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Abstract

Currently it is well known that deep neural networks are vulnerable to adversarial examples,
constructed by applying small but malicious perturbations to the original inputs. Moreover,
the perturbed inputs can transfer between different models: adversarial examples generated
based on a specific model will often fool other unseen models with a significant success
rate. This allows the adversary to leverage it to attack the deployed systems without
any query, which could raise severe security issue particularly in safety-critical scenarios.
In this work, we empirically investigate two classes of factors that might influence the
transferability of adversarial examples. One is about model-specific factors, including
network architecture, model capacity and test accuracy. The other is the local smoothness
of loss surface for generating adversarial examples. More importantly, relying on these
findings on the transferability of adversarial examples, we propose a simple but effective
strategy to improve the transferability, whose effectiveness is confirmed through extensive
experiments on both CIFAR-10 and ImageNet datasets.

Keywords: Adversarial example, transferability, black-box attack, deep learning, neural
network.

1. Introduction

Recently (Szegedy et al., 2013) showed that an adversary is able to fool deep neural network
models into producing incorrect predictions by manipulating the inputs maliciously. The
corresponding manipulated samples are called adversarial examples. More severely, it was
found that adversarial examples have cross-model generalization ability, i.e., that adversarial
examples generated from one model can fool another different model with a high probability.
We refer to such property as transferability. By now, more and more deep neural network
models are applied in real-world applications, such as speech recognition, computer vision,
etc.. Consequently, an adversary can employ the transferability to attack those deployed
models without querying the systems (Papernot et al., 2016b; Liu et al., 2016), inducing
serious security issues.

Understanding the mechanism of transferability could potentially provide various benefits.
Firstly, for the already deployed deep neural network models in real systems, it could help
to design better strategies to improve the robustness against the transfer-based attacks.
Secondly, revealing the mystery behind the transferability of adversarial examples could
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also expand the existing understandings on deep learning, particularly the effects of model
capacity (Madry et al., 2017; Fawzi et al., 2015) and model interpretability (Dong et al.,
2017; Ross and Doshi-Velez, 2017). Therefore, studying the transferability of adversarial
examples in the context of deep networks is of significant importance.

In this paper, we empirically investigate two classes of factors that might influence the
adversarial transferability, and further provide a simple but rather effective strategy for
enhancing the transferability. Our contributions are summarized as follows.

• We find that adversarial transfer is not symmetric, which means that adversarial
examples generated from model A can transfer to model B easily does not implies the
reverse is also natural. This finding is consistent with (Su et al., 2018). Second, we
find that adversarial examples generated from a deep model appear less transferable
than those from a shallow model. We also explore the impact of the non-smoothness
of the loss surface. Specifically, we find that the local non-smoothness of loss surface
harms the transferability of generated adversarial examples.

• Inspired by previous investigations, we propose a novel algorithm, the smoothed gradient
attack, to improve the adversarial transferability significantly. It employs the locally
averaged gradient instead of the original one to generate adversarial examples, which
implicitly help to smooth the loss landscape. Extensive numerical validations justify
the effectiveness of our method.

Related work The phenomenon of adversarial transferability was first studied by (Szegedy
et al., 2013). By utilizing the transferability, (Papernot et al., 2016b,a) proposed a practical
black-box attack by training a substitute model with limited queried information. (Liu et al.,
2016) first studied the targeted transferability and introduced the ensemble-based attacks to
improve the transferability. More recently, (Dong et al.) showed that the momentum can
help to boost transferability significantly.

Meanwhile, there exist several works trying to explain the adversarial transferability.
(Papernot et al., 2016a) attributed the transferability to the similarity between input
gradients of source and target models. (Liu et al., 2016) proposed to use the visualization
technique to see the large-scale similarity of decision boundaries. However, our empirical
investigations imply that these similarity-based explanations have their intrinsic limitation
that they cannot explain the non-symmetric property of adversarial transferability.

