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Evolutionary Algorithms for Multi-Center Solutions

Sami Rawash and David Turton*

Large classes of multi-center supergravity solutions have been constructed in
the study of supersymmetric black holes and their microstates. Many smooth
multi-center solutions have the same charges as supersymmetric black holes,
with all centers deep inside a long black-hole-like throat. These configurations
are constrained by regularity, absence of closed timelike curves, and charge
quantization. Due to these constraints, constructing explicit solutions with
several centers in generic arrangements, and with all parameters in physically
relevant ranges, is a hard task. In this work, an optimization algorithm, based
on evolutionary algorithms and Bayesian optimization is presented, that
systematically constructs numerical solutions satisfying all constraints.
Explicit examples of novel five-center and seven-center machine-precision
solutions are exhibited.

1. Introduction

Black hole solutions in classical gravitational theories typically
involve a small handful of parameters, such as mass, angular
momentum, and charge. However black holes have an entropy
proportional to their horizon area, which suggests that they have
a vast number of internal degrees of freedom. Black holes also
contain curvature singularities, and the semiclassical description
of black hole evaporation leads to the information paradox.[1,2]

These facts present three corresponding major challenges for
a fundamental theory of quantum gravity: to identify the black
hole internal degrees of freedom, to resolve the singularities in-
side black holes, and to provide a consistent description of black
hole evaporation.
In String Theory, black hole entropy arises from an exponen-

tial number of internal quantum microstates.[3] It is therefore of
significant interest to study the gravitational description of heavy
pure states, in order to investigate string-theoretic singularity res-
olution and black hole evaporation. Large families of such pure
states are well-described by smooth, horizonless supergravity so-
lutions which, in the best-understood examples, provide a valu-
able description of black hole microstates.[4–7]
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In recent years, an increasing number
of String Theory, and Particle Physics,
problems have been addressed with opti-
mization algorithms and machine learn-
ing, see e.g., refs. [8–15]. In this work we
present an algorithm, based on evolution-
ary algorithms (EAs) and Bayesian opti-
mization, to construct smooth horizon-
less supergravity solutions. The category
of microstate solutions that we study are
supersymmetric multi-center solutions,
also known as bubbling solutions.[16–25]

Supersymmetric multi-center so-
lutions involve non-trivial topology
supported by flux. These solutions are
specified by a set of harmonic functions
on a three-dimensional Euclidean space.

This formalism is typically used to construct supergravity fields
in four, five or six macroscopic dimensions. Depending on the
details, large families of multi-center solutions in five and/or six
macroscopic dimensions can have the features of being horizon-
less and smooth, up to possible orbifold singularities, see e.g., ref.
[19]. We shall moreover focus on the “scaling” regime in which
the centers lie deep inside a long black-hole-like throat.[18–20]

Multi-center solutions are one of two main classes of smooth
horizonless supersymmetric solutions. The other class is known
as superstrata.[26–36] Of the two classes, superstrata have a pro-
posed holographic description that has passed precision holo-
graphic tests, involving protected correlators that can be reli-
ably compared across moduli space between supergravity and
the dual symmetric product orbifold CFT.[37–42] Two-center bub-
bling solutions have a similarly well-established holographic
description[43–48] and also a string worldsheet description.[49–56]

By contrast, multi-center solutions with three or more centers
do not have a proposed holographic description, and it has been
argued that they do not describe microstates of a single super-
symmetric black hole, though they could describe microstates of
other black objects.[57] Nevertheless, multi-center solutions pro-
vide interesting examples of gravitational solutions that closely
resemble black holes, especially in the scaling regime. Indeed,
multi-center solutions have been used to investigate potentially
observable signatures of string theoretic black hole microstruc-
ture in gravitational wave observations.[58–60]

Constructing multi-center solutions with several centers is a
hard problem. This is because asymptotic flatness, charge quanti-
zation, smoothness and absence of closed timelike curves (CTCs)
comprise a set of non-trivial algebraic constraints. These con-
straints make the positions of the centers and the coefficients
of the poles of the harmonic functions highly interdependent.
The most important set of these constraints is known as the bub-
ble equations. The distances between the centers are generically
irrational real quantities. The bubble equations constrain these
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distances in terms of quantized parameters; this is a strong set
of constraints. For further discussion, see e.g., ref. [21].
Despite this difficulty, several solutions with three or four cen-

ters have been constructed analytically, see e.g., refs. [18, 20,
22–25]. However, fewer solutions with five or more centers have
been constructed, and until relatively recently these typically in-
volved taking all centers to lie on a line, so that the configura-
tion is axisymmetric, see e.g., ref. [18]. An important step for-
ward was recently made, by considering the dependent variables
in the bubble equations to be a subset of the coefficients of the
poles of the harmonic functions (which we call “flux parame-
ters”), rather than the distances between the centers.[21] In this
form, the bubble equations are a linear system, involving a sym-
metric matrix. It was moreover conjectured that a configura-
tion does not contain CTCs if and only if  is positive-definite.
While this perspective simplifies the task of finding physi-
cally relevant solutions, the strong nature of the constraints be-
tween generically irrational distances and quantized parameters
remains.
One can construct exact solutions with this method by arrang-

ing non-generic locations of centers, however this is not easy to
implement in practice, and is currently limited to quite special ar-
rangements of centers.[21] An alternative approach is to construct
approximate solutions to the bubble equations, as discussed in
ref. [21] and done in refs. [22, 23]. One can do so in an itera-
tive approach by first choosing a set of locations of the centers
and solving for the flux parameters, obtaining generically irra-
tional values. One then rounds any irrational flux parameters to
nearby rational values that enable all quantization constraints to
be satisfied. One then takes the rounded fluxes and attempts to
re-solve the bubble equations in the traditional approach, to find
the distances between the centers. This method has been used
to numerically construct four-center solutions in axisymmetric
or near-axisymmetric configurations.[23] However, it is unclear
whether this method is generically tractable for more than four
centers.[21]

In this paper we present a novel algorithmic method to con-
struct numerical solutions with any number of centers, and with
no symmetry imposed on the locations of the centers. The ba-
sic idea is to proceed in two steps. First, we generate a suit-
ably good starting configuration which has certain desired phys-
ical properties, but is not yet a solution to the bubble equations.
Second, we systematically vary the positions of the centers to
construct a sequence of approximate solutions with increasing
precision.
These two steps require two separate algorithms, since they

optimize over different variables. In the first step, we generate a
good starting configuration by optimizing over flux parameters.
In the second step, we optimize over the locations of the centers.
The starting configuration is required to have two key physi-

cal properties. The first requirement is that the configuration be
in the scaling regime mentioned above, in which the centers lie
deep inside a long black-hole-like throat. We implement this by
first finding an exact solution to the homogeneous form of the bub-
ble equations, whichwill be reviewed in Section 2.We then round
the flux parameters as described above.
The second requirement is that the supergravity charge radii

are large, such that the solutions are weakly curved. We shall pri-

marily have in mind solutions corresponding to bound states of
D1 branes, D5 branes, and momentum P in a compact direction,
in five or six macroscopic dimensions. In six dimensions, the (di-
mensionful) D1 and D5 charges, Q1, Q5 control the main curva-
ture scale of the solution (and contribute to the ADM mass), so
we require them to be appropriately large.
The chargesQ1,Q5, considered as functions of the flux param-

eters, are computationally expensive to evaluate. Bayesian opti-
mization is well-suited to the task of optimizing computationally
expensive functions (see e.g., ref. [61]); we therefore employ it for
the first step. The reason that the charges are computationally ex-
pensive to evaluate is that, given some flux parameters, one must
first solve the bubble equations for the remaining flux parame-
ters, and then evaluate the expressions for the charges Q1, Q5,
which will be given in Section 2.
In a nutshell, Bayesian optimization is a strategy to choose

