises the learned
-function to update its policy, for example the online RL algorithm
QN selects the action in each state corresponding to the maximum
xpected future reward [46]:

(𝑠) = arg max
𝑎

𝑄(𝑠, 𝑎). (7)

central challenge of applying offline RL to real-world tasks is distribu-
ional shift, in which an offline RL agent encounters states significantly
ifferent from those observed in the training data [19]. In these in-
tances, extrapolation to out-of-distribution states can result in the
rroneous overestimation of the Q-function and the selection of poor
ctions. This is particularly significant in safety-focused tasks such as
lucose control. This work applies the following model-free offline RL
pproaches to reduce Q-function overestimation:

• Batch Constrained Deep Q-learning (BCQ) modifies the DQN
algorithm by constraining the agent to select similar actions and
states to those observed in the training data [18]. In addition
to the Q-function estimator, a variational auto-encoder is trained
to generate similar actions to those in the training data when
in a given state and diversity is incorporated by adjusting the
generated actions using a perturbation model. State visitation is
also constrained by applying a modified version of clipped double
q-learning, whereby two separate Q-function approximators are
updated using the minimum of their estimates [17]. This adjust-
ment reduces overestimation bias by minimising the Q-function
in each update. As a consequence of this reduction, high Q-values
are preferentially assigned to states with low variance that have
high visitation in the training dataset.

• Conservative Q-learning (CQL) expands on prior works, such
as BCQ, by employing an alternative approach of addressing Q-
function overestimation on out-of-distribution state–action tuples.
CQL learns a conservative Q-function, which acts as a lower
bound on the true Q-value for a given policy [19]. This is incorpo-
rated by modifying the traditional Q-function update to include
an additional term which simultaneously minimises Q-value es-
timates on unseen state–action tuples, while maximising the Q-
values of tuples observed in the dataset. In theory, this change en-
courages the agent to preferentially select in-distribution actions
by assigning them high Q-value estimates.

• Twin Delayed DDPG with Behavioural Cloning (TD3-BC) mod-
ifies the established off-policy online RL method TD3, to include
a behavioural cloning term in its loss; encouraging the policy to
select actions observed in the training distribution [20]. Beyond
the aforementioned modification, TD3 utilises a number of meth-
ods to avoid Q-function overestimation such as clipped double
Q-learning and Q-function smoothing.
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3.3. Baselines

The performance of the offline RL methods were compared to two
baseline algorithms: a tuned PID controller and the online RL method,
recurrent soft actor-critic (SAC-RNN). The PID algorithm is a robust
classical control mechanism capable of correcting for both short and
long-term deviations from a target blood glucose value 𝑔target and
operates in each timestep 𝑡 according to [47]:

𝑖𝑡 = 𝑘𝑝 ⋅
(

𝑔target − 𝑔𝑡
)

+ 𝑘𝑖 ⋅
𝑡

∑

𝑡′=0

[

𝑔𝑡′ − 𝑔𝑡𝑎𝑟𝑔𝑒𝑡
]

+ 𝑘𝑑 ⋅
(

𝑔𝑡 − 𝑔𝑡−1
)

, (8)

where 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 are parameters to be set. To ensure the strongest
omparison, the parameters were personalised to each patient and were
elected using a grid-search method to maximise the reward collected
ver a 10-day test period. This algorithm is one of the most well used
n hybrid closed loop systems [45], including the Medtronic 670g and
80g Guardian 3 sensors [48].

The SAC-RNN method represents one of the state-of-the-art algo-
ithms in glucose control and was recently presented in Fox et al. [15].
he method used in this paper is a variation of this implementation,
sing long-short-term memory (LSTM) layers in place of gated recurrent
nit (GRU) layers. This substitution was made as it was empirically
ound to improve algorithmic performance and policy stability and thus
rovided a stronger baseline. Further details of the implementation can
e found in the provided repository.

