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Plate-type acoustic metamaterials (PAM) are thin structures that exhibit anti-1

resonances with high sound transmission loss values, making PAM a promising new2

technology for controlling tonal noise in the challenging low-frequency regime. A3

PAM consists of rigid masses periodically attached to a thin baseplate. The period-4

icity of PAM can be exploited in simulations allowing to model only a single unit cell5

using periodic boundary conditions. This approach essentially represents the PAM6

as an infinite structure, but real PAM implementations will always be finite and7

influenced by boundary conditions. In this paper, extensive numerical simulations8

of different PAM configurations have been performed to study the performance of9

finite PAM compared to infinite PAM. The results indicate that as the number of10

unit cells in a finite PAM increase, the sound transmission loss converges towards11

that of an infinite PAM. The impact of the finite PAM edge boundary conditions12

becomes negligible at some point. Based on the numerical results, a simple criterion13

is proposed to determine a-priori how many unit cells are required in a finite PAM14

design to consider it quasi-infinite. This criterion aids in justifying unit cell models15

with periodic boundary conditions for efficient design optimizations in practical PAM16

applications.17
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I. INTRODUCTION18

Since more than 20 years, acoustic metamaterials have been widely studied as an emerging19

technology to control the propagation of sound waves in many different and previously20

unheard of ways (Cummer et al., 2016; Ma and Sheng, 2016). One particular strength of21

acoustic metamaterials, which caught the attention of the noise control research community,22

is that they can be used to control low-frequency tonal noise using very thin and lightweight23

structures (Gao et al., 2022). Of the many acoustic metamaterial types that have been24

proposed in the past, plate-type acoustic metamaterials (PAM) are plate-like structures,25

consisting of a thin baseplate and periodic subwavelength sized unit cells containing rigid26

masses which are attached to the baseplate. Figure 1 shows an example of a PAM with one27

annular mass in each unit cell. The basic design of PAM is very similar to that of membrane-28

type acoustic metamaterials (MAM), which use a pre-stressed membrane as the baseplate29

(Yang et al., 2010, 2008). The key advantage of PAM over MAM is that the stiffness of the30

baseplate in PAM does not depend on a pre-stress and therefore the acoustical properties of31

PAM are more robust with respect to stress relaxation and temperature effects and PAM do32

not require a rigid (and heavy) grid structure to support the pre-stress (Huang et al., 2016;33

Ma et al., 2021).34

Previous research has demonstrated that PAM can exhibit frequency bands at low fre-35

quencies (typically below 1 kHz) with sound transmission loss (STL) values greatly exceed-36

ing the STL of a homogeneous wall with the same mass, which is governed by the mass-law37

(Langfeldt and Gleine, 2019; Xiao et al., 2021). These high STL frequency bands are asso-38
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FIG. 1. Geometry of a finite PAM with annular added masses and 8×8 unit cells. The geometry

of an individual unit cell is shown at the top.

ciated with the anti-resonances of the PAM, i.e. frequencies at which the surface-averaged39

displacement of a unit cell is zero for a given acoustic excitation and the PAM acts like an (al-40

most) rigid wall to incident sound waves (Yang et al., 2008). The high STL of PAM combined41

with their low mass and thickness makes PAM a promising solution for low-frequency noise42

control problems, especially in applications where weight and space are highly constrained43

(e.g. in the aeronautical or automotive industries). Due to these appealing properties, a4445

number of studies on the sound insulation of PAM have been published in the past, in-46

cluding experimental investigations of large-scale samples in the laboratory (Langfeldt and47

