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Abstract: Forward osmosis (FO) is a promising separation technology to overcome the challenges
of pressure-driven membrane processes. The FO process has demonstrated profound advantages
in treating feeds with high salinity and viscosity in applications such as brine treatment and food
processing. This review discusses the advancement of FO membranes and the key membrane
properties that are important in real applications. The membrane substrates have been the focus of
the majority of FO membrane studies to reduce internal concentration polarization. However, the
separation layer is critical in selecting the suitable FO membranes as the feed solute rejection and
draw solute back diffusion are important considerations in designing large-scale FO processes. In
this review, emphasis is placed on developing FO membrane selective layers with a high selectivity.
The effects of porous FO substrates in synthesizing high-performance polyamide selective layer and
strategies to overcome the substrate constraints are discussed. The role of interlayer in selective layer
synthesis and the benefits of nanomaterial incorporation will also be reviewed.

Keywords: forward osmosis; interfacial polymerization; selective layer; polyamide

1. Introduction

One of the most pervasive problems affecting people throughout the world today is
the shortage of clean water. Water purification technologies for wastewater treatment and
seawater desalination are essential to solving the water crisis by producing more clean water
resources through water recycling, reuse and reclamation. Membrane purification technologies
are attractive due to the low cost and versatility in producing high-quality water from various
water sources such as surface water, brackish water, seawater, and municipal and industrial
wastewater. Pressure-driven membrane technologies such as reverse osmosis (RO) have been
widely used for half a century, but they may not be suitable for feedwater of super high
salinity and/or high viscosity. As an alternative, forward osmosis (FO) has shown potential in
harvesting water from these tough-to-treat feedwaters [1,2].

FO exploits the natural phenomenon of osmosis and utilizes the osmotic pressure
gradient across a semi-permeable membrane to drive water transport from a low osmotic
pressure feed to a high osmotic pressure draw solution. Despite the advantage of potentially
lower electrical energy consumption, FO faces several challenges from the membrane, draw
solution and process design aspects. For example, an additional process/post-treatment
is required to get the final product water or to recover the draw solution, which largely
limited its applications. The draw solution design and selection shall properly match with
the process/application, as the FO membrane is not a perfect membrane that rejects all
the solutes in the feed/draw solutions. Regarding the FO membranes, it is challenging to
fabricate a membrane possessing a highly permeable and highly selective skin layer with a
porous, less tortuous, and thin support layer, yet having enough strength to perform in
long-term application with regular cleaning.
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Significant advances have been made in the past decade in the field of FO [3], and
nearly 1650 scientific papers have been published in peer-reviewed journals from 2018 to
2022. Among these, 45 review papers have been published with “forward osmosis” in the
title (Figure 1). These review papers cover the topics of membrane design [4–16], fouling
mitigation [17–22], draw solutes design and recovery [23–28], system design [29–33], and
applications [34–43]. Prior studies on FO membrane fabrication placed a lot of focus on porous
substrate optimization to reduce the internal concentration polarization (ICP), a factor that
causes a significant loss of driving force. Despite various FO membrane fabrication methods
and new materials developed, there seems to be a gap between the membrane design and
FO applications. When evaluating the membrane performance, many studies only reported
basic parameters such as water flux and back solute diffusion. Very few papers have looked
into the applications that FO can advantageously serve and the membranes required for
those applications. Until today, the direction and strategy of FO membrane development, by
considering the realistic and promising FO applications and processes, is still unclear. Some
methods may lead to an increase in membrane water permeability coefficient by sacrificing
the solute rejection, but most FO applications demand more on high rejection rather than high
water permeability.
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To bridge the gap between FO membrane development and applications, this study
reviews the promising FO applications and state-of-the-art FO membranes and suggests
the directions of the future trends for FO membrane design.

1.1. Basic FO Concept

Osmosis occurs when a selectively permeable membrane separates two solutions
containing solutes of different concentrations. Driven by the osmotic pressure difference,
small sized solvent molecules pass through the membrane from the low-concentration
side to the high-concentration side. This FO process will continue until an equilibrium is
attained, as illustrated in Figure 2a. The Jacobus van ‘t Hoff equation can be applied to
quantitate the osmotic pressure from solute concentration as shown in Equation (1):

π = icRT (1)
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where π is osmotic pressure, i is the dimensionless van ‘t Hoff index, c is the molar concentra-
tion of solute, R is the general gas constant, and T is the absolute temperature in kelvins.
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unit (adapted from [44]).