.4. Glucose dynamics simulation

The UVA/Padova T1D glucose dynamics model was used to gener-
te data in this work, as it allowed control over the size and quality of
he training dataset [49]. In addition, to providing a rigorous platform
or evaluating the developed control algorithms without relying on
nverified offline evaluation methods. This software simulates the hu-
an metabolic system using dietary models of glucose–insulin kinetics

nd is designed as a substitute for pre-clinical trials in the develop-
ent and testing of T1D control algorithms [50]. The simulator can
odel a cohort of 30 virtual patients (10 children, 10 adolescents and
0 adults) and their individualised responses to meal carbohydrates,
asal/bolus insulin dosing and interaction with CGM/pump devices.
or the purpose of this study, all virtual patients utilised a CGM with a
hree-minute sampling rate joined to a pump device. This sampling rate
s the default for the simulator and is within the range of real-world
ystems (1 to 15 min) [51]. Few physiological processes and events
elevant to T1D management occur over timeframes shorter than the
GM sampling rate, therefore control algorithms should perform com-
arably across the realistic range. Continuously valued basal insulin
oses were selected by the RL/PID agent with bolusing administered
sing the following controller [52]:

𝑡 =
𝑐𝑡
𝐶𝑅

+

( 59
∑

𝑡′=0
𝑐𝑡−𝑡′ = 0

)

⋅
[ 𝑔𝑡 − 𝑔target

𝐶𝐹

]

, (9)

here 𝑔target = 144 mg/dl is the target blood glucose level and
orresponds to the greatest reward in the Magni risk function, where
he probability of high and low blood glucose events are at a min-
mum [53]. In addition, 𝐶𝐹 and 𝐶𝑅 are patient-specific parameters
nd were chosen from Fox et al. [15]. Three meals and three snack
vents were included in the simulator with the time and quantity of
arbohydrate ingestion for each event being modelled by a normal
istribution.

.5. Experimental setup

.5.1. Data collection and training
Each algorithm was trained on 1e5 samples of data collected over

pochs of 10 days; the equivalent of 208 days of glucose data. Samples
4

Table 1
A description of the glycemic control metrics utilised for evaluation alongside their
clinically recommended values.

Metric Description Target

Time-in-Range
(TIR)

The percentage time for which blood
glucose measurements fall within the
healthy glucose range (70–180 mg/dl).
Increased TIR is strongly associated with
a reduced risk of developing
micro-vascular complications [56].

>70%*
[57]

Time-Below-
Range
(TBR)

The percentage time for which blood
glucose measurements fall in the low
blood glucose range (<70 mg/dl).
Combined with TIR, this can
additionally act as an indirect measure
of time spent in the high blood glucose
range (>180 mg/dl).

<4% [57]

Coefficient of
Variation (CV)

The relative dispersion of blood glucose
values around their mean. Increased CV
is linked to an elevated risk of severe
low blood glucose events (<54 mg/dl)
and vascular tissue damage [58].

<36% [59]

Failure The percentage of test rollouts in which
blood glucose levels reached values <10
mg/dl or >1000 mg/dl. For context,
blood glucose <40 mg/dl is considered
life-threatening and can result in major
cardiovascular and cerebrovascular
problems [60].

0%

*For ages <25 this target decreases to >60%.

were collected from 30 simulated patients (10 children, 10 adolescents
and 10 adults) and individually each patient’s data was used to train
each algorithm across three seeds. Training and testing in adolescent
and child populations is important for the adoption of T1D technology
as these groups are typically more susceptible to high blood glucose
events and increased glucose variability [54]. The training data was
collected using a PID algorithm tuned to achieve the maximum reward
over a 10-day test period and noise was added to improve exploration
within the generated dataset. Basal noise was introduced by using an
Ornstein–Uhlenbeck process [55]. In addition, bolus noise was intro-
duced by adding a 10% estimation error to the simulated carbohydrate
intake; this more closely models the uncertainty observed in patient
calculations of bolus doses. The hyperparameters used for the offline RL
algorithms were unchanged from their original implementations. This
choice was made as hyperparameter optimisation would require patient
interaction via the simulator to validate model performance; potentially
harming the participant in the process. Hyperparameter selection could
also be performed using offline evaluation methods however this is
outside the scope of this work.