Gleine, 2020a; Xiao et al., 2021) and analytical models (Langfeldt and Gleine, 2019). As48

is common for the modelling of metamaterials in general, most numerical and analytical49

studies of PAM used a model of a unit cell with periodic boundary conditions to predict the50

vibro-acoustic properties of PAM (Langfeldt and Gleine, 2019; Xiao et al., 2021). This ap-51
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proach essentially idealizes the PAM as an unbounded metasurface with an infinite number52

of unit cells. This approach has a number of advantages, for example it is very computa-53

tionally efficient as only a single unit cells needs to be modelled and it enables the use of54

homogenization methods (Yang et al., 2014).55

Real structures, however, are always finite-sized and it is possible that the boundary56

conditions of finite PAM structures can lead to deviations from the idealized periodic unit57

cell model. As a noteworthy example, Sui et al. (2015) investigated the STL of a honeycomb-58

type acoustic metamaterial with a surface mass density of 1.3 kgm−2 using measurements in59

an impedance tube. Despite the low weight of the metamaterial, they observed STL values60

of over 45 dB at frequencies below 500Hz. However, as pointed out by Peiffer et al. (2015),61

this result was due to the impedance tube sample being small (diameter 100mm) with fixed62

edges and therefore its low-frequency STL was governed by a stiffness-controlled behavior. If63

the sample size would be scaled up to much higher and more practical values (e.g. 1m2), the64

STL of the metamaterial would be simply governed by the mass-law and STL values of 45 dB65

could not be reached below 500Hz (Peiffer et al., 2015). Varanasi et al. (2017) presented66

experimental results for a finite multi-celled PAM-like metamaterial plate, consisting of a67

thin plate with a rectangular grid and a sound normalizing layer. They compared their68

experimental results to unit cell-based numerical simulations (Varanasi et al., 2013) and69

discovered deviations between the measured and simulated frequency of the metamaterial’s70

STL peak, which they attributed to the different behavior of the finite metamaterial in the71

experiment and the infinite metamaterial in the simulation. In a different investigation,72

Van Belle et al. (2019) studied the STL of infinite and finite vibro-acoustic metamaterial73
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plates consisting of mechanical resonators or point masses periodically attached to a host74

plate. In their results, the authors could show that the infinite metamaterial plate with75

point masses (which exhibits similar characteristics as the PAM considered in this work)76

exhibits an anti-resonance with large STL values, whereas in the finite case with 12 × 977

unit cells the anti-resonance STL values were significantly reduced by the eigenmodes of the78

finite structure.79

Although the studies mentioned above indicate that the performance of a finite sized80

PAM can be very different compared to an idealized unit cell model with periodic boundary81

conditions, there exist other numerical and even experimental results for the STL of finite82

PAM which show a good agreement with predicted anti-resonance frequencies and STL83

values from periodic unit cell representations (Langfeldt and Gleine, 2020a; Xiao et al.,84

2021). It is still unknown under which circumstances finite acoustic metamaterial plates85

can be modelled using unit cells with periodic boundary conditions. To fill this gap, this86

paper presents the results of systematic numerical simulations of finite PAM with different87

numbers of unit cells to study the impact of the PAM boundary conditions on the STL,88

as compared to the STL of an infinite PAM. The aim is to develop a criterion which can89

be used to estimate if a finite PAM design is large enough to be represented by a periodic90

unit cell model with sufficient accuracy. Such a criterion will give more confidence in the91

design of practical PAM for noise control and can be used to justify the choice of a modelling92

approach using periodic unit cells. Section II of this paper provides a detailed description93

of the simulation model that was used in this study to investigate the properties of finite94

PAM with different numbers of unit cells. Simulations have been performed for two different95
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PAM designs and the numerical results for the sound transmission loss and the finite PAM96

anti-resonances are presented in section III. These results are then discussed in section IV97

and further analysed to develop a simple criterion for assessing the suitability of a unit cell98

with periodic boundary conditions to represent a finite PAM with a certain number of unit99

cells. At the end of this section, this criterion is validated using a PAM test case study.100

Finally, the results presented in this paper are summarized and concluded in section V.101

II. NUMERICAL MODEL102

Numerical simulations based on the finite element method (FEM) are used to calculate103

the normal incidence STL of different finite sized PAM. In this work, the normal incidence104

