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ABSTRACT
We present a novel method for measuring the lags of (weak) variability components in neutron-star and black-hole low-mass X-ray
binaries (LMXBs). For this we assume that the power and cross spectra of these sources consists of a number of components that
are coherent in different energy bands, but are incoherent with one another. The technique is based on fitting simultaneously the
power spectrum (PS) and the Real and Imaginary parts of the cross spectrum (CS) with a combination of Lorentzian functions.
We show that, because the PS of LMXBs is insensitive to signals with a large Imaginary part and a small Real part in the CS, this
approach allows us to uncover new variability components that are only detected in the CS. We also demonstrate that, contrary
to earlier claims, the frequency of the type-C quasi-periodic oscillation (QPO) in the black-hole binary GRS 1915+105 does not
depend on energy. Rather, the apparent energy dependence of the QPO frequency can be explained by the presence of a separate
QPO component with a slightly higher frequency than that of the QPO, whose rms amplitude increases faster with energy than
the rms amplitude of the QPO. From all the above we conclude that, as in the case of the PS, the CS of black-hole and neutron-star
binaries can be fitted by a combination of Lorentzian components. Our findings provide evidence that the frequency-dependent
part of the transfer function of these systems can be described by a combination of responses, each of them acting over relatively
well-defined time scales. This conclusion challenges models that assume that the main contribution to the lags comes from a
global, broadband, transfer function of the accreting system.

Key words: stars: black holes – X-rays: binaries – stars: individual: GX 339–4 – stars: individual: GRS 1915+105 – stars:
individual: MAXI J1820+070

1 INTRODUCTION

The X-ray light curves of accreting black-hole and neutron-star X-
ray binaries show a complex pattern of variability with time scales
ranging from milliseconds to years (e.g. Levine et al. 2006; Belloni
et al. 2011; Ingram & Motta 2019, and references therein). In the last
four decades our understanding of the properties of these sources
has advanced significantly due to the realisation that their power
spectra can be decomposed into several variability components with
well-defined properties (e.g., van der Klis 1994; Nowak 2000) that
correlate with each other (Belloni et al. 2002), and other source
properties (see below).

An effective approach to explore the geometry of the accretion
flow in these systems is through the energy- and frequency-dependent
phase lags of the variability (van der Klis et al. 1987; Nowak et al.
1999a). The phase lags measure the phase angle in the complex
Fourier plane of the cross vector of correlated signals measured in
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two energy bands as a function of Fourier frequency (Vaughan &
Nowak 1997; Nowak et al. 1999a).

In the last decade, several models have been proposed to constrain
the physical and geometrical properties of the accretion flow from
measurements of the rms amplitude and lag spectra of these sources
(e.g. Ingram & Done 2011; Ingram et al. 2016; Mastroserio et al.
2018; Kylafis et al. 2020; Karpouzas et al. 2020; Bellavita et al. 2022).
While the rms amplitude of the different variability components can
be obtained from fits to the power spectra of these sources with a
combination of Lorentzian functions (Nowak 2000; Belloni et al.
2002), the lags are obtained from measurements that do not separate
the contribution of those individual components (e.g., van der Klis
et al. 1987; Reig et al. 2000, but see Nowak et al. 1999b).

Specifically, until now the method of measuring the lags of a
broadband noise (BBN) component or a quasi-periodic oscillation
(QPO) in the power spectrum of low-mass X-ray binaries (LMXBs)
was the following:

(i) Compute the power spectrum of the light curve of the source
(e.g., van der Klis 1989b) in the broadest energy band available.
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(ii) Find the interesting components in the power spectrum (e.g.,
Psaltis et al. 1999). In the case of a BBN component, identify the
minimum and maximum frequency over which one wants to measure
the lags (e.g. Reig et al. 2000; Altamirano & Méndez 2015; Kara et al.
2019). In the case of a QPO, find the centroid frequency, 𝜈0, and the
full width at half maximum (FWHM), Δ, of the QPO to measure the
lags in the range from (𝜈0 − 𝑥Δ) to (𝜈0 + 𝑥Δ), where usually 𝑥 = 1/2
(e.g., Wĳnands et al. 1999)

(iii) Compute the cross spectrum using light curves in two energy
bands (e.g., van der Klis et al. 1987; Vaughan et al. 1998; Nowak
et al. 1999a; Uttley et al. 2014).

(iv) Compute the average of the Real and Imaginary parts of the
cross spectrum in the selected frequency range (e.g., van der Klis
et al. 1987; Lewin et al. 1988; Reig et al. 2000; Belloni et al. 2021).

(v) Compute the ratio of the Imaginary to the Real parts and take
the inverse tangent function of that to get the phase lag, Δ𝜙.

(vi) If one is interested in the time lag, Δ𝜏, in that frequency
range, take some representative frequency in the range, e.g., ⟨𝜈⟩ =

(𝜈min + 𝜈max)/2 in the case of the BBN, or 𝜈0 in the case of the QPO,
and divide Δ𝜙 by 2𝜋 times that frequency to get Δ𝜏 (e.g., Nowak
et al. 1999a; de Avellar et al. 2013; Barret 2013). Here we call this
the traditional method.

When using this method, the (underlying) assumption is that the
component of interest dominates in the power and the cross spectra
over the frequency range of interest. This is usually true for kilohertz
QPOs in neutron-star systems (kHz QPOs; Méndez & Belloni 2021)
and high-frequency QPOs in black-hole systems (Morgan et al. 1997;
Belloni et al. 2012; Méndez et al. 2013), since these QPOs appear in
a frequency range in which the only other component present in the
power spectrum is the Poisson noise and the QPO dominates. In many
occasions this is also the case for low-frequency QPOs (see Belloni
& Stella 2014; Ingram & Motta 2019, and references therein) that
appear in a region of the power spectrum in which other components
are present (e.g., a BBN component, sub-harmonics and second or
higher harmonics of the QPO, or other timing components not har-
monically related to the QPO of interest), when the QPO itself is
significantly stronger than those other components (e.g., Zhang et al.
2017, 2020). However, this is not always the case (e.g., Nowak et al.
1999a; van Straaten et al. 2002), and if another component con-
tributes significantly to the power and cross spectra in the frequency
range of interest, the above procedure fails to give the lags of the
component of interest. The situation is even worse when this other
component dominates the variability in that frequency range (e.g.,
Ma et al. 2021; Alabarta et al. 2022).

In the past this problem has been tackled in different ways; for
instance Ma et al. (2021, 2023b) find the “net” lag spectrum of a
QPO by subtracting from the lags of the QPO the average lags over a
frequency range just outside the QPO. This method is mathematically
incorrect: The two measured lags give the angles of the cross vectors
in Fourier space, whereas the angle of the net cross vector is not
the difference of the angles of the two individual cross vectors, but
depends also on their magnitudes. Alternatively, one could subtract
the Real and Imaginary parts of the cross spectrum outside the QPO
instead of the lags, which would be mathematically correct (as far
as we are aware this has not been done in the literature). However,
unless the Real and Imaginary parts of the unwanted components are
constant with frequency, their contribution over the frequency range
of interest is not necessarily the same as what one measures over the
adjacent frequency range. Furthermore, this procedure would over-
correct the lags whenever the wings of the component of interest
contribute significantly to the power in the adjacent frequency range.

Another approach that has been used in the literature is to ignore
the frequency range in which the unwanted components contribute
significantly to the variability (e.g., Wang et al. 2021, 2022). This,
however, does not work when parts of the unwanted components
contribute significantly to the frequency range of interest (see, for
instance, Fig. 4 in Wang et al. 2021, and the discussion in §4.2). In
all these cases, because the power and cross spectra of these sources
contain many overlapping components (e.g., Nowak 2000; Zhang
et al. 2020), it is often impossible to find a “clean” frequency interval
in which one can measure the variability of the component of interest
without contamination from other unwanted components.

If one has a model of the cross spectrum both as a function of
energy and Fourier frequency, instead of extracting the lags one can
fit the model directly to the Real and Imaginary parts of the cross
spectrum as a function of energy in a number of frequency bands
(e.g., Mastroserio et al. 2018) or vice versa (e.g., Rapisarda et al.
2014). For this, one uses the transfer function of the system (e.g.,
between the corona and the accretion disc, Reynolds et al. 1999,
we expand further on the transfer function in §2.3) as a function
of photon energy and Fourier frequency, which is a mathematically
valid approach as long as the model of that transfer function includes
all the components that contribute to the variability. An advantage of
this is that one can build the possible interactions of the individual
components in the model of the transfer function (e.g., Ingram &
van der Klis 2013; Rapisarda et al. 2014). Some models, however,
only consider the global (broadband in Fourier frequency) transfer
function of the system, and explicitly exclude the frequency range in
which the variability is dominated by narrow components, like QPOs
(e.g., Mastroserio et al. 2018; Ingram et al. 2019).

It is traditional to fit power spectra of LMXBs with a linear com-
bination of Lorentzian functions (usually called a multi-Lorentzian
model; see, e.g., Nowak 2000; Belloni et al. 2002). The centroid
frequency, FWHM, rms fractional amplitude, and rms and lag spec-
tra of each of these Lorentzians correlate with each other (e.g., van
Straaten et al. 2002, 2003; Casella et al. 2004; Altamirano et al. 2005,
2008; Motta et al. 2011), with properties of other Lorentzians in the
power spectrum (e.g., Méndez et al. 2001), with the total intensity
and different hardness ratios of the source (e.g., Méndez et al. 1999;
Jonker et al. 2002; van Straaten et al. 2005), with the spectral param-
eters of the different components used to fit the total energy spectrum
of the source (e.g., Di Matteo & Psaltis 1999; Homan et al. 2001;
Remillard et al. 2002; Pottschmidt et al. 2003; Vignarca et al. 2003;
Zdziarski et al. 2005; Shaposhnikov & Titarchuk 2009; Motta et al.
2009, 2010, 2011; Reig et al. 2013; Stiele et al. 2013; Shidatsu et al.
2014; Grinberg et al. 2014; Altamirano & Méndez 2015; Kalamkar
et al. 2015; Reig et al. 2018; De Marco et al. 2015, 2017; De Marco
et al. 2021), with the fluxes of those components (e.g., Markwardt
et al. 1999; Sobczak et al. 2000) and the total flux (e.g., Sobczak et al.
2000; Remillard et al. 2002) or luminosity (Ford et al. 2000) and with
radio properties of the source (e.g., Muno et al. 2001; Fender et al.
2004; Méndez et al. 2022; García et al. 2022). These correlations (the
list of references in this paragraph is certainly incomplete, but it is
impossible to do justice to all the papers that discuss this topic) offer
compelling evidence that those Lorentzian components are not just
a useful empirical description of the power spectrum, but they rep-
resent physical phenomena in the system with (rather) well-defined
characteristic time scales.

In the case of GX 339-4, Nowak et al. (1999b) observed that
whenever one Lorentzian component dominates the power spectrum
(PS) coherence function (see §2) approaches unity and the phase lags
exhibit a relatively flat ‘shelf’; whenever two Lorentzian components
intersect in the PS, there is a decline in the coherence function and a

MNRAS 000, 1–24 (2023)



Hidden variability in accreting X-ray binaries 3

transition from one characteristic phase-lag shelf to another (c.f., for
instance, Figs. 1 and 10 in Nowak et al. 1999a). This result indicates
that, at least in this source, there is a relation between the individual
components that fit the PS and the lags in the cross spectrum (CS).

Here we propose a new method to measure the lags of these com-
ponents in the cross spectrum of LMXBs. In §2 we describe the
mathematical foundation of this approach. In §3 we give examples of
the application of the new proposed method to a number of cases, and
demonstrate the advantages of this method in comparison with the
traditional one. In fact, in doing this we unveil new variability com-
ponents that have gone undetected before, and we show that ignoring
these components led to wrong conclusions regarding some charac-
teristics of the QPOs. In §4 we summarise our findings and discuss
some unexpected consequences of our results that have significant
impact upon models of the variability that have been presented in the
literature. Finally, in §5 we sum up our conclusions.

2 MATHEMATICAL FORMALISM

Suppose we have two noiseless1 time series, 𝑥(𝑡) and 𝑦(𝑡), that
represent the X-ray intensity of a variable source measured in two
different energy bands, with corresponding complex Fourier trans-
forms 𝑋 (𝜈) and 𝑌 (𝜈). We define2 the power spectrum of each
of these series, 𝐺𝑥𝑥 (𝜈) = ⟨𝑋 (𝜈)𝑋∗ (𝜈)⟩ = ⟨|𝑋 (𝜈) |2⟩, 𝐺𝑦𝑦 (𝜈) =

⟨𝑌 (𝜈)𝑌∗ (𝜈)⟩ = ⟨|𝑌 (𝜈) |2⟩, and the cross spectrum between the two
series, 𝐺𝑥𝑦 (𝜈) = ⟨𝑋 (𝜈)𝑌∗ (𝜈)⟩ = ⟨|𝑋 (𝜈) | |𝑌 (𝜈) |𝑒𝑖Δ𝜙𝑥𝑦 (𝜈) ⟩, where
Δ𝜙𝑥𝑦 (𝜈) is the phase lag between the two series at frequency 𝜈, and
the angle brackets indicate averaging over an ensemble of measure-
ments of 𝑋 (𝜈) and𝑌 (𝜈) (see Bendat & Piersol 2010, for details). We
can then define the coherence function between the two series (Ben-
dat & Piersol 2010; Vaughan & Nowak 1997; Nowak et al. 1999a):

𝛾2
𝑥𝑦 (𝜈) =

|𝐺𝑥𝑦 (𝜈) |2

𝐺𝑥𝑥 (𝜈)𝐺𝑦𝑦 (𝜈)
. (1)

From the above definition it is clear that if the two time series
are related by a linear transformation, 𝐺𝑦𝑦 (𝜈) = |𝐻 (𝜈) |2𝐺𝑥𝑥 (𝜈)
and 𝐺𝑥𝑦 (𝜈) = 𝐻 (𝜈)𝐺𝑥𝑥 (𝜈), the coherence function is unity at all
frequencies. The complex function 𝐻 (𝜈) = |𝐻 (𝜈) |𝑒−𝑖Δ𝜙 (𝜈) is the
frequency response function, sometimes also called the transfer func-
tion, of the system (c.f., Bendat & Piersol 2010, see §2.3 for more
details of the possible interpretations of the transfer function).

Let us consider that the time series 𝑥(𝑡) and 𝑦(𝑡) can be decom-
posed in a finite number of individual components that are significant
over a limited frequency range. It is traditional to fit the power spec-
trum of LMXBs with a linear combination of Lorentzian functions
(Nowak 2000; Belloni et al. 2002),

𝐿 (𝜈; 𝜈0,Δ) =
Δ

𝜋 + 2 tan−1
(

2𝜈0
Δ

) 1

(𝜈 − 𝜈0)2 +
(
Δ
2

)2 , (2)

where 𝜈0 and Δ are, respectively, the centroid frequency and the
FWHM of each Lorentzian. (With the above definition the integral
of the Lorentzian function from zero to infinity is one.) Some of

1 Although we discuss the case of noiseless continuous functions, the same
formalism applies to discrete data that include noise, as shown in Bendat &
Piersol (2010) and Vaughan & Nowak (1997).
2 Here we mostly use the notation of Bendat & Piersol (2010). In the notation
of Vaughan & Nowak (1997) 𝜈 = 𝑓 , 𝐺𝑥𝑥 (𝜈) = ⟨ |𝑆1 ( 𝑓 ) |2 ⟩, 𝐺𝑦𝑦 (𝜈) =

⟨ |𝑆2 ( 𝑓 ) |2 ⟩, and 𝐺𝑥𝑦 (𝜈) = ⟨𝐶 ( 𝑓 ) ⟩.

these Lorentzians have a central frequency equal to zero and are
therefore called zero-centred Lorentzians, while others have a central
frequency that is different from zero and, depending on their quality
factor, 𝑄 = 𝜈0/Δ, they are called either peaked noise if 𝑄 < 2 or
QPOs if 𝑄 > 2 (e.g. van der Klis 1994). Since this is an arbitrary
definition (Belloni et al. 2002), we call these components QPOs
regardless of their 𝑄 values.

We will now work out the expression of the Real and Imaginary
parts of the cross spectrum assuming, as in Nowak et al. (1999b),
that:
(i) there are a number of input processes that are coherent with the
corresponding output processes;
(ii) the individual input processes (as well as the individual output
processes3) are incoherent with one another. We note that we only
require that two input components are incoherent with each other if
they overlap in Fourier frequency. This assumption is not necessary
if the components are very far apart from each other in frequency, as
is for instance the case of harmonics/sub-harmonics of a QPO.