3.5.2. Evaluation
Performance was evaluated by monitoring blood glucose levels

over a simulated 10-day test period and aggregating the results over
three test seeds per training seed to ensure sufficient variation in test
scenarios. The metrics utilised for evaluation are given in Table 1 and
were used in addition to the sum of reward for assessing algorithmic
performance. Friedman rank tests and Wilcoxon signed-rank tests were
used to assess significance between control algorithm outcomes. In
addition, the standard error between test seeds is presented along-
side each measurement. Further tests were employed to identify the
practical limitations of using offline RL algorithms in hybrid closed
loop systems. This included evaluation on datasets with: (1) decreasing
sample size, (2) demonstrations from suboptimal PID demonstrators
and (3) sequences of missing CGM data caused by temporary sensor
transmitter errors for extended periods. In addition, the potential of
offline RL for safer blood glucose management was explored by en-

gineering several common and challenging control scenarios. These
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Table 2
The mean performance of the offline RL algorithms: BCQ, CQL and TD3-BC against the online RL approach
SAC-RNN and the control baseline PID. TD3-BC can be seen to significantly improve the proportion of TIR
when compared to the PID and the SAC-RNN algorithms. This is done so without any associated increase in
risk (reward) or TBR. Statistical significance was confirmed via a Friedman rank test for all glucose metrics
(𝑝 < 0.05). †, ‡ and § indicate an offline RL, online RL and classical control algorithm respectively, with the
best performing algorithm highlighted in bold.
Algorithm Reward TIR (%) TBR (%) CV (%) Failure (%)

BCQ† −41,034 ± 1,060 65.8 ± 0.6 1.0 ± 0.1 35.1 ± 0.4 0.00
CQL† −45,259 ± 1,071 56.2 ± 0.5 0.1 ± 0.1 30.3 ± 0.3 0.00
TD3-BC† −37,955 ± 547 65.3 ± 0.5 0.2 ± 0.1 33.3 ± 0.2 0.00
SAC-RNN‡ −93,480 ± 71,826 34.9 ± 3.1 4.1 ± 0.7 29.6 ± 1.3 13.3
PID§ −49,077 ± 556 61.6 ± 0.3 0.4 ± 0.1 33.5 ± 0.2 0.00
T
u
w
(
0
t
t

included patients with: (4) consistently overestimated bolus insulin for
meals, (5) irregular meal schedules with greater uncertainty in meal
times and (6) frequent erroneous low blood glucose readings caused
by compression lows. Compression lows result from pressure on the
CGM sensor insertion site and are caused by the redistribution of the
interstitial fluid from which blood glucose is measured [61].

4. Results

4.1. Offline reinforcement learning vs. Baseline control methods

A comparison of the described offline RL methods with baseline
approaches is detailed in Table 2. Of the methods presented, the offline
RL algorithm TD3-BC achieved the best performance; obtaining the
greatest reward and hence the lowest Magni risk over the evaluation
period. In addition, the algorithm yields a 3.7 ± 0.6% increase to TIR
and a reduction in TBR when compared to the PID algorithm. The
observed difference may in part be due to the inclusion of carbohydrate
information in the state; providing an early indication of when a sharp
rise in blood glucose may occur. The ability of RL algorithms to readily
incorporate new sensor modalities without explicit programming is a
significant advantage of the approach over non-machine learning based
methods and could be utilised to incorporate a patient’s individualised
response to exercise or stress if provided with the relevant sensor data.