Our smoothed gradient attacks that enhance the transferability by utilizing the in-
formation in the small neighborhood of the clean example is inspired by the works on
shattered gradients (Balduzzi et al., 2017) and model interpretability (Smilkov et al., 2017).
Recently, similar strategies are also explored by (Athalye et al., 2018) and (Warren He,
2018) for white-box attacks, whereas we focus on the black-box settings. Our method is also
related to the work by (Athalye and Sutskever, 2017), which introduced the expectation
over transformation (EOT) method to increase robustness of adversarial examples. The
EOT formulation is similar to our objective (7), but they did not study the transferability.
Also our motivations are totally different from theirs.
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2. Background

2.1. Adversarial attack

Let f(x) : Rd 7→ RK denote the classifier. In deep learning, it is found that for almost any
sample x and its label ytrue, there exists a small perturbation η that is nearly imperceptible
to human such that

argmax
i

fi(x) = ytrue, argmax
i

fi(x+ η) 6= ytrue. (1)

We call η the adversarial perturbation and correspondingly xadv := x+ η the adversarial
example. The attack (1) is called a non-targeted attack since the adversary has no control over
which class the input x will be misclassified to. In contrast, a targeted attack aims at fooling
the model to produce a wrong label specified by the adversary, i.e. argmaxi fi(x+η) = ytarget.

In this paper, we consider pure black-box attacks. This means the adversary has no
knowledge of the target model (e.g. architecture and parameters) and is also not allowed to
query any input-output pair from the target model. On the contrary, the white-box attack
means that the target model is available to the adversary.

2.2. Generating adversarial examples

Modeling In general, crafting adversarial examples can be modeled as the following
optimization problem,

maximizex′ J(x′) := J(f(x′), ytrue)

s.t. ‖x′ − x‖∞ ≤ ε,
(2)

where J is some loss function measuring the discrepancy between the model prediction and
ground truth; the `∞ norm ‖ · ‖∞ is used to quantify the magnitude of the perturbation.
Other norm is also possible, but we focus on `∞ norm in this paper. To improve the
strength of adversarial transferability, instead of using a single model, (Liu et al., 2016)
proposed the ensemble attack, which generates adversarial examples against a model ensemble
f1(x), f2(x), · · · , fM (x):

maximizex′ J

(
1

M

M∑
k=1

fk(x′), ytrue

)
s.t. ‖x′ − x‖∞ ≤ ε.

(3)

Optimizer We use the following iteration to solve (2) and (3),

xt+1 = projD (xt + α sign(∇xJ(xt))) . (4)

where D = [0, 255]d ∩ {x′ | ‖x′ − x‖ ≤ ε} and α is the step size. We call the attack that
evolves (4) for T steps iterative gradient sign method (IGSM) attack (Kurakin et al., 2016;
Madry et al., 2017). Furthermore, the famous fast gradient sign method (FGSM) is a special
case with α = ε, T = 1.

(Dong et al.) recently proposed the momentum-based attack as follows

gt+1 = µ gt +∇J(xt)/‖∇J(xt)‖1
xt+1 = projD (xt + α sign(gt)) ,

(5)
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where µ is the decay factor of momentum. By using this method, they won the first-place in
NIPS 2017 Non-targeted Adversarial Attack and Targeted Adversarial Attack competitions.
We will call it mIGSM attack in this paper.

3. Evaluation of Adversarial Transferability

Datasets To evaluate the transferability, three datasets including MNIST, CIFAR-10 and
ImageNet are considered. For ImageNet, evaluations on the whole ILSVRC2012 validation
dataset are too time-consuming. Therefore, in each experiment we randomly select 5, 000
images that can be correctly recognized by all the examined models to form our new
validation set.

Models (i) For MNIST, we trained fully connected networks (FNN) of D hidden
layers, with the width of each layer being 500. (ii) For CIFAR-10, we trained five mod-
els: lenet,resnet20, resnet44, resnet56, densenet. The test accuracies of them are
76.9%, 92.4%, 93.7%, 93.8% and 94.2%, respectively. (iii) For ImageNet, the pre-trained
models provided by PyTorch are used. The Top-1 and Top-5 accuracies of them can be
found on website1. To increase the reliability of experiments, all the models have been tested.
However, for a specific experiment we only choose some of them to present since the findings
are consistent among all the tested models.

