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This thesis is concerned with the improvement of acoustic leak detection methods. While acoustic 

methods have been successfully used for detecting and locating leaks in metallic water pipes, they are 

generally less effective in plastic pipes due to the higher attenuation of acoustic waves in plastic pipes. 

Another motivation for the research is the need to fully utilise data acquired by monitoring devices 

installed in water distribution networks, for which existing acoustic methods are inadequate. Three 

specific problems associated with the application of existing acoustic methods are addressed in this 

thesis: long time required for identification of leaks, inaccurate leak localisation due to uncertainties in 

wave speed values, and non-robust time delay estimation (TDE). To deal with the first two issues, new 

transient and steady-state methods are developed by considering the acoustic leak detection problem 

from alternative perspectives, including transient/signal detection, multipath identification, and system 

identification. Transient methods are based on detecting and processing acoustic transients, while 

steady-state methods analyse signals generated by an ongoing leak. To facilitate transient analysis, a 

procedure for detecting, locating, and assessing the nature of acoustic transients is developed based on 

a change metric known as non-stationarity measure (NSM). An approach that combines multiple 

acoustic transient and steady-state methods is also developed. Alternative methodologies based on 

wavelet transforms, data-adaptive decompositions, and cepstral analysis are proposed for estimating 

time delays in leak signals. Also, new approaches for assessing accuracy of the time delay estimate are 

developed by exploiting the statistical properties of the cross-correlation function (CCF).  

The alternative methods developed in this work offer practical benefits over existing methods. 

Application of transient/signal detection principles reduces the time required to detect the presence of 

a leak. The methods based on the multipath identification and system identification viewpoints do not 

require a priori knowledge of pipe material properties or wave speed to locate the leak. The synergy of 

methods in the combined approach ensures more reliable acoustic leak detection in a ‘self-contained’ 

manner, as essential leak detection tasks can be executed directly from measured leak signals without 

need for ‘third-party’ data or additional measurements. Unlike the commonly used generalised cross-

correlation (GCC) methods, the alternative TDE methods proposed in this work do not require signals 

to be first filtered prior to estimating the time delay. Moreover, the new quality assessment metrics 

developed in this work provide a simple means to infer the accuracy of the time delay estimate as well 

as to select best parameters required for accurate TDE results. These new methods allow for fuller 

utilisation of data than is possible with currently employed acoustic methods. This is especially 

relevant considering the current drive towards massive deployment of transient loggers by water 

companies. A laboratory leakage test rig was designed and built specifically for the experimental 

investigation of the proposed methods.  
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CHAPTER 1 

INTRODUCTION 

Water distribution networks are essential infrastructure used to transport water, a vital resource, to 

consumers. Due to ageing and other factors, they are susceptible to leakages, which represent a 

substantial portion of non-revenue water lost by water companies. By definition, any water that 

escapes from a water distribution network by means other than a controlled action is considered 

leakages (Ofwat, 2023). This includes losses from pipe damage and faulty joints. Currently, about 

22% of the water produced in the UK is lost through leakages, with daily losses in England and Wales 

estimated to be about 2.9 billion litres of water (Ofwat, 2022).  

Water leakages have serious social, economic, and ecological consequences (Cramer et al., 

2015). Flooding from burst pipes can damage infrastructure such as roads, airports, farmlands, and 

buildings, thereby adversely impacting people’s lives. Lost revenue from leakages and cost of repair 

works place increased financial burden on water companies and may result in higher prices for the 

consumers. Water leakages also constitute a serious sustainability issue, especially considering the 

dwindling freshwater supply and the rising water demand driven by increasing world population 

(Rogers, 2014). The global urban population facing water scarcity is projected to increase from 930 

million in 2016 to 1.7–2.4 billion people in 2050 (UNESCO, 2023). The treatment and pumping of 

water for urban and industrial purposes accounts for about 4% of global energy consumption (IEA, 

2017). With approximately 30-50% of water lost globally due to water leakages (Liemberger and 

Wyatt, 2018), the wasted energy consumption accounts for about 1-2% of the global carbon footprint.  

Due to these possibly disastrous consequences of water leakages, their timely detection and 

repair are of primal importance. To achieve this, different methods have been proposed for use in the 

water industry. The methods are briefly outlined in the next section with particular emphasis on 

acoustic and transient methods, two methods which are of interest in this thesis.  

1.1 Overview of water leak detection methods 

The main methods commonly used for leak detection in the water industry are the acoustic methods 

and fluid transient methods. In acoustic leak detection methods, acoustic/vibration sensors, typically 

hydrophones and accelerometers, installed in the fluid or on the pipe measure acoustic waves 

generated by a leak in the pipe. The measured signals are analysed to detect and locate the leak. The 

simplest acoustic leak detection technique is the use of listening devices or ground microphones to 

‘listen’ for sounds produced by leaks on hydrants, valves, and other conveniently located fittings, or 

above the ground along the pipeline. Traditionally, a listening device consists of a metal rod with a 

wooden block at the end for mechanically amplifying the leak sound heard by the operator, but some 
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modern listening devices are electroacoustic with a digital amplifier instead of a wooden block 

(Hamilton and Charalambous, 2020). The sound produced by a leak is generally louder at points close 

to the leak, so points of high sound intensity can be used to detect and possibly locate leaks. This 

acoustic method is mostly used during routine survey and for confirming the location of leaks before 

excavating the soil for pipe repair. Its effectiveness depends on the experience and skill of the 

operator. Other commonly used acoustic leak detection techniques are acoustic noise logging and 

cross-correlation (Brennan et al., 2017). 

In acoustic noise logging, leak noise loggers that consist of integrated acoustic/vibration sensing 

and data logging units are used to measure signals on the pipe or fluid at pre-programmed periods, 

usually during the night (El-Zahab and Zayed, 2019). The presence of a leak in the water distribution 

network is inferred when the recorded signal is consistently higher than the ‘normal’ or baseline level 

over several nights, allowing further investigation to be carried out to determine the leak location. 

Leak noise loggers may be permanently installed, or operated on a temporary basis using a ‘lift and 

shift’ scheme (Bykerk and Valls Miro, 2022). In the ‘lift and shift’ scheme, the devices are placed in a 

different location of the network each night or two, where they record signals at the pre-programmed 

times. Acoustic noise logging allows a large area of the pipe network to be surveyed automatically. It 

is generally a suitable option for detecting leaks in noisy and busy areas where manual surveys using 

listening devices might be difficult to carry out (Hunaidi, 2012).  

The cross-correlation technique is the most commonly used leak localisation method in water 

distribution networks. In this method, the leak is located by analysing acoustic/vibration signals 

measured on either side of the suspected leak (Brennan et al., 2017). Figure 1.1 shows the practical 

setup for the cross-correlation method. The measurement points are usually hydrants, valves, and other 

pipe fixtures on which acoustic/vibration sensors can be attached. The measured signals ( )1x t  and 

( )2x t  are transmitted to a leak noise correlator, a device that estimates leak location from the 

algebraic formula 

 
peak

1
2

d c
d

− 
=   (1.1) 

where 
1d  is the distance between the leak and the first measurement point, c  is the speed of 

propagation of acoustic waves in the pipe, d  is the total distance between the sensors, and peak  is the 

time delay between ( )1x t  and ( )2x t . The effectiveness of leak localisation using this technique 

depends on the accuracies of the wave speed value and time delay estimate. The roles, advantages, and 

limitations of acoustic methods will be discussed further in the next section.  

Hydraulic or fluid transient methods include all methods that detect and locate leaks by 

analysing rapid unsteady variations in the pressure or flow rate in the pipe system, caused by pipe 



Chapter 1 Introduction 

3 

burst, start-up and shutdown of pumps, and fast manoeuvre of valves, or any other event that abruptly 

changes the transmission conditions in the pipe system. Such rapid variations are known as fluid 

(hydraulic) transients or more commonly as water hammer (Rathnayaka et al., 2015). Fluid transient 

methods can be model-based or data-driven. In model-based methods, the values of hydraulic 

quantities (pressure, flow rate) measured in the pipe system are compared with those predicted by a 

mathematical model that represents the state of the pipe based on physical principles, viz., 

conservation of mass, conservation of momentum, and equations of state (Turkowski et al., 2007). A 

large discrepancy between the predicted and measured values is considered indicative of the presence 

of a leak. Examples of model-based fluid transient methods are inverse transient analysis (Liggett and 

Chen, 1994), transient damping (Wang et al., 2002), frequency response (Mpesha et al., 2002), and 

impulse response analysis methods (Lee, 2005). Inverse transient analysis method solves the least-

squares minimisation inverse problem of determining unknown parameters, such as leak location, leak 

size, and pipe roughness, from pressure and/or flow rate measured at strategic locations in the pipe 

system. In the frequency response and impulse response analysis methods, the presence and location 

of a leak are inferred from the frequency response function (FRF) or impulse response function (IRF) 

of the pipe extracted from a measured transient pressure trace. A deviation of the extracted FRF or IRF 

from that of an intact pipe may be indicative of a leak. Transient damping method detects and locates a 

leak by comparing the damping rate caused by the pipe-wall friction and other loss elements in the 

pipe system obtained with and without leaks. An important advantage of model-based fluid transient 

methods is the ability to estimate leak size (Geiger, 2008). However, their application in real systems 

is limited by uncertainties in the hydraulic model, high computational complexity, and high cost of 

implementation (Puust et al., 2010).  

Data-driven fluid transient methods are based on statistical analysis of pressure and/or flow 

data. Examples of such methods are leak reflectometry (Brunone and Ferrante, 2001; Ghazali et al., 

2012), pressure-based (Lin and Zhang, 2006), cumulative sum (CUSUM) (Misiunas et al., 2005), and 

prediction-classification methods (Romano et al., 2014). Leak reflectometry methods detect and locate 

leaks by identifying the waves that are reflected when a hydraulic transient encounters a leak in the 

 

Figure 1.1: Schematic of a pipe with a leak bracketed by two sensors. 
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pipe. The CUSUM method is used to detect a pipe burst by observing changes induced in a measured 

signal by hydraulic transients accompanying the burst event. Pressure-based methods such as the 

pressure point analysis (bin Md Akib et al., 2011), negative pressure (Delgado and Begovich 

Mendoza, 2017), and gradient methods (Geiger et al., 2003) detect leak by observing a change in the 

time-history of a pressure signal measured at a single point on the pipeline or its deviation from a 

statistical trend. Prediction-classification methods use machine learning methods and statistical chart 

tools to detect the presence of anomalies, such as leaks, in the long-term measurements of fluid 

transients. Since data-driven methods do not require a mathematical model of the pipe system, they are 

computationally less expensive and less sensitive to structural and operational complexities of the 

network than model-based methods (Wu and Liu, 2017). This makes them suitable for different 

pipeline configurations. Other advantages of these methods include reduced leak detection time and 

cost effectiveness (some data-driven methods require measurement from just one or several positions 

to detect and locate the leak). Their main disadvantages are susceptibility to measurement noise and 

need for extensive tuning of the pipe system under different operating conditions in the absence of a 

leak (Zhang and Di Mauro, 1998). 

Apart from acoustic and fluid transient methods, other methods used for detecting leaks in water 

distribution networks include use of ground-penetrating radar, thermography, tracer gas method, and 

fibre optic methods. Thermography and use of ground-penetrating radar rely on detecting changes in 

the properties of the soil in the vicinity of a leak, for example, reduction in the soil temperature and 

radar propagation velocity (Demirci et al., 2012). These techniques are generally not effective for 

finding leaks in pipes buried in a depth greater than 3 metres (Bimpas et al., 2010). Furthermore, leak 

localisation accuracy of these techniques may not be high since the leaking water can move far from 

the actual leak location. In the tracer gas method, a non-toxic, volatile, and non-combustible gas, 

typically a mixture of hydrogen and nitrogen, is introduced into the pipe section with the suspected 

leak (Hunaidi et al., 2000). As the gas diffuses to the surface via the leak, it can be detected with a 

highly sensitive gas leak detector. This method is labour-intensive and causes service interruption, as 

the pipes to be inspected have to be taken out of service and drained first. Moreover, leaks at the 

bottom of the pipe cannot be detected using this method. Fibre optic method detects leaks by 

monitoring the variation of the physical and chemical properties of fibre optic cables installed along 

the exterior of the pipeline (Mishra et al., 2017). This method is suitable for continuous pipeline 

monitoring, accurate leak localisation, and detecting small leaks. However, its serious shortcomings 

include high cost, difficulty of retrofitting fibre cables to existing pipelines, and short lifespan due to 

instability of the fibre chemical coating over time (Murvay and Silea, 2012). Adegboye et al. (2019) 

has carried out a comprehensive review of these and other leak detection methods, including their 

main advantages, disadvantages, and applications. 
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1.2 Roles and limitations of acoustic methods in water leak detection 

The important roles played by acoustic methods can be highlighted by considering the typical leak 

detection process in the water industry depicted in Figure 1.2. The presence of leaks within a water 

distribution network is usually inferred via minimum night flow analysis (Fantozzi and Lambert, 

2012), pressure monitoring (Rathnayaka et al., 2015), or acoustic noise logging. Leaks can also be 

discovered through routine manual surveys or when consumers report a visible water leak. When the 

presence of a leak is discovered, information from leak noise loggers or transient pressure loggers 

installed in the network is analysed further to identify the network section where the leak is located. 

Then, leak noise correlators are deployed to localise the leak. Following a successful cross-correlation, 

the exact location of the leak is pinpointed using a listening device or ground microphone which is 

moved along the ground directly over the pipe at the correlated position. After pinpointing the leak, 

the ground is excavated, and the pipe damage is repaired. Based on these typical leak detection 

procedures, it can be observed that acoustic methods are currently the primary means of detecting and 

locating water leakages. They are employed for major leak detection tasks, including leak awareness 

(acoustic noise logging), leak localisation (cross-correlation), and leak pinpointing (use of listening 

devices and ground microphones). The term ‘leak awareness’ or ‘leak identification’ is used in this 

work to denote the discovery of a leak within the pipe system. Widespread use of acoustic methods 

can be attributed to their ease of deployment and relatively low cost (Liu et al., 2012). Moreover, they 

are non-intrusive, and hence, do not disrupt the operations of the water distribution network during 

leak detection. Also, safety concerns associated with the deliberate introduction of external transients 

(as in fluid transient methods) or substances (as in tracer gas method) are avoided.  

While acoustic methods are the methods of choice for various leak detection tasks in the water 

industry, there are certain factors that limit their effectiveness, including acoustic wave attenuation, 

uncertainties in wave speed values, issues with time delay estimation (TDE), relatively long leak 

identification time, and unsuitability for leak size estimation. These issues are highlighted in this 

section.  

 

Figure 1.2: Typical leak detection procedure in the water industry. 
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1.2.1 Acoustic wave attenuation 

Acoustic wave propagation in a fluid-filled pipe is complex. The vibro-acoustic behaviour of the pipe 

is related to two-dimensional patterns, which are composed of circumferential modes (denoted as n ) 

and associated waves (denoted as s ) related to each mode (Muggleton et al., 2004). Each 

circumferential mode has a characteristic shape and frequency content and can only propagate above a 

certain frequency known as its cut-off frequency. There are theoretically infinite number of waves s  

related to each circumferential mode n . However, at frequencies well below the so-called ring 

frequency of the pipe (see Equation (2.3) in Chapter 2), two non-dispersive plane waves are 

responsible for most of the acoustic energy transfer in a pipe: the predominantly fluid-borne wave 

(termed s  = 1) and the predominantly pipe-borne wave (termed s  = 2) (Fuller and Fahy, 1982; 

Pinnington and Briscoe, 1994). Both waves correspond to the axisymmetric fundamental mode n  = 0. 

Experimental results indicate that the s  = 1 wave is the predominant wave responsible for transmitting 

leak noise energy in plastic pipes (Muggleton et al., 2002; Gao and Liu, 2017). As acoustic waves 

propagate in the pipe, they lose part of their energy to the pipe wall. A measure of the loss within the 

pipe wall is the attenuation factor  , which at low frequencies below the ring frequency can be 

calculated as (Muggleton et al., 2002) 

 
 

1 2

Im 1
1

2

p f p f p

f p p p p

B D B Dk

c E h E h






−

 
= − = +  

 

  (1.2) 

where  1Im k  denotes the imaginary part of the complex wavenumber 
1k  of the s  = 1 wave; 

pD , 

ph  are the pipe diameter and pipe-wall thickness, respectively; 
pE  is the Young’s modulus of the 

pipe material; fB  is the fluid bulk modulus of elasticity; p  is the loss factor of the pipe material; fc  

is the fluid wave speed; and   is the radial frequency. Other factors that contribute to acoustic wave 

attenuation include radiation into the surrounding soil and losses at discontinuities (Muggleton and 

Yan, 2013). Since acoustic methods depend on the ability to detect the leak noise, they are prone to 

failure when the acoustic waves are severely attenuated, for example, when the measurement points 

are far from the leak. This is particularly a problem in plastic pipes, which generally have higher 

attenuation than metallic pipes of a similar size (Muggleton et al., 2002). As a result, acoustic waves 

do not propagate as far in plastic pipes as they do in metallic pipes. Since recent research has shown 

that many new polyethylene pipe networks are responsible for a significant proportion of water 

leakages (Farrow et al., 2017), this issue represents a serious practical concern.  

1.2.2 Wave speed estimation/measurement 

A prerequisite in the cross-correlation technique is a priori knowledge of the wave speed. In most leak 

noise correlators, the wave speed is either obtained from tabulated values or calculated using a 
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formula. If fluid inertial effects are neglected, the acoustic wave speed c  can be calculated from the 

real part of the complex wavenumber of the fluid-borne s  = 1 wave as (Muggleton and Yan, 2013) 

 

1 2

2

2
1

2

f

f

p p p p p p m

B
c c

E h a a h G 

−

 
= +  − + 

  (1.3) 

where 
p  is the density of the pipe material, 2p pa D=  is the pipe radius, and 

mG  is the shear 

modulus of the surrounding medium. At low frequencies below the ring frequency of the pipe (see 

Equation (2.3) in Chapter 2), the 
2  term can be neglected. Using this wave speed formula is 

problematic for two main reasons. Firstly, the properties of the pipe may differ drastically from their 

original or typical values due to ageing and deterioration. Also, the properties of the surrounding soil 

may not be known, and the values of 
mG  can vary in a large range even for soils of the same type 

(Kavazanjian et al., 1997; Seed et al., 1986). This is not taken into consideration in most leak noise 

correlators, and 
mG  is usually set to zero when calculating the wave speed (Becker, 2015). However, 

this may lead to inaccurate leak localisation results, since the type of surrounding medium can have 

substantial effects on the wave speed in the pipe, as can be observed in the results reported by Scussel 

et al. (2018) for pipes in the United Kingdom (sandy soil) and Brazil (clay soil). Secondly, the 

experimental results from a number of studies suggest that the wave speed is affected by seasonal 

variations and temperature, which are not accounted for in the formula. For instance, the wave speed 

in a buried polyvinyl chloride (PVC) pipe has been observed to vary from 484 m/s in the summer to 

515 m/s in the winter (Hunaidi and Chu, 1999). In a series of experiments conducted by Almeida 

(2013) on a bespoke test rig, the wave speed in a buried medium density polyethylene (MDPE) pipe 

ranged from 350 m/s to 420 m/s over a couple of months. It was also observed that measured wave 

speeds differed significantly (about 25%) between pipe sections in the test rig. Several in-situ methods 

have been proposed for measuring the wave speed on-site at the same time when the leak signals are 

acquired, but the application of these methods is not always feasible due to certain practical 

constraints. For example, the correlation envelope method (Almeida et al., 2015), in which the wave 

speed is calculated from the responses of the pipe to white noise excitation at the measurement 

positions, requires a shaker to be attached to the measurement points. This makes the method 

cumbersome to apply in practice. Also, the accuracy of the wave speed estimate is strongly affected by 

the properties of the excitation signals employed in this method. In the hydrant simulation method 

(Hunaidi et al., 2000), the wave speed is estimated from signals measured at known locations on the 

pipe when water is deliberately released from a hydrant. This method introduces safety issues due to 

the possibly damaging effects of the resulting transients on pipe components. Also, unavailability of 

conveniently located access points can limit its applicability. It can be concluded that even with 

availability of in-situ methods, uncertainties in the wave speed remain a challenge in current acoustic 

leak detection practice.  
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1.2.3 Time delay estimation 

Locating the leak using acoustic cross-correlation involves the estimation of the time delay between 

the measured leak signals ( )1x t  and ( )2x t . The most commonly used method for estimating time 

delays between stationary signals is the generalised cross-correlation (GCC) method, in which the time 

delay is given by the time lag that maximises the cross-correlation function (CCF) ( )
1 2x xR   of ( )1x t  

and ( )2x t  (Gao et al., 2006). The CCF is computed as the inverse Fourier Transform (IFT) of suitably 

weighted cross-power spectrum (CPS) ( )
1 2x xG   of the signals (Knapp and Carter, 1976). Table 1.1 

outlines the weighting functions in some existing GCC methods, including the basic cross-correlation 

(BCC), phase transform (GCC-PHAT), smoothed coherence transform (GCC-SCOT), maximum 

likelihood (GCC-ML), and Wiener estimator (GCC-WIEN). The symbol ( )
1 2

2

x x   denotes the 

magnitude-squared coherence (MSC) of the signals.  

Table 1.1. Weighting functions in the GCC methods. 
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The GCC-PHAT is known to perform well in the presence of reverberation and low noise in 

signals (Gao et al., 2009) but poorly in the presence of tonal components and resonances (Almeida, 

2013). Such tonal components are suppressed by the GCC-SCOT (Carter et al., 1973). By weighting 

the CPS according to the coherence, both the GCC-ML and GCC-WIEN attenuate the signals in 

frequency bands with low signal to noise ratio (SNR) while emphasising spectral regions with high 

coherence. The GCC-ML is asymptotically efficient for uncorrelated Gaussian signals and long 

observation intervals (Hannan and Thomson, 1973) but has the effect of overemphasising and 

underemphasising the signals at certain frequencies compared to the GCC-WIEN (Hero and Schwartz, 

1985). As can be inferred from this discussion, each weighting function can only perform well under 

certain conditions. Since the conditions of the signals and measurement environment cannot always be 

determined a priori, the selection of appropriate GCC method may prove difficult in practice. While 

results of multiple studies have shown that the other GCC methods generally outperform the BCC 

(Gao et al., 2006; Uchendu et al., 2020; Almeida, 2013), their practical application in current acoustic 

leak detection practice is still very limited. Most leak noise correlators calculate the time delay using 

the BCC (Dray et al., 2012). This is mostly because there is currently no straightforward or simple 

way to select the best GCC method suitable for given leak signals.  

As stated above, acoustic wave propagation is modal in nature, and the pipe effectively acts as a 

lowpass filter due to the damping in the pipe wall as shown by Equation (1.2). As a result, acoustic 
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leak detection in most plastic pipes is only successful with low-frequency leak signals resulting from a 

non-dispersive propagating wave. Hence, in practice, prior to cross-correlating the measured leak 

signals, they are passed through a bandpass filter in order to attenuate the signals outside the frequency 

range where the leak noise propagates. These include the low-frequency region dominated by 

background noise and the high-frequency region where the leak noise is severely attenuated by the 

pipe (Gao et al., 2006). As shown by Gao et al. (2005), the cut-off frequencies of the applied filter 

have substantial effects on the accuracy of the time delay estimate. Bandpass filtering operation 

modulates the shape of the CCF, resulting in oscillatory behaviour of the CCF. This is illustrated in 

Figure 1.3, where the typical CCF response for a bandpass signal with centre frequency 
c  and 

bandwidth   is shown. The CCF oscillates at the centre frequency 
c  with modulation controlled 

by the bandwidth  . If the centre frequency is large, adjacent peaks spaced at 1 c  intervals in the 

CCF will have very nearly equal height, and thus difficulty may arise in unambiguously identifying 

the correct time delay. Also, a small signal bandwidth leads to a large width of the main CCF peak, 

resulting in poor resolution of the time delay estimate. The peaks in the nearby of the main peak 

associated with the effects of the bandwidth and centre frequency are suppressed in the CCF envelope, 

i.e., the magnitude of its analytic representation defined using the Hilbert transform (Oppenheim and 

Schafer, 2010; Marple, 1999).  

 

Figure 1.3: Typical CCF of a bandpass signal with centre frequency c  and bandwidth  . 

(Reproduced from Weinstein and Weiss (1984)). 

The right selection of the cut-off frequencies of the filter is therefore important for accurate 

TDE in leak signals. Arbitrary selection of these frequencies without considering the properties of the 

pipe and leak signals can lead to inaccurate time delay estimates, as has been observed in a survey of 

commercial leak noise correlators (Dray et al., 2012). Several criteria have been proposed for use in 

selecting the cut-off frequencies of the filter, including one based on the coherence of the signals 
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(Muggleton et al., 2011) and another based on the CPS magnitude (Almeida, 2013). However, the 

former has been found to provide incorrect estimates in some commonly encountered situations, for 

example, when resonances are present in the signals (Almeida et al., 2015), while the latter fails in 

cases where the maximum of the CPS modulus occurs at the resonant frequencies. Hence, in practice, 

selection of suitable filters can be challenging and adds an extra layer of complexity to the acoustic 

leak localisation process.  

1.2.4 Long leak identification time and unsuitability for leak size estimation 

Since leak noise loggers usually operate intermittently at pre-programmed times, acoustic noise 

logging may take several days to confirm the presence of a leak in the network, and even longer to 

locate the section of the network with the leak. Hence, it is not suitable for real-time leak awareness, 

especially when implemented using a ‘lift and shift’ scheme. Another challenge with acoustic methods 

is the inability to estimate leak size since there is currently no available relationship between leak size 

and the acoustic/vibration signals measured on the pipe. Leak size estimation is an important leak 

detection task as it serves as a basis for subsequent leakage control actions and prioritisation of repairs. 

Methods proposed in the literature for inferring leak size from acoustic/vibration measurements are 

generally based on the application of machine learning tools (Butterfield, 2018). However, such 

methods are usually specific to a particular pipe system, thereby making generalisation difficult. 

Furthermore, their implementation requires a large amount of historical data, which may not be readily 

available. Long leak identification time and inability to estimate leak size using existing acoustic 

methods may lead to increased water losses from leakages prior to their discovery and repair. 

In order to improve the effectiveness of detecting and locating leaks through acoustic means, the 

practical limitations highlighted in this section have to be addressed. This can be achieved by adopting 

alternative acoustic leak detection methodologies. Possible strategies for achieving this are considered 

in the next section. 

1.3 Alternative perspectives and strategies for acoustic leak detection 

One possible strategy to deal with some of the issues identified in the preceding section is to consider 

acoustic leak detection problem from new perspectives. It must be noted that only issues which can be 

addressed through signal processing means (specifically, long leak identification time, wave speed 

measurement, and TDE) are considered in this work. Inherent limitations associated with acoustic 

wave attenuation and inability to estimate leak size are not considered. In existing acoustic leak 

detection methods, the problem of detecting and locating a leak is considered primarily as a pattern 

recognition problem and a TDE problem, respectively. The basic idea employed for leak awareness 

using acoustic noise logging is that the occurrence of a new leak generally results in a sustained 

increase in the level of acoustic signals measured in the pipe. Leak localisation using the cross-
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correlation technique boils down to the problem of estimating the time delay between measured 

acoustic/vibration signals. These points of view make implicit assumptions that limit the extent to 

which leaks can be effectively located using existing acoustic methods. For instance, the cross-

correlation technique assumes a priori ‘third-party’ knowledge of the acoustic propagation wave speed 

in the pipe, while acoustic noise logging assumes that the presence of a leak must necessarily result in 

increased level of the measured signals. Alternative perspectives for considering the acoustic leak 

detection problem can be adopted from other leak detection methods, fluid transient methodologies in 

particular. 