In a more practical FO application, the process includes a high-efficiency membrane
separation unit and a draw solution recovery system, as illustrated in Figure 2b, since the
draw solute needs to be regenerated for most of the cases (unless the diluted draw solution is
the final product). Although a low or no hydraulic pressure is required for the FO separation
unit, the draw solutes regeneration may consume a considerable amount of energy and a
careful design and selection of draw solutes is needed for an efficient FO process.

1.2. FO Target Applications

Compared with traditional pressure-driven processes, FO has been proposed for
treating complex wastewaters, including saline wastewater [45,46], industrial wastewater
with high salt concentrations from oil and gas [2], mining and metallurgy [47], and cooling
tower blowdown [48], streams that need to be concentrated such as liquid food [34,49],
sludge [50], and nuclear wastewaters [51]. In general, they can be summarized into two
types of applications: general applications that require draw solutes regeneration and
special applications without the need for draw solutes recovery (Figure 3). For general
application, considering the energy used for draw solutes regeneration, it is believed that
the concentration and purification of valuable products and the treatment of high salt
concentration water/wastewater (which cannot be treated by RO) are of more interest. The
FO process has demonstrated profound advantages in treating feeds with high viscosity,
such as food processing [34,36,52]. Without increasing temperature and pressure, the FO
process can preserve precious essence and nutrients of products. The DS for this process
can be nontoxic inorganic salts such as NaCl, which will be regenerated using the thermal
evaporation method. On the other hand, highly saline water (e.g., >7% total dissolved
solids (TDS)) can be treated by FO by adopting a thermo-responsive DS with high osmotic
pressure. This FO process requires less energy as compared to traditional thermal methods.
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Since the thermo-responsive draw solute does not undergo phase change or need a lower
temperature for phase change (compared to 100 ◦C for evaporating water) during its
regeneration upon heating, the thermal energy needed is less than the thermal methods
such as multi-stage flash distillation (MSF) and multi-effect distillation (MED) [53,54]. For
special applications, it is not easy to find a draw solute that does not require regeneration.
So far, one successful example is the concentrated fertilizer draw solution that can draw
water from wastewater for irrigation [1,2,55,56].
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Most applied research on FO stays at laboratory-scale feasibility level, as well as demon-
stration studies which fail to consider long-term fouling, draw solute leakage and the cost and
energy associated with the draw solutes regeneration. The limited number of pilot studies [49]
could not provide very useful guidance on the membrane development direction. The gap
exists between FO applications and membrane advancement. To close this gap, the membrane
researchers and manufacturers shall well understand what the promising FO applications are
and design the membranes that are suitable for the applications.

1.3. Development of DS

Draw solutions with high osmotic pressure, low back diffusion rate and easy regener-
ation features are crucial in extending the applications of FO technology. Especially, the
DS regeneration directly determines if a FO process is feasible. Based on the regeneration
methods, the draw solutes can be categorized into non-responsive and responsive ones
(Table 1). The most commonly used natural non-responsive draw solutes are inorganic
salts, such as NaCl, MgSO4, and MgCl2. Due to their simplicity and easy availability,
they are utilized to evaluate membranes’ properties such as structural parameters [23].
Owing to the small size and high diffusivity, they can generate high FO water flux, but
face the issue of reverse diffusion to the feed stream. The recovery of these small-size
draw solutes is challenging, as the regeneration methods including membrane separation
(e.g., Nanofiltration (NF), RO or membrane distillation (MD)) and thermal evaporation are
energy intensive [28]. Many research studies attempted to find a slightly larger draw solute,
to balance the membrane rejection and osmotic pressure/diffusivity, so that the draw solute
can be recovered by a low-pressure NF or ultrafiltration (UF) process. It is suggested that a
draw solute with a molecular weight of about 1000–3000 Da with a narrow polydispersity
index (PDI) is quite ideal. In order not to avoid limiting the regeneration method to mem-
brane separation, responsive draw solutes have been suggested or synthesized to utilize
magnetic or thermal method for the separation. For example, thermo-responsive draw
solutes can precipitate or change phases upon heating, and the separation from water can
be realized spontaneously [57,58]. Since low-grade waste heat can be used, the thermal



Membranes 2022, 12, 955 5 of 22

energy for thermo-responsive draw solute recovery is much less of a concern. However,
polymer-based draw solutes usually contain small solutes of molecular weight of a few tens
to a few hundred, which can penetrate through the FO membrane easily. Although they
are just a small amount for a polymer with a low PDI, their reverse diffusion to the feed
side still leads to membrane fouling [57]. Hence, a tight FO membrane is usually preferred
no matter whether inorganic solutes or polymer-based solutes are used as draw solutes.

Table 1. Review of the representative draw solutes in the FO process.