points (in our case, values of flux parameters) on which to evalu-
ate, or sample, the function to be optimized, known as the “objec-
tive” function (in our case, min(Q1, Q5)). After a point is sampled,
the accrued knowledge of the objective function is updated, and
then used to decide the next point to sample. The next point is
selected according to a specified strategy that balances exploita-
tion of more favourable regions (where Q1, Q5 are known to be
larger) versus exploration of unknown regions (where Q1, Q5
have not yet been computed). We will describe this in detail in
Section 3.2.
After a successful run of the Bayesian optimization algorithm,

we have a configuration in the scaling regime, with appropriately
large charges Q1, Q5, which is not yet a solution. It can be re-
garded as an approximate solution, but with low precision. In
the second step, we construct numerical solutions by varying the
positions of the centers.
Our two-step approach means that after a successful first step,

it is reasonable to expect that if there is a genuine solution nearby,
it is likely to require incremental adjustments to the positions
of the centers, rather than a wide search. EAs are well-suited to
problems where incremental changes result in incremental im-
provements (see e.g., ref. [12]). We therefore employ an EA in the
second step.
EAs work by generating a population of individuals, compris-

ing certain data known as genes, and quantifying their fitness via
a function known as the fitness function. The algorithm then
generates subsequent generations of individuals following the
principles of the Darwinian theory: selection, reproduction and
mutation. By iterating this process over several generations,
the algorithm aims to construct new individuals with higher
fitness.
In our algorithm, an individual is a multi-center supergravity

configuration that approximately solves the bubble equations (in
their full, inhomogeneous form). Its genes are (an appropriate
subset of) the positions of the centers. The coefficients of the
poles of the harmonic functions are determined by the previous
step. The fitness function quantifies the precision to which the
bubble equations are approximately satisfied, with higher fitness
being an approximate solution with a lower error. Once a multi-
center configuration with the desired fitness is generated, we
investigate the absence of CTCs by computing the eigenvalues
of the matrix.
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Our algorithm is designed to generate solutions with any
number of centers, in a generic configuration. We have run
the algorithm on several configurations of three, five and seven
centers, and we shall exhibit explicit examples of novel five-
and seven-center configurations. Generating solutions with a
higher number of centers is feasible, although naturally this is
computationally more expensive. The algorithm is implemented
in Python, and the code is publicly available.1

This paper is structured as follows. In Section 2, we review
multi-center scaling solutions, and their construction in the for-
malism of ref. [21]. In Section 3, we first describe our overall
method, and then describe the Bayesian optimization algorithm
and the EA we have developed. In Section 4, we describe explicit
examples of five-center and seven-center scaling configurations
obtained with our method, and comment on the performance of
the algorithm. We discuss our results in Section 5.

2. Multi-Center Scaling Supergravity Solutions

2.1. Multi-Center Solutions

For concreteness, we primarily consider 5D  = 1 Super-
Einstein-Maxwell-Yang-Mills supergravity, whose bosonic field
content is the metric, three Abelian vector multiplets, and an
SU(2) triplet of non-Abelian vector multiplets. If one turns off
the non-Abelian multiplets, one recovers the STU model.
Multi-center solutions are specified by a set of harmonic func-

tions on a three-dimensional Euclidean “base” space, which have
poles at the location of the centers. The index a = 0, 1,… , n − 1
labels the centers, and ra = |r⃗ − r⃗a| is the distance from the a-th
center in the three-dimensional base. In the Abelian sector the
harmonic functions are (i = 0, 1, 2):

H =
n−1∑
a=0

qa
ra

, Ki =
n−1∑
a=0

kia
ra
, Li = li0 +

n−1∑
a=0

lia
ra
,

M = m0 +
n−1∑
a=0

ma

ra
, (2.1)

where qa ∈ ℤ. In the non-Abelian sector,[62] denoting the gauge
coupling by g, we have

P = 1 +
n−1∑
a=0

𝜆a

ra
, Q =

n−1∑
a=0

𝜎a𝜆a

ra
. (2.2)

The harmonic function H defines a four-dimensional Gibbons-
Hawking metric via

ds24 = H−1(d𝜓 + A)2 +Hds23 , (2.3)

where ds23 is the flat metric on ℝ3, and A is a one-form related to
H via ⋆3 dA = dH. For the full five-dimensional fields, we refer
the reader to ref. [21].

1 GitHub URL: https://github.com/SamiRawash/Multicenter-Scaling-
Solutions.

Only certain subsets of possible coefficients of the poles in
Equations (2.1) and (2.2) lead to physically sensible solutions: one
needs to impose further constraints. First, asymptotic flatness re-
quires

∑
a qa = 1. Second, upon uplifting to Type IIB supergrav-

ity compactified on S1 × T4, the coefficients kia are quantized in
terms of integer flux parameters nia as follows,

[47]

k0a =
gs𝛼

′

2Ry
n0a , k1a =

gs𝛼
′3

2V4Ry
n1a , k2a =

Ry

2
n2a , (2.4)

where the coordinate volume of T4 is (2𝜋)4V4 and that of the S
1

is 2𝜋Ry.
In this paper we focus on smooth horizonless supersymmet-

ric solutions.2 The following relations are imposed by absence
of event horizons and singularities (the first three relations) and
asymptotic flatness (the last two relations), see e.g., ref. [21,
App. A.3],

lia = − |𝜖ijk|
2

kjakka
qa

+ 𝛿0i

2g2
, 𝜎a =

k0a
qa

,

ma =
k0a
2q2a

(
k1ak

2
a −

1
2g2

)
,

l00l
1
0l
2
0 = 1 , m0 = −1

2

∑
a,i

li0k
i
a. (2.5)

The absence of Dirac-Misner singularities imposes the so-
called “bubble equations”,[19,62,68] which constrain the relation be-
tween the positions of the centers and the local charges:

∑
b≠a

qaqb
rab

Π0
ab

(
Π1

abΠ
2
ab −

1
2g2

𝕋ab
)

=
∑
b,i

qaqbl
i
0Π

i
ab , (2.6)

where

Πi
ab =

kib
qb

−
kia
qa
, 𝕋ab =

1
q2a

+ 1
q2b
. (2.7)

Here rab is the ℝ3 Euclidean distance between centers a and b,
Πi

ab are the magnetic fluxes, and we will refer to the coefficients
kia as flux parameters. The bubble equations are a set of n equa-
tions among which only (n − 1) are independent: summation
over a leads to a trivial identity, due to the antisymmetry of the
Πi

ab.

2 The supersymmetric multi-center formalism can also be used to con-
struct solutions with physical singularities such as shockwaves,[63]

which give collective descriptions of families of pure states. Similar
but different multi-center formalisms exist for non-supersymmetric
solutions.[64–67]
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The asymptotic charges of the multi-center solutions are:[19]3

Q1 = −
∑
a,b,c

qaqbqcΠ1
abΠ

2
ac +

1
2g2

∑
a

1
qa

,

Q5 = −
∑
a,b,c

qaqbqcΠ0
abΠ

2
ac ,

Qp = −
∑
a,b,c

qaqbqcΠ0
abΠ

1
ac ,

JL = −1
2

∑
a,b,c,d

qaqbqcqdΠ0
abΠ

1
acΠ

2
ad +

1
4g2

∑
a,b

qbΠ0
ab

qa
,

J⃗R = 1
4

∑
a,b,a≠b

qaqbΠ0
ab

(
Π1

abΠ
2
ab −

1
2g2

𝕋ab
)

r⃗a − r⃗b|r⃗a − r⃗b| .