Criteria Given a set of adversarial pairs, {(xadvi , ytruei )}Ni=1, we calculate the Top-1
success rate (%) fooling a given model f(x) by 100

N

∑N
k=1 1[argmaxi fi(x

adv
k ) 6= ytruek ]. For

targeted attacks, each image xadv is associated with a pre-specified label ytarget 6= ytrue.
Then we evaluate the performance of the targeted attack by the following Top-1 success rate:
100
N

∑N
k=1 1[argmaxi fi(x

adv
k ) = ytargetk ]. The corresponding Top-5 rates can be computed in

a similar way.

4. Model-specific Factors for Transferability

Previous studies on adversarial transferability mostly focused on the influence of attack
methods (Liu et al., 2016; Dong et al.; Tramèr et al., 2017; Kurakin et al., 2016). However
it is not clear how the choice of source model affects the success rate transferring to target
models. In this section, we investigate this issue from three aspects including architecture,
test accuracy and model capacity.

4.1. Architecture

We first explore how the architecture similarity between source and target model contributes
to the transferability. This study is crucial since it can provide us guidance to choose the
appropriate source models for effective attacks. To this end, three popular architectures
including ResNet, DenseNet and VGGNet are considered, and for each architecture, two
networks are selected. Both one-step and multi-step attacks are performed on ImageNet
dataset. Table 1 presents the experiment results, and the choice of hyper-parameters is
detailed in the caption.

1. http://pytorch.org/docs/master/torchvision/models.html
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Table 1: Top-1 success rates(%) of FGSM and IGSM attacks. The row and column denote
the source and target models, respectively. For each cell, the left is the success rate
of FGSM (ε = 15), while the right is that of IGSM (T = 5, α = 5, ε = 15). The
dashes correspond to the white-box cases, which are omitted.

resnet18 resnet101 vgg13 bn vgg16 bn densenet121 densenet161

resnet18 - 36.9 / 43.4 51.8 / 58.0 45.1 / 51.7 41.1 / 49.2 30.0 / 35.8

resnet101 48.5 / 57.2 - 38.9 / 41.6 33.1 / 40.0 33.2 / 46.9 28.7 / 43.2

vgg13 bn 35.5 / 26.8 14.8 / 10.8 - 58.8 / 90.7 19.1 / 15.9 13.8 / 11.7

vgg16 bn 35.2 / 26.1 15.6 / 11.1 61.9 / 91.1 - 21.1 / 16.8 15.8 / 13.2

densenet121 49.3 / 63.8 34.4 / 50.7 47.6 / 58.7 41.0 / 57.8 - 38.5 / 73.6

densenet161 45.7 / 56.3 33.8 / 54.6 48.6 / 56.0 41.3 / 55.9 43.4 / 78.5 -

We can observe that the transfer between two models are non-symmetric, and this
phenomenon is more obvious for the models with different architectures. For instance, the
success rates of IGSM attacks from densenet121 to vgg13 bn is 58.7%, however the rate
from vgg13 bn to densenet121 has only 15.9%. The lack of symmetry implies that previous
similarity-based explanations of adversarial transferability are quite limited.

Another interesting observation is that success rates between models with similar archi-
tectures are always much higher. For example the success rates of IGSM attacks between
vgg13 bn and vgg16 bn are higher than 90%, nearly twice the ones of attacks from any
other architectures.

4.2. Model Capacity and Test Accuracy

We first study this problem on ImageNet dataset. A variety of models are used as source
models to perform both FGSM and IGSM attacks against vgg19 bn and resnet152, and
the results are displayed in Figure 1. The horizontal axis is the Top-1 test error, while the
vertical axis is the number of model parameters that roughly quantifies the model capacity.