Classification Draw Solutes Regenerate Method Molecular
Weight/Size Js/Jv Ref.

Non-responsive:
inorganic salts;

polyelectrolytes;
surfactants; zwitterions

Features:
widely available; high
solubility; difficult to

regenerate

NaCl - 58.5 g/mol 0.76 [59]
MgSO4 - 120.37 g/mol 0.15 g/L [60]
MgCl2 - 95.21 g/mol 0.22 g/L [60]

NMe4-Cr-OA MD - - [61]

Polydiallyldimethylammonium
chloride

(PolyDADMAC)
NF 5919 g/mol 0.014 g/L [62]

Zn-Bet-Tf2N Solvent extraction - - [63]
EDTA-2Na MD - - [64]

1,4-bis(3-propane- sulphonate
sodium)-

piperazinediethanesulfonic acid
disodium-sulfate

Acid precipitation 105 nm - [65]

Bifunctional zwitterion of
(1-(3-aminopropyl) imidazole)

propanesulfonate (APIS)

Acid precipitation
+filtration - - [66]

Responsive: magnetic
nanoparticles; volatile

liquids; NH3-CO2;
responsive small

molecules and
polymers
Features:

specifically designed;
easy regenerate; cut

energy cost

Trimethylamine-carbon dioxide
(TMA-CO2) Thermal separation 59.11 g/mol - [67]

Tetrabutylphosphonium
p-toluenesulfonate ([P4444]TsO)

∼98% was
precipitated by

heating the draw
solutes at 60 ◦C

- 0.002815 mol/L [58]

Oligo-deep eutectic solvent Phase separation at
5 ◦C - 0.043 g/L [68]

Poly(propylene
glycol-ran-ethylene glycol)
monobutyl ethers (PAGBs)

Thermos responsive
lower critical solution
temperature (LCST)

42 and 53 ◦C

1810–3911 g/mol - [69]

Organic-coated engineered
superparamagnetic iron oxide

nanoparticles
- 12.3 ± 1.0 nm - [70]

Gelatin-coated magnetite
nanoparticles (MNPs) Magnetic field 40 nm - [71]

Nitrogen Rich CO2-Responsive
Polymers - 12,000 g/mol - [72]

Pluronic® L35 95 ◦C 1900 g/mol [57]

2. Selecting the High-Selective FO Membranes
2.1. State-of-the-Art FO Membranes and Performance Evaluation Method

Generally, based on the structural difference, there are two types of FO membranes:
integrally skinned asymmetric (ISA) and thin-film composite (TFC) membrane, as depicted
in Figure 4. The ISA membranes, prepared in one-step with an asymmetric structure, have
limitations in tailoring the membrane structure independently and normally have a lower
water permeability [73]. Cellulose triacetate (CTA) is the most commonly used material
to fabricate the ISA type membrane and commercial products are available from Fluid
Technology Solutions and Toyobo. The ISA type is much less studied in the literature
compared to the counterparts TFC type. TFC membranes on the other hand are prepared
in two steps with a layered structure (Figure 4b). Their selectivity and permeability can be
tailored by regulating the substrate structure and the selective layer properties, respectively.
Not only are they studied by a lot of researchers in the lab, but they are also commercially
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available from many companies, such as Aquaporin (Singapore), Aromatec (Singapore),
Toray (Japan), etc. [74,75].
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We summarized state-of-the-art ISA and TFC FO membranes in Table 2 with their FO
performance reported in active-layer-facing-feed-solution (AL-FS) orientation. In addition
to the water flux (Jv) and solute flux (Js) tested under FO mode, water permeance (A) and
solute permeability coefficient (B) measured under RO mode are often reported to under-
stand the rejection layer properties. Although FO membranes are generally operated under
no/low pressure, it is still recommended to measure the A and B values with low-pressure
(e.g., 1–5 bar) RO test to ensure the membranes’ general handleability. In contrast, the FO
test is less sensitive in detecting the breakage of the membrane during the measurement, as
the draw solute diffusion is from the reversed direction of water flux. Although a thin and
porous substrate (i.e., a smaller structural parameter (S value) is preferred for reducing the
ICP phenomenon, it still needs to have enough mechanical strength for real FO applications.
On the other hand, the FO test is usually conducted without monitoring of the pressure,
but sometimes a low-pressure gradient exists at a high crossflow velocity, resulting in an
inaccurate measurement of FO water flux, especially for a membrane with a large A value.
With the knowing A and B values from RO results, we can better design FO experiments and
predict FO performance, based on the B/A and Js/Jv relationship [76,77].