(2.8)

2.2. Scaling Solutions and Their Construction

Of particular interest are solutions to the bubble equations (2.6)
in which the distances between the centers can be made uni-
formly parametrically small by scaling rab → 𝜆rab with 𝜆 ≪ 1,
while keeping the asymptotic charges approximately constant.
These solutions are known as “scaling” solutions.[18–20] Note that
the rescaling rab → 𝜆rab is equivalent to multiplying the RHS
of (2.6) by 𝜆, with 𝜆 ≪ 1. It will be useful for us to note that in the
limit 𝜆 → 0, one obtains the homogeneous bubble equations[20]

(see also for instance[23]),

∑
b≠a

qaqb
rab

Π0
ab

(
Π1

abΠ
2
ab −

1
2g2

𝕋ab
)

= 0 . (2.9)

Therefore, in the scaling regime of small 𝜆, solutions to the full
inhomogeneous bubble equations (2.6) are also approximate so-
lutions to the homogeneous bubble equations (2.9), up to terms
of order 𝜆. We will exploit this to construct new scaling solutions.
The full inhomogeneous bubble equations (2.6) have typically

been considered as equations in which the variables to be solved
for are the distances rab, see e.g., ref. [19]. This perspective has
two disadvantages.[21] First, it is generically difficult to find solu-
tions for rab. Second, after solving the equations, one often finds
that the resulting rab do not represent possible distances between
points in 3D Euclidean space; for instance, the triangle inequality
might not be respected.
A recently developed alternative approach is to exploit the fea-

ture that the bubble equations (2.6) are linear in the flux param-
eters k2a. Thus, instead of solving for the distances, one can first
specify the positions of the centers, and then solve for the flux pa-
rameters k2a with a = 2, 3,… n.[21]4 While this procedure is gen-
eral and not restricted to scaling solutions, let us now review it in
the context of scaling solutions. We introduce a scaling parame-
ter 𝜆 that rescales the positions of the centers while keeping the
shape of the distribution fixed: i.e., we write the distance between

3 We use conventions in which JL and JR are interchanged with respect
to ref. [19].

4 The bubble equations are also linear in k0,1a , so a similar analysis can
be carried out for them.

the centers as rab = 𝜆dab, where dab remain constant in the scaling
process. We define5

Ā2
ab =

qaqb
dab

Π0
abΠ

1
ab, Ȧ2

ab = −sqaqbl20,

B̄2
ab =

n−1∑
b=0

qaqb
dab

1
2g2

𝕋abΠ0
ab, Ḃ2

a = s
n−1∑
b=0

qaqb(l
0
0Π

0
ab + l10Π

1
ab),

(2.10)

where we have introduced the constant s which takes values 0 or
1. These values correspond respectively to the homogeneous and
inhomogeneous bubble equations, as we shall see momentarily.
We then introduce (𝛼 , 𝛽 = 1,… , n − 1)6

̄2
𝛼𝛽

= Ā2
(𝛼+1)(𝛽+1) − 𝛿

𝛽
𝛼

n−1∑
c=0

Ā2
(𝛼+1)c ,

̇2
𝛼𝛽

= Ȧ2
(𝛼+1)(𝛽+1) − 𝛿

𝛽
𝛼

n−1∑
c=0

Ȧ2
(𝛼+1)c ,

(2.11)

in terms of which, we write the following linear system of equa-
tions in the fluxes Π2

ab:

2
𝛼𝛽
Π2
1(𝛼+1) ≡

(
̄2

𝛼𝛽
+ 𝜆̇2

𝛼𝛽

)
Π2
1(𝛼+1) = B̄2

𝛽
+ 𝜆Ḃ2

𝛽
. (2.12)

For s = 1 this linear system is equivalent to the inhomogeneous
bubble equations (2.6), while for s = 0 the system is equivalent to
the homogeneous bubble equations (2.9).
Although this perspective has simplified the task of solving

the bubble equations, it remains a fact that generic solutions ob-
tained in this way will not respect the quantization conditions in
Equation (2.4). This can be seen as follows. If we choose generic
locations of the centers, generic relative distances will be irra-
tional numbers. Then generic solutions will give irrational values
of the flux parameters k2

𝛼
, which is in conflict with the quantiza-

tion conditions in Equation (2.4).
As described in the Introduction, using this method one can

construct exact solutions with quantized fluxes by arranging a set
of non-generic locations of centers, such that all relative distances
are rational. For instance one can take all centers to lie on a line,
or on a circle, as discussed in ref. [21].7 While these constructions
provide interesting and valuable exact solutions, the requirement
to work with non-generic locations of centers is a significant lim-
itation.
To proceed further, an alternative approach is to construct ap-

proximate solutions to the bubble equations. One can do so with
an iterative approach, as follows. One first chooses a set of center
locations, then solves for k2

𝛼
, generically obtaining irrational val-

ues. One then rounds the k2
𝛼
to nearby rational numbers to a de-

sired precision, obtaining an approximate solution, as discussed
in ref. [21] and done in refs. [22, 23].

5 A numerical typo in ref. [21, Eq. (3.22)] has been corrected.
6 To be clear, the ‘2’ are superscript labels for the value of the index i, not
exponents. To avoid potential confusion on this point, we have sup-
pressed the superscript ‘2’ on the matrix 2 in the Introduction and
Discussion sections.

7 For earlier examples of solutions with all centers on a line, see e.g., ref.
[18].
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This can be further improved by taking the rounded flux pa-
rameters k2

𝛼
, re-solving the bubble equations (in the traditional

way) to obtain a new set of distances rab, and then arranging cen-
ter positions to have the resulting relative distances. If this could
be done analytically, one can obtain exact solutions, however typi-
cally this is hard, for the reasons discussed below Equation (2.9).
More realistically, one can employ this method to improve the
precision of the approximate solution, as done in ref. [23]. How-
ever, for more than four centers, doubt has been expressed as to
the feasibility of this method.[21]

3. Constructing Numerical Scaling Solutions

3.1. Overview of the Method

In this section we describe our method to construct numerical
solutions. The method involves two main steps. In the first step,
we generate an approximate scaling solution with rounded flux
parameters k2

𝛼
and large charges Q1, Q5. The condition of large

charges is imposed using a Bayesian optimization algorithm, op-
timizing over flux parameters. In the second step, we fix the flux
parameters and optimize instead over the locations of the cen-
ters, using an EA.
In this subsection we first describe the overall method, focus-

ing primarily on the first step of generating an appropriately good
starting configuration. The following subsections will describe
the respective algorithms in detail.
A key ingredient in the first step is the construction of configu-

rations in the scaling regime. To do this, we follow the discussion
below (2.9). We solve the homogeneous bubble equations (2.9) in
the form (2.12) by taking the position of the centers r⃗a and the co-
efficients qa, l

i
0, k

0,1
a and k20 to be independent variables, and solv-

ing for k2
𝛼
(recall 𝛼 = 1,… , n − 1). The initialization/optimization

of the independent variables will be described in the next subsec-
tion.
This will enable us, at a later step, to rescale rab → 𝜆rab with

𝜆 ≪ 1 to obtain a configuration in the scaling regime, as done in
ref. [23].8 However, before doing this rescaling we round the flux
parameters, and impose Q1, Q5 > Q̄ , as follows.
We round the flux parameters, k2

𝛼
→ k̃2

𝛼
, to a certain precision,

which will be a hyperparameter of the algorithm, and which
we call k_rounding. From here onwards, tildes denote rounded
quantities. After rounding, Equation (2.9) will no longer be ex-
actly satisfied for the same configuration of centers.
Having constructed an approximate solution to the homoge-

neous bubble equations, we then impose Q1, Q5 > Q̄ using a
Bayesian optimization algorithm, optimizing over a subset of the
independent flux parameters, and iterating over the steps so far,
as described in the next subsection.
After a successful run of the Bayesian optimization algorithm,

we have an approximate solution to the homogeneous bubble
equations, with charges Q1, Q5 in the desired range. We next
generate another approximate solution in the scaling regime by
rescaling the positions of the centers obtained in Equation (3.5):

ria → r̄ia ≡ 𝜆 ria , 𝜆 ≪ 1 , (3.1)

8 We thank Pierre Heidmann for a discussion on this point.

where for concreteness we take 𝜆 = 10−5.
At this stage, we have a starting configuration with the desired

physical properties. Before using it as an input to the EA, we next
impose two conditions that further indicate whether the config-
urations can be considered sufficiently good starting configura-
tions.
To describe the first condition, let us consider the homoge-

neous bubble equations (2.9) for a = n − 1:

∑
b≠n−1

qn−1qb
r(n−1)b

Π0
(n−1)b

(
Π1
(n−1)bΠ

2
(n−1)b −

1
2g2

𝕋(n−1)b
)

= 0 . (3.2)

Let us further examine the generic case in which all the terms
in this sum are non-zero. Then a necessary condition to have
a solution is that not all of the terms in the sum have the
same sign. Since the distances are positive, the expressions
qn−1qbΠ0

(n−1)b(Π
1
(n−1)bΠ

2
(n−1)b −

1
2g2

𝕋(n−1)b) should not all have the
same sign.
After rounding the flux parameters, k2

𝛼
→ k̃2

𝛼
, we have rounded

fluxes Π̃2. In the EA, we will keep these fixed and change the
location of the centers. So, before running the EA, we examine
whether or not all of the following expressions have the same sign
(note the presence of the rounded fluxes Π̃2):

qn−1qbΠ0
(n−1)b

(
Π1
(n−1)bΠ̃

2
(n−1)b −

1
2g2

𝕋(n−1)b
)
. (3.3)

We have found that if these quantities have the same sign, it is
a reliable indicator that there is unlikely to be a nearby scaling
solution. Therefore, only if these quantities do not all have the
same sign, we proceed.
Next, we perform a preliminary investigation of the absence

of CTCs. Let us first review the case in which only Abelian fields
are turned on. To rule out CTCs, two algebraic combinations of
the harmonic functions (2.1) must be globally positive. Generi-
cally, the stronger of these conditions is that the quartic E7(7) in-
variant, as a function of the harmonic functions (2.1), is globally
positive.[69] Investigating this condition is non-trivial, and typi-
cally done numerically. The generalization to configurations with
both Abelian and non-Abelian fields was discussed in refs. [21,
62]. The authors of ref. [21] conjectured that the condition for
absence of CTCs is equivalent to requiring that the matrix 2

defined in Equation (2.12) is positive-definite. We thus investi-
gate absence of CTCs in the solutions found by the algorithm by
examining this condition on2.
Although2 depends on the positions of the centers, and thus

will be modified by the EA, we have observed that small modifi-
cations of the distances do not tend to change the eigenvalues
much. Of course, after the EA, one must recheck the condition
on2. However, checking the condition at this stage provides a
good indication of whether the condition will be respected in the
final solution. If 2 is positive definite, we proceed to use this
configuration as a seed for the EA.
Note that the condition (2.9) for scaling solutions, and the scal-

ing limit rab → 𝜆rab, correspond to “zooming in” to the core of
the solutions, such that the asymptotics become AdS2 fibered
over S3; for a general discussion, see ref. [70]. We wish to “undo”
this limit and construct solutions with ℝ4,1 asymptotics. This re-

Fortschr. Phys. 2023, 2300255 2300255 (5 of 14) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300255 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [15/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

quires restoring the inhomogeneous terms in the bubble equa-
tions (2.6).
In the second step of the method, the EA modifies the posi-

tions of the centers to construct numerical solutions to the full
inhomogeneous bubble equations (2.6), as we will describe in
Section 3.3.

3.2. The Bayesian Optimization Algorithm

We now describe the Bayesian optimization algorithm that we
use to implement the first part of our method. As described in
the previous section, we begin by specifying the positions of the
centers r⃗a and the coefficients qa, l

i
0, k

0,1
a and k20, considering them

to be independent variables, and solving the homogeneous bub-
ble equations (2.9) for k2

𝛼
(recall 𝛼 = 1,… , n − 1).

We wish to impose large charges,Q1, Q5 > Q̄ , for some appro-
priate Q̄ . To do so, in principle one could attempt to maximise
the first two expressions in Equation (2.8) as functions of both k20
and the full set of k0,1a . However in practice, it is neither computa-
tionally efficient, nor necessary, to maximize Q1, Q5 with respect
to a substantial fraction of the flux parameters k0,1a — it suffices
to focus on the flux parameters of a small number of the cen-
ters. We thus introduce a hyperparameter nb and maximize Q1,
Q5 only with respect to the flux parameters of nb of the centers.
In our examples, it will suffice to take nb to be equal to 1 or 2.
The centers whose flux parameters are dependent variables

of the optimization process will be labeled with the index ā =
0,… , nb − 1, and the remainder will be labeled with the index
ȧ = nb,… , n − 1. In other words, we will fix the value of the
flux parameters k0,1ȧ when initializing the algorithm, and we then
maximize the value of the global charges with respect to k20 and
k0,1ā .
In order to maximize the value of the global charges we use

a Bayesian optimization algorithm. The reason for this choice is
that the global chargesQ1,Q5 in (2.8) are computationally expen-
sive to evaluate: for any given trial configuration, one must first
solve the homogeneous bubble equations for k2

𝛼
, and then use the

result to compute Q1, Q5.

3.2.1. Bayesian Optimization

Let us now provide an intuitive description of how the Bayesian
optimization algorithm works. Bayesian optimization (BO) is an
approach to find the global maximum (or minimum) of a “black-
box” function, called the objective function. By black-box func-
tion, we mean either a function over which we have no analytic
control (for example a stochastic function), or a function that is
computationally expensive to evaluate, as in the case at hand. This
means that we do not have a global knowledge of the function,
i.e., we do not know its value on every point of the domain, how-
ever we have the freedom to evaluate it on a finite set points.
In this context, Bayesian optimization algorithm is a strat-

egy to obtain the maximum of such functions that works bet-
ter than a random search. It works as follows (for a review,
see e.g., ref. [61]). First, a Gaussian process prior is placed on
the objective function. Then, the objective function is evaluated
on a set of points [x1,… , xn0 ] of the domain. At this stage, the

data {[x1,… , xn0 ], [f (x1),… , f (xn0 )]} represent all our knowledge
on the objective function. Of course, there are infinitely many
functions whose value is [f (x1),… , f (xn0 )]} when evaluated on
[x1,… , xn0 ], but, by assuming that the objective function follows
aGaussian processmodel, we estimate that not all such functions
are equally probable.
In the next step, we construct a “surrogate” function, which,

among the infinite functions that have the same value of the ob-
jective on the points [x1,… , xn0 ], has the highest probability of
representing the objective9: as such, it is our best estimate of the
objective based on the knowledge we have so far, and has the ad-
vantage of being much quicker to evaluate.
The last ingredient of the algorithm is the acquisition func-

tion, also known as acquisition strategy. By evaluating the surro-
gate function on a finite set of points of the domain, it chooses the
next sampling point of the objective (i.e., the point of the domain
that is more likely to pay off when the objective is evaluated on
it), according to some specified strategy. There aremany different
possible acquisition strategies; see e.g., ref. [61].
By evaluating the objective function on this new point, we in-

crease the knowledge we have on the objective. Thus, after each
additional sampling point the surrogate function is updated, and
the acquisition function is again used to choose the next sam-
pling point, iterating until an acceptably good approximate max-
imum (in our case, Q1, Q5 > Q̄) of the objective is found, or a
previously set computational limit is reached (in our case, a max-
imum number of iterations N).

3.2.2. Implementation

We now explain this first part of our algorithm in more detail.
We initialize the independent variables as follows. The qa must
all sum to 1. If n is odd, we use alternating values±1, starting and
ending with 1. If n is even, the first n − 1 use alternating values
±1, starting and ending with −1, while qn = 2:

qa =

{
(1,−1, 1,… ,−1, 1) n odd
(−1, 1,−1,… ,−1, 2) n even

; li0 = 1 ∀ i. (3.4)

Furthermore, we choose the position of the n centers so that
they lie inside a cube with edge length equal to two. We set up
the coordinate system in such a way that the first center is at the
origin, the second is at y = 0, z = 0 and the third center is at z = 0,
so that we have a total of 3n − 6 free coordinates. We sample the
remaining non-zero ria from the following uniform distribution:

ria ∼ U( − 1, 1) . (3.5)

In practice, this sampling is obtained from a discrete distribution
whose step-size is controlled by the hyperparameter prec_pos.
Similarly, the coefficients k0,1ȧ are sampled with the discrete uni-
form distributionU(−10prec_k, 10prec_k), with step-size equal to 1.
In the following we will set the parameter prec_k = 2.