Assumption (i) is justified by the fact that, as far as this was
measured, strong QPOs, which dominate the variability over a certain
frequency range, have a coherence that is consistent with unity. The
cleanest case is that of the kHz QPOs, which appear in a part of
the power spectrum in which no other component contributes to the
variability. This is important because the coherence drops if two or
more components with different amplitudes and phases of their cross
vectors contribute to the variability over the same frequency range
(Vaughan & Nowak 1997). For instance, de Avellar et al. (2013)
showed that the coherence of one of the strongest kHz QPO in the
neutron-star system 4U 1608–52 is consistent with unity across the
QPO profile (see their Fig. 1). On the other hand, Troyer et al. (2018)
showed that for the kHz QPOs in 14 neutron-star LMXBs the total
rms amplitude in the power spectrum and the cross amplitudes in the
cross spectra are consistent with being the same. For this to be the
case the coherence at the QPO frequency must be unity.

The coherence function of strong low-frequency QPOs in black-
hole LMXBs is also consistent with being unity. For instance, in
XTE J1550–564, while over a broad range of Fourier frequencies the
coherence is less than one, at the frequency of the type-C QPO the
coherence always climbs back to one (see, e.g., Fig. 1 of Cui et al.
2000, and Fig. 6 of Rapisarda et al. 2017a). The same is true for the
type-C QPO in GRS 1915+105 (Muno et al. 2001).

This holds true not only for narrow QPOs, but also for broader
variability components. For instance, the power spectrum of Cyg
X–1 consists (basically) of two broad Lorentzian components (e.g.
Grinberg et al. 2014), while the coherence is about unity over the
whole frequency range in which either of these components domi-
nates, and it drops slightly when the two components cross (Nowak
et al. 1999a). In fact the power spectrum of Cyg X-1 consists of more
than just two components (see, e.g., Fig. 3 in Nowak 2000), and the
coherence drops whenever two of those components cross (see, e.g.,
Fig. 5 in Nowak et al. 1999a, and Fig. 5 in Rapisarda et al. 2017b).
Interestingly, in Cyg X–1 the frequencies at which the coherence
drops coincide with the frequencies at which the power spectrum
shows breaks, and the lag spectrum shows shelves of more or less
constant lags (compare, for instance, the bottom-left panel of Fig. 1,
the bottom-right panel of Fig. 5 and the bottom-right panel of Fig.
10 in Nowak et al. 1999a).

Assumption (i) implies that we can write, for each Lorentzian,

3 This is ensured if the input processes are incoherent with one another, but
each output process is perfectly coherent with its corresponding input process.
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𝐺𝑥𝑦,𝑖 = 𝐻𝑖 (𝜈)𝐺𝑥𝑥,𝑖 (𝜈), and therefore each Lorentzian will have its
own lag spectrum, arg [𝐻𝑖 (𝜈)] = Δ𝜙𝑥𝑦,𝑖 (𝜈). We can therefore write
that:

𝐺𝑥𝑥 (𝜈) =
𝑛∑︁
𝑖=1

𝐺𝑥𝑥,𝑖 (𝜈) ≔
𝑛∑︁
𝑖=1

𝐴𝑖𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖)

𝐺𝑦𝑦 (𝜈) =
𝑛∑︁
𝑖=1

𝐺𝑦𝑦,𝑖 (𝜈) ≔
𝑛∑︁
𝑖=1

𝐵𝑖𝐿(𝜈; 𝜈0,𝑖 ,Δ𝑖),
(3)

where 𝐴𝑖 , 𝐵𝑖 ∈ R are the integrated power, from zero to infinity, of
each Lorentzian component in each of the two energy bands.

Assumption (ii), which allows us to decompose the power spectra
as in eq. 3, is that the 𝑛 Lorentzians are uncoupled and their contri-
bution to the power spectrum are additive. While it has been used
repeatedly in the literature to fit the power spectra of LMXBs (e.g.
Nowak 2000; Belloni et al. 2002; van Straaten et al. 2003; Altamirano
et al. 2008, etc.), this assumption would appear to contradict the lin-
ear relation between the broadband absolute rms amplitude and the
X-ray flux (e.g. Uttley et al. 2005) in LMXBs and Active Galactic Nu-
clei; this rms-flux relation suggests that the variability should be due
to a multiplicative rather than an additive process, favouring models
of propagating mass accretion rate fluctuations (Arévalo & Uttley
2006, see Ingram & van der Klis 2013 and Rapisarda et al. 2016 for
the mathematical description and an implementation of the model of
propagating fluctuations to produce the power and cross spectra of
LMXBs). However, Heil et al. (2011) showed that the low-frequency
QPO in the black-hole candidate XTE J1550–564 does not follow
a single linear rms-flux relation, but that the slope of this relation
depends on the frequency of the QPO. Rapisarda et al. (2017a), on
the other hand, demonstrated that propagation models fail to repro-
duce the data, and concluded that the discrepancies between data and
model are a generic issue inherent to these models, rather than being
specific to any particular implementation of that scenario. Finally,
since one computes power spectra of stationary time series, there
must be a linear, additive, model that describes the data (Scargle
2020). In any case, we can test the predictions of our hypothesis that
the Lorentzians are mutually incoherent, as we explain below.

If we accept that assumption (ii) above holds, it is enough to work
out the case of a signal with a power spectrum consisting of only
one Lorentzian, and combine the results to get the power and cross
spectra of a combination of Lorentzians at the end:

𝐺𝑥𝑥 (𝜈) = 𝐴 𝐿(𝜈; 𝜈0,Δ)
𝐺𝑦𝑦 (𝜈) = 𝐵 𝐿(𝜈; 𝜈0,Δ).

(4)

From eq. 1, since for each Lorentzian 𝛾2
𝑥𝑦 = 1, we can write:

|𝐺𝑥𝑦 (𝜈) |2 = Re[𝐺𝑥𝑦 (𝜈)]2 + Im[𝐺𝑥𝑦 (𝜈)]2 =

= 𝐺𝑥𝑥 (𝜈)𝐺𝑦𝑦 (𝜈) = 𝐴𝐵𝐿2 (𝜈; 𝜈0,Δ).
(5)

The frequency-dependent phase lag between the two signals rep-
resented by the Lorentzian functions can be written in the usual way:

Δ𝜙𝑥𝑦 (𝜈) = tan−1
( Im[𝐺𝑥𝑦 (𝜈)]
Re[𝐺𝑥𝑦 (𝜈)]

)
= 𝑔(𝜈; 𝑝 𝑗 ), (6)

where 𝑔(𝜈; 𝑝 𝑗 ) is a function of frequency with 𝑚 parameters 𝑝 𝑗 . It
is easy to see that we can combine eqs 5 and 6 to get

Re[𝐺𝑥𝑦 (𝜈)] = 𝐶 𝐿(𝜈; 𝜈0,Δ) cos [𝑔(𝜈; 𝑝 𝑗 )]
Im[𝐺𝑥𝑦 (𝜈)] = 𝐶 𝐿(𝜈; 𝜈0,Δ) sin [𝑔(𝜈; 𝑝 𝑗 )],

(7)

where 𝐶 =
√
𝐴 𝐵.

In the general case, if we assume that the power spectra of two

signals 𝑥(𝑡) and 𝑦(𝑡) can be decomposed into a finite number, 𝑛,
of Lorentzian functions4 that are uncorrelated with each other, be-
cause the individual Lorentzians are coherent between the two energy
bands at all Fourier frequencies, the Real/Imaginary part of the cross
spectrum between the two signals is also a linear combination of
Lorentzian functions multiplied by a cosine/sine function of the, in
principle frequency-dependent, phase lag between the two corre-
sponding Lorentzian signals:

Re[𝐺𝑥𝑦 (𝜈)] =
𝑛∑︁
𝑖=1

𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) cos [Δ𝜙𝑥𝑦,𝑖 (𝜈)]

Im[𝐺𝑥𝑦 (𝜈)] =
𝑛∑︁
𝑖=1

𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) sin [Δ𝜙𝑥𝑦,𝑖 (𝜈)],
(8)

with Δ𝜙𝑥𝑦,𝑖 (𝜈) = 𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖) and 𝐶𝑖 =
√
𝐴𝑖𝐵𝑖 .

In practice, one fits the PS in two energy bands using eq. 3 and
the CS between the same two bands using eq. 8, for an arbitrary
choice of 𝑔(𝜈; 𝑝 𝑗 ,𝑖) (more on this below). The goal is to find, for
each Lorentzian in the model, the parameters 𝐴𝑖 , 𝐵𝑖 , 𝜈0,𝑖 , Δ𝑖 and
𝑝 𝑗 ,𝑖 , 𝑗 = 1...𝑚. Instead of the PS in two bands one can use the
full-band PS, 𝐺𝑧𝑧 , which can also be written as a a combination
of the same Lorentzian functions, 𝐺𝑧𝑧 (𝜈) =

∑𝑛
𝑖=1 𝐷𝑖𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖)

(because, except for the normalisations, the Lorentzians that fit the
QPOs in the individual bands also fit the QPOs in the full band); in
that case, for each Lorentzian, the parameters of the model are 𝐷𝑖 ,
𝜈0,𝑖 , Δ𝑖 , 𝐶𝑖 and 𝑝 𝑗 ,𝑖 .

From here we can write the total, frequency-dependent, phase lags,
Δ𝜙(𝜈), as:

Δ𝜙(𝜈) = tan−1
( ∑𝑛

𝑖=1 𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) sin [𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖)]∑𝑛
𝑖=1 𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) cos [𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖)]

)
. (9)

(Notice that the total phase lags given in eq. 9 are different from the
phase lags of each Lorentzian, Δ𝜙𝑥𝑦,𝑖 (𝜈) = 𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖) defined in
eq. 6.) One prediction of our proposal is that the same model that fits
the power and cross spectra should correctly reproduce the phase-
lag vs. frequency spectra, and in particular yield the same “shelves”
observed in the plots of the phase-lag vs. Fourier frequency (see, for
instance, Fig. 10 of Nowak et al. 1999a, especially the bottom-right
panel).

If we use two PS and the CS, we can also write the total intrinsic
coherence function of the two signals as a function of frequency:

𝛾2
𝑥𝑦 (𝜈) =

|𝐺𝑥𝑦 (𝜈) |2

𝐺𝑥𝑥 (𝜈)𝐺𝑦𝑦 (𝜈)
=

(
𝑛∑︁
𝑖=1

𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) cos [𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖)]
)2

+

(
𝑛∑︁
𝑖=1

𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) sin [𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖)]
)2 ×

1(∑𝑛
𝑖=1 𝐴𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖)

) (∑𝑛
𝑖=1 𝐵𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖)

) .
(10)

(This is the same as eq. 10 in Vaughan & Nowak 1997 but for 𝑛 com-
ponents.) From this, the second prediction of our proposal is that,

4 In reality this argument is valid for any function, not just Lorentzians, as
long as the same linear combination of those functions, except perhaps for
the normalisation factors, fits the power spectra of the two signals, 𝑥 (𝑡 ) and
𝑦 (𝑡 ) .
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if indeed the Lorentzian functions are incoherent with one another,
the same model that fits the power and cross spectra should correctly
reproduce the coherence function vs. Fourier frequency. Specifically,
if two or more Lorentzian functions contribute significantly at some
Fourier frequency, and the Lorentzians have different phase lags and
different ratios of the Fourier amplitude in each energy band, the
observed intrinsic coherence function should drop at those frequen-
cies. Conversely, if the observed intrinsic coherence function drops
at some Fourier frequency, the best-fitting model of the power and
cross spectra should contain two or more Lorentzians with different
properties of the cross vectors that contribute significantly to the vari-
ability at that Fourier frequency (see Vaughan & Nowak 1997, for
details). Finally, if a strong Lorentzian dominates the variability over
a frequency range, and if our assumption (i) is correct, the coherence
should tend to unity in that frequency range.

2.1 Phase-lag model

Since any function 𝑔(𝜈; 𝑝 𝑗 ) will satisfy eqs. 5 and 7, as we men-
tion above, to fit data we need to specify these functions for each
Lorentzian 𝑖 in the model. The most basic case is when each of the
functions depends only on one parameter, 𝑝𝑖 = 𝑘𝑖 , and from that
family of functions the two simplest cases are: (i) The phase lags are
constant5, Δ𝜙𝑥𝑦,𝑖 (𝜈) = 𝑔𝑖 (𝜈; 𝑝𝑖) = 2𝜋𝑘𝑖 . In this case, for all Fourier
frequencies, the cross vector of each individual Lorentzian function
points in the same direction, at an angle 2𝜋𝑘𝑖 radians with respect to
the Real axis. (ii) The time lags are constant, and hence the phase lags
increase linearly with frequency, Δ𝜙𝑥𝑦,𝑖 (𝜈) = 𝑔𝑖 (𝜈; 𝑝𝑖) = 2𝜋𝑘𝑖𝜈.
This could be the case if the lags are produced by delays of photons
propagating in the accretion flow of LMXBs. In this case the cross
vector rotates, always in the same direction, at a constant rate of 2𝜋𝑘𝑖
radians per Hz in the Fourier plane as a function of Fourier frequency.

From the above it is apparent that, unless 𝑔(𝜈) is constant, the
cross vector will rotate in some more or less complex way, perhaps
changing the direction of the rotation, as a function of frequency in
the Fourier plane. If this happens, the phase lags may wrap as the
angle changes abruptly from 𝜋 at some Fourier frequency to−𝜋 at the
next frequency, or vice versa. For the phase lags not to wrap it must be
true that −𝜋 ≤ 𝑔(𝜈) < 𝜋 over the frequency range in which the signal
contributes significantly to the variability. (We would not be able to
observe a phase wrap if it happened at frequencies where the power
spectrum was dominated by noise.) For instance, if a component in
the power spectrum has a time lag of ∼ 100 ms that is constant with
Fourier frequency, the cross vector associated with that component
will rotate in the Fourier plane at ∼ 0.6 radians per Hz, such that if
the component extends over a frequency range of ≳ 10 Hz its phase
lags will wrap at least once. Since, until now, such a wrap has not
been reported, and since in LMXBs the time lags go as 𝜈∼−0.7 over a
relatively broad frequency range (at least∼ 100 Hz; e.g., Nowak et al.
1999a), such that the phase lags increase very slowly, Δ𝜙 ∼ 𝜈∼0.3,
from the two simplest cases mentioned above the one of constant
phase lags appears more natural. In what follows we will assume that
the phase lags of individual components in the power spectrum are
independent of Fourier frequency (constant phase lags) or increase
linearly with frequency (constant time lags).

5 This is equivalent to assuming that the time lags are proportional to 𝜈−1.

2.2 Average phase and time lags over a frequency range

In the above discussion the functions 𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖) are the frequency-
dependent phase lags of the individual Lorentzian components. A
quantity sometimes given in the literature (e.g. Reig et al. 2000) is
the total phase lag over the frequency range Δ𝜈 = 𝜈2 − 𝜈1:

Δ𝜙Δ𝜈 = tan−1
( ∫ 𝜈2

𝜈1
Im[𝐺𝑥𝑦 (𝜈)]𝑑𝜈∫ 𝜈2

𝜈1
Re[𝐺𝑥𝑦 (𝜈)]𝑑𝜈

)
=

= tan−1
( ∫ 𝜈2

𝜈1

∑𝑛
𝑖=1 𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) sin [𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖)]𝑑𝜈∫ 𝜈2

𝜈1

∑𝑛
𝑖=1 𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) cos [𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖)]𝑑𝜈

)
.

(11)

A related, but different, quantity is the average phase lag over the
same frequency range:

⟨Δ𝜙⟩Δ𝜈 =
1
Δ𝜈

∫ 𝜈2

𝜈1

Δ𝜙(𝜈)𝑑𝜈 =

1
Δ𝜈

∫ 𝜈2

𝜈1

tan−1
( Im[𝐺𝑥𝑦 (𝜈)]
Re[𝐺𝑥𝑦 (𝜈)]

)
𝑑𝜈 =

=
1
Δ𝜈

∫ 𝜈2

𝜈1

tan−1
( ∑𝑛

𝑖=1 𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) sin [𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖)]∑𝑛
𝑖=1 𝐶𝑖 𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) cos [𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖)]

)
𝑑𝜈.