The S value is usually calculated from the A, B and Jv results [78]. The TFC membrane
generally has a smaller S value and higher A value as compared with that of ISA membranes
(Table 2), due to the 2-step preparation of substrate and rejection layer that enables the
optimization of the two layers. As another important parameter, B value is often paid
less attention to, as there seems no standard or guideline for the solute rejection of FO
membranes. For the RO membrane, the A/B ratio is a good indicator of the tightness of
the rejection layer. This ratio can also apply to FO membranes. It can be seen from Table 2
that A/B values from <1 to ~20 can be found for various FO membranes. A large A/B ratio
(e.g., >10 bar−1) suggests a relatively tight membrane. A small A/B ratio (e.g., <3 bar−1) cor-
responds to a relatively loose membrane, and the small solute such as NaCl can pass through
the membrane more easily, resulting in a greater loss of draw solute and contamination of
feed stream/draw solution.

Many studies have focused on overcoming the selectivity-permeability trade-off. To
further enhance the membrane performance, nanomaterials such as carbon nanotubes
(CNTs), graphene oxide (GO), metal-organic framework (MOF) [79,80], covalent organic
framework (COF) [81] have been incorporated into the selective layer of TFC membrane
to form thin film nanocomposite (TFN) membranes [82]. From Table 2, it seems that TFN
membranes and biomimetic membranes have increased A value, which could result in
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a slightly larger A/B ratio if the increase in B is less significant than the increase in A.
Nevertheless, the A value becomes unimportant for the condition when the feed contains
high TDS [83], which will be further discussed in the next section.

Table 2. Basic information of the typical reported FO membranes and testing conditions.

Membrane
Key

Information

A,
Lm−2

h−1·bar−1
B, Lm−2 h−1 A/B,

bar−1 R, % P,
Bar S, µm

Jv, Lm−2

h−1

(AL-FW)
Js/Jv, g/L

Draw
Solution

(Feed
Water) (#)

Surface
Velocity,

cm/s
[Ref]

HTI-CTA 0.59 ± 0.04 0.36 ± 0.05 1.6 88.8 ± 2.1 5 417 ± 41 13.6 0.74 1 M (DI) 16.7
[59]HTI-TFC 1.48 ± 0.06 0.35 ± 0.01 4.2 94.7 ± 1.5 5 453 ± 52 17.7 0.55 1 M (DI) 16.7

DPE-TFC 6.7 ± 0.15 0.68 ± 0.02 9.85 98.1 ± 0.2 5 168 ± 4 53.0 0.28 1 M (DI) 16.7
NIPS-TFC 1.86 ± 0.2 0.77 ± 0.14 2.4 91.6 5 796 ± 85.3 17.0 ± 0.9 - 2 M (DI) - [84]
NIPS-TFC 4.00 ± 0.33 0.22 ± 0.05 18.2 96.7 2 290 ± 56 26 0.14 1 M (DI) 10–40 [85]
NIPS-TFC 1.21 ± 0.01 0.12 ± 0.02 10.1 93.6 ± 2.4 2 240.5 22.1 0.19 1 M (DI) - [86]
NIPS-TFC 2.12 5.35 0.4 91.4 5 484 21.3 0.23 * 1 M (DI) - [87]
Nanofiber

TFC 2.99 ± 0.11 0.41 ± 0.12 7.3 74.2 ± 3.9 0.51 * 174 42 <0.25 1 M (DI) ~9 [78]

Nanofiber
TFC 2.82 ± 0.10 0.50 ± 0.02 5.6 77.2 7 187.9 40.64 - 1 M (DI) 11.27 [88]

TFC 0.58 ± 0.01 0.05 11.6 91.1 10 200 * 12.3 - 0.5 M (DI) 2.5 [89]
CNTs

hollow fiber
TFC

2.45 ± 0.10 0.12 ± 0.04 20.4 92.6 ± 1.4 1 125.6 61.0 0.14 1 M (DI) 25 [90]

TFN 4.47 ± 0.24 0.81 ± 0.01 5.5 96.7 ± 0.2 2 741 11.4 0.27 ± 0.04 1 M (DI) 4.9 [79]
TFN 5.1 ± 0.13 0.39 ± 0.03 13.1 90.9 ± 0.7 2 - 30.2 0.35 1 M (DI) [91]
TFN 2.5 - 92.5 2 58.6 39.2 0.1 1 M (DI) 8 [81]

TFN 2.55 ± 0.01 0.19 ± 0.02 13.4 96.8 ± 0.4 3 - 12.9 0.11
0.5 M
MgCl2

(DI)
7.3 [82]

(1) # Draw solute is NaCl if not specified; (2) * denotes the calculated or transformed data; (3) % if not specified
means the weight percentage. (4) NIPS is an abbreviation for non-solvent-induced phase separation.