STL was simulated to minimize the computational cost, especially for the finite PAM models105

with large numbers of unit cells. For normal incidence the STL needs to be simulated only106

for a single incidence acoustic loading (as compared to integrating the STL over a range of107

incidence angles for diffuse incidence STL). Additionally, the symmetry of normally incident108

plane waves and the PAM itself makes it possible to model only a quarter of the PAM and the109

fluid domains (as shown in Figure 2). It has been shown in previous investigations that the110

anti-resonance frequencies of PAM are the same for normal and diffuse incidence (Langfeldt111

and Gleine, 2019), which justifies this approach for the aim of this study. Figure 2(a)112

provides an overview of the dimensions and boundary conditions of the numerical model.113

The PAM was embedded inside a rigid infinite baffle. Unless stated otherwise, the exterior114

edge of the PAM, where the PAM meets the baffle, was constrained using simply supported115

boundary conditions. The acoustic excitation of the PAM was performed by imposing a116
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spatially constant pressure amplitude pbl = 2pin on the PAM, which corresponds to the117

blocked pressure field generated by a normally incident plane acoustic wave with amplitude118

pin. To obtain the radiated sound field, one side of the PAM was coupled to a fluid half119

space, as shown in Figure 2(a), via a full vibro-acoustic coupling condition. The transmitted120

sound power Wtr was obtained by integrating the surface-normal component of the acoustic121

intensity on the fluid-PAM interface. With the incident sound power of the incident plane122

wave given by Win = S |pin|2 /(2ρ0c0), where S = N2a2/4 is the area of the quarter model123

of the PAM and ρ0 = 1.2 kgm−3 and c0 = 340m s−1 are the density and the speed of sound124

of the fluid, respectively, the STL can be obtained via TL = −10 lg(Wtr/Win).125

The PAM itself was modelled using shell elements with quadratic Lagrange basis functions126

for the baseplate and solid elements with quadratic serendipity basis functions for the added127

masses. The materials were modelled as linear elastic materials including damping using a128

structural loss factor η. An overview of the density ρ, Young’s modulus E, Poisson’s ratio129

ν, and loss factor η for the materials used in this study is provided in Table I. For the air130131

domain, fluid elements with quadratic Lagrange basis functions were used. The maximum132

element size was set to 56.7mm, corresponding to at least six elements per wavelength133

at the highest frequency of interest 1000Hz. To sufficiently resolve the curved regions at134

the edges of the added masses of the PAM, the maximum element size was set to 20%135

of the curvature radius of these edges. On the baseplate, a triangular mesh was used to136

discretize the shell. Then, the masses were discretized using a swept mesh with one element137

thickness. A tetrahedral mesh was then generated in the radiation fluid domain. Finally,138

perfectly matched layers (PML) were added to truncate the fluid domains and simulate139
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FIG. 2. Numerical setup for calculating the normal incidence STL of finite sized PAM. (a) Di-

mensions and boundary conditions; (b) Overview of the mesh of the whole simulation model for

configuration PAM2 with 4×4 unit cells; (c) Detail view of the PAM mesh.
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TABLE I. Material properties of the materials used in the numerical simulations.

Material name ρ E ν η

Steel 7850 205 0.28 1

Polycarbonate (PC) 1310 2.3 0.4 5

Polyamide 1150 2.9 0.4 5

Polyethylene terephthalate (PET) 1400 4.5 0.4 5

kgm−3 GPa — %

the sound radiation into a half space. NPML = 8 layers in the PML regions were found140

to sufficiently suppress the reflection of sound waves across the whole frequency range of141

interest. The distance between the PML and the PAM, as indicated in Figure 2(a), was142

set to sPML = 70.8mm, corresponding to 1/48 of the wavelength at the lowest frequency143

of interest (100Hz). An example of the mesh generated for PAM configuration PAM2 (see144

Table II) with 4×4 unit cells is shown in Figure 2(b) and Figure 2(c). To ensure that145

the PML setup and the discretization did not affect the simulation results significantly,146

additional parametric and mesh convergence studies have been performed. The interested147

reader can find these results in the Supplementary Materials.1148
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TABLE II. Simulated PAM unit cell configurations.