(12)

It is easy to show that when the cross spectrum consists of a single
Lorentzian with 𝑔(𝜈; 𝑘) = 2𝜋𝑘 (constant phase lags), ⟨Δ𝜙⟩Δ𝜈 =

2𝜋𝑘 = Δ𝜙Δ𝜈 , but for any other form of 𝑔(𝜈, 𝑝 𝑗 ), or if the cross
spectrum consists of a linear combination of Lorentzians, ⟨Δ𝜙⟩Δ𝜈 ≠

Δ𝜙Δ𝜈 , and hence ⟨Δ𝜙⟩Δ𝜈 should not be reported.
It is not possible to define the total time lag over the frequency

range Δ𝜈, Δ𝜏Δ𝜈 , in a similar way as we defined Δ𝜙Δ𝜈 in eq. 11, but a
quantity commonly given in the literature is Δ𝜏Δ𝜈 = Δ𝜙Δ𝜈/(2𝜋⟨𝜈⟩),
where ⟨𝜈⟩ = (𝜈1 + 𝜈2)/2. In the case of a narrow component, this
is more or less similar to the usual definition for a pure sinusoidal
function with frequency 𝜈0, Δ𝜏(𝜈0) = Δ𝜙(𝜈0)/(2𝜋𝜈0), but for a
broad component, e.g., the BBN (e.g. Kara et al. 2019; Wang et al.
2022), these two expressions are not mathematically equivalent and
hence Δ𝜏Δ𝜈 is not a well-defined quantity and should not be used.

As with the phase lags, we can define the average time lags over a
frequency range Δ𝜈:

⟨Δ𝜏⟩Δ𝜈 =
1
Δ𝜈

∫ 𝜈2

𝜈1

Δ𝜏(𝜈)𝑑𝜈 =
1
Δ𝜈

∫ 𝜈2

𝜈1

Δ𝜙(𝜈)
2𝜋𝜈

𝑑𝜈, (13)

which is equal to ⟨Δ𝜙⟩Δ𝜈/(2𝜋⟨𝜈⟩) only when the time lags are con-
stant with frequency, Δ𝜏(𝜈) = 𝑘 . For instance, if Δ𝜙(𝜈) = 2𝜋𝑘
(constant phase lags), ⟨Δ𝜏⟩Δ𝜈 = (𝑘/Δ𝜈) ln (𝜈2/𝜈1), and the average
time lags will reflect the (arbitrary) boundaries of the selected fre-
quency range. Since in LMXBs it is generally true that the time lags
extending over a broad frequency range are not constant (see, e.g.,
Fig. 1 in De Marco et al. 2021, or Fig. 3h in Wang et al. 2022), con-
trary to what is sometimes mentioned in the literature (e.g. Belloni
& Bhattacharya 2022) one should not report ⟨Δ𝜏⟩Δ𝜈 to characterise
those lags either. (Notice that rebinning the time-lag spectrum as,
e.g., in Wang et al. 2022, is equivalent to this, and should therefore
not be done.)

2.3 Transfer/response function

Any linear time-invariant system is characterised by an impulse
response function, ℎ(𝜏), which gives the output of the system
at any time, 𝑦(𝑡), to an input, 𝑥(𝑡), applied a time 𝜏 before,
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6 M. Méndez et al.

Table 1. Definitions and acronyms

Acronym/text shortcut Explanation

PS Power density spectrum
CS Either the cross spectrum, or the Real and Imaginary parts of the CS, depending on the context
CV Cross vector in the Fourier plane with phase Δ𝜙 (𝜈) and modulus |CV(𝜈) |
Phase-lag frequency spectrum Phase lags between light curves in two energy bands vs. Fourier frequency
Derived model Model of the phase-lag frequency spectrum derived from the model fitted to the Real and Imaginary parts of the CS

Model of the intrinsic coherence function derived from the model fitted to PS in two energy bands and the Real and
Imaginary parts of the CS in those same two bands.
These models are not fitted to the lags or the intrinsic coherence function

Phase lags of a QPO Phase lags of the Lorentzian that fits the QPO, computed as tan−1 (𝑁IM/𝑁RE ) , where 𝑁RE and 𝑁IM are the integrals
from zero to infinity of the Lorentzian functions used to fit, respectively, the Real and Imaginary parts of the CS

Traditional phase lags of a QPO tan−1 (⟨IM⟩/⟨RE⟩) , where ⟨RE⟩ and ⟨IM⟩ are the averages of, respectively, the Real and Imaginary parts of the
CS over a fixed frequency range across the QPO profile

Constant phase-lags model Model of the CS assuming constant phase lags with Fourier frequency for each individual Lorentzian component,
Δ𝜙𝑖 (𝜈) = 𝑔𝑖 (𝜈; 𝑝 𝑗,𝑖 ) = 2𝜋𝑘𝑖 (see §2.1)

Constant time-lags model Model of the CS assuming constant time lags with Fourier frequency for each individual Lorentzian component,
Δ𝜏𝑖 (𝜈) = 𝑘𝑖 such that Δ𝜙𝑖 (𝜈) = 𝑔𝑖 (𝜈; 𝑝 𝑗,𝑖 ) = 2𝜋𝑘𝑖𝜈 (see §2.1)

𝑦(𝑡) =
∫ ∞
−∞ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏. The Fourier transform of the impulse

response function, 𝐻 (𝜈), is the frequency response or transfer func-
tion of the system (Bendat & Piersol 2010). If 𝐻 (𝜈) is the same
for all realisations of the two processes, the processes are said to be
coherent at frequency 𝜈 (see §2).

In a manner similar to Bendat & Piersol (2010), one can consider
𝑥(𝑡) and 𝑦(𝑡) as correlated light curves of a source in two energy
bands, as discussed earlier. Here, 𝐻 (𝜈) represents the transfer func-
tion that yields the light curve in band 𝑦 based on the light curve
in band 𝑥. Alternative, one can think of 𝑥(𝑡) and 𝑦(𝑡) as the signals
of two physical components of the system, e.g., the accretion disc
and the corona, such that the transfer function gives the signal of
one in terms of the signal of the other (e.g., Reynolds et al. 1999;
Mastroserio et al. 2018; Ingram et al. 2019). In the first case, for
light curves in two energy bands, the transfer function depends only
upon Fourier frequency (for the given energy bands), and it refers to
two observed quantities, each of them (possibly) being produced by
a combination of more than one physical mechanism (e.g., the accre-
tion disc, the corona, etc.). In the second case, the transfer function
refers to the physical mechanisms themselves, and it depends both on
Fourier frequency and energy; if one wants to compute light curves
or power and cross spectra in certain energy bands to compare with
observations, one needs to integrate the transfer function over energy
(see Mastroserio et al. 2018, 2019, for details).

In this paper we will mostly use the term transfer function to refer
to the first case. Specifically, as stated in §2, arg [𝐻 (𝜈)] gives the
phase-lags of light curve 𝑦(𝑡) with respect to light curve 𝑥(𝑡) at
frequency 𝜈. Hence, when we fit Lorentzian functions to the power
and cross spectra of a source, as explained above, we will be talking
of the frequency-dependent lags of the Lorentzian that represents
the variability in the power and cross spectra in one energy band
with respect to the Lorentzian that represents the same variability in
another energy band. In some passages, when we talk about global
transfer or response functions, we refer to the second case.

3 APPLICATION TO DATA

In this section we apply the formalism presented in §2 to five ob-
servations of three black-hole X-ray binaries: an observation of GX
339–4 and two observations of GRS 1915+105 with the Proportional
Counter Array (PCA; Jahoda et al. 2006) on board the Rossi X-ray

Timing Explorer (RXTE; Bradt et al. 1993), and two observations of
MAXI J1820+070 with the Neutron Star Interior Explorer (NICER;
Gendreau et al. 2012). Each of the examples highlights certain as-
pects of the method or provide useful insight into aspects of the
variability of accreting X-ray binaries. (We have already presented
results obtained with an initial version of this method in Alabarta
et al. 2022 and Peirano & Méndez 2022.)

In each of the subsections we first give very briefly the necessary
information of how we process the data and produce power, cross and
lag spectra and coherence function of the source, and we then give the
results of fitting those data. In all cases, when we fit simultaneously
the power spectrum and the Real and Imaginary parts of the cross
spectrum , we link the frequency and FWHM of each Lorentzian in
the model so that these parameters are the same in the PS and CS. In
some cases we fix the frequency and FWHM of all the Lorentzians to
the values we obtain from an initial fit to the PS alone, while in other
cases we leave these parameters free to vary, but we always link them
across the PS and the Real and Imaginary parts of the CS. In each
case we indicate whether we do one or the other. On the other hand,
we always leave free the normalisations of all the Lorentzians and
allow them to vary independently in the PS and the CS. If we plot
the phase-lag frequency spectrum or the intrinsic coherence function
together with the best fitting model, we do not fit the model to the
phase-lag frequency spectrum or the intrinsic coherence function,
but we derive the model from the best-fitting model to the Real and
Imaginary parts of the CS. We call this the “derived model” of the
phase-lag spectrum/intrinsic coherence function.

To simplify the reading we give the definition of some acronyms
and language shortcuts that we use often in the text in Table 1. For
completeness, we also give the acronym in the text the first time we
define it.

We use the recommended tools for each mission to extract cali-
brated clean event files for each observation. When extracting events
in certain energy bands, we always use the channel space of the de-
tector, and convert those values into energies taking into account the
channel to energy conversion for each instrument. In all cases we
give both the channel and the (approximate) energy range that we
use to analyse the data.

Once we have obtained the final event files, we use GHATS6 to

6 http://astrosat-ssc.iucaa.in/uploads/ghats_home.html
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compute the Fast Fourier Transform (FFT) in each band of interest.
Except in one case (see below), we always compute the FFT of the
data from the full observation (we give the exact ObsIDs that we
use in each subsection). For this we compute FFTs on segments of a
given duration, 𝑇FFT < 𝑇exp, where 𝑇exp is the total duration of the
observation, with a time resolution, Δ𝑡, that allows us to reach (and
exceed) the frequency of interest in the PS and CS, and we average
the PS and CS of the individual segments (van der Klis 1989b). The
number of segments that we average for each PS and CS is therefore
𝑀 = integer(𝑇exp/𝑇FFT). From this, the minimum frequency and the
frequency resolution of the PS and CS are 𝜈min = Δ𝜈 = 1/𝑇FFT,
while the Nyquist frequency is 𝜈Nyq = 1/(2Δ𝑡). The averaging of
the PS and CS per observation increases the signal-to-noise ratio
by a factor ∼

√
𝑀 . We further rebin the average PS and CS of an

observation logarithmically in frequency such that the size of a bin
increases by a factor ≈ 1.023(= 101/100) compared to the size of the
previous bin to increase the signal-to-noise ratio further.

We use Xspec v.12.13.0 (Arnaud 1996) to fit the PS and CS.
We always start by first fitting the full-band PS with a model with
only one Lorentzian, and we add a new Lorentzian until the reduced
𝜒2 is about one and the fit shows no significant structured residuals.
The final model of the PS, consisting of 𝑛 Lorentzians (eq. 3), is∑𝑛
𝑖=1 𝐷𝑖𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖). In §3.1-3.4 we fit simultaneously the full-

band PS, 𝐺𝑧𝑧 (𝜈), and the the Real and Imaginary parts of the CS in
two bands, Re

[
𝐺𝑥𝑦 (𝜈)

]
and Im

[
𝐺𝑥𝑦 (𝜈)

]
, while in §3.1, §3.4 and

§3.5 we also use the PS in the two bands, 𝐺𝑥𝑥 (𝜈) and 𝐺𝑦𝑦 (𝜈), to be
able to compute the coherence function.

When we fit the PS and the CS simultaneously, we need to assume
the frequency dependence of the phase lags (see §2.1). Here we only
consider two cases: either the phase lags or the time lags are constant
with frequency (constant phase-lags or constant time-lags model,
respectively); although it is possible that the phase lags of different
variability components depend differently upon frequency, here we
always assume that the same functional dependence applies to all the
Lorentzian components. We mention in the text and in the Figure
and Table captions the functional dependence of the lags that we use
when we fit the data.

Specifically, when we use the constant phase-lags model we fit
functions of the form

∑𝑛
𝑖=1 𝐶𝑖𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) cos (2𝜋𝑘𝑖) to the Real

part of the CS and
∑𝑛
𝑖=1 𝐶𝑖𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) sin (2𝜋𝑘𝑖) to the Imaginary

part, where 𝐶𝑖 is the integral from zero to infinity of the modulus
squared of the cross vector (CV) and 2𝜋𝑘𝑖 are the phase lags for each
component (eq. 8 with Δ𝜙𝑥𝑦,𝑖 (𝜈) = 2𝜋𝑘𝑖). The 𝐶𝑖 and 𝑘𝑖 are free
parameters that need to be fitted.

When we use the constant time-lags model we fit the Real part
of the CS with

∑𝑛
𝑖=1 𝐶𝑖𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) cos (2𝜋𝑘𝑖𝜈) and the Imaginary

part with
∑𝑛
𝑖=1 𝐶𝑖𝐿 (𝜈; 𝜈0,𝑖 ,Δ𝑖) sin (2𝜋𝑘𝑖𝜈), where the 𝑘𝑖 are now

the time lags of each component (eq. 8 with Δ𝜙𝑥𝑦,𝑖 (𝜈) = 2𝜋𝑘𝑖𝜈).
Since we normalise the PS and CS to units of fractional rms

squared per Hz (Belloni & Hasinger 1990), the integrated fractional
rms amplitude of a Lorentzian is the square root of its normalisation.
We consider that a Lorentzian is significantly needed in the model of
the PS if the normalisation of that Lorentzian divided by its 1-𝜎 error
is larger than 3. For the CS we take the modulus squared of the CV
and its error. If the errors are asymmetric, we take the negative error
to calculate the significance. Unless otherwise indicated, we give the
1-𝜎 error for one parameter and, if a Lorentzian is absent, we give
the 95% confidence upper limit to the rms fractional amplitude of
that Lorentzian in the power or the cross spectrum.

In the literature, authors call “the phase lags of a QPO” to the
inverse tangent function of the ratio of the average of the Imaginary
part to the average of the Real part of CS; these averages are computed

over a fixed frequency range across the QPO profile, usually covering
a FWHM, from 𝜈QPO −Δ/2 to 𝜈QPO +Δ/2. From this, “the time lags
of the QPO” are defined as the phase lags of the QPO divided by
2𝜋 times the centroid frequency of the QPO (but see §2.2 for the
problems of this definition). We call these quantities the “traditional
phase/time lags of a QPO”.

On the contrary, following the explanation in §2.1, here we call
“the phase lags of a QPO” to the quantity 2𝜋𝑘𝑖 for the Lorentzian that
fits the QPO in the CS for the constant phase-lags model, and “the
time lags of a QPO” to the parameter 𝑘𝑖 for the Lorentzian that fits
the QPO in te CS for the constant time-lags model. As we explained
in §2.2, this means that we cannot compute the time lags of a QPO
when we use the constant phase-lags model, and vice versa. Withal,
the phase and time lags of a QPO are not related via the centroid
frequency of the QPO as in the case of the traditional definition of
the phase and time lags of the QPO (see §2).

Finally, as is customary, we say that lags are hard or positive if the
high-energy photons lag the low-energy ones, and soft or negative if
the opposite happens.

3.1 Case study 1: The complex lag spectrum of the type-C QPO
in GX 339–4

We use the RXTE observation 92035-01-03-06 of GX 339–4 that
was analysed by Zhang et al. (2017, see their Fig. 1) and Altami-
rano & Méndez (2015, see their Fig. 3). This observation contains a
prominent type-C QPO (see Wĳnands et al. 1999; Remillard et al.
2002; Casella et al. 2005, for the definition of the three types of
low-frequency QPOs, types A, B and C, in black-hole X-ray bina-
ries) at ∼ 5.5 Hz that shows a rather complex phase-lag frequency
spectrum: The hard phase lags around the QPO are double-peaked,
with the minimum centred on the QPO centroid frequency (see top
and middle panels of Fig. 1)

Although no systematic study of this type of lag-frequency spectra
exists, this is not an isolated case, and a similar trend is apparent in
several other observations of GX 339–4 (see Fig. 1 of Zhang et al.
2017, for other examples) and GRS 1915+105 (Zhang et al. 2020,
see also §3.2 below).