This equates to almost an additional hour per day in which patients
would experience an improved quality of life. BCQ also shows a similar
level of improvement to TIR, however this is coupled with a 0.6 ± 0.1%
increase to TBR. The use of BCQ also resulted in an increase to CV
of 1.6 ± 0.4%. This value has been found clinically to fall within the
region of 31.0% to 42.3% for people with T1D [62]. An elevated CV
should indicate an increased risk of low blood glucose events, which
is evidenced with the BCQ algorithm. The origin of the difference is
most likely the use of the Magni risk function for defining reward, as
this value does not consider blood glucose variability within its risk
calculation.

The online RL algorithm SAC-RNN, performs comparably worse
than the PID and offline RL approaches in almost all metrics; terminat-
ing the environment and thus harming the patient in 13.3% of the test
rollouts. In this instance, CV does fall well within the recommended
threshold of <36%, however this is likely a consequence of patients
having high blood glucose for 61.0 ± 3.2% of the evaluation period and
therefore being closer to their blood glucose equilibrium point [59].
The performance of SAC-RNN in this work significantly differs from
the results obtained previously under similar implementations [15,63].
This difference is most likely a result of differing evaluation methods.
In this work, SAC-RNN was trained for the full duration and evaluated
using the resulting weights, however in previous implementations per-
formance was measured on a validation environment after each episode
and the highest performing weights were selected for evaluation. One
such online method reported that using the final weights in place of the
best performing weights resulted in almost half of test rollouts ending
in termination [15]. This work elected to use the final weights for
online evaluation, as it was concluded to be more indicative of how the
algorithm would be utilised in a patient setting. Whereby, the algorithm
would seek to continually adapt to changes in the patient’s lifestyle and
blood glucose dynamics.
5
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4.2. Offline reinforcement learning performance by patient age

Table 3 presents a breakdown of glucose control performance when
divided by patient age. As in Table 2, the offline RL algorithm TD3-BC
performs the most consistently across the patient groups, achieving a
greater reward to the PID across all categories. The greatest improve-
ments to TIR are observed in adult patients, where BCQ and TD3-BC
achieve an increase of 6.8 ± 0.7% and 4.2 ± 0.7% respectively. This
observed difference is significant enough to push TIR to within the
recommended margin for that age group, which if sustained would
potentially lead to markedly better long-term health outcomes for that
population. The results in the child group are also particularly promis-
ing, whereby the TD3-BC approach yields a 5.9 ± 0.4% increase to TIR
and a 1.4 ± 0.1% reduction to TBR. Children represent one of the most
challenging control groups within the T1D simulator and in real life,
as evidenced by the significantly lower reward and greater glycemic
variability obtained under the PID in that group. This control disparity
is predominately due to differing insulin sensitivities between the age
groups. Insulin sensitivity has been identified to negatively correlate
with a patient’s age and consequently smaller doses of insulin elicit
greater blood glucose responses in children and adolescents and require
greater precision in insulin dosing [64]. Achieving an improvement of
this magnitude is encouraging for the transition of offline RL algorithms
to real patient data in which blood glucose relationships are likely to
be more complex and depend on a greater number of environmental
factors. The TD3-BC algorithm was selected for further evaluation due
to the high performance the approach achieved across the 30 virtual
patients, in addition to its consistent safety profile.

4.3. Implementation challenges of offline reinforcement learning in glucose
control

Experiments in this section explore glucose control specific chal-
lenges which may undermine the utility of offline RL in the real-world.
The full implementation details for the additional experiments are
described in Table 4. The selected TD3-BC algorithm was trained on
a single NVIDIA GeForce RTX 2080 Ti GPU and an Intel Core i9-9900K
CPU at 3.60 GHz for a duration of approximately 10 min per 1e5

samples of glucose data.

