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Analytic exploration of the non-perturbative domain of asymptotic observables.

by Daniel Hasenbichler

Transseries expansions are natural extensions of ordinary power series and include

non-perturbative monomials such as exponentials as additional basis elements. By using

a range of highly accurate asymptotic methods an analytic understanding of the full

non-perturbative domain of asymptotic observables can be obtained which can go far

beyond the results of numerical computations. This is the focus of this thesis, where such

asymptotic methods have proven crucial for the full non-perturbative understanding of

observables in three separate research directions. The so-called transasymptotic sum-

mation is used to arrive at a novel analytic understanding of the bifurcation behaviour

of discrete non-linear systems. It is shown that such transasymptotic summations can

be used to naturally explain the emergence of so-called delayed bifurcations widely

known as ’canards’ in singularly perturbed systems. In the context of relativistic hydro-

dynamics, several distinct summation techniques are used and compared to match the

late time temperature evolution of an expanding fluid to its early time behaviour. The

power of the transasymptotic summation method is further exploited to derive global

analytical properties such as analytic approximations to the locations of square-root

branch points. In the context of mathematical relativity, the exponentially decaying

and oscillatory corrections to the perturbative WKB approximation of the quasinormal

mode frequencies of a charged scalar field in an expanding charged black hole spacetime

background (RNdS) are captured in a transseries and analysed using Borel techniques

and new analytic properties are found. These approaches to study non-perturbative

phenomena are quite generic and can be applied to a large class of problems.
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Thesis overview

Asymptotic expansions remain an important tool in the technical repertoire of any

applied mathematician today. In mathematical physics, they arise as formal perturbative

solutions in many different contexts from correlation functions in quantum field theories

to non-linear waves in fluid mechanics, where the complexity of the problems forces

one to rely on perturbative methods. In many interesting problems these perturbative

expansions are factorially divergent, which means that the coefficients in the expansion

diverge as ∼ n!. In such cases, summing a few terms surprisingly provides very accurate

results, but adding extra terms will quickly make the result begin to diverge.

Nevertheless, it is possible to extract analytic information from such divergent ex-

pansions, and several techniques such as optimal truncation, hyperasymptotics, Borel

summation and transasymptotic summation can be used [7, 8, 9, 10]. The factorial

growth of the coefficients in the perturbative expansion indicates that the observable

contains non-perturbative sectors that are not captured directly from the perturbative

analysis alone. These non-perturbative sectors are asymptotic expansions themselves

that come multiplied by non-perturbative functions. Often the non-perturbative terms

are decaying exponentials and thus, exponentially smaller than any of the terms in the

original perturbative asymptotic series.

Mathematically, the complete formal solution to an asymptotic observable, including

both perturbative and non-perturbative sectors, can in many cases be described using

a so-called exponential transseries, which typically includes an infinite number of

subdominant contributions. The further one moves away from the expansion point, the

more significant the decaying exponentials may become. Moreover, the exponentials

can change dominance depending on the value of the variable in the non-perturbative
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domain, and can give rise to widely different analytic behaviour, from oscillations to

pole singularities.

This PhD thesis will explore three different problems for which the asymptotic behaviour

is well-known in perturbation theory, and for which capturing non-perturbative con-

tributions is nonetheless crucial to an understanding of important analytic properties.

A novel approach in the study of deterministic chaos will be developed which analyti-

cally captures the bifurcations in discrete non-linear chaotic systems. Moreover, a new

interpretation of the bifurcation phenomenon will be given from the behaviour of the

exponential weights in a transseries. In the context of hydrodynamics, a methodology

for the interpolation between late and early times based on well-established summation

techniques will be developed, and novel global analytic properties will be deduced.

The findings of these projects have been published in two publications [2, 4], wherein

significant sections of this thesis have been reproduced verbatim.

Chapter 1 will provide an introduction to the non-perturbative methods which will

be used throughout this thesis. The importance of non-perturbative phenomena in

physics will be explained using the most well-known example of such non-perturbative

behaviour,which is that of instantons in quantum mechanics. The resurgent properties

of factorially divergent asymptotic series will then be discussed using Borel resumma-

tion, and the essential role of exponentially small terms in the analytic continuation

in parameter space, also known as the Stokes phenomenon, will be discussed using

the language of Écalle’s Stokes automorphisms and alien derivatives [7, 11, 12]. The

hyperasymptotic summation method will be introduced in the context of WKB expan-

sions in quantum mechanics, and the transasymptotic method will be discussed as a

means of accessing a regime where the non-perturbative exponentials contributing to

the observable are no longer small. These methods can all be regarded as tools to access

the non-perturbative domain of a mathematical/physical problem, and will be used

repeatedly in the following Chapters of this thesis.

In Chapter 2 the discrete logistic map will be studied, a non-linear system which contains

bifurcations depending on the value of a parameter λ in the equation. The system will

be explored both in the case where λ is constant (the static case), and in the case
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where the parameter is growing in time (the dynamical case). The bifurcations will be

described using an exponential transseries ansatz, and a systematic method to obtain the

bifurcations will be presented. The bifurcations themselves will be shown to take place

as a consequence of a change in dominance in the exponential weights of the transseries.

It will be shown that truncating the transseries after a few exponential terms can never be

sufficient to capture the period-doublings, which lie within the non-perturbative domain

of the system. The transasymptotic summation method will provide the necessary tool

in this case, which will be used to derive an analytic approximation to the period-

doublings. Moreover, in the dynamical case, the Borel plane of the perturbative and

the first non-perturbative sectors will be studied, complementing the transasymptotic

approach and leading to an improved understanding of the non-perturbative domain of

the problem.

In Chapter 3, the asymptotics of the time evolution of a conformally invariant relativistic

fluid will be studied. The evolution equation is a non-linear first-order ODE which

contains an attractor at infinity. The attractor is a solution to which all other physical

solutions converge exponentially, a process which can be interpreted as a gradual loss

of the information encoded in the initial conditions of the system. This information is

never completely lost, but rather encoded in the exponentially decaying amplitudes

of the non-perturbative modes. A question that naturally arises is how to interpolate

between the late-time regime in which the attractor dominates the behaviour, and the

non-perturbative early-time regime in which the different solutions differ significantly

depending on the initial value problem. The interpolation problem will be approached

using the well-established methods of Borel summation and hyperasymptotic sum-

mation, and the value of the non-perturbative amplitudes of the transseries will be

numerically computed as a function of a parameter representing the initial data. The

non-linear ODE will also be shown to give rise to interesting mathematical properties

such as the existence of an infinite number of square-root branch points, as well as dif-

ferent asymptotics at +∞ and −∞ in time. These global properties will be shown to be

mathematically related to a change in dominance of the non-perturbative exponentials

in the late-time transseries. The transasymptotic summation will again prove to be a

useful tool in this case, and it will be used to dervive an analytic approximation to the

locations of the branch points as well as the asymptotics at −∞ in time.
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In Chapter 4, the non-perturbative regime of a quasinormal-mode equation of a massless

charged scalar matter field in a Reissner-Nordström-de Sitter background will be stud-

ied. The non-perturbative contributions to the quasinormal mode frequencies contain

information about the validity of the so-called strong cosmic censorship conjecture.

More specifically, the magnitude of the imaginary part of the frequencies is proportional

to the degree of regularity β of generic solutions, and it was found numerically in [6] that

β oscillates around the critical value β = 1/2. These oscillations are non-perturbative

in the large charge regime of the scalar field. The work in this chapter aims at under-

standing the nature of these non-perturbative contributions, and how it arises from the

perturbative WKB-expansions for large charges. The WKB approach in [6] implicitly

assumes that the perturbative expansions can first be expanded out in the scalar field

charge, and then in the radial variable. The validity of this assumption will be con-

firmed using a multiple scales approach. Moreover, an analytic relationship between

the non-perturbative, radially-dependent exponentials of the quasinormal mode wave

function and those of the quasinormal mode frequencies will be derived. The methods

and some of the results of this project are generic and can be applied to the computation

of quasinormal modes of other spacetimes. This project is still ongoing, and further

research is needed to gain a complete understanding of the full non-perturbative picture.

The last chapter of this thesis is an outlook on ongoing and future work, including

how the work presented in this thesis could be used to solve other open physical and

mathematical problems.
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Chapter 1

Non-perturbative methods

Non-perturbative phenomena are ubiquitous in many areas of physics and mathematics.

They arise whenever perturbative expansions (i.e. power series expansions) do not

give an accurate mathematical description of a given observable. A function f (x) is

called non-perturbative at a point x = x0 if it cannot be described using a perturbative

expansion around x0. An example of such a function is

f (x) = e−1/x , (1.1)

which cannot be approximated by a power series expansion around x0 = 0. In many

cases, a power series which formally solves a given equation (e.g. an ordinary differential

equation (ODE), a partial differential equation (PDE), a finite difference equation) can

be found, but the naive sum of all terms does not yield a finite result.

In the following non-perturbative phenomena will be introduced using the example of

instantons in quantum mechanics (see e.g. [13], [14]). In this thesis instantons per se do

not occur in any of the three research projects. Nonetheless, the mathematical founda-

tions behind non-perturbative effects arising from factorially divergent expansions will

be the same throughout all the chapters of this thesis, and instantons provide an intuitive

physical interpretation for the factorial divergence. The notion of an instanton provides

an interpretation for quantum tunneling, an effect responsible for certain observable

phenomena such as radioactive decay [15, 16] and certain chemical reactions [17], among

other things.
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An important tool in the description of non-perturbative phenomena is the transseries

expansion (see e.g. [18]), a series expansion of a function f (x) which consists of terms

not necessarily proportional to xn, but for which more complicated expressions such

as e1/x or x2 log(x) are also permitted as ’basis functions’. Such transseries expansions

can be used to account for non-perturbative corrections to asymptotic power series

expansions.

It will be seen that the asymptotic perturbative expansion of a function, when it is

divergent, can nonetheless contain all the information that is needed to construct the full

function. This phenomenon is called resurgence [12]: the non-perturbative contributions

to the function appear in the large-order behaviour of the coefficients of the original

perturbative series. In fact, there is a multitude of mathematical relationships between

the different sectors of the transseries, which will be explored in this chapter.

1.1 An example of a non-perturbative effect: Instantons

In this section certain parts of the treatment of instantons in [19] will be closely followed.

Instantons are terms appearing in quantum mechanical computations which are non-

perturbative in a small parameter called h̄. In quantum physics, h̄ is called the Planck

constant and is a fixed constant of nature. However, in semiclassical calculations, h̄

is treated as a small variable in which observables are expanded. The limit h̄ → 0

represents the classical limit, and all the corrections in perturbation theory are quantum

mechanical. The phenomenon of quantum tunneling is purely quantum mechanical, i.e.

it does not appear in the classical limit, and is non-perturbative in h̄. The transmission

amplitude for particle scattering at a potential barrier is of the form

T ∼ e−S0/h̄ , (1.2)

where S0 depends on the shape of the potential barrier.

More formally, Instantons are defined as localised solutions to the equations of motion in

so-called Euclidean spacetime which have finite but non-zero action. They often appear

in quantum field theory, a relativistic framework in which probability amplitudes can

be calculated using a so-called path integral [20]. Path integrals can also be used to
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calculate amplitudes in non-relativistic quantum mechanics. Consider a particle in

two-dimensional spacetime which starts at the position qi at time ti = −T/2 and ends

at the position q f at t f = +T/2. The probability amplitude for this process to happen is

given by the path integral

Ai→ f = ⟨qi| e−iT H/h̄ ∣∣q f
〉
= N

∫
Dq eiA[q]/h̄ , (1.3)

where the action of the particle is given by

A[q] =
∫ T/2

−T/2
dt

(
1
2

(
dq
dt

)2

− V(q)

)
, (1.4)

where V(q) is the potential energy. The idea behind the path integral (1.3) is that all

paths satisfying the boundary conditions contribute to the probabilty amplitude of

a process. For a detailed introduction to path integrals see [20]. Each path must be

weighted with the factor

eiA[q]/h̄ , (1.5)

and the ’sum over all paths’ is performed via the path integral (see e.g. [20]). To perform

calculations with the path integral it is often more practical to perform a so-called Wick

rotation

t → −it . (1.6)

In Wick rotating, the spacetime geometry changes from Minkowski to Euclidean. The

new time coordinate after the transformation is referred to as Euclidean time. The

exponential (1.5) becomes

e−S[q]/h̄ , (1.7)

where the Euclidean action S[q] is

S[q] =
∫ T/2

−T/2
dt

(
1
2

(
dq
dt

)2

+ V(q)

)
. (1.8)

Now consider a quantum mechanical system with potential V(q). In Euclidean space-

time, the probability amplitude is

Ai→ f = ⟨qi| e−T H/h̄ ∣∣q f
〉
= N

∫
Dq e−S[q]/h̄ . (1.9)
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where the integral is over all paths satisfying the boundary conditions q(ti = −T/2) =

qi, q(t f = T/2) = q f . The classical paths qc(t) which leave the Euclidean action

stationary are solutions to the Euler-Lagrange equation for a potential −V(q). Wick

rotating to Euclidean time thus has the same effect on the stationary paths qc(t) as

inverting the potential V → −V (the kinetic terms do not change their sign as each

time, the derivative picks up a complex factor of i). The quantity of interest is the non-

perturbative contribution to the energy of the ground state. By expressing the left-hand

side of Eq. (1.9) in a linear combination of a complete set of energy eigenstates |n⟩ for

n ∈ N0, one finds that in the limit T → ∞ the leading order behaviour is proportional

to e−TE0/h̄, where E0 is the energy of the ground state |n = 0⟩. This means that one can

compute E0 to leading order by determining the asymptotic behaviour of the Euclidean

path integral. One performs a functional coordinate transformation around the classical

background qc,

q(t) = qc(t) +
√

h̄χ(t), where χ(ti) = χ(t f ) = 0 . (1.10)

Now the action ((1.8)) is expanded in powers of
√

h̄ :

S[q] = S[qc] +
h̄
2

∫
dt1

∫
dt2

δ2S
δq(t1)δq(t2)

χ(t1) χ(t2) +O(h̄3/2) , (1.11)

where the terms of order O
(√

h̄
)

vanish due to the principle of stationary action,

δS[qc]/δq(t) = 0. The second term can be brought into the form

h̄
2

∫
dt χ(t)

(
− d2

dt2 + V ′′(qc(t))
)

χ(t) + O(h̄3/2) . (1.12)

In the large-T limit and to leading order in h̄ (around the non-perturbative background

e−Sc/h̄), one obtains a Gaussian integral with an infinite dimensional quadratic form in

the exponent. For the amplitude (1.9) one finds the following expression:

Ai→ f = Ñe−Sc/h̄ det
(
− d2

dt2 + V ′′(qc(t))
)−1/2 (

1 + O(h̄)
)

, (1.13)

where Ñ ∝ N is a constant. In the following the special cases of a single-well and a

double-well potential will be considered.
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1.1.1 Single-well potential

Consider a potential well of the form

V(q) =
ω2

2
q2 +O(q3) , (1.14)

The goal is to compute the energy of the ground state. To calculate the determinant in

Eq. (1.13), one uses the following theorem proven in [19]:

Theorem 1.1. [19] Let ψW
λ (t) be a solution to the following boundary value problem

(
− d2

dt2 + W
)

ψ(t) = λψ(t) ;

ψ(−T/2) = 0 ;

∂tψ(t) = 1 .

(1.15)

Then the ratio
det

(
− d2

dt2 + W
)

ψW
λ (−T/2)

(1.16)

is independent both of λ and W.

For the harmonic oscillator, W = ω2 and λ = 0. A solution is given by

ψω2

0 (t) = ω−1 sinh (ω(t + T/2)) . (1.17)

Having (1.17), one can use (1.16) to find the value of the determinant in (1.13) up to a

constant factor. The solution with the correct normalisation is given by [19]

N det
(
− d2

dt2 + ω2
)−1/2

∼
( ω

πh̄

)1/2
e−Tω/2 , T → ∞ . (1.18)

For qi = q f = 0 one also has

Ai→ f = e−TE0/h̄ |⟨q = 0|n = 0⟩|2 + . . . , (1.19)

where ⟨q = 0|n = 0⟩ denotes the scalar product of spatial basis state |q = 0⟩ and the

ground state |n = 0⟩. The only function which leaves the action stationary and obeys
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qi = q f = 0 is qc(t) = 0. It follows that Sc = 0. Using Eq. (1.18) and Eq. (1.19), one finds

E0 = h̄ω/2 (1 +O(h̄)) . (1.20)

Here, the only stationary point of the path integral one had to consider was the trivial

solution qc(t) = 0. In general, however, there will be non-trivial instanton contributions.

1.1.2 Double-well potential

Consider now the more interesting case of a double-well potential

V(q) =
V0

a4 (q
2 − a2)2 (1.21)

which is symmetric around the origin and has zeros V(±a) = 0. The starting point qi

and the endpoint q f of the path are taken to be q f = qi = ±a and q f = −qi = ±a. The

objective is to calculate the following probability amplitudes:

⟨−a| e−HT/h̄ |−a⟩ = ⟨a| e−HT/h̄ |a⟩ ;

⟨a| e−HT/h̄ |−a⟩ = ⟨−a| e−HT/h̄ |a⟩ .
(1.22)

Analogous to the case of the single potential well, for qi = q f = ±a a solution is given by

qc(t) = ±a. However, non-trivial solutions need to be taken into account as well. One

will see that the solutions for both cases q f = ±qi can be constructed from the trivial

solution and the one with q f = −qi. Consider a particle that starts off at qi = −a at

ti = −∞, passes by the origin at t = t0 and ends up at q f = a at t f = ∞. The energy

conservation equation in Euclidean time is

E =
q̇c

2

2
− V(qc) . (1.23)
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If the particle is at rest at qi = −a, the energy is E = 0. Moreover, the trajectory qc(t)

obeys |a| > |qc(t)| and also q̇c(t) > 0. Hence

q̇c(t) =
√

2V(qc(t)) ;

t − t0 =
∫

dq
1√

2V(q)
;

qc(t) = a tanh
(√

2V0

a
(t − t0)

)
.

(1.24)

Note that ω ≡
√

2V0/a is the frequency of the harmonic oscillator approximation around

q = ±a. This solution is plotted in Fig. 1.1. Since |qc(t)| − a is exponentially small for

large |t|, qc(t) is highly localised in the time domain, which justifies the term ’instanton’.

Heuristically, the instanton can be thought of as having the size 1/ω, the interval in

which |qc(t)| − a is not exponentially small. Using E = 0, the instanton action can be

calculated from (1.8):

Sc =
∫ a

−a
dq
√

2V(q) =
16aV0

15
. (1.25)

Since the Lagrangian has time-reversal symmetry, the path qc(−t) is also a solution to

the equation of motion. It corresponds to a situation where the particle starts off at qi = a

at t = −∞ and travels to q f = −a at t = +∞. Since the travel direction is reversed, this

solution is denoted an anti-instanton.

Now consider adding an instanton qc,t1(t) centred around t = t1 to an anti-instanton

q̄c,t2(t) centred around t = t2 in the case where |t1 − t2| ≫ 1/ω. Since the instanton is

exponentially suppressed in the region of the anti-instanton and vice-versa, the sum of

the two is a good approximation to a stationary path given that the equations of motion

are satisfied up to an exponentially small number. Therefore, one should also take

into account sequences of instantons and anti-instantons with ’time centres’ t1, t2 . . .

in the expansion of our path integral, where an instanton can only be followed by an

anti-instanton and vice-versa. The instantons tk are time ordered, that is

−T/2 < t1 < t2 . . . < tn < T/2 . (1.26)

The action of such a multi-instanton contribution is n Sc up to exponentially small

corrections. It can be shown [19] that the determinant-contribution in the amplitude

(1.13) must be of the form ( ω

πh̄

)1/2
e−ωT/2 Kn . (1.27)



12 Chapter 1. Non-perturbative methods

The first two factors are also present in the single potential well problem, and the factor

Kn is the n-instanton contribution, where each instanton/anti-instanton accounts for one

factor of K. Integrating over all possible instanton centres ti gives an additional factor

of Tn/n!, where the factorial in the denominator accounts for the fact that the ti are

chronologically ordered. In summary, a configuration with n instantons/anti-instantons

results in the following contribution to the path integral

( ω

πh̄

)1/2
e−ωT/2

(
KTe−Sc/h̄)n

n!
. (1.28)

If one were to sum over all these contributions, the n-dependent part of the above

expression would be given by the exponential exp
(
KTe−Sc/h̄). However, the boundary

conditions for the probability amplitudes Eq. (1.22) only allow for either an even or

odd number of instantons and anti-instantons. For the leading order behaviour of the

probability amplitudes one obtains

⟨±a| e−HT/h̄ |a⟩ ≈
( ω

πh̄

)1/2
e−ωT/2 1

2

(
exp

(
KTe−Sc/h̄

)
± exp

(
−KTe−Sc/h̄

))
. (1.29)

One can interpret the result in Eq. (1.29) as quantum tunneling. Note that without the

instanton contributions, the amplitude ⟨−a| e−HT/h̄ |a⟩ would vanish and a particle

that starts off at q = −a could never overcome the potential barrier to reach q = +a.

In terms of the energy eigenstates, the first term is associated with the ground state

and the second term with the first excited state of the problem. Without the instanton

contributions, the energies of these two states would be identical, and the double-well

problem would have a degenerate ground state. By multiplying out Eq. (1.29) and

adding up the exponents, the ground state/first-excited state energies E0/E1 are

E0 =
ωh̄
2

− Kh̄e−Sc/h̄ + O(h̄2) ;

E1 =
ωh̄
2

+ Kh̄e−Sc/h̄ + O(h̄2) .
(1.30)

Strictly speaking, the term Kh̄e−Sc/h̄ should not improve the approximation to E0 since it

vanishes more rapidly than the error, which is of order O(h̄2). However, the difference

of the two energies is non-perturbative in nature, which is why the additional term is

important. The example of the double well potential illustrates a) that perturbation

theory is not enough to capture all aspects of our quantum mechanical world, and b)



1.2. Écalle’s resurgence and Borel analysis 13

that instantons are a useful way of describing such quantum mechanical effects.

t

qc(t)

a

−a

t

qc(t)

a

−a

∆t

FIGURE 1.1: Left: Plot of the one-instanton solution qc(t) from Eq. (1.24) for t0 = 0.
Right: Approximate solution qc(t) of a sequence of instantons and anti-instantons in the
limit

√
2V0/a ≫ ∆t, where ∆t is the time between an instanton and an anti-instanton

(or vice-versa).

q

V(q)

−V(q)

q

V(q)

−V(q)

FIGURE 1.2: Left: quadratic potential. Right: quartic double-well potential. The red
curves represent the inverted potentials −V(q)

1.2 Écalle’s resurgence and Borel analysis

It has already been mentioned that the perturbative expansion of a function may contain

information about its non-perturbative contributions. In some cases, the full function

can be formally constructed as a transseries by including non-perturbative exponentials.

The full exponential transseries can be grouped into different non-perturbative sectors,

which are related in several ways. Each sector implicitly includes the data of every other

sector, and the other different sectors ’resurge’ in several mathematical relations. In this

section some aspects of this phenomenon will be discussed. Moreover, specific examples
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in which resurgence techniques can be used to solve ODEs will be introduced. For a

detailed treatment of the theory of resurgent functions see [12].

1.2.1 Borel resummation

In many problems in mathematical physics, one finds that perturbation theory gives

rise to series expansions which formally solve the problem locally, but are divergent

for all non-vanishing values of the perturbative variable. One defines the notion of an

asymptotic series to describe such formal solutions.

Definition 1.2. (Asymptotic series [21]) The power series

g(x) =
+∞

∑
n=0

an(x − x0)
n (1.31)

is said to be asymptotic to the function f (x) at x0 along the direction v, if for all N ∈ N

lim
x→

v
x0

f (x) − ∑N
n=0 an(x − x0)n

(x − x0)N = 0 . (1.32)

One then writes f ∼ g as x →
v

x0.

In the rest of this chapter x → ∞ will be assumed unless explicitly specified otherwise,

and hence (x − x0) must be replaced by 1/x as the variable of expansion. Note that the

above definition does not required the series g(x) to be convergent. In the case where

the divergence is due to coefficients which grow at most factorially, i.e. O (n!), one

can use the method of Borel resummation to obtain numerical values for the function.

Consider the example of the inhomogeneous differential equation [11]

y′(x)− y(x) = −1
x

. (1.33)

A formal perturbative solution to this equation is given by the asymptotic expansion as

x → ∞,

ỹ(x) ≡
+∞

∑
n=0

(−1)n n!
xn+1 , (1.34)

which is divergent for finite x. The following identity is important

x−(n+1) = L
[

ξn

n!

]
(x) =

∫ +∞

0
dξ e−ξx ξn

n!
, n ≥ 0 , (1.35)
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where L denotes the Laplace transform. One now defines the Borel transform to act on

the monomials (1/x)n+1 in the same way as an inverse Laplace transform (see Eq. (1.35))

B
[

x−(n+1)
]
≡ L−1

[
x−(n+1)

]
=

ξn

n!
. (1.36)

If one takes the Borel transform of the monomial terms in the expansion ỹ(x) and adds

them up one obtains

B[ỹ](ξ) ≡
+∞

∑
n=0

(−ξ)n, in some neighbourhood of ξ = 0 . (1.37)

For |ξ| < 1 this power series is convergent and equals

1
1 + ξ

, (1.38)

which is analytic on the punctured complex plane C \ {−1}. One can then define the

Borel transform B[ỹ](ξ) on the domain C \ {−1} by setting it equal to (1.38).

B[ỹ](ξ) ≡ 1
1 + ξ

for ξ ∈ C \ {−1} . (1.39)

Eq. (1.35) suggests that one take the Laplace transform Eq. (1.39) to return to the x-plane.

Indeed, one obtains an integral solution to Eq. (1.33),

ysol(x) ≡
∫ +∞

0
dξ e−ξx 1

1 + ξ
, for Re(x) > 0 . (1.40)

To obtain solutions for a larger domain than merely the half-plane Re(x) > 0, one

defines the Borel resummation along the angle φ:

Definition 1.3. (Borel resummation [22]) Let Φ be the following power series expansion

as x → ∞ with a vanishing zeroth order term

Φ(x) ≡
+∞

∑
n=0

Φnx−n−1 , (1.41)

where the coefficients Φn are complex numbers. If the series F defined by

F(ξ) ≡
+∞

∑
n=0

Φn

n!
ξn (1.42)
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has a finite radius of convergence, the Borel transform B[Φ](ξ) is defined as the analytic

continuation of F to the largest possible domain. The Borel resummation along the

direction exp(iφ) is defined as

SφΦ(x) =
∫ exp(iφ)∞

0
dξ B[Φ](ξ)e−ξx, for arg(x) ∈ (−φ − π/2,−φ + π/2) , (1.43)

where the path of integration is a straight line between 0 and exp(iφ)∞. Note that in the

case where the Borel transform B[Φ](ξ) has singularities along the angle φ a convention

must be specified on how to avoid them.

Due to the exponential decay of the integrand (and therefore a vanishing contribution

from an imagined arc closing the path at ∞), it follows from Cauchy’s theorem that the

Borel resummation is the same for two angles φ1 and φ2 provided that the sector which

is spanned by those angles contains no singularities. However, the domains for the two

resummations are different, and so changing the angle φ provides a way of analytically

continuing the Borel resummation to regions other than the right half-plane. In the

example Eq. (1.40), this can be done both clockwise and counter clockwise until reaching

the angles π ± ε for small ε, afterwhich one encounters a singularity. Using Cauchy’s

theorem one obtains

(Sπ+ε − Sπ−ε) y(x) = −2πi exp(x) . (1.44)

The appearance of the exponential upon crossing a line containing a singularity is a

consequence of jumping between two different sheets on a Riemann surface. Any

direction along which the Borel transform has singularities is referred to as a Stokes line.

The analytic continuation of S0y(x) to the whole Riemann surface Sy(x) can also be

interpreted as a multi-valued function on the complex plane. This multi-valuedness is

a natural consequence of the singularities in the Borel plane. Whenever one crosses a

Stokes line, one or more new exponential contributions are turned on. The most general

multi-valued solution to Eq. (1.33) on the complex plane is

y(x) = S− arg(x)+ε y(x) + (c − 2πi k) exp(x) where arg(x) ∈ (−π, π] and k ∈ Z ,

(1.45)

and c is an integration constant. The summation in Eq. (1.45) is performed along the

direction exp(− arg(x)) because in that way the argument of the exponential function
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inside the integral is −ξ x = −|ξ| |x| and the integral converges. Note that as a conse-

quence the half plane on which a resummation is well-defined rotates in the opposite

sense of the direction of resummation. The constant c in 1.45 is an integration constant

and one can think of k as the index labelling the sheet of the Riemann surface. One can

ask which class of functions is amenable for a treatment with the Borel resummation

procedure. Consider the series

a(ξ) =
+∞

∑
n=0

ajξ
j . (1.46)

If there exists K, A ≥ 0 such that ∣∣aj
∣∣ ≤ K

Aj , (1.47)

one obtains the upper bound

∣∣a(ξ)∣∣ ≤ K
+∞

∑
n=0

∣∣∣∣ ξ

A

∣∣∣∣n , (1.48)

which is convergent for ξ < A and so A is a lower bound for the radius of convergence

of a(ξ). By setting a(ξ) = Φ̃(ξ) for the Borel transform from Eq. (1.42) one arrives at the

condition ∣∣Φn
∣∣ ≤ K

n!
An , for some K, A > 0 . (1.49)

If this condition holds, then the Borel transform of the series Φ(x) from Eq. (1.41) is

guaranteed to converge in some neighbourhood of the origin. It is useful to introduce

the following definitions:

Definition 1.4. (1-Gevrey formal series [22]) The expansion φ(x) = ∑+∞
n=0 φn xn is called

a 1-Gevrey formal series if there exist K, A > 0 such that
∣∣φn
∣∣ ≤ Kn!/An for all n ∈ N0.

In that case one writes φ ∈ C[[z−1]]1

Definition 1.5. (Small power series, minor [11]) Let φ(x) = ∑+∞
n=0 φn xn. One defines

qφ(x) ≡ φ(x)− φ0 . (1.50)

The power series φ is said to be a small power series if φ = qφ, i.e. φ0 = 0. The Borel

transform of qφ, B[qφ], is called the minor of φ.
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1.2.2 Simple resurgent functions and Stokes automorphism

Écalle’s theory of resurgence deals with the class of simple resurgent functions:

Definition 1.6. (Simple resurgent function [11]) Let Φ ∈ C[[x−1]]1. The minor of Φ,

B[qΦ](ξ), is said to have a simple singularity at ξ = ω if

B[qΦ](ξ)

∣∣∣∣
ξ∼ω

=
aω

2πi(ξ − ω)
+

gω(ξ − ω)

2πi
log(ξ − ω) + hω(ξ − ω) , (1.51)

where aω is a constant, and gω and hω are holomorphic functions in some neighbourhood

of the origin. If all the singularities of B[qΦ](ξ) are simple, then Φ is denoted a simple

resurgent function and one writes Φ ∈+ R(1).

The interesting thing about simple resurgent functions is their behaviour when a line in

the Borel resummation integral is crossed. This is called a Stokes line and comes with a

discontinuity in the resummation. Assume that the only singularity of B[qΦ](ξ) occurs at

ξ = ω. If the function gω is written as the Borel transform of a small formal power series

qΨ ∈ x−1C[[x−1]] , (1.52)

where Ψ has the zeroth order term Ψ0 = aω, i.e. gω = B[qΨ], and define θ ≡ arg(ω), the

resummation discontinuity can be written as

(
S+

θ − S−
θ

)
qΦ(x) = −

(
aω + Sθ

qΨ(x)
)

exp(−ω x) ;(
S+

θ − S−
θ

)
Φ(x) = −

(
Ψ0 + Sθ

qΨ(x)
)

exp(−ω x) ;

= − Sθ (Ψ(x) exp(−ω x)) .

(1.53)

where it is assumed that B[qΨ](ξ) has no singularities in the direction θ the so-called

lateral resummations

S±
θ ≡ Sθ±ε, for some small ε. (1.54)

have been introduced. The corresponding integration paths in the Borel plane are

visualised in Fig.

It should be noted that the resummation operator S leaves the non-perturbative expo-

nentials untouched and acts trivially on the zeroth-order terms. The proof of Eq. (1.53) is

straightforward and involves the application of Cauchy’s theorem as well an appropriate
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FIGURE 1.3: Purple: the integration paths of the resummations S+
θ and S−

θ in the Borel
plane of qΦ. Red: the branch point singularity at ξ = ω together with the branch cut.
The difference between the two resummation integral is non-perturbative in x and
associated with Ψ, The location of the singularity ω becomes the exponential weight of
the non-perturbative sector through the exponential factor within the Laplace integral.

choice of the integration contour for the logarithmically singular term [1]. Eq. (1.53) can

be interpreted as follows. Consider the analytic continuation of S0Φ(x), SΦ(x). The

presence of singularities in the Borel plane causes the domain of SΦ to be a Riemann

surface with several sheets. On the simply connected set

U ≡ C \
{

λ exp(−iθ)
∣∣λ ∈ R

}
(1.55)

one can write SΦ(x) = S− arg(x)Φ(x) for x ∈ U. To analytically continue across the

Stokes line while moving in the clockwise sense in the x-plane (and thus in anti-clockwise

sense in the Borel plane), one can use the resummation Sθ−εΦ(x). However, this only

works up to the point where arg(x) = −(θ + π/2 − ε) since the resummation integral

needs to converge. To go further, one can use Eq. (1.53) to express S−
θ Φ(x) as a function

of S+
θ Φ(x). Hence Eq. (1.53) tells us that when a Stokes line is crossed, an exponentially

decaying contribution is picked up,

S−
θ Φ(x) = S+

θ

(
Φ(x) + Ψ(x) exp(−ωx)

)
. (1.56)

It has been seen that a perturbative expansion can turn on non-perturbative sectors

when a Stokes line is crossed due to the singularities in the Borel plane. To include all

non-perturbative exponentials in the asymptotic description of a function, the one uses
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an exponential transseries (see [18] for an introduction for more general transseries ). In

what follows, an (exponential) transseries with k parameters σ1, . . . , σk will denote an

expansion of the form

R(x, σ1, . . . , σk) =
+∞

∑
n1=0

. . .
+∞

∑
nk=0

σn1
1 . . . σnk

k e−(n1 A1+···+nk Ak) x Φn1,...,nk(x) . (1.57)

For each transseries parameter σj there is an exponential weight Aj ∈ C as well as a

formal power series Φn1,...,nk(x) ∈ C[[x−1]]1. The terms of a given polynomial order

in the σj belong to the same non-perturbative sector. In the case of linear differential

equations, the set of solutions is a vector space and the transseries is just a linear

combination, whereas in non-linear problems all the polynomial orders of the σj are

needed in general to describe the solution. The purpose of the transseries parameters σj

is to parametrise the space of solutions on the one hand, and on the other hand to encode

information about the sheet of the Riemann surface and the behaviour on a Stokes line.

In the example (1.33), a linear two-parameter transseries F was used to encode the fact

that the domain is larger that the complex plane C.

F (x, σ1, σ2) = σ1 Φ(x) + σ2Ψ(x) exp(−ωx) . (1.58)

From Eq. (1.56) it follows that if one starts off with S− arg(x)F (x, 1, 0) for some x with

− arg(x) < θ and cross the line at the angle θ moving to a point x̃ with − arg(x̃) > θ,

the transseries parameters must be changed to obtain the correct analytic continuation

at x̃, SΦ(x̃) = S− arg(x̃)F (x̃, 1, 1). Since after crossing the Stokes line the transseries also

contains a Ψ-term, one needs to take into account the singularities of the Ψ-sector as

well to analytically continue further. Typically, B[qΨ] will have a simple singularity as

defined in Def. (1.51) at ξ = −ω, and therefore there will be another Stokes line at the

angle − arg(x) = θ + π.

Examples of functions which can be described using a linear two-parameter transseries

are the Airy function [1] and the partition function of a quartic potential [7], as both are

solutions to a second order linear ODE. At each Stokes line the transseries parameters

which correspond to the correct analytic continuation will change, σi 7→ σi + ∆σi. This

shift is induced by the so-called Stokes automorphism Sφ defined as

S+
φ F (x, σ1, σ2) = S−

φ ◦Sφ F (x, σ1, σ2) . (1.59)
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The Stokes automorphism acts trivially at all angles φ without a Stokes line. In terms of

the discontinuity

S−
φ ◦ DiscφF ≡ −

(
S+

φ − S−
φ

)
F , (1.60)

the Stokes automorphism can be written as

Sφ = 1 − Discφ . (1.61)

By now two distinct aspects of resurgence have been encountered: a) the Borel transform

of the perturbative series encodes information about the non-perturbative contributions

in the form of its behaviour near the singularities in the Borel plane; b) if one starts off

with the perturbative series alone at some x = xi ∈ C and continuously varies x in the

complex plane, the non-perturbative sectors emerge after crossing a Stokes line.

1.2.3 Alien derivatives and Bridge equations

The Stokes automorphism has already been defined in Eq. (1.59). In what follows

a method will be given to calculate it. It relies on the formalism of Alien calculus

developed by Ećalle [12] (see also e.g. [23], [24], [22]). The general idea is to write the

Stokes automorphism as the exponential of a derivation operator ∆φ [11]

Sφ = exp
(

∆φ

)
. (1.62)

The operator ∆φ acts on the algebra of simple resurgent functions +R(1) and satisfies

the Leibniz rule. Just as the translation operator Tε : x 7→ x + ε induces a change in the

variable x when acting on a function f (x), the Stokes automorphism induces a change

in the transseries parameters. Note that Tε may also be written as the exponential of a

derivative ∂x

Tε f (x) = exp(ε∂x) f (x) = f (x + ε) , (1.63)

and ∂x plays a similar role in ordinary calculus as the derivation operator ∆φ in Alien

calculus. The derivation operator can be split into a sum of so-called dotted alien

derivatives

∆̇ω ≡ exp(−ωx)∆ω. (1.64)
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The alien derivative vanishes unless the minor of the function it acts upon has a singu-

larity at ξ = ω. This can be illustrated using the example of the partition function Z(u)

of a quartic potential taken from [7], where Z(u) is expanded around u = 0. Note that

one could just as well define u = 1/x and expand around x → ∞ as was done in the

previous section. Z(u) satisfies the second-order differential equation

16u2Z′′(u) + (32u − 24)Z′(u) + 3Z(u) = 0 . (1.65)

A general solution to the ODE can be found with the ansatz

Z(u) = exp(−ω/u)Φ(u) , (1.66)

where Φ is a power series. One finds that there are two solutions ω ∈ {0, 3/2}. If

A ≡ 3/2 , (1.67)

the linear transseries for this problem is of the form

Z(u, σ0, σ1) = σ0Φ0(u) + σ1Φ1(u) exp(−A/u) , (1.68)

where the Φi(u) are power series in u. The problem is linear and so the Φi(u) are only

defined up to a multiplicative constant by Eq. (1.65). In [7] the ODE is derived from

an integral representation which fixes Φi(0). It can be shown that the minor of Φ0 has

a logarithmic singularity at A, while Φ1 has one at −A[7]. This is a typical pattern of

simple resurgent functions. The relative positions of the exponential weights in the

transseries ’resurge’ as singularities in the Borel plane of the different power series (with

the exception of the origin of the Borel plane, at which the power series is analytic). In

our example, Eq. (1.68), the exponential weights are 0 and A, and the relative positions

therefore A and −A. By considering the behaviour of the Borel transforms B
[

|Φ0

]
(ξ)

and B
[

|Φ1

]
(ξ) near ξ = A it can be shown that [7]

B[qΦ0](ξ) = (+2)× Φ1,0

2πi(ξ − A)
+ (+2)×B[qΦ1](ξ − A)

log(ξ − A)

2πi
+ holomorphic ;

B[qΦ1](ξ) = (−1)× Φ0,0

2πi(ξ + A)
+ (−1)×B[qΦ0](ξ + A)

log(ξ + A)

2πi
+ holomorphic.

(1.69)
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The multiplicative constants (+2) and (−1) are called (the sign-reversed) Stokes con-

stants. They determine the how the alien derivatives act on the power series appearing

in the transseries. By expanding out the Stokes automorphism (1.62) and comparing it

to the discontinuity obtained by Borel resumming the expressions in (1.69) above and

below the singularity one obtains [7]

∆AΦ0 = (−2)Φ1 ;

∆−A Φ1 = (+1)Φ0 ;

∆AΦ1 = 0

∆−AΦ0 = 0 .