9 This is why this optimization algorithm is called Bayesian: given the
knowledge on the objective, the prior is used to obtain a posterior,
which in this case is the surrogate function.
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Algorithm 1 BO algorithm

function fobj{k
0,1
ā , k20}

k2
𝛼
← Solve the homogeneous bubble equations (2.9)

k̃2
𝛼
← Round k2

𝛼

Compute Q1, Q5 via (2.8)

return min(Q1, Q5)

Assume Gaussian process prior

Evaluate fobj on n0 points {k
0,1
ā , k20} sampled with U(−102, 102)⊗(2nb+1)

Qmax ← The maximum output of fobj found so far

Generate the surrogate function using the available data

while n < N or Qmax < Q̄ do

Let {k0,1ā , k20}n be the point returned by the acquisition function

Evaluate fobj({k
0,1
ā , k20}n)

Qmax ← if fobj({k
0,1
ā , k20}n) > Qmax, update Qmax

Update the surrogate function with the new data

n++

Having initialized all the parameters we are not optimizing
over, we now maximize the objective function

fobj = min
(
Q1, Q5

)
, (3.6)

as a function of the variables {k0,1ā , k20}, which (having
set prec_k = 2) we also allow to take integer values in
[−100, 100]⊗(2nb+1). The evaluation of fobj works as follows.
We first solve the homogeneous bubble equations (2.9). Next, we
round the flux parameters k2

𝛼
→ k̃2

𝛼
. Last, we use (2.8) to compute

Q1, Q5 and select the minimum of the two.
We evaluate the objective function on n0 points in the (2nb +

1)-dimensional space of {k0,1ā , k20} sampled from the discrete uni-
formdistributionU(−102, 102)⊗(2nb+1). Assuming aGaussian pro-
cess prior as described above, we use knowledge of fobj evaluated
at this set of points to generate the surrogate function. We use
n0 = 200.
We then evaluate the surrogate function on a much higher

number (of order 104) of randomly sampled points, with discrete
uniform distributionU(−102, 102)⊗(2nb+1) and step-size 1. We use
an acquisition function based on the Probability of Improvement
method (see e.g., ref. [71]) to choose the next point of the domain
that is most worth evaluating with the objective function. The
knowledge of fobj at this new point is then used to update the
surrogate function. This process is iterated until a point {k0,1ā , k20}
such that fobj({k

0,1
ā , k20}) > Q̄ is found, or a previously set compu-

tational limit (the maximum number of iterations N) is reached.
This procedure is summarized in Algorithm 1.
While this algorithm is not guaranteed to find a solution, we

found that in practice this approach is much more successful
than a random search.
After a successful run of the Bayesian optimization algorithm,

we impose the two conditions described at the end of Section 3.1,
to be confident that a nearby scaling solution exists and that there
are no CTCs in the configuration at this point. If and only if these
two tests are passed, we proceed to the EA.

3.3. The Evolutionary Algorithm

A successful run of the Bayesian optimization algorithm out-
puts an approximate solution to the homogeneous bubble equa-
tions (2.9) with the desired characteristics. The approximate na-
ture of this solution is due to the rounding of the flux parameters
k2
𝛼
. Our task is now to obtain a numerical solution of the inho-

mogeneous bubble equations (2.6) by moving the positions of
the centers in the ℝ3 base space.
We shall do so by using an EA, which is an optimization al-

gorithm inspired by Darwin’s theory of evolution. The starting
point is a population, i.e., a set of individuals that are approximate
solutions to the problem we wish to solve. The properties of each
individual are called genes.Wemeasure how good an approximate
solution is via the fitness function, which is the function we want
to maximize. The fittest individuals are selected to reproduce, by
passing some of their genes to their offspring and in the repro-
duction process some mutations are implemented, i.e., random
modifications of the genes of the offspring. Then the offspring
take the place of the less fit individuals, which die, such that the
population size is constant. This process is iterated until a suffi-
ciently good solution is found, or a previously set computational
limit is reached.
For the case at hand, each individual is an approximate solu-

tion to the bubble equations (2.6). An individual’s genes are (a
subset of) the positions of the centers together with a set of strat-
egy parameters, to be described momentarily.
After implementing the translational and rotational symmetry,

the number of free coordinates is 3n − 6, while the number of
independent bubble equations is n − 1. Implementing a genetic
algorithm on all the 3n − 6 coordinates would be computationally
expensive. Thus, we select a subset of the coordinates to be fixed
to the values of the BO algorithm output, r̄ia of Equation (3.1). We
observed that fixing approximately one coordinate on each of the
last n − 3 centers provides a good balance between effectiveness
and computational cost, and we shall give explicit examples of
this in Section 4. We shall denote by d the number of degrees of
freedom, i.e., the number of unfixed coordinates over which we
run the EA.
To describe the algorithm further, we introduce the multi-

index A = (a, i) combining the center label a and the three Eu-
clidean coordinates i. For the pth individual in the population, we
denote the set of coordinates to be varied by r(p)A . As noted above,
we work directly with the positions of the centers as genes, so the
distances between the centers are always well-defined.
In the reproduction process, random mutations occur. The

magnitude of the mutations is controlled by the set of strategy
parameters. Each direction r(p)A has an independent strategy pa-
rameter 𝜎(p)A , which is a gene of the individual, and which also
undergoes variation and selection itself. As we will describe in
the following, we will initialize the positions of the individuals
in the population by sampling from a Gaussian distribution with
fixed standard deviation, which will be taken as the initial value
of the strategy parameter for every individual and every direction.
The genes of the p-th individual in the population are then writ-
ten as

{r(p)A , 𝜎(p)A } , A = (a, i) . (3.7)

Fortschr. Phys. 2023, 2300255 2300255 (7 of 14) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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All genes {r(p)A , 𝜎(p)A } undergo variation and selection. An indi-
vidual whose genes are likely to survive in the evolutionary pro-
cess will have a good set of positions r(p)A , that will be quantified
by having high fitness, and a set of strategy parameters 𝜎(p)A that
are likely to give rise to fit offspring, as will become clearer when
we discuss reproduction and mutation.
The evolutionary mechanism is iterated over a certain number

of generations controlled by the hyperparameter generations;
in each new generation a number of offspring is generated, spec-
ified by the hyperparameter offspring_per_generation. The
optimal values of these hyperparameters depend on the number
of degrees of freedom of the problem, i.e., the number of centers
of the configuration, as we shall see in examples.

3.3.1. Fitness Function

We now define the fitness function, i.e., the function the EA al-
gorithm seeks to maximize. We seek solutions to the inhomoge-
neous bubble equations (2.6), so we use these to construct the
fitness function. By rearranging the bubble equations, we write:

∑
a≠b

qaqb
rab

Π0
ab

(
Π1

abΠ
2
ab −

1
2g2

𝕋ab
)
−
∑
b,i

qaqbl
i
0Π

i
ab = 𝜖a , (3.8)

where if 𝜖a = 0 ∀a, then the solution is exact. We seek configu-
rations {rA} that minimize the errors associated to all the bubble
equations. We do so by instructing the algorithm to minimize∑

a |𝜖a|. That is, we define the algorithm’s fitness function to be
f (rA) =

1∑
a |𝜖a| . (3.9)

It will also be useful to define the following inverse fitness func-
tion:

finv(rA) =
∑
a

|𝜖a| . (3.10)

Note that since the sum of the bubble equations is zero by
construction, the inverse fitness function finv typically over-states
the error of a configuration, particularly as the number of cen-
ters grows larger. A more accurate measure is the largest abso-
lute value of the errors of the individual equations. So, for later
use when discussing our results, we also define the following
maximum-error fitness and inverse fitness functions,

f̃ (rA) =
1

maxa |𝜖a| , (3.11)

and

f̃inv(rA) = max
a

|𝜖a| . (3.12)