Materials

Configuration a t dM,o dM,i hM Baseplate Masses fP∞ m′′

PAM1 77.5 750 30 0 1 PC Steel 252 1.9

PAM2 22.5 50 14.7 5.4 1.4 PET Polyamide 294 0.54

mm µm mm mm mm Hz kgm−2

III. RESULTS149

In this section, the results of the numerical simulations of finite and infinite PAM config-150

urations will be presented. Two different PAM unit cell configurations, denoted PAM1 and151

PAM2 with details provided in Table II, will be compared. PAM1 corresponds to the design152

that was studied numerically and experimentally in Langfeldt and Gleine (2020a), whereas153

configuration PAM2 represents a more lightweight design with smaller unit cells compared154

to PAM1. The presentation of the results in this section will first focus on the comparison of155156

sound transmission loss spectra for different finite and infinite PAM configurations. Then,157

results for the finite PAM anti-resonances versus the number of unit cells will be presented158

for different PAM edge boundary conditions.159
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FIG. 3. Simulated sound transmission loss of the finite and infinite PAM. The grey dashed curve

represents the mass-law STL using the static surface mass density of the PAM m′′. (a) PAM1; (b)

PAM2.

A. Sound transmission loss160

Figure 3(a) and Figure 3(b) show the simulated sound transmission loss of PAM1 and161

PAM2, respectively, for increasing number of unit cells N × N . Additionally, both plots162

contain the STL of the infinite PAM (grey solid curve), simulated using a unit cell with163

periodic boundary conditions, and the mass-law STL (grey dashed curve) as a reference. It164165

should be noted that in Figure 3(b) some frequency ranges with negative STL values can be166
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seen. This result is not unphysical, but merely a result of the small size of the PAM panels167

(the unit cells of PAM2 are three times smaller than the PAM1 unit cells), the presence168

of diffraction around the panel edges, and the definition of the incident sound power, as169

discussed by Thompson et al. (2009).170

In both cases shown in Figure 3 it can be observed that if just a single unit cell is171

considered, then the anti-resonance occurs at a much higher frequency than in the infinite172

periodic case. This is not unexpected, since the simply supported boundary conditions173

impose a stiffness to the PAM unit cell, leading to the increase in frequency. Furthermore,174

the STL values of the N = 1 finite PAM generally are much higher than in the infinite case,175

which is a result of the spatial windowing effect (Villot et al., 2001). As N is increased,176

it can be seen in both the results for PAM1 and PAM2 that the general STL values of177

the finite PAM decrease (due to the finite panels becoming larger, leading to a reduction178

of the spatial windowing effect) and the anti-resonance approaches the corresponding anti-179

resonance frequency of the infinite PAM. An explanation for this is that as the number of180

unit cells increases, a decreasing proportion of unit cells within the finite panel are affected181

by the exterior boundary conditions. In the limit N → ∞, no unit cells are constrained by182

the simply supported boundary conditions and the periodic boundary conditions assumed183

in the infinite PAM model are valid.184

A significant difference between the finite STL values of PAM1 and PAM2 for increasing185

N is that in the case of PAM1 and N = 5 two STL peaks appear next to the infinite186

PAM anti-resonance with a resonance dip in between. These two peaks and the dip are187

still visible for N = 10, only with slightly shifted frequencies. In case of PAM2, however,188
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FIG. 4. Dispersion curves of the PAM unit cells. The grey horizontal line denotes the anti-

resonance frequency fP∞ of the infinite PAM. (a) PAM1; (b) PAM2.