(1.70)

Since there is only one singularity along each ray (at the angles 0 and π) one can write

∆arg(A) = ∆0 ≡ ∆̇A;

∆arg(−A) = ∆π ≡ ∆̇−A .
(1.71)

This is a very simple example. Due to the linearity of the ODE (1.65) the transseries

is linear in the parameters σ0, σ1 and so the whole non-perturbative behaviour is fully

described by only two power series Φ0 and Φ1. In this case, the Stokes automorphism

Sθ induces the change in the transseries parameters

S0 :

σ0

σ1

 7→

 σ0

−2σ0 + σ1

 ;

Sπ :

σ0

σ1

 7→

σ0 + σ1

σ1

 ,

(1.72)

which can be shown by acting with the Stokes automorphism on the general solution

(1.68). This can be done by using the Borel transforms (1.69) and to calculate the

resummation discontinuity along the angles 0 and π and expressing the result as a

linear combination of Φ0(u) and e−A/uΦ1(u). The derivation operator is equal to a

single alien derivative at each Stokes line because there is only one singularity along

each line. Since higher powers of the alien derivative vanish, the Stokes constants appear

explicitly in (1.72). The knowledge of the Stokes automorphism at all the Stokes lines also

allows one to deduce the monodromy. If one starts at u ≡ r exp(iε) for r > 0 and some

small ε, and walks in circles around the origin of C in the clockwise sense, the direction
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of resummation must be rotated clockwise as well so as to obtain convergence of the

resummation integral. Whenever a Stokes line is crossed, the Stokes automorphism

must be applied one the transseries. A full 2π-rotation corresponds to the operator

R ≡ Sπ ◦S0 . (1.73)

By representing Sπ and S0 using the matrices (1.72) it is easy to show that R2 = −1 by

performing the corresponding matrix multiplication. As a consequence, the operator R is

a fourth root of the identity. Hence the solution to the ODE (1.65) has a Riemann surface

with four sheets as its natural domain. Had one started with a non-linear problem,

an ansatz proportional to exp(−A/u) would not work since the non-linear terms of

the equation would generate terms with higher powers exp(−nA/u) (for n > 1). As

described in [7], a non-linear model can be obtained by considering at the free energy

F = log(Z) of the partition function Z from (1.69) The ODE one obtains is

16u2F′′(u) + 16u2 (F′(u)
)2

+ (32u − 24) F′(u) + 3 = 0 . (1.74)

This equation is non-linear. Moreover, notice that there is no F(u) term, and so this is

actually equivalent to a first order ODE for the function F′(u). Therefore, there will only

be one instead of the previous two transseries parameters. The ’lost’ degree of freedom

is given by the possibility to add an arbitrary constant to F(u). An ansatz for F(u) which

accounts for higher powers of exp(−A/u) is

F (u, σ) =
+∞

∑
n=0

σn exp(−nA/u) unβΨn(u) =
+∞

∑
n=0

(
σuβ exp(−A/u)

)n
Ψn(u) . (1.75)

By substituting this ansatz into our ODE (1.74) and matching equal powers of σ one

finds [7]

A ∈ {0, 3/2} ; β = 0 . (1.76)

The trivial weight A = 0 describes the perturbative sector, and hence

A ≡ 3/2 (1.77)

will be set. There is one important subtlety. Since the ODE is of second order in F(u)

(albeit only dependant on F′(u)), there are strictly speaking two transseries parameters.
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Even though at the level of the transseries this second transseries parameter just cor-

responds to an additive constant, it does lead to corrections in the action of the alien

derivatives. To simplify things, those corrections will not be taken into account here (see

[7] for the more details). The interesting thing about the non-linear case is the different

singularity structure of the minors B[qΨn](ξ), which are located at the positions

ξsing,n ∈ {−nA, −(n − 1)A, . . . , −A, A} . (1.78)

In this example, the minors of all the sectors Ψn(z) only have purely logarithmic singu-

larities

B[qΨn](ξ)

∣∣∣∣
ξ∼kA

= Sk→n+k ×B[qΨn+k](ξ − kA)
log(ξ − ka)

2πi
+ holomorphic . (1.79)

In [7] it is shown that the alien derivatives ∆kA act on the on the power series Ψn by

shifting the index by k

∆kAΨn = (n + k)Sk Ψn+k for k ≤ 1 and k ̸= 0 ;

∆kAΨn = 0 for k > 1 .
(1.80)

where Sk are the Stokes constants. The calculation of the Stokes constants Sk is beyond

the scope of this introduction and can be found in [7]. Note that although they are

closely related, for non-linear problems the Borel residues Sn→n+k are not merely equal

to the Stokes constants Sk up to a minus sign as it was the case in the linear example

above.

One can derive Eq. (1.80) using the so-called Bridge equations. It is useful to note that

the dotted alien derivatives ∆̇ω commute with the u-derivative ∂u [1]

[∆̇ω, ∂u] = 0 . (1.81)

It is clear from the structure of the transseries (1.75) that the u-derivative also commutes

with the σ-derivative

[∂σ, ∂u] = 0 . (1.82)

If a first-order ODE of the unknown function F (u, σ) is acted upon with some derivation

operator δ which commutes with ∂u and which satisfies the chain rule, this results in a
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homogeneous linear ODE of the function δF . As a result both ∆̇ωF and ∂σF satisfy the

same linear homogeneous first-order ODE in the variable u. The set of solutions of this

linear ODE must form a one-dimensional vector space and thus any two solutions must

be proportional. This statement is expressed through the so-called Bridge equations

∆̇ωF (u, σ) = Sω(σ)∂σF (u, σ) , (1.83)

where Sω(σ) is some function of σ and ω. The structure of Eq. (1.83) restricts the form

of Sω(σ) in the following way. Consider the weight w = m + n of a transseries term

multiplied by σnemA/u. Then

∂σ : w 7→ w − 1 ; ∆̇kA .w 7→ w − k . (1.84)

Since for all the terms in the transseries F m = −n and therefore w = 0, it follows

that for ω = kA, the weight of the left-hand side of (1.83) is −k and the weight of the

right-hand side is −1. Hence the weight of SkA must be equal to 1 − k to be consistent

with the Bridge equation. One can therefore set

SkA(σ) ≡ Skσ1−k . (1.85)

Since both ∆̇ωF and ∂σF are regular functions of σ and generically do not vanish at

σ = 0, Sω(σ), it follows that Sk = 0 for all k > 1. The bridge equations (1.83) then

become

∆̇kAF (u, σ) = Skσ1−k ∂σF (u, σ) for k ≤ 1, k ̸= 0 . (1.86)

By writing out the transseries F (u, σ) and matching equal powers of σ, one obtains the

previous definition of the Stokes constants, Eq. (1.80). Eq. (1.86) implies that even in

the non-linear case, the action of the Stokes takes the form of a transformation of the

transseries parameter σ. One has [7]

S0F (u, σ) = exp
(
∆̇0
)
F (u, σ) = exp

(
∆̇A
)
F (u, σ)

= exp(S1∂σ)F (u, σ) = F (u, σ + S1) ,
(1.87)

and so at the angle θ = 0, the transseries parameters transform according to S0 : σ 7→

σ + S1, which is a translation. At the line with θ = π, the story is more complicated
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since there is more than one non-vanishing Alien derivative.

SπF (u, σ) = exp
(
∆̇π

)
F (u, σ) = exp

(
+∞

∑
n=1

∆̇−nA

)
F (u, σ)

= exp

(
+∞

∑
n=1

S−nσn+1∂σ

)
F (u, σ)

≡ exp (Sπ(σ)∂σ)F (u, σ) ≡ F (u, Sπ(σ)) .

(1.88)

In the last line Sπ(σ)∂σ is a vector field parametrised by σ and Sπ(σ) function of σ

representing the parameter change induced by the Stokes automorphism. The function

Sπ(σ) is given by the exponentiation of the vector field vector field Sπ(σ)∂σ. Therefore

Sπ(σ) is the image of the flow ϕt(σ) (t being the parameter parametrising the flow and

the argument σ representing the starting point) of the vector field Sπ(σ)∂σ at t = 1 (see

e.g. [25, 26, 27]):

∂tϕ
t(σ) = Sπ(ϕ

t(σ)) ;

ϕ0(σ) ≡ σ ;

Sπ(σ) = ϕ1(σ) .

(1.89)

The question is now how to compute the Stokes constants. In the case of the partition

function this was easy to do because the transseries was linear and only contained two

power series. One way of computing the Stokes constants, which is discussed in detail

in [7], is to take the logarithm of the transseries and compare this with the transseries F .

However, not every problem is that easy, and sometimes Stokes constants can only be

obtained numerically using the so-called large-order relations.

1.2.4 The large-order relations

The large order relations describe how the coefficients of the different sectors Φk of

some transseries behave in the limit k → ∞. They rely on the fact that using Cauchy’s

integral formula, a function G(u) with an asymptotic expansion around u = 0 can be

rewritten in terms of its discontinuities Discθj G(u). For a transseries sector Φk(u) , the

discontinuities are sums containing the other sectors Φl ̸=k of the transseries. For the

sake of simplicity, consider the case where G(u) only has one Stokes line at the angle

θ, with Borel singularities at the locations A, 2A, 3A . . . in the Borel plane. If one takes
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loop encircling u and deforms the integration contour in an appropriate manner (see

[1])), Cauchy’s integral formula becomes

G(u) = − 1
2πi

∫ eiθ∞

0
dw

DiscθG(w)

w − u
. (1.90)

Now consider the partition function Z from (1.65) and its transseries Z(u) with the two

sectors Φ0(u) and Φ1(u). If one sets G(u) = Φ0(u), the angle of the only Stokes line is

θ = 0 and the integral (1.90) becomes

+∞

∑
n=0

Φ0,n un = +
1

2πi

∫ +∞

0
dw

S1

w − u
e−A/w

+∞

∑
k=0

Φ1,kwk . (1.91)

If u < w, then
1

w − u
=

1
w

+∞

∑
ℓ=0

( u
w

)ℓ
. (1.92)

Since the w-integration starts at w = 0, there are always values of w for which u > w.

Nonetheless, using Eq. (1.92) leads to a useful formula which is valid asymptotically.

One obtains

+∞

∑
ℓ=0

uℓΦ0,ℓ =
S1

2πi

+∞

∑
ℓ=0

+∞

∑
k=0

uℓΦ1,k

(∫ ∞

0
dw e−A/w wk−ℓ−1

)
, k < l

=
S1

2πi

+∞

∑
ℓ=0

uℓ

(
+∞

∑
k=0

Γ(ℓ− k)
Aℓ−k Φ1,k

)
.

(1.93)

By matching equal powers of uℓ one obtains the large-order relations for n ≫ 1 [1]

Φ0,n ∼ S1

2πi

+∞

∑
k=0

Φ1,k
Γ(n − k)

An−k

∼ S1

2πi
Γ(n)
An

+∞

∑
k=0

Φ1,k Ak

(
k

∏
m=1

1
n − m

)

∼ S1

2πi
Γ(n)
An

[
Φ1,0 + Φ1,1

A
n

+
A
n2 (Φ1,1 + AΦ1,2) + . . .

]
.

(1.94)

In [7], the large-order relations are discussed for the free energy F = log Z of the

partition function Z from (1.65). The basic idea is the same. However, in the non-linear

problem there is an infinite number of transseries sectors which contribute to the large-

order relations. In that case all but one transseries sector are exponentially supressed as

n → ∞. One can use (1.94) in order to compute the Stokes constants S1 numerically if
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the coefficients Φ0,n and Φ1,0 are known. The sequence

an ≡ 2πi
Φ1,0

An

Γ(n)
Φ0,n (1.95)

converges toward the Stokes constant an → S1. However, the convergence is quite

weak, since an − S1 ∈ O(n−1). In order to accelerate this convergence, one can use the

so-called Richardson extrapolation method (see e.g. [28]). Take a (possibly asymptotic)

series S(n) of the form

S(n) = s0 +
s1

n
+

s2

n2 + . . . . (1.96)

The Richardson transform RTS(ℓ, n, N) denotes the following sequence in n with the

properties RTS(ℓ, n, N)− s0 ∈ O(n−(N+1)) and limn→∞ RTS(ℓ, n, N) = sℓ [1, 21, 28]:

Sℓ(n) = S(n) −
ℓ−1

∑
k=0

sk

nk ;

RTS(ℓ, n, 0) ≡ Sℓ(n) ;

RNS(ℓ, n, N) ≡RTS(ℓ, n + 1, N − 1)

+
n
N

(RTS(ℓ, n + 1, N − 1) − RTS(ℓ, n, N − 1)) ,

N ≥ 1 .

(1.97)

Increasing the parameter N → N + 1 results in the cancellation of another order in the

large n expansion of Sℓ(n).

1.2.5 The Borel-Padé approximation

Sometimes one is unable to find closed-form expressions for all the sectors in a transseries

summation and one has to rely on numerical approximations [29, 30, 31]. It is very typical

for divergent asymptotic series that the magnitude of the first few coefficients in the

power series decrease very quickly. Given an asymptotic power series Φ(x) which is

asymptotic to some function F(x) ∼ Φ(x) as x → ∞, one way of approximating F(x) is

to truncate the series Φ(x) just before the term with the smallest order of magnitude.

The truncation condition is ∣∣∣∣ Φn

xn+1

∣∣∣∣ ≤ ∣∣∣∣Φn−1

xn

∣∣∣∣ . (1.98)



30 Chapter 1. Non-perturbative methods

and therefore for the last term in the optimal truncation has the index Nop(x) given by

Nop(x) = max
{

n ∈ N
∣∣ |Φn|
|Φn−1|

≤ |x|
}

. (1.99)

The optimally truncated series Fop of F is then defined as (see e.g. [21] )

Fop(x) ≡
Nop(x)

∑
n=0

Φn

xn+1 (1.100)

Another method is to Borel-resum the series Φ(x) approximately by first approximating

the minor B[qΦ](ξ). In practical applications one only calculates a finite number of terms

of the series Φ(x). Therefore the minor B[qΦ](ξ) is also only known to a finite order

in some neighbourhood of the origin of the Borel plane, where the series converges.

The minor B[qΦ](ξ) can be approximated using so-called Borel-Padé approximants

BPn,m[qΦ](ξ) (see e.g. [7]). These are rational functions

BPn,m[qΦ](ξ) =
Pm[qΦ](ξ)

Qn[qΦ](ξ)
, (1.101)

where Pm[qΦ](ξ), Qn[qΦ](ξ) are polynomials of order n and m and B[qΦ](ξ) is the function

which is approximated. The requirement which fixes Pm[qΦ](ξ) and Qn[qΦ](ξ) is that the

perturbative expansion of BPn,m[qΦ](ξ) at the origin must agree with the perturbative

expansion of B[qΦ](ξ) to order m + n. Consider a symmetrical Padé approximant where

m = n, which will be denoted by BP2m[qΦ](ξ). One defines:

Definition 1.7. Borel-Padé resummation For M ∈ 2N and Φ ∈ C[[x−1]] the Borel-Padé

resummation S (M)
φ Φ along the angle φ is defined as

S (M)
φ Φ(x) =

∫ eiφ∞

0
dξe−xξ BPM[qΦ](ξ) (1.102)

where BPM[Φ](ξ) is the Borel-Padé approximant of order M. Note that because BPM[qΦ](ξ)

is an approximation and includes poles at locations where there are none in the Borel

transform it approximates, it is necessary to avoid them carefully by slightly altering the

integration path in any numerical implementation.

In practice, one should always check whether the Borel-Padé approximant is indeed a

good approximation to a given function. In certain special cases, the convergence of the
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Borel-Padé approximant can be shown rigorously if the denominator polynomial is fixed

to be a Chebyshev polynomial and the all the information about the function is encoded

in the numerator [32]. However, a Padé approximant which is generated by a fixed

denominator polynomial like in [32] is not suitable for an analysis of the singularity

structure, as all the information about the singularities is encoded in the denominator.

1.3 Further into resurgence and summation techniques

In the previous section it has been shown that the non-perturbative contributions in

a transseries can be calculated using Borel resummation. In this section two further

resummation techniques, transasymptotics and hyperasymptotics, will be introduced.

Moreover, the WKB method will be used in the context of the Schrödinger equation.

1.3.1 Stokes phenomena from steepest-descent

In the case where the non-perturbative contributions are small, the first few terms of a

transseries will already yield a good approximation. However, this is not always the

case. For example, in the case of a one-parameter transseries, −A x is pure imaginary at

certain angles in the complex x-plane. Hence the exponential e−Ax will be of order one,

and higher orders of the exponential factor are no longer negligible. In that case, all the

exponential orders in the transseries become important. This is called an anti-Stokes

line. The condition for the presence of an anti-Stokes line is

Re(xA) = 0 . (1.103)

On the other hand, the condition for the presence of a Stokes line is

Im(xA) = 0 . (1.104)

At a Stokes line, the different exponential orders in the transseries differ maximally since

the exponent −x A is purely real. Upon crossing a Stokes line a Stokes phenomenon

takes place, and the terms in the transseries are reshuffled by the Stokes automorphism.

In some cases, Stokes and Anti-Stokes lines can be intuitively understood in terms of
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the connectivity of saddle points in the integration paths of an integral representation.

Assume the function of interest F(x) admits a complex-line-integral representation

F(x) =
∫

Γ
dz e−xϕ(z)g(z) (1.105)

where g(z) and ϕ(z) are holomorphic functions on the complex plane and Γ some path

of integration with a given ’ingoing direction’ θin and an ’outgoing direction’ θout in

the complex plane. The anti-Stokes and Stokes conditions (1.103) and (1.104) can be

understood with the method of steepest descent-curves [21]. The idea is that the path of

integration can be deformed in such a way that it a) passes through a saddle-point z∗ of

ϕ(z) and b) has a constant phase Im(ϕ(z))
∣∣
z∈Γ = const. The points of Γ which lie in a

small open ball around the saddle z∗ will then dominate the line integral in the limit

x → +∞.

At the level of the transseries, this phenomenon manifests in the presence of a non-

perturbative exponential sector of the type

e−A x = e−ϕ(z∗) x (1.106)

At a Stokes line different saddles have the same phase, and the integration path passes

through more than one saddle. Upon crossing the Stokes line the topology of the

configuration changes, and the set of saddle points through which a given line of

steepest descent Γ passes changes at a Stokes line. This change of topology is visualised

in Fig. 1.4. Since each saddle corresponds to one exponential order in the transseries,

the fact that the set of saddles of Γ changes means that new contributions are picked up

at a Stokes line. This provides an explanation of why the Stokes automorphism induces

a transformation in the transseries parameters. On the other hand, anti-Stokes lines are

values of x at which two different saddles start to contribute at the same exponential

order, which happens when the real parts the exponential weights of two different

terms in the transseries are equal. A more detailed explanation of the saddle point

interpretation of Stokes phenomena can be found in [33, 7, 1].
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FIGURE 1.4: The steepest descent paths in the complex z-plane for the case of a line
integral of type (1.105) with ϕ(z) = −z and g(z) = e−z3/3. It is the integral represen-
tation of the Airy function. Each plot corresponds to a different angle θ = arg(x) in
the complex x-plane (|x| = 1). The saddle points are represented as black and red
dots. Notice how the topology of the integration paths changes at the Stokes lines

θ = 0, 2π/3, 4π/3. Adapted from [1].

1.3.2 Transasymptotic summation

The following is a short introduction to the so-called transasymptotic summation devel-

oped in [9]. Consider a transseries F (y, x, σ) which depends on an additional parameter

y:

F (y, x, σ) =
∞

∑
n=0

(
σ xβe−A(y)x

)n
Φn(y, x) . (1.107)

One defines a new variable τ

τ(y, x) ≡ σxβe−A(y)x . (1.108)
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At an anti-Stokes line, |τ| is of order one and all the terms in the transseries become

non-negligible, and after crossing an anti-Stokes line, the variable τ may even grow

exponentially in x.

In such cases, one may no longer assume that τ is small, and truncating the transseries

after the first few exponential sectors will not yield a good approximation to the F . At

the same time, expanding out terms in the variable x−1 around x = ∞ poses no problem.

Therefore, one can obtain approximations to F by first expanding out the Φn(y, x) in

1/x. and then summing over all orders of τ.

F (y, τ, σ) =
+∞

∑
n=0

τn
+∞

∑
k=0

Φn,k(y)x−k =
+∞

∑
k=0

x−k
+∞

∑
n=0

τnΦn,k(y)

≡
+∞

∑
k=0

x−k fk(y, τ) .

(1.109)

In (1.109), all the τ-dependence has been absorbed into the transasymptotic coefficient

functions fk(y, τ). This method of summing over all the exponentials is called orthogonal

or transasymptotic summation [9]. To understand how powerful this approach can be,

consider the function

f (τ) =
τ

τ + 1
=

1
1 + τ−1 . (1.110)

To obtain the transseries representation of f (τ), the function must be expanded in τ

around τ = 0:

f (τ)
∣∣∣∣
τ∼0

= τ − τ2 + τ3 · · · =
+∞

∑
n=1

(−1)n+1τn . (1.111)

If f (τ) is to be evaluated in a regime where τ is exponentially growing in x , any trunca-

tion of the sum in (1.111) after a finite amount of terms will give a bad approximation

of f (τ) since the partial sums of (1.111) converge to f (τ) in the limit τ → 0. This is be-

cause the transseries representation corresponds to expanding f (τ) in the wrong regime.

However, with the transasymptotic summation, the expansion (1.111) is summed and

the resulting expression,
1

1 + τ−1 , (1.112)

can be evaluated at large τ, far beyond the radius of convergence of (1.111), which is

|τ| = 1. The function f (τ) is not a good example in terms of asymptotics since there is

no explicit x-dependence in it and as a consequence f (τ) has no resurgent properties,

but it does illustrate how the transasymptotic summation can in principle be used to
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study asymptotic regimes which are completely inaccessible from the perspective of the

original transseries.

1.3.3 Hyperasymptotics and the WKB-method

Hyperasymptotics [8, 33, 10] is a resummation technique which generalises the method

of optimal truncation displayed in Eq. (1.100). The method consists of finding an approxi-

mation for the exponentially small remainder as a finite sum using Borel resummation in

combination with resurgent properties. The remainder of the improved approximation

can then again be approximated by a truncated sum, and so on. A general, systematic

way of calculating hyperasymptotic summations of any order can be found in [10]. In

the following introduction, the approach in [8] will be closely followed. Consider the

following second-order Schrödinger-type ODE:

x−2 d2y
dz2 − V(z)y(z, x) = 0 , (1.113)

where z is a complex variable and x is a parameter which will be taken to be large. In a

quantum mechanics problem x−1 would be proportional to the Planck constant h̄, while

V(z, x) would be proportional to the potential energy. Eq. (1.113) can be solved using

the WKB method. The idea is to assume an ansatz of the form

y(z) ∼ e−x S±(z)
+∞

∑
n=0

y±,k(z) x−n (1.114)

and calculate the coefficients yk(z) using the ODE. One finds

S± = ±
∫ z

z∗
dξ
√

V(ξ) . (1.115)

In the context of quantum mechanics, the WKB method is a powerful tool to solve

scattering problems. The exponential in (1.114) can be interpreted as a wave with

phase Im (−xS(z)). Since Eq. (1.113) is a second-order ODE, there are two linearly

independent solutions corresponding to the signs (+) and (−) in (1.114). In a scattering

problem, one of the two solutions corresponds to the ingoing wave, while the other

solution represents the outgoing wave (see [21, 24]). In the case of the Schrödinger

equation (1.113), the asymptotic WKB expansion (1.114) can be written in a simpler and
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more practical form in terms a new variable F defined by

F(z) ≡ 2 x
∫ z

z∗
dξ
√

V(ξ) . (1.116)

F(z) is the difference between the two exponents in (1.114),

F(z) = x(S+(z)− S−(z)) . (1.117)

Assuming that Re (F) > 0, the subdominant solution which is exponentially small for

large positive x can be written as

y(z) =
e−F/2

F1/4 Y(F) . (1.118)

One may expand the re-scaled function Y(F) in powers of x−1 in the following way

Y(F) =
+∞

∑
r=0

(−1)r Yr(F), where Yr ∼ x−r . (1.119)

Substituting (1.119) into the Schrödinger equation yields the following recursion relation

Y′
r+1(F) = −Y′′

r (F) +
(V(F)1/4)′′

V(F)1/4 Yr(F) . (1.120)

Using this recursion relation, the following resurgence relation can be derived [8, 34]:

Y = S0 +
+∞

∑
r=0

Yr (−F)r
+∞

∑
s=N0

(−1)s (s − r − 1)!
2πFs , (1.121)

where S0 represents the optimal truncation of Y, that is,

S0 ≡
N0−1

∑
r=0

(−1)rYr . (1.122)

Eq. (1.121) has the remarkable property that the remainder of the optimal truncation

is expressed as an asymptotic sum which depends on the terms Yr of the original

expansion of Y(F) as well as on powers of F−1. This is a manifestation of the underlying

resurgence structure of the problem. One can apply the Borel resummation to regulate

the divergence arising from the factorial growth of the factorial coefficients in (1.121).
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The calculation performed in [8] yields

Y = S0 +
+∞

∑
r=0

(−1)rYr Kr1, (1.123)

where

Kr1 =
(−1)N

0
2πFN0−r

∫ +∞

0
dξe−ξ ξN0−r−1

1 + ξ/F
. (1.124)

Note that now the remainder of S0 in (1.123) is again an asymptotic series which can be

optimally truncated. This yields

Y = S0 + S1 +
+∞

∑
r=0

Yr (−F)r
+∞

∑
s=N1

(−1)s (s − r − 1)!
2πFs Ks1 , (1.125)

where S1 is the optimal truncation

S1 ≡
N1−1

∑
r=0

(−1)rYrKr1 , (1.126)

and N1 is the index of the least term. This process can be repeated

Y = S0 + S1 + S2 + . . . . (1.127)

Including only S0 in the sum (1.127) is called level-0 hyperasymptotic summation, if one

includes the terms S0 and S1 this is called the level-1 hyperasymptotic summation, and

so on. In this formulation of hyperasymptotics S0 is the optimal truncation consisting

of N0 terms. It can be shown that at each additional level that is included, the number

of terms in the optimal truncations for the hyperasymptotic levels Sr is approximately

halved:

Nr =

⌊
N0

2r

⌋
. (1.128)

The analysis in [8] reveals that the index of optimal truncation is given by

N0 = ⌊|F|⌋ . (1.129)

which corresponds to an exponential weight Hence there is a hyperasymptotic sector

r = rmax for which Nrmax = 1, and the hyperasymptotic summation (1.127) terminates

after a finite number of terms. The minimal error which was given in [8] for this
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procedure is of exponential order

|∆Y| ∼ exp
(
− (1 + 2 log(2)) |F|

)
≈ exp

(
− 2.386 |F|

)
.

(1.130)

In the later work [10] it was shown that the error estimate (1.130) is non-optimal and

can be further improved with a new method. In fact, in [10] it was proven that by

including enough hyperasymptotic levels in the summation and choosing appropriate

truncation indices at each level, the approximation can be made arbitrarily precise. In

[35] the results from [10] obtained for linear ODEs were applied to a non-linear Ricatti

equation. This was possible since the validity of the proofs in [36] only depends on the

singularity structure of the Borel plane. Hence the assumption of linearity is not needed

for the method to work [35]. In Chapter 3, a non-linear ODE for the function f (w) in

the variable w will be discussed. In this problem, the function f has Borel singularities

located at the positions A, 2A, 3A, . . . on the positive real line of the Borel plane. In

that case, the hyperasymptotic summation method devoloped in we [36] results in an

error of exponential order

|∆ f | ∼ e−r|Aw| , (1.131)

where r is the highest hyperasymptotic level (the analogue of the term Sr in the sum

(1.127)). A detailed discussion of the hyperasymptotic method developed in [36] would

exceed the scope of this introduction. The formulas (3.31), (3.32), and (B.1) used in

Chapter 3 are obtained by applying the theorems in [36] to the function in question,

f (w).

1.4 Summary

The asymptotic methods presented here will be used throughout this thesis, in the

analysis of non-perturbative phenomena which arise in the different problems that will

be studied.

The non-perturbative objects that will appear in the next chapters will have different

interpretations from the instantons introduced here, but their semi-classical WKB-like
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interpretation will have completely analogous properties. Instantons, as the proto-

typical non-perturbative objects in quantum physics, provide an intuitive physical

interpretation of non-perturbative effects, which will appear in several different contexts

throughout this thesis.

Finally, the different asymptotic methods that were just introduced will play crucial

roles in the unravelling of non-perturbative phenomena in the problems to come, and

their analytic properties beyond the local perturbative analysis that is usually accessible

in the study of such complex problems.
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Chapter 2

Delayed bifurcations in the discrete

logistic equation

Large parts of this chapter have been published verbatim in [2]. The research presented

in this chapter is my own. It was developed under the guidance of my supervisors, Inês

Aniceto and Christopher Howls, and in collaboration with Christopher Lustri. The error

analysis presented in Section 2.3.2 was done by Christopher Lustri.

In this chapter the discrete logistic equation (DLE) is studied from the perspective

of asymptotics. The solution to the DLE is a sequence which is either convergent or

oscillating between a finite set of limit points depending on an underlying parameter.

At certain values of said parameter each limit point splits into two, which is known as a

period doubling bifurcation. When the parameter is itself slowly varied (in the literature

this is known as a "slow-fast system"), a phenomenon known as delayed bifurcations

or "canards" occurs. They have been studied widely in systems of ordinary differential

equations (see, for example, [37]). In this case the solution of the singularly perturbed

variant of the DLE stays at the first metastable branch for some time before jumping to

the stable branch. In other words, the solution remains near an unstable solution for a

significant amount of time after stability has been lost and then jumps to the new stable

solution.

There has been a significant volume of work studying the asymptotic behaviour of

canards in continuous settings, see for example, using composite asymptotic expansions

in [38, 39, 40], steepest descent analysis [41], and Borel summation methods in [42]. Borel
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summation methods are closely connected to transseries resummation methods (see

[7]), and have been used to study discrete problems, as in [43]. This motivates the idea

that transseries resummation methods could be a useful technique for studying delayed

bifurcation behaviour. In the present study, the focus will be on delayed bifurcations

appearing in discrete systems, and in particular, singularly perturbed variants of the

logistic map.

It will be shown that period doubling bifurcations depend on the interaction between

different exponential factors, and it is therefore advantageous to represent them explicitly

using transseries. By expanding in the asymptotic limit, one may determine terms

in the algebraic power series to determine the initially stable non-periodic solution.

The next step will be to reorder the transseries terms and perform a transasymptotic

resummation, which will produce an accurate description of the doubling phenomena.

This approach has the additional advantage that it allows one to determine further

subdominant exponential scales in the transseries explicitly which dictate subsequent

doubling bifurcations present in the solution.

By incorporating a multiple scales ansatz into the transseries expression, it will be shown

that transseries resummation – which was developed to describe continuous behaviour –

can be used to calculate discrete variation without any further analysis to the transseries

method.

Here two variants of the following ubiquitous (and generic) standard logistic map are

studied:

Yn+1 = λYn [1 − Yn] , 0 < Y0 < 1, (2.1)

where λ is a dimensionless bifurcation parameter 0 < λ ≤ 4.

This system contains a period-doubling route to chaos, found by allowing the parameter

λ to vary. In the range 1 < λ ≤ 3, this system tends to a stable equilibrium without

periodic effects. In the range 3 < λ ≤ 1 +
√

6, the system tends to a 2-periodic stable

equilibrium. Increasing λ beyond 1 +
√

6 produces systems that tend to stable equilibria

with higher periodicity.

The earliest study of the delayed bifurcations in the slowly-varying logistic map is [44],

who applied renormalisation methods to derive asymptotic scaling laws for the delays
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between period doubling, and performed analysis and numerical experiments to deter-

mine the location of the bifurcation points. In addition to establishing specific results

about the slowly-varying logistic map, this study established that delayed bifurcations

can play an essential role in the behaviour of discrete systems. Similar methods were

used to study delayed bifurcations in more general unimodal maps [45], as well as

discrete maps with noise [46, 47, 48].

Further studies of this system appeared in subsequent years. In [49, 50, 39], the existence

of canard solutions was rigorously proven in general classes of discrete maps that

include the slowly-varying logistic map. Further discussions of canard solutions to both

discrete continuous and discrete dynamical systems are given in [51, 52].

In more recent years, this system was studied using matched asymptotic expansions

and multiple scales methods [3]. The purpose of this previous work was to show that

the method of multiple scales could be used to combine a “fast” discrete timescale

with a slow time variable that could be treated as continuous, while still capturing

the essentially discrete-scale behaviour present in the problem. By carefully balancing

terms, it is possible to identify the bifurcation points and produce accurate asymptotic

approximations to the solution behaviour on both sides of the delayed bifurcation. In

the works described here, the slowly-varying logistic equation has provided a useful

testing ground for treatments of discrete systems, due to the complicated behaviour that

it produces.

In addition to the slowly-varying logistic equation, multiple scales-based approaches

which describe a system in terms of a fast discrete timescale and a slow continuous

timescale have been used to study asymptotic effects in a number of other discrete

systems. This includes the study of Stokes Phenomena in discrete Painlevé equations

[53, 54, 55], Frenkel-Kontorova models [56], and discrete variants of the Korteweg-de

Vries equation [57] and nonlinear Schrödinger equation [58].

It has been shown in [59] that transseries approaches may be used to improve upon

asymptotic results obtained using matched asymptotic expansions. In that study,

transseries resummation methods were used to obtain a uniform approximation to

a continuous problem that had been previously solved using multiple scales methods.

The transseries approach was able to naturally incorporate higher exponential terms,

and thereby improve on the accuracy of the results, even for values of the perturbation
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parameter that were not extremely small. Motivated by this result, it will be shown that

transseries resummation can be used to improve on existing multiple scales results in

discrete systems.

2.1 Motivation from population dynamics

In order to gain an intuitive understanding of Eq. (2.1), the equation will be regarded

as a model describing the evolution of a population [60]. One may think of an isolated

population of some animal species without migration. If there are no obstacles to

reproduction (e.g. a shortage of food), one expects the growth rate of the population

to be proportional to the number of individuals at any given time. If the number of

individuals in a population at the time t is denoted y(t), then in this simple model

without obstacles one has
dy
dt

= r y(t) . (2.2)

The solution is exponential growth y(t) = y(0) exp(r t). Clearly this does not describe

real populations because resources are always finite and hence infinite growth is not

sustainable. For small y one expects exponential growth, whereas for large y the growth

rate has to be negative to reflect a decrease of the population (e.g. due to competition

or starvation). The simplest model which is consistent with these two observations is a

0
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FIGURE 2.1: Solution to logistic equation 2.1, where λ = 3 + εn with ε = 0.0122.
The period-doubling cascade is apparent; the transition between non-periodic and
2-periodic behaviour is visible, as is the transition between 2-periodic and 4-periodic
behaviour. As the solution continues, it eventually becomes chaotic. The 2-periodic
behaviour in the solution begins to contribute immediately, but is not immediately
visibly apparent due to the delay in the bifurcation behaviour. The red line shows the
point at which the 2-period solution becomes unstable according to the analysis in this

work. Taken from [2].
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linear dependence of r on y, r(y) = a − b y, giving

dy
dt

= (a − b y) y . (2.3)

This so-called continuous logistic model is a bit more complicated, but still easy to solve.

By separating dy and dt, performing a partial fraction expansion and integrating one

obtains the closed form expression

y(t) =
1

β − (β − 1/y(0))e−at . (2.4)

where β = b/a. The behaviour of this equation depends on whether the product β y(0)

is greater, equal to or smaller than 1. The limit as t → ∞ is 1/β. Note that it does not

depend on the initial value y(0). If y(0) < 1/β, then the solution grows monotonically,

whereas for y(0) > 1/β it is monotonically decreasing. For y(0) = 1/β the population

size stays constant. In order to discretise the continuous model Eq. (2.3) one has to

choose some time interval ε and define

yn ≡ y(t = nε); (2.5)

λ ≡ 1 + aε . (2.6)

Eq. (2.3) then becomes

yn+1 = λyn

(
1 − βaε

λ
yn

)
. (2.7)

To obtain the logistic equation Eq. (2.1), one can perform a re-scaling

Yn =
βaε

λ
yn . (2.8)

Assuming that the solution tends to some well defined limit Y∞, one obtains (for Y0 > 0)

Y∞ = (λ − 1)/λ. In terms of the original yn this corresponds to y∞ = 1/β, which is

exactly what is expected from the above considerations. The difference to the continuous

equation is that the fixed point is only stable in a certain range of parameters. As shall

be seen, the solutions of the discrete logistic equation display an oscillatory behaviour

for λ > 3. In terms of population dynamics, the limiting value 1/β has an intuitive

explanation. The larger the initial growth rate r(y = 0) = a and the smaller the growth

rate of the obstacles b, the larger the maximum size that the population will reach. Note
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that the logistical model is local since it is of the form

Yn+1 = F(Yn) . (2.9)

This means that the system has no memory. If ε is interpreted as the lifetime of one

generation, then the size of a given generation only depends on the size of the previous

one and not on the size of any of the generations which lived before.

2.2 The static logistic equation

The static logistic equation is given by

Yn+1 = (3 + ε)Yn [1 − Yn] , Y0 = 2/3. (2.10)

The solution will be written as a continuous transseries in terms of ε > 0 and an

asymptotic expansion is produced in the limit 0 < ε ≪ 1. The transseries approach will

be used to extend this result to produce an accurate approximation for ε = O(1). It will

then be shown that this continuous transseries is capable of capturing discrete period-

doubling effects seen in this system, and approximating higher periodicity behaviour

for values of ε that lead to 2-, 4- and even 8-periodic solutions.

In [3], the authors studied the asymptotic behaviour of this system for small ε using

multiple scales methods. This showed the manner in which the behaviour approached

the 2-periodic stable manifold associated with λ > 3. Using transseries methods, this

approach can be extended to consider systems in which ε is not asymptotically small,

and demonstrate the manner in which the solution approaches the stable solution for

higher periodicities. In order to first determine the non-periodic and 2-periodic solutions,

the initial condition will be ignored and (2.10) will be solved with the condition that

Yn+2 = Yn. This gives three unique solutions. One solution is non-periodic, and is given

by

Yn =
2 + ε

3 + ε
. (2.11)

The remaining two solutions are 2-periodic, and are given by

Yn =
4 + ε ± (−1)n

√
ε(4 + ε)

2(3 + ε)
. (2.12)
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For ε > 0, the non-periodic solution is unstable. For 0 < ε <
√

6 − 2, the 2-periodic

solution is stable. If ε exceeds
√

6 − 2, the 2-periodic solution is unstable, and the stable

solution to the system becomes 4-periodic, and can be identified by solving Yn+4 = Yn,

however this solution cannot be expressed in closed form. Continuing to increase ε leads

to the periodicity of the stable solution increasing until chaotic behaviour is eventually

obtained.

2.2.1 Static 2-period solution

Since the first bifurcation of the discrete model happens for λ > 3, this threshold value

is perturbed by some small positive number ε:

λ(ε) = 3 + ε . (2.13)

In order to solve (2.10) for this choice of λ, the discrete variable n will be transformed

into the continuous variable

x ≡ n ε (2.14)

and the following ansatz will be used:

R(x, ε) =
+∞

∑
k=0

σk
0e−kA(x)/εRk(x, ε) . (2.15)

Then (2.10) becomes

R(x + ε, ε) = (3 + ε)R(x, ε) (1 − R(x, ε)) . (2.16)

The relationship between R and Yn is then

R(nε, ε) =Yn ;

R(0, ε) ≡Y0 =
2
3

.
(2.17)
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This series takes into account non-perturbative contributions by including powers of

eA(x)/ε. The parameter σ0 is fixed by the initial condition. One obtains

+∞

∑
k=0

σk
0e−k A(x+ε)/ε Rk(x + ε, ε) = (3 + ε)

+∞

∑
k=0

σk
0 e−k A(x)/ε

[
Rk(x, ε)

−
+∞

∑
j=0

Rj(x, ε) Rk−j(x, ε)

]
.