A motivation for considering the possible application of fluid transient principles to acoustic 

leak detection is the close relationship between fluid transients and acoustic transients. In this work, 

acoustic transients refer to rapid variations in the acoustic pressure or structural pipe motion which 

can be sensed with acoustic/vibration sensors. Like fluid transients, they can be caused by pipe 

rupture, pipe impacts, or any other event that results in abrupt change in the condition of the fluid or 

the pipe. These two signal types are interconnected due to the presence of fluid-structure interaction 

(FSI) in a fluid-filled pipe. FSI is the two-way interaction or transfer of energy which takes place 

between the fluid and the pipe; changes in fluid flow or pressure results in structural excitation of the 

pipe and vice versa (Tijsseling, 1996). Due to FSI, the hydraulic and structural responses of the pipe 

and fluid to transient excitations (rapid valve closure, impacts, pipe burst, etc.) generally occur 

simultaneously through various coupling mechanisms (Moody and Winterbone, 1991; Li, 2011; 

Pinnington and Briscoe, 1994). This observation has been exploited for the non-intrusive detection and 

quantification of water hammer effects using acoustic measurements (Digulescu et al., 2015). Fluid 

and acoustic transients are both governed by the same principles of wave propagation in an acoustic 

medium, and like all known waves, they undergo the phenomenon of reflection when they encounter 

the boundary between two media of different physical properties, referred to as a discontinuity (Chien, 

1967). Another motivation for considering fluid transient methodologies is the recent initiative for 

mass installation of transient pressure loggers by water companies in their distribution networks driven 

by recognition of the ubiquitous presence and adverse impact of hydraulic transients on pipe network 

assets (Hossein et al., 2022). This has made it possible to capture a large amount of data using 

commercially available transient loggers than was previously possible. However, it is notable that 

most of the available transient loggers are targeted towards survey applications, with their software 

offering only basic data viewing and limited capability for in-depth analysis (Hoskins, 2015). As a 

result, the data acquired by the loggers are not being fully utilised for network assessment and leak 

detection. Since hydraulic and vibroacoustic phenomena generally accompany each other due to the 

presence of FSI effects, data acquired with transient loggers may contain acoustic/vibration signals, 

extraction of which can provide additional information about the presence and location of leaks. The 

simultaneous occurrence of these two types of transients, similarity in their interaction with 

discontinuities in the pipe, and possibility of extracting acoustic/vibration signals from fluid transient 
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measurements suggest that principles of fluid transient methods may be applicable to the analysis of 

acoustic transients.  

The occurrence of a leak in a fluid-filled pipe generates two types of acoustic waves: an initial 

impulsive signal (referred to as leak transients in this thesis) and a subsequent continuous signal 

(referred to as steady-state signal in this thesis) (Fuchs and Riehle, 1991; API, 1996). Existing 

acoustic leak detection methods are based on the analysis of the latter only. Both types of waves are 

transmitted along the pipe wall and the fluid in the pipe, leading to variations in the fluid acoustic 

pressure and vibration of the pipe wall that can be detected using acoustic/vibration sensors. This 

allows acoustic leak detection to be considered from a transient methodology viewpoint—as a 

transient detection problem, the aim of which is to detect the initial acoustic transients generated by a 

new leak. Since the subsequent generation of continuous steady-state signals by the leak results in a 

change in the properties of the measured signals (relative to the background noise), the problem of 

detecting a leak reduces to that of observing unique signatures in the signals, i.e., a signal detection 

problem. These viewpoints, transient and signal detection, emphasise the decision aspect of leak 

detection and consider leak detection problem as a statistical detection or anomaly detection problem 

which can be solved using statistical tools (as in the data-driven fluid transient methods). One possible 

benefit of implementing leak detection using these viewpoints is reducing the time required for leak 

awareness, as leaks can be detected as they occur or from short-term measurements.  

As already stated above, like fluid transients, all acoustic waves propagating in the pipe system 

interact with features in the system. For instance, when an acoustic wave encounters a discontinuity, 

such as a leak or joint, it may be partially or completely reflected. This similarity with fluid transients 

allows the possibility of applying reflectometry principles (as in transient leak reflectometry methods) 

to acoustic leak detection. Based on this, leak detection can be considered a multipath identification 

problem, the aim of which is to detect acoustic transients or leak noise reflected by pipe defects in the 

measured signals. One possible benefit of considering leak detection from this angle is that leak can be 

detected and located using readily available data without need for ‘third-party’ information about the 

wave speed or pipe material properties.  

In frequency response and impulse response fluid transient methodology, leak detection mainly 

requires knowledge of the behaviour of a pipeline in the absence and presence of a leak. The 

behaviour of the pipeline is described fully by its FRF or IRF, which indicates how the pipe modifies a 

signal propagating through it in the frequency and time domain, respectively. Since the FRF or IRF 

encapsulates all the information about wave propagation in the pipe and is independent of the type of 

signal propagating in the pipe, it is possible to consider acoustic leak detection as the problem of 

extracting the pipe FRF or IRF (a system identification problem). Conventional system identification 

requires the measurement of the response of a system to a known input signal (Ljung, 1999). 

However, the input signal, the leak noise generated at the leak location, is not available in acoustic 
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leak detection practice, so the system identification procedures used in fluid transient methods cannot 

be employed. Instead, a technique known as blind channel identification (BCI) (Haque and Hasan, 

2008) must be used to extract the pipe FRF or IRF from the measured leak signals exclusively. The 

feasibility of using the BCI technique for acoustic leak detection may make it possible to locate leaks 

without a priori knowledge of the wave speed since this information is already available in the pipe 

FRF or IRF. 

To deal with issues associated with estimating time delays in leak signals, it is worthwhile to 

view the TDE process in acoustic leak detection as consisting of two aspects: computing the time 

delay value and assessing the accuracy of this value. The second aspect can provide an effective 

means of resolving the challenges related to incorrect selection of TDE parameters, namely bandpass 

filters and GCC weighting function. Most research works dealing with the problem of filter design for 

TDE in acoustic leak detection generally focus on developing adequate or robust criteria to facilitate 

the selection of cut-off frequencies (see Almeida (2013) and Muggleton et al. (2011)). A more 

interesting and perhaps better approach is to consider alternative TDE methodologies where the choice 

of these parameters is not crucial to performance. Such alternative strategies may possibly be provided 

by transforms with inherent filtering capabilities. Developing approaches for achieving this is 

considered an important objective in this work.  

The alternative points of view identified above for acoustic leak detection and TDE form the 

basis for the objectives of this thesis, which are outlined in the next section.  

1.4 Objectives of the thesis 

The main aim of this research work is the improvement of acoustic leak detection in water pipes. In 

particular, this thesis focuses on development of techniques for addressing some of the issues 

identified in Section 1.2, including non-robust TDE, uncertainty in wave speed value, and long leak 

identification time. The objectives of this thesis can be stated as follows: 

1. To develop procedures for discovering leaks using signal and transient detection principles, 

i.e., by analysing temporal and spectral properties of acoustic transient and steady-state signals 

acquired in the pipe system. 

2. To develop alternative acoustic methods for detecting and locating leaks using multipath 

identification principles, i.e., by identifying reflections of acoustic transients or the leak noise 

in the measured acoustic/vibration signals. 

3. To develop an alternative acoustic method for locating leaks directly from the measured 

acoustic/vibration signals by extracting the pipe FRF or IRF. 
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4. To develop alternative methods for estimating time delays in leak signals, performance of 

which is not limited by the choice of weighting function or selection of a bandpass filter. Also, 

to develop approaches or metrics for quantifying the quality of the time delay estimate. 

5. To compare different acoustic leak detection methodologies and develop an approach for 

combining them for more robust leak detection.  

6. To validate the proposed methods using numerical and experimental data. 

To limit the scope of the research, any method proposed in this thesis must fulfil certain 

requirements, including capability of being realised with existing acoustic measurement setup and 

sensors, ease and convenience for practical application, and utilisation of only readily available data.  

1.5 Original contributions 

The main contributions from this research are: 

i. A procedure for detecting and locating acoustic transients in signals based on a change metric 

known as the non-stationarity measure (NSM) has been developed. The distribution and 

statistical properties of this transient detector have been derived. 

ii. The NSM-based transient detector has been used to implement a method for detecting leaks by 

identifying the initial acoustic transients generated when a leak occurs in the pipe. 

iii. A new acoustic method that detects leaks by analysing the spectral properties of the measured 

steady-state signals has been proposed. 

iv. Two alternative acoustic leak localisation methods based on identifying the reflections of 

acoustic transients and leak noise in measured acoustic/vibration signals have been proposed. 

v. A method for estimating the pipe FRFs and IRFs exclusively from leak signals has been 

developed for the purpose of locating leaks under the cross-correlation setup without 

knowledge of the wave speed or pipe material properties. 

vi. Two alternative methodologies for estimating time delays between leak signals without need 

to select a weighting function or first apply a bandpass filter have been proposed. 

vii. Three approaches for assessing the quality of the time delay estimate have been developed for 

use in acoustic leak detection. 

viii. A method that combines multiple acoustic leak detection methodologies has been developed. 
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1.6 Thesis outline 

The main body of this thesis consists of 9 chapters. This chapter (Chapter 1) presents a brief overview 

of water leakages and their consequences. Various leak detection methods employed in the water 

industry are briefly described, with particular attention on acoustic and fluid transient methods, the 

former being the main focus of this research. An overview of the roles and limitations of existing 

acoustic leak detection methods is presented. Based on the review of fluid transient methods, possible 

alternative strategies and perspectives for dealing with some of these limitations are identified. The 

objectives of the research project are formulated, and the original contributions are outlined. 

Chapter 2 concerns the description of the laboratory pipe leakage test rig used extensively to 

validate the results in this research. Its characteristics, layout, and instrumentation, as well as the 

procedures adopted in carrying out leak simulation experiments, are described. Lastly, the limitations 

of the leakage test rig in comparison with real pipe systems are discussed. 

Based on the first strategy identified in Chapter 1, the possibility of treating acoustic leak 

detection as a transient/signal detection problem is explored in Chapter 3. Two approaches, one based 

on transient analysis and the other based on analysis of steady-state signals, are proposed for leak 

awareness. The signal processing techniques for implementing these approaches are developed, 

including a new transient detection method. The proposed leak awareness approaches are 

experimentally investigated using data acquired on the leakage test rig. Finally, their benefits and 

limitations are highlighted. 

Chapter 4 concerns the implementation of the second strategy identified in Chapter 1. Acoustic 

leak detection and localisation is recast as a multipath identification problem, and two reflection-based 

methods (transient and steady-state) are developed for detecting and locating leaks in water pipes. To 

implement these methods, two multipath identification techniques—the autocorrelation and the 

cepstrum—are derived, analysed, and compared for leak signals. The proposed leak detection methods 

are investigated using numerical simulation and experimental data, and their limitations are identified.  

The possibility of performing acoustic leak detection using system identification (the third 

strategy identified in Chapter 1) is explored in Chapter 5. A blind channel identification (BCI) 

technique for extracting the pipe impulse response function (IRF) between the leak location and the 

measurement points is introduced. An algorithm for locating leaks directly from the measured signals 

without knowledge of the wave speed or pipe properties under the cross-correlation measurement 

setup is implemented using the BCI technique. Measures for dealing with possible challenges limiting 

the applicability of this technique to acoustic leak detection are developed. Numerical simulations and 

experimental data are then used to investigate the viability of the technique and compare its 

performance to the conventional cross-correlation method. Finally, the benefits and limitations of the 

technique are highlighted. 
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Chapter 6 presents three approaches (metrics) for assessing the accuracy or quality of the time 

delay estimate based on the statistical properties of the cross-correlation function (CCF) of 

uncorrelated noise and correlated leak signals. The basic principles of the approaches are described 

and statistically analysed. In order to evaluate the effectiveness of the proposed metrics, they are 

employed to assess the quality of the time delay estimates of experimental leak signals. Lastly, the 

limitations of the metrics are discussed. 

Two alternative time delay estimation (TDE) methodologies are developed in Chapter 7. The 

first is implemented using transforms with inherent filtering, namely, the wavelet transform (WT) and 

data-adaptive decompositions, while the second is based on the cepstrum. The variance of the time 

delay estimate in the two methods is derived. The performances of the proposed methods for leak 

signals are compared with the conventional GCC methods numerically and experimentally. Finally, 

their advantages and disadvantages are outlined. 

Chapter 8 discusses an approach for combining the transient and steady-state methods 

proposed in this thesis. Various acoustic leak detection methods are compared in terms of criteria, 

such as cost, applicability, and ease of data analysis. The benefits of combining different leak 

detection methodologies are discussed. An algorithm implementing the combined leak detection 

approach is described, and its effectiveness is demonstrated using experimental data.  

In the final chapter (Chapter 9), the major conclusions of the thesis are summarised, and 

recommendations for future work are given.  
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CHAPTER 2 

DESCRIPTION AND CHARACTERISATION OF THE 

LEAKAGE TEST RIG AND EXPERIMENTAL 

PROCEDURES 

Data acquired on an in-vacuo leakage test rig have been extensively used for validating the results 

reported in this thesis. The aim of this chapter is to give a brief description of the rig and to outline the 

procedures used in acquiring the experimental data. 

2.1 Description of the leakage test rig 

Figure 2.1 shows the schematic plan of the leakage test rig. The L-shaped layout of the rig was 

determined by the available space in the laboratory where it was installed. It consists of two 6-metre 

MDPE pipes joined with a 90° elbow. Each pipe has outer diameter of 63 mm and thickness of 6.2 

mm. The inlet of the rig is connected to a tap through a 25-m long, 19-mm diameter PVC hose as 

shown in Figure 2.2(a). A ball valve installed at the inlet is used to control the water infeed into the 

rig. The water pressure is slightly over 4 bar at the tap outlet but reduces to 3.7 bar at the rig inlet. The 

ends of the rig are terminated with MDPE end caps. For the purpose of simulating leaks, 6-mm holes 

were drilled on the side of Pipe 2 at the two points marked L1 and L2 in the schematic. In order to 

control the size of the leak, a valve is connected to a pipe clamp fitted over the leak hole, as shown in 

Figure 2.2(b). Hydrophones and accelerometers are installed/mounted at the access points labelled X1, 

X2, and X3 in the schematic. Each access point consists of a 9 mm hole over which a pipe clamp is 

fitted. As shown in Figure 2.2(c), the hydrophones are fitted with sleeved cable grommets and secured 

in the pipe clamps with cable glands, while the accelerometers are mounted directly on the pipe 

clamps using beeswax.  

2.2 Instrumentation and data acquisition 

The rig is fitted with B200 hydrophones (https://www.neptune-sonar.co.uk/products/hydrophones

/b200) and 352C22 accelerometers (https://www.pcb.com/it/products-it-it?model=352c22), the 

metrological characteristics of which are summarised in Table 2.1. Two data acquisition systems 

(DASs), a USB-powered Quattro data analyser (https://www.dataphysics.com) and a mains-powered 

Prosig P8004 (https://prosig.com/), connected to a laptop are used for data acquisition and storage. 

Each DAS has four independent analogue inputs for direct voltage signals (hydrophones) or integrated 

electronics piezo-electric (IEPE) signals (accelerometers). They also have a built-in anti-aliasing filter, 

https://www.neptune-sonar.co.uk/products/hydrophones/b200
https://www.neptune-sonar.co.uk/products/hydrophones/b200
https://www.pcb.com/it/products-it-it?model=352c22
https://www.dataphysics.com/products/dynamic-signal-analyzers/matlab-quattro/Pros
https://prosig.com/prosig-noise-vibration-measurement/test-and-measurement-prosig/data-capture-noise-vibration-nvh-daq-p8012/
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the cut-off frequency of which is automatically adjusted by the DAS based on the sampling rate set by 

the user.  

 

Figure 2.1: Schematic of the leakage test rig. 

 

  

Figure 2.2: Parts of the leakage test rig: (a) Inlet section. (b) Setup for leak simulation. (c) Access 

points for installation of acoustic/vibration sensors. 

(a) 

(b) (c) 
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Table 2.1: Metrological characteristics of the B200 hydrophone and 352C22 accelerometer. 

 B200 hydrophone 352C22 accelerometer 

Sensitivity -212 dB re 1 V mPa   

(
52.8 10−  mV mPa ) 

1.0 
-2mV ms  

Useful frequency range  10 Hz to 180 kHz 0.3 Hz to 20 kHz 

Resonant frequency 170 kHz   50 kHz 

Measurement range Not available ± 4900 
-2ms  peak 

Operating temperature -5 to +40 °C -54 to +121 °C 

2.3 Experimental characterisation of the leakage test rig 

Prior to the use of leakage test rig for experiments, tests were carried out to evaluate its physical 

characteristics with the aim of obtaining benchmarks for comparing results of leak detection 

experiments. The results of the characterisation tests are presented in this section. 

2.3.1 Determination of pipe material properties 

To measure the material properties of the MDPE pipes, the impact excitation method described by 

Lord and Morrell (2006) was employed. Using this method, the Young’s modulus, loss factor, and 

ring frequency of the pipe were calculated from the point accelerance of a thin ring cut from the pipe. 

The length and mass of the ring are 97.4 mm and 10.2 g, respectively, and its material density is 942.1 

3kg m . The point accelerance ( )cA   of a structure is the ratio of the acceleration response 

measured at a point on the structure to the excitation force applied at a given point. The peaks in the 

point accelerance correspond to the natural frequencies of the structure. To obtain the point 

accelerance of the MDPE pipe, the ring was freely suspended and tapped radially with an instrumented 

hammer in line with the direction of a 352C22 accelerometer mounted on the side of the ring as 

depicted in Figure 2.3(a). The accelerometer was oriented in a way to measure the radial acceleration 

of the ring in order to observe a range of its circumferential modes. The resulting response was 

recorded in the range 0-6.5 kHz using Quattro data analyser unit, which automatically filters out 

frequencies above this range to avoid aliasing. Figure 2.3(b) shows the point accelerance (with a 

reference of 1 
2ms N−

) obtained from data averaged over five impacts. The resonance frequencies 

associated with circumferential modes are each marked with a red dot.  

The relationship between the resonance frequency 
nf  in the accelerance plot and the pipe 

material properties is given by (Blevins and Plunkett, 1980) 
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where 2,3,4,n =  is the circumferential modal number. The modal loss factor 
p  of the pipe 

material can be calculated from the half-power frequencies of the resonance peaks 
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The half-power frequencies 
1 2nf +

 and 
1 2nf −

 associated with the resonance peak 
nf  are the 

frequencies at which the point accelerance has dropped by 3 dB from its value at 
nf , i.e., to half of the 

resonance peak amplitude value. 

 
 

Figure 2.3: Determining the material properties of the MDPE pipe. (a) Mounting accelerometer on a 

freely suspended thin ring cut from the MDPE pipe to measure its radial acceleration response to a 

point excitation. (b) Point accelerance ( )cA f  of the ring. The frequency f  is shown in Hertz. 

The ring frequency ringf  is the frequency at which the wavelength of a longitudinal wave in the shell 

material of the pipe equals its circumference (Moore, 2016). It is given by  

 
ring

1

2

p

p p

E
f

a 
= .  (2.3) 

The ring frequency is an important quantity in describing the dynamics or wave behaviour of 

cylindrical shells. It divides the shell behaviour into two regions (Cremer et al., 2010). At frequencies 

above the ring frequency, the wavelengths of circumferential modes are much shorter than the 

circumference, and the shell behaves as an infinite flat plate. The vibroacoustic behaviour and energy 

transmission in the pipe at frequencies well below the ring frequency are dominated by plane waves 

corresponding to the axisymmetric circumferential modes n  = 0 and n  = 1, where the pipe's cross 

section remains circular (Moore, 2016).  

(a) (b) 
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The Young’s modulus and the loss factor calculated using Equations (2.1) and (2.2) are 

presented in Table 2.2. Since Equation (2.1) is only valid for thin rings and low frequencies (Blevins 

and Plunkett, 1980), the value of the pipe Young’s modulus is taken as the value 1.2 GPa evaluated for 

the resonance peak attributed to the 2n =  mode. This value is higher than the typical value of 0.8 

GPa reported for MDPE pipes (Matweb, 2023).The loss factor is also taken as the value 0.015 

corresponding to the 2n =  mode. Using Equation (2.3), the ring frequency of the MDPE pipes is 

obtained as 6.3 kHz. The low-frequency leak noise propagation model (Muggleton et al., 2002) can be 

assumed to be valid for the MDPE pipe at frequencies below this value.  

Table 2.2: Young’s modulus, loss factor, and ring frequency values corresponding to the 

circumferential modes of the MDPE pipe in the leakage test rig. 

Property Circumferential modal number 

 n  = 2 n  = 3 n  = 4 

Young’s modulus 
pE , GPa 1.2 1.1 0.9 

Loss factor 
p  0.015 0.021 0.019 

Ring frequency 
ringf , kHz 6.3 6.1 6.0 

2.3.2 Wave speed measurement 

The acoustic wave speed in the pipe was determined experimentally from the time delay 
peak̂  between 

hydrophone or accelerometer signals measured at access points X1 and X2 when the pipe was excited 

with a white noise signal using a shaker at a known out-of-bracket location (in this case the elbow). 

The term out-of-bracket is used in this work to indicate that a feature is located outside the range 

enclosed by the two access points being considered. The value of the wave speed in the pipe is given 

by the expression peak
ˆc d = , where d  = 5.5 metres is the distance between X1 and X2. The time 

delay peak̂  was estimated as the gradient of the unwrapped cross-spectral phase, calculated over the 

effective bandwidth (EB), i.e., the frequency range in which reliable time delay information is located 

(Almeida, 2013). This frequency region is characterised by high values of the CPS modulus and MSC. 

Figure 2.4(a) shows the CPS modulus (normalised by its maximum value) and the MSC of the X1 and 

X2 accelerometer signals. Based on the criterion given by Almeida (2013), the EB is taken as the 

frequency region where the normalised CPS modulus exceeds a threshold of 0.1. In this case, the EB 

encompasses frequencies between 400 and 650 Hz, indicated by the vertical dashed lines. It can be 

observed that the cross-spectral phase is approximately linear in this frequency range as illustrated in 

Figure 2.4(b). For this particular example, the time delay is obtained as peak̂  = 15.4 ms, giving the 

wave speed as 357 m/s. Using the same procedures, the wave speed was estimated from 10 

hydrophone and accelerometer measurements. The average wave speed value for the hydrophone and 
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accelerometer signals was 352 m/s and 361 m/s, respectively. The wave speed estimates are close, 

even though they are obtained over different EBs. The value of 354 m/s given by the average of all the 

hydrophone and accelerometer wave speed estimates will be taken as the true wave speed in the 

analysis in this work. 

 
 

Figure 2.4: Estimating the time delay in X1 and X2 accelerometer signals for wave speed calculation. (a) 

Normalised CPS modulus and MSC. (b) Unwrapped cross-spectral phase and linear fit. 
maxG  is the 

maximum value of the CPS modulus. The vertical dashed lines denote the limits of the EB. 

Substituting the typical values of 
fB  = 2.2 GPa and 

fc  = 1500 m/s for water and the 

experimentally determined value of pE  = 1.2 GPa in the wave speed formula (Equation (1.3)) gives 

the theoretical wave speed in the MDPE pipe as 339 m/s, which differs by 4% from the experimentally 

determined value. The close agreement between these values can be attributed to the fact that the 

material properties of the pipe have been explicitly determined. If instead, the typical value of pE  = 

0.8 GPa for an MDPE pipe is used in the calculation, then the theoretical wave speed is obtained as 

279 m/s, which differs by 21% from the experimentally determined wave speed. This illustrates the 

danger of using calculated wave speed value when the pipe material cannot be determined reliably, 

thus emphasising the need for in-situ measurement of the wave speed or its direct estimation from 

measured signals.  

2.3.3 Characterisation of noise sources 

The signals captured by acoustic/vibration sensors during leak detection experiments on the leakage 

test rig may contain signals generated by the leak, acoustic transients introduced by operation of rig 

components and pipe impacts, and background noise. Only the first two are useful for acoustic leak 

detection and localisation. High background noise level can lead to poor coherence between measured 

leak signals (Papastefanou, 2011), thereby resulting in inaccurate time delay estimate and leak 

(a) (b) 
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detection results (Gao et al., 2004). The leakage test rig can only be useful for leak detection 

experiments if the leak noise generated by the simulated leak is not completely ‘drowned out’ 

(masked) by the background noise, or completely attenuated by the pipe. Possible sources of 

background noise include noise from the water supply source (the tap), ground vibration, electrical 

interference, etc. The aim of this section is to determine the suitability of the test rig for experiments 

by assessing the contributions of the background noise sources. To achieve this, leak signals acquired 

at an access point furthest from the leak are compared with the background noise.  

Figure 2.5 shows the time histories and power spectral densities (PSDs) of the background noise 

and leak measurements captured at X3 when a leak was simulated by opening the L1 valve halfway 

(the minimum valve opening used in the experiments in this work). The SNR of the leak signal was 

evaluated to be 4 dB. In this work, the SNR of leak signals is calculated as the ratio of the average 

signal power (
signalP ) and the average noise power (

noiseP ): 

  signal signal

10

noise noise

SNR 10 log    dB
P P

P P

 
= =   

 
 (2.4) 

where signalP  and 
noiseP  are given by the area under the signal and noise PSDs (in ( )

2
-2ms Hz  or 

2Pa Hz , not in dB), respectively, within a selected frequency range; and  10log •  denotes the 

logarithm in base 10. Unless otherwise specified, the SNR is evaluated over the whole signal 

bandwidth (this is equivalent to computing the mean square of the time-domain samples).  

  

Figure 2.5: Background noise and leak accelerometer signals acquired at X3 with the L1 valve open 

halfway: (a) Time histories. (b) PSDs. 

As can be observed from the plots, the presence of a leak results in higher signal energy as well as 

noticeable increase in the low-frequency content (up to 900 Hz in this case), indicating that the leak 

noise is detectable even at the access point furthest from the leak simulation location. Nonetheless, 

some measures were deployed to reduce the contributions of background noise sources, including 

mounting the pipes on pipe clips (to limit the effects of ground vibration) and using a long supply hose 

(to reduce the contributions of tap noise). Furthermore, the leak detection experiments were carried out 

(a) 
(b) 
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only when the laboratory was relatively quiet to ensure low background noise levels. Peaks in the leak 

signal PSD in Figure 2.5(b) indicate the presence of reflections and resonances in the leakage test rig 

(see Gao et al. (2009) and Almeida (2013)). 

2.3.4 Determination of system transfer function  

At frequencies below the pipe ring frequency, the FRF relating the leak noise (signal generated by the 

leak) and the signal measured at a distance u  from the leak in an infinite pipe without discontinuities 

is given by (Gao et al., 2006) 

 ( ),
u j u c

H u e e
  


− −

=   (2.5) 

where 1j = − . The attenuation factor   and the wave speed c  are given by Equations (1.2) and 

(1.3), respectively. Note that the acoustic pressure at the leak location is related to the pipe velocity 

and acceleration in the frequency domain by a factor of 
2
p

p p

j a

E h


 and 

2 2
p

p p

a

E h


− , respectively. These 

expressions are derived from the linear relationship 
2

int p

p p

P a

r E h
W =  between the internal pressure 

amplitude 
intP  and the radial wall displacement amplitude 

rW  at low frequencies (Pinnington and 

Briscoe, 1994).  

Two properties of the FRF in Equation (2.5) which are of interest in this work because of their 

relevance to some proposed leak detection methods are the linearity of the phase and exponential 

decay of the magnitude. The validity of these properties for the MDPE pipe was verified by 

experimentally determining the FRF of the pipe using system identification methodology (Ljung, 

1999). In the system identification methodology, the FRF of a system is determined from the response 

of the system to a known excitation signal. Specifically, the FRF ( )H f  of the system is estimated as 

the ratio of the CPS of the input excitation signal ( )x t  and the measured output signal ( )y t  to the 

auto-power spectrum of the input, i.e., 

 ( )
( )

( )
yx

xx

G f
H f

G f
=   (2.6) 

where 2f  =  is frequency in Hertz. The FRF obtained using this equation is referred to as the 
1H  

estimate in contrast with the 
2H  estimate given by ( ) ( )yy xyG f G f . The 

1H  estimate assumes that 

the background noise is not correlated with the input, while the 
2H  estimate assumes that the noise is 

not correlated with the output (Bendat and Piersol, 2010). When the noise is not correlated with either 

the input or the output signal, the two estimates are very similar. It is important to note that since 

Equation (2.5) assumes an infinitely long pipe with no discontinuities, it does not take into account the 
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presence of reflections in the input and output signals. A possible approach to reduce the effects of 

reflections on the FRF estimate is to set the measurement duration to less than the time required for the 

arrival of the reflections from the nearest discontinuity at the response measurement location. 