We take the Binned and Event Mode files of this observation to
compute the full-band (channels 0 to 249) PS and CS of photons in
the 5.4 − 115 keV band7 (channels 14 to 249) with respect to those
in the 1.95 − 5.4 keV band (channels 0 to 13). Both for the PS and
the CS we use 𝑇FFT = 16 s, yielding 𝜈min = Δ𝜈 = 1/16 Hz, at a time
resolution Δ𝑡 = 1/2048 s such that 𝜈Nyquist = 1024 Hz.

We initially fit the PS in the range 0.5 − 20 Hz adding one
Lorentzian at a time as described in §3. A fit with six Lorentzians
gives 𝜒2 = 111.8 for 87 degrees of freedom (dof), while that with
seven Lorentzians gives 𝜒2 = 93.4 for 84 dof, and all Lorentzians
are at least 4-𝜎 significant. Adding an eighth Lorentzians does not
improve the fit significantly, so we stop at seven.

Constant phase-lags model: We next fit simultaneously the full-
band PS and the CS with the same number of Lorentzians, fixing
the frequency and FWHM of each Lorentzian to the values that
we obtain from the fits to the PS; for this fit we assume the constant
phase-lags model. The fit gives 𝜒2 = 305 for 294 dof, with structured
residuals around 5 Hz (not shown). We next let the frequency and
FWHM free but linked in the PS and CS for each Lorentzian. This
fit, shown in Figure 1, gives 𝜒2 = 287.9 for 280 dof; while it is not
statistically better than the one with fixed frequency and FWHM of

7 https://heasarc.gsfc.nasa.gov/docs/xte/e-c_table.html
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Figure 1. Top left panel: Full-band PS of the RXTE observation 92035-01-03-06 of GX 339–4 fitted with a model (solid thick line) consisting of seven Lorentzian
functions (thin dotted lines). Middle left panel: Phase-lag vs. Fourier frequency (middle panel) together with the derived model (thick solid line) from the CS
(not shown). During the fit, we let the centroid frequency and FWHM of each component free to vary but we link them to be the same in the PS and the CS,
further assuming the constant phase-lags model (see Table 1 and §2.1). Bottom left panel: Residuals of the phase lags with respect to the derived model. The
vertical line indicates the centroid frequency of the narrow QPO. Right column: Real (top) and Imaginary (middle) parts of the CS with the best-fitting model
assuming constant time lags. The bottom panel shows the intrinsic coherence together with the derived model. For each Lorentzian in the model, the vertical
lines mark 𝜈max, the frequency at which the Lorentzian function peaks in the 𝜈 × 𝑃𝜈 representation (Belloni et al. 2002).

the Lorentzians, this fit shows no structured residuals around 5 Hz.
Because of this, and because later on we find that in other cases the
fit with fixed frequencies and FWHM does not work, we adopt this
one as the final model.

As it is apparent from Figure 1, the QPO is actually fitted with
two Lorentzians, a relatively broad one that fits the wings, and a
relatively narrow one that fits the central part of the QPO profile. The
broad QPO component is reminiscent of the shoulder mentioned by
Belloni et al. (1997, later on called the “hump” in Belloni et al. 2002;
see also van Doesburgh & van der Klis 2020), and we therefore
call this the QPO shoulder. Both the QPO and the QPO shoulder are
significantly required by the fit, with a significance of 12-𝜎 and 20-𝜎,
respectively. Since the QPO and the QPO shoulder have slightly, but
significantly (∼ 5.5-𝜎), different frequencies, 𝜈QPO = 5.50 ± 0.01
Hz and 𝜈shoulder = 5.78 ± 0.05 Hz, the QPO profile appears to be
slightly asymmetric (top panel of Fig. 1).

In principle, it is possible that the asymmetric QPO profile is
due to slight changes of the QPO frequency during the course of
the observation, with the QPO spending most of the time at around
∼ 5.5 Hz, and a small fraction of the time at ∼ 5.8 Hz. To check this,
we compare the full-band rms amplitude and phase lags between the
two bands given above, Δ𝜙, of the two components, the QPO and the
shoulder; we find rmsQPO = 4.9 ± 0.2%, rmsshoulder = 5.5 ± 0.3%,
Δ𝜙QPO = −0.004±0.024 rad andΔ𝜙shoulder = 0.51±0.03 rad. While
the rms amplitudes of the QPO and the QPO shoulder are consistent
with being the same, the phase lags are significantly (∼ 13.4-𝜎)

Table 2. Phase and time lags (5.4 − 115 keV vs. 1.95 − 5.4 keV) of the QPO
and the QPO shoulder in GX 339–4 with our method

Component 𝜈0 (Hz) Phase lags† (rad) Time lags∗ (ms)

QPO 5.50 ± 0.01 −0.004 ± 0.024 0.9 ± 0.7
Shoulder 5.78 ± 0.05 0.51 ± 0.03 10.8 ± 0.7

†Using the constant phase-lags model.
∗Using the constant time-lags model.

different. Since the lags of the QPO do not change so rapidly with
QPO frequency (Zhang et al. 2017, 2020), we conclude that the QPO
and the QPO shoulder are two different components.

Constant time-lags model: We also compute the time lags of the
QPO and the QPO shoulder by fitting the PS and the CS assuming
the constant time-lags model, and we find that time lags of the QPO
are significantly different from those of the QPO shoulder. The fit
yields 𝜒2 = 284.0 for 290 dof. We give the frequencies, phase and
time lags of the QPO and QPO shoulder in Table 2.

As we explained in §2.1, in our method the phase (time) lags of
the Lorentzians are parameters of the constant phase-lags (time-lags)
model. Under the assumption that the phase (time) lags are constant,
the time (phase) lags change with Fourier frequency across the QPO
profile and, therefore, the time lags of a QPO are not exactly equal
to the phase lags divided by 2𝜋 times the QPO centroid frequency.

Traditional lags: The case of the shoulder of the QPO highlights

MNRAS 000, 1–24 (2023)
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the problem of measuring lags in the traditional way, which we
explained in §1. To show this we compute the traditional phase-lag,
Δ𝜙trad, of the QPO in the 5.285 − 5.715 Hz frequency range (one
FWHM), Δ𝜙QPO,trad = 0.23± 0.01 rad, which is significantly larger
than the lag using our method (see Tab. 2), Δ𝜙QPO = −0.004 ±
0.024 rad. Similarly, the traditional phase lag of the QPO shoulder
within one FWHM (4.795 − 6.765 Hz) is Δ𝜙shoulder,trad = 0.17 ±
0.02 rad, significantly smaller than the phase lag using our method,
Δ𝜙shoulder = 0.51 ± 0.03 rad.

Likewise, the time lags computed using the traditional method
over the same frequency ranges, Δ𝜏QPO,trad = 4.9 ± 0.5 ms and
Δ𝜏shoulder,trad = 6.5 ± 0.3 ms, are significantly different from those
obtained with our method, Δ𝜏QPO = 0.9 ± 0.7 ms and Δ𝜏shoulder =
10.8 ± 0.7 ms.

Finally, we note that the second harmonic of the QPO is also
fitted by two Lorentzian components (see Fig. 1), a narrow one at
11.07 ± 0.06 Hz and a broad one at 11.4 ± 0.3 Hz, both of them
significant (11.2-𝜎 and 3.4-𝜎, respectively). The frequencies of both
these components are consistent with being in a 2:1 relation with,
respectively, the QPO fundamental and the QPO shoulder. The phase
lags of these two components are, respectively, 0.25 ± 0.11 rad and
−0.07 ± 0.04 rad, and the time lags are, respectively, 3 ± 2 ms and
−2.3 ± 0.4 ms, marginally consistent within errors; we therefore
cannot assess whether the QPO second harmonic and its shoulder
are different components or the same component that drifts slightly
during the observation period. Guided by this, in the next section we
explore the presence of a shoulder of the QPO second harmonic in
an observation of GRS 1915+105.

We subsequently compute PS of this same observation for the
channels 0− 13 and 14− 249, using the same parameters mentioned
at the start of this subsection. We fit these two PS together with
the CS in the same bands above with a model consisting of nine
Lorentzians8, and assuming the constant time-lags model. In the
right panels of Figure 1 we plot the Real (top) and Imaginary (middle)
parts of the CS and the intrinsic coherence with the derived model
(bottom). The derived model reproduces the data rather well, with
the largest deviations appearing above ∼ 10 Hz, where the signal-
to-noise ratio drops very quickly. The vertical lines in the bottom-
right panel mark the characteristic frequency of each Lorentzian,

𝜈max =

√︂
𝜈2

0 +
(

FWHM
2

)2
(Belloni et al. 2002). We note that the

changes in the behaviour of the coherence happen at 𝜈max and not at
𝜈0 of the corresponding Lorentzians.

The coherence is ∼ 1 at low frequencies where a single, broad,
Lorentzian with 𝜈max = 1 Hz dominates (see top-right panel of
Figure 1 for the Lorentzians mentioned in this part of the text); the
coherence then drops at∼ 1.5 Hz when a new Lorentzian with 𝜈max =

1.41 Hz appears. This Lorentzian is not strong enough to lead to a
peak in the coherence, but its presence interferes with the previous
Lorentzian and leads to a drop. After that, the coherence drops more
or less steadily over a frequency range in which the Lorentzian with
𝜈max = 1 Hz and two other Lorentzians with, respectively, 𝜈max =

2.74 Hz and 𝜈max = 4.04 Hz, alternate dominance. The coherence
goes up again at ∼ 5 Hz, where the strong QPO starts to dominate
the variability. As the frequency increases further, in the model the
coherence decreases and increases again going from the QPO to the

8 The model requires two extra Lorentzians when we fit the PS in the two
bands instead of the PS in the full band as we did above. The two extra
Lorentzians are the ones that peak at ∼ 1.5 Hz and ∼ 4.75 Hz in the plot of
the Real part of the CS in the top-right panel of Figure 1.

Table 3. Phase and time lags (5.7 − 100 keV vs. 2 − 5.7 keV) of the QPO
fundamental and second harmonic and the corresponding QPO shoulders in
GRS 1915+105 with our method

Component 𝜈0 (Hz) Phase lags† (rad) Time lags∗ (ms)

QPO fund 1.822 ± 0.006 −0.076 ± 0.006 −7.1 ± 0.7
Should. fund 2.11 ± 0.06 1.9 +0.7

−1.0 114 ± 20
2nd harm 3.56 ± 0.02 0.20 ± 0.2 11.2 ± 1

Should. 2nd 4.00 ± 0.03 0.49 ± 0.08 21.7 ± 5

†Using the constant phase-lags model.
∗Using the constant time-lags model.

shoulder, but the errors in the data are too large to see that. At higher
Fourier frequency the model is consistent with the data, but there,
the coherence has large errors.

The results of this part show that the best-fitting model of the
PS and the CS correctly describes both the phase-lag spectrum and
the coherence function. These two outcomes align with the model’s
predictions, which are based on the assumptions outlined in Section
§2.

3.2 Case study 2: Shoulders of the fundamental and second
harmonic of the type-C QPO in GRS 1915+105

For the next example we use the RXTE observation 30703-01-34-00
of GRS 1915+105 with a strong type-C QPO at ∼ 1.8 Hz, which was
analysed by Zhang et al. (2020). We select this observation because
the type-C QPO shows a significant second harmonic at ∼ 3.6 Hz
that displays a double peak in the phase-lag frequency spectrum.
Motivated by this, and after our findings in §3.1, we decided to study
the potential presence of a shoulder to the QPO fundamental and the
second harmonic.

We take the Single-Bit and Event Mode data of this observation to
compute the full-band (channels 0 to 249) PS and the CS of photons
with energies in the 5.7− 100 keV band (channels 14 to 249) relative
to those with energies in the 2 − 5.7 keV band (channels 0 to 13).
Both for the PS and the CS we use 𝑇FFT = 256 s, which yields
𝜈min = Δ𝜈 = 1/256 Hz, at a time resolution Δ𝑡 = 1/8192 s such that
𝜈Nyquist = 4096 Hz.

We initially fit the full-band PS in the range 0.1 − 64 Hz adding
one Lorentzian at a time as described in §3, and find that we need
a model consisting of six Lorentzians. The fit gives 𝜒2 = 144.7 for
143 dof, and all Lorentzians are at least 3-𝜎 significant.

Constant phase-lags model: We next fit simultaneously the PS and
the CS with the same number of Lorentzians, fixing the frequency
and FWHM of each Lorentzian to the values that we obtain from the
fit to the PS; for this fit we assume the constant phase-lags model.
The fit gives 𝜒2 = 684.0 for 619 dof, with structured residuals in
the Imaginary part of the CS around 2 Hz and 4 Hz, close to the
frequencies of the QPO fundamental and second harmonic. We next
let the frequency and FWHM of each Lorentzian free but linked in
the PS and CS. This fit gives 𝜒2 = 675.3 for 607 dof, but the residuals
around 2 Hz and 4 Hz in the Imaginary part of the CS remain. We
show the Imaginary part of the CS and the residuals of the fit with
six Lorentzians in the left panel of Figure 2.

We therefore add two new Lorentzians to the model at, respectively,
∼ 2 Hz and ∼ 4 Hz with, as for the other Lorentzians, the centroid
frequency and FWHM free and linked in the PS and CS. This fit,
shown in the middle and right panels of Figure 2, gives 𝜒2 = 627.1
for 598 dof, significantly better than the one with six Lorentzians (and
also better than a model with seven Lorentzians not shown here), and

MNRAS 000, 1–24 (2023)



10 M. Méndez et al.

−10

−5

0

5

IM
 [

C
S]

 (
ν 

×
 P

ν,
 L

ea
hy

)

Imaginary part

2 5

−2

0

2

(d
at

a−
m

od
el

)/
er

ro
r

Frequency (Hz)

10−3

0.01

0.1

ν×
P

ν 
(f

ra
ct

io
na

l r
m

s2 )

Power spectrum

2 5
−2

−1

0

1

2
(d

at
a−

m
od

el
)/

er
ro

r

Frequency (Hz)

−5×10−3

0

5×10−3

ν×
P

ν 
(r

m
s/

m
ea

n)
2 Imaginary part

−0.1

0

0.1

0.2

ph
as

e 
la

gs
 (

ra
d) Phase lags

2 5

−2

0

2

(d
at

a−
m

od
el

)/
er

ro
r

Frequency (Hz)

Figure 2. Left panel: Imaginary part of the CS of the RXTE observation 30703-01-34-00 of GRS 1915+105 fitted with six Lorentzian functions. The upper
panel shows the data and the best-fitting model (thick solid line) and the Lorentzian functions (thin dotted lines), while the lower panel shows the residuals with
respect to the best fitting model. Structured residuals are visible at ∼ 2 Hz and ∼ 4 Hz, just above the frequency of, respectively, the QPO fundamental and the
second harmonic (see Table 3). Middle panel: PS of the same observation, but now fitted with eight Lorentzian functions. The upper panel shows the data and
the best-fitting model (thick solid line) and the Lorentzian functions (thin dotted lines), while the lower panel shows the residuals with respect to the best fitting
model. (The eighth Lorentzian is the high-frequency bump, Trudolyubov 2001; Zhang et al. 2022b, which is only visible above 10 Hz.) Right panel: Imaginary
part of the CS fitted with eight Lorentzians (upper panel), phase lags vs. Fourier frequency (middle panel) and residuals of the phase lags with respect to the
derived model (bottom panel). In all cases, during the fits we let the centroid frequency and FWHM of each component free to vary but we link them to be the
same in the PS and the CS, further assuming the constant phase-lags model (see Table 1 and §2.1).

the fit no longer shows the structured residuals at around 2 Hz and
4 Hz. In fact all Lorentzians are at least 3-𝜎 significant in either the
PS, the CS or both (see below). We therefore adopt this one as the
final model.

The middle panel of Figure 2 shows the PS (upper panel) and the
residuals (bottom panel) of the fit with the adopted model with eight
Lorentzians. As is apparent from the Figure, both the QPO funda-
mental and the QPO second harmonic are fitted with two Lorentzians,
a relatively broad one that fits the bulk of the QPO profile, and a rel-
atively narrow one at slightly higher frequency than the other one.
While both the fundamental QPO at 𝜈QPO = 1.822 ± 0.006 Hz and
the second harmonic at 𝜈2nd = 3.56 ± 0.02 Hz are significantly re-
quired by the fit (24.6-𝜎 and 6.8-𝜎, respectively), the shoulder of
the fundamental QPO at 𝜈shoulder,1 = 2.11 ± 0.06 Hz and that of the
second harmonic at 𝜈shoulder,2 = 4.00 ± 0.03 Hz are not detected
significantly in the PS (< 1-𝜎 and 2.6-𝜎, respectively). However,
both shoulders are significantly required (4-𝜎 and ∼ 5.5-𝜎, respec-
tively) to fit the CS. This is remarkable, since a component that is
not required to fit the PS is significantly required to fit the CS. As
this occurs again in §3.4, we expand on this there.