(2.18)

For σ0 = 0 this gives

R0(x + ε, ε) = (3 + x)R0(x, ε) (1 − R0(x, ε)) . (2.19)

Eq. (2.19) can be solved with the x-independent function

R0(x, ε) = R0(ε) =
2 + ε

3 + ε
. (2.20)

In order to find A(x), one needs to use Eq. (2.20) and consider the equation at order σ1
0

e−(A(x+ε)−A(x))/εR1(x + ε, ε) = −(1 + ε)R1(x, ε) . (2.21)

It turns out that it is possible to put all the x-dependence into the A(x). This comes at

the price of allowing A(x) to depend also on ε. This is done by defining the functions

Rn(ε) and redefining A(x, ε) through

e−n A(x,ε)/εRn(ε) = e−n A(x)/εRn(x, ε) . (2.22)

Substituting Eq. (2.22) into Eq. (2.21) and expanding

A(x + ε, ε) = A(x, ε) + ε∂x A(x, ε) +
ε2

2
∂2

x A(x, ε) +O(ε3) (2.23)

gives [
e−∂x A(x,ε)

(
1 +

ε

2
∂2

x A(x, ε) +O(ε2)
)
+ (1 + ε)

]
R1(ε) . (2.24)

If one can solve Eq. (2.24) with the ansatz A(x, ε) = xB(ε) to linear order in ε, then one

can solve it to all orders in ε (since all higher-oder derivatives ∂
j
x A(x, ε) = 0 for j > 1).
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This is indeed possible and one obtains

A(x, ε) = −x (iπ(2p + 1) + log(1 + ε)) , (2.25)

where p is some integer.

In what follows, p = 0 will be set. Plugging Eq. (2.25) back into Eq. (2.18) while using

Eq. (2.20) and matching equal powers of σ0 one obtains the recursion equation

Rn(ε) =
−(3 + ε)

(1 + ε) (1 − (−1)n−1(1 + ε)n−1)

n−1

∑
j=1

Rj(ε) Rn−j(ε) (2.26)

for n > 1. The function R1(ε) is unconstrained since A(x, ε) is chosen in such a way that

it solves Eq. (2.21) independently of R1(ε). This is not surprising since any ε-dependent

re-scaling of R1(ε) corresponds to a redefinition of σ0. Here R1(ε) = ε is chosen. For the

first few Rn(ε) one obtains

R1(ε) = ε ;

R2(ε) = − (ε + 3)
(ε + 1)(ε + 2)

ε2 ;

R3(ε) = − 2(ε + 3)2

(ε + 1)2(ε + 2)2 ε2 ;

R4(ε) = − (ε − 4)(ε + 3)3

(ε + 1)3(ε + 2)3 (ε2 + ε + 1)
ε3 ;

R5(ε) =
2(ε + 3)4 (2ε2 + ε + 6

)
(ε + 1)4(ε + 2)4 (ε2 + ε + 1) (ε2 + 2ε + 2)

ε3 .

(2.27)

The pattern is

Rn(ε) ∼ ε⌊n/2⌋+1
+∞

∑
k=0

Rn,kεk . (2.28)

For the leading order coefficients there are the following simple expressions

R2n+1,0 =
(−9)nΓ(n + 1

2 )

Γ(n + 1)
; R2n,0 =

(−9)n

6
. (2.29)



50 Chapter 2. Delayed bifurcations in the discrete logistic equation

2.2.2 Computing the terms for the static case

The knowledge of the special form of the Rn(ϵ) can now be used to derive an expression

for the transseries. The idea is to first sum up all the exponentials:

R(x, ε) =
+∞

∑
n=0

σn
0 e−n A(x,ε)/ε Rn(ε)

= R0(ε) + ∑
n odd
n≥1

(
σ0 e−A(x,ε)/ε)

)n
εn/2+1/2

+∞

∑
k=0

Rn,k εk

+ ∑
n even

n≥2

(
σ0 e−A(x,ε)/ε)

)n
εn/2+1

+∞

∑
k=0

Rn,k εk

= R0(ε) +
√

ε
+∞

∑
k=0

εk ∑
n odd
n≥1

Rn,k

(
σ0 e−A(x,ε)/ϵ)

√
ε
)n

+ ε
+∞

∑
k=0

εk ∑
n even

n≥2

Rn,k

(
σ0 e−A(x,ε)/ε)

√
ε
)n

,

(2.30)

R(x, ε) ≡ R0(ε) +
√

ε
+∞

∑
k=0

εk Ωo,k(τ0) + ε
+∞

∑
k=0

εkΩe,k(τ0) . (2.31)

In the last line, the new variable

τ0 =
√

ε σ0 e−Aε(x)/ε (2.32)

was introduced, as well as the analytic functions Ωo,k and Ωe,k which are odd and even

respectively and vanish at τ0 = 0 (any constant term in the expansion can be absorbed

into the R0(ε) term). From −A(x + ε, ε)/ε = −A(x, ε)/ε + iπ + log(1 + ε) it follows

that

τ0(x + ε) = −(1 + ε)τ0 . (2.33)

This property becomes useful in combination with our split of R into even and odd

functions of τ0 since

Ωo,k(−(1 + ε)τ0) = − Ωo,k(τ0 + ετ0) = −
+∞

∑
j=0

(ετ0)j

j!
Ω(j)

o,k(τ0) ;

Ωe,k(−(1 + ε)τ0 = + Ωe,j(τ0 + ετ0) = +
+∞

∑
j=0

(ετ0)j

j!
Ω(j)

e,k(τ0) .

(2.34)
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If the ansatz is written in the form

R(τ0, ε) = R0(ε) + δR(τ0, ε) , (2.35)

the logistic equation Eq. (2.3) becomes

δR(−(1 + ε)τ0, ε) = δR(τ0, ε)(1 + ε) + δR(τ0, ε)2(3 + ε) . (2.36)

Using Eq. (2.34) the terms in Eq. (2.36) can be written as (all the Ωs and their derivatives

are evaluated at argument τ0)

δR(−(1 + ε)τ0) = −
√

ε
+∞

∑
n=0

εn
n

∑
j=0

τ
j
0

j!
Ω(j)

o,n−j +
+∞

∑
n=1

εn
n−1

∑
j=0

τ
j
0

j!
Ω(j)

e,n−1−j ;

3δR(τ0)
2 = 3

+∞

∑
n=1

εn
n−1

∑
j=0

Ωo,j Ωo,n−1−j + 3
+∞

∑
n=2

εn
n−2

∑
j=0

Ωe,j Ωe,n−2−j

+ 6
√

ε
+∞

∑
n=1

εn
n−1

∑
j=0

Ωo,j Ωe,n−1−j ;

δR(τ0)
2 =

+∞

∑
n=2

εn
n−2

∑
j=0

Ωo,j Ωo,n−2−j +
+∞

∑
n=3

εn
n−3

∑
j=0

Ωe,j Ωe,n−3−j

+ 2
√

ε
+∞

∑
n=2

εn
n−2

∑
j=0

Ωo,j Ωe,n−2−j ;

δR(τ0) =
√

ε
+∞

∑
n=0

εn Ωo,n + ε
+∞

∑
n=1

εn Ωe,n−1 ;

εδR(τ0) =
√

ε
+∞

∑
n=1

εn Ωo,n−1 +
+∞

∑
n=2

εn Ωe,n−2 .

(2.37)

Substituting these expressions back into Eq. (2.36) gives an infinite tower of recursively

solvable differential equations which together with the choice for R1(ε) determine

the Ωo,k and Ωe,k uniquely. The first four of these functions will be computed. The
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differential equations which need to be solved are

0 = 2Ωe,0(τ0) + 3Ωo,0(τ0)
2 ;

0 = (6Ωe,0(τ0) + 1)Ωo,0(τ0)− τ0Ω′
o,0(τ0) ;

0 = 6Ωe,1(τ0)Ωo,0(τ0) + 2Ωe,0(τ0) (Ωo,0(τ0) + 3Ωo,1(τ0))

− 1
2

τ2
0 Ω′′

o,0(τ0)− τ0Ω′
o,1(τ0) + Ωo,1(τ0) ;

0 =
1
2

τ2
0 Ω′′

e,0(τ0) + τ0Ω′
e,1(τ0) + Ωe,0(τ0)

2 + 6Ωe,0(τ0)Ωe,1(τ0)

+ Ωe,1(τ0) + 2Ωe,2(τ0) + 3Ωo,1(τ0)
2 + 2Ωo,0(τ0)Ωo,1(τ0)+

6Ωo,0(τ0)Ωo,2(τ0) .

(2.38)

These equations are solved by

Ωo,0(τ0) =
τ0√

c1 + 9τ2
0

;

Ωe,0(τ0) = − 3τ2
0

2
(
c1 + 9τ2

0

) ;

Ωo,1(τ0) =
τ0
(
c1
(
33 log

(
c1 + 9τ2

0
)
+ 14

)
− 8c2 − 45τ2

0
)

24
(
c1 + 9τ2

0

)
3/2

;

Ωe,1(τ0) =
τ2

0
(
−33c1 log

(
c1 + 9τ2

0
)
+ 8c2 + 36τ2

0
)

8
(
c1 + 9τ2

0

)
2

.

(2.39)

In order to determine the integration constants c1 and c2, one needs to compare the

orthogonal resummation containing Eq. (2.39) with our original transseries obtained by

choosing R1(ε) = ε. One obtains (note that R0(ϵ) cancels):

0 =
+∞

∑
n=1

(
τ0√

ε

)n

Rn(ε) −
√

ε
+∞

∑
n=0

Ωo,n(τ0) εn − ε ∑
n=0

Ωe,n(τ0) εn

=

[ (
1√
c1

− 1
) √

ϵ +
(14c1 − 8c2 + 33c1 log (c1))

24c3/2
1

ϵ3/2 + O(ϵ2)

]
τ0 + O(τ2

0 ) .

(2.40)

Requiring Eq. (2.40) to vanish at the orders which have been computed fixes the constants

c1 = 1 ; c2 =
7
4

. (2.41)
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With this choice of integration constants the four Ω-functions become

Ωo,0(τ0) =
τ0√

9τ2
0 + 1

;

Ωe,0(τ0) = − 3τ2
0

18τ2
0 + 2

;

Ωo,1(τ0) =
11τ0 log

(
9τ2

0 + 1
)
− 15τ3

0

8
(
9τ2

0 + 1
)3/2 ;

Ωe,1(τ0) =
τ2

0
(
36τ2

0 − 33 log
(
9τ2

0 + 1
)
+ 14

)
8
(
9τ2

0 + 1
)2 .

(2.42)

2.2.3 The static initial value problem

Let the n-th order transasymptotic summation be defined as

Rn(τ0, ε) ≡ R0(ε) +
√

ϵ
n−1

∑
k=0

εk Ωo,k(τ0) + ε
n−1

∑
k=0

εkΩe,k(τ0) . (2.43)

Having computed R2, one can now approximately solve the initial value problem for

different values of ε and determine the parameter σ0(ε) = σ0,0 + σ0,1ε + σ0,2ε2 +O(ε3)

to second order in ε. One requires R(τ0(x = 0), ε) = R(
√

εσ0, ε) = 2/3, and expands

0 = R2(τ0.ε)− 2
3

=

(
σ0,0 +

1
9

)
ε + . . . . (2.44)

One finds

σ0,0 = −1
9

; σ0,1 =
4
81

; σ0,2 = − 19
648

. (2.45)

The approximation is relatively accurate, with a relative error of at most ∼ 10−5. In Fig.

2.2, both R2(n) and its relative error w.r.t. the solution Yn to the DLE are displayed as a

function of n.

2.2.4 The static 4-period solution from map-iteration

It has been seen how the static problem can be solved using a transasymptotic summa-

tion approach. This method can be generalised to get solutions for higher periods. The

trick is to iterate the logistic map Yn+1 = F(Yn) several times. To obtain the 4-period

solution, one considers the equation Yn+2 = F ◦ F(Yn). As before, a transseries ansatz of
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FIGURE 2.2: Left: Second order transasymptotic summation R2 as a function of n for
ϵ = 2/100. Right: Relative error of transasymptotic summation R2(n) with respect to

solution Yn of DLE (obtained numerically).

the form (2.15) is used:

R(x, ε) = R0(ε) +
+∞

∑
n=1

σn
2 e−nC(x,ε)/ε Rn(ε) . (2.46)

In terms of R(x, ε), one obtains the following equation (the ε and σ2 dependence are

dropped to keep the notation simple)

R (x + 2ε) = (3 + ε)3R(x) (1 − R(x)) (1 − (3 + ε)R(x) (1 − R(x))) . (2.47)

By expanding this equation in σ2 and matching the zeroth-order terms one finds three

solutions for R0(ε)

R0,1-period(ε) =
2 + ε

3 + ε
;

R0,± (ε) =
4 + ε ±

√
ε (4 + ε)

2(3 + ε)
.

(2.48)
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The solutions R0,±(ε) correspond to the two values between which the 2-period solution

oscillates in the limit n → ∞. If the transasymptotic summation R2(τ, x, σ) is expanded,

R2 (τ, ε; σ) ∼ R0,1-period (ε) +

√
ε

3
τ

|τ| −
ε

6
− 45

648
τ

|τ| ε
3/2 +

36
648

ε2 +O(ε5/2) ;

∼ 2
3
+

√
ε

3
eπi x

ε − ε

18
− 45

648
eπi x

ε ε3/2 +
ε2

54
+O(ε5/2) . (2.49)

To this order, the expansion agrees with R0,±(ε) The term linear in σ2 in our equation

allows one to deduce the exponential weight C(x, ε)

C(x, ε) = − x
2

log (1 − ε(4 + ε)) + constant . (2.50)

This is not the same as the weight which was obtained for the non-iterated static logistic

equation. Notice that the argument of the logarithm decreases with ε and reaches 0 for

ε = −2 +
√

5, and the logarithm is singular there. If ε is further increased, the argument

of the logarithm picks up a factor of −1. C(x, ε) can be written as

C(x, ε) = −πi
2

x − x
2

log (ε(4 + ε)− 1) . (2.51)

The term −i π
2 is responsible for an oscillatory behaviour once ε > −2 +

√
5 since a

shift n 7→ n + 2 flips the sign of the transasymptotic variable τ2. However, as long as

a(ε) ≡ ε(4 + ε)− 1 < 1, the real part of −C(x, ε) will be negative and hence |τ2| → 0

exponentially in the limit n → ∞. Hence the oscillatory behaviour is exponentially

suppressed. It is only when a(ε) > 1, and therefore ε > −2 +
√

6, when |τ2| → ∞

for n → ∞ and the solution will display a 4-period behaviour. The above reasoning

motivates the introduction of a new set of variables

(x̄, δ) ≡
(

xδ

2ε
, ε − ε0

)
, (2.52)

where ε0 = −2+
√

6. A shift x 7→ x+ 2ε corresponds to x̄ 7→ x̄+ δ. The new exponential

scale τ2 is then defined as

τ2(x̄, δ) =
√

δ σ2 e−C(x̄,δ)/δ . (2.53)
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The transasymptotic summation ansatz which is used is of the same form as in our

previous 2-period calculation

R± (τ2, δ; σ2) = R0,± (δ) +
√

δ ∑
k≥0

δkΩ(±)
o,k (τ2) + δ ∑

k≥0
δkΩ(±)

e,k (τ2) . (2.54)

Substituting (2.54) into (2.47) leads to a set of differential equations for the Ω(±)-

functions, which can be solved recursively. Solving for the functions Ω(±)
o,0 and Ω(±)

e,0

yields

Ω(±)
o,0 (τ2) =

τ2√
1 + 5

6

(
14 ± 7

√
2 ± 4

√
3 + 4

√
6
)

τ2
2

;

Ω(±)
e,0 (τ2) = −

1
2

(
2 ± 6

√
3 +

√
6
(

7 ± 4
√

3
))

τ2
2

1 + 5
6

(
14 ± 7

√
2 ± 4

√
3 + 4

√
6
)

τ2
2

.

(2.55)

The initial value problem is given by

R±(x = 0) = R0,± (ε0) =
1
5

(
2 ±

√
3 +

√
2 ±

√
3
)

. (2.56)

As before, it is solved by expanding out the transseries parameter σ2(δ) in powers of δ,

which allows one to expand R±(x = 0) in terms of δ

σ2,± = − 1
25

(
6 ± 8

√
3 −

√
78 ± 21

√
3
)
− 21 ∓ 108

√
2 ∓ 65

√
3

76 + 36
√

6
δ + · · · . (2.57)

The method of iterating the logistic map several times can also be used to obtain higher-

period solutions, and the values ϵb at which a bifurcation occurs can be determined from

the exponential weight C(x, ε) as demonstrated above. Each εb will be the zeros of some

polynomial.

2.2.5 Static 4-period solution from the original equation

2.2.5.1 Transseries ansatz

To obtain the 4-periodic solution requires an adaptation of the previous process. One

now takes a four-periodic perturbation about the 2-periodic solution obtained in (2.44).

This allows to form a transseries that can be used to capture solutions which tend to a
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four-periodic stable manifold. In [3], this would have required solving a challenging

multiple scales problem, as the asymptotic solution obtained therein is only valid for

small ε. Using the transseries approach, a significantly more general result is obtained.

The solution is written as a perturbation around the non-period behaviour and the 2-

periodic behaviour captured by the transseries expression (2.31), in terms of the variable

τ0, here written as R̂(τ0, ε).

R(x, ε) = R0(ε) +
√

ε
∞

∑
k=0

εkΩo,k(τ0) + ε
∞

∑
k=0

εkΩe,k(τ0) + S(x, ε) = R̂(x, ε) + S(x, ε).

(2.58)

It will then be shown that this perturbation starts contributing for values of ε large

enough. It can be seen by direct substitution into (2.16) that

S(x + ε, ε) = (3 + ε)(1 − 2R̂(τ0, ε)− S(x, ε))S(x, ε). (2.59)

In order to identify the correct scaling for S(x), note the form of the 2-periodic manifold,

given in (2.12). The 2-periodic behaviour is represented in terms of the continuous

variable x by writing (−1)n as α = sign(cos(πx/ε)), such that

R̂(τ0, ε) =
4 + ε − α

√
ε(4 + ε)

2(3 + ε)
+O(τ−1

0 ) as x → ∞, (2.60)

where the asymptotic order of this expression can be obtained by rewriting (2.44) in

powers of τ−1
0 and equating terms. One may now follow similar methods to the 2-

periodic case, and formulate an ansatz for the solution in terms of ε and a new transseries

parameter, denoted σ1. Motivated by (2.22), one chooses the ansatz

S(x, ε) =
∞

∑
m=1

σm
1 e−mB(x,ε)/εSm(ε), (2.61)

noting that ε dependence on the exponential scale is now allowed. The exponential

scaling B(x, ε) may then be determined by considering the large-x behaviour. This is

convenient, as the form for R(x) in this limit has already been given in (2.60), and it is

known from the asymptotic order of this expression that the solution approaches this

limit exponentially as x becomes large. Using (2.60) in (2.59) and matching powers of ε
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in an identical fashion to (2.24) gives

∂

∂x
B(x, ε) = −πi − log

(
1 − α

√
ε(4 + ε)

)
. (2.62)

This may be solved to give

B(x, ε) = f (ε)x − εg(x, ε), (2.63)

where

f (ε) = − 1
2 log(1 − ε(4 + ε))− πi, (2.64)

and g(x, ε) is a bounded function that vanishes for x = εn for n ∈ Z, given by

g(x, ε) = α

(
x
2ε

− 1
2

⌊
x
ε
+

1
2

⌋)
log

(
1 −

√
ε(4 + ε)

1 +
√

ε(4 + ε)

)
. (2.65)

As g(nε, ε) = 0 for n ∈ Z, this expression could be ignored and the result will still

give the correct value of B(x, ε), and hence the correct exponential scaling, on x = εn.

This therefore suggests that one can capture the 4-periodic solution by defining a new

variable τ1, such that

τ1(x, ε) = σ1
√

εe−B(x,ε)/ε. (2.66)

In subsequent analysis, it will be useful to have a convenient expression for the value of

τ1 at x + ε and x + 2ε. Through direct substitution, one finds that

τ1(x + ε, ε) = −i(ε(4 + ε)− 1)1/2e−2g(x,ε)τ1(x, ε), (2.67)

τ1(x + 2ε, ε) = −(ε(4 + ε)− 1) τ1(x, ε). (2.68)

2.2.5.2 Exponential weights

The form of B(x, ε) provides insight into the behaviour of the solution as ε increases

outside of the range of validity of the original small-ε transseries. The behaviour of this

term is shown in Figure 2.3, which identifies three distinct ranges of ε which must be

considered separately.
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À Á Â
ε = −2 +

√
5 ε = −2 +

√
6

−1
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FIGURE 2.3: This figure shows the real and imaginary parts of f (ε) =

− 1
2 log(1 − ε(4 + ε)) − πi, where the exponential weight B(x) is given in (2.63). If

Re[ f (ε)] > 0, the 4-periodic exponential contribution is exponentially small in ε, while
if Re[ f (ε)] < 0, the contribution is large, and must be incorporated into any approx-
imation in order to accurately describe the system behaviour. In parameter regime
➀, this exponential contribution is not present in the transseries, and is therefore de-
noted as a dashed curve. In regime ➁, the 4-periodic exponential terms appear, but
are exponentially small. In regime ➂, the exponential contributions become large,
and 4-periodic behaviour becomes apparent in the solution. The 4-periodicity of the
solution arises due to Im[ f (ε)]. This represents a multiplicative factor in B(x) of −i,

corresponding to 4-periodic behaviour in the exponential term. Taken from [2].

From the form of (2.66), it is seen that B(x, ε) is the exponential controlling factor for

S, and therefore determines how this series will contribute as x grows. If Re[B] > 0,

corresponding to Re[ f (ε)] > 0, the exponential contribution will decay as x grows, while

if Re[B] < 0, corresponding to Re[ f (ε)] < 0, the exponential part will grow and become

the most significant contribution for large x.

This change in sign occurs at ε = −2 +
√

6. At this point, Re[ f (ε)] becomes negative,

and the exponentials in (2.61) therefore grow as x becomes large, rather than decaying.

This means that in Region ➂ the S term is no longer a small decaying perturbation

around R̂, but rather plays a significant role in the limiting behaviour as x → ∞. If S is

ignored, this behaviour is not captured in the transseries, and the resultant expression

for R is an inaccurate description of the solution behaviour.

Note that Im[ f (ε)] = −3π/2 for ε > −2 +
√

5. This has the effect of making τm
1 4-

periodic in m ∈ Z+, due to having a factor of −i, rather than the 2-periodic behaviour

associated with a factor of −1. Hence, this exponential behaviour represented by B(x, ε)

corresponds to 4-periodic effects in the solution.
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In order to include this behaviour in the transseries expression, one cannot simply

expand the solution about ε = 0. One must instead expand S about some point ε0 such

that the 4-periodic behaviour is present in the expansion. This requirement suggests

that ε0 = −2 +
√

6 is a sensible choice, as 4-periodic effects are apparent in the solution

at this value.

Finally, the region in which the series terms obtained by expanding about ε0 are valid

must be considered. If the behaviour of B(x, ε) is examined for ε > ε0, it is seen that the

real part of f (ε) becomes infinite as ε → −2 +
√

5. This corresponds to the exponentials

disappearing, as every exponential term tends to zero. The series expansion about ε0 is

not valid for ε smaller than this value. Consequently, region ➁ contains exponentially

small 4-periodic behaviour, while no such behaviour exists in region ➀. In Figure 2.3

f (ε) has been represented in region ➀ as a dashed curve, to indicate that it does not

have any effect on the transseries.

Consequently, simply by studying B(x, ε), it is possible to describe the onset of 4-

periodicity in the solution. In region ➀, there are no 4-periodic effects present. In region

➁, there are 4-periodic effects caused by the appearance of new exponential terms, but

they are exponentially subdominant compared to the 2-periodic behaviour. In region

➂, these effects grow to become the most significant effect in the solution behaviour.

Note that the switching of the 4-period exponentials is independent of the initial data,

the latter only determines how quickly they grow to dominate the solution. For higher

values of ε, there must be values for which higher-periodicity behaviour appears. The

onset of 8-periodic behaviour is discussed in Section 2.2.7.

Finally, note that the change in exponential contribution has a parallel with a Borel

transform approach to asymptotic expansions. Borel transforms encode the different

exponential weights of an asymptotic series as singularities in a complex domain known

as the “Borel plane”. There, a change in the number of exponential contributions

corresponds to singularities moving across a branch cut onto a different Riemann sheet

of the Borel plane, giving rise to behaviour known as the “Stokes phenomenon” [61]

as the number of exponential contributions in an asymptotic series abruptly changes.

A similar, but not identical, behaviour occurs in this system at ε = −2 +
√

5, where

Re[ f (ε)] becomes infinite and Im[ f (ε)] changes instantaneously, corresponding to a

branch point in the f -plane.
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2.2.5.3 Static computation of resummed transseries

Writing an appropriate form for the 4-periodic ansatz is slightly more involved than

in the 2-periodic case, given in (2.31). Recall from Section 2.2.5.2 that the significant

change in the behaviour of the exponential contribution occurs for values of ε greater

than ε0 = −2 +
√

6. Therefore a new series variable
√

6η = ε − ε0 is defined, where the
√

6 term is included for subsequent algebraic convenience.

In analogous fashion to (2.31), the ansatz is again devided up into separate power series.

In the 2-periodic case, it was clear from the form of the previously calculated terms that

splitting the odd and even powers of τ0 would capture the discrete variation effectively.

From the analysis in Section 2.2.5.2, one finds the power series for the 4-periodic solution

should instead be split into four parts, such that

S(τ1, η) =
√

η
∞

∑
k=0

ηk
∞

∑
m=0

τ4m+1
1 S4m+1,k + η

∞

∑
k=0

ηk
∞

∑
m=0

τ4m+2
1 S4m+2,k

+
√

η
∞

∑
k=0

ηk
∞

∑
m=0

τ4m+3
1 S4m+3,k + η

∞

∑
k=0

ηk
∞

∑
m=0

τ4m+4
1 S4m+4,k. (2.69)

Consequently, each split power series is now written as functions Θj,k, j = 1, 2, 3, 4,

giving

S(τ1, η) =
√

η
∞

∑
k=0

ηkΘ1,k(τ1) + η
∞

∑
k=0

ηkΘ2,k(τ1) +
√

η
∞

∑
k=0

ηkΘ3,k(τ1) + η
∞

∑
k=0

ηkΘ4,k(τ1).

(2.70)

Noting that each series consists only of powers τm
1 with the same m mod 4, and com-

paring this with the expression for τ1 in (2.66), this indicates that the functions Θj,k for

j = 1, . . . , 4 must have the symmetries

Θ1,k(−iτ1) = −iΘ1,k(τ1), Θ2,k(−iτ1) = −Θ2,k(τ1), (2.71)

Θ3,k(−iτ1) = iΘ3,k(τ1), Θ4,k(−iτ1) = Θ4,k(τ1). (2.72)

At this stage, it might be expected that one should express the governing equation (2.59)

in terms of η, and perform an expansion in this variable; however, a comparison of the

terms in (2.67) and (2.68) suggests that iterating the map once leads to a simplification.
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Writing the x dependence explicitly, the equation becomes:

S(x + 2ε, ε) = (3 + ε)2[1 − 2R̂(x + ε, ε)− (3 + ε)(1−2R̂(x, ε)− S(x, ε))S(x, ε)]

× (1 − 2R̂(x, ε)− S(x, ε))S(x, ε),

(2.73)

This expression does not contain any S(x + ε, ε) terms, and instead only contains the

double iteration term, S(x + 2ε, ε). This is convenient, as the expression for τ1(x + 2ε, ε)

is substantially simpler than τ1(x + ε, ε), as it does not contain g(x, ε). This simplifies

significantly the subsequent analysis.

Expressing the left-hand term in (2.73) in terms of τ1 and η gives

S(x + 2ε, ε) = S(−(ε(4 + ε)− 1) τ1, ε) = S(−(1 + 12η + 6η2)τ1, η). (2.74)

Rewriting (2.73) in terms of τ1 and η therefore gives

S(−(1 + 12η + 6η2)τ1, η) = S(τ1, η)
(

1 − α
√

2 + 12η + 6η2 + (1 +
√

6(1 + η))S(τ1, η)
)

×
(

1 + α
√

2 + 12η + 6η2 − (1 +
√

6(1 + η))2S(τ1, η)2

−S(τ1, η)(1 +
√

6(1 + η))
(

1 − α
√

2 + 12η + 6η2
))

. (2.75)

Analogously to the analysis of the 2-periodic case in Appendix A.1, the next step is

to expand this expression as a power series in η, and apply the series expression for

S(τ1, η) given in (2.69). Matching powers of η j/2 for j = 1, . . . 4 produces a system of

four equations – two of these equations are algebraic, and two are nonlinear ordinary

differential equations in τ1. These four equations may be simplified using the symmetry

relations in (2.71)–(2.72), resulting in the following system of equations

Θ4,0(τ1) = 2aΘ1,0(τ1)Θ3,0(τ1), (2.76)

Θ2,0(τ1) = aΘ1,0(τ1)
2 + aΘ3,0(τ1)

3, (2.77)

τ1Θ′
1,0(τ1) = Θ1,0(τ1)− b(Θ3,0(τ1)

3 + 3Θ1,0(τ1)
2Θ3,0(τ1)), (2.78)

τ1Θ′
3,0(τ1) = Θ3,0(τ1)− b(Θ1,0(τ1)

3 + 3Θ3,0(τ1)
2Θ1,0(τ1)), (2.79)
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where

a =
1
2

(
2 + 2

√
6 − 3α(

√
2 + 2

√
3)
)

, b =
5
6

(
14 + 4

√
6 − α(7

√
2 + 4

√
3)
)

. (2.80)

By substituting the power series (2.69) into the governing equation (2.75), it can be seen

at leading order as η → 0 and τ1 → 0 that S1,0 = −S3,0, providing one initial condition

for the system (2.76)–(2.79). The second initial condition may be chosen arbitrarily,

as this choice may be absorbed into the expression for σ1, in the same manner as the

constant c1 in (2.39). For algebraic convenience, and without loss of generality, one fixes

S1,0 = 1. These conditions are sufficient to uniquely solve (2.76)–(2.79). The solution to

this system is given by

Θ1,0(τ1) =
ατ1√

2 − 2b2 τ4
1

√
1 +

√
1 − b2τ4

1 , Θ2,0(τ1) =− aτ2
1

1 − b2τ4
1

, (2.81)

Θ3,0(τ1) =−
αbτ3

1√
2 − 2b2 τ4

1

(√
1 +

√
1 − b2τ4

1

)−1

, Θ4,0(τ1) =
abτ4

1

1 − b2τ4
1

. (2.82)

In principle, one can match the expansion of (2.75) at higher powers of η in order to

obtain Θj,k for j = 1, . . . 4 with k > 0. For the purposes of this example, however, the first

four terms of the series will produce a useful approximation for the solution behaviour.

The final step is to determine the behaviour of the transseries parameter σ1. This is

slightly more complicated than in the 2-periodic problem, as the behaviour of R̂(x, ε)

must be incorporated into the calculations. The details of this process are found Ap-

pendix A.2, where it is shown that

σ1 =− 1
50

(
3
√

2 − 16
√

3 − 7
√

6 + 12
)
+

η

500

(
297

√
2 − 709

√
3 − 189

√
2 + 399

)
+O(η2), (2.83)

Now determined enough transseries terms have been determined to accurately approxi-

mate the solution behaviour in the 4-periodic regime.
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FIGURE 2.4: The plot in (a) compares the 2-periodic approximation R2,app, from (2.84),
against the exact solution for ε = 0.05. The plot in (b) compares the 4-periodic approxi-
mation R4,app, from (2.86), against the exact solution for ε = 0.51, or

√
6η ≈ 0.0605. The

approximation errors, given by the difference between the exact solution R(x) and the
approximations are shown in (c) and (d). The 2-periodic approximation has maximum
error in the region just before reaching the 2-periodic steady solution. The 4-periodic
approximation has maximum error in the initial region; this is to be expected, as the
initial condition was obtained directly from the 2-periodic solution, and is not expected

to be highly accurate in the 4-periodic regime. Taken from [2].

2.2.6 Error comparison

As a consequence of the preceding analysis, it is possible to derive an approximation for

the solution to the logistic equation in the 2-periodic and 4-periodic parameter regimes,

which is denoted as R2,app(x) and R4,app(x) respectively. Combining (2.32), (2.31), and

(2.42), it is found that in the 2-periodic parameter regime

R(x) ≈ R2,app(x) =
2 + ε

3 + ε
+ ε1/2Ωo,0(τ0) + εΩe,0(τ0) + ε3/2Ωo,1(τ0) + ε2Ωe,1(τ0), (2.84)

where τ0 and σ0 are approximated as

τ0 = σ0ε1/2e−x(πi+log(1+ε))/ε, σ0 ≈ −1
9
+

4ε

81
− 19ε2

648
. (2.85)

A comparison of the exact solution against the approximation is shown for ε = 0.05

in Figure 2.4(a). The exact solution is shown as red circles, while the approximation is

shown as blue dots. The two curves are visually indistinguishable. The approximation
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error is shown in Figure 2.4(c). It is clear from this figure that the error has a peak at

the end of the transition region, just before the solution settles into the stable 2-periodic

behaviour.

In the 4-periodic parameter regime ε > −2 +
√

6, the approximated transseries is given

combining the expressions in (2.66), (2.81)–(2.83), and the previous approximation (2.84),

to give

R(x) ≈ R4,app(x) = R2,app(x) +
√

η(Θ1,0(τ1)+Θ3,0(τ1)) + η(Θ2,0(τ1) + Θ4,0(τ1)),

(2.86)

where τ1 and σ1 are approximated as

τ1 = σ1ε1/2ex(log(1−ε(4+ε))/2+πi)/ε, (2.87)

σ1 ≈ − 1
50

(
3
√

2 − 16
√

3 − 7
√

6 + 12
)
+

η

500

(
297

√
2 − 709

√
3 − 189

√
2 + 399

)
.

(2.88)

Note that the term containing g(x, ε) in B(x, ε) from (2.63) is not included. This term

disappears for integer values of n, and therefore can be omitted at this stage without

altering the approximation.

In Figure 2.5(a), the approximation error for a range of values of ε is shown, where

the error is measured as the maximum difference between the exact solution and the

transseries approximation, shown as a blue curve. This error measure was chosen to

allow for direct comparison with equivalent results from [3], which are shown as a

red curve. The transseries approximation is more accurate than the multiple scales

approximation in this parameter regime, and the error decays faster in the limit that

ε → 0. The reason for this behaviour is that the transseries approach allowed for

higher-order exponential corrections to be easily computed and retained. The maximum

approximation error occurs at the end of the transition region between non-periodic

and 2-periodic behaviour, where the exponential contributions contribute significantly

to the solution behaviour. Computing these exponential corrections using multiple

scales methods would be an algebraically significantly more demanding task, requiring

matched asymptotic expansions to be applied at higher orders of the expansion.
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FIGURE 2.5: The plot in (a) shows the resummed transseries approximation error
in blue, corresponding to the maximum difference between the approximated and
exact value. This measure of the error was chosen to be consistent with the error
measure provided in [3]; this error is shown as a red curve. Due to the ease with which
the transseries method captures higher-order exponential behaviour, which plays an
important role in the transition region between non-periodic and 2-periodic behaviour,
it outperforms the multiple scales approximation. In (b), the error of the four solution
branches as n → ∞ is shown, approximated by taking |R − R4,app| on each of the four
branches for a value of n sufficiently large that the error is not visibly changing. For
each of the four branches, the error decreases as η → 0, as would be expected. Taken

from [2].

2.2.7 8-periodic solution

This process may be continued to understand the emergence of the next period doubling

bifurcation. It will be shown that the exponential factor can be used to identify the

appearance of 8-periodic stable solutions as ε is increased further.

The method from Section 2.2.5 can be applied again in order to obtain approximations

for solutions with even higher periodicity. One can now write the next term in the

transseries such that R(x, ε) = R̂(x, ε) + S(x, ε) + T(x, ε). The quantity T(x, ε) is defined

in terms of a new transseries parameter σ2 to be

T(x, ε; σ2) =
∞

∑
m=1

σm
2 e−mF(x,ε)/εTm(ε). (2.89)

The transseries terms R̂ + S capture the 4-periodic solution behaviour, and therefore

must tend to the 4-periodic solution in the limit that τ0 and τ1 become large. This

solution is denoted as R4(ε). Hence, the expression R(x, ε) = R4(ε) + T(x, ε) is applied
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to the governing equation (2.16) an expression for the exponential weights is found, in

similar fashion to the process for obtaining (2.25) or (2.62).

The exponential weights may again be written in the form F(x, ε) = f (ε)x + εg(x, ε),

where g disappears on n ∈ Z. The behaviour of f (ε) is illustrated in Figure 2.6. A very

similar set of inferences may be drawn from this image as for Figure 2.3. In region ➀, the

8-periodic behaviour does not contribute to the solution, as discussed for the 4-periodic

case in Section 2.2.5.2. This 8-periodic contribution appears in the transseries as ε moves

into region ➁. In this range of ε, there are 8-periodic contributions to the solution, but

they are smaller than the 4-periodic solution contribution, as the exponential term is

relatively small compared to those in S(x, ε), decaying exponentially as x → ∞. Finally,

in region ➂, the 8-periodic solution grows exponentially, and the behaviour of T(x, ε)

dominates the solution behaviour.

It is therefore clear that the onset of these higher periodicity solutions can be explained

by explicitly studying the exponential weights of the transseries solution; while the

algebraic complexity of the process increases after each doubling, the steps for identi-

fying this behaviour remain essentially the same. The resummed transseries therefore

provides a systematic approach to studying bifurcations even for larger values of the

bifurcation parameter, where classical asymptotic methods typically fail.

2.3 Dynamical Logistic Equation

In the previous section, the classical logistic equation has been studied, and it has been

shown that the higher periodicity solutions may be obtained directly using a transseries

approach. In this section, a more complicated variant of this problem is considered,

known as the slowly-varying logistic equation.

Yn+1 = (λ0 + εn)Yn (1 − Yn) , 0 < Y0 < 1, (2.90)

with ε > 0. The bifurcation parameter is given by λ = λ0 + εn, and in this case, it changes

slowly over time. In previous studies [51, 52, 49], this has been shown as an example

of a “canard” solution, in which the behaviour appears to remain near the unstable

solution for an extended period of time, before rapidly jumping to approach the stable
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FIGURE 2.6: This figure shows the real and imaginary parts of f (ε), where F(x, ε) =
f (ε)x + εg(x, ε). The behaviour of the transseries depends on both the real and imagi-
nary part of this quantity, in the same fashion as Figure 2.3. The exponential contribu-
tion is not present in the transseries in parameter regime ➀. In regimes ➁ and ➂ the
contribution is present, and must be 8-periodic, due to the value of Im[ f (ε)] in these
regimes. In regime ➁, the 8-periodic contribution is small, due to the positive sign of
Re[ f (ε)], and this contribution becomes significant in regime ➂, as the sign of Re[ f (ε)]

becomes negative. Taken from [2].

solution with higher periodicity. As n increases, this parameter will pass through values

across which the solution stability is known to change. When λ0 + εn = 3, the 1-periodic

equilibrium becomes unstable, and the 2-periodic equilibrium becomes stable. As n

increases further, eventually λ exceeds 1 +
√

6, and the 2-periodic equilibrium becomes

unstable, with the 4-periodic equilibrium becoming stable. This process continues until

the bifurcation parameter becomes sufficiently large that the solution becomes chaotic.

For the problem studied here, λ0 = 3 and y(0) = 2/3 will be set.

In [3], it was shown that a discrete multiple scales approach can be used to describe this

behaviour asymptotically. This approach required balancing several different timescales,

and using asymptotic matching to connect the solutions in each different asymptotic

region.

In this section, it will be shown that this process can be described using a transseries

approach, with the resulting expansion to be valid even as the solution behaviour

changes dramatically, and increases in periodicity. It will now be shown that transseries

provide a systematic and generally more accurate approach than the multiple scales

procedure of [3] in describing the solution behaviour as it transitions from an unstable
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to a stable manifold; this will demonstrate that transseries expansions can be used to

effectively capture canard behaviour in discrete systems.

The first stability transition will be shown in detail. Subsequently an outline of how this

method can be extended to describe the second transition will be provided, together

with some results.

2.3.1 2-periodic solution

2.3.1.1 Transseries ansatz

The difference from (2.16) above is that in the prefactor of the r.h.s. the perturbative

parameter ε is replaced now by x. Again one begins by applying a multiple scales

ansatz, and expanding as a transseries in a continuous variable x. Setting x = εn and

R(x) = y(n) gives

R(x + ε) = (3 + x) R(x) (1 − R(x)) , R(0) = 2
3 . (2.91)

An ansatz for the solution in terms of ε and a transseries parameter σ0 is again formu-

lated. The ansatz is identical to that given in (2.15), but has been included below for

convenience:

R(x, ε; σ0) =
∞

∑
m=0

σm
0 e−mA(x)/εRm(x, ε), Rm(x, ε) ≃ εβm

∞

∑
k=0

εkRm,k(x), (2.92)

where βm will again be chosen such that Rm,0 takes nonzero value.