We can see that the models with powerful attack capability concentrate in the bottom left
corner, whereas for those models with either large test error or large number of parameters,
the fooling rates are much lower.

We suspect that the impact of test accuracy is due to that the decision boundaries
of high-accuracy models are similar, since they all approximate the ground-truth decision
boundary of true data very well. On the contrary, the model with low accuracy has a
decision boundary relatively different from the high-accuracy models. Here the targeted
network vgg19 bn and resnet152 are high-accuracy models. Therefore it is not surprising
to observe that high-accuracy models tend to exhibit stronger attack capability. This
phenomenon implies a kind of data-dependent transferability, which is different from the
architecture-specific transfers observed in the previous section.

It is somewhat strange that adversarial examples generated from deeper model appear
less transferable. To further confirm this observation, we conduct additional experiments
on MNIST and CIFAR-10. Table 2 shows the results, which is basically consistent. This
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Figure 1: Top-1 success rates of IGSM (T = 20, α = 5, ε = 15) and FGSM(ε = 15) attacks
against vgg19 bn (the first row) and resnet152 (the second row) for various
models. The annotated value is the success rate transferring to the target models.
Here, the models of vgg-style or resnet-style have been removed to exclude the
influence of architecture similarity. For the same color, the different points
corresponds networks of different depths.

Table 2: Top-1 success rates (%) of attack from the source model (row) to the target model (column).
(Left) FGSM attack for MNIST with ε = 40 and D denotes the depth of the fully connected
network. (Right) FGSM attack for CIFAR-10 with ε = 10.

D = 0 D = 2 D = 4 D = 8

D = 0 - 62.9 62.9 64.4
D = 2 52.9 - 48.3 49.4
D = 4 47.3 43.1 - 44.8
D = 8 31.2 29.2 29.0 -

resnet20 resnet44 resnet56 densenet

resnet20 - 70.4 64.0 71.6
resnet44 65.4 - 57.1 65.8
resnet56 66.2 62.9 - 40.3

observation suggests us not use deep models as the source models when performing transfer-
based attacks, although we have not fully understand this phenomenon.
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5. Non-smoothness of the Loss Surface

In this section, we consider that how the smoothness of loss surface J(x) affects the
transferability. For simplicity, let g(x) = ∇xJ(x) denote the gradient. (Smilkov et al.,
2017) showed that gradient g(x) is very noisy and uninformative for visualization, though
the model is trained very well. (Balduzzi et al., 2017) studied a similar phenomenon that
gradients of deep networks are extremely shattered. Both of them imply that the landscape
is locally extremely rough. We suspect that this local non-smoothness could harm the
transferability of adversarial examples.

5.1. Intuition

For simplicity, assume model A and B are the source and target models which are well trained
with high test accuracies, respectively. Previous methods use gA(x) to generate adversarial
perturbations, so the transferability mainly depends on how much sensitivity of gA for model
A can transfer to model B. As illustrated in Figure 2, where three curves denote the level
sets of three models, we can see that the non-smoothness can hurt the transferability, since
both model A and B have very high test accuracy, their level sets should be similar globally,
and JB(x) is probably unstable along gA. As illustrated, the local oscillation of gA makes
the sensitivity less transferable. One way to alleviate this is to smooth the landscape JA,
thereby yielding a more transferable gradient GA, i.e. 〈ĜA, ĝB〉 > 〈ĝA, ĝB〉. Here we use G
denote the gradient of the smoothed loss surface.

GA

gA
gB

〈ĜA, ĝB〉 > 〈ĝA, ĝB〉

model A

smoothed model A

model B

Figure 2: How the non-smoothness of the loss surface hurts the transferability. For any a, let â
denote the unit vector a/‖a‖2.