2.2. High Selective FO Membranes for Targeted Applications

Figure 5 presents FO membranes/modules suitable for different feed solutions. As
mentioned earlier, promising FO applications include treating feeds with high TDS and/or
high viscosity. Wastewater such as brine, cooling tower blowdown, oil & gas wastewater,
and mineral wastewater (e.g., mining) contain a large amount of TDS, and can hardly be
treated by pressure-driven membrane processes due to extremely high osmotic pressure.
To achieve zero liquid discharge for these wastewaters, FO can be utilized to concentrate
till 150–200 g/L TDS using a thermo-responsive draw solute [57]. However, a feed with
high TDS content results in a very low FO water flux due to the concentrative concentration
polarization, rendering the A value and S value less important [83,92]. In other words,
membranes used for such applications do not necessarily possess a high A value and low
S value. Nevertheless, a low solute passage (high A/B) is always preferred for all FO
applications. On the other hand, a highly viscous feed solution such as liquid from the
food industry may or may not have high TDS content. For the feed with low TDS content,
a FO membrane with a high A value, high A/B ratio and low S value is still the best choice
for lowering the concentration of draw solution.

In terms of the membrane module, spiral wound, plate and frame, and hollow fiber
configurations are available for FO membranes. For feed with high TDS and low viscosity,
spiral wound and hollow fiber modules can be applied with maximized membrane packing
density; while plate and frame and hollow fiber modules work better for viscous liquid,
for reducing membrane fouling. For long-term running, membrane/membrane modules
should have anti-fouling properties and sufficient mechanical strength [93]. The design
of the membrane module shall consider hydrodynamic conditions required the minimize
membrane fouling for handling these difficult feed streams. Membrane cleaning is a
common practice to ensure the sustainability of the process, and the mechanical stability of
FO membranes should not be compromised despite their relatively porous support layer
(compared to RO membranes).
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3. Selective Layer of FO Membranes
3.1. Substrates and Polyamide Formation

The highly porous substrate with a low structure parameter could mitigate the ICP,
which is the key to the success of FO membranes. However, these porous supports could
pose challenges in synthesizing high-performance polyamide selective layer. Substrates are
the reaction carrier in the interfacial polymerization to synthesize the polyamide layer of TFC
membranes. The physical-chemical characteristics of the substrates such as surface porosity,
pore size, hydrophilicity, etc. could directly affect the reaction interface, the enrichment of
aqueous monomers, the uniformity of monomer dispersion, and the diffusion of monomer to
the interface [94]. These will consequently affect the thickness, morphology and crosslinking
of the polyamide thin films obtained, and eventually the performance of the membranes.
Substrates with high surface porosity and smaller pore sizes tend to facilitate the formation
of dense polyamide separation layers with high rejection properties [94], but these surface
properties are difficult to achieve in the highly porous FO membrane substrates.

FO membrane substrates are commonly fabricated via non-solvent induced phase
separation (NIPS) or electrospinning. To obtain highly porous NIPS substrates, besides
tuning the polymer compositions and NIPS conditions, some studies have used methods
such as sacrificial macropore templates and incorporation of nanomaterials [95,96]. The
additives added could also further tailor the substrates to be more hydrophilic and with
controllable pores [97]. On the other hand, electrospun nanofiber membranes have the
advantages such as large surface porosity, high porosity and interconnected pore structure,
and benefit enormously from the nanofiber-based architectures [98–100]. Incorporation of
nanofillers in polymeric nanofibers, such as MWCNTs [101], silica [78], bentonite [88], etc.,
could further enhance the porosity and mechanical strength and tailor the hydrophilicity,
alignment and roughness of the nanofibrous support. However, this strategy typically
results in increased epidermal pore size and the formation of a selective layer with moderate
low selectivity.

Overall, studies on obtaining highly porous substrates that are also suitable for synthe-
sizing high performance of polyamide layer are lacking as almost all focus has been put on
addressing the ICP issues. Most FO substrates in recent studies already have considerably
high porosity, further increase in the porosity may not see significant improvement in the



Membranes 2022, 12, 955 9 of 22

permeability, and an S value of <500 µm should be sufficiently low to mitigate ICP in most
cases. More attention should be given to improving the substrate surface properties, such
as surface pore size and hydrophilicity so that a polyamide layer with high selectivity can
be obtained.