It is straightforward to compute the first few terms of the algebraic portion of the series

expression, corresponding to m = 0 in (2.92), which gives a power series expression

for the non-periodic manifold. The recursion relation is given obtained by expanding

R(x + ε) using a power series in ε, and matching powers of ε in the resultant expression.

This process gives

R0,0(x) =
2 + x
3 + x

, (2.93)

R0,k(x) = − 1
(2 + x)

[
k

∑
n=1

1
n!

R(n)
0,k−n(x) + (3 + x)

k−1

∑
n=1

R0,n(x)R0,k−n(x)

]
, k ≥ 1.

(2.94)
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The first few iterations of this recurrence relation give

R0,1(x) =− 1
(x + 2)(x + 3)2 ,

R0,2(x) =
x2 + x − 4

(x + 2)3(x + 3)3 ,

R0,3(x) =− x4 − 2x3 − 28x2 − 33x + 24
(x + 2)5(x + 3)4 .

(2.95)

This process may be continued indefinitely in order to continue calculating terms in the

power series for the non-periodic manifold. This process will not, however, capture

the transition to the 2-periodic manifold. In order to obtain an approximation for this

behaviour, one must consider the terms in the ansatz (2.92) with m ̸= 0. Continuing to

the next order in σ0, one finds that

e−[A(x+ε)−A(x)]/εR1(x + ε, ε) = (3 + x)R1(x, ε)[1 − 2R0(x, ε)]. (2.96)

As before, the argument of the exponential may be determined by expanding R1 as a

power series in ε, as well as expanding A(x + ε) = A(x) + εA′(x) + · · · . At leading

order in ε, this gives the differential equation

e−A′(x) = − (x + 1) = e−(2p+1)πi+log(x+1), p ∈ Z. (2.97)

Hence, one obtains

A(x) = (2p + 1)πi x + x − (x + 1) log(x + 1), (2.98)

where the same reasoning as in the analysis used to determine (2.25) is followed, and

one absorbs the constant into the series parameter. Note that in principle it is possible to

have several exponential weights at the same time. In that case a multiple-parameter

transseries approach would be necessary. In Appendix A.3 it is proven that it is always

possible to reduce the multiple parameter transseries to a transsummation of a single

variable. From a practical perspective, it is enough to note that for x = n ε, the value

of the exponential exp(−A(x)/ε) is a real number and does not depend on the choice

of the integer p in (2.98). Hence without loss of generality p = 0 is set. Once A(x) has

been determined, it is possible to obtain a recurrence relation for Rm(x) by applying the

first ansatz expression in (2.92) to the governing equation (2.91), and matching powers
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of the transseries parameter σ0. This gives

(−1)m(1 + x + ε)m em((1+x) log(1+ε/(1+x))/ε−1)Rm(x + ε, ε)

=(3 + x)Rm(x, ε)[1 − 2R0(x, ε)]− (3 + x)
m−1

∑
n=1

Rn(x, ε)Rm−n(x, ε).

(2.99)

It is now possible to apply the second part of the ansatz in (2.92) and to match powers

of ε in this expression. By direct substitution, one finds that βm = m gives the result that

Rm,0 is nonzero. By subsequently matching terms which are O(ε) in the small ε limit, it

is possible to generate an equation for R1,0 and a recurrence relation for Rm,0 for m ≥ 2.

One finds that

(x + 1)R′
1,0(x) = −

(
2

x + 2
− 2

x + 3
+

1
2

)
R1,0, (2.100)

The initial condition in (2.100) may be chosen arbitrarily, as this choice may be absorbed

into the transseries parameter. Choosing R1,0(0) = 1 gives

R1,0(x) =
3(x + 2)2

4(x + 1)3/2(x + 3)
. (2.101)

The recurrence relation for subsequent terms is given by

[(−1)m(1 + x)m + (1 + x)] Rm,0(x) = −(3 + x)
m−1

∑
n=1

Rn,0(x)Rm−n,0(x), m ≥ 2.

(2.102)

Continuing to match higher powers of ε allows for the direct computation of terms

further terms such as Rm,k, obtained by matching terms which are O(εk) in the small ε

limit. The direct computation of further terms is not required for the present analysis.

2.3.1.2 Computing terms in the resummed transseries

Motivated by the analysis of the static system, and in particular the form of (2.15), the

order of summation in the transseries (2.92) is switched, writing it as

R(x, ε; σ0) ≃
∞

∑
k=0

εk
∞

∑
m=0

(
σ0εe−A(x)/ε

)m
Rm,k. (2.103)
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A main difference from the static one is that the expansion in powers of ε is asymptotic,

while the sum over the exponentials (m ≥ 0) is convergent. Thus (2.103) is a formal

expansion.

As for the static system, a new series parameter τ0 is defined, and new quantities Ωk(τ0)

such that

τ0 = σ0εe−A(x)/ε, Ωk(τ0) =
∞

∑
m=0

τm
0 Rm,k. (2.104)

It will be helpful later to note that

τ0(x + ε) = e−(A(x+ε)−A(x))/ετ0(x) = τ0(x)
[
e−A′(x) +O(ε)

]
as ε → 0. (2.105)

The transseries expression in (2.103) is now given by

R(τ0, ε) ≃
∞

∑
k=0

εkΩk(τ0). (2.106)

This expression can now be applied to (2.91) and match orders of ε. At leading order,

one finds that

Ω0

(
e−A′(x)τ0

)
= (3 + x)Ω0(τ0)(1 − Ω0(τ0)), (2.107)

where (2.105) was used to obtain the leading-order on the left-hand side. At this stage,

one could mechanically obtain the function Ω0 as a Taylor series in τ0, which is conver-

gent, with some finite radius of convergence. It happens, however, that there exists a

particularly convenient variable transformation that converts the right-hand side from a

dilation to a translation. If a new variable y is defined such that y = −x log(τ0)/A′(x),

the expression in (2.107) becomes (see Appendix A.3.1)

Ω0(y + x) = (3 + x)Ω0(y)(1 − Ω0(y)). (2.108)

This expression has the same form as the static logistic map equation, given in (2.16), with

x in place of ε. The equation for Ω1(y) is also derived in Appendix A.3.1. Furthermore,

since x = εn, it is valid to apply the asymptotic solution derived for this expression

in Section 2.2.1. As the goal is to capture the first transition, across which the solution

switches from having no periodic component to having a 2-periodic component, the

transseries expression for the 2-periodic solution given in (2.31) can directly be applied.

In order to take into account the form of (2.108), one must replace ε and x with x and
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y respectively in (2.31). The τ0 in this expression must also be replaced with a new

transseries parameter τ0, in which ε and x are again replaced with x and y respectively.

This gives

τ0(y, x) = σ0
√

xe−iπy/x+y log(1+x)/x = σ0
√

xe(iπ+log(1+x)) log(τ0)/A′(x) = σ0
√

xτ0,

(2.109)

where σ0 is a new transseries parameter that remains to be determined. Making the

appropriate substitutions in (2.31) now gives the form of Ω0(y) as

Ω0(y) =
2 + x
3 + x

+
√

x
∞

∑
k=0

xkΩo,k(τ0) + x
∞

∑
k=0

xkΩe,k(τ0), (2.110)

where Ωo,k and Ωe,k are defined in (2.32), and Ωo,k and Ωe,k for k = 0 and k = 1 are given

explicitly in (2.42) respectively.

In a typical problem of this form, σ0 would be determined using the fact that Ω0 = 2/3

at y = 0; however, this is enforced by the transformation y = −x log(τ0)/A′(x), which

forces x to be zero if y = 0. Consequently, the initial condition cannot be used to

determine σ0. This is to be expected, as the the initial condition will instead be used to

determine the original transseries parameter σ0.

Instead, the expression in (2.110) is expanded as a Taylor series about x = 0 using the

form of Ωo,0 and Ωe,0 given in (2.42). This gives

Ω0(y) =
2 + x
3 + x

+ σ0xτ0 −
3
2
(σ0xτ0)

2 + . . . , (2.111)

where the omitted terms are O(x3τ2
0 ). One may now match powers of τ0 with (2.103)

to determine that xσ0 = R1,0, which was explicitly calculated in (2.101). Therefore one

finds that

σ0 =
3(x + 2)2

4x(x + 1)3/2(x + 3)
. (2.112)

2.3.1.3 Initial Condition

All of the required quantities for the transseries approximation have now been explicitly

calculated except for σ0, which must be determined from the initial condition at x = 0.

At x = 0, it follows that τ0 = σ0ε. Consequently, the initial condition is given by

R(τ0 = σ0ε, x = 0) = 2/3, which is applied to the first expression in (2.92). Then σ0 is
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expressed as a power series in ε, where the series terms are functions of Rm,k for various

values of m and k, giving

∞

∑
m=0

σm
0 Rm(0, ε), where σ0 =

∞

∑
j=0

εjσ0,j. (2.113)

Using the second expression from (2.92) and matching powers of ε allows to compute

σ0,j. Enough Rm,k terms have been obtained to solve for σ0,0, giving

σ0 = −R0,1 +O(ε) =
1
18

+O(ε). (2.114)

Computing subsequent series terms for σ0 requires values of Rm,k that are not presented

in this study, as even this first order approximation is sufficiently accurate as will be

shown.
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FIGURE 2.7: The plot in (a) shows the approximation (2.115) and exact solution of (2.90)
for ε = 0.001. The difference between these is shown in (b). The points labeled ➀, ➁ and
➂ will be referenced below in Figure 2.8. It is seen that the error reaches a maximum at
the start of the 2-periodic regime. It then decreases, although will eventually increase
as n grows, due to the increasing influence of the 4-periodic region which was not
computed. Note that the small error at the point labelled ➂ corresponds to the value
where the approximation crosses the exact solution. This occurs at some point in the
2-periodic region for any choice of ε, and therefore does not signify a special parameter

choice. It is an artifact of the error calculation. Taken from [2].
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2.3.2 Error comparison

As a consequence of the preceding analysis, it is possible to derive an approximation for

the solution to the slowly-varying logistic equation (2.91), which is denoted Rapp. Com-

bining (2.32), (2.104), (2.109), (2.110), (2.112) and (2.114), one finds an approximation for

the transseries solution

R(x) ≈ Rapp(x) =
2 + x
3 + x

+ x1/2Ωo,0(τ0) + xΩe,0(τ) + x3/2Ωo,1(τ0) + x2Ωe,1(τ0),

(2.115)

where

τ0 ≈ ϵ(x + 2)2e−(πix+x−(x+1) log(x+1))/ε

24x1/2(x + 1)3/2(x + 3)
. (2.116)

The most useful feature of this approximation is that it is valid before, during, and after

the transition region in the slowly-varying logistic equation. An example comparison

is illustrated in Figure 2.7(a), corresponding to ε = 0.001. The approximation is shown

as blue dots, and overlaid on top of the exact solution, shown as red circles. The two

solutions are visually almost indistinguishable.

The approximation error for this example is shown in Figure 2.7(b), calculated by y(n)−

Rapp(εn). The error reaches a peak following the transition region, at the beginning

of the stable 2-periodic behaviour. The error does grow in this region as n becomes

large, and continues to do so until the transition to 4-periodic behaviour occurs. This

behaviour is not depicted in Figure 2.7(b).

In order to obtain a more complete picture of the accuracy of the transseries approxima-

tion, the approximation error was determined at three selected values of n. These values

were tested in [3] relative to other methods, to obtain representative computations of

the approximation error in important parts of the solution domain. The first point is

n = ⌊1/
√

ε⌋. This point is found in the early non-periodic region before the transition

from non-periodic behaviour to 2-periodic behaviour occurs. It is labelled ➀ in the

example solution from Figure 2.7.

For comparison, the remaining representative points used in [3] need to be identified,

which required the computation of an intermediate quantity K, satisfying

K =
√

log K − 3
2 log(ε). (2.117)
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FIGURE 2.8: This figure shows the error in the dynamic system at the three points
identified in [3] as belonging to the inner region, transition region, and outer region,
shown as points ➀, ➁ and ➂ in Figure 2.7. In each case, the error is shown as a blue
curve. This curve becomes smaller as ε decreases. The point at which the error dips is
an artifact of the observation that the approximation crosses the exact solution at the
identified point for this choice of ε, and does not represent any significant phenomenon
within the transseries approximation. The cause of this behaviour is explained in more
detail within the description of Figure 2.7. A similar range of small parameter as in
the analysis in [3] has been chosen, shown in red. The transseries outperforms the
multiple scales method in both the transition region and the outer region, in which the
exponential terms play an important role in describing the solution behaviour. These
terms are more naturally captured using transseries methods, leading to an improved

approximation. Taken from [2].

This quantity was derived in [3] although it has been adjusted to take into account

the slightly different form for the slowly-varying logistic equation considered here.

The second point falls within the transition region between the non-periodic unstable

manifold and the 2-periodic stable manifold, and is given by n = ⌊K + K−1/
√

ε⌋. This

point is labelled ➁ in the example solution from Figure 2.7. Finally, the error at a point in

the region where the solution has completed its transition to 2-periodic stable behaviour

is also determined. This point is given by n = ⌊K + 15K−1/
√

ε⌋, and is labelled ➂ in the

example solution from Figure 2.7. The error for each of these three points was studied

in [3] allowing for direct comparison between the transseries approximation and the

multiple scales approximation errors.

The error for each of the three representative points over a range of ε values may be seen

in Figure 2.8, shown in blue. The error for the approximation from the multiple scales

approximation in [3] is shown in red for each point. In each region, both approximations

are relatively accurate. In the non-periodic region, the multiple scales approximation
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outperforms the transseries approximation, while in the transition and 2-periodic region,

the transseries approximation is substantially more accurate.

This outcome is sensible; the transseries approximation tracks the contribution of expo-

nentials in the solution, and accurately incorporates them into the solution behaviour. In

the non-periodic region, the solution is best represented by an algebraic power series in

ε. The multiple scales approach involves calculating this power series to several terms,

while our transseries approximation relies only on the leading-order behaviour of this

series. In the transition and 2-periodic region, however, these exponential contributions

become more significant, and this corresponds to the transseries approximation becom-

ing more accurate than the multiple scales approximation. While the multiple scales

approximation is able to capture some of the exponential behaviour, the transseries

approximation is able to incorporate several exponential corrections in a straightforward

fashion, producing greater accuracy in the solution regions where these corrections play

an important role. Furthermore, increasing the accuracy of the transseries approximation

in the non-periodic region can be done systematically by including higher corrections in

ε.

Finally, note that there are points in Figure 2.8(b)–(c) where the error appears to drop to

zero. This corresponds to a coincidental crossing between the approximation and actual

solution occurring at this value of n. The crossing may be seen in the example solution

from 2.7 at n ≈ 250. Any solution with a reasonable amount of accuracy will have some

value of n where this crossing occurs; this does not provide any added insight into the

accuracy of the approximation.

2.3.3 4-periodic solution

From Figure 2.1, one sees that as n increases, eventually the bifurcation parameter

becomes sufficiently large that the solution becomes 4-periodic. As discussed in Section

2.2.5.2, this higher periodicity must be encoded in the transseries solution as the weights

of new exponential scales. These exponential weights do, in fact, predict the emergence

of stable behaviour with higher periodicity.

A new term with transseries parameter σ1 is included, and the analysis suggests that it is

natural to define a new scaled variable z = 2nε. This new contribution to the transseries,
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(A) Real part of B(z)
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FIGURE 2.9: This figure shows the real and imaginary parts of B(z), corresponding
to the exponential weight from (2.119). The periodicity of this contribution may be
determined by identifying the slope of the imaginary part, corresponding to Im[B′(z)].
For z <

√
5− 2, the weight B(z) contains an imaginary term −πi, which corresponds to

2-periodic behaviour. After z exceeds
√

5 − 2, the slope of the imaginary term changes
to −3πi/2, which leads to the appearance of 4-periodic behaviour. This behaviour
is not immediately apparent, as the contribution is exponentially small if Re[z] > 0,
corresponding to z < z0, where z0 ≈ 0.9951. For z > z0, the 4-periodic terms become
significant in the solution behaviour. Note that, due to the bifurcation delay, this
behaviour is not immediately visibly apparent in the solution; however, a careful
analysis of the corresponding transseries terms will identify the transition between

2-periodic and 4-periodic behaviour. Taken from [2].

denoted S(z, ε; σ1), is given by

S(z, ε; σ1) =
∞

∑
m=0

σm
1 e−mB(z)/εSm(z, ε). (2.118)

By adding S as a perturbation to the 2-period solution approximated by (2.115) and

balancing terms in (2.91) in a similar fashion to Section 2.3.1.1, one obtains an equation

for B(z) that gives

B(z) = −πiz + z − z
2

log(1 − z(4 + z)) + (
√

5 − 2) log

( √
5 − 2√

5 − 2 − z

)
(2.119)

− (
√

5 + 2) log

( √
5 + 2√

5 + 2 + z

)
,

where the constant of integration is picked to set B(0) = 0 for convenience, though this

choice may be absorbed into the parameter σ1. The behaviour of B(z) is depicted in

Figure 2.9. There are two significant conclusions that may be drawn from this figure. In

Figure 2.9(b), it is seen that

Im[B′(z)] =

 −π z <
√

5 − 2

−3π/2 z >
√

5 − 2
(2.120)
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Noting the format of (2.118), it is seen that this exponent changes from 2-periodic

behaviour to 4-periodic behaviour when crossing the value z =
√

5 − 2. This change in

exponent gives rise to 4 different branches in the solution, and therefore explains the

onset of 4-periodic behaviour in the solution to the dynamical logistic equation.

The second important observation is that this 4-periodicity is not immediately apparent

in the solution, due to the behaviour of Re[z]. In Figure 2.9(a), it is seen that there is a

value of z, denoted z0 and located at z0 ≈ 0.9951, at which the real part of B(z) changes

sign from positive to negative. From the form of (2.118), one sees that this corresponds

to the 4-periodic transseries contribution being exponentially small for z < z0, before

growing to have a significant impact on the solution behaviour for z > z0.

This value of z0 corresponds to 4-periodic behaviour becoming apparent at n ≈ 0.4975/ε.

For example, in Figure 2.1, one would expect that 4-periodic solution to become signifi-

cant at n ≈ 3455, which is consistent with the appearance of the second transition region

in this image.

A more detailed transseries analysis would permit to calculate a series approximation

for the 4-periodic behaviour; however, as is expected from the transseries approach, a

straightforward analysis of the exponential weights in the transseries is sufficient to

explain the onset of the higher periodicity, and identify the location in z (and hence, in

n) where this transition to dominant 4-periodic behaviour takes place.

Finally, note that the points where the periodicity changes correspond to values of n

where the real part of the exponential weights changes sign, or z0 in Figure 2.9. In

asymptotic analysis, this corresponds to the crossing of a curve known as an anti-Stokes

curve. This suggests that the Stokes phenomenon plays a role in this system behaviour,

in a similar fashion to the continuous delayed bifurcations in [41]. In fact, the solution

does contain Stokes curves that are responsible for appearance of exponential factors in

the solution; however, finding these Stokes curves requires continuing the solution in

the negative-n direction, and was therefore not presented here. Nonetheless, the study

the Stokes phenomenon in the dynamic logistic map is an interesting and rich subject

which is beyond the scope of the present work.
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2.3.4 Asymptotic analysis of the perturbative sector R0

Remember that the perturbative sector of the transseries of the dynamical logistic

equation (2.91) is given by

R0(ϵ, x) =
∞

∑
k=0

R0,k(x)ϵk . (2.121)

The coefficients R0,k can be calculated using the recursion relations (2.93). The expected

leading asymptotic behaviour of the coefficients R0,k of the asymptotic expansion for a

problem with a single exponential weight A is

R0,k ∼ S
Γ(k + β)

Ak+β
as k → ∞, (2.122)

where S is the Stokes constant up to a factor and β is a complex number yet to be

determined. (2.122) is just the leading contribution of the large order relation for the

perturbative sector. The reason one allows for the parameter β is that in general the

non-perturbative sectors Rn may have a factor of εnβ multiplied with the power series.

The prefactor 1/(2πi) found in the more common form of the large order relations

has been absorbed into constant S in Eq. (2.122). Eq. (2.98) indicates which exponential

weights A(x) are theoretically possible. In order to find the constant p from (2.98), the

minor of R0(x, ε) can be computed, B[R̂0](ξ), and analyse its singularities on the Borel

plane. One has

B[R̂0](ξ) =
+∞

∑
n=0

R0,n+1(x)
n!

ξn . (2.123)

The singularities of B[R̂0](ξ) which are nearest to the origin will are the exponen-

tial weights of the problem. In Fig. (2.10) the singularities of the Pade approximant

BP200[R̂0](ξ) are displayed for different values of x. By comparing the singularities

of BP200[R̂0](ξ) with the expression in (2.98) one finds that there are two exponential

weights A(x) and Ā(x). The weight A(x) is given by

A(x) = A−2(x) = x + iπ(x + 1)− (x + 1) log(x + 1) + 2 , (2.124)
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FIGURE 2.10: Left: The dots are the singularities of the Pade approximant BP200[R̂0](ξ)
in the Borel plane for x = 1/1000. The points which is nearest to the origin are the
positions of logarithmic singularities and the ’lines of dots’ which start there represent
the branch cuts. Right: The numerically computed singularities in the upper half of the

Borel plane as a function of x (blue) and the function A(x) from (2.124) (red).

where A−2(x) denotes the exponential weight (remember that from the equations it is

only defined up to an additive constant) satisfying

A−2(−2) = 0 . (2.125)

Since the solutions of the logistic equation are real, one expects the following asymptotic

behaviour of R0,k (whether the real or imaginary part is chosen does not matter since a

factor of i can be absorbed into the phase of S):

R0,k ∼ Im
(

S
Γ(k + β)

Ak+β

)
. (2.126)

By writing S = |S|eiαS , S = |A|eiαA and β = βr + iβi Eq. (2.126) can be brought into the

form

R0,k ∼ |S|eαA βi

|A|k+βr
Im
(

Γ(k + β) exp
[
i
(
αS − αA(k + βr) + βi log |A|

)] )
. (2.127)

Assume the R0,k have been calculated numerically for k ≤ N. If N is sufficiently large,

one should be able to obtain a reasonable approximation for the β by fitting the expected
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asymptotic behaviour in Eq. (2.127) to the numerical data of the R0,k. Note that due to

the large growth in k of the function |Γ(k + β)/A(k+β)|, the R0,k will vary across several

orders of magnitude. This makes the fitting procedure more difficult. Therefore, first a

reasonable estimate βr ≈ βest is found using trial and error (here βest = 0.672 is used)

and the function fk is fitted to a set of redefined coefficients R0,k, where fk and R0,k are

given by

fk ≡ |S|eαA βi
|A|βest−β

Γ(k + βest)
Im
(

Γ(k + β) exp [i (αS − αAβr + βi log |A|)]
)

; (2.128)

R0,k ≡ |A|k+βest

Γ(k + βest)
R0,k . (2.129)

The function fk was fitted to the coefficients R0,k for 130 ≤ k ≤ 200, where the four

unknown real parameters which have to be determined are (|S|, αS, βr, βi). One finds

that the fit parameter β has a slight x-dependence and that the fits approximate the R0,k

very well. In Fig. 2.11 it is seen that the computed β(x) stays within the complex region

[0.672, 0.686] + i[0.065, 0.085] as x is varied within the interval [0, 0.2]. However, it turns

out that if one chooses coefficients R0,k with larger k for the fit, the range of values across

which the fit parameter β varies decreases. This seems to indicate that the x-dependence

vanishes in the limit k → ∞, which is the only limit for which our formula Eq. (2.126)

is supposed to hold in any case. To see this, it is instructive to do the β-fits for a range

of indices [k, k + 30] and compute |δβ|(k) = |β(0)− β(0.1)|(k). By plotting log(δβ) as a

function of log(k), one sees that as for large k, the dependence approximates a straight

line with slope α ≈ −0.71, which hints toward a power law convergence |δβ|(k) ∼ 1/kα

as k → ∞.

This is illustrated in Fig. 2.12. Note that previously it was assumed that the m-th sector of

the transseries comes multiplied with a factor εm, and hence βm = mβ = m. Hence one

might expect that β = 1. However, note that from the equations βm is not determined

and hence in this case the β that is found from the asymptotic analysis does not need

to be equal to the β that was chosen to fix the factor εβm . The exact value of β is not

important. However, the results in this asymptotic analysis indicate that the β parameter

is not dependent on x, which confirms that choosing a constant β in the transseries

ansatz is justified.
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0.674 0.676 0.678 0.680 0.682 0.684 0.686
Re[β]

0.070

0.075

0.080

Im[β]

FIGURE 2.11: The fit parameter β(x) plotted in the complex plane for different values
of x ∈ [0, 0.2]. For the fitthe coefficients {R0,k(x) | 130 ≤ k ≤ 200} were used and the fit
function fk. At x = 0, β lies in the bottom left corner. β moves towards the top right
corner as x increases. The values of x have been chosen by dividing the interval [0, 0.2]

into N = 100 equidistant steps with increasing x.

line = -1.0 - 0.71 log(k)

3.5 4.0 4.5 5.0 5.5
log(k)

-5.2

-5.0

-4.8

-4.6

-4.4

-4.2

-4.0

-3.8

log(|δβ|)

0.0 ≤ x ≤ 0.1, fitting interval: [k,k+30]

FIGURE 2.12: A double logarithmic plot of |δβ|(k) as a function of the first fit index
k, where the coefficients Rj for j ∈ [k, k + 30] have been used as the fit data for the fit
function fk. The line is drawn to illustrate that the approximate behaviour is |δβ|(k) ∼

1
kα for α ∼ 0.71 as k becomes large.

2.3.5 Asymptotic analysis of the first non-perturbative sector R1

In this section the asymptotic behaviour of the transseries sector R1 will be analysed.

The first step is to compute the coefficients R1,k. The following notation is introduced

to factor out the prefactor βn such that the Ψn are asymptotic power series in ε with

x-dependent coefficients:

Rn(x, ε) ≡ εβn Ψn(x, ε) . (2.130)
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By substituting this into Eq. (A.44) the same equation for Ψn(x, ε) is obtained since the

factor εβn appears on both sides of the equation. The equation for Ψ1 is

−(1 + x)η(x, ε)Ψ1(x + ε, ε) = (3 + x)
[

Ψ1(x, ε) (1 − Ψ0(x, ε))

]
. (2.131)

One finds

Ψn(x, ε) =
+∞

∑
k=0

Rn,k(x)εk ; Ψn(x + ε, ε) =
+∞

∑
k=0

εk

(
k

∑
j=0

1
j!

dj
xRn,k−j(x)

)
;

η(x, ε) =
+∞

∑
k=0

ηk(x)εk .

(2.132)

The coefficients ηk can be easily calculated by expanding Eq. (A.45). After substitut-

ing these expressions into Eq. (2.131) one is left with the following equations for the

coefficients R1,k:

−(1 + x)
k

∑
ℓ=0

ηk−ℓ

ℓ

∑
j=0

1
j!

dj
xR1,ℓ−j = (3 + x)

[
R1,k − 2

k

∑
j=0

R1,kR0,j

]
. (2.133)

It turns out that the R1,k-terms in Eq. (2.133) cancel. One obtains an equation for R1,k by

performing a shift k 7→ k + 1:

− (1 + x)dxR1,k −
(

1
2
+

2
(2 + x)(3 + x)

)
R1,k

= (1 + x)

[
η1

k

∑
j=1

1
j!

dj
xR1,k−j +

k−1

∑
ℓ=0

ηk+1−j

ℓ

∑
j=0

1
j!

dj
xR1,ℓ−j +

k+1

∑
j=2

1
j!

dj
xR1,k+1−j

]

− 2(3 + x)
k

∑
j=2

R1,k+1−jR0,j .

(2.134)

This expression can be put into the form

dxR1,k + F(x)R1,k = Gk(x) , (2.135)
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where

F(x) =
1

1 + x

(
1
2
+

2
(2 + x)(3 + x)

)
= − 2

x + 2
+

1
x + 3

+
3

2(x + 1)
; (2.136)

Gk(x) = −
[

η1

k

∑
j=1

1
j!

dj
xR1,k−j +

k−1

∑
ℓ=0

ηk+1−ℓ

ℓ

∑
j=0

1
j!

dj
xR1,ℓ−j +

k+1

∑
j=2

1
j!

dj
xR1,k+1−j

]

+
2(3 + x)

1 + x

k+1

∑
j=2

R1,k+1−jR0,j ;

= −
k−1

∑
j=0

[
η1

(j + 1)!
dj+1

x R1,k−1−j +
1

(j + 2)!
dj+2

x R1,k−1−j

+ ηk+1−j

j

∑
ℓ=0

1
ℓ!

dℓ
x R1,j−ℓ −

2(3 + x)
1 + x

R1,k−1−jR0,j+2

]
.

(2.137)

For simplicity of notation, the following definition is introduced

R1,k ≡ Yk . (2.138)

The equation for Yk is then

LYk(x) = Gk(x) ;

L ≡ dx + F(x) .
(2.139)

For each k a linear differential equation of first order is obtained. First one determines

the solution to the homogeneous equation

LYhom(x) = 0 . (2.140)

The equation can be integrated, giving

Yhom(x) = Y0(x) =
3(2 + x)2

4(1 + x)3/2(3 + x)
Yhom(0) , (2.141)

where Yhom(0) is the integration constant. Note that the result for Yhom is consistent with

the previous result for R1,0, Eq. (A.53), since G0(x) = 0 (in Eq. (2.137) the convention

∑−1
j=0 = 0 is used). Before proceeding with approximations, Y1(x) = R1,1(x) is calculated
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exactly. The equation for Y1(x) is

LY1(x) = G1(x) , (2.142)

where

G1(x) = −1
2

d2
xR1,0(x) − η1(x)dxR1,0 − η2(x)R1,0(x) +

2(3 + x)
1 + x

R1,0(x)R0,2(x)

= − x5 + 12x4 + 69x3 + 302x2 + 672x + 480
16(x + 1)7/2(x + 2)(x + 3)3 ,

(2.143)

where the expression for R1,0 in Eq. (A.53) was used as well as

R0,2(x) =
x2 + x − 4

(x + 2)3(x + 3)3 , (2.144)

which was determined from the recursion equation Eq. (2.93). For Y1(x) one finds the

following expression:

Y1(x) =Y0(x)
[ (

Y1(0) +
1
4

)
− 1

4

(
8

(x + 2)2 +
4

x + 2
− 27 + x

3(x + 1)(x + 3)
+ 2 log

(
3

x + 1
x + 3

)

)) ]
.

(2.145)

The integration constant Y1(0) may be chosen freely. The solutions for any two different

choices of Y1(0) differ by some multiple of the homogeneous solution Yhom(x), which is

also evident from Eq. (2.145). This is due to the linearity of L and a general feature of all

the Yk(x).

Now the singularity structure of Ψ1 in the Borel plane will be analysed. Ψ1 has been

computed as an approximation by truncating the series at order k̄ + 1:

Ψ1(x, ε) ≈
k̄

∑
k=0

εk Yk(x) . (2.146)

The algorithm for the computation of the coefficients Yk(x) can be found in Appendix

A.4. The Yk(x) are given to order ñ − k in x and satisfy the initial conditions.

Yk(x = 0) =


1, k = 0

0, else
. (2.147)
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This allows one to write down an approximation for the Borel transform B[Ψ1](ξ) (the

x-dependence in our notation is dropped):

B[Ψ̂1](ξ) ≈
k̄−1

∑
k=0

Yk+1

Γ(k + 1)
ξk . (2.148)

To get an approximation for the analytic continuation of this series and get an insight

into the pole structure, the Pade approximant BPN [Ψ1] is computed. The branch cut

singularities of B[Ψ1](ξ) manifest as the condensation of the poles of BPN [Ψ1] into a line.

The computation has been carried out for the parameters x = 1/1000, k̄ = 250, n = 40,

N = 220 with a numerical precision of 200 digits using Mathematica. The pole structure

of the Pade approximant is displayed in Fig. 2.13.

FIGURE 2.13: Singularities of the Borel-Pade approximants in the Borel plane of
BP200[Ψ̂0](ξ) (left) and BP220[Ψ̂1](ξ) (right) for x = 1/1000.

To a very high precision the branch cut singularities for x = 1/1000 are given by

ξ1 ≡ 2 + π i and ξ2 ≡ 2 πi, as well as their complex conjugates ξ̄1, ξ̄2. It is known

that for a resurgent function the singularities are expected to be given by the relative

positions of the exponential weights in the transseries. It is also known that B[Ψ̂0](ξ)

has singularities at ξ = A and ξ = Ā and is expected to have additional singularities

at ξ = 2A, 3A . . . and ξ = 2Ā, 3Ā . . . which are difficult to ’see’ in the Borel-Pade

approximation. Since the sector Ψ1 corresponds to the weight A, poles at the relative

positions ξ̄2 = Ā − A and ξ1 = 2A − A = A are expected , which is exactly what is
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found. As for the other two singularities, they follow from the fact that the expansion of

B[Ψ̂1](ξ) around the origin has only real coefficients and therefore

B[Ψ̂1](ξ) = B[Ψ̂1](ξ̄) , (2.149)

from which it follows that the set of singularities is invariant under complex conjugation.

2.4 Discussion

Transasymptotic approximations for the solutions to both the standard and slowly

varying logistic equation have been obtained. In each case, the results calculated in [3]

using multiple scales asymptotic methods were not only reproduced, but also improved

and extended.

As, a priori, transseries methods allow for the straightforward calculation of higher-order

exponentials, the transseries approximation was able to represent the solution more

accurately than the multiple scales method both during and after the delayed bifurca-

tion, as seen in Figure 2.8; during and after the birfurcation, the initially subdominant

exponentials contribute significantly to the solution, so it should be expected that the

transseries approximation would be particularly accurate compared to other methods in

these regions.

Furthermore, the transseries approach can still provide a useful approximation when

the parameter ε is not particularly small, as the solution can simply be re-scaled to

determine the next asymptotic weight.

The dynamic logistic equation with ε > 0 was considered, producing a cascade of

delayed bifurcations. If ε < 0, causing the bifurcation parameter to decrease rather than

increase, bifurcations appear earlier than the solution stability would suggest, rather

than later [44]. A transseries approach could be used in almost identical fashion to

the present study in order to approximate these accelerated bifurcations; however, that

analysis is beyond the scope of this study.

There are several significant and general advantages to the transseries resummation

approach. The first is that the method which has been described can be applied in

systematic fashion to a wide range of problems, including both discrete and continuous
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systems. Whilst such advantages have already been seen elsewhere, in the context of the

logistic equation it has been instructive to compare this to the multiple scales approach

from [3], which required the careful comparison of asymptotic terms up to several orders.

In order to capture the fast discrete scale, as well as both the inner and outer continuous

scales near the bifurcation, asymptotic matching was performed through three scales.

The transseries approach here was able to reproduce this behaviour by resumming the

series in order to ensure that the transasymptotic approximation contained behaviour en-

coded in the subdominant exponentials; this behaviour contained all of the information

found using asymptotic matching methods. Furthermore, improving approximation

accuracy by computing more terms of a multiple scales expansion requires comparing

the asymptotic behaviour of more terms and checking to determine when the relative

dominance of terms changes, while obtaining a more accurate transseries expression sim-

ply requires the systematic calculation of further series terms in the transseries. While

these calculations can prove challenging, the steps required to obtain the subdominant

exponentials, and the associated solution behaviour, follow the same consistent process

at each stage at which it is applied.

Computing the subdominant exponentials is not valuable simply in that it produces

a more accurate approximation. In fact, a second major advantage of the transseries

method is that the exponential weights have a significant effect on the system behaviour,

and computing just these weights can tell one the form of the solution as parameters

in the problem vary. In this analysis of the standard logistic map, it was shown that

2-, 4-, and 8-periodic behaviour can be determined simply by carefully studying the

subdominant weights. This explains the appearance of higher periodicities in the

solution, and suggests that if this process is continued, it can be used to study further

bifurcations in the period doubling process.

In the subsequent analysis of the period doubling cascade found in the slowly varying

logistic equation, the onset of 2-periodic and 4-periodic behaviour in the solution was

predicted, simply by studying the relative size of the exponential weights associated with

the 2- and 4-periodic contributions. It would be particularly interesting to continue to

investigate how the full period doubling cascade is encoded in the exponential weights

of this system, and whether this can provide (at least theoretically) further insight into

the period doubling route to chaos.
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Transseries methods have been used to study Stokes Phenomenon in a wide range of

continuous problems. Given that multiple scales methods have been used to study

Stokes Phenomenon in discrete problems [58, 53, 57, 54, 55, 56], it is likely that the

transseries approach described here could be used to provide new insight into discrete

variants of Stokes Phenomenon.

Finally the full analysis of the movements of exponential contributions between Riemann

sheets, seen in the dynamic logistic map, also merits further investigation. Examples of

such phenomena have been observed recently in novel features of aeroacoustic flows

[62, 63]. Initial explorations appear to suggest this is commonly found in other physical

and mathematical contexts.

The application of the transasymptotic summation introduced in Chapter 1 method

in this work made it possible to obtain approximations when the dominance of the

exponential terms changes. In Chapter 3, this approach will be applied to deduce

global analytical properties in the context of a non-linear first order ODE and infer the

relationship between the asymptotics of the solution in different regions.



91

Chapter 3

The late to early time behaviour of an

expanding plasma

Large parts of this chapter have been published verbatim in [4]. The research presented

in this chapter is my own. It was developed under the guidance of my supervisor Inês

Aniceto, and in collaboration with Adri Olde Daalhuis. The numerical computation of

the branch point locations presented in Fig. 3.4 and Tab. 3.1 was done by Adri Olde

Daalhuis.

The purpose of this project is to apply exponential asymptotics techniques to a matching

problem in hydrodynamics. The time evolution of an expanding conformally invariant

fluid will be considered and the late-time behaviour of the fluid will be linked to the

behaviour at early times. The expansion is modelled via the so-called pressure anisotropy

f (w), which is given as a function of the timelike variable w. The differential equation

which describes the evolution is

w f (w) f ′(w) + 4 f (w)2 + f (w) (−8 + Aw) + (4 − β − Aw) = 0 , (3.1)

where A and β are constants which will be introduced later.

The reason this problem is both interesting and important from a physics perspective

is its applicability in the modelling of strongly coupled Quark-Gluon-Plasmas (QGPs)

created in high-energy ion collisions. The time-dependent evolution arising from the mi-

croscopic theory of Quantum Chromodynamics (QCD) can be modelled by macroscopic
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hydrodynamics models after a short period of time, even in a regime far-away from

thermodynamic equilibrium [64, 65, 66, 67]. This is somewhat surprising, considering

that hydrodynamics is classically thought of as a framework which is only valid at

thermodynamic equilibrium or at least very close to it. Under the additional symmetry

assumption of boost invariance (Bjorken flow) [68], all the information in our model is

encoded in the time evolution of a single observable - the effective temperature.

The pressure anisotropy satisfies a first order ODE with interesting dynamical properties

such as the existence of a late-time attractor [69]. Mathematically, this attractor manifests

as an exponentially fast convergence of a family of solutions to the (resummed) asymp-

totic and divergent hydrodynamic series. This process is known as hydrodynamisation

(see e.g. [70]).

From a physical perspective, the information stored in the initial state of the system dissi-

pates, and at large times near equilibrium our physical observables no longer depend on

their history up to exponentially small corrections. The perturbative expansion around

infinity in the time variable is called the hydrodynamic mode because it corresponds

to the regime where near-equilibrium viscous hydrodynamics is a valid approxima-

tion. The exponentially decaying corrections can be described by a transseries in which

each exponential comes multiplied with a divergent power series, and in which all

the exponentials are powers of a basis exponential. These contributions are called the

non-hydrodynamic modes.

Unlike many of their convergent counterparts, it is well known that these asymptotic

expansions converge to their expected results quite quickly before eventually diverging

– in fact keeping just a few terms provides a very precise approximation, which can be

extended far beyond the original expansion point, in our case large time (see e.g. [71]).

The work layed out in this chapter consists in using the well-established techniques Borel

resummation, hyperasymptotics and transasymptotics (see e.g. [7, 9, 72]) to retrieve the

exponentially small information at late times (see also [73, 74, 75]) and match it to the

correct initial conditions (the initial value problem) at early times. The techniques will

also be used to interpolate the observable between the two regimes of early- and late-

times. Our approach is generic and can be used to solve any interpolation problem as

long as it can be described with a local asymptotic transseries expansion and a solution

is known at a single point in a region far away from the expansion point. It will also be
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shown how the transasymptotic resummation can be used to deduce global analytical

properties of the solutions using the methods in [9, 72, 76, 77]. In particular, it will

be shown how to calculate the locations of the square-root branch points and to link

asymptotic expansions around different points to each other.