3.3.2. Population Initialization

We initialize a population of pop_size individuals by starting
with the configuration of centers obtained in (3.1), and adding to

it a random variable 𝛿r(p)A sampled from the Gaussian distribution
 (0, var_pos) with mean 0 and standard deviation var_pos,
where var_pos is a hyperparameter of the algorithm:

r(p)A = r̄A + 𝛿r(p)A for p = 1,… , pop_size . (3.13)

The optimal value of var_pos depends on the number of cen-
ters. If var_pos is too small, we generate a population that is
too similar to the seed solution; if var_pos is too large, we ob-
tain a large number of unfit individuals in the initial population.
It is not practical to compute optimal value of var_pos directly
from the bubble equations Equation (2.6), so we optimize it via a
simple grid search. Concretely, we examine the populations gen-
erated by a set of candidate values of var_pos, and use the pop-
ulation fitness to select the optimal var_pos.
Once an individual is generated, we implement the opposition-

based technique,[72,73] i.e., we compare this individual with the
one obtained through reflection symmetry with respect to the ini-
tial configuration (3.1), and keep the one which has the highest
fitness. In other words, given the individual with position r(p)A , we
consider the individual with position r′(p)A given by:

r′(p)A = 2r̄A − r(p)A , (3.14)

and add to the population (only) the fitter of the two individu-
als. We initialize the strategy parameter as 𝜎(p)A = var_pos for
all p, A.

3.3.3. Selection

The selection mechanism of the EA dictates which individuals
pass their genes to the offspring, and which individuals are re-
placed in the new generation. Recall that the number of new off-
spring per generation is a hyperparameter of the algorithm. To
produce an offspring, the algorithm selects two parents that re-
produce and one individual that will be replaced. This selection
process occurs probabilistically, favouring potential parents with
highest fitness, and where those with highest inverse fitness are
most likely to die off.
Our algorithm implements two different selection mecha-

nisms, amongst which the user can choose. The two methods
are (see e.g., ref. [74] for more details):

• Fitness proportional selection. The probability of an individual
to be chosen as a parent is:

P(p) =
f (r(p)A )∑
p f (r

(p)
A )

, (3.15)

where f is the fitness function (3.9). The probability of an in-
dividual to die off is governed by the same equation, with the
fitness function replaced by the inverse fitness function, de-
fined in Equation (3.10).

• Sigma scaling. The probability of an individual to be chosen
as parent is given by a modified version of Equation (3.15),
with the fitness function being replaced by the following aux-
iliary fitness function f ′, which involves a shift controlled by

Fortschr. Phys. 2023, 2300255 2300255 (8 of 14) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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the mean f̄ and standard deviation 𝜎f of the fitnesses of the
population:

f ′(r(p)A ) = max
(
f
(
r(p)A

)
−
(
f̄ − c𝜎f

)
, 0
)
, (3.16)

where c is a constant which is usually set to 2. Similarly, we
also apply this method to the selection of the individual that
dies by replacing the fitness function with the inverse fitness
function.

The first method is less computationally expensive, however it
can be less effective due to the following disadvantage. It is sen-
sitive to adding a constant shift to all f, and depending on this
shift there can be too much or too little selection pressure. For
instance, if there is too much selection pressure, the best indi-
viduals tend to dominate the population very quickly, which can
lead to premature convergence.
By contrast, the second method is more computationally ex-

pensive, but tends to produce an appropriate amount of selec-
tion pressure.

3.3.4. Reproduction and Mutation

Once two parents {r(1)A , 𝜎(1)A } and {r(2)A , 𝜎(2)A } are selected, their off-
spring {rA, 𝜎A} is generated as follows. First, separately for each
gene, i.e., for each element of the multi-index A, we assign equal
probability to one of the following three reproductionmethods to
occur. Before possible mutation, this gene will be set equal to the
gene of a parent, or the average of the two parental genes:

1) {rA, 𝜎A} = {r(1)A , 𝜎(1)A } ;

2) {rA, 𝜎A} = {r(2)A , 𝜎(2)A } ;

3) {rA, 𝜎A} =

{
r(1)A + r(2)A

2
,
𝜎
(1)
A + 𝜎(2)A

2

}
.

(3.17)

Next, we implement a mutation mechanism, which can en-
able the population to escape from local minima of the fitness
function. Recall that each offspring has a total of d genes (A =
1,… , d). For each gene of an offspring, we assign a probability of
order 2∕d for the gene to mutate away from the value assigned in
(3.17). So on average, approximately two genes of each offspring
will mutate.
It is desirable to build in the flexibility for mutations in dif-

ferent genes to have different strengths. We therefore imple-
ment uncorrelated mutation, with different step sizes for differ-
ent genes (see e.g., ref. [74]). If a gene is selected for mutation,
first 𝜎A mutates, then the mutated 𝜎′

A sets the scale for the mu-
tation of the position rA. The mutation of 𝜎A is controlled by two
Gaussian random variables: 𝛿𝜎 is sampled only once for each
offspring, while 𝛿𝜎A is sampled separately for each gene. Both
are sampled from the Gaussian distribution  (0, 1). The muta-

tion strength of 𝜎A is controlled by the parameters 𝜏 ′ = 1∕
√
d and

𝜏 = 1∕
√
2
√
d via:

𝜎A → 𝜎′
A = 𝜎A exp

(
𝜏 ′ 𝛿𝜎 + 𝜏 𝛿𝜎A

)
, (3.18)

where following,[74] we set 𝜏 ′ = 1∕
√
d and 𝜏 = 1∕

√
2
√
d. The

way this treats different directions differently is as follows. The
mutation exp(𝜏 ′ 𝛿𝜎) is common to all directions and allows for
an overall change of the mutation step-size. By contrast, the
term exp(𝜏 𝛿𝜎A) introduces different mutation strengths in dif-
ferent directions.
Once 𝜎A has mutated to 𝜎′

A, the position rA mutates with a
Gaussian random variable 𝛿rA drawn from  (0, 1), with muta-
tion strength set by the new 𝜎′

A:

rA → r′A = rA + 𝜎′
A 𝛿rA . (3.19)

As the fitness of the population improves, and the algorithm
explores narrower regions of the phase space, we improve upon
the mutation mechanism (3.18) to achieve the following set of
goals. The mutation should enable an appropriately fine explo-
ration of the narrower region, while not becoming too small in
magnitude. Separately, the mutation should be able to jump out-
side local minima. To enable this, we introduce a hyperparam-
eter generation_update. After generation_update genera-
tions, we update the strategy parameter of the individuals accord-
ing to the following prescription. After this update, the algorithm
returns to the mutation (3.18) for the next generation_update
generations. The algorithm contains two differentmethods to up-
date the strategy parameter, among which the user can choose.
These are:

• Random update. We introduce the hyperparameters
percentage_random_update and factor_random_update,
randomly select (percentage_random_update)% of the indi-
viduals and rescale 𝜎A → 𝜎A∕factor_random_update, while
rescaling the strategy parameter of the remaining individuals
as 𝜎A → (factor_random_update) 𝜎A.

• Variance update. We update the strategy parameter according
to the variance of the positions, as follows. For each A, we de-
fine the average position

r̂A = 1
pop_size

∑
q

r(q)A , (3.20)

and reset the strategy parameters in direction A of all individ-
uals to have the same value,

𝜎
(p)
A → 𝜎′

A
(p) =

√
1

pop_size

∑
q

(
r(q)A − r̂A

)2
∀p . (3.21)

The variance update method works as follows. If, for instance,
the whole population is concentrated in a particular region of
parameter space, it tends to enable finer exploration of the lo-
cal region. By contrast, if for instance the population is con-
centrated in two or more separate regions, the variance update
tends to enable the population to explore a larger region of the
parameter space.