However, this approach is difficult to apply in the leakage test rig, as extremely short measurement 

duration will be required due to the short distances between the measurement points and 

discontinuities in the rig. For example, measuring the response of the pipe at X2 to an excitation signal 

at L1 will require the measurement duration to be set to 14 milliseconds, which is less than the 

minimum measurement duration allowed by the DASs. As a result, the FRF was determined without 

excluding the reflections in the signals. 

To determine the FRF of the pipe, the pipe was excited at one location (1 metre from the elbow 

on Pipe 1) with a white noise signal with bandwidth up to 20 kHz using a shaker, and the resulting 

response was measured at a different known location (2 metres from X3 on Pipe 1) for 30 seconds at a 

sampling rate of 40 kHz. Figure 2.6 shows the spectrum of the excitation signal measured with an 

accelerometer. This excitation signal does not have a flat spectrum over its whole bandwidth, but only 

the results from the frequency range below the ring frequency where the spectrum is nearly flat are 

considered to be accurate (up to 5 kHz).  

 

Figure 2.6: Spectrum of the input excitation signal measured with an accelerometer on Pipe 1 at a 

location 1 metre from the elbow. 

The magnitude and unwrapped phase of the 
1H  estimate of the FRF (Equation (2.6)) are shown in 

Figure 2.7. The auto-power spectrum ( )xxG f  and the CPS ( )yxG f  were computed using the Welch 

segment averaging method employing a 40000-sample Hanning window with 50% overlap between 

segments. Also shown in Figure 2.7 are the magnitude and unwrapped phase of the theoretical FRF 

obtained by substituting the wave speed value c  = 354 m/s and the pipe attenuation factor   = 

52.1 10−  s/m in Equation (2.5). The pipe attenuation was computed using p  = 0.015 in Equation 

(1.3). It can be observed that the experimentally determined unwrapped phase is approximately linear 

within the frequency range up to 1 kHz in good agreement with the prediction from the FRF model. 

The magnitude of the FRF, on the other hand, agrees with the model to a smaller extent. However, the 
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low-pass nature of the pipe is evident from Figure 2.7(a) in the frequency regions below the ring 

frequency of the pipe (6.3 kHz). One factor that might account for the lesser agreement between the 

experimental and theoretical FRF magnitude is the presence of discontinuities in the pipe that give rise 

to reflections in the signals measured on the leakage test rig, as indicated by the PSD in Figure 2.5(b) 

above. As Gao et al. (2009) have shown, the effects of reflections are generally more severe on the 

magnitude than on the phase of the FRF. Based on the linearity of the phase and low-pass nature of the 

FRF, the leakage test rig can be considered adequate for validating leak detection methods involving 

the use of the theoretical FRF model in Equation (2.5). 

  

Figure 2.7: Theoretical and experimental FRFs of the MDPE pipe determined from acceleration signals measured 

on Pipe 1 in the leakage test rig. (a) Magnitude. (b) Unwrapped phase. 

2.4 Experimental procedures and data analysis 

The experimental procedures for the leak detection experiments carried out on the leakage test rig can 

be summarised as follows: 

1. Set up the DAS and connect the sensors. 

2. Close the leak simulation valves and open the inlet valve. 

3. Open the tap and fill up the rig with water. Check for and repair any leaking component.  

4. Start the DAS.  

5. Measure the background noise for at least 30 seconds. A long measurement duration is desirable 

for accurate spectral analysis (see Bendat and Piersol (2010)), so the minimum measurement 

time in the experiments is set to 30 seconds. 

6. Open the leak simulation valve L1 or L2 to the required leak size. 

7. Measure the leak signals for at least 30 seconds. If required, simulate acoustic transients by 

hitting the pipe with a metallic rod (impact excitation) or operating the infeed valve. 

8. Stop the DAS. 

9. Close the leak simulation valve. 

10. Turn off the tap. 

(a) 
(b) 
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Depending on the requirements of the experiments, steps 8 and 9 can be interchanged, for instance, 

when there is necessity to capture the end of a leak. Water from the leak disposed into the air and 

could be collected with a bucket in order to determine the volumetric flow rate of the leak if required. 

It is important to ensure that the DAS was always put into operational mode before leak simulation to 

enable acquisition of the initial transients associated with leak occurrence. Also, the tap and the in-

feed valve should remain open throughout the duration of the experiment.  

The length of the pipes in the leakage test rig is limited by the available space in the laboratory 

where it was installed. Due to the relatively short length of the test rig, the time delay between 

measured signals will be relatively small (in samples), which may make further analysis difficult. For 

example, at a sampling rate of 1 kHz, the true time delay between signals measured at X1 and X2 with 

the leak simulated at L1 is only 9 samples. Therefore, the sampling rate in all leak detection 

experiments carried out on the leakage rig was set to at least 2.5 kHz, with 40 kHz being the most 

commonly used. Note that the use of a high sampling rate is merely for the ease of computing time 

delays. The signals can be downsampled prior to the analysis when necessary.  

Analysis of the measured signals was carried out using MATLAB, a proprietary numeric 

computing environment developed by MathWorks (https://uk.mathworks.com/). The measured signals 

were first converted into MAT files (the native MATLAB format), and pre-processing operations, 

such as notch filtering to remove 50 Hz mains harmonics, were applied where necessary to improve 

the quality of the data before analysis. Unless otherwise stated, the method employed for spectral 

analysis in this work is Welch segment averaging method using a Hanning window with 50% overlap. 

length of the window was set to the sampling frequency in most of the spectral analysis. The default 

TDE methods used were the BCC, GCC-ML, and GCC-PHAT.  

2.5 Limitations of the leakage test rig 

It is important to highlight a number of differences between the rig and real pipe systems that must be 

taken into consideration when interpreting or generalising the experimental results presented in this 

thesis. The first difference is associated with the short length of the rig compared to real water pipes. 

This has a number of implications that naturally affect the interpretation of results. Firstly, 

acoustic/vibration signals obtained on the test rig contain relatively higher frequencies, whereas values 

reported in the literature for leaks occurring in larger and longer plastic water distribution pipes are 

typically below 200 Hz (Hunaidi and Chu, 1999, Pal et al., 2010; Gao et al., 2005). The length of the 

rig is approximately 13 metres, whereas the inter-sensor distance in the United Kingdom is typically in 

the range 90–180 metres (HMFSI, 1998). This implies that signals measured on real pipe systems 

undergo higher levels of attenuation before reaching the sensors. This factor is important to consider 

when generalising the experimental results reported for the proposed methods where such higher level 

of signal attenuation can impact effectiveness in real pipes. A second consequence of the short pipe 

https://uk.mathworks.com/
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length is the presence of higher reflection levels than what might be obtained in a real pipe system. 

Due to the short distances between the features in the leakage test rig, transients and reflections can be 

easily captured by the sensors, unlike in real systems, where greater distances of travel imply lower 

detectability for reflections. For example, the endcap located a short distance from X1 leads to 

substantial reflections in any signal measured at X1. This also affects the selection of suitable methods 

for signal processing. As an example, without appropriate pre-processing, the GCC-PHAT fails for 

estimating time delays in some leak signals acquired on the leakage test rig.  

The second difference is that the leakage test rig is in-vacuo in contrast with majority of real 

water pipes, which are buried. It is known that environmental conditions may play an important role in 

leak detection practice. As previously mentioned in Chapter 1, the type of surrounding medium has 

substantial effects on acoustic wave propagation in plastic pipes, with the stiffness effects of the 

surrounding soil increasing the wave speed and attenuation in buried pipes compared to in-vacuo pipes 

(Muggleton et al., 2004; Muggleton and Yan, 2013). The third difference is the higher accessibility of 

the leakage rig compared to buried pipes. This makes it easier to induce transients via pipe impact, an 

excitation method which is very difficult to apply in real buried pipes. Hence, some of the findings 

obtained using this method of excitation may be difficult to extend to real systems.  

Despite these differences, the good agreement between theoretical predictions and the results in 

the characterisation experiments, namely, wave speed measurement and FRF estimation, shows that 

the leakage test rig can be used for rudimentary validation of applicable leak detection methods. This 

also provides some reasonable basis for generalising the conclusions of this research project and 

extending them to real water pipes.  

2.6 Summary and conclusion 

This chapter has described the physical layout and instrumentation of the MDPE leakage test rig used 

extensively to validate results in the research project. To provide benchmarks for comparing 

experimental results, a number of characterisation tests were carried out to determine the pipe material 

properties. The Young’s modulus, loss factor, and ring frequency of the pipe were determined from 

the point accelerance of a thin ring cut from the pipe, while the wave speed was calculated from the 

time delay between two signals measured at two access points in the rig when the pipe was excited at a 

known location. This experimentally determined wave speed differs from the wave speed calculated 

using the explicitly measured pipe material properties by only 4%. The phase and magnitude (to a 

smaller extent) of the frequency response function (FRF) of the pipe agree with theoretical predictions, 

showing that the rig is appropriate for validating methods where the theoretical FRF is used. The 

experimental procedures and signal processing methods employed in analysing the data were outlined. 

Lastly, the differences between the leakage test rig and real pipe systems were highlighted. Based on 
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the results of the characterisation tests, it was concluded that the leakage test rig is suitable for the 

experimental investigation of leak detection methods relevant to the thesis.  
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CHAPTER 3 

ACOUSTIC LEAK DETECTION AS A TRANSIENT 

AND SIGNAL DETECTION PROBLEM 

One of the alternative perspectives identified in Chapter 1 for viewing leak detection problem is as a 

transient/signal detection problem. In this chapter, the possibility of employing transient and signal 

detection principles in acoustic leak detection will be explored.  

3.1 Recasting leak detection as a transient and signal detection problem  

Figure 3.1 shows the time history and 256-sample spectrogram of an acceleration signal measured at 

X1 on the leakage test rig described in Chapter 2 when a 3-mm diameter leak is simulated by suddenly 

opening the valve at L1 halfway. As can be observed from the time history and spectrogram around 

the 8-second mark, leak occurrence is accompanied by the generation of acoustic transients, which can 

be detected using acoustic/vibration sensors. Examination of the spectrogram reveals a change in the 

frequency content of the signal after the occurrence of the leak. Both the background noise and leak-

related vibrations are characterised by stationary signals with most of the signal energy in certain 

frequency bands. In contrast with the background noise and leak signals, acoustic transients feature 

high vibration levels over nearly the entire spectrum or are characterised by variable frequency 

content. From the spectrogram in Figure 3.1(b) and the PSDs in Figure 2.5(b), it can be observed that 

the shape and distribution of energy in the signal spectrum differ for leak and background noise 

signals. When a leak is present, certain frequency bands have higher energy in the signal spectrum 

compared to the noise spectrum. Thus, the spectrum of a signal in a leaking condition will display 

characteristic frequency content clearly distinguishable from the background noise. 

  

Figure 3.1: Acceleration leak signal measured at X1 on the leakage test rig with a leak simulated by 

opening the L1 valve halfway. (a) Time history. (b) Spectrogram in dB. 

(a) (b) 
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Apart from modifying the signal spectrum, the presence of a leak can also result in changes in 

the time-domain properties of the signal. This is illustrated in Table 3.1, where the values of different 

time-domain and frequency-domain properties are compared for the noise-only portion (before leak 

simulation) and leak signal portion (after leak simulation) of the signal. These include features that 

characterise signal energy (root-mean square (RMS), standard deviation), signal shape (crest factor, 

shape factor, kurtosis, skewness), spectrum shape (spectral centroid, spectral kurtosis, spectral 

skewness), and spectral variation (spectral flatness, spectral flux). The mathematical formulae for the 

time-domain and frequency-domain features are listed in Table A.1 in Appendix A. A review of the 

frequency-domain features, formally known as spectral descriptors in audio signal processing, can be 

found in the report by Peeters (2004). Note that due to similarity of calculation methodology, some 

signal features are highly correlated with each other, for example, RMS and standard deviation. In this 

thesis, very small and large numbers in tables are presented in scientific (exponential) notation, for 

example, 2.89E+05 denotes the value 
52.89 10 . 

Table 3.1: Time- and frequency-domain features for noise-only (before leak simulation) and leak 

signal (after leak simulation) portions of an acceleration signal measured at X1. 

Background noise portion Leak signal portion 

Feature Value Feature Value Feature Value Feature Value 

RMS  

(
2ms− ) 

0.10 Skewness -0.013 
RMS  

(
2ms− ) 

0.83 Skewness -0.027 

Standard 

deviation  

(
2ms− ) 

0.10 Kurtosis 3.05 

Standard 

deviation  

(
2ms− ) 

0.83 Kurtosis 3.16 

Clearance 

factor 
79.79 Shape factor 0.13 

Clearance 

factor 
9.45 

Shape 

factor 
1.04 

Crest 

factor 
50.53 Entropy -4735 Crest factor 5.97 Entropy 30063 

Spectral 

centroid 

(Hz) 

7927 

Spectral 

spread  

(Hz) 

4955 

Spectral 

centroid 

(Hz) 

785 

Spectral 

spread  

(Hz) 

1153 

Spectral 

flatness 
0.23 

Spectral 

skewness 
0.062 

Spectral 

flatness 
0.0095 

Spectral 

skewness 
9.98 

Spectral 

flux 
0.0005 

Spectral 

kurtosis 
1.73 

Spectral 

flux 
0.18 

Spectral 

kurtosis 
114.65 

Spectral 

crest 
26.97 

Spectral 

roll-off 
15592 

Spectral 

crest 
128.22 

Spectral 

roll-off 
958.88 

Spectral 

decrease 
-0.01 

Spectral 

entropy 
0.88 

Spectral 

decrease 
0.036 

Spectral 

entropy 
0.44 

Spectral 

slope 
-2.44E-07   

Spectral 

slope 
-2.69E-06 

 
 

It can be observed that the presence of a leak leads to noticeable changes in some signal 

features, with the most substantial changes (on average) occurring in the quantities related to signal 

energy and spectral variation. In contrast, features that describe the shape of the time-domain signal, 



Chapter 3 Acoustic leak detection as a transient/signal detection problem 

32 

such as the kurtosis and skewness, appear to be less sensitive to the presence of the leak. This agrees 

with experimental results reported by Martini et al. (2015). The values of these features can be 

interpreted in some way. For instance, a high spectral flatness (approaching 1.0 for white noise 

signals) indicates that the spectrum has a similar amount of energy in all spectral bands, while a low 

spectral flatness indicates that spectral power is concentrated in a relatively small number of bands.  

Since the presence of acoustic transients in a measured signal or changes in its temporal and 

spectral properties may be indicative of a leak, the problem of detecting a leak in the pipe can be 

viewed as a transient and signal detection problem. Figure 3.2 displays an algorithm implementing 

acoustic leak detection methods based on this viewpoint. The rest of this chapter concerns the 

description and experimental investigation of this algorithm.  

 

Figure 3.2: Acoustic leak detection algorithm based on transient/signal detection. Optional steps are 

indicated with dashed elements in the flowchart.  

Remark. In this thesis, any acoustic method that involves the analysis of acoustic transients will be 

referred to as transient, while other methods (including existing acoustic methods) will be termed 

steady-state. Furthermore, each leak detection method is classified as passive if it is based on 

analysing signals generated by the leak, or active otherwise. All steady-state methods are passive. For 

convenience, acoustic transients will be classified based on their source as either leak transients 

(generated by leak occurrence or pipe burst) or active transients (induced by non-leak events, for 

example, operation of valves and pipe impacts).  
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3.2 Acoustic leak detection by transient analysis 

As shown by the illustration in Figure 3.1 above, leak transients represent a demarcation between 

noise-only and leak measurements, so their identification provides a straightforward way to detect the 

occurrence of a new leak. This leak detection approach referred to in this work as passive transient 

leak detection method involves two steps: acoustic transient detection and leak confirmation (see 

Figure 3.2). The necessity of the second step is to distinguish leak transients from active transients, 

which might incorrectly trigger an alert for leaks. The details of the implementation of the two steps 

are described in the following subsections. 

3.2.1 Acoustic transient detection using the non-stationarity measure 

Detecting the presence of acoustic transients in a signal is essentially a binary hypothesis testing 

problem with a null hypothesis that the signal contains only background noise and an alternative 

hypothesis that it contains acoustic transients embedded in background noise. A signal containing an 

acoustic transient can be considered a succession of homogeneous or stationary segments (‘steady 

states’) separated by non-stationary or transitory segments (transients) that are of very short duration 

compared to the observation time. Homogeneity can be defined with respect to any property of the 

signal (mean, variance, spectral density, etc.). By considering the signal this way, transient detection 

becomes the problem of deciding in each time interval whether a transition exists or not, i.e., whether 

the signal is stationary or non-stationary. For the purpose of leak detection, it is necessary not only to 

detect the presence of a transient but also to determine its time boundaries (onset and end) in the 

signal. To achieve this, a procedure based on a changepoint detection metric known as non-stationarity 

measure (NSM) is proposed for detecting acoustic transients in this work. The NSM is a metric which 

can detect and locate the presence of a transition or break in an otherwise stationary signal (Liu et al., 

1995). Originally proposed by Liu (1994), the NSM has found application in edge detection and 

segmentation of ultrasound images (Xu, 2013). 

As will become evident in later sections, this novel application of the NSM for transient 

detection is based on the following considerations: simplicity and ease of implementation, robustness 

to noise, precise determination of transient boundaries, flexibility, and inherent indication of relative 

‘strength’ of transients. The terms ‘strong’ and ‘weak’ are used to denote how detectable a transient 

relative to the background noise—the more easily detectable it is, the ‘stronger’ it is said to be. In 

contrast with transient detection approaches based on the generalised likelihood ratio test (GRLT), 

such as Gaussian likelihood detector (GLD) (White, 1996) and auto-regressive segmentation algorithm 

(Chen, 1984), the NSM-based method does not assume any model or probability distribution for the 

background noise or transient. Hence, it is suitable for detecting acoustic transients, properties of 

which are generally unpredictable and vary depending on the operating conditions in the pipe.  
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It should be noted that all transient detection methods including the NSM-based method 

employed in this work operate on the same principle of comparing an appropriate test statistic against 

a given threshold. The presence of a transient is inferred if the test statistic exceeds the threshold. The 

difference between transient detection methods boils down to the test statistic used. In the following 

subsections, the basic principles, implementation, and statistics of the NSM are described. 

3.2.1.1 Description of the Non-Stationarity Measure 

The NSM quantifies changes in a signal by measuring its degree of local non-stationarity. A signal 

( )x n  is considered to be locally stationary (or ‘steady-state’) within a given observation window 

nsmg  of length 2 1g gL W= +  (
gW  is a positive integer), with respect to a statistical parameter   if   

remains invariant in some sense (for example, constant or slowly varying) within that window. The 

estimates ̂  of   at time points within the observation window define an 
gL -dimensional vector 

space denoted as gL
R , each point of which corresponds to an 

gL -sample segment of the signal in the 

time domain. If the coordinates ( )1
ˆ ˆ

gk W  = −


, ( )2
ˆ ˆ 1gk W = − + , , ( )ˆ ˆ

gL gk W  = +


 of a 

point K  in gL
R  are all equal, i.e., 1̂ = 2̂ = ˆ

gL= , then K  is referred to as a stationary point, and 

the corresponding signal segment ( ) ,gx k W −
 ( ), ,x k ( ), gx k W +


 is considered to be locally 

stationary regarding  . In contrast, points in gL
R  whose coordinates are not all equal correspond to 

locally non-stationary signal segments. The distance between the point K  and the nearest stationary 

point gL
R  is mapped into the time domain, and this defines the NSM ( )y k  of the central time point 

k  of the signal segment corresponding to the point K . In principle, any distance metric can be used 

to define the NSM as long as the metric can appropriately quantify the distance between points in the 

vector space. Following the definition of the p -norm, the distance ( ),p K K  between the point 

gL
K R  with coordinates 

1̂
, 2̂ , , ˆ

gL 


 and the nearest stationary point gL
K R  whose 

coordinates are all equal to   can be expressed as (Xu, 2013) 

 ( ) ( )

1

nsm

1

ˆ,

p
gL

p

p i

i

K K g i  
=

 
 =  −  

 
  (3.1) 

where ( )nsmg i  is determined by the observation window function 
nsmg . The coordinate   of K  can 

be estimated by setting ( ),p K K    (i.e., the partial derivative of ( ),p K K  with respect to  ) 

to zero. By raising the distance in Equation (3.1) to power p  to counteract the p th root, the NSM 

( )y k  is obtained as  



Chapter 3 Acoustic leak detection as a transient/signal detection problem 

35 

 ( ) ( )nsm

1

ˆ
gL

p

i i

i

y k g i  
=

=  −  . (3.2) 

The parameter 0p   will be referred to as the order of the NSM. By definition of local stationarity, 

the NSM ( )y k  will be very small if the signal segment centred at time point k  within the 

observation window is locally stationary regarding  . On the other hand, its value will be large for 

segments that are locally non-stationary. Large values in the NSM of a signal can thus reveal presence 

of abrupt changes in the signal (with respect to  ), while their amplitude indicate the magnitude of the 

changes. Since segments that contain transients in a signal are generally characterised by abrupt 

changes in some statistical properties of the signal within a short period of time, the NSM output 

defined in Equation (3.2) can be regarded essentially as a test statistic that implements a transient 

detection method. By observing the NSM output of a signal at each time point, the presence and 

location of transients can thus be easily inferred. This will be demonstrated in Section 3.2.1.3. It 

should be noted that the concept of local stationarity in the NSM is different from the strict-sense 

stationarity (SSS) and the wide-sense stationarity (WSS) in stochastic process. Both SSS and WSS 

define a stationary random process by requiring multiple statistical parameters to be independent of 

time (Bendat and Piersol, 2010). However, in some applications, it is desirable to know the stationarity 

or non-stationarity of the signal regarding only a particular statistical parameter; for instance, it may be 

desirable to know if a signal contains a change in its mean but no change in its variance (i.e., to know 

if its variance is independent of time, but its mean is not). With the concept of local stationarity, the 

signal can be said to be stationary regarding its variance and non-stationary regarding its mean, while 

it is simply considered non-stationary according to the WSS or the SSS. 

There are three important parameters to define when implementing the NSM transient detector: 

the choice of  , observation window, and the transient detection threshold. The first two are discussed 

in this subsection, while the third will be discussed in the next subsection. The statistical parameter   

in the formulation of the NSM can be mean, variance, higher-order moments, even more complex 

statistics that can describe the signal at each time instant. Among these, only the raw moment will be 

considered in this work, mostly for computational ease. Specifically, for 2p =  (this is the only case 

considered in the rest of this work), the NSM ( )ry k  at time point k  of the signal ( )x n  regarding its 

r th moment is given by (Xu, 2013) 

 ( ) ( ) ( ) ( ) ( )

2

2

nsm nsm
ˆ ˆ

g g

g g

k W k W

r r r

i k W i k W

y k g i m i g i m i

+ +

= − = −

 
=  −     

  
   (3.3) 

where ( ) ( ) ( ) ( )nsm

1
ˆ

h h

h h

n W n W
r r

r

i n W i n Wh

m n h i n x i x i
L

+ +

= − = −

= −  =   is an estimate of the r th moment of ( )x n  

calculated over a sliding window 
nsmh  of length 2 1h hL W= +  (

hW  is a positive integer). Because the 

signal to be processed is usually obtained in a single acquisition, it is assumed that the signal is 
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ergodic, so that the ensemble averages of   at each time point can be replaced with the moving time 

averages calculated over the sliding window 
nsmh . A computationally efficient choice for the NSM 

observation window 
nsmg  is a normalised rectangular window. For this choice of observation window, 

the NSM in Equation (3.3) is essentially the sample variance of the r th moment. It should be noted 

that a concave window produces a higher NSM output than a rectangular window (Xu, 2013), but it 

takes longer to compute and is more difficult to analyse. It is suggested to select the observation 

window length 
gL  as the duration of the transient expected to be detected. A large value of 

gL  makes 

the NSM operator less sensitive to noise, but at the cost of increased detection time and lower 

resolution of the peak. On the other hand, use of short windows results in inaccurate estimates of the 

statistical parameter and high variability of the NSM output. When the sliding and observation 

window lengths are equal, the height of the NSM peak depends on the amplitude of the change in the 

signal only and not on the actual values of gL  and 
hL  (Liu et al., 1995). Hence, the sliding window 

length 
hL  is set to be equal to 

gL  in this work.  

3.2.1.2 Selection of transient detection threshold 

As in all transient detection methods, the presence of a transient in a signal is inferred if the test 

statistic (in this case, the NSM output 
ry ) exceeds some transient detection threshold (denoted as 

NSM  for the NSM transient detector) at any time point. The threshold 
NSM  is a major factor that 

determines the sensitivity of a transient detector. A robust approach proposed in this work is to set 

NSM  based on the concept of significance in hypothesis testing as the value such that  

  NSMPr ry =   (3.4) 

where  NSMPr ry   is the survival distribution function (SDF) of the NSM output under the null 

hypothesis, and   is the probability that 
ry  exceeds 

NSM  in a locally stationary segment (i.e., in the 

absence of a transient in the signal). The parameter   will be referred to as the allowable false 

positive rate (AFPR). Setting the threshold based on the SDF in Equation (3.4) requires knowledge of 

the probability distribution of the NSM output, which to the author’s best knowledge, has not been 

derived previously in the literature.  

As shown in Appendix B, the probability distribution function (PDF) 
ryf  of the NSM output 

ry  in Equation (3.3) calculated with a rectangular observation window can be obtained via a simple 

transformation from the distribution of the quadratic form 
T

rY = θ Mθ , where 1 2
ˆ ˆ ˆ, , ,

g

T

L   =
 

θ , 
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( )ˆ ˆ
i rm i = , 1

g ggL LL
= −M I J , 

gLI  denotes 
g gL L  identity matrix, 

gLJ  denotes 
g gL L  matrix of 

ones, and the superscript 
T

 denotes the transpose operation. Specifically, the PDF of 
ry  is given by 

 ( ) ( )
r ry g Y gf u L f L u=   (3.5) 

while its SDF is given by 

    ˆPr 1 Prr r gy u Y L u = −   . (3.6) 

A review of methods available for computing the distribution of 
rY  has been carried out by 

Bodenham and Adams (2015). Among these methods, the saddlepoint approximation (Kuonen, 1999) 

is used in this work for computational efficiency. Figure 3.3(a) compares the theoretical PDF given in 

Equation (3.5) with the empirical PDF of the NSM output of a simulated unit-variance, zero-mean 

Gaussian white noise signal, taken as an example of a locally stationary signal (with respect to the 

second moment). The 8192-sample signal was generated using the Gaussian white noise generator 

function ‘wgn’ in MATLAB, and its NSM output was computed using normalised rectangular sliding 

and observation windows of length 
gL  = 101. The empirical PDF of the NSM output of the white 

noise signal was estimated using the MATLAB function ‘ksdensity’, which returns a probability 

density estimate for the input data, calculated based on a normal kernel function and evaluated at 

either specified input points or at equally-spaced points that cover the range of the input data. The 

agreement between these PDFs can be objectively assessed using distribution similarity measures, 

such as Jeffrey’s divergence (JD), which for two probability distributions P  and Q  defined in the 

same sample space  is given by (Jeffreys, 1998) 

 ( ) ( ) ( )( )
( )

( )
JD , log

u

P u
P Q P u Q u

Q u

  
= −   

  
  (3.7) 

where  log •  denotes the natural logarithm. The JD is the symmetrised form of the well-known 

Kullback-Liebler divergence (KLD) (also called relative entropy) (Kullback and Leibler, 1951). It 

evaluates the variation or difference in information between two probability distributions; in other 

words, ( )JD ,P Q  can be interpreted as some sort of loss due to using the wrong distribution Q  as a 

model when the actual distribution is P , and vice versa. A small value of the JD implies high 

similarity between the distributions, while a high JD indicates that the distributions are very different. 