3.1 The hydrodynamic model

The basis for our macroscopic hydrodynamic model is a conformal fluid. The stress

energy tensor of the system is

Tµν = Euµuν + P(E)(gµν + uµuν) + Πµν, (3.2)

where uµ is the relativistic flow velocity of the fluid, E is the energy density,

P(E) = E
3

(3.3)

is the pressure of the perfect fluid part of Tµν and Πµν is the shear-stress tensor repre-

senting the dissipative terms describing the deviation from thermodynamic equilibrium.

The evolution of the system is dictated by the conservation equation

∇µTµν = 0 . (3.4)

A condition for the hydrodynamic frame must be imposed (see e.g. [78]) - here the

Landau frame is chosen, i.e. the shear stress tensor is transverse to the flow as in [30]:

uµΠµν = 0 . (3.5)

To exploit the conformal symmetry in our calculation the so-called Weyl-derivative is

useful. The formalism makes use of the derivative operator Dµ defined through the

connection

Aµ = uλ∇λuµ −
1
3
∇λuλuµ, (3.6)

Following [30], the derivative along the flow is defined as

D ≡ uµDµ, (3.7)
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and

σµν = Dµuν +Dνuµ, ωµ = Dµuν −Dνuµ. (3.8)

According to the Landau-Lifschitz formulation of relativistic viscous thermodynamcs

the stress energy tensor is given by

Πµν = −ησµν . (3.9)

However, Landau-Lifschitz theory is acausal (and the initial value problem is ill-posed)

since signal propagation is unbounded by the speed of light (see [69] and references

therein). The ill-posedness is a consequence of ultraviolet divergences at short distances

where hydrodynamics does not apply, and it is necessary to introduce a prescription to

regulate these divergences. The approach taken here is called Müller-Israel-Stuart (MIS)

causal hydrodynamics [79, 80, 81, 82], where the shear-stress tensor Πµν is regarded as a

dynamical field satisfying a relaxation type differential equation (see [69, 31, 30]). In a

first step, all the terms up to second order the derivatives of Πµν are included as long as

they are allowed by the symmetry, yielding [30]

Πµν =− ησµν + ητΠDσµν + λ1σ<µ
λσν>λ + λ2σ<µωω>λ

+ λ3ω<µ
λω2>λ ,

(3.10)

where the brackets < ... > denote symmetrisation followed by subtraction of the trace,

and τΠ and λi are the second order transport coefficients. If the microscopic theory is

known and one can calculate the transport coefficients from it, the macroscopic fluid

dynamical model can be used to study the hydrodynamisation process. For example, the

transport coefficients of an N = 4 SYM plasma have been obtained using the AdS/CFT

correspondence. If the term which comes multiplied by τΠ in (3.10) is replaced by

τΠDΠµν (up to second-order in D they are the same), one obtains [30]

(τΠD + 1)Πµ =− ησµ +
λ1

η2 Π<µ
λ Πν>λ − λ2

η
Π<µ

λ ων>λ

+ λ3ω<µ
λων>λ .

(3.11)

As an additional symmetry, boost-invariance of the flow will be imposed on the system.

This is called Bjorken flow [68]. In a quark-gluon-plasma created by ion collisions,

the plasma is created between two thin Lorentz contracted sheets of the nuclei. Since
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they move away from each other close to the speed of light, the initial conditions are

approximately boost invariant, and hence Bjorken flow is a good approximation to

describe the evolution. Since the system is homogeneous in the transverse plane to the

collision axis, it can be described using the two Minkowski coordinates z and t. Due to

boost-invariance it is useful to use the coordinate system defined by proper time τ and

rapidity ξ [31]:

t = τ cosh ζ, z = τ sinh ζ ⇔ τ =
√

t2 − z2,

ζ = tanh−1(t/z) .
(3.12)

In the (τ, ξ) coordinate system the conservation equation (3.4) and the relaxation-type

equation for the shear-stress tensor become [30]

τϵ̇ = −4
3

ϵ + ϕ,

τΠϕ̇ =
4η

3τ
− λ1ϕ2

2η2 − 4τΠϕ

3τ
− ϕ,

(3.13)

where the dot denotes the derivate with respect to proper time and

ϕ ≡ −Πy
y , (3.14)

the only independent component of the shear-stress tensor. The transport coefficients

can be expressed in terms of the dimensionless constants CτΠ, Cλ1 and Cη :

τΠ =
CτΠ

T
, λ1 = Cλ1

η

T
, η = Cηs, (3.15)

where T is the effective temperature (note that the system is not at equilibrium) which is

related to E through

E ∼ T4 . (3.16)

in a conformal theory, and s is the entropy density. In this work the Cλ1 is chosen to

vanish.

Cλ1 = 0 , (3.17)
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since this leads to a very interesting mathematical structure. Instead of using the proper

time τ and describe the evolution of the system through the function, the approach in

[30, 31] is followed and the following variables are used 1:

w = Tτ; f =
3τ

2w
dw
dτ

, (3.18)

where f is the pressure anisotropy up to addition of a constant and re-scaling 2. One

obtains

w f (w) f ′(w) + 4 f (w)2 + f (w) (−8 + Aw) + (4 − β − Aw) = 0 , (3.19)

where

A =
3

2CτΠ
, β =

Cη

CτΠ
. (3.20)

Note that (3.19) is the same as (3.1) from the introduction. In this analysis the following

values for A and β are chosen (as in [69]) 3:

A =
3π

2 − log(2)
; β =

1
2(2 − log(2))

. (3.21)

However, note that our analysis is generic and can be carried out in the same way for

any other choice of parameters.

3.2 Solutions of the evolution equation

Consider the solutions of Eq. (3.19). In the solutions plot shown in Fig. 3.1 the real

solutions along the real axis are displayed.

There are two distinct solutions, represented by the red and black curves in Fig. 3.1,

which are finite at the origin. The solution represented by the black curve is called

1Our definition of f (w) in (3.18) differs from the convention in [69] by fours =
3
2 ftheirs. Nonetheless this

normalisation is chosen because it leads to simpler equations.
2The pressure anisotropy A is related to f by A = 8 ( f − 1) [83].
3There are three phenomenological parameters defining the second-order transport coefficients which

are relevant for the MIS dynamics: CτΠ, Cλ1 and Cη . Assuming the microscopic theory is N = 4 SYM,
these parameters have been derived using holography and are given by [84, 85]:

C(SYM)
τΠ =

2 − log 2
2π

; C(SYM)
λ1

=
1

2π
; C(SYM)

η =
1

4π
;

The ODE (3.19) is obtained by setting Cλ1 = 0. The other two phenomenological parameters are chosen as
CτΠ = C(SYM)

τΠ , Cη = C(SYM)
η , leading to (3.21). Note that Eq. (3.19) is only correct in the case Cλ1 = 0.
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FIGURE 3.1: The real graph (w, f (w)) plane. The figure on the right is a zoom-in around
the origin of the figure on the left. The red and blue curves are the only two solutions
with a regular zero. The red curve representing f−(w) and black curve representing

f+(w) are the only two solutions with finite values at the origin. Taken from [4].

f+, and the one represented by the red curve f−. The functions f+ and f− are special

solutions because they are attractors at w = +∞, and f+ (respectively f−) is the attractor

(respectively repellor) at w = −∞. This means that all other solutions, represented

by green curves in Fig. 3.1, become exponentially close to either f+(w) or f−(w) as

w → +∞. An important feature of the solutions is the presence of square root branch

points, whose locations are denoted by ws. It can be shown that Eq. (3.19) admits

solutions of square root type, and admits the following analytic expansion in powers of

(w − ws)1/2:

f (w) =
∞

∑
n=1

hn(ws) (w − ws)
n/2 ,

with h2
1(ws) =

2Aws + 2β − 8
ws

, h2(ws) =
16 − 2Aws

3ws
, · · · .

(3.22)

The locations ws of the branch points depend on the initial conditions imposed on f (w).

The presence of these square root branch points implies that the natural domain of f (w)

is a non-trivial Riemann surface. Note that the summation in (3.22) starts at n = 1, hence,

f (w) is zero at the branch points. It is easy to check that the only possible regular zero

for solutions of (3.19) is at w = (4 − β)/A ≈ 0.5, the point of intersection of red and

blue curve in Fig. 3.1. In the following, the relationship between the real solutions will

be analysed considering their expansions around the origin and around infinity.
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3.2.1 Solutions around the origin

Around w = 0 there are the following convergent expansions:

(a) Two finite solutions at the origin

f±(w) = (1 ±
√

β/2) +O (w) , w → 0, (3.23)

(b) A one-parameter family of solutions diverging at the origin

fC(w) = Cw−4 + 2 +O (w) , w → 0. (3.24)

Consider the solutions fC(w) and their relation to f+(w). In the solutions plot of Fig. 3.1

the green curves above the graph of f+(w) (in black) correspond to fC(w) for C > 0. As

C becomes smaller, the green curves in Fig. 3.1 approach f+(w). In the limit C → 0+,

fC(w) converges pointwise to f+(w) for w ̸= 0. Hence f+(w) can be understood as

the C → 0+ limit of fC(w), in which the divergence at the origin disappears. For

0 > C > Csplit ≈ −0.0874, fC(w) has a square root branch point on the positive real

axis. At C = Csplit this square root singularity splits into two singularities, one above

and one below the real axis. The corresponding function fCsplit(w) is represented by the

blue curve in Fig. 3.1. For C < Csplit, the function fC(w) has no square root branch

points along the real axis and admits a real solution for all w > 0. These solutions are

represented by the green curves in the bottom right corner of Fig. 3.1.

3.2.2 Solutions around infinity

Around w = ∞ there are two distinct expansions, depending on whether the solutions

converge or diverge at infinity.

(a) Solutions of finite limit: the solutions which converge to the hydrodynamic attractor

f+(w) as w → +∞ can be described with the following transseries expansion [69]

F (w, σ) =
∞

∑
n=0

σnwβne−nAwΦ(n)(w). (3.25)
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The transseries F describes a one-parameter family of solutions converging to

the finite value F → 1 as w → +∞. Hence all the green curves in Fig. 3.1 which

approach the black curve f+(w) have a transseries parameter σ assigned to them.

The parameter σ is not determined by the equation and has to be matched with the

early-time behaviour of f (w) around w = 0, where all the solutions are known as

convergent series expansions (3.23) and (3.24). The value of σ corresponding to the

black and blue curves in Fig. 3.1 are approximately σ+ = −0.3493 + 0.0027i and

σblue = −14.4111 + 0.0027i, respectively. The particular form of (3.25) implies that

the amplitudes of all the non-perturbative modes are known once the transseries

parameter σ is given. The Φ(n)(w) is the divergent, asymptotic series of the nth

non-perturbative sector

Φ(n)(w) =
∞

∑
k=0

a(n)k w−k. (3.26)

The coefficients a(n)k above can be determined from recurrence equations obtained

by substituting the ansatz (3.25) into the MIS ODE (3.19) and matching equal

powers of σ.

The convention a(1)0 = 3/2 is used. 4 The perturbative sector Φ(0)(w) = 1 +

β
A w−1 +O

(
w−2) describes the hydrodynamic series and defines the attractor at

w → +∞. Due to the factor e−nAw multiplying the non-hydrodynamic series

Φ(n)(w), n ≥ 1, the convergence of the solutions to the attractor is exponentially

fast.

(b) Growing solutions: the solutions which are linearly growing to leading order and

asymptotically approximate f−(w) as w → +∞ admit the following transseries

expansion 5

Ψ(p4, w) =
3

∑
k=−1

pk w−k +
9

∑
k=4

w−k (pk + qk log w) (3.27)

+
14

∑
k=10

w−k
(

pk + qk log w + rk log2 w
)
+ . . . ,

4With this convention our Stokes constant and transseries-parameter normalisation is the same as in

[69, 31, 30], and choosing a different value for a(1)0 corresponds to a re-scaling of σ.
5Note that the transseries Ψ from Eq. (3.27) is constructed from the basis monomials w−1 and log w,

whereas F is constructed from the basis monomials w−1 and e−Aw. This is novel compared with the
transseries which appeared in the previous Chapters 1 and 2.
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with p−1 = −A/5. The first four coefficients, n = −1, 0, 1, 2, 3, 4, are uniquely

determined by the MIS equation (3.19) alone. The coefficient p4 is not determined

by (3.19), and all other coefficients generically depend non-linearly on the coeffi-

cient p4. Hence the transseries Ψ from (3.27) represents a one-parameter family of

solutions. The red curve in Fig. 3.1, that is f−, corresponds to p4 = −0.3474942558.

In Fig. 3.1 it can be seen that as w → −∞ the regular solutions have a transseries

expansion of the form (3.27).

The current work concerns the solutions of finite limit, also known as attractor solutions,

given by the transseries (3.25). This transseries can be regarded as an expansion with a

two-scale structure, the perturbative variable w−1, as well as an exponential variable

τ ≡ σ wβe−Aw. (3.28)

In general, the transseries (3.25) is formally written such that the outer sum is performed

over powers of τ, with coefficients Φ(n)(w) depending on the variable w−1. In this work

different summation approaches of the asymptotic functions Φ(n)(w) will be presented.

Moreover, an alternative way of summing the transseries (3.25) called transasymptotic

summation will be explored, in which the order of summation is reversed [72], such that

the coefficients in the w−1-expansion are then functions of τ (defined by a convergent

Taylor series in τ). Thus the divergence of the transseries is not caused by the large-order

behaviour of the exponential scales, but instead by the divergent asymptotic expansions

at each order of the non-perturbative exponential. Although the transseries (3.25) is an

expansion around w = +∞, the transasymptotic approach allows one to access different

regimes where τ is no longer small.

3.3 Interpolation between late-times and early-times

In the previous section the the behaviour of the solutions to the MIS equation (3.19) was

described both for early- and late-times. It was found that there exists a one-parameter

family of solutions with a finite limit at late times (w → +∞). These solutions converge

exponentially fast to a hydrodynamic attractor described by a perturbative series. It was

seen that this series could be upgraded to the transseries (3.25) by including decaying
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exponential terms at large times. The transseries parameter σ from (3.25) was identified

as a proxy for the amplitudes of the non-perturbative exponential modes. In the early-

time regime near the origin, another representation of said family of solutions (3.24) was

found, labelled by the leading-order coefficient C of their Laurent expansion around the

origin. Linking the magnitude of the non-perturbative modes of the late-time asymptotic

transseries to the early-time behaviour can be very useful, and has previously been done

by numerical fitting [86, 87]. However, the fitting approach does not exploit the vast

possibilities arising from the rich late time asymptotics of the solutions. In particular, the

difficulty with the fitting method lies in the exponential proximity of any two distinct

solutions at late times, and hence a significant deviation from the desired solution

is weakly penalised at late times, while at early times the function is not accurately

captured by the fit model due to the finite truncation of the transseries (3.25). Fortunately,

given that the solution at late times is divergent asymptotic, there is a range of tools

to do the matching, whose exponential accuracy provides a way to differentiate the

behaviour of the different solutions. The matching between late and early times will be

achieved in three main steps:

(i) The factorial divergent expansion at late times will be summed, using expo-

nentially accurate methods, keeping not only the perturbative series but also

a non-perturbative, exponentially small part (effectively keeping the exponential

accuracy). This sum will then be evaluated at a finite but large enough time w0.

(ii) The solution at the origin will be analytically continued to the same value w0.

(iii) The two approximations that will be found depend on their respective parameters

(C representing early times and σ late times) and their relation can be obtained via

direct comparison.

After having found the transseries parameter for a given solution at early times, the

asymptotic summation methods can be used to find exponentially accurate interpola-

tions in the regime between early-times and late-times.
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3.3.1 Hyperasymptotic summation

Hyperasymptotics is a resummation method which exploits the asymptotic properties of

the transseries to approximate the value of a function by truncated sums [74, 88, 75, 89].

In order to compute an approximation for the solution f (w0) to the MIS ODE (3.19) at

a finite "matching time" w0, terms up to linear order in the parameter σ will be kept

from the late time transseries solution (3.25). This corresponds to calculating level-one

hyperasymptotics, for which terms of the transseries sectors Φ(0)(w) and Φ(1)(w) from

(3.25) have to be computed for the computation). In level-one hyperasymptotics, the

optimal number of terms NHyp at which the series expansions must be truncated is a

function of the resummation point w at which transseries is being resummed [90]

NHyp(w) = 2
⌊∣∣Aw

∣∣⌋ , (3.29)

where ⌊· · ·⌋ is the floor function. Thus the terms of the power series Φ(0)(w) and Φ(1)(w)

have to be computed to sufficiently high order (A maximum of 100 terms were used 6for

all our approximations).

The level-one hyperasymptotic summation is then given by [10] 7

fHyp(w0) = fHyp,0(w0) + σ fHyp,1(w0), (3.30)

where the hyperasymptotic summations for the perturbative sector and the first non-

perturbative sector are given by

fHyp,0(w0) =
NHyp(w0)−1

∑
m=0

a(0)m w−m
0

+ w
1−NHyp(w0)
0

S1

2πi

NHyp(w0)/2−1

∑
m=0

a(1)m F(1)
(

w0;
NHyp(w0) + β − m

−A

)
;

fHyp,1(w0) =e−Aw0 wβ
0

NHyp(w0)/2−1

∑
m=0

a(1)m w−m
0 .

(3.31)

6Using 200 terms allows to use the hyperasymptotic approximation with optimal precision up to w = 7.
7 fHyp,0(w0) is not the same as the level-0 hyperasymptotics or optimal truncation, since the number of

terms at which the perturbative series is truncated must be increased as more non-perturbative sectors are
included in the calculation.
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The function F(1) in (3.31) is called hyperterminant and defined in terms of incomplete

gamma functions via [91]

F(1)
(

w;
M
a

)
= eaw+iπMwM−1 Γ(M)Γ(1 − M, aw). (3.32)

The quantity S1 in (3.31) is the Stokes constant, which may be defined as the change in

the transseries parameter σ of (3.25) upon crossing the Stokes line, which in our case is

the positive real axis. The constant S1 has been calculated in previous work [31, 30] (see

also Appendix B.1) and is given by

S1 ≈ 5.4703 × 10−3 i. (3.33)

This Stokes constant can also be determined using hyperasymptotics, see Appendix

B.1, where the Stokes constant S1 is also given with more precision. Note that contribu-

tions of order O
(
σ2) and above in the transseries (3.25) are not included in level-one

hyperasymptotics. The error in (3.31) is therefore of order e−2|Aw0| [90].

In order to match the late time approximation with the early time solution, the solution

at early times (Eqs. (3.23) and (3.24)) has to be brought to the finite value w0. This is

done by analytical continuation with the numerical Taylor series method. The numerical

approximation obtained for f (w0) is denoted as 8

fac(w0) := numerical analytic continuation of f (w) from the origin, (3.34)

evaluated at the time w0.

By requiring fac(w0) = fHyp(w0), the following approximation is obtained for σ:

σ ≈
fac(w0)− fHyp,0(w0)

fHyp,1(w0)
. (3.35)

By decreasing the step size and increasing the order of the Taylor expansions in the

calculation of f (w0), arbitrary accuracy can be achieved, such that the error in the

approximation (3.35) is determined by limitations of the hyperasymptotic approximation.

Hence the parameter σ in (3.35) is accurate up to an error of order e−|Aw0|.

8Note that fac(w0) depends on which solution is picked around the origin from the set { f+, f−, fC|C ∈
C}.
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Do note that the approximation for f (w0) from the late-time transseries solution can

easily be extended to higher orders in the transseries parameter σ, by computing more

non-hydrodynamic sectors Φ(n)(w) in (3.25). In Fig. 3.2 the results of the early-to-

late-time matching C ↔ σ are plotted for C > 0. Our results are consistent with the

observation in Section 3.2 that as (C, σ) → (0+, σ+ = −0.349261 + 0.00273515i), the

solutions fC(w) converge pointwise to the solution f+(w), which is finite at the origin.

The function σ(C) in Fig. 3.2 is roughly linear (left plot) except for a tiny region around

the origin C = 0, where the convergence towards σ+ is very slow and is best visualised

on a log-linear plot.
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FIGURE 3.2: The real part of the matched late-time transseries parameter σ from (3.25)
as a function of the early-time solution f (w ∼ 0), displayed in a linear plot (left) and a
log-linear plot (right). Note that the range of values on the horizontal axis is different in
each plot. The blue dots represent the matched solution fC(w) from (3.24) for C > 0, and
the red line corresponds to the value Re(σ) when matched to the solution f+(w) from
(3.23).The imaginary part of σ is always given by Im(σ) = Im( S1

2 ). The convergence
σ(C) → σ+ as C → 0 shows the pointwise convergence fC(w) → f+(w). Taken from

[4].

3.3.2 The Borel resummation

Another way of approximating f (w0) is through Borel resummation (see e.g. [7] for a

review). The Borel transform of a series Φ(w) = ∑j≥0 aj w−j is given by9

B [Φ] (ξ) = a0 δ(ξ) +
+∞

∑
j=0

aj+1

j!
ξ j. (3.36)

9As usual with Borel transforms, any finite number of powers wj, j ≥ 0 need to be addressed separately,
see e.g. [7].
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The series in (3.36) is truncated after N0 terms 10 and its Padé approximant BPN0 [Φ],

i.e. The resulting truncated sum is approximated by a rational function BPN0 [Φ] with a

numerator/denominator of order ⌊N0/2⌋.

The Borel-Padé resummation method then consists of taking the inverse Borel transform

of BPN0 [Φ], which is given by the Laplace transform

SN0,θΦ(w) = a0 +
∫ eiθ∞

0
dξ e−wξBPN0 [Φ] (ξ). (3.37)

The resurgence properties of the transseries (3.25) directly translate to the existence

of pole singularities of the Padé approximant BPN0 [Φ] (ξ) in Eq. (3.37) along the pos-

itive real axis – the Stokes line – and these singularities reflect the branch cuts of the

Borel transform (3.36), starting at all ξ = nA, n ∈ N (one for each exponential in the

transseries). Thus SN0,θΦ(w) cannot be resummed along the positive real axis, and the

integration contours need to be chosen such that the angle θ is slightly away from this

axis, either above or below. Although this ambiguity in the choice of integration contour

gives rise to an imaginary contribution for each summed sector SN0,θΦ(n)(w), there is

a natural way of summing the resurgent transseries (3.25) such that the final result is

unambiguous and real for real positive values of w – this summation procedure it the

the so-called median summation [92, 93]. To do a small negative angle θ = −ε < 0 is

picked for the integration (3.37), and require the imaginary value of σ in the following

way (see Appendix B.1 for some more details):

i Im(σ) =
S1

2
. (3.38)

This way an approximation for f (w0) to first order in the transseries parameter σ is

obtaineds 11, given by

fB(w0) ≡ SN0,−εΦ(0)(w0) + σwβ e−Aw0SN0,−εΦ(1)(w0). (3.39)

10Here N0 = 100 was used, which allows one to perform the Borel resummation with optimal accuracy
up to w = 7.

11The transseries (3.25) is used and all the terms of order O
(
σ2) and above are thrown away.
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In analogy to (3.35), using the Borel resummation method results in the following

expression for σ:

σ ≈ fac(w0)− SN0,−εΦ(0)(w0)

wβ e−Aw0 SN0,−εΦ(1)(w0)
. (3.40)

Notice that for both Eq. (3.35) and (3.40) only terms up to linear order in σ were included

in the approximation of f (w0). To obtain more accurate results, higher powers of σ

can be included, which amounts to including additional exponential orders 12. For the

Borel summation method the integrals (3.37) for the higher-order hydrodynamic sectors

Φ(n)(w) would only have to be numerically computed in (3.25), while the generalisation

of the hyperasymptotic summation is a bit less straightforward. It can nonetheless be

done [75, 89, 90, 35]. However, one can obtain the same accuracy if instead of increasing

the number of exponentials/powers of sigma, one would just increase the value of the

matching time w0.

Once the parameter σ has been matched to a given initial condition,13 the transseries

(3.25) can be used to find an approximation of f (w) everywhere, via a summation

technique such as hyerasymptotics and Borel summation described above. The hy-

perasymptotic method does not require computing numerical integrals, but has the

disadvantage of yielding discontinuous approximations to the summed transseries: it

provides a piecewise analytic approximation (which is clear from the left plot of Fig. 3.3).

On the other hand, the Borel summation integrals (3.37) must be computed as numerical

approximations at each evaluation point, but the method has the advantage of giving a

continuous function of w0.

In Fig. 3.3, It can be seen how different resummation methods compare with each

other. In terms of accuracy the hyperasymptotic summation and the Borel resummation

method are equivalent outside of a very small region near the origin, both giving an

exponentially small error of approximately ∼ e−2|Aw| (the order of the first exponential

which was neglected). It can also clearly be seen that the approximations given by each

summation method are still accurate at very early times, even though only included a

single exponential mode has been included – to obtain accurate results at earlier times

12A similar matching was already done in [69] for the solution f+ using Borel resummation with two
exponentials.

13This initial condition was either the value of f+(0), or the value of C for the divergent solutions at the
origin fC(w).
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one would need to include further exponentials and their respective asymptotic expan-

sions from (3.25). Also in Fig. 3.3 one can find results corresponding to a transasymptotic

resummation, which will be discussed in the next Section 3.4.

Let us also briefly mention the optimal truncation method, which consists of truncating

the power series of the perturbative sector before the least term 14

fopt(w) =
Nopt(w)−1

∑
n=0

a(0)n w−n, where Nopt(w) = ⌊|Aw|⌋ . (3.41)

The accuracy of this optimal truncation is approximately ∼ e−|Aw|, in agreement with

the plots in Fig. 3.3.

Now that the interpolation between late and early times has been discussed using

Borel resummation and hyperasymptotics, the next section will be devoted to the

transasymptotic summation method.
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FIGURE 3.3: Left: approximations of f (w) using different resummation methods for
the transseries parameter σ+ = −0.3493 + 0.0027i, corresponding to the function f+(w)
(3.23). The numerical solution is given by the black curve on the left. Right: the
absolute value of the error of the different methods, which has been computed by
comparing the resummations to the numerical solution. The kink in the error plot
of the transasymptotic summation appears due to the limited number of coefficient
functions which have been calculated and is expected to disappear if enough orders

are calculated. Taken from [4].

14The formula for Nopt in (3.41) is a good approximation for the least term.
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3.4 Transasymptotic summation

In Section 3.3 it was seen that approximating the transseries (3.25) by keeping only

the perturbative and the first non-perturbative sectors gives excellent approximations

of exponential accuracy for the function f (w) outside a small region near the origin.

However, one can only truncate the transseries in this way if the exponential factors

are small. Along the negative axis, the exponential monomial τ ∼ e−Aw defined in

(3.28) grows arbitrarily large, and thus one cannot truncate the transseries (3.25) at

any exponential order, since all orders of τ will contribute significantly towards the

sum in that regime. This raises the question of whether the transseries can be used in

regions where the exponential monomial is large enough. This is indeed the case. One

can exploit the fact that the divergent behaviour in the transseries comes only from

large orders of the perturbative variable w−1, whereas the large order behaviour of the

exponential variable τ is convergent. All that needs to be done is change the order of

summation in (3.25):

F (τ, w) = ∑
n≥0

∑
r≥0

τna(n)r w−r = ∑
r≥0

(
∑
n≥0

a(n)r τn

)
w−r ≡ ∑

r≥0
Fr(τ)w−r. (3.42)

The coefficient functions Fr(τ) are analytic at τ = 0 , and it will be seen that it is

possible to systematically calculate them in closed form. This approach is called the

transasymptotic summation [9, 72], and has been shown to be a powerful tool in the

study of non-linear problems [76, 2, 86]. This summation procedure allows us to probe

regimes where |w| → ∞ but the exponentials are no longer small.

The special form of (3.42) allows us to compute the functions Fr(τ) by treating τ and w

as independent variables. Let us start with the first order approximation

F (τ, w) = F0(τ) +O
(

w−1
)

, w → ∞. (3.43)

Then F0 obeys the ODE

−1 + F0(τ)
(
1 − τF′

0(τ)
)
= 0, (3.44)

which is solved by F0(τ) = 1 + W( 3
2 τ) 15, where W stands for the branch W0 of the

15The general solution to (3.44) is F0(τ) = 1 + W(cτ). The integration constant c is found by matching

the transasymptotic expansion to the transseries (3.25), and depends on the choice for a(1)0 . Our choice was

a(1)0 = 3/2.
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Lambert-W function (see Appendix B.5). One can go further and calculate all Fr(τ)

recursively. For r ≥ 1 one finds the following differential equations for Fr:

A
(
τF0(τ)F′

r(τ) +
(
τF′

0(τ)− 1
)

Fr(τ)
)
=(4 − β)δr,1 − 8Fr−1(τ)+

+
9 − r

2

r−1

∑
k=0

Fk(τ)Fr−1−k(τ)+βτ
r−1

∑
k=0

Fk(τ)F′
r−1−k(τ)− Aτ

r−1

∑
k=1

Fk(τ)F′
r−k(τ).

(3.45)

Note that in (3.45) all the derivative terms come multiplied by the variable τ, and that the

variable τ does not appear other than as a multiplier of the derivatives. This motivates

the convenient variable transformation τ → W = W( 3
2 τ). The derivatives transform as

τ
d

dτ
=

W
1 + W

d
dW

. (3.46)

With the transformation (3.46) it is possible to rewrite the original recursive set of ODEs

(3.45) and integrate them exactly. The details of this calculation as well as the method

of fixing the integration constants are given in Appendix (B.3). It turns out that all the

Fr are rational functions in W and can be computed exactly (see also [94, 95]). Let us

now see how the functions Fr(τ) can be used to solve the interpolation problem between

early and late times.

3.4.1 Interpolation with transasymptotics

The objective is to find an approximation for the transseries parameter σ correspond-

ing to a given solution around the origin ((3.24) or (3.23)) using the transasymptotic

summation (3.42). The first step of our approach is the same as in Section 3.3 – using

numerical analytical continuation from the origin to the matching point w = w0 to obtain

the numerical approximation fac(w0) (see (3.34)). Next, an approximation for τ(w0) is

computed, from which the transseries parameter σ can directly be calculated using the

definition of τ(w0), Eq. (3.28). The idea is to solve for the function γ(w) obeying

F (γ(w), w) = ∑
n≥0

Fr (γ(w))w−r = fac(w0) = constant, for w ≫ 1, (3.47)

which will be equal to τ(w0) when evaluated at the point w0, i.e. γ(w0) = τ(w0). The

function γ(w) satisfying (3.47) admits a perturbative, divergent asymptotic expansion
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in w−1:

γ(w) =
+∞

∑
k=0

γk w−k , (3.48)

and determining γ(w) will correspond to finding the coefficients γk. Truncating the

above expansion at its first term γ(w) = γ0 +O
(
w−1), one finds from (3.47) that up to

leading order

1 + W
(

3
2

γ0

)
= fan(w0). (3.49)

Then γ0 = τ(w0) (up to leading order in w−1
0 ), and using the definition of τ(w) (3.28)

one finds

σ(w0) =
(

fac(w0)− 1
)

w−β
0 e fac(w0)−1+Aw0

(
1 +O

(
w−1

0

))
. (3.50)

This result can be easily extended to higher orders in w−1
0 by including higher orders in

the ansatz (3.48) and matching powers of w−1 in (3.47).

The transasymptotic summation (3.42) can also be used to re-sum the transseries by

truncating the series at the term of least magnitude. The difference with respect to

the classical optimal truncation is that coefficients Fr(τ(w)) vary with w. The result

is displayed in Fig. 3.3, where it can be seen that this approach slightly outperforms

optimal truncation. Note that only the coefficient functions Fr(w) up to r = 15 have been

calculated, and so the calculation is no longer optimal after the kink in the logarithmic

error plot of Fig. 3.3. Furthermore, the kink happens at a higher value of w than one

would expect from the resummation point w0 corresponding to 15 terms with classical

optimal truncation given by (3.41).

3.4.2 Analytic results: branch points and global behaviour

Transasymptotics can also be used to describe global properties of the function f (w) from

(3.19), such as zeros, poles and branch points, or to link distinct expansions in different

asymptotic regimes. This is quite remarkable given that the transasymptotic summation

was derived as a local expansion around the point w = +∞.

Notice that in the solutions plot found in Fig. 3.1, the locations ws of the square root

branch points depend on the initial value problem for f (w) (given by f (0) for convergent

solutions at the origin, or by the value of the continuous continuation of w4 f (w) at

w = 0 for the divergent solutions). From the perspective of late-time asymptotics, this
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means that the locations ws are functions of the transseries parameter σ. As already

mentioned, all the coefficient functions Fr(τ) in the transasymptotic summation (3.42)

can be expressed as rational functions of the Lambert-W function W( 3
2 τ), which has a

square-root branch point at τ = − 2
3 e−1. This branch point in the τ-plane translates to

an infinite number of branch points in the w-plane, once one substitutes τ = τ(w) as

in (3.28). Since the Lambert-W function appears in all the coefficient functions in the

transasymptotic summation (3.42), one expects the function f (w) to have an infinite

number of square root branch points as well. The analytic information about the non-

perturbative exponentials encoded in the coefficient functions Fr(τ) can be used to

provide an approximation for the locations ws.

All zeros of f (w) are square root branch point singularities (see the expansions in

Eq. (3.22)) with the exception of a potential regular zero at w = (4 − β)/A ≈ 0.502.

Hence one can solve for the branch points ws by solving the equation

F =
∞

∑
n=0

w−kFk(τ) = 0 (3.51)

for w = ws(σ), where F is the transasymptotic summation in Eq. (3.42). This can be

done by first expanding τ around the branch point of the Lambert-W function W( 3
2 τ),

i.e. τ0 = − 2
3e in some power of w,

ε = wα, (3.52)

τ = τ0 + τ1ε + τ2ε2 +O
(
ε3) . (3.53)

The idea now is to choose the expansion of τ (3.53) in such a way that the sum (3.51)

vanishes for all values of w. In the second step the expression of τ from the expansion

(3.53) is set equal to the original definition of τ, (3.28), and this allows to solve for the

value of w at which the full transasymptotic sum (3.51) has a branch point. The zeroth

order coefficient function F0 can then be expanded in ε in the following way

F0(ε) = a1
√

ε + a2ε +O
(

ε3/2
)

, (3.54)

where a1 =
√

3eτ1. One finds that the leading order in the ε-expansions of the Fk(ε)

behave as
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F1(ε) =−
2
(

β2 + 5β − 2
)

3Aa1
ε−1/2 +O

(
ε0) ;

F2(ε) =−
4
(

β2 + 5β − 2
)2

27A2a3
1

ε−3/2 +O
(

ε−1
)

;

F3(ε) =−
16
(

β2 + 5β − 2
)3

243A3a5
1

ε−5/2 +O
(
ε−2) ;

. . .

Fk(ε) =−
(

3(−2 + 5β + β2)

2Aa2
1

)k

a1
2k

3k−1 Ck−1ε−
2k+1

2 +O
(

ε−2k
)

,

(3.55)

where Ck−1 is the (k − 1)-th Catalan number. From now on it will be assumed that

ε = w−1, corresponding to α = 1 in (3.52). All other choices of α can be excluded

through a consistency analysis. The expression that was found for the Fk(ε) in (3.55)

allows one to sum up the leading order expression of the transasymptotic summation

(3.42), giving

∞

∑
k=0

w−kFk ∼
a1

2

√
9 − 16

3

(
3(−2 + 5β + β2)

2Aa2
1

)
w−1/2 +O

(
w−1

)
. (3.56)

The expression (3.56) must vanish, from which one obtains

a1 = ±2
√

c√
3

. (3.57)

It was already found that a1 =
√

3eτ1. Together with (3.57) this implies

τ1 =
4c
9e

. (3.58)

To find a leading order approximation for the position of the branch points the next step

is to use the definition of τ, (3.28) and solve

τ0 + τ1w−1 = σwβ e−Aw . (3.59)

Now define

y = A w . (3.60)
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Then

τ0 + (τ1 A) y−1 =
σ

Aβ
yβ e−y , (3.61)

and after taking the logarithm:

y − β log y = log
(

σ

τ0 Aβ

)
+ 2πin − log

(
1 +

τ1 A
τ0

y−1
)

, n ∈ Z . (3.62)

One only needs to include terms up to order w−1 since our original approximation (3.59)

is only correct up to that order, and by expanding out the logarithm one obtains

y − β log y = log
(

3σe
2Aβ

)
+ πi(1 + 2n)︸ ︷︷ ︸

≡t(n,σ)

−τ1 A
τ0

y−1 +O
(
y−2) . (3.63)

This equation is can be solved for y up to (and including) order y−1 and t−1, and one

obtains

y = t + β log t +
1
t

(
β2 log t + β2 − 5β − 3

A

)
. (3.64)

Hence one arrives at the following formula for the location of the branch points, ws:

ws(t) ≃ w(approx)
s (t) =

t
A

+
β

A
log t +

1
A t

(
β2 log t + β2 − 5β − 3

A

)
, as t → ∞,

(3.65)

where

t = t(n, σ) = log
(

3σe
2Aβ

)
+ πi(1 + 2n), n ∈ Z. (3.66)

The integer n in (3.66) parameterises the sequence of branch points. Note that (3.65) is

the partial sum of a divergent asymptotic expansion in t, and thus Eq. (3.65) is only a

good approximation for the branch points/zeros of f (w) when |t| is large enough. In

particular, w(approx)(t) becomes more accurate for large values of the discrete parameter

n, because the auxiliary variable t grows as an affine function of n. Since the leading

order approximation w(approx)(t) from Eq. (3.65) grows linearly in t, the branch points

which lie far from the origin are the ones best approximated by w(approx)(t).

Numerically, the zeros of f (w) can be computed by initially guessing the position of the

branch point using (3.65) 16 and then using a contour integral to find an approximation

for the exact location. One starts by choosing a value for the transseries parameter σ

and using the hyperasymptotic approximation Eq. (3.31) to find f (w0) (at e.g. w0 = 10).

16I could also have used Padé approximants for the initial guess.
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FIGURE 3.4: Branch cuts of the f (w) for the case σ = 2
3 . Green dots: numerically

computed branch-points. Blue dots: approximations (3.65) to the locations of the
branch points obtained from the transasymptotic summation of the late time solution
F (w) (3.25) (compare Table 3.1). Red dots: poles for the Padé approximant (about
w = 1

2 +
5
2 i, shown as ⋆) representing the branch cuts of the solution. It can be seen that

the further the singularities are the more accurate the approximations become. Taken
from [4].

Then one analytically continues f (w) from w0 to a point in the vicinity of our prediction

(3.65) using the Taylor series method, w1 = w(approx)
s (t) + ε (e.g. ε = 0.3). Next one

analytically continues again to compute the data on the circle |w − w(approx)
s (t)| = ε.

Using the trapezoidal rule [96] one evaluates the contour integral of w f ′(w)
f (w)

to obtain

the zeros of f (w) 17. The approximate locations obtained with Eq. (3.65) as well as the

numerical results are listed in Table 3.1, and plotted in Fig. 3.4.

approx. (3.65) numerical
n = 0 0.0975 + 0.6040i 0.1147 + 0.5076i
n = 1 0.1555 + 1.416i 0.1580 + 1.384i
n = 2 0.1817 + 2.276i 0.1827 + 2.257i
n = 3 0.1991 + 3.143i 0.1997 + 3.129i
n = 4 0.2122 + 4.012i 0.2125 + 4.001i

TABLE 3.1: Approximations for the locations of the square-root branch points of (3.65)
versus their numerically computed values for σ = 2

3 . Taken from [4].

3.5 Linking the two infinities

There is yet another powerful application of transasymptotics, which is that it can be

used to correctly predict the different asymptotic behaviour of our solutions in separate

regions of the w-plane. Consider the attractor f+ in the solutions plot of Fig. 3.1 (the black

curve). At large, positive w, f+(w) converges to a finite value, while at large, negative w

the same solution grows linearly with w. Therefore there are two different asymptotic

expansions, the transseries (3.25) at large positive w and the linearly growing expansion

17Due to the square root singularity (see (3.65)), the branch point must be encircled twice.
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(3.27) at large negative w (which is also a transseries, but with log w-monomials instead

of exponentials e−Aw, see [18]). This is not surprising given the presence of square root

branch points in the domain of our solutions. But it also raises an interesting question:

can two expansions somehow be related to one another? The answer is yes, the great

power of the transasymptotic approach lies in the possibility of analytically accessing

regions in which the non-perturbative exponentials are no longer small. While the

large, positive w limit corresponds to exponentially small values of τ ∼ e−Aw, the large,

negative w limit is associated with exponentially large values of τ. Thus when one

flips the sign w → −w, the powers of w−1 in the transasymptotic summation (3.42) do

not change size, while the exponential variable τ ∼ e−Aw becomes exponentially large

instead of exponentially small.