5.2. Justification

To justify the previous arguments, we consider smoothing the loss surface by convolving it
with a Gaussian filter, then the smoothed loss surface is given by Jσ(x) := Eξ∼N (0,I)[J(x+σξ)].
The corresponding gradient can be calculated by

Gσ(x) = Eξ∼N (0,I)[g(x+ σξ)]. (6)

The extent of smoothing is controlled by σ, and we show the smoothing effect by visualizing
the smoothed gradient.
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Visualization of smoothed gradient we provide an visualization for understanding
how the local average has the smoothing effect. We choose densenet121 as the model and
visualize the saliency map of gradient ∇xJ(x) and the smoothed versions for varying m.
Two images are considered, and the results are shown in Figure 3. We can easily observe
that local average can smooth the gradient significantly and capture the most important
semantic information. Please refer to the work by (Smilkov et al., 2017) for more details.

clean image m = 1, = 0.00 m = 5, = 0.10 m = 100, = 0.10

clean image m = 1, = 0.00 m = 5, = 0.10 m = 200, = 0.10

Figure 3: Visualization of gradients. The leftmost is the examined image. The second corresponds
to the original gradient, whereas the remaining two images corresponds to the smoothed
gradients estimated by different m.
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Figure 4: (Left) Cosine similarity between the gradients of source and target models. (Mid-
del, Right) Visualization of decision boundaries. The origin corresponds to the
clean image. The colors denote the different class categories, and the gray color
corresponds to the ground truth label.

In the following, we will quantitatively show that Gσ(x) is more transferable than g(x).

Gradient similarity We first quantify the cosine similarity between gradients of source
and target models, respectively. Two situations are considered: vgg13 bn→vgg16 bn,
densenet121→vgg13 bn, which correspond the within-architecture and cross-architecture
transfers, respectively. We choose σ = 15, and the expectation in (6) is estimated by using
1
m

∑m
i=1 g(x+ ξi). To verify the averaged gradients do transfer better, we plot the cosine

844



Understanding and Improving the Adversarial Transferability

similarity against the number of samples m. In Figure 4 (Left), as expected, we see that
the cosine similarity between GA and gB are indeed larger than the one between gA and gB .
Moreover, the similarity increases with m monotonically, which further justifies that GA is
more transferable than gA.

Visualization In Figure 4 (Middle) and (Right), we visualize the transferability by
comparing the decision boundaries of model A (resnet34 ) and model B (densenet121 ). The
horizontal axis represents the direction of GA of resnet34, estimated by m = 1000, σ = 15,
and the vertical axis denotes orthogonal direction hA := gA − 〈gA, ĜA〉ĜA. This process
means that we decompose the gradient into two terms: gA = αGA + βhA with 〈GA, hA〉 = 0
. Each point in the 2-D plane corresponds to the image perturbed by u and v along each
direction, clip(x+ u ĜA + v ĥA, 0, 255), where x is the clean image. The color corresponds
to the label predicted by the target model.

It can be easily observed that for model A, a small perturbation in both directions can
produce wrong classification. However, when applied to model B, the sensitivities of two
directions dramatically change. The direction of hA becomes extremely stable, whereas to
some extent GA preserves the sensitivity, i.e. GA do transfer to model B better than hA.
This suggests that for gradient gA, the noisy part hA is less transferable than the smooth
part GA. We also tried a variety of other models shown in Supplementary Material, and the
results are consistent.

6. Smoothed Gradient Attack

Method Inspired by the previous investigations, enhancing the adversarial transferability
can be achieved by smoothing the loss surface. Then our objective becomes,

maximize Jσ(x′) := Eξ∼N (0,I)[J(x′ + σξ)]

s.t. ‖x′ − x‖ ≤ ε.
(7)

Intuitively, this method can also be interpreted as generating adversarial examples that are
robust to Gaussian perturbation. Expectedly, the generated robust adversarial examples
can still survive easily in spite of the distinction between source and target model.