The right panel of Figure 2 shows the Imaginary part of the CS
(upper panel), the phase-lag spectrum (middle panel) and the residu-
als of the phase-lag spectrum with respect to the derived model with
eight Lorentzians (bottom panel; we do not plot the Real part of the
PS because it looks very similar to the PS ). We give the frequencies
and phase lags of the fundamental, second harmonic and the shoul-
ders of the QPO fundamental and second harmonic in Table 3. The
phase lags of the shoulder of the second harmonic are significantly

(3.5-𝜎) larger than those of the second harmonic itself, but the phase
lags of the shoulder of the fundamental have very large errors, there-
fore we cannot conclude whether the phase lags of the shoulder and
the fundamental QPO are different.

Using the traditional method, the lags of the QPO, the QPO
shoulder, the second harmonic and the shoulder of the second har-
monic are, respectively, −0.056 ± 0.005 rad, −0.001 ± 0.009 rad,
0.123 ± 0.008 rad and 0.16 ± 0.01 rad. Given that the error bars in
our method are relatively large compared to those in the traditional
method (see Appendix A for a discussion of this), the lags of the
QPO fundamental, the QPO shoulder and the second harmonic are
all consistent with being the same using either the traditional or our
method (see Table 3). On the contrary, the lags of the shoulder of the
second harmonic using our and the traditional method are 4𝜎 differ-
ent. In Appendix A we use simulations to explore the difference in
the results of our and the traditional method.

Constant time-lags model: When we fit the data assuming the
constant time-lags model (this fit is marginally worse, 𝜒2 = 633.7
for 598 dof, than the one with the constant phase-lags model), the
time lags of the fundamental QPO and those of its shoulder are 6.1-
𝜎 different, whereas the time lags of the second harmonic and its
shoulder are only 2.1-𝜎 different. We give the time lags from this fit
in Table 3.

To summarise, we find that in this observation of GRS 1915+105
either the phase or the time lags of the shoulders are significantly
different from those of the corresponding QPO, and hence the shoul-
ders are not due to small drifts of the QPO frequency during the
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Figure 3. Left panel: PS of the second segment of the RXTE observation 10408-01-27-00 of GRS 1915+105 in two energy bands (see legend). The upper
panel shows the data and the best-fitting model (thick solid line), consisting of five Lorentzian functions (thin solid and dashed lines). We fitted the two PS
simultaneously with the centroid frequency and FWHM of all Lorentzians linked so that they are the same in both bands. The two Lorentzians plotted using thin
solid blue lines represent, respectively, the main QPO at 5.8 Hz and the QPO shoulder at 6.3 Hz in the 5.1 − 6.9 keV band; similarly, the Lorentzians plotted
using the thin dashed red lines represent, respectively, the main QPO at 5.8 Hz and the QPO shoulder at 6.3 Hz in the 13 − 18.1 keV band. The bottom panel
shows the residuals with respect to the best fitting model. Middle panel: Fractional rms amplitude of the main QPO at 5.8 Hz (black) and the QPO shoulder at
6.3 Hz (purple) vs. energy. Right panel: Time lags of the main QPO and the QPO shoulder vs. energy. The reference band for the lags is the full band (channels
0-249).

observation, but are separate components in the PS or the CS of the
source.

3.3 Case study 3: No energy dependence of the QPO frequency
in GRS 1915+105

Now that we have established that the shoulders of the QPOs are
separate components, we explore whether previous claims that the
QPO frequency changes with energy (Qu et al. 2010; Li et al. 2013a,b;
Yan et al. 2018) are connected to the presence of a shoulder of the
QPO. For this we analyse the RXTE observation 10408-01-27-00
of GRS 1915+105 for which Qu et al. (2010) reported a significant
change of the centroid frequency of the QPO with energy, from
𝜈QPO = 5.9 Hz for energies below 5 keV to 𝜈QPO = 6.7 Hz for
energies above 20 keV (see their Figure 2). We speculate that this
apparent change of the QPO frequency with energy could be due to
the presence of a shoulder if the rms spectrum of the QPO and the
shoulder are different. We will therefore call the QPO reported by
Qu et al. (2010) the “QPO feature”, since it could be a combination
of a QPO and a QPO shoulder.

We take the Binned and Event Mode data of this observation to
compute the full-band (channels 0 to 249) spectrogram (also known
as dynamical PS; e.g., Markwardt et al. 1999) of the observation, and
find that the frequency of the QPO feature changes with time (not
shown), from above ∼ 6.5 Hz at the start to ∼ 5 Hz at the end of the
observation; the frequency of the QPO feature appears to be more
or less constant at ∼ 6 Hz in the second segment of the observation,
therefore we use only that segment for the rest of the analysis. We then
compute PS in the same six energy bands used by Qu et al. (2010,

channels 0− 13, 14− 18, 19− 25, 26− 35, 36− 49 and 50− 103; see
their Table 2 for the energy ranges) to study the rms spectrum of the
QPO feature, plus the CS of the photons in the individual bands with
respect to those in the full band (channels 0 to 249). Both for the PS
and the CS we use 𝑇FFT = 128 s, yielding 𝜈min = Δ𝜈 = 1/128 Hz, at
a time resolution Δ𝑡 = 1/512 s that yields 𝜈Nyquist = 256 Hz.

The left panel of Figure 3 shows the PS of the data during the
second segment of the observation in two energy bands, 5.1 − 6.9
keV and 13−18.1 keV. We fit the two PS simultaneously in the range
0.5−15 Hz with five Lorentzians, with the frequency and FWHM of
each Lorentzian free but linked to be the same in both energy bands.
As it is apparent from the Figure, the QPO feature is fitted with two
Lorentzians, one at ∼ 5.8 Hz and the other at ∼ 6.3 Hz. Notably,
the Lorentzian at 5.8 Hz is more or less equally strong in the two
bands whereas the Lorentzian at 6.3 Hz is stronger in the 13 − 18.1
keV band than in the 5.1 − 6.9 keV band. (It is also true that all the
other Lorentzian components in the PS are stronger in the high- than
in the low-energy band.) As before, we call these two Lorentzian
components the QPO and the shoulder of the QPO, respectively.

In the 5.1 − 6.9 keV band the rms amplitude of the QPO and the
shoulder are rmsQPO = 3.6±0.3% (5-𝜎 significant) and rmsshoulder =
2.4 ± 0.3% (3.7-𝜎 significant). In the 13 − 18.1 keV band the rms
amplitude of the QPO and the shoulder are rmsQPO = 4.2±0.4% (4.4-
𝜎 significant) and rmsshoulder = 5.1 ± 0.7% (4.2-𝜎 significant). We
give the frequencies, phase lags (obtained using the constant phase-
lags models) and time lags (using the constant time-lags model) of
the QPO and the shoulder in Table 4. While the phase lags (13−18.1
keV with respect to 5.1−6.9 keV) of the QPO and the QPO shoulder
are consistent with being the same within 3-𝜎, their time lags are 4.9-
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Table 4. Phase and time lags (given band vs. the full band) of the QPO and QPO shoulder in GRS 1915+105 with our method

Component 𝜈0 (Hz) Phase lags† (rad) Time lags∗ (ms) Phase lags † (rad) Time lags∗ (ms)
(5.1 − 6.9 keV) (13 − 18.1 keV)

QPO 5.78 ± 0.02 0.16 ± 0.03 4.9 ± 0.5 −0.61 ± 0.06 −20 ± 1
QPO shoulder 6.34 ± 0.06 0.24 ± 0.08 5.5 ± 0.6 −0.36 ± 0.08 −12.5 ± 0.8

†Using the constant phase-lags model.
∗Using the constant time-lags model.
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Figure 4. PS in the 0.3 − 12 keV energy band (top left), Real (bottom left) and Imaginary (bottom right) part of the CS for the 2 − 12 keV band with respect
to the 0.3 − 2 keV band of the NICER observation 1200120120 of MAXI J1820+070 fitted with a model (red solid line) consisting of four Lorentzians (dotted
lines). For the fitting and the plot we rotate the cross vector by 45◦ (see text for details), we assume the constant phase-lags model (see Table 1 and §2.1) and we
fix the frequency and FWHM of the Lorentzians to the values we obtain from the best-fitting model of the PS. The top right panel shows the phase-lag spectrum
with the derived model. In each case the top sub-panels show the data and the model and the middle sub-panels show the residuals. The bottom sub-panels show
the residuals when we fit the data letting the frequency and FWHM of the Lorentzians free, but linked to be the same in the PS and the CS.

𝜎 different. (See the discussion about the difference between phase
and time lags at the end of §3.)

The middle panel of Figure 3 shows the rms spectrum of the QPO
and the QPO shoulder. From this Figure it is apparent that the rms
amplitude of the QPO increases with energy up to about 10 keV
and at that energy it levels off or decreases slightly, whereas the rms
amplitude of the QPO shoulder increases steadily with energy, also
above ∼ 10 keV. Because of this, at energies below ∼ 8 keV the

QPO is stronger than the QPO shoulder, whereas above that energy
the opposite is true. The right panel of Figure 3 shows the time-
lag spectrum of the QPO and the QPO shoulder obtained using the
constant time-lags model and taking the full band as reference. (The
phase-lag spectrum, from the fit with the constant phase-lags model,
looks almost exactly the same as this one, with slightly larger error
bars.) The time lags of both the QPO and the QPO shoulder become
more negative as the energy increases (compare with Fig. 2b in Qu
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Figure 5. Same as Figure 4 but now fitted with seven Lorentzians instead of four, assuming the constant phase-lags model. The bottom sub-panels show the
residuals with respect to the best-fitting model.

et al. 2010, in which they plot the phase lags with respect to the
lowest energy band); both time-lag spectra are consistent with being
the same up to ∼ 10 keV, at which point the time lags of the QPO
continue decreasing while the time lags of the QPO shoulder level
off.

The fits of the PS in two energy bands (Fig. 3, left panel), the rms
spectrum (Fig. 3, middle panel) and the time-lag spectrum (Fig. 3,
right panel) of the QPO and the QPO shoulder show that the data are
consistent with the presence of two separate components, the QPO
and the QPO shoulder, with different rms and time-lag spectra. In
our model, the centroid frequency of both the QPO and the QPO
shoulder are linked to be the same in the different energy bands, it
is only that the change of the relative strength of the two mimics a
frequency dependence of the QPO feature with energy.

In fact, our model fits the data better and with less free param-
eter than the model of a QPO with frequency that changes with
energy. Our model of the QPO feature in 𝑁 energy bands with two
Lorentzians that have each the same frequency and FWHM in all
the bands has 4 + 2𝑁 parameters: Two centroid frequencies, two
FWHM and 2𝑁 normalisations. The model with two separate QPOs
in 𝑁 energy bands has 3𝑁 parameters: 𝑁 centroid frequencies, 𝑁

FWHM and 𝑁 normalisations. When we fit the PS of the six bands
simultaneously with a model in which the QPO feature is a single
Lorentzian with the frequency and FWHM of the Lorentzian free
to change with energy, like in Qu et al. (2010), we get 𝜒2 = 601.9
for 528 dof. The same fit with a model that has a Lorentzian for the
QPO and another one for the QPO shoulder with the frequency and
FWHM of each Lorentzian linked to be the same in all bands gives
a better fit, 𝜒2 = 566.1 for 530 dof.

In conclusion, in this observation of GRS 1915+105 the data are
better fit with a model in which the QPO feature consists of two
components with frequencies that do not change with energy rather
than with a single Lorentzian with centroid frequency and FWHM
that do change with energy. The rms spectra of the two Lorentzian
components combine in such a way that the frequency of the QPO
feature appears to depend upon energy.

3.4 Case study 4: The broadband variability in MAXI
J1820+070

As a final example, in this and the next section we study the PS
and CS of the transient black-hole X-ray binary MAXI J1820+070.

MNRAS 000, 1–24 (2023)
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We select this source because it was very bright and highly variable
during outburst (Wang et al. 2022) and because, as we explain below,
it provides a stringent test to the hypothesis that we put forward here.

From 2018 March 6 to 2018 November 21 MAXI J1820+070 was
observed almost daily with NICER. During the rising part of the
outburst, in the low-hard and hard-intermediate states, the source
showed strong broadband X-ray variability (e.g. De Marco et al.
2021). Notably, except for a few cases (e.g., Homan et al. 2020; Ma
et al. 2023a) the power spectra of most of these observations were
relatively featureless (e.g., Kawamura et al. 2022) and showed no
strong and narrow QPOs. Furthermore, the magnitude of the time
lags was rather small and the time-lag spectra were smooth (e.g.,
Kara et al. 2019). All these characteristics can potentially challenge
our proposal that, as for the PS, the CS consists of a combination of
Lorentzian components.

Here we use ObsID 1200120120, which was previously analysed
by Kara et al. (2019) and Wang et al. (2022). We process the data
with the tool nicerl2 to produce clean event files; following the
recommendations on the NICER website9, we discard the data of
detectors 14 and 34 that show episodes of increased detector noise.
We compute a PS in the 0.3 − 12 keV band and a CS of photons in
the 2−12 keV band with respect to those in the 0.3−2 keV band. (In
this case we do not give the channels because for NICER the channel
number can be calculated directly as the energy in keV multiplied by
100.) Both for the PS and the CS we use 𝑇FFT = 13.1072 s, yielding
𝜈min = Δ𝜈 = 0.07629 Hz, at a time resolution Δ𝑡 = 1/2500 s such
that 𝜈Nyquist = 1250 Hz.

We initially fit the PS in the range 0.07629 − 60 Hz following the
procedure described in §3, and find that we need a model consisting
of four Lorentzians. The fit gives 𝜒2 = 153.9 for 146 dof, and all
Lorentzians are at least 3-𝜎 significant.

Before we discuss the joint fits of the PS and CS we note that,
because the lags of MAXI J1820+070 are close to zero over a broad
frequency range (e.g., Kara et al. 2019), at all Fourier frequencies
the Real part of the CS is much larger than the Imaginary part.
Since all fitting routines are more stable when the free parameters
are of the same order (see, for instance, the Levenberg–Marquardt
algorithm in the Xspec code, Arnaud 1996), we rotated all the cross
vectors by 45◦ such that those with a zero phase lag would end
up having more or less equal Real and Imaginary parts. Since the
rotation does not change the modulus of the cross vector, and the
rotation angle is known precisely, the rotation has no effect on the
parameters of the fit, while it makes the fit more stable. Because of
this, in the Figures in this section we plot the components of the
rotated cross vector, Re cos (𝜋/4) − Im sin (𝜋/4) ∝ (Re − Im) and
Re sin (𝜋/4)+Im cos (𝜋/4) ∝ (Re+Im), which also allows us to plot
the components of the (rotated) cross vector vs. Fourier frequency
using logarithmic axes, because both rotated quantities are always
positive. Regardless of this, we always report the best-fitting phase
lags minus 𝜋/4 so that the lags are given again with respect to the
chosen energy band for the non-rotated cross vector.

Constant phase-lags model10: The top-left and the two bottom
panels of Figure 4 show the PS and the CS of MAXI J1820+070 in
the range 0.07629− 60 Hz with the same four Lorentzians assuming
the constant phase-lags model. During the fit of the CS, we initially
fix the frequency and FWHM of the four Lorentzian components to

9 https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_
threads/
10 We describe the results and show the plots of the same analysis using the
constant time-lags model in Appendix B.
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Figure 6. Intrinsic coherence function of the same observation of MAXI
J1820+070 shown in Figures 4 and 5 with the derived model obtained from
the fit to the PS and CS assuming the constant phase-lags model.

the values obtained from the fit to the PS. The top-right panel shows
the phase-lag spectrum with the derived model. In each case the top
sub-panels show the data and the model and the middle sub-panels
show the residuals.

It is apparent from this Figure that, while the PS is well fitted with
four Lorentzians, the Real and Imaginary parts of the CS are not,
with structured residuals in the full frequency range. The joint fit of
the PS and the CS yields 𝜒2 = 593.7 for 438 dof, while the derived
model of the lags gives 𝜒2 = 412.1 for 150 dof.