3.5.1 Matching the coefficient functions for large exponentials

The goal is to analytically continue across the anti-Stokes line along the positive imagi-

nary axis in the z-plane. It has already been found that there are two different asymptotic

expansions around w = ∞. If one starts off at w = +∞ with the finite-valued solution,

moves across the anti-Stokes line and then to w = −∞, but now along some path in

the second quadrant, then there will be a change in the asymptotic behaviour. This

change corresponds to a switching from the asymptotic expansion of order O
(
z0) to the

growing expansion with leading order O (z). This behaviour is visualised in Fig. 3.5

However, there is only a single expression for the transasymptotic summation, and both

expansions must be encoded in that same transasymptotic series, and hence there must

be a correspondence between the two free parameters σ and p4. The role that σ plays in

the transasymptotic summation is known as an exact expression for τ in terms of σ has

been given. It is also known that all the coefficient functions

Fk(τ) ≡ Gk(F0(τ)) (3.67)

are known functions Gk(F0) of the ’zeroth’ coefficient function

F0(τ) = (1 + W(
3
2

τ)) , (3.68)
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FIGURE 3.5: A schematic illustration of the correspondence between the asymptotic
expansions in two different regions of the w-plane. If one starts off at w = +∞ with the
exponential transseries F (σ, w) and analytically continues across the green line to w =
−∞, one obtains the logarithmic transseries Ψ(p4, w), where both σ and p4 parametrise
the solutions. The red dots represent square root singularities and the dotted red
lines the associated branch cuts. Since there is an infinite tower of singularities whose
imaginary parts become arbitrarily large, it is impossible to circumvent all of them by
choosing a suitable path in the complex plane. The solution Ψ(p4, w) and the parameter
p4 one obtains at w = −∞ from this procedure is ambiguous and dependent upon the

exact path taken (green line).

Hence the problem can be decomposed into two steps, (1) to expand W (and hence

F0) for large z with negative real part (hence large τ), and (2) to find the coefficients

Fk,j in the expansion of Fk in powers of F−1
0 . For convenience, the following notation is

introduced

E ≡ F−1
0 , (3.69)

The function W can be expanded in the following way [97]:

W = L1 − L2 +
∞

∑
k=0

∞

∑
m=1

CkmL−(k+m)
1 Lm

2 , (3.70)

where

L1 = log(τ) ;

L2 = log log(τ) ;

Ckm =
(−1)k+m+1

m!
s(k + m, k + 1) .

(3.71)
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Here, s(k + m, k + 1) denotes a Stirling circle number of the first kind. Remember that τ

has been defined before in (3.28). Using

τ = σ wβ exp(−Aw) ;

c = log (σ) + 2πi n, n ∈ Z ,
(3.72)

one can write down the following expansions for L1 and L2:

L1 = −Aw + β log(w) + c ;

L2 = log(−Aw)−
+∞

∑
n=1

1
n

(
β log(z) + c

Aw

)n

.
(3.73)

Using the above, one finds an expansion for E(w):

E(w) = − 1
A

w−1 − (1 + c + β log(w))

A2 w−2 + . . . . (3.74)

Now the transasymptotic summation is expanded F in the following way:

F = ∑
n≥0

Gn(E)w−n = ∑
n≥0

∑
k≥−k̃

Gn,kE(w)k w−n ; (3.75)

The notation k̃ denotes the following discrete function:

k̃ =


(k + 1) for k ≤ 4

k for k ≥ 5
. (3.76)

The first power k = −k̃ has been found by considering the first few Gk (k ≤ 18) and

expanding in E. One further defines

Zr =
W

1 + W
Fr , (3.77)

The task is now to expand Zk in powers of E and to match those powers to derive

recursive equations for Zk,j, where j denotes the j-th power coefficient in the E-expansion

of Zk(E). Note that just as Gk(E), this expansion also starts with the negative power − j̃,

the re-scaling factor θ by which the two quantities has an expansion which starts with a



118 Chapter 3. The late to early time behaviour of an expanding plasma

constant. It is useful to expand Zr(E) in powers of E in the following way:

Zr(E) = E−r̃
∞

∑
m=0

Zr,m Em = Zr,0E−r̃ + Zr,1E−r̃+1 + . . . ; (3.78)

The differential equation can be brought into the following form (note that Yr and Zr are

functions of different variables):

Er̃+1Z′
r + δr,1

Er̃(4 − β)

A(1 − E)2 +

(
−8Er̃

A(1 − E)

)

+

r−1

∑
k=0

{(
− E

A

)r̃ (
(k − 4)− βE2) Zk Zr−k−1

− g1,k Er̃+2 Zk Zr−k

− β

A
(1 − E) Er̃+2 Zk Z′

r−k−1

+ (1 − E) Er̃+2 g1,k Zk Z′
r−k

}

= 0 ,

(3.79)

where in the expression (3.79) the following notation has been introduced

gℓ,k ≡


0 for k < ℓ

1 for k ≥ ℓ

. (3.80)

The next step is to subsitute the ansatz (3.78) into the recursion equation for Zr, Eq. (3.79)

and match equal powers of E. For r̃ ̸= m one obtains an explicit recursion relation for

coefficients of the E-expansion of Zr(E), Zr,m, which can be found in Appendix B.7. One

still has to fix the coefficients Zr,̃r. These are just the integration constants to the family

of first order ODEs (3.79). The next step is to compute the coefficients for large r for the

first few orders in m. Since the closed-form expressions for Zr(E) for r ≤ 15 have been

computed, these constants can be found by expanding the Zr(E) and reading off the

coefficient Zr,̃r. The coefficients Zr,m for m ≤ 14 and arbitrarily high r can be calculated

using this method.
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3.5.2 Summing the series

The next step is to sum the series using the coefficient in the large w expansion for

Re (w) < 0. Remember that the relationship between Gn and Zn is given by (3.77).

F =
∞

∑
n=0

Gn(E)w−n ;

= ∑
r≥0

∑
m≥0

(1 − E)Zr,mE−r̃+mw−r .
(3.81)

It has already been shown how to use the known asymptotic expansion of the Lambert-W

function to expand E. This can be expressed as

E = E(w−1, ξ) ≡ − 1
Aw

(
1 + w−1η(w−1, ξ)

)
; ξ = − log(w), (3.82)

where η(w−1, ξ) is an analytic function of both w−1 and ξ whose leading order is a

constant. Its Taylor expansion in these variables can be calculated to arbitrary order

using (3.70). Finally one obtains

F =
∞

∑
r=0

∞

∑
m=−1

hr,m(w−1, ξ)w−m , (3.83)

where

hr,m(w−1, ξ) ≡ gα(r),m Zr,m−α(r) (−A)α(r)+r̃−m (1 − E(w−1, ξ))×

×
(

1 + w−1η(w−1, ξ)
)m−α(r)−r̃

, (3.84)

and

α(r) ≡ −1 + Θ(r − 4) . (3.85)

Now one expands further

F =
∞

∑
r=0

∞

∑
m=−1

∞

∑
j=0

hm,r,j(ξ)w−m+j

= ∑
n=−1

w−n

(
n

∑
m=−1

∞

∑
r=0

hm,r,n−m(ξ)

)
≡

∞

∑
n=−1

w−nKn(ξ),

(3.86)
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where hm,r,j(ξ) denotes the j-th coefficient in the Taylor expansion of hm,r(w−1, ξ) in the

variable w−1. By summing up to r = 400, one finds that Kn converges to the coefficients

of the asymptotic expansion Eq. (3.27) for n ≤ 3. For n = 4, the series Kn diverges, which

makes it impossible to calculate p4. The reason for the breakdown of the calculation

of p4 can be interpreted as a natural consequence of the ambiguity of the value of p4

due to the existence of an infinite amount of branch points. Regardless of how large

one chooses the radius for the path of analytic continuation linking w = +∞ to w = ∞,

there will always be branch points and the result must therefore depend on the exact

path taken. [98].

3.6 Discussion

This work has focused on solving the problem of late-time to early-time matching for

arbitrary solutions of the nonlinear ODE (3.19). One finds a one-parameter family of

solutions in two different regions of our domain, both at early and late times. At late

times, the ODE (3.19) admits formal, asymptotic transseries solutions consisting of a

hydrodynamic perturbative sector as well as non-hydrodynamic sectors weighed by

positive integer powers of the non-perturbative exponentials e−Aw (with variable w

representing time). In the early time regime w ∼ 0 there is also a one-parameter family

of divergent solutions which behave asymptotically as ∼ w−4, as well as two finite

solutions which are special limits of the one-parameter family (see solution plots in Fig.

3.1). The exponentially small contributions appearing at late times can be expected to

be the leading contributions at early times. Beyond the MIS case, one expects to find

similar transseries solutions in other hydrodynamic systems which observe a factorially

divergent late time behaviour (see e.g. [99])

The results obtained in the previous sections were based on the well-established re-

summation methods of hyperasymptotics, Borel-Padé summation and transasymp-

totics. Nevertheless, previous work did not exploit their strengths to do the parameter-

matching and relied instead on less accurate procedures such as numerical least square

fits [86, 87]. An analysis of said methods has been carried out, and it has been shown

that they are very effective tools for the parameter-matching. In terms of accuracy,

the hyperasymptotic approach and the Borel resummation perform best. Both give an

exponentially small error ∼ e−2|Aw|.
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The hyperasymptotic approximation has discontinuities since the number of terms

which are included in the series varies with w, but requires no intricate numerical com-

putations other than determining the series coefficients of the perturbative and first

non-perturbative sectors. On the other hand, the Borel resummation is a continuous

function of w. However, the calculation of the Laplace transform (3.37) in going from the

Borel-plane to the complex w-plane requires the numerical computation of an integral.

As a consequence, Borel resummation is more computationally expensive than the

hyperasymptotic summation, especially since said integral must be computed to expo-

nential accuracy e−Aw for the method to perform as well as the level-1 hyperasymptotic

summation.

The summation methods can be made arbitrarily accurate by increasing the number of

non-perturbative modes included in the approximation, as both resummation methods

can be extended to include an arbitrary number of exponentials. But while the extension

of Borel-summation methods to include higher exponentials is straightforward, the

generalisation of hyperasymptotics beyond level-1 quickly becomes impractical.

The transasymptotic summation was originally used very effectively in the analysis

of solutions of non-linear ODEs [72]. While the transasymptotic summation is less

accurate in performing the interpolation, giving an error of ∼ e−|Aw| (as opposed to

e−2|Aw| for the methods mentioned above), it is an extremely useful tool in the study

of the global analytic properties of the solutions. The power of the transasymptotic

approach lies in encoding the behaviour of the non-perturbative exponentials in analytic

closed-form expressions, which provide analytic continuations beyond the validity of

the original transseries expansion. A systematic way of calculating these functions has

been provided and the functions have been used to derive general analytic results such

as analytic approximations to the locations of the square-root branch points as well as a

way of linking distinct asymptotic expansions in two different regions of the w-plane.

The matching procedure which was used is quite general and can be used beyond

relativistic hydrodynamics. In fact, one can apply it to any interpolation problem

between two different regions (e.g. late-time to early-time, strong/weak coupling, large

charge to small charge), where the solutions in one region are described by resurgent,

asymptotic perturbative expansions, and where the behaviour in the other regime is

known analytically (e.g. [100, 101, 86, 102, 103, 104, 105]).
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From a mathematical standpoint, the asymptotic methods introduced in Chapter 1 were

used to obtain the global behaviour of the time-dependent energy density of a strongly

coupled fluid. It was seen that the exponential terms become relevant and how that

translates to a widely different behaviour of the energy density at early times, as well

as the existence of branch points for complex time. This is similar to the bifurcation

phenomenon uncovered in the previous chapter, which was seen to be directly connected

to a change in dominance of the exponential terms in the transseries. This was explicitly

shown by using transasymptotic summation to effectively perform analytic continuation.

The next chapter will to take this idea further, using the same asymptotic methods to

analyse a perturbative expansion of the so-called quasinormal modes of a black hole,

to uncover the non-perturbative ’instanton-like’ phenomena that must be included

in a transseries formulation, and potentially use the same summation techniques to

understand the full non-perturbative picture of these modes.
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Chapter 4

Quasinormal modes and strong

cosmic censorship

The on-going research presented in this chapter is my own. It was developed under the

guidance of my supervisor Inês Aniceto.

General relativity is the best theory of gravity available at the moment. While in the

Newtonian picture gravity is a force which acts on matter proportional to its mass,

general relativity postulates that gravity is essentially a geometric phenomenon. Space

and time are no longer to be thought of as separate from each other, but rather as unified

in one curved four-dimensional spacetime manifold. In this picture matter has the effect

of causing the spacetime to curve, and particles under the influence of gravity naturally

follow geodesics - the natural generalisation of a straight line in flat space - in the curved

geometry. The geometry of the spacetime is uniquely determined by the metric tensor,

which dictates how distances and angles are to be measured locally. The metric tensor

can be calculated using Einstein’s equations, a system of 10 coupled, non-linear PDEs.

These equations admit very interesting solutions, among which are the famous black

holes containing event horizons and space-time singularities.

Some black hole solutions such as the Reissner-Nordstrom-(de Sitter) spacetimes [106]

contain a so-called Cauchy-Horizon within the black hole instead of a spacelike singular-

ity like in the Schwarzschild spacetime. The Cauchy horizon marks the boundary of the

range of validity of the Cauchy problem - the generalisation of the initial value problem

for geometries.. Mathematically one can perform an analytical continuation beyond the
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Cauchy horizon and write down exact solutions containing regions with unphysical

attributes like the existence of timelike singularities [107]. However, these extended re-

gions beyond the Cauchy horizon cannot be obtained by evolving the Einstein equations

from some initial conditions since the Cauchy problem is no longer well-posed beyond

the Cauchy horizon. This means that if an observer is able to cross the Cauchy-Horizon,

the theory cannot predict what will happen after the crossing. If, however, the spacetime

curvature becomes strong enough to destroy any physical observer before they can

cross the Cauchy-Horizon, general relativity is deterministic in the sense that the theory

can predict any event in the future given the precise initial conditions (since the region

beyond the Cauchy horizon would not exist physically and therefore not belong to the

future).

The requirement that one cannot continue the metric solution in a physically meaningful

way beyond the Cauchy horizon is called the Strong Cosmic Censorship conjecture

(SCC) [108, 109, 110, 111, 112]. Some spacetimes such as the Reissner-Nordström-(de

Sitter) solution describing a charged black hole can be analytically continued across the

Cauchy horizon [107]. However, to conclude that a certain spacetime violates the SCC

conjecture, the violation must be generic, that is, it must not depend on a fine-tuning

of the initial data. To check whether a ’candidate spacetime’ for a potential violation

of the SCC conjecture actually does violate it, one must consider perturbations of the

initial data and check whether the solutions for the perturbed data violate the conjecture

generically. In the following, the perturbations will be assumed to be smooth. However,

rough perturbations have also been discussed in the literature [113, 5]. Depending on

what one considers to be a ’physically meaningful’ way of continuation, there are several

versions of the SCC conjecture. In other words, the question is how regular the metric is

required to be at the Cauchy horizon for the solution to be a meaningful description of a

physical spacetime.

Historically different versions of SCC have been discussed, among which are the C0-

version (the metric must not be continuous), the C2-version (the metric must not be

twice continuously differentiable), and the Christodoulou version, where the metric

must not belong to the Sobolev space H1
loc (corresponding to so-called weak solutions of

the Einstein equations, see [112]) for the SCC conjecture to hold. For certain black hole

spacetimes there exists a mathematical criterion of determining the behaviour of smooth

linear perturbations and hence the validity of the SCC which relies on examining the
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strength of decay of the quasinormal mode (QNM) frequencies [114, 115]. Each matter

field can be decomposed into quasinormal modes at late times with complex frequencies,

the real part of which determines the period of the oscillation whereas the complex part

determines the decay rate [116].

Within the event horizon, two effects are competing for the energy of a given mode. The

decay of the mode decreases the energy, while the blueshift effect causes an increase in

the energy density. If the blueshift effect is strong enough to cause an energy blow-up at

the Cauchy horizon despite the decay, the backreaction of the matter field on the metric

destroys the horizon and SCC is preserved. If, on the other hand, the decay of the mode

is strong the energy blow-up does not happen, a physical observer can pass through the

horizon, and the SCC conjecture is violated [114]. It is possible to examine the validity of

the SCC by considering the QNM of a given matter field with the weakest decay rate and

checking whether it surpasses a critical value. Strictly speaking, it would be necessary

to consider a matter model including all the known fields of the Standard Model, evolve

the Cauchy data with the full non-linear Einstein equations and check the regularity

of the resulting metric at the Cauchy horizon. However, here it is assumed that the

SCC conjecture is valid if and only if it is valid for the linearised version of the Einstein

equations, that is, it is assumed that non-linear effects do not matter qualitatively in

what concerns the regularity of the metric. This assumption needs to be verified for each

spacetime of interest. Nonetheless, for the sake of gaining an improved understanding

of the regularity of perturbations in different matter models and the SCC problem in

general, the approach taken here is justified.

The basis of the ongoing work presented in this chapter is [6], where the QNM frequen-

cies of a charged scalar field in a Reissner-Nordström-de Sitter background have been

calculated numerically to study the validity of the SCC conjecture. For this spacetime

massless uncharged scalar perturbations had already been found to violate the SCC

conjecture for certain near-extremal values of the parameters even when the non-linear

backreaction on the spacetime was included [117, 118]. Later, massless pure Einstein-

Maxwell theory (classical electromagnetism coupled to linearised gravity) was studied

[5], and an even worse violation of SCC was found as for certain near-extremal black

holes perturbations can be continued across the Cauchy horizon in an arbitrarily smooth

manner. Both Einstein-Maxwell and massless scalar theory have in common that it is

not possible to form the black hole. In the Kerr-dS case, it was found that both massless
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scalar and linearised gravitational perturbations respect SCC [119]. As opposed to the

RNdS black hole, the Kerr-dS black hole can be formed via gravitational collisions. The

difference between the massless scalar and Einstein-Maxwell perturbations in RNdS

and the massless scalar and linearised gravitational perturbations in Kerr-dS spacetime

with respect to the possibility of forming the black hole motivates studying massless

charged scalar perturbations in RNdS, as in that case the black hole can be formed via

collapse in this case. In [6] it was found that for certain near extremal parameters, SCC

is violated.

The violation of SCC in charged massless scalar theory on an RNdS background is

very interesting from an asymptotics perspective because it is linked to an oscillatory

behaviour of the decay rate of the QNMs with respect to variations of the field charge.

The QNMs are asymptotic in the field charge, and one can hope to perform a similar

analysis as in the previous chapters to check for SCC. For near extremal values of the

spacetime parameters, the asymptotic value of the smallest decay rate of all the QNM

frequencies (the criterion to be considered for SCC) lies just below the critical value,

indicating that SCC is satisfied in the large-charge limit. However, for smaller values of

the field, the non-perturbative sectors contribute in such a way as to oscillate around

the critical value, which means that for certain points in the parameter space SCC is

violated. For a discussion of the physical significance of this result how SCC can be

rescued by allowing rough initial data see [6, 119].

The summation of asymptotic results going beyond the asymptotic regime would

allow to perform an analytic analysis of the previous numerical results in [6], and

provide ways of calculating calculating the QNM frequencies which do not rely on

computationally expensive numerics. This approach could in principle also be applied

to other spacetimes.

The work presented here builds onto the WKB approach of [6], and thus a summary of

their WKB analysis will be presented, so that it can be generalised from the perspective

of resurgence and summation. The results in this chapter are preliminary and part of an

ongoing project.
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4.1 The charged massless scalar field model in RNdS

In this section the mathematical models for the spacetime and the massless scalar

field will be presented and the linear ODE for the quasinormal modes will be derived

following [6]. Consider a system containing a charged, massive scalar field Φ with mass

µ and charge q in an RNdS background spacetime with mass M and charge Q. The

RNdS-action is

S =
1

16πG

∫
d4x

√
−g
(

R − 2Λ − FµνFµν

)
, (4.1)

where Λ = 3/L2 is the cosmological constant, R is the Ricci scalar and F = dA is the

electromagnetic field tensor with a one-form potential A. The solution which leaves the

action S stationary is

gµνdxµdxν =ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2dΩ2

2 ,

where f (r) ≡ 1 − 2M
r

+
Q2

r2 − r2

L2

and dΩ2
2 ≡dθ2 + sin2(θ)dφ2 ;

A =− Q
r

dt .

(4.2)

f (r) has four zeros, out of which three are positive and correspond to the Cauchy

horizon r−, the black hole horizon r+ and the cosmological horizon rc. The Penrose

diagram for the RNdS spacetime is shown in Fig. 4.1

The function f (r) can be factorised as

f (r) = − (r − r−) (r − r+) (r − rc) (r + rc + r− + r+)
r2
(
r− (rc + r+) + r2

c + r+rc + r2
− + r2

+

) . (4.3)

By expanding out this expression and comparing it with the one in Eq. (4.2) one finds that

the black hole the black hole charge is a function of the three horizons, Q = Q(r−, r+, rc).

The extremal charge Qext can then be easily obtained by setting r− = r+, which gives

Qext = rc y+

√
2y+ + 1

3y2
+ + 2y+ + 1

, (4.4)

where yj = rj/rc for j ∈ {−, +, c}. Another important quantity is the surface gravity

κj =
∣∣ f ′(rj)

∣∣/2 at the horizon rj with f (rj) = 0. The function f (r) obeys the following
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FIGURE 4.1: The Penrose diagram of the two physical regions I and I I of the RNdS
spacetime. Each point on the diagram represents a spatial two-sphere in the spacetime.
Curves in the diagram whose tangents form an angle of less than 45 deg with the
vertical axis are timeline, lines parallel to the diagonals in the diagrams are null, and
curves which form an angle of less than 45 deg with the horizontal axis are spacelike.
CHL and CHR together form the Cauchy horizon. H+

C is the cosmological horizon, H+
R

is the black hole event horizon, and BC is the de Sitter-analogue of spatial infinity. The
spacelike hypersurface defined by Σ is an example of a Cauchy surface. Initial data
specified on a Cauchy surface uniquely determines the behaviour of the system in the

union of the regions I and I I. Adapted from [5].

identity:

f (r)−1 =
−1

2κc(r − rc)
+

1
2κ+(r − r+)

− 1
2κ−(r − r−)

+
1

2κneg(r − rneg)
. (4.5)

The surface gravities at r = r+ and r = rc are given by:

κ+ =
1

2rc

(1 − y+) (y+ − y−) (y− + 2y+ + 1)
y2
+

(
y2
− + y+y− + y− + y2

+ + y+ + 1
) ;

κc =
1

2rc

(1 − y−) (1 − y+) (y− + y+ + 2)(
y2
− + y+y− + y− + y2

+ + y+ + 1
) .

(4.6)

The RNdS background will be taken as fixed without taking into account the backreac-

tion of the field Φ on the spacetime. The action of the scalar field is

SΦ =
∫

d4x
√
−g

[
−1

2
DµΦ (DµΦ)∗ − 1

2
µ2Φ Φ∗

]
, (4.7)
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where Dµ ≡ ∇µ − iqAµ. Applying the principle of stationary action, δSΦ = 0, leads to

the equation of motion (
D2 − µ2)Φ = 0 . (4.8)

To obtain the quasinormal modes, one makes the ansatz

Φ(t, r, θ, φ) = eiωt Yℓm(θ, φ) Φ̂(r) , (4.9)

where Yℓm are the spherical harmonics satisfying

∆Ω Yℓm = −ℓ(ℓ+ 1)Yℓm , (4.10)

where

∆Ω f (θ, φ) ≡ 1
sin(θ)

∂θ

(
sin(θ)∂θ f (θ, φ)

)
+

1
sin2(θ)

∂2
φ f (θ, φ) . (4.11)

for a function f defined on the unit-sphere S2. Plugging Eq. (4.9) into Eq. (4.8) leads to

the ODE in the variable r (Eq. (3.3) in [6])

(
r2 f Φ̂′

)′
+

[
r2

f

(
ω − qQ

r

)2

− ℓ(ℓ+ 1)− r2µ2
]

Φ̂ = 0 . (4.12)

in addition to satisfying Eq. (4.12), the quasinormal modes must satisfy boundary condi-

tions at the black hole horizon r+ and the cosmological horizon rc

Φ ∼


outgoing wave, r → rc

ingoing wave, r → r+
. (4.13)

Physically, the boundary conditions can be justified by noting that at the black hole

horizon, all matter must fall into the black hole, while the boundary condition at the

cosmological horizon means that no matter should enter the horizon from outside since

even an inward travelling photon has a monotonically increasing r-coordinate along its

trajetory for r > rc. For the rest of this work, the scalar field will be taken to be massless,

hence µ = 0. For the only quasinormal mode which is relevant with regards to the SCC

conjecture one has ℓ = 0 [6]. In that case Eq. (4.12) becomes

(
r2 f Φ̂′

)′
+

r2

f

(
ω − qQ

r

)2

Φ̂ = 0 . (4.14)
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4.2 Probing the SCC conjecture with QNMs

As already stated, the purpose of this work is to use asymptotic techniques to understand

the numerical results from [6]. The analyis therein relies on the computation of a

’regularity value’

β =
α

κ−
, (4.15)

where α is the so-called spectral gap defined as the minimum decay rate −Im (ω) over

all the QNM frequencies ω. The value β is tied to the regularity of generic linear pertur-

bations of smooth initial data at the Cauchy horizon [5, 115]. In particular, according to

the arguments in [115], the scalar field is an element of the Sobolev space (see e.g. [120]

for an introduction to Sobolev spaces)

H1/2+β
loc (4.16)

at the Cauchy horizon. As was already mentioned in the introduction, there are several

versions of the SCC conjecture depending on the amount of regularity that one imposes

for the possibility of continuing the metric beyond the Cauchy horizon. A detailed

review would be beyond the scope of this thesis and can be found in [121]. The so called

Christodoulou formulation is the most appropriate one according to the current state

of research. It requires that the scalar fields not be elements of the Sobolev space H1+ε
loc

for some small positive ε for SCC to hold. This leads to following requirement for the

regularity value β:

β ≤ 1
2

. (4.17)

If (4.17) is satisfied, then the SCC conjecture holds for smooth linear perturbations of the

initial data. It was shown that for RNdS and a massless charged scalar field there is a

violation of SCC for some parameters (Q, q) in the parameter space. In the limit of an

uncharged scalar field, q = 0, there are three families of modes, called de-Sitter, photon

sphere and near-extremal modes. The families which are important in this context

emerge from the photon-sphere modes when a charge is introduced. We will follow [6]

and refer to them as ’black-hole’ and ’cosmological’ modes. In the the near-extremal

region, the black-hole family merges with the near extremal family in the limit q → ∞

(see Fig. 9 in [6]) and determines the validity of SCC. The non-perturbative ’wiggles’

in the regularity value β around the critical value βcrit = 1/2 as a function of q in the
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near-extremal region were numerically determined in [6]. The authors of [6] found the

following relationship for the relevant black-hole mode (called ω+)

− Im(ω+)

κ−
=

1
2
− r2

c + 2rcr+ − r2
+

(rc − r+)(rc + 3r+)
σ +O(σ2) + O(1/q) + non-perturbative terms

(4.18)

where σ ≡ 1 − r−
r+ represents the deviation from extremality (the Cauchy horizon r−

and the black hole horizonr+ merge) and so σ → 0 in the limit of Q → Qext if Qext

is the extremal black hole charge. Since the factor in front of the term linear in σ is

negative, this means that for any non-extremal value of σ there will be some q̂ such that

for all q > q̂ we have β = inf {−Im(ω)/κ−} < 1/2 and so for all values of Q there exist

(large) charges q for which SCC is respected. However, apart from being exponentially

decaying, the non-perturbative terms are also oscillatory in q and as a consequence one

can always find some neighbourhood of extremality in which β > 1/2 for certain values

of q (the crests of the oscillation) and hence SCC is violated.

4.3 Asymptotic analysis at large charge: set-up

As already mentioned, previous analysis in [6] has shown numeric evidence of a vi-

olation of SCC for certain points in the parameter space. In [6] it was also seen that

from a large charge perspective one could analyse the QNMs asymptotically, and this

was done via a WKB approach. Of course, one would like to take this further and use

asymptotic methods including summations that were used in the previous chapters to

go beyond the large q behaviour and recover the smaller q results from the asymptotics.

To do so one needs to have an in-depth asymptotic analysis of the problem, which will

follow, both at the perturbative level (in this section) and to determine non-perturbative

contributions so one can write a complete solution to the QNMs which one can then sum.

An analysis of the expected non-perturbative contributions can be found in Sections 4.5

and , and a discussion of the ongoing work can be found in Section 4.6.

4.3.1 Fixing the boundary conditions

Here we review the analysis done in [6]. To fix the correct boundary conditions at the

black hole horizon r+ and the cosmological horizon rc, the QNMs will be represented
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as asymptotic WKB expansions at large charge q. These calculations have already been

done in [6]. In order to calculate the perturbative expansion of the QNM frequencies,

one must expand the scalar field of the BH mode around the BH horizon r+. Hence both

r − r+ → 0 and 1/q → 0. This gives rives to a boundary layer problem which will be

analysed from the perspective of multiple scales in Section 4.3.3. It is instructive to carry

out a Frobenius analysis on Eq. (4.12) in order to understand the behaviour near the

horizons. Since the solution of interest is inside the radial interval [r+, rc], it is natural to

work with the variable

z =
r − r+
rc − r+

, (4.19)

and define ψ(z(r)) = Φ̂(r). The ODE Eq. (4.12) (multiplied by r2
c ) becomes

C0(z)ψ(z) + C1(z)ψ′(z) + C2(z)ψ′′(z) = 0 , (4.20)

where the coefficients Cj(z) are

C0(z) = − µ2r2
c −

l(l + 1)
(−y+z + y+ + z) 2

−
(
y2
− + (y+ + 1) y− + y2

+ + y+ + 1
) (

ωrc (y+(z − 1)− z) + qQ
)2

(y+ − 1) 2(z − 1)z (−y+(z − 2) + y− + z + 1) (y+(z − 1) + y− − z)
;

C1(z) =
−y+

(
8z3 − 12z2 + 2z + 1

)
+ y2

−(1 − 2z) + 4z3 − 2z(
y2
− + (y+ + 1) y− + y2

+ + y+ + 1
)
(−y+z + y+ + z) 2

;

+
2y2

+

(
2z3 − 6z2 + 5z − 1

)
− y− (y+ + 1) (2z − 1)(

y2
− + (y+ + 1) y− + y2

+ + y+ + 1
)
(−y+z + y+ + z) 2

;

C2(z) =
(z − 1)z (y+(z − 2)− y− − z − 1) (y+(z − 1) + y− − z)(

y2
− + (y+ + 1) y− + y2

+ + y+ + 1
)
(−y+z + y+ + z) 2

.

(4.21)

4.3.1.1 Black hole horizon r = r+

Since one can always choose the leading order coefficient of our Frobenius series to

unity, w.l.o.g. the Frobenius series around r = r+ is

ψ+(z) = zp (1 + ψ+,1z + ψ+,2z2 + . . .
)

. (4.22)

To leading order, the equation Eq. (4.20) becomes

0 =
1
z

p2(y−−y+)(y−+2y++1)
y2
+

− (y2
−+y+y−+y−+y2

++y++1)2(qQ−ωy+rc)2

(y+−1)2(y+−y−)(y−+2y++1)(
y2
− + y+y− + y− + y2

+ + y+ + 1
) + O(z0) . (4.23)
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Requiring the leading order to vanish fixes the Frobenius exponent p up to a sign. The

two solutions are

p = ± i
y+
(
y2
− + y+y− + y− + y2

+ + y+ + 1
)
(ωy+rc − qQ)

(y+ − 1) (y+ − y−) (y− + 2y+ + 1)
. (4.24)

This can be rewritten using the surface gravity κ+ from (4.6):

p = ± i α+ ;

α+ =
1

2rcκ+

(
rcω − qQ

y+

)
.

(4.25)

4.3.1.2 Cosmological horizon r = rc

One can follow the same procedure at the cosmological horizon, only that now one must

expand around z = 1 corresponding to r = rc :

ψc(z) = (1 − z)p (1 + ψ1,c(1 − z) + ψ2,c(1 − z)2 + . . .
)

. (4.26)

By expanding out the ODE Eq. (4.20) in powers of (1 − z) and requiring the leading

order coefficient to vanish as before, one obtains

p = ± i

(
y2
− + y+y− + y− + y2

+ + y+ + 1
)
(ωrc − qQ)

(y− − 1) (y+ − 1) (y− + y+ + 2)

= ± i αc ;

αc =
1

2rcκc

(
rcω − qQ

)
.

(4.27)

4.3.1.3 Boundary conditions

There are two possible Frobenius exponents at each horizon, they are ±i α+ at r = r+ and

±i αc at r = rc. The boundary conditions determine the correct sign of the leading power

law exponent dictating the behaviour of the quasinormal mode at each horizon. By

reinstating the time dependence of the mode and analysing the behaviour of the phase

as r → r+ and r → rc respectively, one can compare the behaviour of each Frobenius

solution with the desired boundary condition (4.13). It can be shown that the negative

sign must be chosen in p at both r = rc and r = r+ (in Eq. (4.25) and Eq. (4.27)). The next
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step in the large charge analysis will be to consider perturbations around q = ∞ and

analyse the leading order behaviour of the modes.

4.3.2 Perturbative analysis at leading order

In this section a review of the perturbative calculation in [6] is presented. The previous

Frobenius analysis has shown that the field Φ̂(r) is not smooth at r = r+ and r = rc

(otherwise the Frobenius exponent would be a non-zero integer). To perform calculations

it is therefore convenient to re-scale Φ̂(r) in such a way that the solution satisfying the

correct boundary conditions is smooth. The ’small’ variable ε is introduced as the inverse

of ’large’ q‘:

ε ≡ 1
q

. (4.28)

Following closely the treatment in [6], the ansatz

Φ̂(r) =

(
r

r+
− 1
)−i β+(ε)/ε (

1 − r
rc

)−i βc(ε)/ε

e−A(r)/ε ϕ(r, ε) (4.29)

is used for the re-scaling, where the notation αj(ε) = β j(ε)/ε has been introduced to

emphasise that the leading order behaviour of αj(ε) is O
(
ε−1). The re-scaled field ϕ(r, ε)

from (4.29) is expanded in powers of ε:

ϕ(r, ε) = ϕ0(r) + ϕ1(r)ε + ϕ2(r)ε2 + . . . . (4.30)

Here an important point must be noted. Eq. (4.30) is an expansion of the field in the

charge parameter for small ε. Later in the calculation the fields ϕj(r) will be expanded

out in the variable r around the black hole horizon. Hence both ε and r − r+ are small

variables. The question then arises whether the results of the calculation depend on the

order of expansion, i.e. are the results the same if one first expanded the field ϕ(r) in

small ε as in (4.30) as they would be had one started with the expansion in r − r+? The

answer seems to be yes, but there are interesting mathematical subtleties to this problem

which will later be explored in a multiple scales analysis. The leading order of ω(ε) is

O
(
ε−1) and hence one defines

ω(ε) ≡ λ(ε)

ε
, (4.31)
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where λ(ε) admits the series expansion

λ(ε) = λ0 + λ1ε + λ2ε2 + . . . + non-perturbative . (4.32)

In terms of λ the exponents β+ and βc are given by

β+ =
λ − Q

r+
2κ+

;

βc =
λ − Q

rc

2κc
.

(4.33)

By substituting the re-scaling ansatz (4.29) into (4.12) one obtains the equation

0 = C0(r, ε)ϕ(r, ε) + C1(r, ε)∂rϕ(r, ε) + +C2(r, ε)∂2
r ϕ(r, ε) . (4.34)

with some coefficient functions Cj(r, ε). To leading order ε−2, the equation is

0 = ϕ0(r)

[
(Q − λ0r) 2

r2 f (r)
+

1
4

f (r)
{

4A′(r)
(

i (λ0rc − Q)

κc (r − rc) rc
+

i (λ0r+ − Q)

κ+ (r − r+) r+

)
+ 4A′(r)2

− 2 (Q − λ0r+) (Q − λ0rc)

κcκ+ (r − r+) r+ (r − rc) rc
− (Q − λ0rc) 2

κ2
c (r − rc) 2r2

c
− (Q − λ0r+) 2

κ2
+ (r − r+) 2r2

+

}]
ε−2 + O(ε−1)

(4.35)

Assuming that ϕ0(r) ̸= 0, the term between the brackets needs to vanish in order for the

equation to be satisfied to leading order, which can be done by an appropriate choice of

A′(r). The solutions to the quadratic algebraic equation in A′(r) are

A′
sgn(r) = − i

(
− sgn (λ0 (rc + r− + r+) + Q)

2 (rc + r− + r+) (rc + r + r− + r+) κneg
+

(sgn + 1) (λ0rc − Q)

2κc (r − rc) rc
+

sgn (λ0r− − Q)

2κ− (r − r−) r−
+

(1 − sgn) (λ0r+ − Q)

2κ+ (r − r+) r+

)
(4.36)

where
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sgn ∈ {+1,−1};

κneg = | f ′(rneg)|/2;

rneg = −(r+ + r− + rc) .

(4.37)

Integrated, this expression results in the exponential weight

Asgn(r) = − i
(
− sgn log (rc + r + r− + r+) (λ0 (rc + r− + r+) + Q)

2 (rc + r− + r+) κneg

+
(sgn + 1) log (r − rc) (λ0rc − Q)

2κcrc
+

sgn log (r − r−) (λ0r− − Q)

2κ−r−

+
(1 − sgn) log (r − r+) (λ0r+ − Q)

2κ+r+

) (4.38)

The coefficients in front of the logarithmic singularities at r = r+ and r = rc in the A(r)

must vanish. Otherwise, Φ̂(r) would not satisfy the correct boundary conditions (and

not be regular) since they have already been included in the pre-factor of Eq. (4.29).

There are two ways to achieve this

λ
(+)
0 =

Q
r+

, sgn = −1 ;

λ
(c)
0 =

Q
rc

, sgn = 1 .
(4.39)

These choices correspond to two different families of quasinormal modes. In [6] they are

called the black hole family and the cosmological family. For the question of SCC only

the BH family is important with λ0 = λ
(+)
0 . To get λ

(+)
1 one considers the leading order

ε−1 (remember that the terms of order ε−2 vanish after having fixed the exponential

weight A(r)) of Eq. (4.34) and expands in r around r = r+. The resulting expression has

an overall factor of ϕ0(r+). Assuming that ϕ0(r+) does not vanish (remember that any

non-constant leading order behaviour has already been absorbed into the Frobenius

factor) one obtains an equation in λ1 which is solved by

λ
(+)
1 = −i

κ+
2

(4.40)
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Now the equation of order ε−1 can be solved, which is a first order ODE in ϕ0(r). The

solution is

ϕ0(r) = c0 exp
(
−1

2
log(r) − κ+

4κ−
log(r − r−) +

κ+
4κneg

log(r + r+ + r− + rc)

)
,

(4.41)

where c0 is an integration constant. Now that the leading order behaviour in ε of the

relevant BH-QNM has been found exactly by calculating λ0, λ1 and ϕ0(r), the next step

is to go towards higher orders to be able to do an analysis of the asymptotics of the

series λ(ε).

4.3.3 Multiple scales analysis

As already mentioned, the problem of multiple scales arises due to two small variables

in which the QNM solution is expanded:

ε = 1/q , around q = 0 ; (4.42)

x = r − r+, around x = 0 . (4.43)

So far only the case has been considered where the ε expansion is performed before the

x-expansion. To understand why this approach might be problematic, it is necessary

analyse Eq. (4.14) and consider whether there are terms which are singular in either ε or

x.