If use the iterative gradient sign method to solve (7), we have the following iteration:

Gt =
1

m

m∑
i=1

∇J(xt + ξi), ξi ∼ N (0, σ2I)

xt+1 = projD (xt + α sign (Gt)) ,

(8)

where Gt is a mini-batch approximation of the smoothed gradient (6). Compared to
the standard IGSM, the gradient is replaced by a smoothed version, which is endowed
with stronger transferability. Therefore we call this method sg-IGSM. The special case
T = 1, α = ε, is accordingly called sg-FGSM. Any other optimizer can be used to solve the
(7) as well, and we only need to replace the original gradient with the smoothed one.

Choice of Hyperparameters We first explore the sensitivity of hyper parameters m,σ
when applying our smoothed gradient technique. We take ImageNet dataset as the testbed,
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Figure 5: (Left) Success rates (%) for sg-FGSM attacks with different m. Here we use
σ = 15. (Right) The sensitivity of the hyper parameter σ.

and sg-FGSM attack is examined. To increase the reliability, four attacks are considered
here. The results are shown in Figure 5.

We see that sg-FGSM consistently outperforms FGSM for all distortion levels, although
the improvement varies for different ε. Furthermore, larger m leads to higher success rate
due to the better estimation of the smooth part of gradient, and the benefit starts to saturate
after m ≥ 30. For the smoothing factor σ, we find neither too large nor too small value can
work well, and the optimal σ is about 15. Overly large σ will introduce a large bias in (8),
and extremely small σ is unable to smooth the landscape enough.

Therefore, in the subsequent sections, we will use m = 20, σ = 15 to estimate the
smoothed gradient and only report the result for one distortion level.

6.1. Effectiveness of Smoothed Gradient Attack

Single-model attack We first test the effectiveness of our method for single-model based
attacks on non-targeted setting. To make a fair comparison, we fix the number of gradient
calculation per sample at 100. Specifically, for sg-IGSM we have T = 5 due to m = 20,
whereas T = 100 for IGSM. The results are shown in Table 3. It can be observed that
smoothed gradients do enhance the transferability dramatically for all the considered attacks.
Especially note those bold rates, where the improvements have reached about 30%.

Ensemble attack In this part, we examine the ensemble-based attack on the targeted
setting2. For targeted attacks, generating an adversarial example predicted by target models
as a specific label is too hard, resulting in a very low success rate. We instead adopt both
Top-1 and Top-5 success rates as our criteria to better reflect the improvement of our method.
A variety of model ensembles are examined, and the results are reported in Table 4 and 5.

2. Compared to non-targeted attack, we find that a larger step size α is necessary for generating strong
targeted adversarial examples. The fully understanding of this observation will be left as future work.
Therefore a much larger step size than the non-target attacks is used in this experiment.
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Table 3: Top-1 success rates(%) of non-targeted IGSM and sg-IGSM attacks. The row and
column denote the source and target models, respectively. For each cell, the left is
the success rate of IGSM (T = 100, α = 1), while the right is the that of sg-IGSM
(T = 5, α = 5). In this experiment, distortion level ε = 15.

densenet121 resnet152 resnet34 vgg13 bn vgg19 bn

densenet121 - 50.1 / 80.6 59.9 / 87.2 62.2 / 82.2 56.5 /84.3
resnet152 52.5 / 81.3 - 57.2 / 85.6 47.7 / 71.1 42.9 / 72.6
resnet34 51.5 / 76.4 46.5 / 73.1 - 53.8 / 74.8 49.1 / 74.5

vgg13 bn 24.1 / 49.2 14.3 / 33.5 25.1 / 54.1 - 90.6 / 96.4
vgg19 bn 27.1 / 57.5 16.7 / 41.6 27.6 / 60.7 92.0 / 96.1 -

Table 4: Top-1 success rates (%) of ensemble-based targeted IGSM and sgd-IGSM attacks.
The row and column denote the source and target model, respectively. The left
is the success rate of IGSM (T = 20, α = 15), while the right is that of sg-IGSM
(T = 20, α = 15). The distortion ε = 20.