there is just one dominant anti-resonance peak which steadily approaches the infinite PAM189

anti-resonance as N is increased. The explanation for the larger number of peaks in the190

finite PAM1 configuration can be found in the dispersion curves of the metamaterial, shown191

in Figure 4. For PAM1, the infinite PAM anti-resonance frequency fP∞ does not coincide192193

with a band-gap and therefore the anti-resonance of the finite PAM is disturbed by the194

presence of structural modes (Van Belle et al., 2019). In case of PAM2, fP∞ falls within195

a fairly large complete band-gap and thus the finite PAM STL curves are much smoother.196
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It should be noted that for a PAM the anti-resonance (with high STL values) does not197

necessarily fall within a bending wave band-gap of the metamaterial. As evident from the198

dispersion curves in Figure 4 as well as by comparing the band-gap frequencies with the STL199

curves in Figure 3, this depends on the design of the PAM unit cell. This is because the200

band-gap in PAM is governed by Bragg interference effects, because the added masses act201

as periodic non-resonant scatters, whereas the anti-resonance frequency depends on the first202

few eigenmodes of the unit cell (Langfeldt and Gleine, 2020b; Yang et al., 2008). Van Belle203

et al. (2019) provide further insights on the band-gaps and anti-resonances of metamaterial204

plates with resonant and non-resonant scatterers.205

B. Anti-resonance206

Figure 5(a) shows the anti-resonance frequency fP of configuration PAM1 for increasing207

number of unit cells N = 1 . . . 30 and two different boundary conditions for the PAM edges208

(simply supported and clamped). Note that, as observed in Figure 3, for some finite PAM209

configurations multiple peaks can appear in the STL spectrum, even though the unit cell210

has been designed to exhibit only one anti-resonance frequency. Thus, fP has been defined211

in the finite PAM cases as the frequency corresponding to the largest STL maximum in212

the investigated frequency range. The results in Figure 5(a) indicate that for very low213214

number of unit cells (N ≤ 6), the anti-resonance frequency of the finite PAM1 is much215

higher than the infinite PAM anti-resonance frequency fP∞ = 252Hz. This is because the216

boundary conditions of the PAM increase the stiffness of the unit cells globally, leading to217

a shift to higher frequencies. As the number of unit cells becomes larger, the finite PAM218
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FIG. 5. Anti-resonance frequency of the finite PAM for different number of unit cells N × N

and simply supported and clamped boundary conditions for the finite PAM edge. (a) PAM1; (b)

PAM2.

anti-resonance frequency converges towards the infinite PAM value and the influence of the219

boundary conditions becomes negligible, as evident by the small differences between the220

simply supported and clamped PAM for larger values of N . What stands out in Figure 5(a)221

is that the convergence behavior of the PAM anti-resonance frequency with respect to N is222

not monotonic, with, in the simply supported case for example, fP being higher than the223

infinite PAM anti-resonance frequency for N ≤ 6 whereas for N > 6 fP approaches fP∞224

from lower frequencies. This non-monotonic convergence behavior is caused by different225
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STL peaks growing, shrinking, and changing their frequencies as the number of unit cells226

is increased (see Figure 3(a)). Contrary to this, the convergence behavior in case of PAM2227

shown in Figure 5(b) is strictly monotonic. Since PAM2 was designed to have an anti-228

resonance frequency within a complete band-gap (whereas PAM1 was designed not to), this229

much cleaner convergence behavior can be attributed to the lack of structural modes around230

the anti-resonance frequency of PAM2.231

Figure 6 shows the convergence behavior of the peak sound transmission loss TLP, defined232

as the STL value at the anti-resonance frequency fP, for both finite PAM configurations.233

In both cases it can be seen that the TLP values are much higher than for the infinite234235

PAM if the number of unit cells is low. As discussed above, this can be attributed to the236

spatial windowing effect, which leads to strongly increased STL values if the finite panels237

are significantly smaller than the wavelength. For increasing N , the TLP values converge238

towards the corresponding value of the infinite PAM. The convergence behavior in the case of239