4.3.1. Sample size
Fig. 1(a) shows the effect of varying sample size on the performance

of the offline RL algorithm TD3-BC. TD3-BC achieves comparable or
better TBR and improvements to TIR for all sample sizes greater than
or equal to 5e4 (approximately 100 days of glucose data). The poor

IR of TD3-BC for 1e4 samples of data is most likely due to the
se of neural networks, as these algorithms perform most effectively
ith large quantities of data. For the greatest number of samples 5e5

> 1000 days), TD3-BC achieves a 2.2 ± 1.1% increase to TIR and a
.2±0.1% reduction to TBR. The presented findings are consistent with
he preliminary results in Fox, which show in a single adult patient
hat capable glucose control policies can be developed from as little as

wo months of data [29]. This result is significant for the application of
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Table 3
The mean glucose control performance for the individual patient models divided by age group, as specified in the UVA/Padova
T1D Simulator. TD3-BC represents the only RL approach to perform better than the PID across the three patient groups. The
greatest improvement is observed in adults where BCQ and TD3-BC yield a significant increase to time in the target range,
equivalent to an improvement of 100 mins/day and 60 mins/day. Statistical significance was confirmed for all metrics via a
Friedman rank test (p < 0.05). †, ‡ and § indicate an offline RL, online RL and classical control algorithm respectively, with
the best performing algorithm highlighted in bold.

(a) Adults (aged 26 to 68 years).

Algorithm Reward TIR (%) TBR (%) CV (%) Failure (%)

BCQ† −17,445 ± 290 72.6 ± 0.6 0.1 ± 0.0 25.6 ± 0.2 0.00
CQL† −20,748 ± 301 62.5 ± 0.5 0.0 ± 0.0 22.9 ± 0.2 0.00
TD3-BC† −19,538 ± 381 70.0 ± 0.6 0.1 ± 0.1 26.0 ± 0.2 0.00
SAC-RNN‡ −49,600 ± 6,075 42.5 ± 3.4 5.1 ± 0.1 26.0 ± 1.5 6.6
PID§ −19,783 ± 262 65.8 ± 0.3 0.0 ± 0.0 24.4 ± 0.2 0.00

(b) Adolescents (aged 14 to 19 years).

Algorithm Reward TIR (%) TBR (%) CV (%) Failure (%)

BCQ† −39,932 ± 347 64.9 ± 0.3 1.6 ± 0.1 33.28 ± 0.3 0.00
CQL† −43,847 ± 389 56.12 ± 0.4 0.1 ± 0.0 27.6 ± 0.3 0.00
TD3-BC † −39,363 ± 614 62.0 ± 0.6 0.1 ± 0.1 26.1 ± 0.3 0.00
SAC-RNN‡ −80,102 ± 5,597 25.9 ± 3.2 2.7 ± 0.9 26.1 ± 0.2 13.3
PID§ −40,180 ± 465 60.6 ± 0.2 0.1 ± 0.0 30.75 ± 0.2 0.00

(c) Children (aged 7 to 12 years).

Algorithm Reward TIR (%) TBR (%) CV (%) Failure (%)

BCQ† −61,374 ± 2,543 56.9 ± 0.9 1.2 ± 0.2 41.9 ± 0.6 0.00
CQL† −66,346 ± 2,522 44.2 ± 0.7 0.3 ± 0.1 37.2 ± 0.4 0.00
TD3-BC † −51,713 ± 646 60.1 ± 0.4 0.3 ± 0.1 40.4 ± 0.2 0.00
SAC-RNN‡ −97,760 ± 6,339 37.3 ± 2.8 4.0 ± 1.0 36.0 ± 1.4 20.0
PID −57,700 ± 941 54.2 ± 0.4 1.7 ± 0.1 41.6 ± 0.3 0.00
Table 4
Overview of the additional implementation and safety experiments performed to address challenges around the practical use of offline RL algorithms in
real-world hybrid closed loop systems.
Experiment Motivation Description

(1) Sample Size Patients are unlikely to adhere to lengthy
periods of data collection.