Ensemble resnet152 resnet50 vgg16 bn

resnet101+densenet121 11.6 / 37.1 11.9 / 34.5 2.6 / 14.1

resnet18+resnet34+resnet101+densenet121 30.3 / 55.2 36.8 / 57.3 12.8/35.0

vgg11 bn+vgg13 bn+resnet18+
resnet34+densenet121

10.1 / 35.1 22.2 / 47.9 42.1/72.1

Table 5: Top-5 success rates (%) of ensemble-based approaches for IGSM (T = 20, α = 15)
versus sg-IGSM (T = 20, α = 15). The row and column denote the source and
target models, respectively.

Ensemble resnet152 resnet50 vgg16 bn

resnet101+densenet121 28.1 / 56.8 26.2 / 52.4 8.1 / 29.7

resnet18+resnet34+resnet101+densenet121 50.4 / 70.4 54.7 / 72.4 28.1 / 52.6

vgg11 bn+vgg13 bn+resnet18
+resnet34+densenet121

24.3 / 55.8 36.9 / 65.9 62.2 / 83.5
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Figure 6: Destruction rates of adversarial examples for various methods. For smoothed gradient
attacks, we choose m = 20, σ = 15. The distortion ε = 15.

Table 6: Top-1 success rates (%) of momentum attacks and smoothed gradient attacks. The row
and column denote the source and target model, respectively. Each cell contains three
rates corresponding to mIGSM, sg-IGSM and sg-mIGSM attacks, respectively.

resnet18 densenet121 vgg13 bn

resnet18 - 65.6 / 73.1 / 86.5 70.4 / 77.7 / 86.7
densenet121 72.7 / 84.5 / 91.1 - 68.7 / 80.3 / 86.7

vgg13 bn 43.1 / 58.6 / 74.3 28.4 / 44.7 / 60.9 -

As we can see, it is clear that smoothed gradient attacks outperform the corresponding
normal ones by a remarkable large margin. More importantly, the improvement never be
harmed compared to single-model case in Table 3, which implies that smoothed gradient can
be effectively combined with ensemble method without compromise.

Momentum attack In this experiment, three networks of different architectures are
selected. As suggested in (Dong et al.), we choose µ = 1, and all attacks are iterated for
T = 5 with step size α = 5. In Table 6, we report the results of non-targeted attacks of
three attacks including mIGSM, sg-IGSM and mIGSM with smoothed gradient (sg-mIGSM).
It is shown that our method clearly outperforms momentum-based method for all the cases.
Moreover, by combining with the smoothed gradient, the effectiveness of momentum attacks
can be further improved significantly.

6.2. Robustness

Smoothed gradient attacks can be viewed as generating adversarial examples robust against
Gaussian noise perturbations. Therefore, we are interested in how robust is the adversarial
example against other image transformations. To quantify the influence of transformations,
we use the notion of destruction rate defined by (Kurakin et al., 2016). The lower is this
rate, the more robust are the adversarial examples.

Densenet121 and resnet34 are chosen as our source and target model, respectively;
and four image transformations are considered: rotation, Gaussian noise, Gaussian blur
and JPEG compression. Figure 6 displays the results, showing that adversarial examples
generated by our methods are more robust than those generated by vanilla methods. This
numerical result is interesting, since we only explicitly increase the robustness against
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Gaussian noise in generating adversarial examples. We speculate that the robustness can
also transfer among different image transforms.

7. Conclusion

In this paper, we first investigated the influence of model-specific factors on the adversarial
transferability. It is found that the model architecture similarity plays a crucial role.
Moreover models with lower capacity and higher test accuracy are endowed with stronger
capability for transfer-based attacks. we second demonstrate that the non-smoothness of loss
surface hinders the transfer of adversarial examples. Motivated by these understandings, we
proposed the smoothed gradient attack that can enhance the transferability of adversarial
examples dramatically. Furthermore, the smoothed gradient can be combined with both
ensemble and momentum based approaches rather effectively.

Combining our smoothed gradient strategy with other type of adversarial attacks and
rigorous theoretical analysis are left as future works.
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