We next fit the model letting the frequency and the FWHM of
each of the four Lorentzian components free but linked across the
three spectra. The bottom sub-panels of Figure 4 show the residuals
in this case. While the fits of the CS and of the derived model of
the phase lags improve slightly, significant residuals remain, and this
time there are also structured residuals in the fit of the PS because in
the model the frequency and FWHM of the Lorentzians change. The
joint fit in this case gives 𝜒2 = 529.6 for 430 dof, while the derived
model of the lags gives 𝜒2 = 417.4 for 150 dof.

The previous result shows that, even if the fit to the PS with a
model consisting of four Lorentzians is statistically acceptable, the
fits of the PS and the CS with that model are not. We therefore add
extra Lorentzians to the PS and the CS until the simultaneous fit
to the three spectra, and the derived model of the phase lags are
statistically acceptable, even if some of the Lorentzian components
are not significant in either of the three spectra, as long as they are
significant in at least one of them. In doing the fits we let the centroid
frequency and FWHM of the Lorentzian components free but link
them so that they are the same for each component in the PS and the
CS.

Figure 5 shows the data fitted with a model consisting of seven
Lorentzians assuming the constant phase-lags model. As usual, the
upper panels show the data and the model, and the lower panels show
the residuals. The top-right panel shows the same for the phase-lags
frequency spectrum with the derived model. The joint fit of the PS
and CS gives 𝜒2 = 424.9 for 415 dof, while the derived model of the
lags gives 𝜒2 = 148.5 for 150 dof. We give the best-fitting parameters
in Table 5. Lorentzians number 2, 5 and 6 in this model are less than
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Table 5. Parameters of the best-fitting model to the PS and CS of NICER observation 1200120120 of MAXI J1820+070 with seven Lorentzians assuming the
constant phase-lags model

Component 𝜈0 (Hz) FWHM (Hz) rmsPS (%) significance∗ phase lags (rad) rmsCS (%) significance∗

Lorentzian 1 0.054 ± 0.002 0.245 ± 0.002 25.4 ± 0.1 97.3 0.10 ± 0.01 26.6 ± 0.1 124.7
Lorentzian 2 0.85 ± 0.06 2.0 ± 0.1 < 9.5† < 1 1.5 ± 0.2 12.5 ± 1.4 5.3
Lorentzian 3 0.99 ± 0.04 2.1 ± 0.09 11.2 ± 1.2 2.4 −0.9 ± 0.2 13.5 ± 1.3 4.0
Lorentzian 4 1.83 ± 0.08 5.68 ± 0.08 10.7 ± 0.3 13.8 −0.03 ± 0.02 13.2 ± 0.3 16.0
Lorentzian 5 7.8 ± 0.4 8.3 ± 1.3 < 1.2† < 1 −0.91 ± 0.07 2.5 ± 0.3 5.2
Lorentzian 6 18.5 ± 0.8 15.7 ± 3.2 < 11.2† < 1 −0.73 ± 0.07 1.9 ± 0.3 3.9
Lorentzian 7 24.1 ± 1.2 31.7 ± 1.6 1.68 ± 0.09 8.2 0.7 ± 0.2 1.8 ± 0.1 6.4

𝜒2/dof 424.9/415

∗ In units of 𝜎.
† 95% upper limit.
The rms amplitude of the power and cross spectra of each Lorentzian are integrated from zero to infinity.

3-𝜎 significant in the PS, but the three of them are significant in the
CS.

We subsequently compute the PS of this observation of MAXI
J1802+070 in the 0.3 − 2 keV and 2 − 12 keV bands using the same
parameters mentioned at the start of this subsection, and fit them,
together with the CS of those two bands, with the model consisting
of seven Lorentzians over the same frequency range as before. In
Figure 6 we plot the observed intrinsic coherence with the derived
model for the constant phase-lags model (see Appendix B for the fit
using the constant time-lags model.) The fit gives 𝜒2 = 586.9 for
558 dof. The derived model reproduces the data rather well, with
the largest deviations appearing at 0.2 Hz, where the PS shows an
unresolved QPO (see, e.g., Fig. 5) that, when studied at a higher
frequency resolution (not shown), breaks into two separate QPO
peaks.

Once more, similar to what we discuss in §3.1, the most appropriate
model for the PS and the CS in the case of this MAXI J1820+070
observation accurately characterises both the phase-lag spectrum and
the coherence function. This alignment with the two predictions we
detail in §2 remains consistent.

3.5 Case study 5: A QPO in the Imaginary part of the cross
spectrum of MAXI J1820+070

We searched the NICER archive for an observation in which the
coherence function showed a significant drop at some Fourier
frequency, and came across ObsID 1200120268 (O. König, priv.
comm.), which was previously analysed by De Marco et al. (2021).
In this observation MAXI J1820+070 was in the decline of the out-
burst, in the lower branch of the ‘q’ traced by the source in the
hardness-intensity diagram (see, e.g., Fig. 1 of De Marco et al.
2021, or the right panel of Fig. 1 of Ma et al. 2023a). We follow the
procedures in §3.4 to process the NICER data, and compute two PS
in the 0.3−2 keV and 2−12 keV bands and a CS of photons between
those same two bands using the same Δ𝑡 and𝑇FFT of §3.4 to compute
the FFT

Constant phase-lags model11: We fit the two PS and the CS in
the range 0.07629 − 60 Hz with seven Lorentzians using the con-
stant phase–lags models, which gives 𝜒2 = 505.1 for 558 dof. All
Lorentzians are at least 3-𝜎 significant either in one of the PS or
the CS. Figure 7 shows the data and the best fit. While we again

11 We describe the results and show the plots of the same analysis using the
constant time-lags model in Appendix C.

rotate the cross vector by 45◦ during the fits, this time we plot the
Real and Imaginary parts of the CS without rotation, to highlight the
presence of a strong QPO at ∼ 2.1 Hz in the Imaginary part of the
CS. The phase lag of this QPO is Δ𝜙 = 1.06± 0.12 rad, such that the
Imaginary part of the cross vector is about twice larger than the Real
part. The 2.1-Hz QPO is not significant in either of the two power
spectra (see below). Close to the 2.1-Hz QPO, the Imaginary part of
the CS shows also QPOs at ∼ 2.6 Hz and ∼ 4.3 Hz, but these QPOs
have smaller phase lags (∼ 0.58 rad and ∼ 0.36 rad, respectively)
and both are significantly detected in the PS of the two bands.

In Figure 8 we plot the observed intrinsic coherence together with
the model derived from the simultaneous fit of the two PS and the
CS. The observed intrinsic coherence shows a significant drop at
∼ 2.1 Hz which, as shown in the plot, is perfectly described by the
derived model. It is noteworthy that this drop occurs precisely at
the frequency of a QPO that is present only in the Imaginary part
of the CS (bottom-right panel of Figure 7). This “imaginary” QPO,
at 2.09 ± 0.02 Hz, is marginally present in the Real part of the CS
(bottom left), where it is overshadowed by several other components,
and is not significantly detected in any of the two PS (top left; the
QPO is ≲ 2.9𝜎 significant in the 0.3 − 2 keV band and ≲ 2.5𝜎 in
the 2− 12 keV band). This underscores the fact that this QPO is only
detected significantly in the Imaginary part of the CS, and that the
Lorentzian component used to fit this imaginary QPO is incoherent
with the other Lorentzians in that frequency range. This aligns with
the assumptions made in Section §2, further bolstering our assertion
that the variability is comprised of multiple incoherent components.

4 DISCUSSION

We show, for the first time, that if the power spectrum (PS) of accret-
ing neutron-stars and black-holes can be fitted with a combination of
Lorentzian functions that are coherent in different energy bands but
incoherent with each other, the same is true for the Real and Imagi-
nary parts of the cross spectrum (CS). Based on this, we propose a
novel method to measure the lags of variability components that is
especially useful when those components are weak and overlap with
other (stronger) components in the PS and CS.

Surprisingly, using this method we discover new variability com-
ponents that are detected significantly only in the CS and not in the
PS of these sources. This happens because the PS is insensitive to
signals with a large Imaginary part and a small Real part in the CS
when such a signal overlaps in frequency with other variability com-
ponents that have a large Real part in the CS. Because in the last 40
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Figure 7. PS in two energy bands (top left; see legend for the energies of each band), Real (bottom left) and Imaginary part (bottom right) of the CS for those
two same bands of the NICER observation 1200120268 of MAXI J1820+070 fitted with a model (thick solid line) consisting of seven Lorentzians (dotted lines).
During the fitting we let the frequency and FWHM of each component free to vary but keep them linked to be the same in the PS and the CS. In the model of
the CS we assume the constant phase-lags model. The top-right panel shows the phase lags vs. Fourier frequency together with the derived model. The bottom
sub-panels show the residuals with respect to the best-fitting model.

years we have used exclusively the PS to identify variability com-
ponents in these sources, we have so far missed signals with large
positive or negative lags, such that the cross vector has a significant
component along the Imaginary axis.

We also show that, contrary to what has been previously claimed,
the frequency of a type-C quasi-periodic oscillation (QPO) in the
black-hole binary GRS 1915+105 does not depend upon energy. The
apparent energy dependence of the QPO frequency can be explained
by the presence of a second, significant, component in the PS and CS
of the source at a frequency very close to that of the QPO, but with a
different rms and lag spectra. This alternative interpretation requires
fewer model parameters and is statistically favoured. We propose that
the same applies to other QPOs in which a similar energy dependence
of the QPO frequency was observed.

Finally, we demonstrate that, in accordance with the predictions
derived from the assumptions underpinning our method, the model
that fits both the PS and CS reproduces both the phase-lag spectrum
and the coherence function.

4.1 Weak variability components in the presence of other,
stronger, components

In §2 we show that if the PS of X-ray binaries can be fitted with
a linear combination of Lorentzian functions that are coherent in
different energy bands and incoherent with each other, the same
is true for the CS of linearly correlated light curves of the source
in two energy bands. The centroid frequency and FWHM of each
Lorentzian are the same in the PS and CS, with the Lorentzians in
the Real (Imaginary) part of the CS being multiplied by the cosine
(sine) of a function of Fourier frequency, Δ𝜙𝑥𝑦 (𝜈) = 𝑔(𝜈; 𝑝 𝑗 ) with
parameters 𝑝 𝑗 . These functions are the frequency-dependent phase
lags of each Lorentzian. If 𝑔(𝜈) is constant, the phase lags of that
component are independent of Fourier frequency, while if 𝑔(𝜈) ∝ 𝜈

the time lags are independent of Fourier frequency.

While we show that, under the assumptions discussed in §2, the
same Lorentzians should appear both in the PS and the CS, there is
no guarantee that all the Lorentzians that are significantly detected
in one will be significantly detected in the other. To test this, and to
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Figure 8. Intrinsic coherence function of the same observation of MAXI
J1820+070 shown in Figure 7 with the derived model obtained from the fit to
the PS and CS assuming the constant phase-lags model.

explore the potential of our method, in §3 we fit the PS and CS of
five observations of three black-hole binaries. We unveil weak QPO
signals at frequencies very close to those of previously detected QPOs
in the black-hole binaries GX 339–4 (Zhang et al. 2017; Altamirano
& Méndez 2015) and GRS 1915+105 (Zhang et al. 2020). The weak
signals, which we call QPO shoulders, appear at a slightly higher
frequency than that of the QPO fundamental or second harmonic.
QPO shoulders have been previously reported (Belloni et al. 1997,
2002; van Doesburgh & van der Klis 2020), but until now it remained
unclear if those were really separate QPOs or whether those shoulders
were due to the QPO frequency drifting slightly during the time over
which one calculated the PS (see, e.g., Belloni et al. 1997). Our
method allows us, for the first time, to measure a significant difference
of the lags and rms spectra of the QPO and the QPO shoulder, which
strongly suggests that the QPO and the shoulder are truly different
components. In GRS 1915+105 the shoulder of the QPO fundamental
and the second harmonic are also consistent with having a harmonic
relation. It is therefore possible that all harmonics of a QPO, if studied
using this method, will eventually show shoulders that, as the QPOs,
are also harmonically related.

An advantage of the method that we propose here is that it allows
to measure the lags of components that appear in a frequency region
of the PS or CS where other equally strong or stronger components
are present. One cannot use the traditional method to measure the
lags of such a component in those cases (see §3.1). A way used in
the literature to overcome this limitation is to measure the lags in the
traditional way within one FWHM of the component of interest and
subtract the lags measured outside that range (Ma et al. 2021, 2023b).
This method is mathematically incorrect because it ignores the mod-
ulus of the cross vector (CV) of the two components. Alternatively,
one could try and subtract the Real and Imaginary parts of the CS in
a frequency range range outside the QPO from the same quantities
within a FWHM of the QPO, however this is rarely possible (see for
instance Fig. 1 above or Fig. 1 in Nowak 2000).

4.2 Hidden variability components

Initially, we assumed that we had to fit the PS with a number
of Lorentzians first, and subsequently fit the CS with the same
Lorentzians with centroid frequencies and FHWM fixed at the values
obtained from the fit to the PS. While we find a good fit to the PS
with a number of Lorentzians, when we fit the CS with those same
Lorentzians with only the normalisation of the Lorentzians free the
fit is bad, with significant structured residuals over the full frequency
range. This is most clearly seen in the case of the observation of
the black-hole binary MAXI J1820+070 that we present in §3.4. As
shown in Figure 4 for the constant phase-lags model and Figure B1
for the constant time-lags model, while the PS is well fitted with
four Lorentzians, the CS is not; because of this, the phase-lag fre-
quency spectrum cannot be fitted with the derived model either (cf.
the residuals in the middle panels of those two Figures). If we let
the frequency and FWHM of the Lorentzians free but link each of
them to be the same in the PS and CS, the fit improves but remains
statistically unacceptable, with significant structured residuals in the
CS and the lags. Not only that, but now there are significant residuals
also in the PS. The reason for this is easy to understand: In the joint
fits the frequency and FWHM of the Lorentzians change to reduce
the residuals in the CS, but this degrades the fit of the PS.

In the case of MAXI J1820+070, in order to get a good fit we need
to add three extra Lorentzians to the model. While some of these
Lorentzians are not significant in the PS, they are (in some cases
very) significant in the CS. This can be seen in Figures 5 and B2 and
Tables 5 and B1. For instance, Lorentzians 2, 3 and 6 in the constant
phase-lags model (Figure 5 and Table 5) and Lorentzian 5 in the
constant time-lags model (Figure B2 and Table B1) are less than 1-𝜎
significant in the PS, but they are 3.9 − 6.5𝜎 significant in the CS.

To understand why we do not see these components in the PS,
whereas they are significant in the CS, we first need to note that the
majority of the variability components in LMXBs have rather small
lags (see, for instance, Fig. 2 in Zhang et al. 2020, the same is true
in other sources). This means that in the CS the Real part is much
larger than Imaginary part (factors ≳ 10 are usual; see for instance
Figs. 1 and 7). Consider two variability components, 𝑋1 and 𝑋2, that
overlap in frequency, each of them perfectly coherent in two energy
bands (c.f., assumption (i) in §2). Furthermore, consider that 𝑋1 is
weak with phase lags close to ±𝜋/2 (Real part in the CS close to
zero and small but significantly different from zero Imaginary part)
and 𝑋2 is strong with phase lags close to zero (in the CS large Real
part, Imaginary part close to zero). It is easy to show that if the two
components have similar rms spectra, the contribution of component
𝑋1 in the PS is negligible compared to that of component 𝑋2. On
the other hand, the statistical errors in the power spectrum will be of
the order of the Real part of CS of 𝑋2 divided by the square root of
the product of the number of segments and the number of frequency
bins (Bendat & Piersol 2010; Ingram 2019). As long as this error is
larger than the Imaginary part of component 𝑋1, the latter will not
be detected in the power spectrum, even if it is very significant in the
Imaginary part of the CS12. We note that the advantage of detecting
such a weak component in the cross spectrum, and not in the power
spectrum, will not be available when, instead of the “contaminating”
component(s), the Poisson noise dominates the variability.