As shown in the annotation in Figure 3.3(a), the JD ( )th emp,JD P P  between the empirical distribution 

empP  and the theoretical distribution 
thP  of the NSM output is 0.11. It is difficult to interpret this value 

without any baseline. Hence, for comparison, a normal distribution normalP  is empirically fitted on the 

NSM output of the simulated signal using the MATLAB function ‘fitdist’, which fits the specified 

distribution to the input data. The expected value and standard deviation of 
normalP  are given by the 



Chapter 3 Acoustic leak detection as a transient/signal detection problem 

38 

mean and standard deviation of the NSM output of the simulated signal. The JD ( )th normal,JD P P  

between the theoretical distribution and this normal fit is evaluated as 0.92, which is almost 9 times 

higher than ( )th emp,JD P P . These values imply that 
empP  has a better fit with 

thP  than 
normalP , an 

observation that can be confirmed via a visual inspection of Figure 3.3(a). Based on these results, it 

can be concluded that the derived distribution in Equation (3.5) adequately describes the NSM output 

under the null hypothesis, i.e., for locally stationary signals. Evaluating the value of 
NSM  based on 

the SDF given in Equation (3.6) can be computationally expensive or infeasible for a large value of 

gL . Since the sample variance is inversely proportional to the sample size, 
NSM  can be obtained by 

scaling the threshold value calculated for a much smaller window size and the given AFPR. This 

approach is illustrated in Figure 3.3(b), which compares the NSM thresholds calculated for three 

different window lengths (
gL  = 11, 101, and 1001) and an AFPR of   = 0.001. It can be observed 

that the value of 
NSM  (indicated with vertical dashed lines) indeed varies proportionately as the 

observation window size. However, it is important to note that in practice, the calculated threshold 

NSM  may have to be adjusted appropriately to account for other factors, especially level of typical 

operational transients. In the next section, the effectiveness of the NSM-based transient detector is 

investigated using numerical simulations.  

  

Figure 3.3: Probability distribution of the NSM output. (a) Theoretical PDF (Equation (3.5)), 

empirical PDF, and normal fitted PDF obtained for a simulated white Gaussian noise signal. (b) 

Theoretical SDF (Equation (3.6)) computed for gL  = 11, 101, 1001 and   = 0.001. 

3.2.1.3 Evaluation of the performance of the non-stationarity measure transient detector 

To evaluate the performance of the NSM operator as a transient detector, trials were conducted using 

datasets consisting of simulated white Gaussian noise signals in which measured acoustic transients 

have been inserted at a known time point. The objective was to create time series with controllable 

‘SNRs’ by adding the background noise and transient together at variable levels. In order to allow for 

interpretation and comparison of results in these trials, the ‘SNR’ of the signal will be defined as the 

(a) 
(b) 
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ratio of the mean square value of the inserted transient to the variance of the simulated noise. This 

provides a simple means to characterise the strength of the transient relative to the noise, with a higher 

‘SNR’ implying a ‘stronger’ transient that is easier to detect.  

Figures 3.4(a.i) and 3.4(b.i) show the time histories of signals measured on the leakage test rig 

during leak simulation and when the pipe is hit with a metallic rod, respectively. The vertical dashed 

lines indicate the onset and end of the leak and active transients determined by visual inspection. Note 

that the presence of noise tends to obscure the exact onset and end of the transient in the original 

signal, thus making it difficult to extract only the transient portions. Figures 3.4(a.ii) and 3.4(b.ii) 

show the time histories of the 30-second-long noise signals to which the extracted transients have been 

added at the 12-second mark. The ‘SNR’ of the resulting signals is -3 dB. Although the presence of the 

transients is completely masked by noise in the time histories, they are successfully detected by the 

NSM operator as indicated by the peaks in the NSM outputs 
2y  shown in Figures 3.4(a.iii) and 

3.4(b.iii). Examination of these NSM outputs reveals some interesting observations. Firstly, the NSM 

peak actually consists of two close but separate peaks (marked with black diamond markers in Figures 

3.4(a.iii) and 3.4(b.iii)). These peaks are associated with the transition of the signal from a stationary 

state to a transitory state, and vice versa. The location of the first peak coincides with the onset of the 

transient in the signal, while the second peak denotes the end of the transient as the signal transitions 

back to a steady state. Note the NSM output peak will be unimodal in the case of very short transients. 

Secondly, the width of the NSM peaks is dependent on the selected window length. The two peaks are 

one observation window length apart. A large mismatch between the duration of the transient and the 

window length results in wider peaks, and this may decrease the accuracy of estimating the transient 

boundaries. This effect becomes more substantial if the selected window length is significantly longer 

than the transient duration. Thirdly, the heights of the NSM peaks give a rough indication of strength 

of the transient relative to the background noise. As already stated, since the lengths of the observation 

and sliding windows are equal, the amplitude of the NSM output is determined solely by the change in 

the statistical parameter (in this case, the second moment). This provides a way to quantify the 

strength of a detected transient (relative to the background noise) by simply observing the prominence 

of the NSM output peak. For two transients measured in the same background noise, the NSM peaks 

corresponding to the stronger transient will be higher. Based on these observations, it can be seen that 

the NSM not only detects the presence of a transient, but also provides an indication of both its 

location and magnitude. This feature can be exploited for the leak confirmation step in the algorithm. 

To examine the performance of the NSM transient detector in terms of detection power 

(detection rate) 
DP  and AFPR  , two tests were conducted using the generated datasets. In the first 

test, the transient detection rate DP  was calculated for ‘SNR’ values between -10 and 6 dB with   

fixed at 0.001. In the second test, 
DP  was calculated at a fixed ‘SNR’ value of -4 dB while varying  .  
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(a.i) Time history of signal with leak transient 

measured on the leakage test rig. 

 
(b.i) Time history of signal with active transient 

measured on the leakage test rig. 

 
(a.ii) Time history of simulated white noise 

signal with transient from (a.i) inserted. 

 
(b.ii) Time history of simulated white noise 

signal with transient from (b.i) inserted. 

 
(a.iii) NSM output of signal in (a.ii). 

 
(b.iii) NSM output of signal in (b.ii). 

Figure 3.4: Computing the NSM of the generated time series. (a) Signal with leak transient. (b) 

Signal with active transient. The red horizontal dashed lines indicate the transient detection 

thresholds 
NSM  calculated using an AFPR of 0.001. The black diamond markers indicate the NSM 

peaks, while the red dots mark the ‘feet’ of the NSM, i.e., the points at which it starts to rise towards 

or falls off from the peak. 

(a.ii) 

(a.iii) 

(b.ii) 

(b.iii) 

(a.i) (b.i) 
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For comparison, the results obtained using the GLD are also presented. The GLD detection threshold 

GLD  was calculated based on a normal approximation of the chi-squared distributed test statistic of 

the GLD (for details, see White (1996)). A typical GLD test statistic is shown below in Figure 3.6(b). 

The lengths of the NSM windows and the GLD test window were both set to the duration of the 

extracted transient, while the GLD reference window was twice as long. Note that unlike the GLD 

threshold 
GLD , the NSM detection threshold 

NSM  varies depending on the level of background noise 

since it relates to the properties of the stationary portions of the signal. The results obtained in the first 

test over 100 trials at each ‘SNR’ are shown in Figure 3.5(a), while the results from the second test are 

summarised in the form of the receiver operating characteristic (ROC) curve in Figure 3.5(b). The 

robustness of the transient detection methods is indicated by the ‘SNR’ detection threshold, which is 

defined as the lowest ‘SNR’ at which a 100% detection rate is achieved. The NSM achieves an ‘SNR’ 

detection threshold of -3 dB compared to -1 dB for the GLD. Both ‘SNR’ detection thresholds are 

negative, indicating that the detectors work at levels below the background noise level. They achieve 

similar performance above -1 dB possibly because they are both based on estimation of the same 

statistical parameter (the second moment). Below this ‘SNR’ value, the NSM outperforms the GLD, as 

shown by the ROC curve. 

  

Figure 3.5. Detection rate of NSM and GLD transient detectors vs (a) ‘SNR’. (b) AFPR. 

Figure 3.6(a) compares the root-mean square error (RMSE) of transient onset values 
onsetT  

estimated from the NSM and GLD test statistics. Analogously to its definition for the NSM, the 

transient onset is taken as the time corresponding to the maximum of the GLD test statistic (marked 

with red dot in the GLD output in Figure 3.6(b)). Only values from cases where the transient was 

successfully detected have been included in the calculation. The RMSE ( )RMSE   of the estimates 

of a quantity   obtained over 
sN  simulation runs is defined as  

 ( ) ( )
2

true

1

1 ˆRMSE
sN

i

isN
  

=

= −   (3.8) 

(a) 
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where ˆ
i  is the estimate from the ith run, and 

true  is the true value. It denotes the variability in the 

estimates around the true value. The transient onset detected by the NSM operator is closer to the true 

value of 12 seconds at all ‘SNR’ values than the GLD onset estimates. In fact, the 
onsetT  values 

estimated from the NSM outputs are practically exact for ‘SNR’ values greater than -4 dB. On the 

other hand, the GLD estimates exhibit higher variability even at high ‘SNR’ values. Due to its ability 

to track local value of the statistical parameter, the NSM can precisely locate the point at which a 

drastic change or transition occurs in a signal. This can be confirmed by comparing the resolution of 

the peaks in the NSM and GLD outputs in Figures 3.5(b.iii) and 3.6(b). While the extremum of the 

NSM output is sharp, the peak of the GLD output is more spread out, making it difficult to 

unambiguously locate its exact position. High transient onset detection accuracy is one of the 

advantages that make the NSM suitable for implementing the passive transient leak detection method. 

In fact, this property makes the NSM-based transient detector a particularly attractive option in 

applications where accurately determining the start and end of a transient is important. A particularly 

relevant and useful example of such application is the analysis of pressure transients in transient 

pressure loggers (Hossein et al., 2022). 

  

Figure 3.6: Comparison of transient onset detection accuracy. (a) NSM and the GLD onsets. 

(b) GLD output. 
GLD  is the GLD transient detection threshold. 

It is important to note some limitations that must be considered when interpreting or 

generalising the results of the study above. The results have been obtained under the idealised 

condition in which the background noise is assumed to be white and Gaussian. However, this may not 

be a realistic assumption for some measurement environments, in which case, the transient detectors 

will be less effective than suggested by these results. Like other transient detectors based on a GLRT, 

the performance of the GLD is strongly dependent on the assumed distribution of the signals being 

satisfied. Since the GLD assumes a Gaussian distribution for the background noise under the null 

hypothesis, its performance is likely to degrade in the case of non-Gaussian noise. On the other hand, 

the distribution of the signals is not relevant to the formulation of the NSM, and this can offer practical 

benefits in situations where the background noise is non-Gaussian but locally stationary regarding a 

(a) (b) 
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given statistical property. Another factor to consider when generalising the reported results is that the 

term ‘transients’ is used to denote a wide range of acoustic events (White, 1996), which may not 

necessarily conform to the concept of transients used in the simulation. As such, the transient test 

signals used in the simulation studies may not be representative of all types of acoustic transients 

obtainable in water distribution networks. The performance of the transient detectors may vary for 

different classes of transients, and largely depends on the selection of parameters, for example, 

statistical feature and window lengths. Improvement in their performance for particular classes of 

transients may be possible by varying the selected parameters. Good choice of parameters can either 

be derived from a careful study of background noise characteristics or by executing a multi-parametric 

process and selecting the combination with the best results for noise and leak measurements. Further 

validation on signals acquired in different real water distribution networks is, therefore, recommended. 

Nonetheless, the ability of the NSM to achieve a better performance than an ‘optimal’ detector, albeit 

in an idealised situation, demonstrates its viability and effectiveness for transient detection. The NSM 

will be employed to detect acoustic transients in experimental signals in Section 3.4. 

3.2.2 Acoustic transient leak confirmation 

After detecting and locating acoustic transients in the measured signals, the next step in the passive 

transient leak detection method is to confirm whether the detected transients are due to a leak 

occurrence, i.e., whether they are leak or active transients. To illustrate the difference between these 

two types of transients, a signal containing an active acoustic transient is examined using the same 

approach as in Section 3.1. Figure 3.7 shows the spectrogram of the signal whose time history is 

shown in Figure 3.4(b.i) above. It is difficult to distinguish the type of transients present in a signal 

from the time histories only. On the other hand, the spectrograms give a clear indication of the 

differences between the two transients (compare Figure 3.7 and Figure 3.1(b)). As shown in Figure 

3.7, the changes in the signal spectrum induced by an active transient are momentary, lasting only as 

long as the transient event. Based on the similarity of the spectrum before and after the transient, it can 

be inferred that that the signal returns to its previous steady state after the transient has subsided. In 

contrast, the spectrogram in Figure 3.1(b) indicates that a leak transient induces sustained changes in 

properties of the signal, thereby resulting in a new steady state. Thus, the changes induced in the 

measured signals by an acoustic transient are either sustained or momentary, depending on the nature 

of the transient. This observation provides a straightforward way to distinguish between leak and 

active transients, to infer the presence of a leak. Specifically, statistically significant difference 

between the steady states before and after a transient segment indicates the presence of a new signal 

source, which may be a leak.  

Based on this discussion, the leak confirmation step can therefore be considered the problem of 

determining whether the steady states before and after the transitory segment in the signal are 

homogeneous as defined in the NSM formulation, i.e., the segments correspond to the same value of 
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the statistical parameter. It can be implemented in three different ways: using the NSM, as a statistical 

test, and using the steady-state method proposed in Section 3.3. The procedures for the first two 

approaches are described as follows. In the NSM-based implementation, the transient portion 

corresponding to the signal segment between the ‘feet’ of the NSM peaks (marked with red dots in 

Figures 3.4(a.iii) and 3.4(b.iii) above) are removed, leaving only the stationary segments before and 

after the transient event. Then the NSM of the modified signal is calculated. If the steady states before 

and after the transient event are inhomogeneous, a distinct peak will be observed in this NSM output at 

the transition point between the previous and new steady states. Due to the finite duration of the 

transitory state (if it exists), the peak in the new NSM output may not occur exactly at the transition 

point but within its neighbourhood. Hence, new peaks should be searched for within a region, half an 

NSM window length on either side of the transition point. This region will be referred to as the 

transition zone. The presence of a distinct and prominent peak in the transition zone indicates the 

detected transient in the signal is potentially due to a leak event.  

 

Figure 3.7: Spectrogram of an acceleration signal containing an active transient. Unit is dB. 

The alternative approach for implementing the leak confirmation step is to design a statistical 

test on the signal segments preceding and succeeding the transient event. The purpose of the test is to 

infer whether there is a statistically significant difference in the properties of the measured signals 

before and after the occurrence of the acoustic transient. Examples of such tests include F-test of 

equality of variances (Snedecor and Cochran, 1989), Bartlett’s test (Bartlett, 1937), Levene’s test for 

homogeneity of variance (Levene, 1961), and Brown-Forsythe test (Brown and Forsythe, 1974). These 

tests are used to check if multiple data samples have equal variances, against the alternative that at 

least two of the data samples do not have equal variances. Levene’s and Brown-Forsythe tests are less 

sensitive to departures from normality than the F-test and Bartlett’s test (NIST, 2012). The test statistic 

BW  in these two tests is calculated as (Brown and Forsythe, 1974)  
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where 
Bk  = 2 is the number of signal segments being considered; 

BiN , 1,2i = , is the number of 

samples in the i th segment; 
BN  is the total number of samples in all segments; 

ik ik iZ Y Y = − , 
ikY  is 

the value of the k th sample from the i th segment, 
iY 

 is a measure of the spread within the i th 

segment (for example, the mean or median of the segment); 
B

1B

1 iN

i ik

ki

Z Z
N



=

=   is the mean of the 
ikZ  

for the i th segment; and 
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1 1

1 iB Nk
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i kB

Z Z
N



= =

=   is the mean of all 
ikZ . The test statistic 

BW  is 

approximately F-distributed with 1Bk −  and 
B BN k−  degrees of freedom. If the resulting p-value 

vp  

is less than the selected significance level   (set to a default value of 0.01 in this work), the null 

hypothesis is rejected. In other words, it is concluded that the two steady states are inhomogeneous or 

significantly different with respect to the variance or second moment if  

 
1 , 1, 2BB NW F − −  (3.10) 

where 1 , 1, 2BNF − −  is the upper critical value of the F distribution with 1 and 2BN −  degrees of 

freedom at a significance level of  . In this case, the presence of a leak transient is inferred. 

Conversely, if 
vp  is greater than   (i.e., 

1 , 1, 2BB NW F − − ), the two states are considered to be not 

significantly different, and the detected transient is considered an active transient. The only difference 

between Levene’s and Brown-Forsythe tests is the choice of 
iY 

 in the calculation of the test statistic in 

Equation (3.9): Levene’s test uses the mean whereas Brown-Forsythe test uses the median. Although 

the optimal choice of 
iY 

 depends on the distribution of the underlying data, the definition based on the 

median is recommended as the choice that provides good robustness against many types of non-

normal data while retaining good statistical power (Derrick et al., 2018). Based on its comparatively 

higher stability against deviation of the underlying data from normality, the Brown-Forsythe test is 

selected for use in the leak confirmation step in this work. The Brown-Forsythe test as well as the 

other tests listed above are available in the MATLAB function ‘vartestn’, which returns the value of 

the test statistic, the number of degrees of freedom, and the p-value. These tests are only suitable for 

assessing the homogeneity of the signal segments with respect to the variance or second moment. If 

the NSM transient detection step is implemented using a different statistical property, then it is 

necessary to consider alternative more appropriate tests.  

In order to reduce incidents of false alarm, a leak alert is issued in the passive transient leak 

detection algorithm only if at least two of the three approaches (NSM-based approach, statistical test, 

and steady-state method) give positive inferences. It is important to note that the presence of a new 

persistent background noise source can also lead to a sustained change in the steady states of the 

measured signal. An additional check may therefore be necessary to account for such non-leak signal 

https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Statistical_power
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sources that could change the signal state temporarily but long enough not to be rejected by the leak 

confirmation process described above. This additional check can be carried out some set period after 

the potential leak alert is triggered. If within this period, the steady-state value of the statistical 

parameter becomes equal to the previous steady-state value, the leak trigger event is classified as a 

false alarm. The time before the additional check has to be configured to apply to the particular pipe 

system under consideration. After the presence of a leak is confirmed, its location can be obtained 

using any applicable leak localisation method, including the methods proposed in Chapters 4 and 5. 

The proposed passive transient leak detection method will be demonstrated using experimental signals 

in Section 3.4. 

3.3 Acoustic leak detection by steady-state analysis 

As demonstrated in Section 3.1, leak and background noise signals exhibit differing properties, so by 

examining features in the measured signals, inference can be made about the presence of a leak. 

Existing leak detection methods based on this principle include acoustic noise logging, RMS-based 

method (Kampelopoulos et al., 2021), and standard-deviation-based method (Martini et al., 2015). In 

these methods, the presence of a leak is inferred when some property of the measured signal, for 

example, amplitude, RMS, or standard deviation, exceeds a given threshold. With such methods, a 

leak event is considered an outlier that can eventually be detected via time-domain analysis of long-

term measurements. Some disadvantages of these methods can be highlighted. They require either 

multiple measurements made over several nights (acoustic noise logging and standard-deviation-based 

method) or continuous measurements over a long period of time (RMS-based method). Hence, their 

applicability may be limited in situations where practical constraints preclude capability for long-term 

measurements. Moreover, leak-free reference measurements acquired before the occurrence of the leak 

may not always be available. Furthermore, in the presence of significant noise levels, the presence of a 

leak may not be obvious from time-domain features. This is one of the reasons why acoustic noise 

logging is generally ineffective during the day. 

Based on the results in Section 3.1, the spectrum of leak signals generally displays characteristic 

frequency content and spectral shape clearly distinguishable from the background noise, thus allowing 

leak detection in the frequency domain. Therefore, an alternative method based on spectral features is 

considered for acoustic leak detection in this section. Such a steady-state method has the potential to 

deal with the shortcomings of the existing time-domain methods mentioned above. The basic 

principles of the method, referred to as passive steady-state leak detection method in this thesis, are 

described in the next subsection. 
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3.3.1 Description of the passive steady-state leak detection method 

The general algorithm of the passive steady-state leak detection method that incorporate spectral 

features is shown in Figure 3.2. In this method, acoustic leak detection is viewed as a signal detection 

problem, the main objective of which is to distinguish a potential leak event from normal operating 

noise by characterising the shape and variation of the spectrum of acoustic/vibration signals via the 

use of appropriate spectral descriptors. The method involves the following main steps: 

1. The measured signals are pre-processed to remove any transient perturbations present. This 

excludes events that may cause momentary changes in the signals, ensuring that only stationary 

(steady-state) parts are taken into account while analysing the signals for a leak. Removal of 

transient perturbations can be achieved using the first step in the NSM leak confirmation step 

described in the preceding section.  

2. Appropriate filters may be applied to ensure only frequency regions where the leak noise is likely 

to be dominant over the background noise are included in calculating spectral descriptors. If at least 

two sensors are present, then the cut-off frequencies of the filter can be selected using either the 

coherence or the CPS criterion mentioned in Section 1.2.3. The latter is recommended as it appears 

to be more robust, especially when resonances are present in the signals. If only one sensor is 

available, then the cut-off frequencies may be set based on historical data or measurements on 

similar pipes (if available). This step is optional. 

3. Selected spectral descriptors are calculated from the PSDs. Prior to calculating the spectral 

descriptors, frequency-domain artefacts not related to the leak, such as mains harmonics and 

resonances, should be removed from the PSDs using notch filters. Selection of spectral descriptors 

should be based on the relative difference in their values for background noise and leak signals. 

The spectral descriptors that exhibit the highest relative difference in their values for background 

noise and leak signals are likely to be the best indicators of a leak, so they should be selected for 

implementing the passive steady-state leak detection method. 

4. The presence or absence of a leak is then inferred based on the value of a leak detection metric 

(LDM) computed by combining weighted values of the descriptors. Definition of the LDM depends 

on the selected descriptors and their expected values. If the LDM exceeds a given threshold, then 

the presence of a leak is inferred. An example for defining this metric and its threshold is included 

in the next subsection. As indicated in Figure 3.2, time-domain features can also be considered 

when defining the LDM in order to improve the robustness and reliability of the passive steady-

state leak detection method. 

As already mentioned in Section 3.2.2, this steady-state method can be used to confirm the 

presence of a leak after the acoustic transient detection step in the passive transient leak detection 

method. The steady-state method can be adapted for continuous or real-time monitoring by calculating 
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the spectral descriptors and LDM over a sliding window. This ensures the capability to detect leaks as 

they occur. It should be noted that this method is not intended for leak localisation. Once a leak is 

detected, it may be located using the cross-correlation technique. Factors that must be taken into 

account when implementing the proposed method, including selection of spectral descriptors, sensor 

placement, and leak detection inference, are briefly discussed in the next subsection. 

3.3.2 Important considerations in the passive steady-state leak detection method 

As already stated in Section 3.1, a variety of signal features can be used to characterise the measured 

signals in the time and frequency domains. The selection of spectral descriptors can be based on the 

following considerations. The background noise will tend to be dominated by low frequencies and 

‘flatten’ out at higher frequencies. This assertion is supported by experimental evidence in this thesis 

and other studies (see Martini et al. (2015)). In the ideal situation where the background noise is a 

white noise process, the noise PSD will be flat, having almost the same energy in all frequency bands. 

On the other hand, leak signals propagating in the pipe is modified by the pipe FRF, and its PSD will 

have a characteristic shape due to the filtering nature of the pipe (Gao et al., 2004). Therefore, spectral 

descriptors that characterise the shape or variation of the signal spectrum can be employed to 

distinguish the presence of a leak, for example, spectral flatness, spectral flux, spectral kurtosis, and 

spectral skewness. One important factor to consider is the choice of frequency bands to include in the 

computation of the spectral descriptors. Since background noise generally dominates at low 

frequencies and the high frequencies are severely attenuated by the pipe, the very low and high 

frequencies should be excluded from the calculation. In fact, it is recommended that only frequency 

bands that fall within the passband of the applied filter (if any) should be included in the calculation. It 

is also important to exclude frequencies above the cut-off frequency of the anti-aliasing filter of the 

DAS, as these frequencies are naturally suppressed prior to sampling by the DAS. When possible, 

appropriate spectral descriptors should be selected based on a preliminary study of noise spectra 

obtained in the measurement environment. If included in the implementation of the algorithm, time-

domain features can be selected based on their sensitivity to the presence of leak signals (possibly 

based on preliminary studies or historical data). For example, the shape factor appears to be very 

sensitive to the presence of leaks on the leakage test rig and can therefore be considered for inclusion 

in the steady-state method. In contrast with spectral descriptors, appropriate time-domain features are 

more likely to differ for different measurement environments.  

An important aspect of the leak detection method is the placement of the acoustic/vibration 

sensors. The spectral signature of signals from a leak may be obvious or more subtle at different 

sensor locations due to different local geometries and spectral response of pipe-sensor system. Signals 

acquired closer to the leak are more likely to exhibit more distinguishable spectral variations indicative 

of the leak. Conversely, if the sensor is too far away from the leak, the sensor may be unable to detect 

that specific leak. The spacing between sensors should, therefore, not be too large (less than 100 
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metres) to allow for the effective detection of leaks along the whole pipeline. This distance represents 

the effective leak detection range of acoustic methods in plastic pipes (Covas et al., 2006). In practice, 

however, in addition to economic constraints, sensor placement may be limited by the unavailability of 

access points.  

Leak detection inference in the proposed steady-state method is simply based on the value of the 

LDM; in other words, the presence of a leak is inferred if the LDM exceeds an appropriate threshold. 

A suggested approach is to define the LDM in such a way that its value is close to unity for 

background noise measurements but substantially greater than unity in the presence of a leak. What 

denotes a substantial difference from unity is somewhat subjective and may have to be defined 

separately for each pipeline and measurement environment. An example is provided in this subsection 

to illustrate the suggested approach for defining the LDM. Based on the results obtained for 

measurements on the leakage test rig (see Tables 3.1 and 3.5), the spectral features that exhibit the 

highest relative difference (on average) between noise and leak signals are spectral flatness 
flat , 

spectral flux 
flux , spectral kurtosis 

kurt , and spectral skewness 
skew . In the presence of a leak, the 

spectral flatness of the measured signal decreases, whereas the other three descriptors increase. This 

suggests the following definition for the LDM: 
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where 
1w , 

2w , 
3w , 

4w  are weights assigned to the spectral descriptors, and 
norm  is a normalisation 

factor that ensures that the LDM has a value close to unity for noise-only measurements. The weights 

are selected such that they sum to unity, and the normalisation factor is defined based on the average 

values of the spectral descriptors for background noise signals. An advantage of the LDM form in 

Equation (3.11) is that it provides the possibility of controlling the relative importance given to each 

spectral descriptor. Spectral descriptors that are more sensitive to the presence of a leak in a given 

system can be assigned a higher weight. Determining appropriate values of the weights and 

normalisation factor can be based on a preliminary study of leak signals and background noise 

acquired in the same or similar measurement environment. If noise-only measurements are not 

available, then the normalisation factor may be set to 1; however, this may reduce the reliability of 

leak detection. It should be noted that in principle a different definition of the LDM can be employed 

as long as it properly quantifies the difference between leak and noise-only measurements as well as 

ensures that LDM achieves a value close to unity for the latter and a substantially high value for the 

former. The LDM can also be used to indicate the efficiency of leak detection and leak detectability—

the larger the LDM, the more detectable the leak and the more efficient the leak detection algorithm. 

As already stated, in order to improve the reliability of leak detection results, it may be beneficial to 

either include some time-domain features in defining the LDM or define an additional LDM involving 
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only time-domain features. For example, in the leakage test rig, the RMS, shape factor, crest factor, 

and clearance factor appear to be quite sensitive to the presence of a leak (see Tables 3.1 and 3.5). 

Another important factor to consider is the LDM threshold. While the LDM has been defined in such a 

way that its value is close to unity for noise measurements and greater than unity for leak signals, it is 

still important to set the threshold greater than unity to reduce the incidents of false alarms. The 

availability of leak-free noise signals can help in improving the reliability and objectivity of the 

method. Such reference noise signals can be used to study the noise spectral characteristics in order to 

set a more robust threshold for the LDM. In the absence of such measurements, it is still possible to 

detect the presence of a leak, as values of the selected descriptors in leak signals are likely to differ 

substantially from those expected for noise-only signals. Further refinement in this regard is likely to 

make the method more robust for practical application. The effectiveness of the proposed leak 

detection methods will be evaluated using experimental signals in the next section. 