Datasets of size: 1e4, 5e4, 1e5 and 5e5 were
used to train TD3-BC for fixed episodes.

(2) Suboptimal
Demonstrations

Patient insulin requirements evolve due to
physiological and lifestyle changes, therefore
PID parameters are unlikely to always be
optimal.

The PID parameters corresponding to the 10th
and 20th greatest reward were used as the
demonstrator for data collection.

(3) Missing Data Interruptions in CGM sensor-transmitter
communication commonly lead to intermittent
drops in blood glucose readings [65].

The CGM would once a day (1/500) and twice
a day (1/250) fail to record blood glucose
measurements for at most 30 min.

4) Meal
Overestimation

Carbohydrate estimation is a challenging task
and errors often occur [66].

All carbohydrate consumption was
overestimated by a mean of 20% and 40%.

(5) Irregular Meal
Schedules

Irregular meal schedules are correlated with
worse glycemic control [67].

Meal time standard deviation was increased
from 0 to 30 to 60 min.

(6) Compression Error Erroneous drops in glucose readings of as much
as 25 mg/dl can occur when pressure is
applied to a CGM device [61].

The CGM would once a day (1/500) or twice a
day (1/250) record blood glucose a maximum
of 30 mg/dl lower for a duration of at most 30
min.
m

offline RL to future hybrid closed loop systems as 100 days represents
a feasible timescale for data collection in patient populations. This
sample represents less than one tenth of the data required for online
RL approaches to surpass the PID controller in glucose control [15,39].
Greater sample efficiency could be achieved in future work by adopting
a transfer learning approach, such as in Fox et al. [15]. Under this
method, general control strategies could be learnt by grouping patients
by age or other demographic factors and training a general offline RL
algorithm on this cohort. The pre-trained model could then be trained
further on the target patient to achieve greater personalisation.

4.3.2. Suboptimal demonstrations
Fig. 1(b) shows the dependency of TD3-BC performance on the

quality of the training demonstrator. In all instances, TD3-BC can be
seen to improve the control of the demonstrator by a margin of at least
1.3 ± 1.2% to TIR. It also yielded a reduction of 0.3 ± 0.2% to TBR when
trained on the 10th ranked PID policy. The most significant difference
is observed for the 20th ranked policy, whereby TD3-BC increases TIR
6

B

by 3.9±1.4%, improves CV by 3.4±1.1% and reduces TBR by 4.7±0.6%.
An improvement of this magnitude could significantly improve the
health outcomes of the user without the need for manually altering
PID parameters [56]. The performance of the TD3-BC approach does
decline by a significant margin of 13.2 ± 1.4% to TIR and 8.1 ± 0.7% for
TBR between the 1st and 20th PID demonstrator. Therefore, achieving
glycemic targets with offline RL in a hybrid closed loop system would
still be largely dependent on the performance of the demonstrator in
the training data.

4.3.3. Missing data
Fig. 2(a) shows the effect of missing data on the effectiveness of

TD3-BC. As before, TD3-BC yields a consistent improvement to TIR of
at least 2.83 ± 0.9%, with no associated increase to TBR. However, the
reduction in performance associated with the addition of missing data is
particularly significant, resulting in a decrease of 7.32±1.3% to TIR. This

ay suggest that work is needed to improve the robustness of the TD3-
C algorithm to missing samples if real-world datasets are to be fully
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Fig. 1. (a) TD3-BC and PID performance for a varying number of training samples. The offline RL approach TD3-BC can be seen to surpass PID performance when trained on at
least 5e4 samples of glucose data (100 days of glucose data). With greater sample size, TD3-BC yields an increase to time in the target glucose range (TIR) with an accompanying
decrease to the proportion of low blood glucose events (TBR). (b) TD3-BC and PID performance when trained on expert demonstrators of different ability. TD3-BC can be seen
to significantly improve TIR, while achieving comparable or better TBR for all training policies. The reduction in TBR is largest when trained on the 20th best policy. Wilcoxon
signed-rank tests confirmed the significance of the TD3-BC TIR improvement across all sample sizes and demonstrator abilities (𝑝 < 0.05).