PAM1 (Figure 6(a)) is quite irregular, similarly to what was observed for the anti-resonance240

frequency. The peak STL values fall slightly below the infinite PAM TLP value. This can,241

again, be explained by the anti-resonance frequency of PAM1 not falling within a band-gap,242

thus the peak STL values are affected by the eigenmodes of the finite PAM. It is worth243

noting that for PAM1 with clamped boundary conditions, TLP is much closer to the infinite244

value at larger N . This is because the anti-resonance of the clamped PAM1 is not so strongly245

disturbed by PAM eigenmodes as in the simply supported case.2 For PAM2 (Figure 6(b)),246

TLP decreases monotonically towards the infinite PAM value as the number of unit cells is247

increased. The boundary conditions have almost no effect on TLP. This highlights again248
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FIG. 6. Peak sound transmission loss value at the anti-resonance frequency of the finite PAM for

different number of unit cells N ×N and simply supported and clamped boundary conditions for

the finite PAM edge. (a) PAM1; (b) PAM2.

that it is advantageous to design a finite PAM to have an anti-resonance frequency that falls249

within a band-gap.250

IV. DISCUSSION251

In this section, the results presented in the previous section will be used to develop a252

simple criterion for assessing the suitability of a unit cell-based numerical model with periodic253
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FIG. 7. Relative anti-resonance frequency error ϵ of the finite PAM with different boundary

conditions and numbers of unit cells. The grey area indicates the range of values for fP∞/f0 at

which the error is less than 10%.

boundary conditions to predict the STL properties of a finite PAM. Then, this criterion will254

be applied to a new PAM design to verify the validity of the proposed approach.255

A. Quasi-infinite PAM criterion256

To unify the results from the previous section and identify a criterion for the minimum257

number of unit cells N×N for which a finite PAM is reasonably well represented using a unit258

cell with periodic boundary conditions, Figure 7 shows the relative error ϵ = |fP/fP∞ − 1|259

of the finite PAM anti resonance frequency (compared to the infinite PAM anti-resonance260

frequency) against fP∞ normalized by the fundamental resonance frequency of the finite261

PAM f0. f0 was obtained from an eigenfrequency analysis of the FEM model of the PAM.262263

Choosing fP∞/f0 as the measure for the error was motivated by the following reasons: As264
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discussed above, the boundary conditions of a finite PAM affect the dynamic behavior of265

the PAM globally, mainly by stiffening the unit cells, leading to altered anti-resonance fre-266

quencies fP. The “global stiffness” of the finite PAM is related to its fundamental resonance267

frequency f0: For PAM with a very small number of unit cells, f0 can be very large, whereas268

as N → ∞, f0 will approach zero. Thus, the hypothesis is that if f0 ≪ fP∞ (and the269

ratio fP∞/f0 is very large), the influence of the finite PAM edge boundary conditions on the270

anti-resonance should be small.271

The results Figure 7 confirm this hypothesis indicating for all considered PAM and bound-272

ary condition combinations a similar trend in the reduction of the anti-resonance frequency273

error ϵ as fP∞/f0 is increased. The grey area in Figure 7 highlights the region in which274

ϵ < 10% consistently for all combinations of PAM designs and boundary conditions. From275

this, a criterion for a quasi-infinite PAM with an anti-resonance frequency less then 10%276

different from the infinite PAM anti-resonance frequency can be deduced:277

f0 < 0.01fP∞, (1)

i.e. the fundamental frequency of the finite PAM must be at least 100 times smaller than278

the desired anti-resonance frequency fP∞.279

For a useful a-priori estimation of the quasi-infinite PAM criterion, an estimation of the280

fundamental resonance frequency f0 of the finite PAM for different N without requiring281

numerical eigenfrequency studies of the full size panel is needed. For the sake of simplicity,282

it is assumed here that for N ≫ 1 the global bending wavelength at f0 is larger than the283

unit cell size and thus the low-frequency behavior of the finite PAM is well represented284