3.4 Experimental results and discussion 

The two acoustic leak detection methods proposed in this chapter were employed to detect leaks in the 

leakage test rig described in Chapter 2. Datasets consisting of signals acquired simultaneously using 

hydrophones and accelerometers on the leakage test rig were analysed to evaluate the effectiveness of 

the methods. The signals were measured at X1, X2, X3, and sometimes one additional point located 2 

metres from X3 (which will be denoted as X4). The datasets are divided into four different categories 

based on the type of signals they contain. The first dataset category includes only background noise 

signals, while the second dataset category consists of signals containing leak transients generated by 

opening the leak valve at L1. On the other hand, the signals in the third dataset category contain active 

transients induced by hitting the pipe with a metallic rod in the presence of an ongoing leak at L1 or 

L2. The fourth dataset category consists of steady-state leak signals acquired with leaks simulated at 

L1 or L2. There are 10 datasets in each category, and each signal was acquired at a sampling rate of 40 

kHz using the procedures outlined in Section 2.4. The measurement duration ranged from 30 to 60 

seconds. 

3.4.1 Experimental investigation of the passive transient leak detection method 

The passive transient leak detection method was applied to the datasets described above. One 

representative result for each of the four dataset categories is first presented, then the results for all 

available datasets are summarised at the end of the subsection. Figure 3.8 shows the time histories and 

1-second NSM outputs of accelerometer signals from each dataset category acquired at two different 

locations. It can be observed that the NSM successfully detects and locates the acoustic transients in 

the signals from the second and third dataset categories, while correctly inferring the absence of 

transients in the noise-only and steady-state leak signals. Also, transients acquired at locations closer  
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(a) Background noise signals measured at X1 and X3. 

  

 

(b) Signals with leak transients induced by opening valve at L1. Measured at X1 and X2 

   

(c) Signals with active transients induced by hitting the endcap close to X3 in the presence of a leak 

at L2. Measured at X1 and X3 

 

 
  

(d) Steady-state leak signals measured at X1 and X3 in the presence of a leak at L1. 

  

 

Figure 3.8: Computing the NSM of experimental signals: (i) Time histories of the measured signals. 

(ii) NSM outputs of whole signals. (iii) NSM outputs of steady-state segments. The dashed 

horizontal lines denote the NSM transient detection thresholds corresponding to an AFPR of 0.001, 

while the filled dot and diamond markers denote the NSM peaks. The vertical dashed lines in (b.iii) 

and (c.iii) indicate the transition zones. 

(a.ii) 
(a.i) 

(b.i) 
(b.ii) 

(c.i) 
(c.ii) 

(d.ii) 
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(b.iii) 
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to the transient source correspond to NSM peaks with higher magnitude. Figures 3.8(b.iii) and 

3.8(c.iii) show the NSM outputs of the signals in the second and third dataset categories (i.e., signals 

with leak transients and signals with active transients) after the transient sections have been removed. 

The transition zones for the signals are indicated with vertical dashed lines in the NSM outputs. Based 

on the presence of a distinct peak in the transition zone in Figure 3.8(b.iii), the presence of a leak 

transient in the signals from the second dataset category can be inferred. On the other hand, the 

absence of a peak in the transition zone in Figure 3.8(c.iii) shows that the transients in the signals from 

the third dataset category are not due to a leak. Table 3.2 displays the results of the Brown-Forsythe 

test applied to signal segments before and after the transients in the signals from the second and third 

dataset categories. For the signals with leak transients, the test statistic exceeds the critical value 

1 , 1, 2BNF − −
 = 6.63, whereas it is less than this value in the case of the signals with active transients. 

These results thus affirm the conclusions from the NSM outputs. 

Table 3.2: Parameters and results of Brown-Forsythe test applied to the steady-state portions—

before and after the transients—of the experimental signals with leak and active transients. 

Signal 
Measurement 

point BN  
vp  

BW  1 , 1, 2BNF − −  Inference 

Signal 

with leak 

transients 

X1 1065093 5.60E-43 191.13 6.63 
Reject null 

hypothesis 

X2 1066718 8.51E-05 15.45 6.63 
Reject null 

hypothesis 

Signal 

with active 

transients 

X1 1099687 0.029 4.80 6.63 

Do not reject 

null 

hypothesis 

X3 1079843 0.285 1.14 6.63 

Do not reject 

null 

hypothesis 

After the presence of a leak has been confirmed in the signals from the second dataset category, 

the leak was located via the cross-correlation technique using the time delay 
onsetT  = 9.8 ms given by 

the difference between transient onsets in the NSM outputs of the signals. Since the distance between 

the two sensors is d  = 5.5 metres and acoustic propagation speed in the pipe is c  = 354 m/s 

(experimentally determined in Section 2.3.2), Equation (1.1) yields the leak location as 1d̂  = 1.02 

metres from X1. This value represents an absolute error of 0.15 metres in the leak location estimate. 

Alternatively, since the signal segments after the leak transients are steady-state signals from the leak, 

the leak location can be calculated via the conventional cross-correlation technique. In this case, the 

time delay estimate obtained by cross-correlating the steady-state signal segments after the transients 

is peak̂  = 9.4 ms, resulting in a more accurate leak location estimate of 1d̂  = 1.10 metres. 

A cross-section of the successful and unsuccessful detection results for all the dataset categories 

are shown in Table 3.3. Only one entry is presented for the first and fourth dataset categories (i.e., the 

background noise and steady-state leak measurements) because the NSM transient detector yields  
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practically the same results for all the signals in these two categories. The strength of the transients 

present in the signals from the second and third dataset categories are indicated as either ‘high’ or 

‘low’ based on how visually obvious the transients are in the time history. For example, the transients 

in Figures 3.8(b.i) and 3.8(c.i) above are classified as ‘high’, while the transients in Figures 3.9(a) and 

3.9(b) below will be considered ‘low’. It should be noted that this classification is purely subjective 

and does not indicate leak size. The purpose for this classification is to demonstrate the capability of 

the NSM transient detector to detect ‘non-obvious’ transients, i.e., transients whose presence is not 

betrayed by the time history. In cases where leak transients have been successfully detected, the leak 

location estimates obtained from the difference between transient onsets 
onsetT  in all the possible 

pairs of signals in the dataset are also reported in the table. The leak location is computed by 

substituting 
onsetT  as the time delay in the cross-correlation equation. If the leak confirmation step is 

not applicable due to an unsuccessful transient detection result, this is indicated with ‘-’. It can be 

observed that the NSM transient detector was able to detect transients in the cases with ‘high’ 

transients and in some cases with ‘low’ transients. It, however, fails for some cases with ‘low’ 

Table 3.3: Cross-section of experimental results for passive transient leak detection. In the ‘Sensor’ 

column, ‘hyd’ and ‘acc’ indicate hydrophone and accelerometer, respectively. 1d̂  indicates the 

estimated distance of the leak from X1 calculated using 
onsetT .  

Dataset 

category 

Transient 

source 
Sensor 

Measuremen

t location 

Transient 

visibility in 

time 

history 

Transient 

detection 

Leak 

confirmation 
1d̂

(m) 

1 and 4 

(noise and 

steady-state 

signals) 

- 
hyd / 

acc 

X1 low No - 

- X2 low No - 

X3 low No - 

2 (signals 

with leak 

transients) 

Leak at L1 hyd 

X1 high Yes Yes 

1.02 X2 high Yes Yes 

X3 low No - 

Leak at L2 acc 

X1 high Yes Yes 
1.10 

0.98 

0.89 

X2 high Yes Yes 

X3 low Yes No 

X4 high Yes Yes 

Leak at L2 acc 

X1 high Yes Yes 

1.10 X2 high Yes Yes 

X3 low No - 

3 (signals 

with active 

transients) 

Impact at 

elbow 
acc 

X1 high Yes No 

- X2 high Yes No 

X3 high Yes No 

Impact 

endcap close 

to X1 

hyd 

X1 high Yes No 

- X2 high Yes No 

X3 low Yes No 

Inlet valve 

manoeuvre 
hyd 

X1 low No - 

- X2 low Yes No 

X3 high Yes No 
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transients; these are indicated with orange cells in the table. Also, the leak confirmation step succeeds 

for all the cases where the transients were successfully detected except for the case highlighted in blue 

on the table. Further information about these unsuccessful cases will be given later in this subsection. 

Another interesting observation from this cross-section of results is that in all cases where leak 

transients were successfully detected, the leak location estimate was very close to the true value. The 

maximum error in the leak location estimates is 28 centimetres, which is better than errors of up to 1 

metre obtainable with existing state-of-the-art leak detection systems (Liu et al., 2012). An implication 

of this result is that the difference between transient onsets 
onsetT  is indeed an accurate estimate for 

the time delay between the signals. This provides an alternative approach for estimating the time delay 

between signals containing leak transients. Furthermore, if the transient source is known to be out-of-

bracket with respect to two sensors, then the difference between the transient onsets can be used to 

estimate the wave speed in the pipe. This will be demonstrated in Sections 4.5 and 4.6 in Chapter 4.  

The summary of the results for all available datasets is now presented. Note that no distinction 

has been made between hydrophone and accelerometer measurements in these summarised results 

because there was no noticeable difference in performance between the two signal types. The NSM 

transient detector correctly infers the absence of transients in all noise and steady-state leak 

measurements, which indicates that it exhibits a low false alarm rate. Out of the 72 signals available in 

the second and third dataset categories, the detector successfully detects the presence of transients in 

67 signals. This represents a 93% success rate of transient detection. In addition to the three signals 

indicated with orange cells in Table 3.3 above, the NSM transient detector fails for two accelerometer 

signals acquired at X1 and X3 in the presence of an active transient (generated by the inlet valve 

manoeuvre) and leak transient (induced by the simulation of a leak at L1), respectively. Figure 3.9(a) 

shows the time history and NSM output in one of these cases. In this case, the leak at L1 induces a 

‘weak’ transient (as defined in Section 3.2). The induced transient is not visually noticeable in the time 

history in Figure 3.9(a.i), indicating that the leak transient may have been severely attenuated before 

reaching the sensor at X3. A possible reason for the severe attenuation of the transient is the presence 

of the inline elbow and inlet valve in the leakage test rig. Although the NSM output in Figure 3.9(a.ii) 

never exceeds the transient detection threshold at any time point, it exhibits a slight peak around the 

10.6-second mark. This time is close to the time of leak simulation, which suggests that transient 

detection may still be possible with a lower threshold. However, this comes with the cost of a higher 

false alarm for noise-only signals. 

Among the 67 cases of successful transient detection, the leak confirmation step correctly 

identifies the nature of the detected transients (leak or active) in 32 out of 34 signals in the second 

dataset category (94% success rate) and in 33 out of 33 signals in the third dataset category (100% 

success rate). One of the cases for which the leak confirmation step fails is shown with blue cells in 

Table 3.3 above, while the other case corresponds to a hydrophone leak signal measured at X3 when a 

leak is simulated by opening the L1 valve halfway. Figure 3.9(b) shows the time history and the NSM 
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outputs of the signal and its steady-state parts in the former case. As can be observed from the NSM 

output in Figure 3.9(b.ii), the NSM transient detector correctly detects the acoustic transient, the 

presence of which is not obvious from the time history in Figure 3.9(b.i). As indicated by the absence 

of peaks in the transition zone (denoted by the vertical dashed lines in Figure 3.9(b.ii)), the NSM-

based leak confirmation approach incorrectly classifies the detected transient as an active transient. 

The Brown-Forsythe test also fails. The test applied to the steady-state segments (
BN  = 961039) 

yields a p-value of 
vp  = 0.079 and test statistic 

BW  = 3.08, which is less than the critical value 

1 , 1, 2BNF − −
 = 6.63. Based on these results, it can be concluded that while the leak occurrence 

generates detectable transients, the presence of the leak does not introduce a ‘substantial’ enough 

change in the state of the measured signal, thereby causing the NSM-based leak confirmation and 

Brown-Forsythe test to incorrectly infer the absence of a new leak source.  

  

  

Figure 3.9: Cases for which the passive transient leak detection method fails. (a) Unsuccessful 

transient detection. (b) Unsuccessful leak confirmation. (i) Time history. (ii) NSM output. The 

horizontal dashed line denotes the NSM transient detection threshold corresponding to an AFPR of 

0.001. The dots and vertical dashed lines in (b.ii) indicate the NSM peaks and the transition zones, 

respectively. 

The two examples of unsuccessful transient detection and leak confirmation highlight one of the 

shortcomings of the passive transient leak detection method: a leak cannot be detected if it does not 

produce a sufficiently detectable transient and/or introduce ‘substantial’ changes in the state of the 

measured signal. One particularly important practical situation where the effectiveness of the method 

is likely to reduce is when the sensors are too far from the leak, which may lead to severe attenuation 

of the leak transient before reaching the sensors. Also, the presence of damping components in the 

(b.ii) 

(a.i) 

(a.ii) 

(b.i) 
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pipe network may lead to increased dissipation of the leak transients, thereby rendering the method 

less effective. As already stated, sensor placement is an important aspect which must be considered in 

the practical application of the method. To ensure the effectiveness of the method over the whole 

pipeline, sensors should be placed not too far apart (less than 100 metres). It should be noted that it 

may still be possible to detect the leak in the two failed examples using the passive steady-state leak 

detection method as will be shown in the next section (see Figure 3.11).  

Overall, the leak detection rate of the proposed passive transient leak detection method is 89%. 

The high success rate in detecting and classifying acoustic transients demonstrates the viability and 

robustness of the method. Further discussion about its advantages, limitations, and other possible 

practical applications is included in Section 3.5.  

3.4.2 Experimental investigation of the passive steady-state leak detection method 

The passive steady-state leak detection algorithm proposed in this chapter was applied to background 

noise and steady-state leak signals measured on the leakage test rig. Table 3.4 summarises the main 

information concerning the steady-state leak datasets, including leak valve opening (indicated as either 

‘halfway’ or ‘full’), leak location, and the sensor type. It should be noted that the terms ‘halfway’ and 

‘full’ do not signify the detectability of the leaks, as signals generated by a leak depends on many 

factors other than the leakage flow rate, including the operating pressure and flow rate, environmental 

conditions, etc. (Butterfield, 2018). As already mentioned, each dataset consists of signals acquired 

simultaneously at X1, X2, X3, and sometimes X4 (a point located 2 metres from X3).  

Table 3.4: Description of datasets of steady-state leak signals acquired on 

the leakage test rig. 

Dataset Valve opening Leak location Sensor type 

1 halfway L1 Hydrophone 

2 full L1 Hydrophone 

3 halfway L2 Hydrophone 

4 full L2 Hydrophone 

5 full L1 Accelerometer 

6 halfway L1 Accelerometer 

7 full L1 Accelerometer 

8 halfway L2 Accelerometer 

9 full L2 Accelerometer 

10 halfway L2 Accelerometer 

A cross-section of cases are reported to highlight the main features of the passive steady-state 

method. Table 3.5 shows time-domain and spectral descriptors obtained for the raw unfiltered leak 

signals measured at X1 and X3 in Leak Dataset 1 and Leak Dataset 5. These two cases represent 
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signals acquired at locations closest and farthest from the L1 leak for halfway and full valve openings. 

Also shown are the values obtained for noise signals measured at these access points. Note that only 

the time-domain and spectral features, described in Section 3.1, that exhibit the highest relative 

difference (on average) between noise and leak signals are reported. Since the standard deviation is 

identical to the RMS for zero-mean signals, it is not included. It can be observed that these spectral 

descriptors and time-domain features undergo noticeable changes in their values in the presence of a 

leak, thus providing a reliable means of detecting the leak. As already discussed in Section 3.3.2, the 

spectral flatness, spectral flux, spectral kurtosis, and spectral skewness are sensitive to the presence of 

a leak, and thus, the LDM is defined as in Equation (3.11) with 
1w  = 

2w  = 
3w  = 

4w  = 1 4  and 
norm  

= 0.5. Equal importance is given to all four spectral descriptors in this case, while the value of the 

normalisation factor is based on the average values of the LDM obtained for the background noise 

signals acquired on the leakage test rig (i.e., signals in the first dataset category). For the available 

signals considered in this work, the current definition of the LDM in Equation (3.11) using only 

spectral descriptors seems to be sufficient for good results. 

Table 3.5: Time and frequency-domain features for noise-only and leak measurements measured at 

X1 and X3 on the leakage test rig. The leak signals are from Datasets 1 and 5 in Table 3.4. 

Measurement 

location 
X1 X3 

 noise Dataset 1 Dataset 5 noise Dataset 1 Dataset 5 

Feature       

RMS 0.093 1.37 2.72 0.093 0.11 1.45 

Shape factor 0.12 1.72 3.42 0.12 0.14 1.06 

Crest factor 53.66 5.19 1.95 58.00 42.86 14.53 

Clearance factor 84.61 8.26 3.10 91.43 67.55 22.18 

Spectral flatness 0.24 0.0025 0.0012 0.24 0.018 0.0071 

Spectral flux 0.0005 0.11 0.46 0.0005 0.13 0.16 

Spectral 

skewness 
0.054 5.58 5.23 0.049 2.58 3.27 

Spectral kurtosis 1.75 52.17 54.61 1.73 16.64 39.32 

Table 3.6 shows the LDM values and leak detection results for the available steady-state leak 

signals in the 10 datasets described in Table 3.4. The average SNR for leak signals measured at the 

given locations is indicated. As noted previously in Section 3.1, high LDM values in the table are 

presented in scientific (exponential) notation. A positive inference about the presence of a leak is made 

if the LDM value exceeds a pre-determined threshold of 10. It must be emphasised that this threshold 

is specific to the leakage test rig. A positive leak detection result is indicated with light blue cells, 

while orange cells indicate the absence of a leak. The general trend of the LDM values is consistent 

with the distance of the sensors from the leak. This metric attains a very high value for signals 

acquired closest to the leak (i.e., at X1 and X2), and relatively lower values for signals measured at X3 

and X4, especially for the cases with ‘halfway’ leak opening. However, even in these cases, the LDM 

is much greater than unity, thus permitting the presence of the leak to be inferred. The observed 

correlation of the LDM with distance from the leak and signal power demonstrates its viability not 
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only as a leak detection tool but also as a measure of leak detectability. To gain further insights, the 

cases of good and relatively poor performance are examined below. 

Table 3.6: LDM values obtained for the noise and leak signals in the datasets in Table 3.4. 

Measurement 

location 

 
X1 X2 X3 X4 

      

 Noise 0.98 0.91 0.64 0.94 

Dataset      

 
Average SNR 

(dB) 
9 7 1 3 

1  2.89E+05 5.29E+04 155  

2  4.82E+05 1.37E+06 2.91E+04  

3  3.65E+05 9.47E+05 3.07E+03  

4  4.50E+06 3.74E+06 1.44E+04  

5  4.88E+05 1.24E+06 1.45E+03 2.95E+04 

6  1.29E+03 726 400 622 

7  4.79E+05 1.27E+06 3.55E+03 2.92E+04 

8  3.88E+05 9.75E+05 3.76E+03 3.32E+03 

9  4.50E+06 3.56E+06 3.86E+03 1.54E+04 

10  3.82E+05 9.68E+05 51.6 216 

Figure 3.10(a) shows the time histories and PSDs of the background noise and leak signal at X1 

in Leak Dataset 3, taken as an example of good performance. As predicted, the presence of the leak is 

indicated by a significant increment of signal level and change in signal spectrum. The selected 

spectral descriptors change correspondingly (compared to the background noise), thus permitting leak 

detection using the LDM. More interesting is the analysis of critical signals. A close examination in 

the time domain of the 3 cases characterised by relatively low values of the LDM reveals low signal 

levels that make it difficult to distinguish between the background noise and leak signals based on 

time-domain features only. The low signal levels indicate the severe attenuation of the leak noise 

before arriving at the sensor. Figure 3.10(b) shows the time history and PSD concerning one of the 

cases, the X3 signals in Leak Dataset 10. As shown by the time history, the leak signal does not 

substantially exceed the background noise level. On the other hand, it can be observed that the shape 

and energy distribution of the signal spectrum are clearly distinguishable from those of the spectrum 

of the background noise. The spectral variations related to the leak are, however, more subtle 

compared to the case in Figure 3.10(a.ii). Although the LDM value is lower than for signals measured 

closer to the leak, it is still much greater than unity, allowing the presence of the leak to be inferred. If 

the spectral descriptors are only calculated in the frequency region where the leak noise is dominant 

(up to 1 kHz), then the algorithm performs considerably better. The LDM value increases to 1247, 

thus allowing for a more reliable detection of the leak, though with a lower efficiency compared to the 

X1 and X2 signals. This result highlights that the application of a properly selected bandpass filter 

prior to computing the LDM can significantly improve the effectiveness of leak detection using the 

steady-state method.  
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(a.i) Time histories of noise and steady-state 

leak signals in Dataset 3 measured at X2. 

 

(a.ii) PSDs of the signals in (a.i). 

 

(b.i) Time histories of noise and steady-state 

leak signals in Dataset 10 measured at X3. 

 

(b.ii) PSDs of the signals in (b.i). 

Figure 3.10: Time histories and PSDs in successful and unsuccessful leak detection cases. 

As stated in the preceding subsection, it is possible to detect leaks for which the passive 

transient leak detection method fails. This is illustrated for the signal shown in Figure 3.9(b) for which 

neither the NSM-based leak confirmation approach nor the Brown-Forsythe test succeeded. The PSD 

of the signal is shown in Figure 3.11. It can be observed that the shape of the signal spectrum differs 

from that of the background noise measured at the same location (compare with Figure 3.10(b.ii)). 

Applying the passive steady-state leak detection method to this signal without filtering yields an LDM 

value of 34.7, which allows the presence of the leak to be detected. If the signal is first filtered in the 

frequency interval 250–650 Hz, then the LDM value improves to 524, thereby allowing for a more 

reliable positive inference about the presence of a leak. This example demonstrates that transient and 

steady-state methods can complement each other in acoustic leak detection practice. Combination of 

both types of methods is likely to improve the reliability of leak detection. Such a possibility will be 

explored in Chapter 8. 

The experimental results presented in this section demonstrate that the proposed transient and 

steady-state methods based on transient/signal detection can successfully distinguish leaks from 

(b.i) 

(a.ii) 

(b.ii) 

(a.i) 
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background noise. In particular, the methods exhibited no false alarms for signals acquired on the 

leakage test rig, which indicates their robustness. It is, however, important to consider the limitations 

of the rig discussed in Section 2.5 when generalising the presented results. Certain properties may 

make the leakage test rig more favourable for the proposed methods. For example, detectability of leak 

transients and signals may be relatively lower in real pipe systems, where signals propagate longer 

distances. Also, leak signals acquired on the test rig have substantially higher frequency contents than 

those reported for signals measured on real pipe systems. Since signals from real pipe systems may 

exhibit less spectral variation, this may naturally result in reduced effectiveness of the steady-state 

method when applied in real water distribution networks. There is, therefore, need for further thorough 

experimental validation of the methods in real systems. Their advantages and inherent limitations are 

discussed in the next section. 

 

Figure 3.11: PSD of the signal whose time history is shown in Figure 3.9(b). 

3.5 Advantages and limitations of acoustic transient and steady-state leak 

detection methods 

The two passive leak detection methods described in this chapter offer some practical benefits. An 

important advantage that can be highlighted for the transient method is its generality. The NSM 

transient detector can be employed in any application where detecting transients and their boundaries 

in signals is required. The distribution of the background noise and transient signals is irrelevant to the 

performance of this detector, so it is suitable for use in a variety of situations. Examples include 

detection of acoustic transients in underwater environments, speech processing, etc. While the 

transient leak detection method has been described in this chapter for acoustic transients, its basic 

principles can be applied in other areas. One particularly relevant application is inferring pipe 

condition from transients acquired with transient loggers. As mentioned in Chapter 1, fluid transients 

can arise from a variety of sources, so one serious issue in fluid transient-based condition monitoring 

is distinguishing between transients generated by a pipe damage event and those induced by normal 

pipeline operations. The basic idea of identifying the presence of a new signal source using the 

concept of local non-stationarity is very general and provides a simple means to resolve this issue. 
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Classification of fluid transients based on type of sources can be achieved using the NSM transient 

detection and leak confirmation steps described in this chapter for acoustic transients without much 

modification.  

Advantages of both methods are simplicity and ease of implementation. They can be 

implemented using simple signal processing tools, and existing acoustic/vibration sensors and 

measurement setup. The NSM transient detector is not computationally expensive when implemented 

with rectangular windows, while the descriptors employed in the steady-state method can be 

calculated in a straightforward manner from the PSD. The use of pre-processing steps, such as 

removal of non-leak artefacts and bandpass filtering substantially improves the performance of the 

method with little increase in complexity. Another benefit of the methods is the capability for timely 

leak detection and even real-time monitoring of the pipe system. Leaks can be detected with these 

methods without need for measurements over a long period of time or over several nights. The 

transient method, in particular, is able to detect leaks as they occur. This is practically beneficial as it 

can help to reduce the amount of water lost from leakages before discovery. In addition, the two 

methods can be used simultaneously for more robust leak detection performance. The steady-state 

method can be used to implement the leak confirmation step in the transient method. Also, leaks that 

trigger weak transients that are difficult to detect using the transient method can potentially be 

detected using the steady-state method.  

The advantages highlighted above make the proposed methods attractive options for acoustic 

leak detection. However, some limitations can be identified. One big limitation regards the leaks that 

can be detected. An occurring leak can be discovered using the transient method only if it induces 

detectable or ‘strong’ acoustic transients, while an ongoing leak must introduce easily distinguishable 

features in the signal spectrum to be detected using the steady-state method. Therefore, only leaks not 

too far from the installed sensors can be detected successfully. It may, however, not be economically 

feasible to install sensors at sufficiently close intervals. Also, locations where sensors can be installed 

are usually limited by unavailability of access points, thereby limiting the extents of the pipeline that 

can be monitored using the proposed methods.  

Since the methods rely on detecting sustained changes induced by a leak, they may give a false 

positive inference in the presence of signals from persistent non-leak sources. An example is the start-

up of a pump which introduces an initial transient and results in a new steady state. One way to reduce 

the number of false alarms is to run the algorithms outside the timings of such events. As already 

suggested above, an alternative solution is to re-run the algorithms after a specified period following a 

positive transient detection inference before a final leak alert is issued. If the dominant frequencies at 

which the machinery operates are known, then they can be excluded using appropriate notch filters in 

the pre-processing steps of the algorithm. This permits to distinguish between true leak events and 

those that generate signals that propagate in the pipe momentarily. It should be noted, however, that 
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the leak detection algorithm may still issue a false positive result if the non-leak signal source persists 

after the specified period.  

One challenge in the steady-state method is selection of time-domain and spectral descriptors 

for reliable leak detection performance. Since the properties of leak signals may vary depending on the 

pipeline properties and operating conditions, each signal feature may achieve vastly different 

performances in different pipe systems. Selection of appropriate features requires some preliminary 

studies of the background noise and leak signals measured on the pipe under consideration. However, 

this may not always be practically possible. Furthermore, the characteristics of the background noise 

may change over time. One other issue is the validity of the assumptions about the leak and noise 

spectra. In practice, the spectrum of the background noise may not necessarily exhibit comparatively 

less spectral variation as assumed, in which case, the steady-state method may post a lot of false 

positives. An additional challenge is the selection of the LDM threshold, for which a robust 

methodology based on thorough study of the measurement environment is required. The ‘guesswork’ 

approach used in this work is clearly inadequate. 

A limitation specific to the transient method is the need for continuous sensor operation. 

Transients associated with leak occurrence are short-lived, so reliability of detecting leaks as they 

occur is reduced when sensors operate only intermittently. Continuous operation of the sensors comes 

with its own set of challenges associated with battery life issues, data storage constraints, 

communication protocols, etc. Moreover, ability to detect leaks in real time is difficult if the leak 

transients are masked by background noise. One way to improve applicability of the transient method 

is to incorporate acoustic/vibration sensors in transient loggers that generally already operate in a 

continuous mode. In addition, the method can be applied directly to data acquired by transient loggers 

or acoustic data extracted from these data Technical constraints, such as inaccessibility to appropriate 

hardware and measurement data, have hindered the investigation of these suggestions in this thesis. 

However, based on the discussion in Section 1.3, these directions appear to be worth investigating in 

future steps of the research.  

Despite the highlighted issues and limitations of the study, the available experimental results 

demonstrate that the transient and steady-state methods are potentially viable options for leak 

detection. Therefore, further investigation and refinement of these methods appears to be worthwhile. 

To achieve a more robust and effective performance, thorough validation with a more representative 

database of leak signals acquired in a variety of leak detection environments as well as application of 

measures to resolve the issues outlined above could be carried in the future steps of the research. 
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3.6 Summary and conclusion 

In this chapter, the possibility of considering acoustic leak detection as a transient and signal detection 

problem has been established. It has been demonstrated with experimental leak signals that the 

occurrence of a leak is accompanied by the generation of acoustic transients that can be detected using 

acoustic/vibration sensors as well as introduction of sustained changes in the temporal and spectral 

properties of the measured signals. Among these properties, spectral descriptors, i.e., features that 

characterise the spectral variation of the signal spectrum were found to be the most sensitive to the 

presence of a leak.  