4.3.3.1 Introducing multiple scales

In terms of ε = 1/q and λ = εω, Eq. (4.12) is given by

ε2
(

f (r)r2Φ̂′(r)
)′

+
r2

f (r)

(
λ − Q

r

)
Φ̂(r) = 0 . (4.44)

If one expands out (4.44) and divide by f (r)r2 one obtains

ε2 Φ̂′′(r) + ε2
(

∂r log( f (r)) +
2
r

)
Φ̂′(r) +

(
λ − Q

r
f (r)

)2

Φ̂(r) = 0 . (4.45)
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One could of course multiply Eq. (4.45) by any power of ε. The reason the form in

Eq. (4.45) is chosen is because often a problem of multiple scales can be solved by a

re-scaling of the dependent variable by a ’small parameter’, in this case ε. The two

derivatives each bring out a factor of ε−1 after the variable transform, which cancels

out the factor ε2. This approach also works for Eq. (4.45) as will be seen. The term

multiplying the first derivative Φ̂′(r) in (4.45) is just a sum of simple poles at each of the

horizons, i.e. the zeros of f (r):

∂r log( f (r)) +
2
r
=

1
r − r+

+
1

r − rc
+

1
r − rm

+
1

r − (−r+ − rc − r−)
; (4.46)

In particular, this means that there is a term with a factor of

ε2

r − r+
(4.47)

multiplying Φ̂′(r) in Eq. (4.45). When one takes the limits ε → 0, r → r+, this factor will

either vanish or blow up depending on which limit is taken first. What is more, the

factor multiplying Φ̂(r) in (4.45) suffers from a similar problem. Consider an expansion

around r = r+ using the dimensionless variable

x =
r

r+ − 1
. (4.48)

For the sake of simplicity one further introduces the following definitions:

g(x) =
f (r+(1 + x))

Qx
; λ̃ =

r+
Q

εω =
r+
Q

λ = λ̃0 + ερ̃; (4.49)

The point of defining g(r) is that its Taylor expansion around r = r+ starts at order

O
(
(r − r+)0) = O (1), whereas

f (r+(1 + x)) = 2κ+r+x +O
(
x2) (4.50)

starts at order O ((r − r+)) = O (x). By writing things in terms of g(x) the singular

behaviour near r = r+, i.e. x = 0 is straightforward to see. The quantity ρ̃ in (4.49) has a

perturbative expansion in ε starting at order ε0 = 1. In terms of the near-BH-horizon
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variable x, our ODE (4.45) can be written as

ε2 Φ̃′′(x) + ε2

1
x
+

1
1 − rc

r+ + x
+

1
1 − r−

r+ + x
+

1

1 − (−r+−rc−r−)
r+ + x

 Φ̃′(x)

+

(
1

g(x)(1 + x)
+

λ̃0 − 1
xg(x)

+ ε
ρ̃

xg(x)

)2

Φ̃(x) = 0 .

(4.51)

The mode of interest is the BH-mode for which

λ̃0 = 1 . (4.52)

For the BH-mode one obtains

ε2Φ̃′′(x) + ε2

1
x
+

1
1 − rc

r+ + x
+

1
1 − r−

r+ + x
+

1

1 − (−r+−rc−r−)
r+ + x

 Φ̃′(x)

+

(
1

g(x)(1 + x)
+ ε

ρ̃

xg(x)

)2

Φ̃(x) = 0 .

(4.53)

Now a multiple scale analysis can be performed. One introduces a boundary-layer

variable

y =
x
δ

, (4.54)

where δ is small. In the limit δ → 0, y varies across the intervall [0,+∞) as we vary x in

the interval [0, rc/r+ − 1). Further one defines

Ψ(y) ≡ Φ̃(δy = x) . (4.55)

The derivative transforms as

∂x = δ−1∂y . (4.56)

In the case of the BH-mode λ̃ = 1, one obtains the equation

ε2δ−2Ψ′′(y) + ε2δ−2y−1Ψ′(y)

+ ε2δ−1

 1
1 − rc

r+ + δy
+

1
1 − r−

r+ + δy
+

1

1 − (−r+−rc−r−)
r+ + δy

Ψ′(y)

+

(
1

g(δy)(1 + δy)
+ εδ−1 ρ̃

yg(δy)

)2

Ψ(y) = 0 .

(4.57)
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Now one can see that the ambiguity in taking the limit can be removed by choosing the

scale δ(ε) = ε, in which case (4.57) becomes

Ψ′′(y) + y−1Ψ′(y) + ε

 1
1 − rc

r+ + εy
+

1
1 − r−

r+ + εy
+

1

1 − (−r+−rc−r−)
r+ + εy

Ψ′(y)

+

(
1

g(εy)(1 + εy)
+

ρ̃

yg(εy)

)2

Ψ(y) = 0.

(4.58)

Note that it is important to choose the BH mode λ̃ = 1 to obtain an equation without

the non-commuting limit problem (4.58). If any other value λ̃0 ̸= 1 had been chosen the

term proportional to (λ̃ − 1) in (4.51) would have prevented the scaling δ(ε) = ε from

being effective.

4.3.3.2 Leading-order equation

Since Eq. (4.58) still depends on the charge parameter ε, the function Ψ(y) is expanded

in ε:

Ψ(y) = ψ0(y) + εψ1(y) +O
(
ε2) ; (4.59)

One obtains the following equation for ψ0:

ψ′′
0 (y) +

1
y

ψ′
0(y) + γ2

(
1 + ρ0y−1

)2
ψ0(y) ; (4.60)

where the following constant has been introduced:

γ ≡ Q
2r+κ+

. (4.61)

In the asymptotic analysis carried out in 4.3.2 the coefficient ρBH
0 in the asymptotic

expansion of the QNM-frequency of the leading BH-mode was calculated. With the

QNM-fequency re-scaling ρ → ρ̃ given in Eq. (4.49), the re-scaled coefficient ρ̃BH
0 of is

given by

ρ̃BH
0 ≡ −i

4γ
. (4.62)
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The equation (4.60) for the BH mode then becomes

ψ′′
0 (y) +

1
y

ψ′
0(y) + γ2

(
1 − i

4γ
y−1
)2

ψ0(y) ; (4.63)

The general solution to the BH mode equation (4.63) has the following form:

ψ0(y) = eiγy
(

C1y−
1
4 + C2y−

1
4 erf ((1 + i)

√
yγ)

)
= eiγy

(
C1y−

1
4

(
1 +O

(
y−1
))

+ C2y
1
4

(
1 +O

(
y−1
)))

.
(4.64)

Eq. 4.64 is a linear combination of two independent solutions, one of which obeys the

correct ingoing boundary condition at the BH horizon y = 0. By comparing Eq. (4.60)

to our previous Frobenius analysis, in particular to Section 4.3.1.3, one finds that the

solution multiplying C1 in Eq. (4.64) has the same Frobenius factor y−1/4 up to order

O
(
ε0) as the Frobenius expansion which satisfies the correct boundary condition, and

so C2 = 0 for the BH-mode. Moreover, the exponential factor eiγy is also in agreement

with the solution found in Section 4.3.2. Hence the multiple scale analysis is consistent

with the asymptotic analysis in Sections 4.3.1 and 4.3.2 for the BH-mode solution. There

is however, one subtlety which is interesting from a mathematical perspective. The

Frobenius analysis in Section 4.3.1 leads to the two Frobenius exponents

p1(ε) = −1
4
+O (ε) ;

p2(ε) = +
1
4
+O (ε) ,

(4.65)

for the BH-mode frquency ω = ωBH. However, if one expands the field ϕ(r, ε) in ε first

as done in Eq. (4.30), and then performs a Frobenius analysis, the Frobenius exponents

degenerate by −1/4, that is, one obtains the two exponents

p1(ε) = −3
4
+O (ε) ;

p2(ε) = −1
4
+O (ε) ,

(4.66)

Note that because p1 in (4.65) is the same as p2 in (4.66), in both cases it is possible

to represent the solution satisfying the physical boundary conditions using one of

the two Frobenius expansions. However, in the second case where the Frobenius

exponents are degenerate as shown in (4.66), the unphysical solution no longer agrees

with the unphysical solution from the original Frobenius expansion. It is not clear to the
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author why this phenomenon happens and what the significance of it is, and further

investigation into the matter is necessary. To conclude, the results from the multiple

scales analysis have been found to be consistent with the results from the asymptotic

analysis in Section 4.3.1 to leading order as long as one only considers the physical

solution satisfying the correct boundary condition. Moreover, it is expected that going

to higher orders in ε will confirm that the two methods, expanding out in ε-first on the

one hand and introducing a boundary layer and performing a multiple scales analysis

on the other, are consistent with each other.

4.4 Asymptotic analysis of the QNMs

In the previous section the QNM wave equation was solved to leading order for the

BH-mode ωBH with angular momentum number ℓ = 0. It was found that there exist

two linearly independent solutions with exponential weights A−(r) and A+(r). The

boundary conditions define a constraint on the solution and fix the leading order

coefficient in the perturbative expansion, ωBH
−1 = Q/r+. Moreover, near the horizons

r+ and rc, only the solution with A−(r) satisfies the boundary condition. Since the

goal is to understand the full non-perturbative picture of the problem, an analysis of

the singularities in the Borel plane of both ω(ε) and the field ψ(r, ε) will be useful. To

carry out such an anlysis it is necessary to obtain many coefficients of the perturbative

expansions of both ω(ε) and ψ(r, ε). In this section, an algorithm will be given which

allows one to compete these coefficients via recursion relations. Further, the Borel plane

of ω(ε) will be analysed, and the results of the computation will be discussed for two

different sets of parameters, once away from extremality Q = Qext, and once for near

extremal parameters.

4.4.1 Perturbative computation of the leading QNM-frequency

In the following section only the leading BH-mode satisfying λ0 = λ+
0 = Q/r+ will

be considered, and the numerical computation of the perturbtive coefficients in [6] is

reproduced.

By expanding the differential equation in powers of ε and matching the different orders,

one obtains a sequence of ODEs which can be solved recursively. The ODE for ϕn(r)



4.4. Asymptotic analysis of the QNMs 143

depends also on the functions ϕj(r) with j < n as well as λk with k ≤ n + 1. The

ε-rescaled QNM-frequency coefficients λk may be computed by expanding the ODE

(4.34) around r = r+ and requiring the 1/(r − r+) term to vanish. The goal is to compute

as many orders as possible in the ε-expansion of λ(ε). For convenience one redefines

λ(ε) in terms of the new quantity ρ(ε)

λ(ε) = ε ω(ε) =
Q
r+

+
κ+
2

ερ(ε), (4.67)

such that the leading order behaviour is

ρ(ε) = −i + ρ1ε + . . . . (4.68)

Moreover, one defines

x = r − r+, (4.69)

and ϕn(x) will be written to denote ϕn(r = r+ + x). The ODEs one obtains are all of the

form

Lϕn(x) = Gn
[
{ϕj, j < n}, {ρk, k ≤ n}

]
(x), (4.70)

where L is a linear, first order derivative operator and the inhomogeneity Gn (also)

includes derivatives of the ϕj. For the leading order, the inhomgeneity vanishes, i.e.

G0(x) = 0. Hence ϕ0 satisfies the homogeneous equation Lϕ0(x) = 0. This allows to

further simplify the equations by re-scaling our function ϕ:

ϕ(x, ε) =ϕ0(x)ψ(x, ε);

ψ(x, ε) =1 + ψ1(x)ε + ψ2(x)ε2 + . . . ;
(4.71)

One is free to choose ψ(x = 0, ε) ≡ Init(ε), i.e. Init(ε) may be any function of ε. To

simplify the computation, ψ(x = 0, ε) = 1 will be chosen for all ε, which means that

ψn(x = 0) = 0 for all n ≥ 1. The LHS of (4.70) becomes (the exact expressions for W(x)

and Z(x) are unimportant)

Lϕn(x) ≡W(x)ϕ′
n(x) + Z(x)ϕn(x)

=ψn(x)

W(x)ϕ′
0(x) + Z(x)ϕ0(x)︸ ︷︷ ︸
=Lϕ0(x)=0

+ W(x)ϕ0(x)ψ′
n(x).

(4.72)
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This leads to the equation (for n ≥ 1):

ψ′
n(x) =

Gn(x)
W(x)ϕ0(x)

. (4.73)

Now one expands (remember that ψn(0) = 0 for n ≥ 1)

ψn(x) =
+∞

∑
j=1

ψn,jxj . (4.74)

By substituting these expansions into (4.70) one obtains the following equations for the

perturbative coefficients ψn,m:

ψn,m =
1
m

{
g1,m−1ρn−1 + g2,m−1

(
n−1

∑
ℓ=0

ρℓρn−1−ℓ

)
+ g3,m−1ρn

+
m−1

∑
j=−1

[
g1,j

n−1

∑
ℓ=1

ρn−1−ℓψℓ,m−1−j + g2,j

n−1

∑
ℓ=1

(
n−1−ℓ

∑
k=0

ρkρn−1−ℓ−k

)
ψℓ,m−1−j

+ g3,j

n−1

∑
ℓ=1

ρn−ℓψℓ,m−1−j + g4,jψn−1,m−1−j

+(m − j)

(
g5,j

n−1

∑
ℓ=1

ρn−1−ℓψℓ,m−j + g6,jψn−1,m−j

)]

+
m−1

∑
j=0

(m − j)(m − j + 1)g0,jψn−1,m−j+1

}
.

(4.75)

In this last expression, g0(x), g1(x) . . . g6(x) are exactly known functions of order O(x−1)

as x → 0, except for g0(x), which is of order O(x0) as x → 0. The expressions gj,k denote

the coefficients of the series expansions of those functions. Note that Gn(x) is such

that in order to compute ψn,j, we must know ψn−1,j+1, . . . ψn−k,j+k, . . . ψ1,n+j−1. With our

choice ψn(0) = 0 for n ≥ 1 the equation for ρn is

ρn =
−i
α0

(
α0δn,0 + (α1ρn−1 − 2iνn−1)(1 − δn,0) + iα2

n−1

∑
j=0

ρjρn−1−j −
n−1

∑
j=0

νjρn−1−j

)
;

νj ≡


ϕ′

0(0)/ϕ0(0) for j = 0,

ψj,1 for j ≥ 1.

(4.76)

Here α0, α1 and α2 denote some constants which only depend on the parameters of our

problem, i.e. r+,rc and Q. Remember that to compute ψn(x), one needs to know ρ0, . . . ρn,
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and to compute ρn, one needs to know ψj,1 for all j < n. Hence one can implement the

algorithm for the computation of the ρn as follows:

i) The goal is to compute ρn for n ≤ N. The algorithm starts with n = 1, since

ρ0 = −i and ψ0(x) = 1 are already known.

ii) Compute ρn using (4.76).

iii) Compute ψn(x) to order N − n in x using (4.73). Set n → n + 1.

iv) Repeat ii) and iii) until obtaining ρN .

The results of the above algorithm for ρn (and hence for the coefficients ωn) have

been cross-checked (visually) with the results given in [6] and have been found to be

consistent. A plot of the asymptotic behaviour of the coefficients ωn is given in Fig.

4.2. The above algorithm for calculating both the field ϕ(r, ε) and ω(ε) as perturbative

expansions in both ε and r will be useful later in an analysis of the non-perturbative

contributions. Remember that in this perturbative apprach the assumption was made

that one can obtain correct results by first expanding in ε and then in x = r − r+. In

what follows a multiple scales analysis is presented and the validity of this assumption

is examined.

FIGURE 4.2: Visualisation of the coefficients of ω(0) for (rc, r+, Q) = (1, 1/2, 2/5) as a
function of the expansion order n. The dotted red line is the same as the one in Fig. 2
from [6], −0.059708(1) + 0.089413(2) n. Our results seem to agree with those in [6]. NB:

Our notation for the coefficients ω
(0)
n ↔ ω

(n)
+ differs from [6].
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4.4.2 Borel-resummation of ω(ε)

The Borel transform of the QNM-frequency ω for the black-hole family will be analysed

(and the ’+’label will be dropped). In the previous section an algorithm was given to

calculate the first N terms of the perturbative expansion (the new index (0) is used to

distinguish it from non-perturbative corrections ω(1)(ε), ω(2)(ε) . . . )

ω(0)(ε) = Q/r+ε−1 +
+∞

∑
n=0

ω
(0)
n εn . (4.77)

This asymptotic series is divergent and hence we must rely on a resummation method

to retrieve information from it. In what follows the analysis will be carried out via the

method of Borel resummation. The minor of of ω(0) is given by

B[ qω(0)](ξ) =
+∞

∑
n=0

ω
(0)
n+1

n!
ξn, as ξ → 0, (4.78)

where the ’inverse hat’ means that the terms of order O
(
ε−1) and O

(
ε0) have been

subtracted. If the non-perturbative contributions are to be captured, it is useful to first

analyse the singularity structure of the analytic continuation of (4.78). As only a finite

number of terms are available, the symmetrical Padé-approximant of 4.78 is used for the

approximation. This has already been introduced in previous chapters and is given here

as a reminder:

BPN

[
qω(0)

]
(ξ) =

NumN/2(ξ)

DenomN/2(ξ)
, (4.79)

where both numerator and denominator are polynomials of order N/2 (or the nearest

integer below N/2 for odd N). The singularities in the Borel-plane show up as zeros

in the denominator of the Borel-Padé approximant, and any logarithmic singularity

will show up as a dense line (not in the technical sense) of poles of the Borel-Padé

approximant.

Parameter values rc = 1, r+ = 1/2, Q = 2/5

The quasinormal mode frequency ω(0) has been computed to order N = 250. The data

agrees well with the results in [6], which can be seen by comparing our plot, Fig. 4.2,

with Fig. 2 from [6]. One finds that the coefficients ω
(0)
k are real for even k and imaginary
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for odd k, from which the following relation follows for the Borel transforms:

(
B
[

qω(0)
]
(−ξ∗)

)∗
= B

[
qω(0)

]
(ξ) . (4.80)

This implies that the set of singularities is symmetric with respect to reflections across

the imaginary axis. On the positive real half-plane, one finds the singularity (see Fig.

4.3)

Aω ≡ 4.09881 − 0.342825 i . (4.81)

This singularity is indicative of a Stokes phenomenon. If the perturbative series ω(0)

is resummed by calculating the Laplace integral of the minor B[ qω(0)](ξ), one expects

non-perturbative contributions to be turned on when moving the angle of resummation

over the singularity:

Discarg(Aω) ω(ε) ≡ Sθ2
qω(0)(ε)− Sθ1

qω(0)(ε)

= δσ e−Aω/ε Sθ1
qω(1)(ε) +O

((
δσe−Aω/ε

)2
)

, (4.82)

where ω(1)(ε) is the asymptotic series of the first non-perturbative sector and δσ is the

change in the transseries parameter σ which is induced by the action of the Stokes

automorphism at the Stokes line. Using numerical integration and choosing

θ1 ≡ arg(Aω) +
π

6
;

θ2 ≡ arg(Aω)−
π

6
,

(4.83)

one finds that the discontinuity obeys the expected non-perturbative behaviour (4.82).

Fig. 4.4 shows both resummations evaluated along the real positive q-line. Figs. 4.5 and

4.6 illustrate that behaviour of the discontinuity as a function of q is consistent with our

expectation from Eq. (4.82).

Near extremal parameter values rc = 1, r+ = 1/3, Q/Qext = 1 − 10−4

Since the violation of SCC only happens at near-extremal parameters, it is instructive to

consider the case of a near-extremal black-hole with

rc = 1; r+ = 1/3; Q/Qext = 1 − 10−4. (4.84)
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FIGURE 4.3: The poles of the Borel-Padé-approximant BPN [ω̂(0)](ξ) for (rc, r+, Q) =
(1, 1/2, 2/5) and N = 250. One can interpret the condensation of poles onto a line for
large N as an indication of a branch-cut singularity, possibly a logarithmic one. The

position of the singularity is A ≡ 4.09881 − 0.342825i.

FIGURE 4.4: The negative imaginary part of the resummations Sθ qω(0)(q = ε−1) for
(rc, r+, Q) = (1, 1/2, 2/5) and two different values of θ2 < arg(A) < θ1 above and
below the Stokes line. The blue line is equivalent to a resummation of qω(0) along the real
axis, whereas the orange line shows the resummation of qω(0) with the non-perturbative

contributions turned-on.

A number of N = 350 coefficients have been computed in the expansion of ω0(ε). Since

the zeros and singularities of the Borel-Padé transform of ω(0)(ε) are again symmetric

w.r.t. reflections across the imaginary axis, only the singularities with positive real part

need to be considered w.l.o.g. Repeating the previous analysis for the near extremal

parameters, one now finds more than only one singularity in the Borel plane of ω(0).

Apart from the singularity closest to the origin,

Aω,0 = 2.86651 − 6.59978 i , (4.85)
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FIGURE 4.5: Blue: The absolute value of the imaginary part of the discontinuity
Discarg(A) ω(q) as a function of charge q for (rc, r+, Q) = (1, 1/2, 2/5), displayed
logarithmically. The spike between q = 3 and q = 4 is due to a change of sign from
the oscillatory behaviour (A has a non-vanishing imaginary part). Dotted red: The

function
∣∣Im

(
Ce−Aq)∣∣, where C ≡ −0.12 + 0.25i.

FIGURE 4.6: The negative imaginary part of the discontinuity Discarg(A) ω(q) for
(rc, r+, Q) = (1, 1/2, 2/5), plotted on a linear scale to illustrate the behaviour near the

zero. Dotted red: The function −Im
(
Ce−Aq), where C ≡ −0.12 + 0.25i.

one also finds singularities at the positions

Aω,ℓ ≡ Aω,0 + ℓC−, ℓ ∈ {−2,−1, 0, 1, 2, 3}; (4.86)

C− ≡ −5.73318. (4.87)

The notation of the constant C− was chosen in this way because it is related to the

ambiguity of the action at r− due to a logarithmic term.
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4.5 Resummation of the scalar field ψ(r, ε)

In what follows the results of the BH-mode computation for the field ψ(r, ε) will be

discussed for two different sets of parameters, first for rc = 1, r+ = 1/2, Q = 2/5

far away from extremality, as well as for the near-extremal case where rc = 1, r+ =

1/3, Q/Qext = 1 − 10−4. Analysing the Borel plane of the perturbative expansion of the

field ψ(r, ε) will turn out to be useful since it hints at a Stokes phenomenon and provides

information on what the full non-perturbative picture of the problem may look like.

Parameter values rc = 1, r+ = 1/2, Q = 2/5

One may ask whether the non-perturbative corrections to the perturbative ε-expansion

of ω are related to the non-perturbative corrections to the perturbative ε-expansion of

the scalar field ψ(x, ε) from Eq. (4.71). To investigate the non-perturbative behaviour

and possible Stokes phenomena, one calculates the ε-expansion for different values of

x = r − r+ and performs a Borel transform in the ε-variable:

B
[

qψ
]
(x, ξ) =

+∞

∑
m=0

ψm+1(x)
m!

ξm, (4.88)

where again the ’inverse hat’ means that the O
(
ε0)-term is dropped. As before with the

minor qω(0), one can now calculate the Padé transform of (4.88) for different values of

x. Remember that originally two distinct exponential weights Asgn(r) were found (see

Eq. (4.38)), each of which corresponds to one of two linearly independent solutions to the

ODE (4.34), one for each choice sgn ∈ {+,−}. The weight Asgn(r) is regular at r = rc

for sgn = (−) and regular at r = r+ for sgn = (+), and the leading order coefficient

of the QNM-frequency, ω
(0)
−1 = λ0, is chosen in such a way as to make A−(r) regular at

r = r+ as well. However, if we consider the possibility of Stokes-phenomena, this is not

the only possibility for all values of r. For the black hole mode and values of r close to rc,

only A−(r) is allowed under the regularity constraint, since A+(r) diverges at r = rc for

the black hole mode. However, both weights, A−(r) and A+(r) are regular at r = r+. If

there is a Stokes line in between, then A+(r) could be turned on at the Stokes line. For a

Stokes phenomena to occur, the solution with the exponential weight A−(r) must get

mapped into a linear combination of the A−(r) and the A+(r)-solution. Since the field
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ψ(r, ε) comes multiplied with a non-perturbative factor

exp
(
−1
ε

A−(r)
)

, (4.89)

The exponential factor that must be turned on for the ψ(r, ε) when crossing a Stokes line

is

exp
(
−1

ε
(A+(r)− A−(r)) +

K
ε

)
, (4.90)

where K is some constant. If one is resumming along the real line, a Stokes phenomenon

at r = r∗ would correspond to the function

Sing(r) = − (A+(r)− A−(r)) + K (4.91)

crossing the real line at r∗, i.e.

Im (Sing(r∗)) = 0. (4.92)

Since the ODE only uniquely determines the derivatives of A1(r) and A2(r), one can

only know Sing(r) up to the constant K from the analysis carried out up so far. The

behaviour of the singularities of the Borel-Padé transform

BPN

[
qψ
]
(x, ξ) (4.93)

can be used to determine the constant K and serves as a consistency check for the

hypothesis that the r-dependence of the singularities is given by (4.91). One finds that for

x = 0, there is one singularity with Re (ξ) > 0, and that singularity corresponds exactly

to the exponential weight which was found for the QNM-frequency Aω ≡ 4.099− 0.343i

(see Eq. (4.81)). For the constant K one finds

K = 0.482 − 10.010 i . (4.94)

As x is increased, the singularity at ξ = Aω splits up into two distinct singularities. One

with the constant location at ξ = Aω, and another one emerging from it which follows

the function Sing(r), just as expected (see Fig. 4.7 ). Because the derivative of Sing(r) is

pure imaginary for real r, this second moving singularity crosses the real line, and this
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happens at

x⋆ =0.015795;

r⋆ =0.515795.
(4.95)

When the crossing happens a Stokes phenomenon is expected to take place since the

singularity moves to the other side of the real integration path in the Borel resummation.

FIGURE 4.7: Singularities of the Borel-Padé transform BPN

[
qψ
]
(x, ξ) for N = 82 for

different values of x in increasing order from I-IV. The chosen parameters are rc = 1,
r+ = 1/2, Q = 2/5. The green dot is located at Aω = 4.099 − 0.343i, whereas the red
dot represents the analytic prediction of the moving singularity at Sing(r = r+ + x).
The choice of smaller N than in the previous analysis of ω(ε) is necessary due to a

trade-off between the orders in the x-expansion and the orders in the ε-expansion.

Near extremal parameter values rc = 1, r+ = 1/3, Q/Qext = 1 − 10−4

By considering the Borel-Padé transform of ψ one finds an emergence of moving singu-

larities from those in Eq. (4.85), which can be expressed as

Singℓ(r) ≡ A+(r)− A−(r) + K + ℓC− ;

ℓ ∈ {−4,−3,−2,−1, 0, 1, 2, 3}.
(4.96)
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As before, the constant K is chosen such that Singℓ(r = r+) = Singω,0. One obtains

K = −0.717905 − 70.134 i . (4.97)
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FIGURE 4.8: The difference of the two actions A− (regular at r+ and rc) and A+ (regular
only at r+) for the black hole family for near-extremal parameters r+ = 1/3, rc = 1,
Q/Qext − 1 = 10−4 near the black hole horizon (left) and on a wider range from

r ∈ [0, 1]. The singularity in the first picture is located at r = r−.

It is possible to understand the exact positions of the new actions by considering the

properties of the functions A−(r) and A+(r). For the BH-mode one has λ0 = Q/r+ in

Eq. (4.38), the ’singularity function’ Singk(r) has three logarithmic singularities at the

positions r = r−, r+, rneg, where

rneg = − (r+ + rc + r−) . (4.98)

Hence the monodromy of Singk(r) is non-trivial. Each time one ’walks’ in a circle around

one of the singularities r∗, ∗ ∈ {(−), (+), neg} (i.e. along a 2π-loop in the complex

plane), the function Singk(r) changes by a constant,

Singk(r∗ + δ) 7→ Singk(r∗ + δ e2πi) = Singk(r∗ + δ) + C∗. (4.99)

The constants C∗ are

Cneg =
−2πQ(r+ − rneg)

r+rnegκneg
[= 7.16883] ;

C− =
2πQ(r+ − r−)

r+r−κ−
[= 5.73318] ;

Cc =
2πQ(rc − r+)

r+rcκc
[= 12.9020] ,

(4.100)
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where the values in the values in the brackets are obtained by evaluating the above

expressions at the chosen near-extremal parameters. In principle, it would be consistent

with our analysis so far if all three translation constants from (4.100) would define a

grid of singularities in the Borel-plane which could be parameterised by three integers.

However, as it turns out one only finds the singularities defined by the C−-translations,

namely (4.96). The singularities of the Borel-Padé transform of ψ are plotted in Fig.

4.9. One can see the Padé singularities accumulating around the positions of the Borel

singularities of ω. The further away the singularity lies from the origin, the fewer Padé

singularities are present around the Borel singularities. In Fig. 4.9 only four singularities

are visible, but it is expected that more singularities would appear if one were to increase

the order of the Padé approximation.

FIGURE 4.9: Singularities of Borel-Padé transform of ω(0)(ε) for N = 280 and r+ = 1/3,
rc = 1, Q/Qext = 1 − 10−4. The red dots show the singularities which are expected

from Eq. (4.86).

4.5.1 Stokes phenomenon

The implications of the previous analysis for the behaviour of the QNM wave function

ψ(r, ε) at the Stokes transition will now be discussed. The following observations and

conclusions form part of ongoing research and may change as new findings emerge.
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While the exact form of the non-perturbative contributions to the QNM wave function

ψ(r, ε) is still unknown, one can deduce which kinds of corrections are possible from the

structure of the Borel singularities and the knowledge of the boundary conditions. It

was found that without taking into account the boundary conditions, two r-dependent

exponential weights A+(r) and A−(r) are allowed, each one corresponding to one of

two linearly independent Frobenius expansions. At each of the two horizons only one of

the two linearly independent is allowed under the constraint imposed by the boundary

conditions. This leads to an interesting problem when considering Stokes transitions.

One could expect that if at a certain position r near the Stokes line only one of the two

solutions (corresponding to one the two exponential weights A+(r) or A−(r)) is present,

the other solution will be turned on upon crossing the Stokes line, as is often the case

in problems involving WKB expansions. However, since at each of the two horizons r+

and rc only one of the solutions is allowed by the boundary conditions, two explanations

are possible:

1. There are several Stokes lines present, and the solution which does not obey the

correct boundary conditions is turned off again before reaching the next horizon.

2. The non-perturbative exponentials which are turned on at a Stokes transition

are independent of r. Hence the asymptotic expansion is merely re-scaled by an

r-independent factor.

The problem with option 1 is that the singularities Singℓ(r) in the Borel plane only cross

the real line once, which seems to exclude the possibility of the existence of more than

one Stokes transition between r = r+ and r = rc. This observation seems to takes us in

the direction of option 2.

To understand this issue better, consider the following re-scaling of the scalar field Φ̂

from (4.12):

Φ̂(r) ≡
(

r
r+

− 1
)−iβ+(ε)/ε (

1 − r
rc

)−iβc(ε)/ε

Ψ(r, ε) (4.101)

Note that in the field redefinition (4.101), the leading order r-dependent exponential

behaviour ∼ e−A(r)/ε is not part of the re-scaling and is therefore part of the field Ψ.

With the re-scaling (4.101), the boundary conditions imply that Ψ(r, ε) be regular at both

horizons r+ and rc.
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The two linearly independent solutions for Ψ (disregarding the boundary conditions)

behave asymptotically in ε as

Ψ(±)(r, ε) ≃ e−A±(r)/ε × ψ(±)(r, ε)
perturbative in ε

, (4.102)

where A± are given in (4.38) by choosing sgn = ±. The functions ψ(±) are perturbative

divergent WKB expansions in ε, but both linearly independent solutions do not need

to be regular in r at the horizons. In fact, one and only one of the ψ±(r, ε) is a regular

function of r at both horizons, as can be seen from the Frobenius analysis, as we shall

see next. In Section 4.3.1 it was found that the leading-order exponents in the Frobenius

expansion around any of the two horizons rj, where j ∈ {+, c}, are of the form

±i αj(ε) = ±i β j(ε)/ε. (4.103)

The function β j(ε) admits a perturbative expansion (starting at order ε0 or higher)

around ε = 0. If one considers as a variable the distance from an horizon rj, x = r − rj,

then the solution Φ̂(r) can be expanded in the following way around x = 0 (r = rj):

Φ̂(rj + x) = x−iαj f−(x) + x+iαj f+(x); (4.104)

where f−(x) and f+(x) are regular expansions in x and hence the two terms in (4.104)

are linearly independent. The re-scaling in (4.102) corresponds to factoring out x−iα in

(4.104):

Φ̂(rj + x) = x−iαj

(
f−(x)
regular

+ x+2iαj f+(x)
not regular

)
︸ ︷︷ ︸

∝Ψ(rj+x)

; (4.105)

Since α does not vanish generically, x−2iα is generally not regular at x = 0. The linearly

independent solutions Ψ(±)(r, ε) in (4.102) thus correspond to the terms inside the

bracket (4.105). Since factoring out the non-perturbative exponential as done in (4.102)

can at most cancel the leading order ε−1-term in the exponent α(ε), at least one of the

two functions ψ(±) in (4.102) is not regular in the variable r at the horizon rj. Therefore

one and only one of the two functions ψ(±)(r, ε) is regular in r at any horizon.

The equation of motion (4.12) is linear and homogeneous and does not involve any

derivatives in ε. Hence one can re-scale any solution Ψ(r, ε) with an arbitrary function
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of ε and the resulting function will also be a solution. As a consequence the weight

functions A±(r) are a priori only defined up to an additive constant. However, function

re-scalings affect both linearly independent solutions in the same way, and so the

difference of the weight functions

A+(r)− A−(r) (4.106)

should have no ambiguity. Consequently, after factoring out A−(r), the remaining

non-perturbative weight is given by the difference (4.106) and is unambiguous. Due to

the boundary conditions one requires the field Ψ(r, ε) to be regular at r+ and rc. For each

of the four horizons rj (also including the negative horizon r = rneg = −(r+ + r− + rc))

there is a logarithmic term ∼ log
(
r − rj

)
in Asgn(r) (see (4.38)), and there are two ways

of cancelling each of the singularities at r+ and rc: either by choice of λ0 (defining the

mode family), or by choice of the sign sgn ∈ {+,−}, that is choosing one of the linearly

independent solutions.

Now consider the black hole family, which means choosing

λ0 = λ
(+)
0 =

Q
r+

. (4.107)

In Section 4.3 as well as in [6] it was assumed that the only allowed weight function

Asgn ∈ {A−, A+} must be regular at both horizons r+ and rc. For the black hole family

this is the case with A−(r). If all that mattered in the analysis was the regularity of the

exponential prefactor

e−Asgn(r)/ε , (4.108)

then it would be possible that for the BH-mode, both actions A−(r) and A+(r) would

be turned on near the BH horizon r = r+, since both are regular at that point. Moreover,

after crossing the Stokes line the solution with A+(r) could be turned off (or, equivalently,

one would start only with the A−(r) solution near the cosmological horizon r = rc

coming from the right and the A+(r) could be turned on by a Stokes crossing from right

to left). However, each of the two solutions defined by a prefactor (4.108) corresponds to

exactly one Frobenius expansion. Moreover, only one of the Frobenius expansions can

be regular after having factored out the leading order term in the Frobenius expansion

which satisfies the boundary conditions. It follows that if the other solution is turned

on by the Stokes line, it must be turned off again before reaching the next horizon. But

since A−(r)− A+(r) only crosses the real line once with increasing r, there cannot be
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more Stokes transitions where this turning-off could take place. This seems to indicate

that we need to consider option 2 above, and that the Stokes automorphism leads to a

re-scaling of ψ(r, ε) by a factor which includes non-perturbative exponentials in ε, but is

constant in r.

4.6 Discussion

In the previous chapters, it was found that both the QNM wave function ψ(r, ε) and

the QNM-frequency ω(ε) have singularities in the Borel plane. It was also found that

the positions of these singularities are closely related to each other. In particular, the

Borel singularities of the QNM-frequency ω, denoted by Aω,ℓ, are also present in the

Borel plane of the QNM wave function ψ(r, ε), together with another set of r-dependent

singularities Singℓ(r) emerging from the singularities Aω,ℓ. The singularities Singℓ(r)

move upward as the radial variable r is increased and cross the real axis at a certain

point. This behaviour hints at the existence of a Stokes phenomenon and the turning-on

of non-perturbative exponentials. The objective of this project is to understand the full

non-perturbative picture of the problem. The following three research questions lie at

the main focus of the ongoing work on this project.

1. The Borel singularities Aω,ℓ have been calculated numerically by computing the

positions of the Padé singularities in the Borel plane. While the real part Re (Aω,ℓ)

has also been determined in closed form, it is still unclear how to obtain exact

expressions for the imaginary part Im (Aω,ℓ).

2. For the BH-mode which determines the validity of the SCC conjecture, a multiple-

scale analysis has been carried out by introducing a boundary layer around the

black hole horizon r = r+. It is possible that a similar multiple scales analysis

around the cosmological horizon r = rc may yield new insights about analytical

properties of the problem such as the exact positions of the Borel singularities Aω,ℓ,

or about the full non-perturbative picture of the problem.

3. The structure of the moving Borel singularities Singℓ(r) in the Borel plane of the

QNM wave function ψ(r, ε) provides evidence for the existence of a Stokes phe-

nomenon. Further analysis of the ODE is necessary to gain a better understanding
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of the non-perturbative contributions which are turned on at the Stokes line. In

particular, it is unclear whether the Stokes phenomenon involves a turning on of

a linearly independent solution, or whether the non-perturbative exponentials

which arise at the Stokes transition are constants in the radial variable r.

Answering the above research questions will allow one to use the asymptotic techniques

of Borel resummation and Hyperasymptotics to calculate the QNM frequency of the

leading BH-mode ωBH(ε) as a function of the charge parameter ε = 1/q with exponential

accuracy. In particular, if one manages to calculate the first non-perturbative correction

in ωBH(ε), it would be possible to obtain the non-perturbative ’wiggles’ around the

critical regularity value β = 1/2 to high accuracy with very little computational power,

and thus extend the results in [6, 122]. Furthermore, the approach which was developed

in this work can also be applied to similar problems in which QNMs are calculated

using WKB expansions.
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Outlook

In each of the three projects presented in this thesis, the asymptotic techniques described

in Chapter 1 have been essential to unravel the global analytic behaviour of observables

from the original local asymptotic analysis. In Chapters 2 and 4 Borel techniques have

been used to thoroughly analyse the asymptotic properties of the respective perturbative

observables, and to find a complete non-perturbative solution in the form of a formal

transseries. This is a crucial step in the general goal of understanding some global

analytic properties of these observables, which can then be obtained by extremely

accurate summation methods.

The non-perturbative structure of the observable studied in Chapter 3 was previously

known [123], but an analysis of its analytic properties, based on exponentially accu-

rate summations was non-existent. These novel results were presented in Chapter 3

, where a thorough comparison of different asymptotic methods of summation, and

their respective strengths and weaknesses can also be found. In Chapters 2 and 3 it

was shown explicitly that the transasymptotic summation is a very powerful method to

analytically access the non-perturbative domain and to deduce global properties of the

solution. In particular, the transasymptotic summation can be used to connect different

asymptotic regimes by analytically continuing a function of interest from a region where

the non-perturbative exponentials are small to regions in which they are very large. The

method also enables one to determine poles, zeros or branch points on the complex

plane. This approach is generic and has recently been successfully applied to locate the

complex singularities of Burger’s equation [124]. For the ongoing project discussed in

Chapter 4, one of the next steps is to apply the transasymptotics approach to find the

critical values of the scalar field charge. To do this a general understanding of the the

non-perturbative corrections is needed and is currently underway.
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The work in this thesis showed that the non-perturbative methods built on resurgence

are highly effective in describing intricate mathematical phenomena in a variety of

mathematical problems. The most important results which have been developed in this

thesis can be summarised as follows. Chapter 2 provides a completely novel understand-

ing of the bifurcations arising in discrete non-linear systems in terms of the behaviour

of non-perturbative exponentials in a transseries expansion. In addition to providing

quantitative approximations to the solutions using transasymptotic summation, analytic

expressions allow for a qualitative understanding of the ’canard’ bifurcations in terms

of the change in dominance of different exponential scales. A similar analysis can be

performed to analyse changes in period dominance for other discrete/finite difference

equations such as string equations coming matrix models e.g. [125, 126].

In Chapter 3, a systematic way of linking the known transseries expansion at late times

to the early time behaviour is developed in the context of relativistic hydrodynamics.

The method relies on known Borel techniques and will likely be of great use in many hy-

drodynamics problems where a late-time attractor is present e.g. [127, 128]. Furthermore,

the method is generic and not tied to how the transseries expansion of an observable

is obtained, which makes the findings in Chapter 3 highly applicable to a wide range

of problems in physics, see e.g. [95]. In fact, in this Chapter the transasymptotic sum-

mation has been used to deduce analytic global properties of the observable such as

the location of square-root branch point singularities, and a thorough understanding of

the relationship between the asymptotic expansions in different regions of the complex

plane has been obtained.

As previously mentioned, summation techniques such as transasymptotic summation

will be crucial to the analytic understanding of the critical points of quasi-normal modes

in the context of strong cosmic censorship. This work is on-going and is presented in

Chapter 4. Here an extensive analysis of the expected non-perturbative corrections to

the least suppressed quasi-normal mode was carried out, and preliminary summations

have been analysed.