by the smeared mass and stiffness of the inhomogeneous PAM structure (Cremer et al.,285
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2005). Thus, approximate expressions for the fundamental resonance frequency of a square286

homogeneous plate will be used to predict f0 here, with287

f0(N) ≈ π

N2a2

√
D

m′′ (2)

for simply supported boundary conditions and288

f0(N) ≈ 1.84
π

N2a2

√
D

m′′ (3)

for clamped boundary conditions (Ventsel and Krauthammer, 2001). In both equations, a289

corresponds to the unit cell size, m′′ is the static surface mass density of the PAM, and D290

is the smeared bending stiffness. D depends on the bending stiffness of the baseplate,291

D =
Et3

12(1− ν2)
, (4)

and the mass,292

DM =
EMh

3
M

12(1− ν2
M)

(5)

(assuming masses with constant thickness hM), as well as the specific arrangement of the293

masses within the unit cell. If the mass is very small compared to the overall unit cell size294

(point-like), D should be very close to the baseplate bending stiffness D. For larger masses,295

the rigidity of the mass will stiffen the baseplate and D will be expected to be higher than296

D. To estimate D for added masses which are not point-like, the following rule of mixture,297

analogous to the modelling of composite materials, will be used:298

D ≈
(

ϕ

DM

+
1− ϕ

D

)−1

, (6)

where ϕ = 0.25π(d2M,o − d2M,i)/a
2 is the relative area covered by the mass in the unit cell.299
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FIG. 8. Fundamental resonance frequency of the finite PAM for different number of unit cells

N × N and simply supported and clamped boundary conditions for the finite PAM edge. (a)

PAM1; (b) PAM2.

To evaluate the accuracy of Equation 2 and Equation 3, Figure 8 compares these estima-300

tions to the simulated fundamental frequencies of the finite PAM at different values of N .301

For PAM1, shown in Figure 8(a), Equation 2 and Equation 3 combined with the estimate302303

for D in Equation 6 provide a reasonably accurate prediction of the finite PAM fundamental304

frequency, given the simplicity of the equations. For PAM2 in Figure 8(b) it can be seen305

that the model tends to underpredict the fundamental resonance frequency, for both simply306
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supported and clamped boundary conditions. Since for PAM2 the mass size, compared to307

the unit cell size, is fairly large (ϕ = 29%), Equation 6 appears to underestimate the stiffen-308

ing effect of the added mass. If a more accurate prediction of D is required, eigenfrequency309

simulations can be performed for, e.g., N = 1 to obtain f0(1) and Equation 2 or Equation 3310

can then be solved for D.311

B. Application to a new PAM design312

The quasi-infinite PAM criterion is now validated by applying it to a new PAM design313

which differs from the two designs PAM1 and PAM2 that were used to derive the criterion.314

The unit cell of this design, denoted PAM3, is shown in Figure 9(a). The unit cell contains a315316

square shaped steel mass that is attached to a 100 µm thick PET baseplate. The dimensions317

of the mass and the unit cell are given in Figure 9(a). The different mass shape was chosen to318

test the robustness of the quasi-infinite PAM criterion with respect to mass shapes other than319

circular or annular. The dimensions and materials of the PAM3 design result in a static320

surface mass density of m′′ = 3.6 kgm−2, a smeared bending stiffness of D = 0.8Nmm321

(according to Equation 6), and an infinite PAM anti-resonance frequency of fP∞ = 218Hz.322

Using these parameters and choosing simply supported boundary conditions for the finite323

PAM, Equation 2 is used in conjunction with the criterion in Equation 1 to determine that324

at least 4 × 4 unit cells have to be used in the finite PAM configuration to achieve an325

anti-resonance frequency within ±10% of fP∞ = 218Hz.326

Numerical simulation results of the STL of the infinite and finite PAM3 with N = 4 are327

shown in Figure 9(b). The grey shaded area indicates the frequency range within ±10% of328
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FIG. 9. (a) Unit cell design parameters for PAM3, which was used to validate the proposed quasi-

infinite PAM criterion; (b) Sound transmission loss of the infinite and finite PAM3. The grey area

denotes a deviation of ±10% from the infinite PAM anti-resonance frequency.