3.2. Role of Interlayers

As mentioned previously, both NIPS and nanofibers have their limitations in tuning
the surface pore size and distribution of the substrates for the formation of high selective
polyamide layer. Another imaginary strategy is to construct a highly porous interme-
diate/interlayer on top of the substrates to facilitate the formation of a defect-free and
high-performance polyamide layer [102–105]. There are two main types of intermediate
layers: nanomaterial layers and non-nanomaterial layers, according to the materials and
construction methods. Nanomaterial intermediate layer made of MOF [79], GO-based
materials [15,106–108], MoS2 [109], oxidized-CNTs mixed layer [110,111], titanium dioxide
(TiO2) and nanotubes [104,112] have been successfully constructed in previous studies us-
ing methods such as vacuum filtration. Though the initial focus was mainly to increase the
water flux by providing additional channels for water molecule transport, this intermediate
layer will also serve as a surface modifier to provide a favorable surface for polyamide
synthesis. The excellent surface hydrophilicity, high porosity and smaller pore size could
effectively control the adsorption/diffusion of amine monomers during interfacial polymer-
ization and result in thinner and denser polyamide layers [113–115]. Zhang et al. designed
a TiO2/CNTs nanocomposite intermediate layer on a porous ceramic substrate to help form
a defect-free nanovoid-containing polyamide layer with high crosslinking. Compared with
the control membrane without an interlayer, the water permeability and NaCl rejection of
the resulting FO membrane increased simultaneously, from 1.3 to 2 Lm−2 h−1 bar−1, and
from 92.2% to 98%, respectively [104]. On the other hand, non-nanomaterial interlayers are
generally composed via coating and cross-linking. For example, the tannic acid-Fe3+(TA-
Fe3+) interlayer was synthesized by coordinating tannic acid using ferric (Fe3+) ions as
cross-linker on a highly porous substrate [116]. Compared to vacuum filtration for nano-
material intermediate layer construction, the non-nanomaterial intermediate layer is more
versatile, facile, and easy to scale-up, giving controllable chemical and physical structures
to TFC FO membranes.

The membranes fabricated with the nanochannel interlayer have outperformed the
FO membranes reported so far, providing a new strategy for fabricating high-performance
FO membranes using seawater desalination. As an additional step is required during the
membrane fabrication, the method used to synthesize the interlayers should be simple
and scalable. Spray coating [103,117], brush-painting [105,118], inkjet printing [119] and
electrospinning [120] are some encouraging techniques presented in recent studies that
have the potential to translate this technology into reality [121,122]. These typical strategies
are illustrated in Figure 6.

3.3. Suitable IP Methods and Formula

In addition to the porous substrate structure and the intermediate layer, the charac-
teristics of monomers and reaction mediums are critical to the formation of high selective
polyamide layer. A typical interfacial polymerization reaction is shown in Figure 7, where
m-phenylenediamine (MPD) in the water phase and trimesoyl chloride (TMC) in the oil
phase react at the oil-water interface. MPD is a commonly used amine monomer for syn-
thesizing polyamide films with a solute rejection. Many excellent works have focused on
improving the separation properties of the polyamide selective layers by adjusting the in-
terfacial polymerization by adding co-solvent [123], zwitterions [124], surfactants, etc. [94].
Many of these studies have synthesised high-rejection polyamide for RO application but
similar strategies can also be applied in developing FO membranes with a high A/B value.
This article will only briefly discuss some common strategies and readers can refer to the
literature for more details [125–127].
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Figure 6. Technology translation from lab to large scale. (a) Brush-painting of Mxene on nylon membrane;
(b) inkjet printing of dopamine and tris solution on UF membrane for mass production; (c) Construction
of ultrafine nanofiber interlayer via electrospinning. All figures were taken from the references.
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The selectivity of the polyamide selective layer is largely determined by the inherent
crosslinking density and free volume. The proportion of crosslinked structures can be
promoted by adding additives such as dimethyl sulfoxide (DMSO), formamide, acetamide,
cyclohexanone, anisole and benzonitrile and 1-methylimidazole during interface polymer-
ization [128,129]. For example, the addition of 1-methylimidazole in the aqueous phase
can react with TMC to reduce the thickness of the polyamide layer, make it denser, and
enrich the carboxylic acid groups on the surface, achieving a water flux of 72 Lm−2·h−1 and
rejection of 99.06% using 2000 mg/L NaCl as feed and at 15.5 bar pressure [130]. Another
method to improve the retention rate of the membranes is by post-treatments such as heat
treatment, secondary crosslinking, coating, etc., but these methods are likely to sacrifice the
water permeability [131–133]. It should be noted that the NaCl rejection rate of the SWRO
membrane can reach 99.5%, which is much higher than that of almost all FO membranes.
The methods and formula of interfacial polymerization used in RO membranes can serve as
useful clues in obtaining FO membranes with high selectivity. While choosing the suitable
formula for interfacial polymerization, it is perhaps also worth thinking about how the
formulation can help compensate for the limitation of the porous substrates and achieve a
denser polyamide with a high rejection.