Fig. 2. (a) TD3-BC and PID performance with varying frequencies of missing blood glucose data. Time in the target glucose range (TIR) improvements are more modest with
greater likelihood of missing data. (b) TD3-BC and PID performance for varying levels of bolus overestimation. TD3-BC can be seen to avoid the pitfalls of the PID algorithm;
experiencing no significant increase to time-below-range (TBR) for greater overestimation. Wilcoxon signed-rank tests confirmed the significance of the TD3-BC TIR improvement
across all missing data likelihoods and bolus overestimation biases (𝑝 < 0.05).
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Fig. 3. (a) TD3-BC and PID performance in relation to greater uncertainty in meal times, where meal standard deviation defines the observed deviation in meal time from the
mean. TD3-BC achieves significantly better performance when standard deviation is 60 min; significantly increasing time-in-range (TIR) and reducing time-below-range (TBR) over
the evaluation period. (b) TD3-BC and PID performance with varying frequencies of compression low events. TD3-BC improves TIR significantly compared to the PID algorithm,
however the margin reduces with greater frequency of compression events. Wilcoxon signed-rank tests confirmed the significance of the TD3-BC TIR improvement across all meal
time uncertainties and compression low probabilities (𝑝 < 0.05).
utilised. In this implementation, missing measurements were relabelled
with the target blood glucose value to encourage the PID demonstrator
to not take large insulin doses without accurate input data. However,
in the state representation utilised by TD3-BC this replacement value is
indistinguishable from a true blood glucose measurement and may have
caused the performance degradation. In moving towards practical hy-
brid closed loop systems, it may be necessary to label these states more
clearly or use an offline RL approach that is capable of incorporating
missing values.

4.4. Safety challenges of offline reinforcement learning in glucose control

PID was selected as the safest benchmark method as this algorithm
has been extensively evaluated in real patients and has been approved
for clinical use in hybrid closed loop systems across the world [8,68].

4.4.1. Meal overestimation
Fig. 2(b) compares the ability of PID and TD3-BC in correcting for

overestimations in meal boluses. The TD3-BC approach can be seen
to improve glucose control in both TIR and TBR across all levels of
overestimation. This is particularly significant when considering a bolus
overestimation of 40%, which reduces TBR by 0.6±0.2%. Mealtime mis-
calculation represents a frequent problem for people with T1D. A study
on the accuracy of bolus calculations concluded that approximately
82% of participants overestimated the carbohydrate content of common
food choices, with the mean overestimation amount being 40% [66].
In an in vivo setting, this would allow for the correction of bias in
bolus dosing without the inherent risk of using trial-and-error to alter
mealtime calculations or PID parameters manually. Counter-intuitively,
TIR increases across both algorithms for greater levels of carbohydrate
8

overestimation. This increase is caused by higher levels of insulin-on-
board in the patient, resulting in smaller post-meal blood glucose peaks,
but also a greater susceptibility to low blood glucose events.

4.4.2. Irregular meal schedules
Fig. 3(a) examines the ability of TD3-BC to exploit regular meal

schedules and adapt to greater uncertainty in meal timing. TD3-BC
yields an improvement in TIR of at least 3.7 ± 1.2% regardless of meal
time standard deviation and without any significant worsening in TBR
for non-zero meal deviation. The performance of TD3-BC evidently
improves with the removal of meal uncertainty and snack events, as
TIR is observed to increase by 6.4 ± 1.1% (90 mins/day). This is also
accompanied by an increase to TBR of 0.2±0.2%, which may explain the
observed improvement. This deterioration in policy could potentially
be due to a lack of exploration in the training samples, resulting from
the high meal regularity. When using real patient data, this flaw may
become less apparent as this level of routine is unlikely to be achievable
in a realistic patient setting. Adapting dosing policies to regular meal
events may also transfer to other common routines in daily life such as
work schedules or exercise plans provided there is sufficient contextual
information in the state to intuit their occurrence.