Based on the transient/signal detection principle, two methods—a transient and a steady-state—

have been proposed to detect leaks in water pipes. The transient method, which relies on detecting and 

identifying transients generated by a leak, was implemented using the non-stationarity measure 

(NSM). The statistics of the NSM were derived, and its effectiveness for acoustic transient detection 

was demonstrated using numerical simulation and experimental results. The steady-state method is 

based on examining features in the spectrum of the measured signal. A leak is inferred based on a leak 

detection metric (LDM) calculated from selected spectral descriptors. An algorithm for implementing 

the method was described. Important considerations in the practical implementation of the method 

were outlined, including sensor placement, selection of descriptors, and inference methodology.  

Limited experimental results obtained on the leakage test rig demonstrated that the methods are 

potentially viable and effective means of detecting leaks in water pipes. Their benefits and limitations 

were highlighted.  
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CHAPTER 4 

ACOUSTIC LEAK DETECTION AS A MULTIPATH 

IDENTIFICATION PROBLEM 

This chapter concerns the implementation of alternative acoustic leak detection methods based on the 

multipath identification viewpoint identified in Chapter 1. Motivated by fluid transient leak 

reflectometry methodology, these methods exploit the reflection of acoustic transients or leak noise by 

discontinuities in the pipe system to detect and locate leaks. This chapter outlines the basic principles 

of the multipath identification approach and describes its transient and steady-state implementations. 

Numerical simulation and experimental results are presented to demonstrate the effectiveness of 

considering acoustic leak detection from this perspective. 

4.1 Recasting leak localisation as a multipath identification problem  

The reflection of an active acoustic transient at an in-bracket discontinuity is illustrated using a 

spatial-temporal plot in Figure 4.1(a). Examples of discontinuities in a pipe system are dead ends, 

changes in cross-section, pipe junctions, blockages, and leaks. When the incident acoustic wave 

arrives at the discontinuity, a reflected wave ensues and propagates towards the first measurement 

point. Subsequent reflected waves also result from repeated reflection of the propagating and earlier 

reflected waves off discontinuities. A similar phenomenon occurs when the leak noise encounters 

discontinuities as illustrated in Figure 4.1(b). The reflected waves from a discontinuity can be captured 

with an acoustic/vibration sensor installed downstream of the discontinuity.  

 

(a) active acoustic transient. 

 

(b) leak noise. 

Figure 4.1: Illustration of the phenomenon of acoustic wave reflection at a discontinuity.  

direct-path propagating acoustic transient or leak noise;  reflections propagating towards Sensor 

1;  reflections propagating towards Sensor 2. 
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Hence, in addition to the direct-path waves propagating directly from the signal source 

(transient source or leak) to the measurement points, the measured signals may also contain waves 

reflected off discontinuities in the pipe network. Since the reflections in the measured signals arise due 

to the interaction between the propagating acoustic waves and features in the pipe, it is possible to 

estimate the leak location and the wave speed by considering the acoustic leak localisation problem 

from a multipath identification point of view and applying reflectometry principles. The time 

difference of arrival (TDOA) of a reflected wave with reference to the direct-path wave is related to 

the distances over which these two waves have travelled before arriving at the sensor locations. If the 

location of the discontinuity that gives rise to the reflected wave is known, then the wave speed, and 

consequently, the leak location can be determined from the TDOA. This acoustic leak detection 

approach can be implemented using transient or steady-state signal analysis, as will be described in the 

next two sections.  

Note that in this work, the following notation is adopted:      ,ik i km n T m T n = −  denotes the 

TDOA between the m th wave arriving at the i th sensor at time  iT m  and the n th wave arriving at 

the k th sensor at time  kT n . For example,  21 1,1  is the time delay between the direct-path waves 

in the first and second leak signals (termed the reference time delay). In this work, the first reflected 

wave arriving at a sensor is termed primary reflection, while subsequent reflected waves are referred 

to as secondary reflections. 

4.2 Active transient acoustic leak detection by multipath identification 

The transient multipath identification leak detection approach is based on identifying and matching 

reflected transient waves in the measured acoustic/vibration signals with the discontinuities from 

which they originate. Any unmatched reflection may be indicative of a leak or pipe defect. This 

approach will be referred to as the matching method in this work, and its main steps include: 

1. Detecting and confirming the presence of active acoustic transients. 

2. Identifying reflections and determining their TDOAs. 

3. Matching reflections with the known discontinuities and estimating the leak location. 

The first step can be implemented using the NSM just as in the passive transient leak detection 

method described in Chapter 3. In this case, the presence of active acoustic transients is inferred if the 

steady states before and after the transient event are homogeneous. The aim of the second step is to 

determine the presence and arrival times of reflections in the signals. Two methods for achieving this 

will be described in Section 4.3. The result from this step is a list of TDOAs  ,1k ii k =  of the 

reflections in the measured signals with respect to the direct-path transient. Each TDOA represents the 

time for the transient to transverse back and forth the distance between the sensor and the 
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corresponding discontinuity. Note that it is assumed that the primary reflections from the 

discontinuities can be unambiguously identified in the signals.  

In the third step, the TDOAs 
k  are used to determine the possible locations of unknown 

discontinuities. This can be achieved using different approaches depending on whether the wave speed 

and direction of transient propagation are known. If the wave speed c  is known, then the estimated 

distance ˆ
kl  between the discontinuities and the sensor can be calculated as ˆ

2

k
k

c
l


 = . This way, 

reflections in the signals can be matched with the known discontinuities from where they originate. 

Any unassigned reflection may indicate a leak, other pipe defect, or an unknown discontinuity. If 

multiple reflections are unmatched, the presence and location of the leak can be confirmed by cross-

correlating signals measured at two points on the pipe between the known discontinuities. It should be 

noted that only known discontinuities located upstream of the sensor are considered in the matching 

method. In the matching method, the ‘upstream’ and ‘downstream’ directions are defined with respect 

to the direction of propagation of the transient. 

When the wave speed and/or direction of propagation of the acoustic transient are unknown (the 

more likely case in practice), the proposed approach is to define a cost function  

 ( )  ( )
2

1

,
dN

l k l

k

C P c l P k
=

=  −  (4.1) 

where 
kl  are the locations of the 

dN  known discontinuities arranged in ascending order based on 

their distance from the sensor location (i.e., 1 2 dNl l l      ), 
1 2
ˆ ˆ ˆ, , ,

dl NP l l l =   
 

 denotes 

dN -combinations of the estimated locations ˆ 2k kl c  =   (also arranged in ascending order), and c  

is the wave speed value. This cost function determines the best match between the TDOAs 
k  and the 

known discontinuities while adjusting the wave speed. The combination optlP P=  and wave speed 

value optc c=  that minimise ( ),lC P c  are considered to be the optimal estimates that give the best 

match. The value of optc c=  is taken as the propagation wave speed in the pipe. Any location ˆ
kl  not 

present in optP  may be the location of a leak. In case of multiple missing locations, cross-correlation 

can be carried out to determine which is the actual location of the leak. As already stated, only signals 

from a sensor located downstream of the known discontinuities must be used in the analysis. If only 

one sensor is available, then the cost function has to be calculated for each of the two possible 

directions of propagation. The wave speed and discontinuity location estimates from one of the two 

cases are likely to be ‘implausible’. An implausible estimate refers to an estimate that is outside the 

possible range suggested by the measurement setup and pipe properties. The presence of two sensors 

may make it easier to determine the direction of propagation by observing the NSM outputs. If the 
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transient source is known to be located out-of-bracket with respect to the two sensors, then the signal 

with the earlier transient onset or higher NSM peak height will contain reflections from upstream 

discontinuities including any leak located between the sensors. This signal can be used to calculate the 

cost function. Alternatively, for known out-of-bracket transient sources, instead of using the cost 

function approach, the wave speed can be calculated directly from the inter-sensor distance d  and the 

difference 
onsetT  between the transient onsets as 

onsetĉ d T=  . After the wave speed has been 

estimated, reflections can be matched with the discontinuities as described above for the case with 

known wave speed. It should be noted that for the cost function approach to work, there must be at 

least two known discontinuities upstream of the selected sensor. Otherwise, finding the wave speed via 

the cost function above is not possible. 

It is important to note that onsets may not provide accurate information about the direction of 

transient propagation if the transient source is located in-bracket with respect to the two sensors. 

Therefore, if the relative location of the transient source (in-bracket or out-of-bracket) is not known, 

then it is recommended to consider the following three possible scenarios: one scenario with an out-of-

bracket source closer to the first sensor, one scenario with an out-bracket source closer to the second 

sensor, and one scenario with an in-bracket transient source. Since the location of the transient source 

must be closer to the sensor with the earlier transient onset, the scenario in which an out-of-bracket 

transient source is closer to the sensor with the later transient onset, can be disregarded. The cost 

function is evaluated for the other two feasible scenarios. Then the implausible estimates are 

disregarded, and the remaining estimates can be verified using cross-correlation.  

Unlike fluid transient reflectometry methods, the proposed matching method does not require 

the introduction of a controlled hydraulic transient at a known location in the pipe. Instead, ambient 

acoustic transients induced by normal pipeline operations or pipe impacts can be analysed. It is, 

however, implicitly assumed that these ambient acoustic transients are much ‘stronger’ than the 

background noise and steady-state leak signals. Two important factors that affect the effectiveness of 

the method are the distance between the sensor and the discontinuities, and the detectability of 

reflections in the measured signals. Reflections originating from discontinuities at a large distance 

from the sensor may be severely attenuated and so are not likely be detected. In applying the matching 

method, it is important to ensure that only discontinuities that are not too far from the selected sensor 

are used in calculating the locations or defining the cost function. Owing to the roundtrip propagation 

of the transient from the sensor location to the discontinuity, the effective distance over which a leak 

can be successfully located using reflectometry principles is half that of the conventional cross-

correlation technique. The effective leak detection range of acoustic methods in metallic and plastic 

pipes is 200 and 100 metres, respectively (Covas et al., 2006). Hence, it is recommended that only 

discontinuities located within a distance of 100 and 50 metres, respectively, from the sensor in 

metallic and plastic pipes should be considered in the matching method. The matching method will be 

evaluated using simulated and experimental signals in Sections 4.5 and 4.6, respectively. 
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4.3 Steady-state multipath identification leak localisation method 

The steady-state multipath identification leak localisation approach estimates the leak location and 

wave speed under the cross-correlation measurement setup without need for the presence of an 

acoustic transient. Instead, steady-state leak signals are analysed. The general principles of this method 

are presented in this section. With respect to the direct-path wave, the TDOA of the primary reflection 

in the i th leak signal can be expressed in a general form as 

  2,1 PR PW
ii

d d

c


−
=  (4.2) 

where 
PW id d=  and 

PRd  are the distances covered by the direct-path wave and the primary reflection, 

respectively. The value of 
PRd , and hence, the particular form taken by Equation (4.2) depends on the 

pipe configuration (i.e., the relative locations of the leak, sensors, and discontinuities). Although the 

distances 
PWd  and 

PRd  are not known a priori, this equation and the cross-correlation equation can be 

solved simultaneously to determine the leak location and wave speed. There are two aspects to 

consider in estimating the leak location using this approach: formulating the system of equations based 

on the pipe configuration and determining the TDOAs of the primary reflections. The first aspect is 

illustrated in this section, while the methods for estimating the TDOAs are described in Section 4.3.  

For the pipe configuration with one in-bracket discontinuity shown in Figure 4.1(b) above, 

Equation (4.2) takes the form 

  in,2 2 2,1i i i iil d c  − =   (4.3) 

where the subscript 1,2i =  in 
ic  indicates which signal is used in the computation, and in,il  is the 

distance between the in-bracket discontinuity and the i th measurement point. Note that it has been 

assumed that the leak location does not coincide with the location of the discontinuity. In this case, 

Equation (4.3) and the cross-correlation equation (Equation (1.1)) form a system of two linear 

equations in two unknowns: 
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The solution of these equations gives the estimate of the leak location ˆ
id  and wave speed ˆ

ic  as 

 

   

   ( )

   

in,

in,

2 1,1 2,1ˆ
2 1,1 2,1

2
ˆ

1,1 2,1

i ki ii

i

ki ii

i

i

ki ii

l d
d

d l
c

 

 

 

   − 
=

−


− 
=

 −

 . (4.5) 
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All the quantities in the right-hand side of the two expressions in Equation (4.5) are either known from 

the schematic of the pipe system or can be determined from the measured signals, making it possible 

to calculate both the leak location and wave speed.  

There is one important issue that must be resolved: determining which signal to use in 

formulating Equation (4.3). This choice is based on the relative location of the leak with respect to the 

discontinuity. If the leak is located downstream of the discontinuity, the first signal ( )1x t  should be 

used; otherwise, ( )2x t  must be used. Note that the upstream and downstream directions are defined 

here in terms of the direction of water flow in the pipe which is assumed to be from the first 

measurement point to the second measurement point. The more likely of the two possible cases can be 

determined as follows. Without loss of generality, let 
in,1 in,2l l    such that the first sensor is closer 

to the in-bracket discontinuity. If the reference time delay  21 1,1  is negative, then it can be inferred 

that the leak is upstream of the discontinuity, so Equation (4.5) should be evaluated with 2i = . On the 

other hand, if  21 1,1 0  , both the leak and discontinuity are located on the same half of the pipe, 

and the evidence provided by the ACFs or cepstra of the two signals has to be considered. The 

presence of a prominent peak in the interval ( in, min0,2i iI l c =    in the ACF or cepstrum of the i th 

signal can be considered evidence supporting the case that the leak is located between the i th sensor 

and the discontinuity (see Section 4.3). Here, 
minc  is taken to be the minimum possible value of the 

wave speed determined by subtracting some tolerance from its historical or calculated value. The 

upper limit of 
iI  comes from the inequality   in, in, min2,1 2 2ii i i il d c l c =  −   . In the situation 

where there is supporting evidence for the two possible cases, it is suggested to calculate the leak 

location and wave speed for both cases. One of the estimates is likely to be implausible. This will be 

illustrated in Section4.5. As one of the two possible cases is likely to result in clearly incorrect 

estimates, the step of determining which signal to use can be skipped. When  21 1,1 0 = , the leak is 

exactly at the midpoint of the pipe, and the leak location can be correctly estimated regardless of the 

value of the wave speed used in the cross-correlation equation.  

In a similar fashion, the leak location and wave speed expressions can be derived for a pipe 

configuration with an out-of-bracket discontinuity located at a distance of out,il  from the i th sensor 

as 
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For this configuration, the leak location and wave speed must be calculated using the signal from the 

sensor located closest to the out-of-bracket discontinuity. In the case of pipe configurations with 

multiple discontinuities (in-bracket and/or out-of-bracket), it is suggested to calculate the leak location 

and wave speed for each discontinuity using Equation (4.5) or (4.6) depending on whether the 

discontinuity is in-bracket or out-of-bracket. As already stated, the incorrect configurations among 

these will likely result in implausible estimates. Note that among multiple out-of-bracket 

discontinuities, it is necessary to consider only the discontinuities closest to each sensor, as they are 

most likely to be the source of the primary reflection. Thus, using the TDOAs of the primary 

reflections and information about the locations of the discontinuities in the pipe, the leak location and 

propagation wave speed can be estimated passively from measured leak signals only. The 

effectiveness of this steady-state passive method will be investigated using simulated and experimental 

signals in Sections 4.5 and 4.6, respectively. 

4.4 Multipath identification methods 

An important aspect common to the transient and steady-state methods described in the preceding 

sections is the estimation of the TDOAs of reflections in the measured signals. Among the multipath 

identification techniques available in the literature, the autocorrelation and cepstral techniques are 

selected in this work. The main reason for choosing these techniques is that they do not require a priori 

knowledge of the direct-path waveform unlike other techniques, such as cross-correlation (Beck et al., 

2005) and model-based CUSUM algorithm (Lee et al., 2007). It should be noted that even though the 

selected multipath identification techniques are derived and analysed only for steady-state leak signals 

in this section for brevity, the conclusions are also valid for transient signals.  

A steady-state leak signal ( )x t  can be modelled as a multipath (composite) signal consisting of 

the propagating leak noise ( )l t  generated at the leak location, and its reflections: 

 ( ) ( ) ( ) ( ),

1

refN

dir k ref

k

x t l t h l t h n t
=

=  +  +  (4.7) 

where 
dirh  is the direct-path pipe IRF, ,k refh  is the portion of the pipe IRF that accounts for the k th 

reflection, ( )n t  is the additive noise at the measurement location, refN  is the number of detectable 

reflections in the signal, and   denotes linear convolution. To simplify the derivation and analysis of 

multipath identification techniques, only the primary reflection will be considered for now. An 

approach for dealing with multiple reflections will be described in Section 4.4.4. The Fourier 

Transform (FT) of the multipath leak signal ( ) ( ) FX x t =  in Equation (4.7) with 1refN =  is 

given by 

 ( ) ( ) ( ) ( ) ( ) ( ), ,dir PW ref PRX L H d L H d N     = + +  (4.8) 
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where ( ) ( ) FL l t = , ( ) ( ) FN n t = , ( )  , Fdir PW dirH d h = , and ( )  1,, Fref PR refH d h =

. Here,  F •  denotes the FT. The direct-path FRF ( ),dir PWH d  is described by the model given in 

Equation (2.5). Since a reflected wave can be regarded as a shifted and attenuated copy of the direct-

path wave, ( ),ref PRH d  has the same form as ( ),dir PWH d  but with additional dependence on the 

transmission and reflection coefficients of the discontinuities in the pipe. For instance, in the pipe 

configuration shown in Figure 4.1(b) above, ( ),dir PWH d  and ( ),ref PRH d  for the leak signal at 

sensor 1 are given by 

 
( )

( )

,

,

PW PW

PR PR

d j d c

dir PW

d j d c

ref PR

H d e e

H d e e

  

  





− −

− −

 =


=  

 (4.9) 

where 
1PWd d= , ( )1 in,1 12PRd d l d= +  − , and   is the reflection coefficient of the discontinuity. In 

this case, the aim of the multipath identification problem is to determine the TDOA of the primary 

reflection:   ( )11 2,1PR PR PWd d c = = − . 

4.4.1 Autocorrelation multipath identification method 

In the autocorrelation method, reflections or echoes in a signal are identified from the peaks in its 

ACF. Assuming ( )l t  and ( )n t  in Equation (4.7) are uncorrelated, the auto-power spectrum ( )xxG   

of the multipath signal ( )x t  in Equation (4.8) is given by 
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( ) ( ) ( ) 
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= + +

+

 (4.10) 

where the symbol 

 denotes the complex conjugate. After substituting the values for ( ),dir PWH d  

and ( ),ref PRH d  from Equation (4.9), and taking the IFT, the ACF ( ) ( ) 1Fxx xxR G −=  of the 

signal is obtained as 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

xx ll PR r ll PR r
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=  −  + + 

+  +
 (4.11) 

where ( ) ( ) 1Fll llR G −= , ( ) ( ) 1Fnn nnR G −= , ( )  1F
d

r e
 

  −−= , PW PRd d d = + , 

( )  2 21 2F PW PRd d

d e e
   

 
− −−= + , and  1

F
−

•  denotes the IFT. The first and second terms in 

Equation (4.11) have their peaks at 
PR = −  and PR = , respectively, while the other terms achieve 

their peak at 0 = . Thus, an estimate of the TDOA 
PR  can be obtained by identifying and locating 

the peaks at the non-zero lags in the ACF of the multipath signal. Based on Equation (4.11), the 
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factors that affect the ability to detect reflections and identify their TDOAs from the ACF are signal 

and pipe properties, propagation distance, and the reflection coefficient. Their effects will be discussed 

in Section 4.4.3. 

4.4.2 Cepstral multipath identification method 

The cepstrum first proposed by Bogert et al. (1963) is defined as the IFT of the logarithm of the 

estimated signal spectrum ( )ˆ
xxG  . There are many variants of the cepstrum, but the most widely 

used in signal processing applications are the complex cepstrum and the power cepstrum (Hassab and 

Boucher, 1976). In the power cepstrum, the logarithm is taken from the power spectrum, while the 

complex cepstrum is calculated as the complex logarithm of the FT. Both the power and complex 

cepstra are suitable for multipath identification, but the power cepstrum is selected in this work due to 

its relatively simpler implementation as it does not require phase unwrapping unlike the complex 

cepstrum (Oppenheim and Schafer, 2010; Akay, 2012). The power cepstrum ( )x q  of the multipath 

signal ( )x t  in Equation (4.8) is derived as (Appendix C) 
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where ( ) •  denotes the Dirac delta function, ( ) ( )  1F log IR q G −= , 
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, ( ) ( ) ( )ˆ
xx xxG G   = −  is the random fluctuation in the spectral 

estimate; ( ) ( ) 1Fk kQ q M −= , ( )kM   are polynomial functions of 
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, defined in Appendix C, and the argument q  known as the 

quefrency has unit of time. Note that in deriving the power cepstrum, it has been assumed that the 

random fluctuations in the spectral estimate are small such that 
( )

( )
1

xxG

 


 .  

It can be observed from the third term in Equation (4.12) that the power cepstrum of a multipath 

signal has a sequence of spikes with decreasing amplitudes at integer multiples of the time delay 
PR . 

Hence, the TDOA of the reflection can be determined as the quefrency of the first cepstral peak in the 

power cepstrum. The TDOA can also be obtained from the complex cepstrum in the same manner. 
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The term ( )R q  represents the sum of the cepstra of the direct-path signal, the reflection, and the 

background noise. Its structure is determined completely by the log modulus of the spectra of these 

signals. Assuming the spectra of the signals are smooth (lacking in fine structure), ( )R q  will be 

confined to low quefrencies (Bolton and Gold, 1984). Hence, to accurately detect the spike 

corresponding to the TDOA in the power cepstrum, it may be necessary to exclude peaks in the very 

low quefrencies. Also, the accuracy of multipath identification in steady-state leak signals can be 

improved by ensemble averaging realisations of the cepstra obtained from either multiple recordings 

or signal segments. Since the TDOA 
PR  remains constant, the portion of the cepstrum corresponding 

to the reflection will tend to be constant in every realisation while the randomness in ( )R q  will be 

suppressed (Bolton and Gold, 1984; Tribolet, 1978). Ability to detect and locate reflections in a signal 

using the cepstral technique is affected by the same factors as in the autocorrelation technique. In the 

next section, these two multipath identification techniques are compared. 

4.4.3 Comparison of autocorrelation and cepstral multipath identification techniques 

The ACF and power cepstrum are closely related; the only difference is that the auto-power spectrum 

is preconditioned with a logarithmic operation prior to taking the IFT in the power cepstrum. Their 

performances for leak signals can be compared using two performance metrics: time delay resolution 

and detection SNR. The time delay resolution, which is the smallest delay that can be observed, is 

limited by the width of the ACF or cepstral peak. The detection SNR is given by the ratio of the peak 

to the variance of the background values in the ACF or cepstrum (Van Trees et al., 2013). It defines 

the prominence of the peak. Note that the detection SNR is similar to a metric known as the peak-to-

side lobe ratio (PSR) proposed in Chapter 6 for assessing the quality of time delay estimate between 

leak signals. Techniques characterised by lower time delay resolution and higher detection SNR are 

considered more accurate and robust. Table 4.1 shows the expressions for the performance metrics as 

derived in Appendix D.  

Table 4.1: Expressions for the performance metrics. 

Method / 

Performance 

Metric 

Autocorrelation Power cepstrum 

Time delay 
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2

d
   res,CEPS

2

d
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( ) ( )

2

snr,ACF 2 2
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( ) ( )
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In Table 4.1, dB  denotes the statistical bandwidth of the direct-path signal, T  is the signal duration, 

and 
( )

( )
d

nn
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d G




 =  is the ratio of the spectral densities of the direct-path signal and background noise, 
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which have been assumed to be nearly constant in the analysis frequency region 
1 2    , and 

2 1   = − . The expressions are valid for small 
1  and large  . It can be observed that the 

performances of the autocorrelation and cepstral techniques are affected by the same factors: signal 

and pipe properties, noise, propagation distances, and the reflection coefficient. Low background noise 

level, small inter-sensor distance, and long measurement time are desirable for better detection of 

reflections. Both methods achieve better performance in pipes with low attenuation and when the 

reflection coefficient of the discontinuity is high. It is particularly important to note that the reflection 

coefficient   can be negative, in which case, the reflected signal will be inverted in phase with 

respect to the direct-path signal. In such a case, which can be observed with an open-ended boundary 

condition in the pipe (see Peters (2013)), the spikes in the ACF or cepstrum corresponding to the 

reflection from the discontinuity will have a negative amplitude. Also, as shown in Figure 1.3, the 

correlation functions of a signal may have a ringing component, which manifests as peaks of lesser 

magnitude in the neighbourhood of the main peak at intervals spaced at the inverse of the centre 

frequency. Hence, to correctly identify all reflections, the TDOAs should be extracted from peaks in 

the envelope of the absolute value of the correlation functions and cepstrum. Taking the absolute 

values ensures that both peaks associated with in-phase and inverted reflections are identified, while 

the envelope suppresses the peaks resulting from the effects of the bandwidth and centre frequency of 

the signal or applied bandpass filter. The extraction of the envelope of a signal can be achieved using 

the Hilbert transform (see Oppenheim and Schafer (2010); Marple (1999)).  

The superiority of cepstrum over the ACF in providing quality estimates can be inferred by 

comparing the performance metrics. The improvement in time delay resolution provided by power 

cepstrum over standard ACF is given by 
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It can be seen that a smaller time delay can be detected using the cepstral technique. The ability of 

cepstrum to improve multipath detection against the background noise is given by 
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d PR PW
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D B d d

D d d

 +
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 . (4.14) 

This expression is greater than 1 as long as the analysis bandwidth is less than the statistical bandwidth 

of the direct-path signal, i.e., dB  , a criterion which is satisfied in most practical situations, since 

the limit 
2  of the frequency region over which the leak noise propagates is less than 

dB . High 

detection SNR implies that peaks in the power cepstrum are sharper compared to peaks in the ACF. It 

can be concluded that the power cepstrum yields more accurate TDOA estimates for leak signals than 

the ACF. The superior performance of the cepstrum is due to the inherent logarithmic conditioning of 

the auto-power spectrum prior to taking the IFT. Because of this conditioning, the cepstrum is capable 
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of detecting reflection and producing TDOA estimates in situations where the ACF fails. One such 

example is when the multipath signal and/or noise spectra contain resonances or tonal components. In 

this case, the auto-power spectrum of the signal can be represented as 

 ( ) ( ) ( )
tonal

tonal

N

xx xx k k

k N

G G b     
=−

= + −  (4.15) 

where 
tonalN  is the number of resonant or tonal components, 

k  and 
kb  are their angular frequencies 

and amplitudes, respectively. Taking the IFT of this auto-power spectrum yields the ACF as 

 ( ) ( ) ( )
tonal

1

cos
N

xx xx k k

k

R R b   
=

= +   . (4.16) 

Fluctuations in the ACF contributed by the second term may mask the peak corresponding to the 

reflection, thereby resulting in false indications of the TDOA. The logarithm operation (through the 

three terms in Equation (C.3)) inherently suppresses the effects of tonals and resonances in the 

cepstrum, thus permitting accurate detection of the multipath. Another example where the frequency 

dependencies (transfer functions) of the direct-path and reflection propagation paths are different are 

also automatically handled by the cepstrum. Based on this discussion, the power cepstrum is 

recommended for use in multipath identification problems, including the proposed leak detection 

methods. The performance of the multipath identification techniques will be compared further in 

Section 4.5. 

4.4.4 Identification of the primary reflection among multiple reflections 

The ACF and power cepstrum were derived above for the situation where there is only a single 

reflection in the leak signal. The presence of multiple reflections results in the appearance of multiple 

distinguishable peaks in the ACFs and power cepstra. Note that since acoustic waves attenuate with 

distance, secondary reflections will be harder to detect than primary reflections, so their peaks will be 

lower. However, in some noisy situations, the primary and secondary reflection peaks may be of 

comparable heights. To identify the TDOA of the primary reflection in such a case, an algorithm 

proposed by Spiesberger (1996, 1998) can be employed.  