fP∞. It can be seen that the anti-resonance peak of the finite PAM falls just outside the area.329

Thus, the quasi-infinite PAM criterion underestimated the necessary number of unit cells for330

this particular PAM design, but only by a very small margin. As discussed in the previous331

sub-section, the accuracy could be improved by estimating D using a simulation of the332

unit cell with simply supported boundary conditions. Given the simplicity of the criterion333

and the fact that the PAM3 unit cell design used a different mass shape than PAM1 and334

PAM2, the proposed criterion in Equation 1 and the smeared bending stiffness estimation335

in Equation 6 appear to be a useful tool for judging the appropriateness of predicting the336
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anti-resonance frequency of a finite PAM using a unit cell model with periodic boundary337

conditions.338

V. CONCLUSION339

In the present paper the sound transmission loss of finite PAM was investigated, with340

particular focus on the anti-resonance frequency of the finite PAM and a comparison to the341

infinite PAM anti-resonance frequency. For this purpose, a large number of numerical simu-342

lations for two different PAM configurations have been performed. The results were analysed343

and a simple criterion to determine how many unit cells are necessary for a finite PAM so344

that its anti-resonance frequency differs from the infinite PAM anti-resonance frequency by345

less then 10%. The key results of this study are as follows:346

• The anti-resonance of a finite PAM converges towards the infinite PAM anti-resonance347

as the number of unit cells increases. This convergence behaviour is independent of348

the PAM edge boundary conditions (simply supported or clamped).349

• As already shown by Van Belle et al. (2019) for PAM with point masses and confirmed350

in this study for PAMwith more general mass shapes, it is advantageous to design PAM351

such that the anti-resonance frequency (of the infinite PAM) lies within a complete352

bending wave band-gap. If the PAM anti-resonance frequency does not coincide with353

a band-gap, peaks and dips from the resonant behaviour of the finite PAM will affect354

the STL spectrum around the anti-resonance frequency.355
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• A quasi-infinite PAM criterion has been developed and is given in Equation 1. This356

criterion is defined as the required fundamental resonance frequency f0 of the finite357

PAM so that the finite PAM anti-resonance frequency fP differs from the infinite PAM358

anti-resonance frequency by less then 10%.359

• Equation 2 and Equation 3 can be used as simple formulas to estimate f0 of a finite360

PAM and calculate the required number of unit cells N to satisfy the quasi-infinite361

PAM criterion.362

These results will support the application of PAM in practical noise control problems.363

First, the simulation results confirm that computationally efficient unit cell simulation mod-364

els with periodic boundary conditions provide indeed a good representation of a more re-365

alistic finite PAM with edge boundary conditions, if the number of unit cells N is large366

enough. Secondly, the quasi-infinite PAM criterion—though simple and therefore not highly367

accurate—has been proven as a useful tool to estimate, without the need for costly finite368

PAM simulations, if a finite PAM with a given number of unit cells can be regarded as369

infinite, justifying more efficient computations and enabling faster design iterations or op-370

timizations. The PAM configurations that were considered in this study consisted of unit371

cells with a single mass, therefore exhibiting a single isolated anti-resonance frequency. The372

findings in this contribution can, however, be extended towards more advanced PAM designs373

with multiple anti-resonances or higher bandwidth, as long as these PAM designs can be374

represented using periodic unit cells, e.g. PAM with multiple masses per unit cell (Langfeldt375

and Gleine, 2020b) or sub-unit cells with synergetic coupling (Ma et al., 2017; Wang et al.,376

2019).377
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VI. SUPPLEMENTARY MATERIAL378

See supplementary material at [URL will be inserted by AIP] for the results of the mesh379

and PML convergence study for the numerical model, as well as further STL results for380

PAM1 and PAM2.381
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