4.4.3. Compression error
Fig. 3(b) assesses the robustness of TD3-BC to frequent compression

errors in the CGM device. The TD3-BC approach yields an improvement
of at least 5.93±1.31% regardless of event frequency. Compression lows
are common occurrences at night time due to patients inadvertently
applying pressure to their CGM sensors while sleeping. There is a strong
association between poor nocturnal glycemic control and reduced sleep
quality and duration [69]. This may suggest that utilising a more
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intelligent control algorithm, capable of responding more effectively to
erroneous night time disturbances, may yield better sleep quality for
patients. In this implementation, compression errors occurred randomly
and were in no way linked to a patient’s schedule. However, in a
practical setting an offline RL algorithm may improve control further
by identifying periods in which compression lows are more likely
and using this information to more easily distinguish them from true
changes in blood glucose.

5. Discussion and conclusions

This work examined the application of offline RL for safer basal
insulin dosing in hybrid closed loop systems. The experiments pre-
sented in this paper demonstrated that the offline RL approaches BCQ,
CQL and TD3-BC were capable of learning effective control policies for
adults, adolescents and children simulated within the UVA/Padova T1D
model. In particular, the TD3-BC approach outperformed the widely-
used and clinically validated PID algorithm across all patient age
groups with respect to TIR, TBR and glycemic risk. The improvement
was even more significant when TD3-BC was evaluated in potentially
unsafe glucose control scenarios. Further experiments on TD3-BC also
highlighted the ability of the approach to learn accurate and stable
dosing policies from significantly smaller samples of patient data than
those utilised in current online RL alternatives.

This paper shows the potential of offline RL for creating safe and
sample-efficient glucose control policies in people with T1D. In prac-
tice, the demonstrated offline RL method could be trained on an
initial sample of patient data and then periodically retrained on data
collected under the agent, allowing the algorithm to continually adapt
to changes in the patient’s insulin requirements. In moving towards an
algorithm capable of full implementation within hybrid closed loop sys-
tems several avenues will first have to be explored. The most significant
limitation of the presented evaluation is the use of the T1D simulator.
As previously mentioned, these environments only capture a fraction of
the complexity involved in realistic blood glucose dynamics; neglecting
events such as stress, activity and illness. To confirm the scalability
of offline RL approaches to more complex environments, algorithms
will have to be trained and evaluated on real samples of retrospective
patient data such as those available via the JCHR repository [70]. This
will require building on the current state-of-art in the offline evaluation
of RL algorithms [71]. This poses a particular challenge in glucose
control, as the nature of the task means the effect of actions may only
become apparent in some instances over several days, requiring blood
glucose to be modelled over significantly longer prediction horizons
than are currently deployed in commercial systems.

In addition, further work will need to be done to provide safety
assurances for deep learning driven hybrid closed loop systems. Al-
though, the presented approach demonstrates significantly improved
stability compared to prior online RL algorithms and the performance
was validated on thousands of days of simulation, no guarantees can be
made for the actions of the agent in a given scenario. This may make
achieving regulatory approval challenging, especially as the agent takes
actions on behalf of the patient rather than providing decision-support.
In moving towards clinical usage, the presented algorithm would likely
be most effective as one of many components in a hybrid closed loop
device, with additional safeguarding systems in place for identifying
harmful actions and providing reliable control policies. Future work
could include validating the method on simulated populations with
type 2 diabetes, building on offline RL methods to incorporate online
learning for continuous adaption of control policies or incorporat-
ing features such as interpretability or integration of prior medical
knowledge, which may ease the transition from simulation to clinical
use.
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