We performed several runs with both Random and Variance up-
dates. The Variance update has the advantage that it does not de-
pend on the number of centers, while in the Random update we
are introducing two new hyperparameters that could in principle

Fortschr. Phys. 2023, 2300255 2300255 (9 of 14) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Table 1. Hyperparameters of the algorithm, optimized for five-center configurations.

pop_size offspring_per_generation generations var_pos generation_update

2000 50 16 500 10−4 666

be optimized over, depending for instance on the number of cen-
ters. Of the two methods, typically the Variance update is more
computationally expensive, and typically the performance of the
algorithm is better than or comparable to the Random update,
depending on the other parameters of the configuration.
For the sake of clarity, let us illustrate an example of how the

variance update method works. Suppose we set the EA to run
for 1000 generations, and that we specify generation_update =
100. The evolution of the strategy parameters 𝜎A will work as fol-
lows. Up to generation 99, the 𝜎A of each individual will evolve
with random mutations via Equation (3.18). Then, at generation
100, the strategy parameters 𝜎A of all individuals in the popula-
tion will be reset according to Equation (3.21). Next, for genera-
tions 101 to 199 we return to the random mutations described
in Equation (3.18). Then, at generation 200 we again reset the
𝜎A according to Equation (3.21), and the pattern continues until
the end.

4. Results

In this section we present two explicit examples of numerical
scaling solutions obtained with the algorithm described above,
which have five and seven centers respectively. In both of these
examples we use the fitness proportional selection method and
the variance update mechanism described in Section 3.3. In the
examples that we present, the non-Abelian coupling constant g
will be set equal to 1. We also comment on the performance of
the algorithm.

4.1. A Five-Center Scaling Configuration

As a first application of our method, we provide an example of a
five-center scaling configuration. We first optimize the hyperpa-
rameters of the EA for a five-center configuration. We do so with
a grid search and obtain the values reported in Table 1.
We then follow the procedure described in Section 3.2. We use

the Bayesian optimization algorithm to obtain initial positions
and flux parameters, recorded inTable 2, that give a configuration
with global charges Q1 ≃ 2938 and Q5 ≃ 2016.
By solving the homogeneous bubble equations (2.9), we obtain

the (n − 1) remaining k2
𝛼
parameters. After rounding to a preci-

sion of k_rounding = 10−4, we report their values in Table 3.
The parameters in Tables 2 and 3 define a numerical solu-

tion to the inhomogeneous bubble equations (2.6) with fitness
f (r̄ia) ≈ 4.26. The configuration respects the condition regard-
ing the possibility of a nearby scaling solution discussed around
Equation (3.3). Moreover, the matrix 2 is positive-definite. We
therefore proceed to use the configuration as a seed configura-
tion in the EA. The genes of the EA are the subset of that are
coordinates underlined in Table 2.

Table 2. Input parameters of the configuration. For ease of notation, the
rescaling in Equation (3.1) with 𝜆 = 10−5 is understood: in the first three
rows of this table the coordinates of the centers are in units of 10−5,
i.e., r12 = 0.3314 × 10−5. The underlined coordinates are those that are
genes of the EA, i.e., the coordinates over which the evolution process
occurs.

1st 2nd 3rd 4th 5th

x 0 0.3314 0.7491 −0.6923 0.4644

y 0 0 0.5648 −0.684 0.4799

z 0 0 0 −0.0792 0.549

q 1 1 −1 −1 1

k0 17 −18 63 47 29

k1 −61 66 25 72 80

k2 60 − − − −

Table 3. Solution of the homogeneous bubble equations, with the input
parameters given in Table 2, after rounding.

1st 2nd 3rd 4th 5th

k2 − 56.0815 −48.5265 −51.1402 47.9087

We plot in Figure 1 how the fitness of the fittest individual and
the average fitness of the population change over the generations
in a representative run of the algorithm. By starting with a seed
solution with fitness of order 1 we obtain, after around 14 000
generations, a numerical solution with fitness f̃ ≃ 2 × 1010. This
means that the EA generated a numerical solution that solves
each bubble equation with a precision of at least 5 × 10−11.
Note that these fitness/error figures are dimensionful, and de-

pend on our choice of units. A useful dimensionless relative error
can be defined by comparing the error in the bubble equations to

Figure 1. Fitness of the fittest five-center configuration, and average fit-
ness of the population over the generations. The final plateau occurs at
machine precision, as discussed in the text. The maximum fitness ob-
tained is f̃ ≃ 2 × 1010, corresponding to a dimensionless relative error of
1 × 10−15.

Fortschr. Phys. 2023, 2300255 2300255 (10 of 14) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Table 4. Output of the evolutionary algorithm with highest fitness, for the
five-center configuration. Similarly to those in Table 2, these coordinates
are in units of 10−5.

1st 2nd 3rd 4th 5th

x 0 0.3314045307889 0.7491026359717 −0.6923 0.4644170857933

y 0 0 0.5648088034751 −0.6840217263604 0.4799

z 0 0 0 −0.07910622500586 0.549

the largest summand on the left-hand side of the bubble equa-
tions. For this five-center configuration, the largest summand has
absolute value approximately 5 × 104. The ratio of the largest er-
ror in the bubble equations, f̃inv(rA) = maxa |𝜖a|, to this largest
summand, is therefore approximately 1 × 10−15. This is a typi-
cal best-case value at which the dimensionless relative error of
the algorithm saturates, reflecting the fact that we work to ma-
chine precision.
As a side point, we observe that the fitness of the fittest in-

dividual in the population does not increase monotonically. The
main reason is that occasionally the fittest individual is selected
to die; this is part of the random nature of the algorithm, and is
one way that the algorithm can escape local minima. A more mi-
nor reason is that the algorithmmaximizes the sum-error fitness
f defined in (3.9), while we have plotted the max-error fitness f̃
defined in (3.11), being a more accurate measure of the fitness.
The associatedmatrix2 is positive-definite, thuswe can have

confidence that the geometry does not contain any CTCs. We re-
port in Table 4 the coordinates of the centers of this numerical so-
lution.
We compute the global charges of this solution using Equa-

tion (2.8), obtaining:

Q1 ≃ 2938 , Q5 ≃ 2016 , QP ≃ 2.998 × 104 ,

JL ≃ 4.090 × 105 , JR ≃ 0.001545 ,
(4.1)

where JR ≡ |J⃗R|. We note that JR ≪ 1 as expected.

4.2. A Seven-Center Scaling Configuration

We now present an example of a seven-center scaling configura-
tion. We report in Table 5 the hyperparameters of the EA, opti-
mized for seven-center configurations.
After running the Bayesian optimization algorithm, we obtain

an initial configuration with global charges Q1 ≃ 736 and Q5 ≃
410, which is described in Table 6.
The homogeneous bubble equations (2.9) give the n − 1 re-

maining flux parameters k2
𝛼
; we round them to a precision of

10−5, and report the result in Table 7.
The coefficients in Tables 6 and 7 provide an approximate so-

lution to the inhomogeneous bubble equations (2.6) with fitness

Table 6. Input parameters of the solution. Similarly to those in Table 2,
the coordinates in the first three rows are in units of 10−5, and underlined
coordinates are genes of the evolutionary algorithm.

1st 2nd 3rd 4th 5th 6th 7th

x 0 0.8409 0.3858 −0.0195 0.2188 −0.6853 −0.6294

y 0 0 −0.4476 −0.8449 −0.2569 −0.82 0.8284

z 0 0 0 −0.2854 −0.9864 −0.3303 −0.9516

q 1 −1 1 −1 1 −1 1

k0 6 −38 56 38 86 85 15

k1 99 57 39 30 48 37 72

k2 39 − − − − − −

Table 7. Solution of the homogeneous bubble equations, with input pa-
rameters given in Table 6, after rounding.