To summarise, the great potential which lies in the asymptotic summation techniques

described made it possible to gain a fundamental understanding of the mathematical

mechanism behind the bifurcations leading to deterministic chaos in non-linear systems,

link the early-time behaviour to the late-time behaviour in an expanding relativistic
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strongly-coupled fluid, as well as understand non-perturbative effects arising in the

calculation of quasinormal modes in the context of the Strong Cosmic Censorship

conjecture. The results obtained in each of the three projects are also highly applicable

to problems in different physical contexts. Non-perturbative effects in quasinormal

modes arise in many spacetime and matter models. Thus the methodology developed in

Chapter 4 may also be used to compute quasinormal mode frequencies in cases where

the expansion parameter is different from the scalar field charge, e.g like in the WKB

analysis of [129]. The matching method which was developed in Chapter 3 can be

applied to much more general fluid models. In principle it can be applied in many

situations in which a hydrodynamics model is used to model the macroscopic evolution

of a system which is microscopically described by some quantum field theory. This

is the case with N = 4 SYM strongly coupled fluids [127, 128], whose macroscopic

evolution is very difficult to obtain without using the AdS/CFT correspondence to

calculate phenomenological parameters such as the shear viscosity, and then solving

the phenomenological evolution equation. Another example of physical observables

in which the methods used in this thesis can be extremely useful are in integrable field

theories [130, 131]. In some of these problems, partial transseries results already exist,

and applying summation techniques could lead to promising new insights.

Based on a three-month internship on the topic of quantum machine learning several

techniques have been studied in the context of image processing and classification, and

another future direction of work is to understand how take advantage of the asymptotic

toolbox in the study of certain non-linear properties of machine learning models based

on neural networks.
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Appendix A

Logistic equation

A.1 Explicit transseries terms

In (2.31), the transseries for R(τ0, ε) is written in terms of a base approximation R0(ε), a

sum of odd terms in τ0, denoted Ωo,k, and a sum of even terms in τ0, denoted Ωe,k. One

may further simplify this by writing R(τ0, ε; σ0) = R(ε) + S(τ0, ε), where

S(τ0, ε) =
√

ε
∞

∑
k=0

εkΩo,k(τ0) + ε
∞

∑
k=0

εkΩe,k(τ0). (A.1)

Note that τ0(x + ε) = −(1 + ε)τ0(x). Consequently,

S(τ0(x + ε), ε) = S(−(1 + ε)τ0(x), ε). (A.2)

Applying (A.1) and (A.2) to the logistic equation (2.16) gives

S(−(1 + ε)τ0, ε) = −(1 + ε)S(τ0, ε)− (3 + ε)S(τ0, ε)2. (A.3)

Expanding the left-hand side of this expression as a Taylor series in ε gives

S(−(1 + ε)τ0, ε) =
∞

∑
j=0

(−τ0ε)j

j!
R(j)(−τ0)

= −
√

ε
∞

∑
m=0

εm
m

∑
k=0

τk
0

k!
Ω(k)

o,m−k(τ0) + ε
∞

∑
m=1

εn
m−1

∑
k=0

τk
0

k!
Ω(k)

e,n−1−k(τ0), (A.4)
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where the fact that Ωo,k and Ωe,k are odd and even in τ0 respectively was used. The

remaining expansions in (A.3) may be obtained by substitution of (A.1) into (A.3). It is

straightforward to show that

R(τ0, ε)2 =3
∞

∑
m=1

εm
m−1

∑
k=0

Ωo,k(τ0)Ωo,m−1−k(τ0) (A.5)

+
√

ε
∞

∑
m=1

εm
m−1

∑
k=0

Ωo,k(τ0)Ωe,m−1−k(τ0) +
∞

∑
m=2

εm
m−2

∑
k=0

Ωe,k(τ0)Ωe,m−2−k(τ0).

(A.6)

These expansions may now be used to equate powers of ε and obtain the expressions

given in (2.42).

A.2 Initial Condition for 4-Periodic Equation

In order to calculate the initial condition for the 4-periodic problem, first recall that

R̂(x, ε) was derived in order to satisfy the initial condition for small ϵ. The 4-periodic

solution arises for ε > −2+
√

6, or η > 0. Hence, one determines the initial condition by

perturbing around the leading-order behaviour of R̂(x, ε), which is initially 2-periodic

for the parameter regime under consideration. One then determines σ1 by matching

with the initial condition in the limit that η → 0.

One first obtains the stable 2-periodic behaviour of R(x, ε) from (2.12), letting x = 0 in

order to describe the initial state. This expression may be written in terms of η, to allow

a small η expansion in this limit. This gives

R̂(0, ε) =
4 + ε +

√
ε(4 + ε)

2(3 + ε)

∼1
5

(
2 −

√
3 +

√
2 +

√
3
)
+

η

50

(
3
√

2 − 16
√

3 − 7
√

6 + 12
)

+
3η2

250

(
−47

√
2 + 84

√
3 + 18

√
6 − 38

)
+O(η3). (A.7)
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Setting x = 0, letting σ1 = σ1,0 + ησ1,1 + . . ., and expanding S in powers of η gives

S(0, ε) ∼ησ1,0 (A.8)

+ η2
(
− 5

12 (14 − 7
√

2 − 4
√

3 + 4
√

6)σ3
1,0 + (3

√
3 −

√
6 + 3

2

√
2 − 1)σ2

1,1 + σ1,1

)
+O(η3)

To determine the appropriate initial condition, η = 0 is set, which gives

R(0, ε) =
1
5

(
2 −

√
3 +

√
2 +

√
3
)

. (A.9)

By setting R(0, ε) = R̂(0, ε) + S(0, ε), and matching powers of η, one obtains

σ1 =− 1
50

(
3
√

2 − 16
√

3 − 7
√

6 + 12
)
+

η

500

(
297

√
2 − 709

√
3 − 189

√
6 + 399

)
+O(η2), (A.10)

This is sufficient information to approximate the solution using the transseries behaviour,

although it is straightforward to continue this process to obtain higher corrections for σ1.

A.3 Proof that a multi-parameter transseries is not required

Here it will be explained why a single parameter transseries is sufficient even though the

dynamical logistic equation admits several different exponential weights parametrised

by a constant γ and and integer p:

Aγ(x) ≡ γ − 1 − (1 + x) (log(1 + x)− 1)− iπ(2p + 1)x . (A.11)

They all satisfy

τ(x + ε)

τ(x)
= exp

[
−
(

Aγ(x + ε)− Aγ(x)
ε

)]
= exp

[
−
(

A0(x + ε)− A0(x)
ε

)]
.

(A.12)

This implies that the ratio τ(x + ε)/τ(x) is the same for all possible weights. Now

consider the following transasymptotic summation of a two-parameter transseries in
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the variables τ1 and τ2 corresponding to the parameters σ1 and σ2.

R(τ1, τ2, x, ε) = ∑
n,m≥0

τm
1 τn

2 Φn,m(x, ε) . (A.13)

One can substitute this ansatz (A.13) into the dynamical logistic equation (2.90), and

obtain equations for the Φm,n by matching all the terms with given powers of σ1 and

σ2. As a consequence of (A.12), the functions Φm,n(x, ε) satisfy the resulting difference

equations if one sets

Φm,n(x, ε) ≡
(

m + n
m

)
Rm+n(x, ε) , (A.14)

where the functions Rk are the transseries-sectors of the one-parameter transseries (2.92)

satisfying Eq. (A.44). One may now write

R(τ1, τ2, x, ε) = ∑
n,m≥0

τm
1 τn

2

(
m + n

m

)
Rn+m(x, ε) =

+∞

∑
n=0

(τ1 + τ2)
nRn(x, ε)

=
+∞

∑
k=0

εk Ωk(τ1 + τ2, x),

(A.15)

where the functions Ωk are the same as in (A.18). In fact this argument can be generalised

to any number of transseries parameters {τm} as long as the ratio τm(x + ε)/τm(x) does

not depend on m. Eq. (A.15). This implies that if for n distinct transasymptotic variables

τm one may always define a new variable

τ ≡ τ1 + τ2 . . . + τn , (A.16)

such that the transasymptotic summation effectively only depends on a single variable

τ. As a consequence, the treatment of the dynamical logistic equation using a one-

parameter transseries is justified.

A.3.1 Derivation of equations for Ω0(y) and Ω1(y)

In this section the transasymptotic approach to solving the DLE (2.90) is taken. Instead of

expanding in powers of the parameter σ, that is, in non-perturbative sectors, one instead

changes the order of summation by grouping together all the exponentials multiplying

the same power of ϵ. Note that the whole expansion is performed over two indices

(m, n) corresponding to σmϵn. The whole summation can be thought of as a summation
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over all the points in the grid N0 ×N0. The approach that was taken before corresponds

to summing over all the points along the direction (0, 1), whereas now one will first sum

over all the points along the direction (1, 0). It is useful to perform a change of variables:

σ 7→ τ ≡ σ e−A(x)/ϵ ϵ ;

x 7→ x ;

ϵ 7→ ϵ .

(A.17)

The transseries then takes the form

R(τ, x, ϵ) =
+∞

∑
k=0

ϵk
+∞

∑
j=0

τ j Rj,k(x) ≡
+∞

∑
k=0

ϵk Ωk(τ, x) . (A.18)

The variable τ behaves in the following way under translations x 7→ x + ϵ while keeping

σ constant:

τ(x + ϵ) = e−(A(x+ϵ)−A(x))/ϵ τ(x) . (A.19)

One also has

τ′(x) = −A′(x)
ϵ

τ(x) . (A.20)

This is a very useful property. It implies that the translation operator x 7→ x + ϵ can be

rewritten as

[x 7→ x + ϵ] = exp
(

ϵ
d

dx

)
= exp

(
−A′(x)τ(x)∂τ

∣∣
x + ϵ ∂x

∣∣
τ

)
. (A.21)

The ansatz Eq. (A.18) will be used to solve the difference equation

R(x + ϵ, ϵ) = (3 + x) R(x, ϵ) (1 − R(x, ϵ)) (A.22)

First, the left hand side needs to be computed:

R(τ(x + ϵ), x + ϵ, ϵ) =
+∞

∑
n=0

ϵn Ωn(τ(x + ϵ), x + ϵ) . (A.23)

Ωn(τ(x + ϵ), x + ϵ) must be expanded in ϵ. To simplify notation, whenever the argu-

ments are not written explicitly, this will mean ’evaluation without shift in the argument’,
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so τ will stand for τ(x).

Ωn(τ(x + ϵ), x + ϵ) = exp
(

ϵ
d

dx

)
Ωn(τ(x), x) , (A.24)

where (see Eq. (A.21))

ϵ
d

dx
= −A′(x)τ ∂τ

∣∣
x + ϵ ∂x

∣∣
τ

. (A.25)

Now a change of coordinates from (x, τ) to (y, x) will be performed, given by

x

τ

 7→

x

y

 =

 x

− x
A′(x) log τ

 . (A.26)

In these coordinates, one can write (from now on, ∂x means ∂x
∣∣
y and ∂y ≡ ∂y

∣∣
x)

ϵ
d

dx
= A + ϵB ; A ≡ x ∂y; B ≡ x g(x, y) ∂y + ∂x ;

g(x, y) ≡ y
x

(
1 − x

A′′(x)
A′(x)

)
.

(A.27)

Now exp (A + ϵB) has to be expanded in powers of ϵ in order solve the problem

perturbatively. In a first step, all the terms up to linear order in ϵ are considered. The

following lemma will be needed:

Lemma A.1 (Binomial expansion). Let A and B be linear operators on a vector space V, i.e.

A, B ∈ L(V, V). If the commutator of A and B is of the form

[A, B] = α A ,

where α ∈ L(V, V) with [α, A] = 0. Then

(A + ϵ B)n = An + ϵ An−1
(

n B − n(n − 1)
2

α

)
+O(ϵ2) .

Proof:

The binomial expansion (A + ϵB)n is computed to order ε under the assumptions
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[A, B] = αA and [α, A] = 0:

(A + ϵ B)n = An + ϵ
(

BAn−1 + ABAn−2 + . . . + An−1B
)

= An + ϵ
n

∑
k=1

Ak−1BAn−k .
(A.28)

In order to further simplify this, consider (for some positive integers k and ℓ)

AkBAℓ = Ak[B, A]Aℓ−1 + Ak+1BAℓ−1

= Ak+ℓ(−α) + Ak+1BAℓ−1

= Ak+ℓ(−α) + Ak+ℓ(−α) + Ak+2BAℓ−2

= . . . = −ℓ α Ak+ℓ + Ak+ℓB

= Ak+ℓ (B − ℓ α) ,

(A.29)

where the condition [α, A] = 0 has been used by commuting the operator α through the

A. If this is applied to Eq. (A.28), one can simplify the expression further:

(A + ϵ B)n = An + ϵ
n

∑
k=1

An−1(B − (n − k) α
)
+ O(ϵ2)

= An + ϵ

[
An−1B n −

(
n−1

∑
k−0

k

)
α A

]
+O(ϵ2)

= An + ϵ

[
n B − n(n − 1)

2
α

]
An−1 +O(ϵ2) ,

(A.30)

which completes the proof.

Now one can compute the exponential

exp (A + ϵ B) =
+∞

∑
n=0

1
n!

(A + ϵ B)n

=
+∞

∑
n=0

(
An + ϵ nAn−1B − ϵ

2
α n(n − 1)An−1

)
+ O(ϵ2)

= exp(A) + ϵ

(
+∞

∑
n=1

An−1

(n − 1)!

)
B − ϵ

2
α

(
+∞

∑
n=2

1
(n − 2)!

An−2

)
A

+ O(ϵ2)

= exp(A)
(

1 + ϵ
[

B − α

2
A
])

+ O(ϵ2) .

(A.31)
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So far, this result holds for all A and B which satisfy the requirements of Lemma A.1.

Now it will be shown that the A and B which was defined in Eq. (A.27) satisfy those

requirements. One has

[A, B] = [x ∂y, g ∂y + ∂x] = [x ∂y, g ∂y] + [x ∂y, ∂x] = (∂yg) x ∂y − ∂y

=
(
(∂yg)x − 1

)
∂y =

(
g
y
− 1

x

)
x ∂y ≡ α A .

(A.32)

where α is given by

α(x) =

(
g
y
− 1

x

)
= −A′′(x)

A′(x)
. (A.33)

Note that α(x) only depends on x and not on y, hence it commutes with x ∂y and

so [α, A] = 0 is satisfied. In the following the notation f̃ will be used to denote the

representation of some function f in the (x, y)-coordinate system:

f (τ(x, y), x) = f̃ (y, x) . (A.34)

When one uses (x, y)-coordinates, the operator exp(A) = exp
(
x ∂y

)
just shifts the y-

coordinate of whatever expression it acts upon by x, so y 7→ y + x. One finds

(
1 + ϵ

[
B − α

2
A
])

f̃ = f̃ +
(

g ∂y f̃ + ∂x f̃
)
− 1

2

(
x
y

g − 1
)

∂y f̃

= f̃ +

(
g +

1
2
− x

2y
g
)

f̃ (1,0) + f̃ (0,1) .
(A.35)

And so for the whole expansion one obtain

exp (A + ϵ B) f̃ (y, x) = f̃ (y + x, x) + ϵ

[
f̃ (0,1)(y + x, x) +

+

(
g(x, y + x)

(
1 − x

2(y + x)

)
+

1
2

)
f̃ (1,0)(y + x, x)

]
+ O(ϵ2) .

(A.36)

Define the coefficients On,j as

Ωn(τ(x + ϵ), x) ≡ On,0 + ϵ On,1 + ϵ2 On,2 + . . . . (A.37)
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It follows from the above calculation that the first two are given by

On,0 = Ω̃n(y + x, x) ;

On,1 =

(
g(x, y + x)

(
1 − x

2(y + x)

)
+

1
2

)
Ω̃(1,0)

n (y + x, x) + Ω̃(0,1)
n (y + x, x) .

(A.38)

Now expand the original series

+∞

∑
n=0

ϵn Ωn(τ(x + ϵ), x + ϵ) = Ω0(τ(x + ϵ), x + ϵ)

+ Ω1(τ(x + ϵ), x + ϵ) +O(ϵ2)

=O0,0 + ϵ (O0,1 + O1,0) + O(ϵ2) .

(A.39)

Dropping the tilde in the notation, the zeroth-order equation is

Ω0(y + x, x) = (3 + x)Ω0(y, x) (1 − Ω0(y, x)) . (A.40)

Notice that the equation for f0 is just the static logistic equation. Hence the results for f0

can be used. The equation for f1 is

Ω1(y + x) = C(y, x)Ω1(y, x) + D(y + x, x) ; (A.41)

C(y, x) = (3 + x)
(
1 − 2Ω0(y, x)

)
;

D(y + x, x) = −
[

g(x, y + x)
(

1 − x
2(y + x)

)
+

1
2

]
Ω(1,0)

0 (y + x, x)

− Ω(0,1)
0 (y + x, x) .

(A.42)

A.3.2 Equations for Rn,0, Rn,1, Rn,2

One first calculates

exp
[
−
(

A(x + ε)− A(x)
ε

)]
=

= exp
{
+1
ε

[
iπε + (1 + x) log

(
1 +

ε

1 + x

)
+ ε log (1 + x + ε)− ε

]}
= (−1)(1 + x + ε) exp

[
1 + x

ε
log
(

1 +
ε

1 + x

)
− 1
]

= (−1)(1 + x) e−1
(

1 + δ(x, ε)

)1+1/δ(x,ε)

︸ ︷︷ ︸
≡ η(x, ε)

; δ(x, ε) ≡ ε

1 + x
.

(A.43)
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Note that for fixed x and ε → 0, one has δ → 0 and η → 1. Also note that η(x, ε) is

analytic for x, ε ≥ 0. Then one obtains

(−1)n(1 + x)nη(x, ε)nΦn(x + ε, ε)

= (3 + x)

[
Φn(x, ε) (1 − 2Φ0(x, ε)) −

n−1

∑
ℓ=1

Φℓ(x, ε)Φn−ℓ(x, ε)

]
; n ≥ 1 ;

(A.44)

η(x, ε) = e−1
(

1 +
ε

1 + x

)1+ 1+x
ε

= exp
[(

1 +
1 + x

ε

)
log
(

1 +
ε

1 + x

)
− 1
]

= exp
[(

1 +
1

δ(x, ε)

)
log (1 + δ(x, ε))− 1

]
.

(A.45)

Now the coefficients Rn,k in the expansions of the Φn will be calculated. To do this, all

the terms of the same order in ε are matched after expanding all the terms Eq. (A.44) in ε.

Doing this order by order leads to a (countably infinite) family of differential equations

EQ(n, k) for the coefficients Rn,k, where n stands for the sector Φn and k for the order

of εk which is being matched. To derive the equations up to order ε2 the following

expansion is needed:

η(x, ε)n = 1 +
n

2(1 + x)
ε − n(3n − 4)

24(1 + x)2 ε2 + O(ε3) . (A.46)

For n ≥ 2 and order ε0 one has

[
(−1)n(1 + x)n + (1 + x)

]
Rn,0(x) = −(3 + x)

n−1

∑
k=1

Rk,0(x)Rn−k,0(x); n ≥ 0 . (A.47)

For n ≥ 2 and order ε1 one obtains[
(−1)n(1 + x)n + (1 + x)

]
Rn,1 =

(−1)n+1(1 + x)n∂xRn,0 +

[
2

(2 + x)(3 + x)
+

n
2
(−1)n+1(1 + x)n−1

]
Rn,0

− 2(3 + x)
n−1

∑
k=1

Rk,0Rn−k,0 .

(A.48)
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And at order ε2 the equation is

(−1)(1 + x)n
[

n(3n − 4)
24(1 + x)2 Rn,0 +

n
2(1 + x)

(Rn,1 + ∂xRn,0)

+

(
Rn,2 + ∂xRn,1 +

1
2

∂2
xRn,0

) ]
= (3 + x)

[
− 2Rn,0R0,2 − 2Rn,1R0,1 + Rn,2 (1 − 2R0,0)

−
n−1

∑
k=1

(
2Rk,0Rn−k,2 + Rk,1Rn−k,1

)]
.

(A.49)

Note that for n = 1 the leading order equation corresponding to ε0 is trivially satisfied,

which means that R1,0(x) is unconstrained by Eq. (A.47). The equation EQ(1, 1) is

(1 + x)∂xR1,0 =
1
2
(−1 + 4(3 + x)R0,1) R1,0

= −
(

1
2
+

2
x + 2

+
2

x + 3

)
R1,0 ;

(A.50)

d log R1,0 =

[
−3

2
1

1 + x
+

2
2 + x

− 1
3 + x

]
dx , (A.51)

where Eq. (2.115) was used to find

R0,1 = − 1
(x + 2)(x + 3)2 . (A.52)

If the integration constant is fixed by requiring R1,0(x = 0) = 1, one arrives at the

expression

R1,0 =
3
4

(2 + x)2

(3 + x)(1 + x)3/2 . (A.53)

A.4 Algorithm for the approximate computation of the Yk = R1,k

using Taylor expansions

One could in principle determine all the Yk(x) exactly. However, this is computationally

expensive and hence a different method is needed. Instead of trying to obtain an exact

solution, an approximation scheme is used in which all the expressions in Eq. (2.139) are

Taylor-expanded

F(x) =
+∞

∑
s=0

Fsxs ; Gk(x) =
+∞

∑
s=0

Gk,sxs ; Yk(x) =
+∞

∑
s=0

Yk,sxs . (A.54)
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By substituting these expressions into Eq. (2.139) one obtains

+∞

∑
s=0

[
(s + 1)Yk,s+1 +

s

∑
ℓ=0

(Yk,ℓFs−ℓ) − Gk,s

]
xs = 0 . (A.55)

W.l.o.g. one can set Yk,0 = 0. Since the xs are linearly independent, this results in

(s + 1)Yk,s+1 +
s

∑
l=1

(Yk,l Fs−l)− Gk,s = 0 , s ≥ 0 . (A.56)

Now an algorithm can be specified to calculate the Yk(x) for k ≤ k̄ to order n in x. Define

n + k̄ = ñ.

(i) Compute the functions R0,j(x) to order ñ + 2 − j in x for j ≤ k̄ + 1.

(ii) Compute the functions F(x) and
{

ηk(x) | k ≤ k̄ + 1
}

as well as Y0(x) (initial step)

to order ñ in x.d

(iii) Given Yj(x) to order ñ − j in x for all j ≤ k − 1, compute Gk(x) to order ñ − (k + 1)

in x using Eq. (2.137).

(iv) Compute Taylor coefficients Yk,s for s ≤ ñ − k using the recursion equation

Eq. (A.56).

(v) Repeat the last two steps until reaching Yk̄, which will be given at order n = ñ − k̄

in x

The choice of ñ in the algorithm must yet be justified. The difficulty is to calculate the

right number of Taylor coefficients in each step. Note that each derivative ’kills off’ one

order of precision. That is, if f (x) is given as a Taylor expansion to order n, then f ′(x)

is an expansion to order n − 1 and so on. To see what this means for the calculation,

the functions R0,j(x) need to be computed, since they appear in the formula for Gk(x).

Assume R0,0 is computed to order n0, then it follows from the recursion relation Eq. (2.93)

that R0,j can be computed to order n0 − j. For general k, the following expressions are
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part of the formula for Gk(x):

∂k
xY0, ∂k−1

x Y1, . . . ∂xYk−1

Y0, ∂xY0, . . . ∂k−1
x Y0

Y1, ∂xY1 . . . ∂k−2
x Y1

. . .

Yk−2, ∂xYk−2

Yk−1

Yk−1R0,2, Yk−2R0,3, . . . Y0R0,k+1 .

(A.57)

The notation F → ord(m) is introduced to denote that the expansion of F is precise up

to order n in x. In the case of G1(x), the orders to which these expressions are precise

are (remember that ñ is the order to which Y0 is given as a Taylor series):

∂2
xY0 → ord(ñ − 2) ;

∂xY0 → ord(ñ − 1) ;

Y0R0,2 → ord (min {ñ, n0 − 2}) .

(A.58)

The coefficient R0,2 is given to ord(n0 − 2) and will limit the precision of the result.

W.l.o.g. it can therefore be assumed that ñ ≤ n0 − 2. On the other hand, if ñ < n0 − 2,

the R0,j would have been calculate to a higher precision than is useful. Therefore

ñ = n0 − 2 is chosen. So then one has min {ñ, n0 − 2} = ñ and G1 → ord(ñ − 2). In

Eq. (A.56) s varies between 0 and ñ − 2 and one finds Y1 → ord(ñ − 1) (note that the
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coeffcient Yk,0 = 0). For G2(x) the following contributions are present:

∂2
xY0 → ord(ñ − 2) ;

∂xY1 → ord(ñ − 2) ;

∂3
xY0 → ord(ñ − 3) ;

∂2
xY1 → ord(ñ − 3) ;

Y0 → ord(ñ) ;

Y1 → ord(ñ − 1) ;

∂xY0 → ord(ñ − 1) ;

Y1R0,2 → ord(min {ñ − 1, n0 − 2})

= ord(ñ − 1) ;

Y0R0,3 → ord(min{ñ, n0 − 3})

= ord(ñ − 1) or ord(ñ) .

(A.59)

As a result G2(x) → ord(ñ − 3) and Y2 → ord(ñ − 2). For G3, the precision-limiting

contribution comes from the terms

∂4
xY0, ∂3

xY1, ∂2
xY2 → ord(ñ − 4) . (A.60)

Hence G3 → ord(ñ − 4) and Y3 → ord(ñ − 3). The general pattern is:

Gk → ord(ñ − k − 1) ;

Yk → ord(ñ − k) .
(A.61)

To calculate all the Yk for k ≤ k̄ to order n, one must choose

ñ = n + k̄ . (A.62)

This explains the choice of expansion orders in this algorithm.
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Appendix B

Late to early time behaviour of an

expanding plasma in MIS theory

B.1 The Stokes constant S1 and median summation

An approximation for S1 relying on hyperasymptotics is given by [132]:

S1 ≈2πi Φ(0)
N0

(
⌊N0/2⌋−1

∑
m=0

Φ(1)
m Γ(N0 + β − m)

AN0+β−m

)−1

≈0.0054702985252105887650131350053326816463990385103064244677326162i.

(B.1)

S1 was computed with (B.1) with an accuracy of O
(
10−65) using N0 = 200. Eq. (B.1)

requires knowledge of the coefficients of both the perturbative and the first non-

perturbative sector. Note that it is possible to compute S1 without knowing the co-

efficients of the first non-perturbative sector using the so-called large-order relations

Φ(0)
n ∼ Γ(n + β)

An+β
S1

(
Φ(1)

0 +O
(

n−1
))

, as n → ∞ (B.2)

The leading order behaviour in (B.2) provides a sequence which converges to S1 as

O
(
n−1) and involves only the free coefficient Φ(1)

0 from the first non-perturbative sector,

which defines the Stokes constant. The value in Eq. (B.1) corresponds to the choice
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Φ(1)
0 = 3/2, which was chosen in such a way that the value of the Stokes constant is the

same as in [30, 31, 69].

There is a connection between the value of the Stokes constant and the value of the

parameter σ across the real axis. The positive real axis is a Stokes line, meaning that the

Borel transform B [Φ] (ξ) has branch-cut singularities at the locations ξ = A, 2A, 3A, . . . .

Therefore the definition (3.37) is ambiguous in the choice of angle θ.

When the integration path is moved across the Stokes line from below and thus the

angle θ in (3.37) is increased from θ− = −ε to θ+ = +ε, this results in a discontinuity

in the value of the Borel resummation (3.37). Crossing the Stokes line in (3.37) while

keeping the value of the transseries parameter σ from (3.25) constant corresponds to

moving from one Riemann sheet to the other. Alternatively, the value of the transseries

parameter can be changed according to σ → σ − S1 to avoid a discontinuity. The result

of the resummation for the whole transseries (3.25) has to be real-valued on the positive

real axis, which is known as Median-resummation. The reality constraint fixes the

imaginary part of the transseries parameter σ. Median resummation requires18

i Im(σ) = ±S1

2
, for ∓ θ > 0. (B.3)

If a convention is chosen on the path along the integration in (3.37) is carried out

(below/above the real axis in the Borel plane), the only degree of freedom that is left is

the real part of the parameter σ, which is expected given that there is a one-parameter

family of real solutions.

B.2 Recurrence relations for Φ(1) and Φ(2)

The recurrence relations for the coefficients of the perturbative and first non-perturbative

sectors can be derived by substituting the expression

f (w) = Φ(0)(w) + σwβe−AwΦ(1)(w) (B.4)

18For more details see e.g. the review [7]
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0 50 100 150 200
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5.60

FIGURE B.1: The Richardson transforms RT0, RT1 and RT2 of the imaginary part of the
leading order sequence in the large order relations (B.2) (only the first term without
the O

(
n−1) corrections). The Richardson transforms are a method of speeding up the

convergence of a series (see e.g. [7]), and the zeroth Richardson transform RT0 is just
the original sequence. One can see the convergence to the imaginary part of the Stokes

constant S1 from (B.1).

into the MIS ODE (3.19). At order O
(
σ0) the same ODE is obtained, but for Φ(0) instead

of f . At order O
(
σ1) one obtains the equation

Φ(1)(w)
(
−8 + Aw + (8 − Aw + β)Φ(0)(w) + w∂wΦ(0)(w)

)
+

+ wΦ(0)(w)∂wΦ(1)(w) = 0. (B.5)

With the series ansatz

Φ(n)(w) =
∞

∑
j=0

a(n)j w−j, (B.6)

the following recurrence relations for Φ(0) and Φ(1) are obtained:

a(0)0 = 1; a(0)1 =
β

A
;

a(0)j =
1
A

[
8a(0)j−1 +

j − 9
2

j−1

∑
ℓ=0

a(0)ℓ a(0)j−1−ℓ

]
, for j ≥ 2;

a(1)0 ≡ 3
2

;

a(1)j =
1
j

[
(8 + β − j)

j−1

∑
ℓ=0

a(1)ℓ a(0)j−ℓ − A
j−1

∑
ℓ=0

a(1)ℓ a(0)j+1−ℓ

]
, for j ≥ 1.

(B.7)

The coefficient a(1)0 is undetermined by (B.5), and any redefinition of a(1)0 can be absorbed

into the transseries parameter σ.
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B.3 Coefficient functions Fr(W)

The ODEs (3.45) can be rewritten as

LFr(W) = gr(W); L ≡ (1 + W)W
d

dW
− 1, (B.8)

where the homogeneous equation LFr(W) = 0 is the same for all Fr, and gr(W) is the

inhomogeneity which does depend on the functions {Fs | s ≤ r− 1} and their derivatives.

It is easy to check that the function Θ(W) = W/(1 + W) solves the homogeneous

equation LΘ = 0. This motivates re-scaling the Fr to simplify the left-hand-side of (B.8):

Fr(W) =
W

1 + W
Yr(W); LFr(W) = W2Y′

r(W). (B.9)

The advantage of working with Yr(W) is that an explicit formula can be given for the

solutions

Yr(W) =
∫

dW W−2gr(W) + cr. (B.10)

The integrand of (B.10) is given by the recurrence relation

Y′
r(W) = W−2gr(W) =

(4 − β)(1 + W)

AW2 δ1,r −
8

AW
Yr−1(W) (B.11)

+
r−1

∑
k=0

[
9 − r

2A(1 + W)
Yk(W)Yr−k−1(W)

+
1

(1 + W)3 Yk(W)

(
β

A
Yr−k−1(W)− (1 − δk,0)Yr−k(W)

)
+

W

(1 + W)2 Yk(W)

(
β

A
Y′

r−k−1(W)− (1 − δk,0)Y′
r−k(W)

) ]
.

Adding an integration constant cr in (B.10) corresponds to adding a multiple of the

function Θ(W), Fr(W) → Fr(W) + crΘ(W). In general, the rational decomposition of

the integrand in (B.10) includes a term of order W−1, which leads to logarithms in the

Yr(W). There is a unique choice of the set {cr | r ≥ 0} for which the Yr(W) are rational

functions in W without any logarithmic terms. Once the Yr have been computed, the

functions Fr are easily obtained by multiplying the Yr with the factor W(1 + W)−1. With

this method one can compute as many of the functions Fr as desired. The first few
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functions are given by:

F0(W) = 1 + W;

F1(W) =
2W3 + (β + 4)W2 + β(β + 7)W + β

A(1 + W)
;

F2(W) =
1

2A2 (1 + W)3

(
4W6 + (7β + 22)W5 +

(
8β2 + 70β + 32

)
W4

+
(

β3 + 29β2 + 145β + 10
)

W3 +
(
2β3 + 34β2 + 110β − 8

)
W2

+
(

β4 + 11β3 + 34β2 + 10β
)

W + 2
)

;

F3(W) =
1

6A3 (1 + W)5

(
6W9 + (26β + 60)W8 +

(
45β2 + 317β + 210

)
W7

+
(
30β3 + 438β2 + 1212β + 336

)
W6

+
(

11β4 + 252β3 + 1677β2 + 2050β + 254
)

W5

+
(

44β4 + 708β3 + 3210β2 + 1522β + 92
)

W4

+
(

72β4 + 903β3 + 3054β2 + 297β + 42
)

W3

+
(
−2β6 − 30β5 − 82β4 + 410β3 + 1524β2 − 220β + 48

)
W2

+β
(

β5 + 15β4 + 86β3 + 188β2 − 36β + 68
)

W − 18β2 + 12β
)

.

(B.12)

Note that to keep the notation simple no distinction between Fr(τ) and Fr(W( 3
2 τ)) is

made. To obtain the original transasymptotic coefficient functions Fr(τ) from (3.42), the

variable W in (B.12) must be replaced by W( 3
2 τ).

B.4 Coefficients of γ(w)

The the perturbative expansion of γ(w) (see (3.48)) is given by

γ(w) =
∞

∑
n=0

γnw−n. (B.13)

This expansion solves (3.47). To simplify the notation, one defines

c ≡ fac(w0)− 1, (B.14)
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where fac(w0) is the (numerical) analytical continuation of f (w) from w = 0 to w = w0,

as explained in Section 3.4. The first four coefficients γn are then given by:

γ0 =
2
3

c ec;

γ1 =− 2ec

3A
(

β + 2c3 + (β + 4)c2 + β(β + 7)c
)

;

γ2 =
ec

3A2

(
2β
(

β2 + 7β − 1
)
+ 4c5 + 4(β + 7)c4 +

(
5β2 + 41β + 38

)
c3

+ 2
(

β3 + 12β2 + 34β + 4
)

c2 + β
(

β3 + 15β2 + 55β + 10
)

c
)

;

γ3 =− ec

9A3

(
3β
(

β4 + 15β3 + 51β2 − 18β + 4
)
+ 8c7 + 12(β + 10)c6

+ 6
(
3β2 + 33β + 83

)
c5 +

(
13β3 + 207β2 + 872β + 620

)
c4

+ 3
(

3β4 + 52β3 + 261β2 + 349β + 78
)

c3

+ 3
(

β5 + 21β4 + 142β3 + 321β2 + 74β + 16
)

c2

+ β
(

β5 + 24β4 + 188β3 + 507β2 + 198β + 20
)

c
)

.

(B.15)

B.5 Lambert-W function

The Lambert-W function (see [133, §4.13]) is defined as the solution to the equation

W(z)eW(z) = z. (B.16)

The function W(z) has infinitely many branches, which are known as Wk(z), where

k is an integer. Only two of those branches, W−1(z) and W0(z), return real values on

subsets of the real line. In the case of the MIS equation (3.19), the Lambert-W function

appears in the context of the transasymptotic summation (3.42), where the leading-order

contribution in w−1 is given by

F0(τ(w)) = 1 + W
(

3
2

σwβe−Aw
)

. (B.17)

As w → +∞, one requires f (w) → 1. This means that W(. . . ) → 0 in (B.17). For k ̸= 0

the branches Wk(z) diverge as z → 0. Therefore, the branch W0 has to be chosen at

w = +∞, which admits the Taylor expansion W0(z) = z + . . . around z = 0. This is

consistent with the behaviour of f (w) near w = +∞. For large arguments, the branch

http://dlmf.nist.gov/4.13
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W0 admits the following expansion [97]:

W0(z) = L1 − L2 +
∞

∑
k=0

∞

∑
m=1

CkmL−(k+m)
1 Lm

2 , (B.18)

where

L1 = log w ;

L2 = log(log w) ;

Ckm =
(−1)k+m+1

m!
Stir(k + m, k + 1) .

(B.19)

The expression Stir(n, m) denotes Stirling circle numbers of the first kind. The presence

of logarithmic terms in the expansion (B.18) explain how logarithmic terms arise in the

transseries Ψ in (3.27) from the transseries F in (3.25) when going from w = +∞ to

w = −∞. Note that the magnitude of the exponential scale τ ∼ e−Aw changes from

small to large when the sign of w is flipped from (+) to (−), which makes it necessary

to use the expansion (B.18). Note that the Lambert-W function has a square root branch

point at z = −e−1.

B.6 Taylor-series method

In the Taylor-series method (see [133, §3.7(ii)]), at a regular point w = w0, the Taylor

series f (w) = ∑∞
n=0 bn (w − w0)

n is combined with the differential equation (3.19) and

one obtains the recurrence relation

w0(n + 1)b0bn+1 =Aδn,1 + (Aw0 + β − 4)δn,0 − 1
2 w0(n + 1)

n

∑
m=1

bmbn+1−m

− 1
2 (n + 8)

n

∑
m=0

bmbn−m − Abn−1 − (Aw0 − 8)bn, n ≥ 0.
(B.20)

With this method it is very easy to "walk" in the complex w-plane. Once b0 = f (w0)

is known (either from a local expansion at the origin, or a branch-point, or from the

asymptotic expansion) one can compute many coefficients in the Taylor-series expansion,

and use this Taylor series to make a small step in the complex w-plane, that is, compute

f (w0 + h) and use this as the new b0.

http://dlmf.nist.gov/3.7.ii
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B.7 Recursion relation for the coefficients Zr,m

The coefficients Zr,m are the coefficients of the Taylor expansion of the functions Zr(E)

(see Eq. (3.78)). They can be calculated through the following recursion relation:

Zr,m =
1

m − N(r)

{
− δr,1 ϕ1,m − gc(r),m

m−c(r)

∑
p=0

Zr−1,p ϕ2,m−c(r)−p

+

r−1

∑
k=0

[
gµ(r,k),m ψk,0

m−µ(r,k)

∑
ℓ=0

Zk,ℓ Zr−k−1,m−µ(r,k)−ℓ

+ gµ(r,k)+2,mψk,2

m−µ(r,k)−2

∑
ℓ=0

Zk,ℓ Zr−k−1,m−µ(r,k)−2−ℓ

+ g1+ν(r,k),mg1,k

m−ν(r,k)−1

∑
ℓ=0

Zk,ℓ Zr−k,m−ν(r,k)−1−ℓ

+ g1+µ(r,k),m
β

A
ψ̃0

×
(

m−1−µ(r,k)

∑
ℓ=0

Zk,ℓ Zr−k−1,m−1−µ(r,k)−ℓ

(
− N(r − k − 1) + m − 1 − µ(r, k)− ℓ

))

+ g2+µ(r,k),m
β

A
ψ̃1

×
(

m−2−µ(r,k)

∑
ℓ=0

Zk,ℓ Zr−k−1,m−2−µ(r,k)−ℓ

(
− N(r − k − 1) + m − 2 − µ(r, k)− ℓ

))

− gν(r,k),mg1,kψ̃0

m−ν(r,k)

∑
ℓ=0

Zk,ℓ Zr−k,m−ν(r,k)−ℓ

(
− N(r − k) + m − ν(r, k)− ℓ

)
− gν(r,k)+1,mg1,kψ̃1

×
(

m−ν(r,k)−1

∑
ℓ=0

Zk,ℓ Zr−k,m−ν(r,k)−1−ℓ

(
− N(r − k) + m − ν(r, k)− 1 − ℓ

))
]}

.

(B.21)

In the above expression the following notations have been used (any additional indices

on the symbols denote the coefficients in the E-expansion):
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N(k) ≡


(k + 1) for k ≤ 4

k for k ≥ 5
;

ϕ1(E) ≡ E2(4 − β)

A(1 − E)2 ;

ϕ2(E) ≡ −8E
A(1 − E)

;

ψk(E) ≡ A−1 ((k − 4)− βE2) ;

ψ̃(E) ≡ (1 − E) ;

Θ(n) ≡


0 for n ≤ 0 ;

1 for n > 0 ;

c(r) ≡− Θ(r − 4) + Θ(r − 5) + 1 ;

µ(r, k) ≡ − Θ(r − 4) + Θ(k − 4) + Θ(r − k − 5) ;

ν(r, k) ≡ − Θ(r − 4) + Θ(k − 4) + Θ(r − k − 4) .

(B.22)
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