An example of this is the 2.1-Hz QPO in MAXI J1820+070 that
has a phase lag of ∼ 1.1 rad, appears close to a strong broad QPO

12 This is a more general issue, which applies in the case of a variabil-
ity component that overlaps in frequency with another, stronger, variability
component, if the two components have a phase lag that differs by ±𝜋/2.
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peaking at ∼ 0.6 Hz (Fig. 7) with a phase lag of ∼ −0.01 rad, and
is only detected in the Imaginary part of the CS. (A similar effect is
likely the cause of the drop of the coherence function at ∼ 0.2 − 0.3
Hz, in the observation of GRS 1915+105 shown in Fig. 3 of Ji et al.
2003, where no significant QPO is apparent in the PS.)

All the above demonstrates that by searching for QPOs exclusively
in the PS we tend to find only components with relatively small lags,
and we are insensitive to signals with lags that approach ±𝜋/2. In
fact, we would never find lags of ±𝜋/2 rad in the CS of any of these
sources if we measure the lags over a broad frequency band that
contains several components with small lags, because the Real part
of the CS in that frequency range will never be zero. By using only
the PS to identify and characterise the variability of these sources,
and by computing the average lags over broad frequency ranges, all
these years we may have missed these components altogether.

4.3 No energy dependence of the frequency of QPOs

It has been argued that the frequency of some low-frequency QPOs
in black-hole X-ray binaries, especially the type-C QPO in GRS
1915+105, depends on energy (Qu et al. 2010; Li et al. 2013a,b; Yan
et al. 2018); in some cases the QPO frequency appears to increase,
and in others to decrease, with energy (see, e.g., Fig.2 of Qu et al.
2010, and Fig. 3 of Li et al. 2013a). This has been explained by
van den Eĳnden et al. (2016) in terms of differential Lense-Thirring
precession (Ingram et al. 2016; Nathan et al. 2022), with parts of
the inner accretion flow precessing at different rates. An issue with
this interpretation is that sometimes the QPO frequency appears to
increase whereas other times it appears to decrease with energy (Qu
et al. 2010). Since the characteristic frequencies in the vicinity of
a compact object as well as the temperature of the material in the
accretion flow generally decrease with increasing distance from the
central object, this requires that the outer and cooler parts of the
accretion flow precess faster than the inner and hotter parts.

We find that in one of the observations of GRS 1915+105 in which
Qu et al. (2010) measure an increase of the QPO frequency with
energy, the QPO feature can actually be fitted better with a model that
consists of two components, a QPO at ∼ 5.8 Hz and a QPO shoulder
at 6.3 Hz. Because the rms amplitude of the shoulder increases
faster with energy than that of the QPO, the QPO dominates at
low energies whereas the QPO shoulder dominates at high energies,
mimicking a shift of the frequency of the QPO feature with energy.
The fit with our model with two Lorentzian components with energy-
independent centroid frequency and FWHM is statistically better
and requires less parameters than the one with a single Lorentzian
with energy-dependent centroid frequency and FWHM. On the other
hand, the rms and time-lag spectra of the QPO and the shoulder are
significantly different, showing that the shoulder is not due to a drift
of the QPO frequency during the observation, but that it is a separate
component, and is the reason for the apparent energy-dependence
of the QPO frequency. We propose that this holds for other cases in
which the QPO frequency appears to change with energy (e.g., Li
et al. 2013a,b; Yan et al. 2018), significantly challenging the ideas
that explain the QPO as a single component with its frequency in
different bands originating in different parts of the accretion flow.

The shoulders could be due to amplitude modulation of the QPO
signal (see Fig. 3 in van den Eĳnden et al. 2016). Amplitude modu-
lation, however, should produce equally strong sidebands at frequen-
cies below and above that of the QPO, whereas there is no apparent
shoulder at frequencies below those of the QPO in the data that we
present here. (The 95% confidence upper limit for the full-band rms
amplitude of a possible shoulder at ∼ 0.5 Hz below the frequency

of the QPO is ∼ 1%.) The shoulders appearing only at higher fre-
quencies than those of the corresponding QPOs resemble the positive
sidebands of the kHz QPOs observed in some neutron-star systems
(Jonker et al. 2000, 2005) although, different from the case of the
kHz QPOs, when the frequency of type-C QPOs appears to decrease
with energy (e.g., Qu et al. 2010) the shoulder would be at lower
frequencies than those of the QPOs.

In this observation of GRS 1915+105, and in the observation of
GX 339–4 that we present in §3.1, the shoulder appears at a slightly
higher frequency than that of the corresponding QPO. In both sources
we find a shoulder of the QPO fundamental, while in the observation
of GRS 1915+105 in §3.2 we also find a shoulder of the second
harmonic of the QPO, with a centroid frequency that is consistent
with being twice that of the shoulder of the fundamental QPO. This
suggests that the shoulders of the QPO fundamental and second
harmonic are physically connected.

4.4 Broadband noise or QPOs?

We show that in the black-hole binary MAXI J1820+070, while the
PS can be fitted with four broad Lorentzians, the joint fits of the PS
and the CS require at least seven, narrower, Lorentzian functions. This
result evinces that, as it was already shown for the PS of GX339–4 and
Cyg X–1 (Nowak 2000) and several other black-hole and neutron-
star X-ray binaries (Belloni et al. 2002), in MAXI J1820+070 the
broadband noise (BBN) in the CS is consistent with a combination
of several Lorentzians.

That the CS, like the PS, comprises multiple Lorentzian com-
ponents, naturally explains the findings of Nowak et al. (1999a,b).
They observe that in Cyg X–1 and GX 339–4, in the frequency range
in which one Lorentzian dominates the PS, the phase lags of light
curves in two energy bands display a more or less flat shelf. Con-
versely, when two Lorentzians intersect in the PS, a transition occurs
from one characteristic phase-lags shelf to another (compare Figs.
1 and 10 in Nowak et al. 1999a). Nowak et al. (1999b) show that,
at each Fourier frequency, the total measured phase lags are the av-
erage of the phase lags of the individual Lorentzians, weighted by
the product of the amplitudes of the Fourier transforms in those two
energy bands13. Because over a given frequency range the Fourier
amplitudes of one Lorentzian dominate, the source shows a more or
less constant shelf if the phase lags of that component are constant
with Fourier frequency.

All the above suggests that in MAXI J1820+070 the lags of the
BBN component in the CS arise from a transfer function that can
be described as the combination of several individual, narrower,
responses. This idea is reinforced by the fact that the same linear
combination of Lorentzian functions that fits the PS and CS predicts
correctly the coherence function, in particular that the coherence
is one when a single Lorentzian component dominates in both the
PS and CS, and drops when two or more Lorentzians with different
cross amplitudes and phase lags overlap in frequency (see Fig. 8 for
a remarkable case of this effect). This, in turn, reflects in the fact
that each Lorentzian has its own time or phase lags, unrelated to the
lags of all other Lorentzians, possibly indicating separate resonances
in the variability properties of the accretion flow (e.g., Nowak et al.
1997; Méndez et al. 2013, 2022; Zhang et al. 2022b). Our findings
challenge the idea that there is a smooth global transfer function of
the accreting system, like the one used to explain the broadband lags

13 This result is the small-angle approximation of eq. 9.
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in LMXBs as reverberation of corona photons that reflect off the
accretion disc.

Several papers in the literature measure the time lags in MAXI
J1820+070 in various frequency bands in the ∼ 0.1 − 80 Hz range
(e.g., Kara et al. 2019; De Marco et al. 2015, 2017; Wang et al.
2022), which they interpret as the time lags of the BBN produced by
the (global) transfer function of the accretion disc. This is generally
justified by the fact that the PS of this source appears to be smooth,
without very strong and narrow QPO peaks, and in that frequency
range it can be fitted by two or three broad Lorentzian functions (e.g.,
Kawamura et al. 2022, 2023). Our results above, however, bring this
procedure into question. We show that to fit simultaneously the PS
and CS one needs seven Lorentzians. Figures 5 and B2 show that
there is no unique component that dominates the PS and CS in
the full 0.1 − 80 Hz range, but different Lorentzians dominate the
variability over different parts of that frequency range. Moreover,
similar to what we show in §3.1 and Appendix A, in this case the
measurements of the lags using the traditional method will clearly
misrepresent the actual lags of any of these components. Figures 5
and B2 manifestly show that there is no frequency interval over which
one can measure the lags of the putative BBN, without being affected
by other components.

In short, our findings challenge the validity of conclusions about
the geometry of these systems deduced from converting the time
lags of the BBN into light travel distances of photons in the accretion
flow (e.g., Kara et al. 2019; Wang et al. 2022) without a model of
the frequency-dependent part of the transfer function of the system
that properly accounts for the response of the individual components
that comprise the BBN (e.g., Mastroserio et al. 2018; Ingram et al.
2019).

4.5 Constant phase lags or constant time lags?

As we explain in §2.1, to be able to fit the CS we need to assume
the form of the functions Δ𝜙𝑥𝑦,𝑖 (𝜈) = 𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖) that represent the
phase-lags vs frequency of each Lorentzian component, 𝑖, and fit the
model to get the parameters 𝑝 𝑗 ,𝑖 . In this paper we assume that either
the phase lags or the time lags of each Lorentzian component are
constant with Fourier frequency, 𝑔𝑖 (𝜈; 𝑘𝑖) = 2𝜋𝑘𝑖 , or 𝑔𝑖 (𝜈; 𝑘𝑖) =

2𝜋𝑘𝑖𝜈, respectively, with 𝑘𝑖 constants to be determined from the
fits. Also, while in principle the phase lags of different Lorentzian
components could depend differently upon Fourier frequency, here
we assume that the same function applies to all the components in
the model.

In §3 we fit both types of models to the data and find that they
are statistically equivalent. We note, however, that the parameters of
some of the Lorentzians are different in one model and the other. This
can be seen from a comparison of Figures 5 and B2 and Tables 5 and
B1. This is not surprising, given that the form of 𝑔(𝜈; 𝑝 𝑗 ) affects the
shape of the profile of the Lorentzian in the CS. In fact, in the constant
phase-lags model the components in the CS are also Lorentzian
functions, but for the constant time-lags model the components in
the Real and Imaginary parts of the CS are Lorentzian functions
multiplied by, respectively, cos (2𝜋𝑘𝑖𝜈) and sin (2𝜋𝑘𝑖𝜈). That in this
case these are not Lorentzian functions is apparent in Figure B2,
where some of the individual components, and the total model, show
oscillations as a function of Fourier frequency with a period of 1/𝑘𝑖
Hz.

We initially hoped that from these data, especially those of MAXI
J1820+070, we would be able to conclude whether the constant
phase-lags or the constant time-lags model was most likely. Since
in the constant time-lags model the CV of each component rotates

in the Fourier plane as a function of Fourier frequency, each time
the CV rotates by 2𝜋 radians the phase lags will wrap back to the
interval [−𝜋, 𝜋) and the Real and Imaginary parts of the CS will start
a new cycle. We expected that, if this was the case, we could observe
in the data the oscillations predicted by the model, or that we could
discard that model if the residuals showed significant oscillations
with Fourier frequency. Unfortunately the current data do not allow
us to choose between the two alternatives.

We stress that, while we can fit the data equally well using either
the constant phase- or time-lags model for each component, these
two are the simplest of an infinite choice of lag models. It remains
to be seen whether a more sophisticated analysis of the data, e.g.,
combining several observations, would allow us to discard either
of the two models, or whether a more complex model is needed to
describe the data.

The models that have been proposed so far to explain the lags
(and in some cases also the rms amplitude) of the X-ray variability
can be roughly divided into two classes: (i) Models of the broad-
band variability consider that the lags come from the travel time
of photons or accretion-rate fluctuations, and hence the time lags
are constant with Fourier frequency. (ii) Models of the QPOs con-
sider a sinusoidal signal (sometimes with harmonics), and hence the
distinction cannot be made because, for a given frequency of the si-
nusoidal function, the phase and time lags are simply related to each
other. The first class of models includes reverberation, propagating
mass accretion rate fluctuations and Comptonisation in a relativistic
jet or outflow. The second class includes Lense-Thirring precession,
time-dependent Comptonisation with feedback and a precessing jet.

In the RELTRANS model (Mastroserio et al. 2018, 2019, 2021;
Ingram et al. 2019), hard photons emitted from the corona (assumed
to be a point source along the spin axis of the black hole; see Lucchini
et al. 2023, for the case of a corona consisting of two point sources)
reach the observer first. Hard photons that illuminate and reflect off
the accretion disc are reprocessed and re-emitted at lower energies
than the corona photons, and reach the observer at later times. In this
model the soft lags of the BBN component in the PS of these sources
reflect the difference of the travel times between the hard and soft
photons. (The observed time lags are not simply the difference of
those travel times –see above for the shortcomings of that–, but the
model computes the lags from the energy- and frequency-dependent
transfer function of the disc illuminated by a point source, the so-
called lamppost, at a certain height above the disc; see, e.g., Reynolds
et al. 1999.)

In the several variants of the model of propagating mass accretion
rate fluctuations, PROPFLUC (Rapisarda et al. 2014, 2017a,b, see also
Ingram & Done 2011; Mahmoud & Done 2018; Mahmoud et al.
2019; Kawamura et al. 2023; Mummery 2023), the hard lags of the
BBN reflect the speed at which those fluctuations propagate in the
accretion disc on the viscous time scale. Similarly, in the JED-SAD
model (Ferreira et al. 2006; Marcel et al. 2019, 2020) the hard time
lags would reflect the viscous time scale in the disc, given that the
energy carried by mass accretion rate fluctuations will dissipate at the
transition radius between the standard and the jet-dominated parts of
the accretion disc (Ferreira et al. 2022).

In the model of Comptonisation in a relativistic jet/outflow (Reig
et al. 2003; Giannios et al. 2004; Reig & Kylafis 2015, 2021; Reig
et al. 2018; Kylafis & Reig 2018; Kylafis et al. 2020) the hard lags
of the BBN reflect the difference in the travel time of the photons
emitted from the disc that reach the observer directly and the disc
photons that are inverse-Compton scattered in the jet/outflow before
reaching the observer.

The Lense-Thirring precession model of the QPOs (Ingram et al.
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2009, 2016; Nathan et al. 2022) assumes that, as it precesses, a hot
torus located inside the inner radius of the accretion disc illuminates
the surface of the disc asymmetrically and produces the variability
at the QPO frequency. This precession leads to a soft delay between
the modulated flux of the hard component from the precessing torus
and the emission from the disc (especially the iron line).

In the time-dependent Comptonisation model, VKOMPTH (Kar-
pouzas et al. 2020; García et al. 2021; Bellavita et al. 2022, see
also Karpouzas et al. 2021; García et al. 2022; Zhang et al. 2022a,
2023a; Rawat et al. 2023; Ma et al. 2023a; Rout et al. 2023; Zhang
et al. 2023b), the lags of the QPO are either hard or soft depend-
ing on the “net” delay14 between the photons from the disc and
those that are inverse-Compton scattered in the corona, or the direct
corona photons and those photons that return and are re-processed
and re-emitted by the disc.

Ma et al. (2021, see also Ma et al. 2023b) assume that the lags of
the QPO are produced in a small-scale precessing jet. In this case,
the energy of the emitted photons decreases with height in the jet,
and the soft lags at the QPO frequency represent the difference of the
time of arrival of photons produced at different heights of the jet.

While conceiving mechanisms that produce time delays is rel-
atively straightforward, mechanisms that produce phase delays are
less obvious. A possible phase delay is mentioned in a study of the
type-C QPO in GRS 1915+105 (Lin et al. 2000), where the authors
discuss the phase delay between the fundamental and the second har-
monic of the QPO. Constant phase lags for each variability process,
without discussing the mechanism that produces them, is also con-
sidered by Nowak et al. (1999b) to explain the phase-lag shelves and
the coherence function of GX 339–4.

4.6 How should we search for variability?

In this paper we show that some variability components in LMXBs
are not detected significantly in the PS, and that one needs to resort
to the CS to detect them. Our findings prompt the question of the
most effective method for detecting variability in these sources.

The significance of a Lorentzian component is proportional to the
rms amplitude of the Lorentzian squared times the source count rate
(van der Klis 1989a). The rms amplitude of most variability compo-
nents increases with energy (e.g. Berger et al. 1996; Méndez et al.
2001; Gierliński & Zdziarski 2005; Zdziarski et al. 2005; Zhang
et al. 2020), whereas the observed count rate decreases at high en-
ergies, both because of the shape of the spectrum of these sources
and the drop of sensitivity of X-ray detectors. At low energies the
source count rate usually decreases also because the effective area
of X-ray detectors drops and because of the effect of the interstellar
absorption. Based on all this, and although it is not possible to give
a procedure that fits all possible cases, a generic approach would be
something along these lines:

(i) Fit the PS in the broadest possible energy band with a model
consisting of a number of Lorentzian functions to identify the
strongest variability components. One could also fit the PS in several
narrow bands over the full energy range of the detector, because some
components may be more significant in the full band while others
may be more significant in some of the narrow bands.