1st 2nd 3rd 4th 5th 6th 7th

k2 − −37.2187 38.5597 −38.568 38.4874 −38.6549 38.8499

f (r̄ia) ≈ 3.21. As in the five-center example, only the underlined
coordinates in Table 6 are taken to be genes of the EA.
As depicted in Figure 2, we obtain, after around 17 000 gener-

ations, a numerical solution with fitness f̃ ≃ 1.7 × 1010. For this
configuration, the absolute value of the largest term on the left-
hand side of the bubble equations is 1.1 × 104. So the dimension-
less relative error defined in the previous subsection is approxi-
mately 5.7 × 10−15, again reflecting the fact that we work to ma-
chine precision.
The coordinates of the centers of the fittest configuration ob-

tained by the EA are reported in Table 8.

Figure 2. Fitness of the fittest seven-center configuration, and average fit-
ness of the population over the generations. The final plateau again occurs
atmachine precision: themaximumfitness obtained is f̃ ≃ 1.7 × 1010, cor-
responding to a dimensionless relative error of 5.7 × 10−15.

Table 5. Hyperparameters of the algorithm, optimized for seven-center configurations.

pop_size offspring_per_generation generations var_pos generation_update

3000 100 18 500 10−4 666

Fortschr. Phys. 2023, 2300255 2300255 (11 of 14) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Table 8. Output of the evolutionary algorithm with highest fitness, for the
seven-center configuration. Again, coordinates are in units of 10−5.

1st 2nd 3rd 4th 5th 6th 7th

x 0 0.84088499 0.38578191 0.0195 0.21880766 −0.68529849−0.62944182

y 0 0 −0.44759418−0.84485200 −0.2569 −0.82004941 0.82839175

z 0 0 0 −0.28532553−0.98638729−0.33036911 −0.9516

The matrix2 is positive-definite, and thus we can have con-
fidence that the configuration is free of CTCs. Finally, we record
the global charges of the solution:

Q1 ≈ 736.3 , Q5 ≈ 410.0 , QP ≈ 8.887 × 104 ,

JL ≈ 1.625 × 105 , JR ≈ 0.007047 .
(4.2)

We again observe that JR ≪ 1 as expected.

4.3. Performance of the Algorithm

Wenowmake some general comments regarding the algorithm’s
performance. We have run the algorithm in detail for configura-
tions of three, five, and seven centers. As the number of centers
increases, naturally the runtime increases. This is primarily due
to two factors. First, the number of bubble equations that need
to be evaluated increases linearly with n. Second, a higher num-
ber of centers means a higher number of degrees of freedom of
the EA, thus the population size and the number of offspring per
generation should be increased accordingly, to optimize the algo-
rithm’s performance.
When run on a three-center configuration, the algorithm typi-

cally found of order 10 approximate solutions with fitness ≳ 106

in around 10 h (all run-times refer to a high-specification main-
stream desktop machine). For a five-center configuration, typ-
ically around 13 runtime produced two solutions with fitness
≳ 106. For a seven-center configuration, in 40 runtime the algo-
rithm produced two solutions with fitness ≳ 105, including the
one reported above. Each of these runs was performed initially
with a cutoff of 10 000 generations. Subsequently, longer runs
were performed on the two examples presented earlier in this
section to obtain the machine-precision solutions.
In light of the No Free Lunch Theorem, we have compared

our algorithm with a random search on several examples, and
observed it is always far superior, as follows. The random search
is obtained by generating offspring_per_generation new in-
dividuals via Equation (3.13) for generations generations, and
evaluating their fitness. We did so for different values of the stan-
dard deviation var_pos. For large values of var_pos, the relevant
sampling space is too big, and the probability of finding good so-
lutions is low. As we decrease var_pos, the performance of the
random search increases until an optimized value. Decreasing
var_pos further results in a loss of performance, as the individ-
uals are too close to the seed solution r̄A, and thus their fitness is
of the same order of f (r̄A).
In all the examples we analysed, the random search pro-

vided an approximate solution with fitness no higher than
around 10−2. For completeness, in Figure 3 we present an ex-
ample of such a random search for the five-center configu-

Figure 3. Random search over the initial configuration described in
Tables 2 and 3. We repeat the analysis for four different values of var_pos,
which are denoted with 𝜎 in the plot’s legend.

ration discussed in 4.1, with the values of generations and
offspring_per_generation given in Table 1. This contrasts
with the far superior performance of the EA.

5. Discussion

In this work we have presented an optimization algorithm, com-
bining Bayesian optimization and an EA, using which we have
constructed numerical multi-center solutions with several cen-
ters arranged in generic configurations, satisfying all flux quan-
tization constraints.
The Bayesian optimization algorithm generates a configura-

tion in the scaling regime with appropriately large D1 and D5
charges, by optimizing over a subset of the flux parameters. The
output of this first step is a starting configuration that is an ap-
proximate solution to the bubble equations (2.6). The starting
configuration contains two approximations: first, it was derived
by solving the homogeneous form of the bubble equations; sec-
ond, the flux parameters were rounded in order to respect the
conditions of flux quantization.
The EA uses the configuration generated in the first step as a

starting point to generate approximate solutions to the full inho-
mogeneous bubble equations, with increasing precision. It does
so by optimizing over the positions of the centers. By working
with the positions of the centers, the distances between centers
are always well-defined. The fact that we work with quantized
fluxes and well-defined distances is a distinguishing advantage
of our method over previous approaches.
In Section 4 we exhibited two examples of novel machine-

precision numerical solutions, one with five centers and one with
seven centers. Although we have used the algorithm primarily to
construct configurations with three, five, and seven centers, it can
in principle be used to construct configurations with any number
of centers in generic configurations, upon tuning the hyperpa-
rameters appropriately.
While the EA significantly improves upon previous methods,

naturally it does not always findmachine-precision solutions, de-
pending on the starting configuration. This can be for one of two
reasons. First, it is a general limitation of EAs that they do not
always find optimal solutions, i.e., global minima of the fitness
function: in the evolution process, the populationmight get stuck
in a local minimum. It is well known that this problem is more

Fortschr. Phys. 2023, 2300255 2300255 (12 of 14) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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serious when the number of degrees of freedom of the problem
is low, as the probability of having local minima decreases as the
number of dimensions increase.
Second, given a set of poles in the harmonic functions describ-

ing the multi-center solution, it is not guaranteed that there ex-
ists a nearby exact solution to the bubble equations. For instance,
by rounding the flux parameters, one could access a region of
parameter space that does not admit solutions. It is thus possi-
ble that the EA fails to find a sufficiently good solution simply
because such a solution does not exist. Indeed, we found three-
center configurations in which the EA could not improve the fit-
ness above a certain value, and a detailed analysis of one such
example showed that a nearby exact solution did not exist. De-
spite these inherent limitations, most of the time the algorithm
is successful at finding solutions.
As the number of centers grows, naturally more computa-

tional resources are required. It is worth noting that, in particu-
lar, the task of finding a good starting configuration requires sig-
nificantly more computational resources. This is because it can
take several iterations for the Bayesian optimization algorithm to
find scaling configurations with appropriately large supergravity
chargesQ1,Q5, together with a positive-definite matrix for ab-
sence of CTCs. So as the number of centers increases, a smaller
fraction of potential starting configurations get passed on to the
EA. In particular, apart from choosing the flux parameters that
we initialize to have the same sign, as suggested in ref. [21, Foot-
note 17], finding a good is otherwise done by a random search.
The probability of randomly selecting initial parameters that lead
to an with all positive eigenvalues decreases as the number of
centers (and thus the dimension of ) increases. Therefore, it
would be interesting to explore more efficient ways of selecting
parameters that lead to a positive-definite ; we leave this task
to future work.
To conclude, we have implemented a novel application of EAs

and Bayesian optimization to the study of multi-centered so-
lutions to supergravity, and have presented two state-of-the-art
machine-precision numerical solutions. Our algorithm could be
used to create larger families of numericalmulti-center solutions,
which could in turn be used in phenomenological models.[58–60]

The prospects for harnessing the power of computer science algo-
rithms to solve physically interesting problems in String Theory
and related fields appear bright, with an exciting future ahead.
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