3.4. Roles of Nanochannels of TFN Membranes

In recent years, nanomaterials with excellent selectivity or water transport channels
were compounded with a polyamide layer to prepare thin film nanocomposite (TFN) mem-
branes with enhanced perm-selectivity. These nanomaterials include GO [134], CNTs [135],
halloysite/graphitic nitride nanoparticles [136], MOF [137], COF, polyoxometalate based
open frameworks (POM-OFs) [138], hydrophilic functionalized titanate nanotubes [139],
mesoporous silica [140], aquaporin [141,142], etc. For example, the incorporation of nano-
materials in TFN FO membranes has been demonstrated to effectively increase the per-
meability of polyamide layers, though often at the expense of selectivity [143]. By adding
2D-MOF nanosheets in the polyamide layer, the water permeability of the TFN membrane
was successfully increased by 2.5 times, from 2.1 to 5.0 Lm−2 h−1·bar−1, and the NaCl
rejection rate only decreased slightly from 99.3% to 99.2% [144]. By comparing the A vs.
A/B value of TFC and TFN membranes using datasets from the reverse osmosis membrane
database (https://openmembranedatabase.org/reverse-osmosis-database, accessed on
5 September 2022) [145], as shown in Figure 8, the performance of TFN membranes is
unfortunately inferior to those of TFC membranes. The observation deviates from previous
expectations as the performance was not improved much statistically. The lower selectiv-
ity of TFN membranes could be due to: (1) interfaces/interphases gaps created between
nanomaterials and the polyamide; (2) the uneven distribution of the nanomaterials; (3) the
defects caused by the aggregation of nanomaterials. To improve the rejection properties,
the compatibility of the nanomaterials and the polymer matrix, polyamide layer, and the
techniques to effectively disperse the nanomaterials have to be improved so that the sieving
properties of these nanomaterials can be fully harnessed [81,146–149]. For example, COF
nanofiller were grafted with hydrophilic carboxyl groups to eliminate particle aggregation
and interfacial microvoids between nanofiller and polymeric matrix. With 0.1 mg mL−1 of
the modified COF, the designed TFN membrane exhibited an 88% improvement in water

https://openmembranedatabase.org/reverse-osmosis-database
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permeability (from 1.3 to 2 Lm−2 h−1 bar−1), and a 14.3% improvement in selectivity (from
10.77 to 12.3 bar−1) compared to the pristine TFC membrane [81].
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Figure 8. A/B vs. A of the TFC and TFN membranes collected from OMD (The Open Membrane Database).

To have a better distribution of the nanomaterials, vacuumed filtration and spray coating
have been previously used [150]. As illustrated in Figure 9a, COFs could be deposited on
the substrate by vacuum filtration before interfacial polymerization [151]. The polyamide
incorporated with uniformly aligned COF exhibited an enhanced water flux of more than
23% compared to the pristine membrane, without sacrificing its selectivity. Similarly, GO
nanosheets with uniform and small size incorporated TFN membrane prepared in the same
way, the polyamide layer incorporated with horizontally aligned GO nanosheets exhibited a
high water flux at 39.0 L m−2 h−1 and a low specific reverse solute flux at 0.16 g L−1, using a
1 M NaCl draw solution [107]. However, the vacuum-assistant method may be difficult to
translate to large-scale membrane fabrication. Spray coating can be a promising solution for
effectively distributing the nanomaterials and reducing the aggregates at a large scale, as the
example shows in Figure 9b [117]. Spraying can ensure precise control of liposome volume
and make full usage of liposomes by reducing 2 orders of magnitude without any waste
compared to traditional embedding methods. The best membrane incorporated with 4 mg/m2

liposomes exhibited a permeability of 3.24 Lm−2 h−1 bar−1 and a NaCl rejection of 99.3%,
which is a 27% increase in water permeability compared to the liposome-free membrane
(2.56 Lm−2 h−1 bar−1). For other expensive nanomaterials with selective channels, spray
can maximize the advantages of these materials, realize industrial production, and greatly
reduce material waste during processing. Another concern of TFN membranes is the nanopar-
ticle leaching issue under long-term usage. More consideration should be given to the
long-term safety of nanomaterials and new environmentally friendly nanomaterials with
good biocompatibility.
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Figure 9. Methods for incorporating nanomaterials in the selective layer. Vacuum-assisted deposition
of nanoparticles (a) and spray-assisted disposition of liposomes (b) into polyamide layer via interfacial
polymerization approach. All the figures were taken from the references.