In the algorithm, the TDOAs of the reflections in the signals are identified from the time lags 

corresponding to the peaks in their ACFs and CCF. The procedures of the algorithm are summarised 

as follows. Firstly, the number of multipaths (direct path and reflections) 
1N  and 

2N  in ( )1x t  and 

( )2x t , respectively, are estimated from the number of positively lagged peaks 
1P  and 

2P  in the ACFs 

and the number of peaks 
12M  in the CCF. The lags corresponding to the positively lagged peaks in 

each ACF and the peaks in the CCF are arranged in monotonically increasing order so that 

   1ii iim m  + , 1,2, , im P= , and    21 21 1k k  + , 
121,2, ,k M= . Then, the TDOAs 
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 11 1,1N  and  22 2 ,1N  of the last reflections are identified as the most positively lagged peaks in 

the ACFs. An exhaustive searching technique is then employed to estimate the TDOAs  1,1ii m + of 

the remaining 2iN −  reflections. All 
1

2

i

i

i

P
U

N

− 
=  

− 
 possible selections of the 2iN −  TDOAs in 

each signal are considered, and a cost function is defined to select the optimal selection. Each pair of 

selections, denoted as ( )11 1p m     and ( )22 2p m    , one from each signal, yields trial estimates for 

the TDOAs   ( )1,1ii ii im p m + =    . Note that the lags in ( )ii ip m     have been arranged in 

increasing order so that ( ) ( )1ii i ii ip m p m  +       , where 1,2, , 2im N= −  and 

( )  1,2, , 1i ip m P − . The following four inter-sensor lags are immediately identifiable from 

( )11 1p m     and ( )22 2p m    :    21 1 211, 1N = ,    21 2 21 12,1N M = , 

     21 2 1 21 22 2, 1N N P  = + , and the reference time delay      21 21 11 11,1 1 P  = +

   21 12 22 2M P = − . Using the reference time delay as the anchor point, the remaining inter-sensor 

lags are calculated for the selected pair. Among the 
1 2U U  possible pairs of ( )11 1p m     and 

( )22 2p m    , the optimal pair is determined as the one that minimises the cost function 

  ( )
12

sp 21 21

1

M

p

J p p n 
=

= −     where ( )21 p n     is the lag closest to  21 p  in the realisation of the 

inter-sensor lags. The cost function 
spJ  selects the pair that best fits the measured lags in the CCF. 

Finally, the required TDOA  11 2,1  and/or  22 2,1  are obtained from the optimal pair. This 

algorithm works as long as the CCF has sufficient coherence between multipaths to yield enough 

peaks to make a definitive identification of multipaths from the respective ACFs. In the algorithm, the 

ACF estimates can be replaced with those from the cepstra of individual signals. In the next section, 

the proposed leak detection methodology is investigated using numerical simulations. 

4.5 Simulation results 

Numerical simulations were used to verify the viability of the proposed leak detection methods and 

investigate the effects of various factors.  

4.5.1 Description of the simulation process and signals 

The proposed transient and steady-state methods were employed to detect and locate leaks in a 

simulated pipe, the schematic of which is shown in Figure 4.2. The simulated pipe has the same 
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properties as the MDPE pipes in the leakage test rig described in Chapter 2; specifically, wave speed 

c  = 354 m/s and attenuation factor   = 
52.1 10−  s/m. The acoustic pressure signals at the 

measurement points S1 and S2 are a superstition of the propagating leak noise generated at the leak 

location D1, the propagating transient signal generated at TS, and their reflections off the 

discontinuities D1-D4 and the measurement points. To simulate the leak signals at the measurement 

points, a white Gaussian noise signal was filtered with the FRFs between the leak location D1 and the 

respective measurement points. The same approach was used to generate the transient signals by 

filtering a short burst of white Gaussian noise and the FRFs between TS and the measurement points. 

These FRFs were derived using the transmission/reflection coefficient approach, in which the 

discontinuities are assigned reflection coefficients that denote the proportion of an incident signal that 

they reflect (Gao, 2006). In the numerical simulations, the reflection coefficients of the discontinuities 

and measurement points were set to a value of 0.5. Realisations of white Gaussian noise of the same 

power were added to the two generated signals such that the first signal had an SNR of 3 dB. The 

sampling rate was set to 1 kHz and the length of the simulated signals was 30 seconds. To mimic the 

operation of a real data acquisition process, a delay was introduced in the transient signal such that its 

onset occurred at the 10-second mark in the first signal. It should be noted that the only information 

available in advance are the locations of the known discontinuities D2-D4 and the measurement points 

S1 and S2. The relative location of TS, whether it is upstream or downstream of the sensors, is not 

known in advance and must be determined as part of the leak detection process. The distance between 

TS and S1 is only assigned a value in Figure 4.2 for the purpose of simulating the transient signal.  

 

Figure 4.2: Schematic of simulated pipe. TS – transient source; S1, S2 – measurement points; D1–

D4 – discontinuities. 

4.5.2 Simulation results for the active transient leak localisation method 

The time histories and NSM outputs of the simulated signals at S1 and S2 are shown in Figure 

4.3. While the presence of a transient is not very obvious from the time histories, it can be easily 

inferred from the peaks in the NSM outputs of the signals in Figure 4.3(c). The active nature of the 

detected transient is indicated by the absence of a prominent peak in the transition zone of the NSM 

outputs of the modified signals in which the transient segments have been removed (Figure 4.3(d)). 

Also shown are the values of the test statistic 
BW  and the p-values 

vp  obtained from the Brown-

Forsythe tests applied to the steady-state segments of the S1 and S2 signals. The values of the test 

statistic 
BW  = 0.66 (corresponding to 

vp  = 0.415) and 
BW  = 4.13 (corresponding to

vp  = 0.042 ) are  
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(a) Time history of the simulated S1 signal. 

 
(b) Time history of the simulated S2 signal. 

 
(c) NSM output of S1 and S2 signals. 

 
(d) NSM outputs of steady-state parts. 

 
(e) Power cepstrum of the simulated S1 signal. 

 

(f) Cost function ( ),lC P c  for S1 signal. 

 
(g) Power cepstrum of the simulated S2 signal. 

 

(h) Cost function ( ),lC P c  for S2 signal.  

Figure 4.3: Matching method applied to the simulated leak signals. The red dots in the power cepstrum 

indicate the selected peaks. Each line plot in (f) and (h) denotes the cost function calculated for one of 

combination of discontinuity locations, whereas the dotted line plot indicates the cost function 

corresponding to the optimal combination. The blue dot indicates the minimum of the cost function 

corresponding to the optimal combination. 
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both less than the critical value 
1 , 1, 2BNF − −

 = 6.63. This confirms the inference from the NSM outputs 

about the detected transients in both signals being active transients.  

The first peaks in the NSM outputs of the S1 and S2 signals are located at the 10.031- and 

10.16-second marks, respectively. This implies that the transient arrives at S1 129 milliseconds earlier 

than at S2. Hence, in this simulation example, it can be deduced that only two out of the three 

theoretically possible scenarios are feasible: one with an out-of-bracket transient source located closer 

to S1 than S2 and another with an in-bracket transient source located closer to S1. The scenario with 

an out-of-bracket transient source closer to S2 is not feasible given that the S1 signal has an earlier 

transient onset. It should be noted that the matching method can only be applied with the S2 signal in 

the scenario with the in-bracket source because there are no known discontinuities upstream of S1 

(relative to the direction of transient propagation in this scenario). The two feasible scenarios are both 

considered below.  

In the scenario with an assumed out-of-bracket transient source, the direction of transient 

propagation is inferred to be from S1 to S2, so the S1 signal can be used to identify any in-bracket leak 

present. The TDOAs of reflections from discontinuities downstream of S1 can be identified either 

from the ACF or cepstrum of the S1 signal, as discussed in Section 4.4. As stated previously, because 

the reflections can be inverted in phase with respect to the direct-path signal, it is necessary to extract 

the TDOAs from the envelope or absolute values of the cepstrum. Figure 4.3(e) shows the envelope of 

the power cepstrum of the transient portion of the S1 signal. In this work, the envelope of signal x  

will be denoted as  env x . Note that only results obtained with the power cepstrum are reported for 

the transient method (since they are superior to the autocorrelation results). In order to determine the 

wave speed and possible leak locations, the cost function ( ),lC P c  defined in Equation (4.1) was used 

to search for the wave speed in the interval between 200 and 450 m/s. Since there are 7 TDOAs and 4 

known discontinuities within 100 metres downstream of S1 (D2-D4, S2), the total number of 

realisable combinations 
lP  is 35. It can be observed from Figure 4.3(f) that the cost function achieves 

its minimum value at c  = 351.5 m/s, which differs from the true wave speed by 0.7%. Alternatively, 

the wave speed can be determined as 
onsetc d T=   = 364 m/s from the distance d  = 47 metres 

between S1 and S2, and the time delay 
onsetT  = 129 ms given by the difference between the transient 

onsets as determined from the NSM outputs. The TDOAs in the combination that minimises the cost 

function are shown in the upper half of Table 4.2. There are 3 unmatched reflections originating from 

locations at the indicated distances from S1. To determine which of them is a leak, cross-correlation 

was applied to the signal segments after the transient. Using the values of the time delay peak̂  = 64.9 

ms and wave speed c  = 351.5 m/s, the leak location was estimated to be 12.1 metres from S1. Hence, 

it can be inferred that the discontinuity at 12.1 metres is indeed a leak. Compared to the actual distance 
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of 12 metres, the error in the estimated leak location is only 0.1 metres. It should be noted that part of 

the error in the leak location value is due to the limited integer resolution of the TDOA estimates. The 

other unmatched reflections correspond to secondary reflections (repeated reflections) coming from 

the discontinuities. 

In the second scenario with an assumed in-bracket transient source, only leaks upstream 

(located after) S2 can be located. It is not possible to locate in-bracket leaks in this case. The TDOAs 

of reflections from discontinuities upstream of S2 can be estimated from the power cepstrum of the S2 

signal shown in Figure 4.3(g). There are 6 ways to assign the 4 TDOAs to the 2 known upstream 

discontinuities D3 and D4. Figure 4.3(h) shows the cost function ( ),lC P c  evaluated for these 6 

possible realisable combinations of the TDOAs. The minimum of the cost function occurs at the value 

c  = 351.5 m/s, which has been used to calculate the locations of the discontinuities shown in the 

lower half of Table 4.2. The two unmatched reflections indicate unknown discontinuities located at 

18.1 and 36.6 metres from X2. These two unmatched reflections actually correspond to secondary 

reflections (repeated reflections) coming from the discontinuities, but this cannot be inferred without 

additional information. In a practical situation, another sensor can be deployed upstream of S2 to 

determine if any of the unknown discontinuities is a leak. Even though it is not possible to reliably 

infer the presence of a leak in this case, the matching method is still useful, yielding a good estimate of 

the wave speed that differs by only 0.7% from the true value. Note that even though the transient 

source is not in-bracket as assumed in this scenario, the direction of propagation was still correct, 

hence, the reason a plausible estimate of the wave speed was obtained.  

Table 4.2: Optimal combination of TDOAs optP  in the simulation example. 

S1 signal 

TDOA (ms) 69 103 165 208 267 325 359 

Distance 

from S1 (m) 
12.1 18.1 29.0 36.6 46.9 57.1 63.1 

Matched 

discontinuity 
Leak - D2 - S2 D3 D4 

S2 signal 

TDOA (ms) 57 91 103 208 

 

Distance 

from S1 (m) 
10.0 16.0 18.1 36.6 

Matched 

discontinuity 
D3 D4 - - 

In order to investigate the robustness of the matching method, the ‘SNR’ (as defined previously 

in Section 3.4.1 for signals containing transients) of the simulated signals was varied between -6 dB 

and 3 dB. Figure 4.4 summarises the RMSE (defined in Equation (3.8)) of the leak location and wave 

speed estimates obtained over 100 runs at each ‘SNR’ value. Different realisations of white Gaussian 

noise was added to the simulated signals in each run to achieve the given ‘SNR’. Based on these 
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results, the matching method achieves a good performance for ‘SNRs’ above -3 dB, especially with 

regard to the leak location accuracy. The errors in the wave speed estimates are comparatively higher. 

However, the largest error in the mean wave speed estimate is 14%, which is theoretically better than 

what is obtainable with in-situ wave speed measurement methods. These simulation results have 

demonstrated that the proposed matching method is a potentially viable means of detecting and 

locating leaks as well as estimating the wave speed in the pipe. Ability to estimate the wave speed 

presents a practical benefit, especially with regard to improving the robustness of leak localisation 

using the cross-correlation technique. Experimental investigation and further discussion of the method 

will be carried out in Section 4.6. 

 

Figure 4.4: The RMSE of the leak location and wave speed estimates obtained using the matching 

method for simulated transient signals with ‘SNRs’ between -6 and 3 dB.  

4.5.3 Simulation results for the steady-state leak localisation method 

The steady-state method was used to locate the leak on the simulated pipe shown in Figure 4.2 above. 

In this case, only the steady-state portions of the simulated signals were analysed. Figure 4.5 shows 

the correlation functions and power cepstra of the simulated signals. In this case, white Gaussian noise 

was added to the signals to achieve an SNR of 3 dB (as defined in Equation (2.4)). Multiple peaks 

indicated with red dots in the envelopes of the absolute values of the ACFs and power cepstra indicate 

the presence of reflections in the simulated signals. Peaks in the first 10 milliseconds were disregarded 

so as to identify only peaks corresponding to reflections. The peak selection thresholds were 

calculated analogously as the NSM threshold in Section 3.2.1.2 assuming an AFPR of 0.001 and 

normal distribution for correlation functions and power cepstrum of noise-only signals. The TDOAs of 

the primary reflections are obvious in the correlation functions and power cepstra and can be 

determined even without employing Spiesberger’s algorithm. Nonetheless, applying Spiesberger’s 

algorithm yields these TDOAs as  11 2,1  = 97 ms and  22 2,1  = 57 ms, and the reference time 

delay as  21 1,1  = 65 ms. Based on the locations of the known discontinuities, the scenarios with an 

in-bracket and an out-of-bracket discontinuity are feasible, so they are both considered in the analysis.  
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ACF of S1 signal. 

 

Power cepstrum of S1 signal. 

 

ACF of S2 signal. 

 

Power cepstrum of S1 signal. 

 

CCF of S1 and S2 signals. 

Figure 4.5: Correlation functions and power cepstra of simulated steady-state leak signals. The SNR 

of the S1 signal is 3 dB. 

For the scenario with an in-bracket discontinuity, since the reference time delay  21 1,1  is 

positive, it can be inferred that the leak is located downstream of the known discontinuity D2, so 

estimates from the S1 signal should be used in locating the leak. Substituting  11 2,1 ,  21 1,1 , and 

in,1l  = 29 metres in the expressions for this pipe configuration (Equation (4.5)) gives the leak 

location as 1d̂  = 12.3 metres and wave speed as 
1̂c  = 344 m/s. These estimates differ by +0.3 metres 

and 2.8%, respectively, from the true values. As in the matching method, integer resolution of the 

TDOA limits the accuracy of these estimates. Employing the TDOA estimate  22 2,1  from the S2 

signal in the leak location and wave speed expressions yields leak location and wave speed values of 

(a.i) 

(a.ii) (b.ii) 

(b.i) 

(c) 
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2d̂  = 26.4 metres and 
2ĉ  = -90 m/s, respectively. Using the incorrect signal has yielded an implausible 

wave speed estimate, as stated in Section 4.3. Hence, it is not necessary to explicitly determine the 

signal to use; the expressions can be evaluated for both signals and the plausible estimates can then be 

selected. 

Since it is known that the primary reflection in the S2 signal does not result from the in-bracket 

discontinuity (based on the implausible wave speed estimate obtained above), the leak location and 

wave speed can be estimated from the S2 signal by considering the pipe configuration with one out-of-

bracket discontinuity. In this case, the estimates are obtained as 2d̂  = 34.9 metres and 
2ĉ  = 351 m/s, 

respectively, by substituting  22 2,1 ,    12 211,1 1,1 = − , and 
out,2l  = 10 metres (the closest out-

of-bracket discontinuity at D3) in Equation (4.6). The estimates obtained in this case are more accurate 

because the TDOAs can be identified more clearly from the correlation functions and cepstra due to 

the shorter distances between S2 and D3. 

This simulation example demonstrates the viability of the proposed steady-state leak 

localisation method. Effects of noise, choice of multipath identification technique, and pipe 

attenuation on the effectiveness of the method are investigated next.  

4.5.3.1 Comparison of multipath identification techniques 

To investigate the robustness of the proposed steady-state method and compare multipath 

identification techniques, the numerical simulation in the example above was repeated for 100 runs at 

each SNR value between -9 dB and 6 dB, with different realisations of the added white Gaussian noise 

signal used in each run. The RMSE (defined in Equation (3.8)) of the leak location and wave speed 

estimates obtained using the autocorrelation and cepstral multipath identification techniques for the 

out-of-bracket discontinuity scenario are shown in Figure 4.6. Estimates from the power cepstra 

exhibit lower RMSE, thereby demonstrating the higher accuracy and better noise robustness of the 

cepstral technique compared to the autocorrelation technique. When the SNR of the signals is high, 

accurate leak location and wave speed estimates can be obtained using either technique. At low SNR, 

only the power cepstrum gives a clear indication of the reflections in a signal, as can be observed from 

the ACFs and power cepstra of a -6 dB simulated S1 leak signal shown in Figure 4.7. The 

autocorrelation technique fails in this case due to the presence of many noise-induced peaks that are of 

comparable height with the true reflection peaks in the ACFs. In contrast, the power cepstrum retains 

distinct peaks corresponding to the reflections. By comparing the ACFs and power cepstra shown in 

Figure 4.5 above, it can be seen that even in a high-SNR situation, the peaks associated with the 

reflections are sharper and more distinct in the power cepstrum. The presented results are in complete 

agreement with the analysis in Section 4.4.3. In the rest of this section, only the results obtained for the 

power cepstrum are presented due to its vastly superior performance. 
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Figure 4.6: RMSE of autocorrelation and cepstral leak location and wave speed estimates obtained 

using the steady-state multipath identification leak localisation method for simulated leak signals. 

The SNR of the first signal varied between -10 and 6 dB. 

  

Figure 4.7: Comparison of the ACF and power cepstrum of simulated S1 leak signal with SNR 

of -6 dB. (a) ACF. (b) Power cepstrum. 

4.5.3.2 Effects of pipe properties on multipath identification 

To better understand the effects of pipe properties on the ability to locate leaks using the steady-state 

method, analytical examples are presented for a ‘lossy’ MDPE pipe with a higher attenuation factor. In 

this case, the loss factor of the pipe is set to be 10 times larger than the pipe in the leakage test rig. 

Figure 4.8 shows the ACF and power cepstrum of multipath leak signals simulated at S2 for the new 

MDPE pipe. White noise was added to the simulated leak signals so that they have an SNR of 3 dB. In 

this case, it becomes more difficult to identify real peaks corresponding to the reflections in the 

signals, thereby reducing the effectiveness of locating the leak. The effects of the higher pipe 

attenuation are more severe on the ACFs than on the cepstrum. In fact, it is almost impossible to detect 

the presence of reflections from the ACF. While the power cepstrum only exhibits peaks 

corresponding to a fewer number of reflections (compare Figures 4.8(b) and 4.5(b.ii)), it is still 

possible to estimate the leak location and wave speed using the cepstral technique, albeit with a lower 

accuracy compared to the case with a lower attenuation factor. In this case, the estimates are obtained 

as 2d̂  = 33.9 metres and 
2ĉ  = 328 m/s, which represent errors of -1.1 metres and 7% in the leak 

location and wave speed values, respectively. These results demonstrate that the proposed leak 

(a) 

(b) 
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localisation methodology based on multipath identification is more effective in pipes with lower 

attenuation. This is investigated further. 

  

Figure 4.8: Multipath identification in the simulated S2 leak signal in an MDPE pipe with a 

loss factor of 0.2. (a) ACF. (b) Power cepstrum. 

The study above was repeated with the SNR of the signals set at -4 dB while varying the 

attenuation factor of the MDPE pipe. Figure 4.9 compares the RMSE of the leak location and wave 

speed values obtained over 100 runs for different attenuation factors using the cepstral technique. It 

can be observed that the proposed method is indeed more robust and accurate in pipes with relatively 

low attenuation factors in agreement with the analysis in Section 4.4.3. As is characteristic of all 

acoustic methods, the performance of the method deteriorates in the presence of higher attenuation, 

substantially so when the attenuation factor exceeds 
41.5 10−  s/m.  

In addition to interfering with the ability to detect and locate reflections in these pipes, high 

attenuation also limits the effective distance over which leaks can be located using the proposed 

method. Experimental evidence has shown that attenuation is high in pipes with diameter greater than 

300 millimetres (Lowe et al., 2003; Hunaidi, 2012). Based on Equation (1.2), pipes with either high 

loss factor or high diameter to thickness ratio p pD h  (referred to as standard dimension ratio (SDR)) 

are generally characterised by higher attenuation. Therefore, based on the simulation results, two types 

of pipes for which the steady-state method is likely to be less effective are small-diameter pipes with 

 

Figure 4.9: RMSE of leak location and wave speed estimates obtained in pipes of different 

attenuation factors using the cepstral technique. 

(a) 

(b) 
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high loss factor and/or high SDR and large-diameter pipes. As a result, the proposed method is not 

likely to be effective on trunk mains or pipes made of ‘lossy’ materials such as PVC (compared to 

MDPE). Nonetheless, the method can be expected to perform well for typical distribution water pipes 

with low SDR (11 or less). It must, however, be emphasised that a low attenuation factor may not 

necessarily guarantee good performance since other factors affect multipath identification, including 

distance between sensor and discontinuities, noise, etc. Practical limitations of the proposed method 

will be discussed in Section 4.7. 

The numerical simulation results in this section demonstrate that the proposed transient and 

steady-state multipath identification methods present viable means of locating leaks in a lot of water 

pipes without need for a priori knowledge of the wave speed. In the next section, these methods are 

further investigated using experimental leak signals. 

4.6 Application of multipath identification leak detection methods to 

experimental data 

The transient and steady-state methods presented in this chapter were used to locate leaks and 

determine the wave speed in the laboratory leakage test rig using the datasets described in Section 3.4. 

The representative results obtained for each method are presented in this section. 

4.6.1 Experimental results for the active transient leak localisation method 

Signals in five datasets with active transients were analysed using the matching method. Transients in 

these datasets were generated by hitting the pipe at the endcaps in the presence of a leak at L2. Only 

signals measured at X1 and X3 were considered because of the absence of a known in-bracket 

discontinuity between X1 and X2 and inability to simulate a leak between X2 and X3. The time 

histories and NSM outputs of the X1 and X3 signals from one of the datasets analysed were shown in 

Figures 3.8(c.i)–3.8(c.iii). The transients in the signals were induced by an impact with a metallic rod 

on the endcap close to X3. Based on the NSM outputs of the steady-state parts of the signals without 

the transient segments in Figure 3.8(c.iii) and the results of the Brown-Forsythe test in Table 3.2, it 

was confirmed that the transients in the signals are active transients. Only results obtained for the 

power cepstrum are reported, since they are vastly superior to the autocorrelation results. Based on the 

transient onsets (indicated with dots in Figure 3.8(c.ii), the transient source is located closer to X3 than 

X1. Hence, the only two feasible and applicable scenarios are: (i) an assumed out-of-bracket source 

closer to X3; and (ii) an assumed in-bracket source closer to X3. Due to absence of multiple 

discontinuities upstream of X1, the X1 signal is not considered except to determine the possible 

direction of propagation of the transient. In the first scenario with an assumed out-of-bracket source 

close to X3, the direction of transient propagation is inferred to be X3 to X1. From the schematic of 

the leakage test rig in Figure 2.1, there are 4 known discontinuities upstream of X3: the elbow, 
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measurement points at X2 and X1, and the end-cap close to X1. From the power cepstrum of the X3 

signal shown in Figure 4.10(a), 10 TDOAs (marked with red dots) corresponding to reflections in the 

signal can be identified. There are 210 ways to assign the 4 known discontinuities to the 9 TDOAs. 

Figure 4.10 (b) shows the cost function ( ),lC P c  (Equation (4.1)) calculated for all possible 126 

combinations 
lP  of the TDOAs and wave speed values between 200 and 450 m/s. The cost function 

attains its minimum value at c  = 363.5 m/s and the combination 
optP  shown in Table 4.3. This 

estimated wave speed value differs from the true wave speed by 3%. 

 

(a.) Power cepstrum of the signal. 

 

(b.) Cost function ( ),lC P c  in the case of an 

assumed out-of-bracket transient source. 

 

(c.) Cost function ( ),lC P c  in the case of an assumed in-bracket transient source. 

Figure 4.10: Applying the matching method to the experimental signal measured at X3 when a 

transient is induced via impact at the endcap close to X3. Each line plot in (b.) and (c.) represents 

the cost function computed for a combination of the TDOAs, and the dotted line plot denotes the 

cost function computed for the optimal combination optP . The blue dot denotes the minimum of the 

cost function corresponding to optP . 

Based on the estimated wave speed value, the 5 unmatched TDOAs correspond to 

discontinuities located at distances of 1.73, 2.58, 6.20, 6.36, 8.68, and 10.74 metres from X3, any of 

which may be a leak. To determine which corresponds to a leak, cross-correlation was applied to the 

(a) 

(b) 

(c) 



Chapter 4 Acoustic leak detection as a multipath identification problem 

88 

signal segments after the transient, giving the leak location as 8.13 metres from X3. It can thus be 

inferred that the discontinuity at 8.68 metres is indeed a leak. Compared to the actual distance of 8.49 

metres, the error in the estimated leak location is 0.19 metres. The presence of a discontinuity at 6.2 

metres from X3 possibly indicates a second reflection at the elbow (most likely at the point where it 

connects to the second pipe). The discontinuity at 10.74 metres appears to be the closed L1 leak valve. 

It is not clear where the remaining unmatched reflections originate from, but they are possibly 

reflections from discontinuities upstream of X3: the inlet valve, tee connector, and the endcap. This is 

very likely considering the early arrival times of these reflections and the relatively short distance 

between X3 and the upstream discontinuities. Alternatively, the wave speed can be determined as 

onsetc d T=   = 359 m/s from the distance d  = 11.74 metres between X1 and X3 and the time 

difference 
onsetT  = 32.7 ms between the transient onsets. Using this value of the wave speed yields 

the leak location as 8.44 metres from X3, which is more accurate than the estimate from the matching 

method. 

Table 4.3: Optimal combination of TDOAs 
optP  for the experimental signal acquired at X3 on the 

leakage test rig. 

TDOA (ms) 9.5 14.2 32.3 34.1 35.0 47.8 57.3 59.1 64.4 65.4 

Distance from X3 

(m) 
1.73 2.58 5.87 6.20 6.36 8.68 10.41 10.74 11.70 11.89 

Matched 

discontinuity 
- - Elbow - X2 Leak - - X1 

X1 

endcap 

In the scenario with an assumed in-bracket transient source, only leaks located upstream of X3 

can be located. In this case, there are three known discontinuities upstream of X3: inlet valve, tee 

connector, and endcap. There are 84 ways to assign the 9 TDOAs identified in the power cepstrum of 

the X3 signal in Figure 4.10 (a) to these discontinuities. Figure 4.10 (c) shows the cost function 

obtained for all 84 possible combinations. In this case, the minimum value of the cost function occurs 

at c  = 37 m/s, an unusually low value for the wave speed. This estimate is considered implausible, 

and it is concluded that this scenario with an in-bracket transient source is infeasible. No further 

analysis is required. In contrast with the simulation example, in this case, not even a plausible value of 

the wave speed is obtained. This is because the direction of propagation was correctly assumed in the 

simulation example, whereas the assumption in this case contradicts the actual transient propagation 

direction. The X3 sensor does not capture primary reflections from the 3 discontinuities used in 

evaluating the cost function, resulting in an implausible estimate. This example confirms the 

soundness of the suggestion to evaluate the cost function for all possible scenarios and then select only 

the plausible estimates. Scenarios that do not correspond to the real situation will generally yield 

implausible estimates. Although evaluating the cost function for all possible scenarios increases the 

computational complexity of the method, it nonetheless helps to resolve the issue associated with 
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unknown location of the transient source. This makes the method particularly attractive for application 

with ambient transients, origin of which is usually unknown. In contrast, some fluid transient methods 

require the relative location of the transient source to be known a priori. Hence, the proposed method 

is more general in this regard. 