(ii) Produce CS of two bands covering, respectively, the low- and
the high-energy parts of the energy spectrum. While there is no

14 In steady state both processes are at work; the net delay results from the
solution of the time-dependent Kompaneets equation (Kompaneets 1957).

general rule to select the bands, one could consider dividing the
energy spectrum such that each band has more or less the same count
rate and the combined bands cover the full band of the detector.

(iii) Fit the full band PS and the two-bands CS with the same
Lorentzian model that fits the PS, with the frequency and FWHM
of each Lorentzian free to vary but linked in the PS and CS. The
Lorentzian functions in the Real and Imaginary part of the CS need to
be multiplied by, respectively, cos

[
𝑔𝑖

(
𝜈; 𝑝 𝑗 ,𝑖

) ]
and sin

[
𝑔𝑖

(
𝜈; 𝑝 𝑗 ,𝑖

) ]
assuming a model of the phase lags to get the parameters 𝑝 𝑗 ,𝑖 . If
necessary add new Lorentzians to the model.

(iv) Repeat the previous step for (some of) the narrow-band PS
and the CS of (some of) the narrow bands with respect to the full
band 15.

5 CONCLUSIONS

We propose a new method to measure the energy-dependent phase
and time lags in X-ray binaries, and use it to fit the power and cross
spectra (respectively, PS and CS) of a number of sources. As we
show in §3, this procedure is capable of unveiling signals that are not
significantly detected in the PS alone, opening up new possibilities to
understand the properties of the accretion flow around neutron-star
and black-hole X-ray binaries. Specifically:

• We show that, mathematically, the PS and CS of X-ray binaries
can be fitted with the same combination of Lorentzian functions, with
each Lorentzian in the CS multiplied by the cosine (sine) of a function
of Fourier frequency, Δ𝜙(𝜈)𝑥𝑦,𝑖 = 𝑔𝑖 (𝜈; 𝑝 𝑗 ,𝑖) with parameters 𝑝 𝑗 ,𝑖 ,
with the centroid frequency and FWHM of each of the Lorentzians
being the same in the PS and CS.

• We successfully fit the PS and the CS of the black-hole binaries
GX 339–4, GRS 1915+105 and MAXI J1820+070 assuming that,
for each Lorentzian 𝑖 and parameters 𝑘𝑖 , either 𝑔𝑖 (𝜈; 𝑘𝑖) = 2𝜋𝑘𝑖
(constant phase lags) or 𝑔𝑖 (𝜈; 𝑘𝑖) = 2𝜋𝑘𝑖𝜈 (constant time lags).

• We find that there is a significant shoulder at a slightly higher
frequency than that of (i) the fundamental of the type-C QPO in,
respectively, GX 339–4 and GRS1915+105, and of (ii) the second
harmonic of the type-C QPO in GRS 1915+105. The shoulder is
sometimes significant only in the CS, and would go undetected if
one only analysed the PS of these sources.

• Contrary to previous reports, the frequency of the type-C QPO
in an observation of GRS 1915+105 is consistent with being inde-
pendent of energy. The apparent change of the QPO frequency with
energy that was previously reported can be explained by a QPO fea-
ture that consists of two components, the QPO and a QPO shoulder,
each of them with an rms amplitude spectrum that depends differ-
ently upon energy. This model is statistically better and requires less
parameters than the model in which the QPO frequency depends
upon energy.

• While the PS of an observation of the black-hole binary MAXI
J1820+070 can be fitted with four Lorentzians, the simultaneous fit
to the PS and CS requires seven Lorentzians, all of them significant.

• We find a narrow QPO in an observation of MAXI J1820+070
that is very significant in the Imaginary part of the CS, but is not

15 In doing all this, one has to take into account that, on the one hand the
full-band PS and the PS of the narrow bands, and on the other hand the two-
bands CS and the CS of the narrow bands with respect to the full band, are
correlated (Ingram 2019) and hence do not provide independent information
to assess the significance of some of the signals.
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significantly detected in the PS. This “imaginary” QPO causes a
sharp drop in the coherence function at the QPO frequency.

• All the above shows that, by measuring the lags in the traditional
way, one is bound to miss variability components for which the Real
part of the CS is small compared to the Real part of other components
in the same frequency interval.

• We argue that because of this, and because so far we have only
used the PS to detect variability components, we have missed signals
with large positive or negative lags a significant component of the
cross vector along the Imaginary axis) in these sources.

• We conclude that, as it was previously shown for the PS, in the
CS of X-ray binaries the so-called broadband noise component is in
fact the combination of individual Lorentzian functions with more or
less well-defined time scales. The transfer function of models used to
fit the broadband variability in X-ray binaries must account for this.
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APPENDIX A: SIMULATIONS OF PHASE LAGS OF THE
QPO: THE TRADITIONAL VS. OUR METHOD

In this subsection we carry out simulations to compare the results
that we obtain with the new and the traditional methods as a function
of the strength of the QPO relative to the strength of other variability
components. We note that for these simulations we assume that the
PS and CS consist of a linear combination of Lorentzian functions, as
described in §2. Here we only discuss the case of the constant phase-
lag model, but we find similar results using the constant time-lags
model.

We take the best-fitting model to the PS and CS of the observation
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of GRS 1915+105 in §3.2 as the basis for our simulation. To make the
comparison more straightforward, we simulate the data considering
a simplified version of the model shown in Figure 2; in particular, we
ignore the weak shoulders of the QPO fundamental at ∼ 2 Hz and
of the second harmonic at ∼ 4 Hz. We further assume that the QPO
has a phase lag of −0.10 rad, and the low- and high-frequency broad
Lorentzians that contribute to the variability at the QPO frequency
(these are the Lorentzians in the middle panel of Figure 2 peaking
at, respectively, ∼ 1 Hz and ∼ 3.5 Hz) have lags of −0.20 rad
and +0.30 rad, respectively. Finally, for the simulations we take the
normalisation of the Lorentzian components in the PS and CS that we
obtain from the best-fitting model. Once we have established the base
model, we carry out Monte Carlo simulations of the power and cross
spectra for a range of values of 𝐴, the normalisation of the QPO in the
PS of band 1 (channels 0− 13), such that the ratio of the QPO power
to the combined power of the other two components in that band,
integrated over one FWHM of the QPO, is in the range ∼ 0.25 − 35.
We then do the same to simulate the PS of band 2, applying the same
factor, in the range ∼ 0.25 − 35, to the normalisation of the QPO,
𝐵, in band 2 (channels 14 − 249) and compute the normalisation
of the cross vector, 𝐶 =

√
𝐴𝐵 (see §2). For the simulations we

assume that the powers in the PS and the amplitude squared in the
CS are normally distributed. This is a reasonable approximation
given that the simulated data are based on the average of at least
25 separate realisations of those Fourier quantities, which are also
rebinned logaithmically in frequency (see §3).

We find that when the power of the QPO is ∼ 25% of the power of
the broad underlying components, the QPO is 4.2𝜎 and 4.4𝜎 signif-
icant in, respectively, band 1 and band 2; under these circumstances
our method gives a phase lag of the QPO of −0.047 ± 0.068 rad,
already consistent with the input value of the simulation of −0.10
rad. On the contrary, the lags obtained with the traditional method are
0.165 ± 0.011 rad, more than 20𝜎 different from the input value of
the simulation, but close to the lags of the underlying high-frequency
broad Lorentzian. Even when the QPO is ∼ 8 times stronger than the
broad underlying components, the lags with the traditional method
are −0.068 ± 0.005, more than 6𝜎 different from the input value of
the simulation, whereas the lags with our method are−0.104±0.006.
Only when the QPO is ∼ 25 times stronger than the broad underlying
components, the traditional lags of the QPO are −0.091± 0.003 rad,
consistent (albeit just at the 3𝜎 level) with the input value of the
simulation. This last result shows emphatically that, if the PS and
CS can be decomposed into a number of Lorentzian functions, and a
QPO appears in a frequency range in which there are other variabil-
ity components, the traditional lags of the QPO are biased towards
the lags of those components, even when the QPO is significantly
stronger than the other variability component.

It is worth noting that, while the values of the lags in the tradi-
tional method are significantly different from the input value of the
simulation, the errors of the traditional lags are much smaller than
those obtained with our method. This is easy to understand from
the fact that in our method the errors of the lags of each Lorentzian
reflect the uncertainties of the parameters of all the other Lorentzians
in the model. Furthermore, each individual Lorentzian component is
weaker, and hence less significant, than the sum of all components,
which is what one measures when one averages the CS over the
FWHM of a QPO. Because of this, if the PS and CS consist truly of
the sum of individual Lorentzian components, the traditional method
underestimates the relative errors of the Real and Imaginary parts of
the CS and hence of the lags (see also Peirano & Méndez 2022;
Alabarta et al. 2022).

All the above shows that in cases in which a QPO appears on

top of a broad component in the PS, while the lags obtained using
the traditional method appear to be very precise, they are very inac-
curate. Both the inaccuracy and the apparent high precision of the
measurements are an artefact of the contamination of the underly-
ing components. On the contrary, while the lags obtained using our
method have larger errors than those of the traditional lags, they are
significantly more accurate and should therefore be used instead of
the traditional lags.

APPENDIX B: THE BROADBAND VARIABILITY IN MAXI
J1820+070 FITTED WITH THE CONSTANT TIME-LAGS
MODEL

Constant time-lags model: As we did in §3.4, in Figure B1 we show
the fit to the PS and the CS with four Lorentzians, assuming the
constant time-lags model (the top left and the two bottom panels).
The panel at the top right shows the phase-lag frequency spectrum
with the derived model. As in Figure 4, the top sub-panels show the
data and the model and the middle sub-panels show the residuals
in the case in which we first fit the PS and then fix the frequency
and FWHM of each Lorentzian to the values that we obtain from
the PS. The joint fit to the PS and CS with this model is very bad,
with 𝜒2 = 724.9 for 438 dof, while the derived model of the lags
gives 𝜒2 = 2704.5 for 150 dof. The bottom sub-panels show the
residuals when we let the frequency and the FWHM of each of the
four Lorentzian components free but linked across the three spectra.
In this case the fit gives 𝜒2 = 587.5 for 430 dof, while the the derived
model of the lags gives 𝜒2 = 1686.6 for 150 dof.

As in the case of the constant phase-lags models (§3.4, Fig. 4),
when the frequency and FWHM of the Lorentzian components are
fixed to the values obtained from the PS, the fit to the CS and the
derived model for the phase lags show large residuals (significantly
larger than those in the case of the constant phase-lags model).

Figure B2 shows the data fitted with a model consisting of seven
Lorentzians assuming the constant time-lags model. The panels show
the same information as the panels in Figure 5. The fit gives 𝜒2 = 417
for 415 dof, marginally better than in the case of the constant phase-
lags model. The derived model of the lags gives 𝜒2 = 205 for 150
dof, worse than for the constant phase-lags model.

In this case, some of the components have centroid frequencies
and time lags such that the phase lags wrap as explained in §2.1. For
instance, the oscillations in the bottom panels of Figure B2 are due
to Lorentzians 1, 2 and 3 with centroid frequencies of ∼ 0.05 Hz,
∼ 0.165 Hz and ∼ 0.29 Hz that have, respectively, time lags of ∼ 242
ms, ∼ 73 ms and ∼ 45 ms. For instance, the phase lags of the first of
those Lorentzians rotate at a rate of ∼ 1.5 rad per Hz such that, as
explained in §2.1, the phase angle of the CV wraps ∼ 14 times over
the 0.07629− 60 Hz frequency range leading to the oscillations seen
in the Figure.

We report the best-fitting parameters in Table B1. Notice that the
frequency and FWHM of some of the Lorentzians are different in
this case compared to the fit with the constant phase-lags model.
This can be seen from comparing the values in Tables 5 and B1, and
looking at the plots in Figures 5 and B2. For this reason, and because
the Lorentzians in the Tables are sorted by their centroid frequency,
it is not possible to compare the properties of all the Lorentzians
obtained from the fits with the two types of models. As in the case of
the constant phase-lags model, in this case there is again a Lorentzian
(number 5) that is not significant in the PS but is significant in the
CS.

In Figure B3 we plot the observed intrinsic coherence with the de-
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Figure B1. Same as Figure 4 but now assuming the constant time-lags model (see Table 1 and §2.1). Notice the difference in the scale of the residuals plot of
the lags in this Figure and in Figure 4.

rived model for the constant time-lags model. The largest deviations
appear again at 0.2 Hz (see §3.4 for an explanation).

APPENDIX C: A QPO IN THE IMAGINARY PART OF THE
CROSS SPECTRUM OF MAXI J1820+070: THE CONSTANT
TIME-LAGS MODEL

In Figure C2 we plot the observed intrinsic coherence with the model
derived from the simultaneous fit of the two PS and the CS using
the constant time-lags model. As in §3.5, the significant drop in the
observed intrinsic coherence at ∼ 2 Hz, where there is a QPO that is
only present in the Imaginary part of the CS, is well described by the
model derived from the fit to the two PS and the CS.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B2. Same as Figure 5 but now assuming the constant time-lags model.

Table B1. Same as Table 5, assuming the constant time-lags model

Component 𝜈0 (Hz) FWHM (Hz) rmsPS (%) significance∗ time lags (ms) rmsCS (%) significance∗

Lorentzian 1 0.05 ± 0.01 0.063 ± 0.008 15.8 ± 0.8 10.0 242 ± 4 16.8 ± 0.8 11.3
Lorentzian 2 0.165 ± 0.005 0.12 ± 0.02 14.3 ± 1.1 7.1 73 ± 3 14.9 ± 1.0 7.8
Lorentzian 3 0.29 ± 0.02 0.39 ± 0.03 10.7 ± 0.9 5.8 45 ± 2 11.4 ± 0.9 6.3
Lorentzian 4 0.74 ± 0.06 2.4 ± 0.2 14.2 ± 0.7 9.9 −1.9 ± 0.8 14.4 ± 0.9 8.7
Lorentzian 5 1.3 ± 0.3 6.8 ± 0.3 < 2.2† < 1 2.5 ± 0.5 11.9 ± 0.9 6.5
Lorentzian 6 2.1 ± 0.3 5.9 ± 0.2 9.2 ± 0.9 4.7 −17 ± 1 5.7 ± 0.5 4.8
Lorentzian 7 21.0 ± 2.1 35.3 ± 3.9 1.9 ± 0.1 7.0 −2.9 ± 0.9 3.3 ± 0.4 4.4

𝜒2/dof 417/415

∗ In units of 𝜎.
† 95% upper limit.
The rms amplitude of the power and cross spectra of each Lorentzian are integrated from zero to infinity.
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Figure B3. Intrinsic coherence function of the same observation of MAXI
J1820+070. The plot is the same as that in Figure 6, except that here we
assume the constant time-lags model (right panel).
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Figure C1. Same as Figure 7 but now assuming the constant time-lags model.
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Figure C2. Intrinsic coherence function of the same observation of MAXI
J1820+070 shown in Figure C1 with the derived model obtained from the fit
to the PS and CS assuming the constant time-lags model.

MNRAS 000, 1–24 (2023)


	Introduction
	Mathematical formalism
	Phase-lag model
	Average phase and time lags over a frequency range
	Transfer/response function

	Application to data
	Case study 1: The complex lag spectrum of the type-C QPO in GX 339–4
	Case study 2: Shoulders of the fundamental and second harmonic of the type-C QPO in GRS 1915+105
	Case study 3: No energy dependence of the QPO frequency in GRS 1915+105
	Case study 4: The broadband variability in MAXI J1820+070
	Case study 5: A QPO in the Imaginary part of the cross spectrum of MAXI J1820+070

	Discussion
	Weak variability components in the presence of other, stronger, components
	Hidden variability components
	No energy dependence of the frequency of QPOs
	Broadband noise or QPOs?
	Constant phase lags or constant time lags?
	How should we search for variability?

	Conclusions
	Simulations of phase lags of the QPO: The traditional vs. our method
	The broadband variability in MAXI J1820+070 fitted with the constant time-lags model
	A QPO in the Imaginary part of the cross spectrum of MAXI J1820+070: the constant time-lags model