3.5. Non-Polyamide Selective Layer

The polyamide-based TFC/TFN FO membranes have demonstrated promising per-
formance thus far, though it is difficult to break the selective-permeability trade-off of the
material. Additionally, polymer-supported polyamide FO membranes may not withstand
challenging feeds that contain strong organic solvents and strong oxidizing agents, or with
extreme pH conditions [152–154]. A non-polyamide selective layer fabricated by nanoma-
terials, such as MOFs, 2D carbon-based materials [48], and COFs have been developed for
the FO process. For example, a free-standing UiO-66 membrane with a thickness down to
400 nm was successfully fabricated to reduce the S value to 6 µm (Figure 10a) [155]. Com-
pared to TFN membranes, the functionalities of the nanomaterials can be fully harnessed
in the continuous MOF crystal layer. However, the UiO-66 membranes only had a water
permeability of 1.4 Lm–2 h–1 bar–1 due to the dense layer and an NF-like rejection, Na2SO4
rejection of 83%. Alongside that, ZIF-8 membranes supported on hollow alumina fiber were
recently fabricated via electroless deposition (ELD) of ZnO, followed by a solvothermal
synthesis (Figure 10b) [156]. The membrane showed a high water flux of 12.3 Lm–2 h–1 but
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a high reverse solute salt flux of 29 gm–2 h–1 when 10% NaCl solution was used as the draw
solution. These new materials could be more chemically stable under harsh conditions
compared to polyamide, but their selectivity has to be further improved for practical FO
applications as RO-like rejection is highly desirable [157–160].
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4. Conclusions

Over the past few decades, FO has aroused great interest in both academia and industry.
This review provides the fundamentals of FO, summarizes the state-of-the-art FO membranes
and promising practical applications, highlights the important properties an FO membrane
shall have and discusses the strategies for developing high-rejection FO membranes. We make
a summary and propose future research interests related to FO technology.

(1) In addition to special FO application that does not need DS regeneration, the general
FO applications requiring draw solute recovery is promising for feed streams with
high TDS and/or high viscosity. For the FO application process that needs to recover
the draw solutes, the key to the success of FO is whether the draw solutes can be
recovered with low energy consumption and how to avoid or reduce the influence of
reverse solutes permeation on the feed solutions;

(2) Since the feed stream contains high TDS for most of the promising FO applications,
the A value and S value of FO membranes become less important due to the low water
flux. However, the A/B ratio shall be kept as high as possible to eliminate reverse
solute leakage to feed solutions;

(3) The mechanical strength of the FO membrane should not be compromised, although
a porous substrate with a small S value is preferred for FO feed with low TDS. Testing
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A and B values under low-pressure RO mode is a good method to ensure the general
handleability of the membrane;

(4) The porous substrate of the FO membrane does not help make a tight polyamide layer.
To increase the solute rejection or A/B ratio of a TFC membrane, creating an interlayer
on the porous substrate for interfacial polymerization reaction is an effective approach;

(5) Most independent findings suggest that the incorporation of nanoparticles into
polyamide layers can increase A and possibly A/B when the selectivity-permeability
trade-off is properly controlled. However, if the TFC and TFN membranes in the
same period are compared together, statistically, the permeability coefficient (A) and
selectivity (A/B) of TFN are lower than those of the TFC membrane, which is different
from our expectation. Future research may need to take advantage of the excellent
water permeability and selectivity of nanomaterials so that TFN membranes truly
lead to TFC membranes from a lateral statistical point of view;

(6) More pilot and industrial scale studies are needed to guide the development of
membranes and module designs. Membrane researchers and developers shall pay
more attention to FO applications, which shall be promising and show energy savings
compared to other processes/technologies.
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Nomenclature

CNTs Carbon nanotubes
CTA Cellulose triacetate
COF Covalent Organic Frame
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
ELD Electroless deposition
FO Forward osmosis
GO Graphene Oxide
ICP Internal concentration polarization
ISA Integrally skinned asymmetric
MD Membrane distillation
MED Multi-effect distillation
MOF Metal-Organic Frameworks
MXene Ti3C2Tx
MF Microfiltration
MPD M-phenylenediamine
MSF Multi stage flash distillation
NF Nanofiltration
PA Polyamide
PE Polyethylene
PEI Polyetherimide
RO Reverse osmosis
TFC Thin film composite
TFN Thin film nanocomposite
TMC Trimesoyl chloride
UF Ultrafiltration
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