The results obtained for the five datasets considered are summarised in Table 4.4. The presented 

leak location and wave speed estimates were obtained from the signal with the earlier onset. The 

matching method achieves a good performance for four of the five cases considered with the 

maximum leak localisation error less than 0.6 metres and wave speed estimates within 8% of the true 

value. While the method appears to perform well both for hydrophone and accelerometer signals, no 

definitive conclusions can be made about the effects of the choice of sensors due to the small number 

of datasets considered. It will be worthwhile to investigate this in further studies. The one case, 

Dataset 5, for which it fails is considered in more detail below. In this work, a leak localisation method 

is deemed to have failed if the estimates given by the method are implausible.  

Table 4.4: Leak location and wave speed estimates obtained for the datasets. 

Parameter Sensor 
Transient 

source 

Leak location 

(distance from X3) 

Wave speed 

estimate 

True value   8.49 metres 354 m/s 

Dataset     

1 Accelerometer X3 endcap 8.68 363.5 

2 Accelerometer X1 endcap 8.28 383.5 

3 Hydrophone X1 endcap 8.92 367.5 

4 Hydrophone X3 endcap 7.94 373.0 

5 Accelerometer X1 endcap 10.91 730.5 

Figure 4.11 shows the histories and the NSM of the X1 and X3 signals in Dataset 5. While the 

transients are not as obvious in the time histories compared to the case in Figure 3.8b(i), their presence 

as well as their active nature was successfully detected by the NSM. Insights into why the method fails 

for this dataset are revealed by the power cepstrum of the X3 signal shown in Figure 4.11(c). It can be 

observed that the real peaks corresponding to the reflections cannot be unambiguously determined 

from the power cepstrum, as there are a lot of noise-induced peaks, some of which are very close to 

the true TDOAs. As a result, difficulty arises in applying the cost function-based approach. This 

represents one shortcoming of the proposed method: it becomes unreliable when there many noise-

induced peaks in the power cepstrum. The minimum of the cost function in this case occurs at 450 

m/s, the set maximum value of the wave speed. After increasing the set maximum wave speed value to 

1000 m/s, as shown in Figure 4.11(d), the minimum of the cost function shifts to 730.5 m/s, which is 

an unreasonably high value for an MDPE pipe. Therefore, it is concluded that the matching method 
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fails for this dataset. It is, however, still possible to obtain a fairly accurate wave speed estimate from 

the transient onsets. In this case, the wave speed calculated from the difference between transient 

onsets is 393 m/s, which differs from the true wave speed by 11%. In such a case where there are 

many noise-induced peaks in the power cepstrum, it is recommended to calculate the wave speed from 

the transient onsets and then apply cross-correlation to locate the leak. This recommended approach 

represents an example of a leak detection approach that combines transient and steady-state methods. 

Further details about such combined methods will be presented in Chapter 8.  

 

(a) Time histories. 

 

(b) NSM outputs. 

 

(c) Power cepstrum of the X 

 

(d) Cost function ( ),lC P c . 

Figure 4.11: Applying the matching method to X1 and X3 signals in Dataset 5. 

The experimental results above demonstrate the capability of the proposed matching method to 

locate leaks in water pipes. Even in the one case among the five considered where it fails to accurately 

locate the leak, a fairly good estimate of the wave speed was obtained. This illustrates another 

advantage of the method: it can be used to complement the conventional cross-correlation technique 

by providing an estimate of the wave speed. It must be emphasised that the reported results have been 

obtained under controlled conditions that may differ substantially from real pipe systems. As a result, 

it is important to consider the limitations of the leakage test rig discussed in Section 2.5 when 

extending the results to real pipe systems. Such limitations are discussed in Section 4.7. 

(a) (b) 

(c) 

(d) 
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4.6.2 Experimental results for the steady-state leak localisation method 

Signals measured at X1, X2, and X3 in 10 datasets with steady-state leak signals were analysed using 

the steady-state leak localisation method described in this chapter. The main information concerning 

the signals in each dataset was previously summarised in Table 3.4. Based on the schematic of the 

leakage test rig, the closest discontinuities to the sensors at X1, X2, and X3 are the endcap close to X1, 

the elbow, and the endcap close to X3, respectively. Hence, for any of the X1-X2 and X1-X3 pairs of 

signals in the datasets, the pipe configuration corresponds to the case with out-of-bracket 

discontinuities. Under this configuration, three independent estimates of the wave speed can be 

obtained for each dataset, one from each of X1, X2, and X3 signals. Note that the X2-X3 pair is not 

considered since the simulated leak at L1 or L2 is always out of bracket with respect to X2 and X3. 

The main features of the successful and unsuccessful results obtained for the 20 pairs, two from each 

dataset, are presented in this subsection.  

Figure 4.12 shows the correlation functions and power cepstra of the accelerometer signals 

acquired at X1 and X2 in one of the successful cases (Dataset 5 in Table 3.4). The presence of 

multiple reflections in the measured signals is evident from the prominent peaks in their power 

cepstra. On the other hand, the ACFs fail to highlight the presence of a multipath situation. The signals 

measured on the leakage test rig represent one of the situations for which the autocorrelation method 

fails: when tonals or resonances are present in the signals. The presence of resonance in signals 

measured on the leakage test rig was previously highlighted in Section 2.3.3 (see Figure 2.5(b)). As 

indicated in the Figures 4.12(a.i) and 4.12(a.ii), the peaks associated with the resonances occur at 

approximately regular interval of 1.8 ms and 1.3 ms in the ACFs of X1 and X2 signals, respectively. 

This interval is given by the inverse of the dominant resonant frequency in the signals, 546 Hz in X1 

and 767 Hz in X2, denoted with black dots in the normalised PSDs in Figure 4.12(d). As already 

stated in Section 4.4.3, logarithmic conditioning of the auto-power spectrum allows the cepstrum to 

detect multipaths in situations when tonal or resonant frequencies are present in the signals. By 

comparing the ACFs with the power cepstra in Figures 4.12(b.i) and 4.12(b.ii), it can be seen that 

while the peaks associated with the reflections in the X1 signals are still present in its ACF, the 

presence of resonance peaks makes it difficult to identify them unambiguously. The situation is even 

worse in the ACF of the X2 signal, in which the peaks associated with the reflections are completely 

masked. This example demonstrates that only the cepstral technique can be successfully employed to 

locate leaks in the test rig using the proposed steady-state method. Hence, only results obtained using 

this multipath identification technique is presented in the rest of this section. 

From the power cepstra in Figure 4.12, the TDOAs of the primary reflections in the X1 and X2 

signals were identified as  11 2,1  = 1.4 ms and  22 2,1  = 1.3 ms, respectively. Substituting these 

values in the expressions in Equation (4.6), the leak location and wave speed estimates are obtained as 
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1d̂  = 1.1 metres and 
1̂c  = 357 m/s from the X1 signal, and as 2d̂  = 4.5 metres and 

2ĉ  = 385 m/s from 

the X2 signal. In this case, even the less accurate leak location and wave speed estimates represent 

deviations of less than 9% from the true values. It is not clear why the estimates from the X1 signal are 

more accurate. It may be because the elbow ‘scatters’ the reflection more severely than the closed 

boundary condition at the endcap close to X1, thus making the TDOA of the reflection in the X2 

signal harder to detect. 

 

(a.i) ACF of X1 signal. 

 

(b.i) Power cepstrum of X1 signal. 

 

(a.ii) ACF of X2 signal. 

 

(b.ii) Power cepstrum of X2 signal. 

  

(c) CCF of X1 and X2 signals. 

 

(d) PSDs of X1 and X2 signals. 

Figure 4.12: Applying the steady-state multipath identification methods to experimental leak signals 

measured at X1 and X2.  

Among the steady-state signals considered, the proposed method fails for one case of 

accelerometer signals. The results obtained for the successful cases are summarised in Figure 4.13. A 

couple of observations can be made about these results. The maximum absolute error in the plausible 

leak location estimates is 0.17 metres, while the plausible wave speed estimates differ by less than 

15% from the true value. As shown by the annotations in Figure 4.13, the accelerometer signals 

(a.i) (b.i) 

(a.ii) 

(b.ii) 

(c) (d) 
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exhibit a lower RMSE for the leak location and wave speed estimates than the hydrophone signals, 

which suggests that the proposed method may be better suited for acceleration measurements. One 

possible reason for this is that the peaks in the correlation functions of acceleration signals are sharper 

than in those of acoustic pressure signals, as shown by Gao et al. (2005). This is also applicable to the 

cepstrum. Hence, the TDOAs are likely to be more precisely determined from accelerometer signals 

than hydrophone signals. However, just as for the matching method, no definite conclusions can be 

made due to the limited number of datasets considered. Further investigation in this regard is 

recommended. 

  
Figure 4.13: Summary of results for the experimental steady-state leak signals: (a) leak localisation 

error. (b) wave speed. 

To gain further insights about the results, more details are presented for an example of an 

unsuccessful case. The power cepstrum of the X1 signal for a case where the steady-state method fails 

to give accurate estimates are shown in Figure 4.14. In this case, the presence of many noise-induced 

peaks in the cepstrum of the X1 signal makes it difficult to unambiguously distinguish the reflections 

in this signal, thereby causing both Spiesberger’s algorithm and the leak localisation method to fail. In 

fact, if the location of the highest peak (3.025 ms) is used in the calculation, the steady-state method 

yields a wave speed estimate of 83 m/s, which is not a plausible value for the wave speed in an MDPE 

pipe. The steady-state method can only succeed when the reflection peaks can be identified in the 

cepstrum, so its performance will degrade in very noisy environments. Possible measures that can be 

employed to improve the effectiveness of the method include denoising or filtering the signals in the 

frequency region where leak noise is dominant prior to applying the method and averaging many 

realisations of the cepstrum.  

 
Figure 4.14: Power cepstrum of the X1 signal in an unsuccessful leak localisation case. 

(a) 

(b) 
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Due to the limitations of the rig layout, the proposed methods could not be experimentally 

investigated for a different pipe configuration. Nonetheless, the limited experimental results presented 

above demonstrate their potential applicability for locating leaks in water pipes. The ability to locate 

leaks directly from the measured signals without a priori knowledge of the wave speed is one of their 

big advantages. In the next section, the inherent limitations of these two methods as well as points that 

must be considered when generalising the reported experimental results are discussed. 

4.7 Limitations of multipath identification leak detection methods  

While only limited experimental results for 63-mm diameter in-vacuo MDPE pipes are available, 

based on theoretical analysis, multipath identification leak detection methods are expected to be a 

viable means of detecting and locating leaks in a lot of practical situations, especially in distribution 

pipes. However, some practical limitations of these methods can be identified. Firstly, like all 

reflectometry-based leak detection methods, they rely on knowledge of discontinuities in the pipe 

system. If reflections from an unknown discontinuity (such as deteriorated region in a pipe) are 

wrongly assigned to a known discontinuity, this may lead to the failure of the methods. Hence, the 

proposed methods can only be applied when an accurate schematic of the pipe system is available. 

Secondly, reflection-based methods in their current implementations are not capable of detecting leaks 

that occur at known discontinuities, for example, joint leaks, which represent a substantial proportion 

of leaks in water distribution networks (Farrow et al., 2017). This limits the scope of application of the 

proposed methods in real systems. Thirdly, reflection-based methods are only effective if the 

reflections in the measured signals can be reliably identified. As shown by the theoretical analysis and 

numerical simulation results, high levels of background noise and pipe attenuation make accurate 

multipath identification in leak signals considerably more difficult. As a result, the proposed methods 

may not be very effective in locating leaks in very noisy environments. In order to make the proposed 

methods more practically useful, it will be worthwhile to address the highlighted shortcomings in 

future studies. 

It is important to note that the reported results have been obtained on a limited leakage test rig, 

which in many ways is certainly not representative of real water pipe systems. In fact, certain factors 

may make the leakage rig more favourable to reflectometry-based methodology compared to buried 

water pipes. First of all, the pipes in the test rig are new and so structurally uniform unlike old, buried 

water pipes which are likely to have undergo some level of deterioration. As stated above, the 

presence of unknown discontinuities, such as deteriorated sections and blockages, may affect the 

ability to locate leaks using multipath identification in real pipe systems. Secondly, as stated in Section 

2.5, the relatively short length of the leakage test rig makes it easy to detect reflections and acoustic 

transients propagating in the pipe. Acoustic transients and reflected waves are likely to travel longer 

distances in real water pipes, thus decreasing their detectability in the measured signals. Thirdly, one 
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factor which has not been considered in this study is the possible effect of surrounding medium on 

acoustic wave reflections. As mentioned in Section 1.2.1, the presence of a surrounding medium 

heavily affects signal attenuation. The pipe-soil boundary is likely to have ‘scattering’ effects on 

transient and leak noise reflections or perhaps even be the source of new reflections in buried pipes 

(see Kokossalakis (2006)). It is worthwhile to consider such effects in further study of the proposed 

methods. Lastly, the reported results were only obtained for a relatively simple pipe configuration with 

few discontinuities. While theoretical results suggest that the methods are capable of detecting leaks in 

more complex configurations, this is yet to be confirmed experimentally. Further experimental 

validation is therefore required to investigate the effect of a high number of discontinuities. Because of 

the outlined limitations, the reported experimental results can be considered to be mostly valid for in-

vacuo pipes. However, the good agreement of the results with the theoretical analysis and numerical 

simulations may provide some valid justification for extending or generalising the experimental results 

to real buried water pipes.  

4.8 Summary and conclusion 

An alternative methodology for performing acoustic leak detection and localisation based on multipath 

identification of reflections in acoustic/vibration signals measured on the pipe has been investigated. 

Two implementations of this methodology, one transient and the other steady-state, have been 

proposed and studied. The transient approach, referred to in this work as the matching method, is 

based on detecting acoustic transient reflections in the measured signals and corresponding them with 

the known discontinuities. The steady-state method relies on detecting the primary reflections of the 

leak noise in signals measured at two locations on the pipe. Two multipath identification methods 

based on the autocorrelation function (ACF) and power cepstrum were derived and analysed for 

detecting reflections in signals. Theoretical analysis showed that the cepstral method is vastly superior 

to the autocorrelation method for multipath identification in leak signals. Numerical simulations and 

experimental data obtained on the leakage test rig were used to investigate the effectiveness of the 

proposed leak detection methodology and compare with theoretical predictions. The results 

demonstrated that the methods are potentially viable means for detecting and locating leaks, although 

they are mostly effective for pipes with low attenuation factor. Possible benefits of the methods 

include the ability to locate leaks without knowledge of the wave speed as well as capability of 

estimating the wave speed simultaneously with the leak location. Moreover, the methods can be 

combined with existing acoustic methods in order to improve robustness of leak detection. Some 

inherent limitations of the methods were identified, including incapability of detecting leaks that occur 

at discontinuities such as joints, requirement of an accurate schematic of the pipe system, etc. Future 

works will focus on tackling the identified limitations, in order to improve the applicability of the 

methods to real pipe systems. 
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CHAPTER 5 

ACOUSTIC LEAK DETECTION AS A SYSTEM 

IDENTIFICATION PROBLEM 

Motivated by the frequency response and impulse response fluid transient methods described in 

Chapter 1, this chapter introduces an alternative leak detection approach based on system 

identification for locating leaks under the cross-correlation setup. The basic principles and 

implementation of this approach are presented, as well as techniques for dealing with challenges 

unique to the approach. Simulation and experimental results are provided to demonstrate the 

effectiveness of the proposed approach. 

5.1 Recasting leak localisation as a system identification problem 

Under the cross-correlation setup, the measured acoustic/vibration signals are driven by the same leak 

noise that propagates over different acoustic paths to the two measurement points. As such, the 

measured leak signals can be modelled as a single-input two-output (SITO) system  

 
( ) ( ) ( )

( ) ( ) ( )

1 1 1

2 2 2

x t l t h n t

x t l t h n t

=  +


=  +

 (5.1) 

where ( )l t  is the signal generated at the leak location, 
ih , 1,2i = , is the IRF that expresses the 

relationship between ( )l t  and the leak signal at the i th measurement point, and ( )in t  is the 

background noise. As stated in Chapter 1, the pipe FRF or IRF encapsulates all information regarding 

wave propagation in the pipe, including the absolute propagation times from the acoustic source to 

either measurement point, propagation wave speed, and attenuation (Fuchs and Riehle, 1991). As 

such, the leak localisation problem under the cross-correlation setup can be viewed alternatively as a 

system identification problem of determining 
1h  and 

2h . However, since the input signal ( )l t  is not 

available and cannot be measured in most practical situations, the IRFs can only be identified from the 

measured acoustic/vibration signals using BCI techniques. Hence, acoustic leak localisation can be 

considered a BCI problem, which with reference to the SITO system in Equation (5.1) can be stated as 

follows: given only the measured signals ( )1x t  and ( )2x t , determine the IRFs (‘channels’) 
1h  and 

2h . The term 'channels' will be used throughout this chapter to refer to the IRFs 
1h  and 

2h  to 

emphasise that ( )l t  propagates over two different acoustic paths.  

Many techniques for solving the BCI problem have been developed, among which the most 

commonly used are those based on second-order statistics of the output signals, including time-domain 
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methods such as least mean squares (LMS) methods (Benesty, 2000), subspace methods (Moulines et 

al., 1995), least-squares algorithms (Xu et al., 1995a), and linear prediction methods (Abed-Meraim et 

al., 1997a), and frequency-domain methods such as the normalised multichannel frequency least mean 

squares (NMCFLMS) method and its variants (Haque and Hasan, 2008; Huang and Benesty, 2003b). 

While BCI techniques are widely used for applications, such as equalisation of digital communication 

channels (Tong et al., 1994), speech separation and dereverberation (Haque et al., 2011), and 

estimation of time delays in passive systems (Huang and Benesty, 2003a), the only relevant example 

of their application in leak detection available in the literature is the leak localisation method proposed 

by Yang et al. (2008). In this method, a BCI approach implemented with a genetic algorithm is 

employed for locating leaks in water pipes without knowledge of the pipeline length. Two main 

disadvantages of the method are requirement for a priori knowledge of the wave speed and high 

computational burden. An objective of this chapter is to demonstrate the viability of locating a leak 

using a BCI strategy without knowledge of the wave speed. The next section describes a technique for 

estimating the pipe channels blindly. 

5.2 Normalised multichannel frequency least-mean squares blind channel 

identification 

In the BCI techniques mentioned in the preceding section, the channels are represented using finite 

impulse response (FIR) filters of length L , each expressed in vector form as 
,1 ,2 ,, , ,

T

i i i i Lh h h =  h , 

1,2i = . In order for the BCI problem stated above to have a unique solution (up to a scalar multiple), 

there are two conditions that must be satisfied (Abed-Meraim et al., 1997b). The first condition termed 

the distinct-channel condition is that the transfer functions of the two channels ( )  1 1ZH z = h  and 

( )  2 2ZH z = h  must not contain any common zeros. Here,  Z •  denotes the z-transform. If the 

distinct-channel condition is violated, it becomes impossible to distinguish if the common factor is 

associated with the input signal or the channels. The second condition is that the input signal must be 

rich or complex enough to excite all the modes in the channel dynamics. The linear complexity or 

richness of a finite sequence is analogous to the number of frequency components in an infinite data 

sequence, which is measured by the persistence of excitation of the signal (Ljung, 1999). Based on this 

second condition, the input signal cannot be a zero, a constant, or a single sinusoid, for example. In 

deriving the BCI algorithms, both conditions are assumed to be satisfied. 

The most commonly employed methods for solving the BCI problem, i.e., methods based on 

second-order statistics, estimate the channel IRFs via the minimisation of a cost function defined in 

terms of the cross-relation (CR) error e  given by 

 1 2 2 1
ˆ ˆx x=  − e h h  (5.2) 
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where ˆ
ih  is an estimate of the i th channel IRF 

ih . Minimisation of the cost function can be achieved 

using different algorithms either in the time domain (for example, convex optimisation, LMS 

algorithm, subspace decomposition) or in the frequency domain (for example, LMS algorithm). For 

details about these algorithms, the reader is referred to the references given in the proceeding section. 

Among the available BCI techniques, the NMCFLMS is known to be computationally efficient as a 

result of computing the cost function in the frequency domain. Also, it provides the ability to 

incorporate spectral constraints, which is useful for locating the leak using the BCI technique, as will 

be shown in the next section. Based on these two reasons, the NMCFLMS is selected in this work for 

estimating the pipe IRFs.  

The NMCFLMS estimates the IRFs by iteratively minimising a frequency-domain cost function 

over successive L -sample time blocks of the output signals in Equation (5.1). In the NMCFLMS 

algorithm, the cost function ( )eJ m in the m th time blocks ( ) ( ) ( )1 1 1 1m x mL x mL= +x  

( )1 1
T

x mL L+ −   and ( ) ( ) ( )2 2 2 1m x mL x mL= +x  ( )2 1x mL L+ −   is defined as 

 ( ) ( ) ( )e

H
J m m m= e e  (5.3) 

 such that ( )
2

ˆ , 1L m =h  (5.4) 

where ( )
H

•  denotes the Hermitian transpose, ( ) ( )Lm m=e F e  is the frequency-domain CR error for 

the m th time blocks, ( )me  is the CR error computed for ( )1 mx  and ( )2 mx  using Equation (5.2), 

LF  denotes a L L  discrete Fourier transform (DFT) matrix, ( ) ( ) ( )1 2
ˆ ˆ ˆ, , ,

T
T TL m L m L m =

 
h h h  is 

the stacked vector of the channel estimates and 
2

•  denotes the 
2

 norm. The update equations for 

minimising ( )eJ m  using the LMS algorithm are given by (Appendix E1) 

 ( ) ( ) ( )10 10

bci e,
ˆ ˆ, 1 ,i i iL m L m J m+ = − h h  (5.5) 

where m , 1,2, ,m M= , is the signal frame index,  

 ( ) ( ) ( ) ( )
1 * 01

e, bci 2i i L kJ m m m m
−

 = +   P I e ,  i k  (5.6) 

denotes the gradient of ( )eJ m  with respect to ( )( )
*

10ˆ
i mh ; 
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is the zoomed frequency spectrum of the i th channel estimate with L  zero padding; 
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is the 2L -point DFT of the zero-padded CR error ( )me ,  

 ( ) ( ) 2diagi L im m= F x  (5.9) 

and 

 ( ) ( ) ( ) ( ) ( )*

bci bci1 1i i k km m m m = − + −P P , k i  . (5.10) 

Here, 
10

,
ˆ
i kh  denotes the k th element of 

10ˆ
ih ; ( ) ( ) ( )1

T
T T

i i im m m = − x x x ; 
K P0  denotes a null 

matrix of size K P ; 
1 1 H

L LL

− =F F is the L L  inverse DFT matrix;  diag •  creates a diagonal 

matrix with a given vector; 
( )

1
1

bci 3 1
1

L

L


+

+
 = −
 

 is the forgetting (smoothing) factor; 
bci  is the step-

size parameter; and 
bci  is the regularisation parameter (a small number) added to avoid singularities 

during matrix inversion. The frequency spectrum of the channels at the m th time block is zero padded 

to length 2L  in order to alleviate the picket-fence effect associated with the discreteness of the DFT 

(i.e., frequency resolution bias error) (Cerna and Harvey, 2000). The dependency of the channel 

estimates on the selected channel length L  has been explicitly expressed in Equation (5.5). The IRFs 

 1

1 1
ˆ ˆ

L

−=h F h  and  1

2 2
ˆ ˆ

L

−=h F h  are obtained by taking the 2L -point inverse DFT of 
10

1ĥ  and 
10

2ĥ , 

and discarding the lower half, which will be all zeros when there is no noise. To avoid the all-zero 

trivial solution, it is necessary to initialise the coefficients of the FIR filters as non-zero vectors. 

Additionally, in place of the unit-norm constraint, another non-zero constraint, such as the singleton 

constraint, can be imposed on the channel estimates.  

Since the NMCFLMS algorithm can be implemented using the fast Fourier transform (FFT), it 

is computationally efficient compared to time-domain methods. However, it has some shortcomings, 

the most serious of which is vulnerability to noise. In the presence of additive noise, the algorithm 

gives good initial estimate of the channels followed by rapid divergence from this good estimate (He 

et al., 2018). In order to improve the robustness of the method, additional constraints are usually 

imposed on the solution, for example, 
p
-norm constraint (He et al., 2018), spectral energy constraints 

(Haque and Hasan, 2008), and linear phase constraints (Jo and Calamia, 2021). The standard 

NMCFLMS update equation in Equation (5.5) uses a fixed step size, so its performance is highly 

dependent on the step size. Alternative versions that employ variable step sizes are available (Haque 

and Hasan, 2007). In the next section, procedures for estimating the wave speed and leak location 

from the channel estimates will be introduced.  
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5.3 Estimation of channel length and propagation times of the leak noise in 

the pipe channels  

In order to calculate the wave speed in the pipe and the leak location from the channel estimates, 

knowledge of the absolute propagation times of the leak noise from the leak location to the two 

measurement points is required. In this chapter, the term ‘propagation time’ will be used to refer to the 

absolute travel time (in samples or seconds as specified) of the leak noise from the leak position to the 

measurement point(s). There are two difficulties associated with estimating the propagation times: the 

unknown channel length and possible violation of the distinct-zero condition. The latter can be 

illustrated as follows. Without loss of generality, it is assumed that the leak is closer to the first 

measurement point than the second. Let the propagation time in the first channel be D  samples (this is 

also the common leading delay in the two channels). Then the outputs 
1 1x l h=   and 

2 2x l h=   in 

the SITO system in Equation (5.1) can be obtained from two different systems as shown in Figure 5.1. 

The first shown in Figure 5.1(a) corresponds to the situation in which the common leading delay D  is 

embedded in the transfer functions, i.e., ( ) ( ) ( )1 0 1dH z H z H z=  and ( ) ( ) ( )2 0 2dH z H z H z= , 

where ( )0

DH z z−=  (delay operator in the z-domain) is the common factor shared by the two 

channels, while ( )1dH z  and ( )2dH z  are the distinct factors in the transfer functions. The second 

shown in Figure 5.1(b) represents the situation where the input signal is first delayed by D  samples 

before being applied to a SITO system with distinct transfer functions ( )1dH z  and ( )2dH z . Given 

the same input, these two systems have exactly the same outputs, but different channel dynamics. Only 

the first system is useful for estimating the propagation times in the channels. However, without 

additional information about the system dynamics, for example, the zero-input response of the system, 

the NMCFLMS algorithm identifies the IRFs corresponding to the second system. To make the 

NMCFLMS algorithm suitable for acoustic leak localisation, it must be forced to identify the first 

system instead. Measures for achieving this as well as addressing the challenges associated with 

unknown channel length and non-robustness to noise are described in this section.  

  

Figure 5.1: Representations of a SITO system with a leading delay. (a) Inherent delay in the transfer 

functions. (b) Delayed input.  

(a) (b) 
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To force the BCI algorithm to identify the first system in Figure 5.1(a), appropriate constraints 

based on additional knowledge about the pipe acoustic channels must be imposed on the channel 

estimates. Such information is provided by the FRF model of the pipe channels (Equation (2.5)). 

Experimental results in Section 2.3.4, as well as results from other studies (Gao et al., 2004; Gao, 

2006; Gao and Liu, 2017; Almeida, 2013; Ayala Castillo, 2019) demonstrate that physical acoustic 

channels of water pipes are adequately described by this FRF model. Two important properties of this 

model that can be exploited for estimating the propagation times of the leak noise in the pipe channels 

are the linearity of the FRF phase and exponential decay of the FRF magnitude. Based on the first 

property, the IRFs 
1h  and 

2h  are essentially linear-phase FIR filters, the group delays of which 

correspond to the propagation times in the physical channels. These linear-phase FIR filters are 

uniquely defined by the distances 
1d  and 

2d  between the leak and the measurement points. Any 

change in 
1d  or 

2d  modifies both the phase and magnitude of the corresponding FRF. Since the pipe 

IRFs are represented using FIR filters, the propagation times in the channels are given by the group 

delays of the FIR filters. To ensure that the channel estimates provided by the NMCFLMS algorithm 

conform to the form dictated by the FRF model, appropriate spectral constraints need to be imposed 

on the estimates, as will be discussed in the next subsection. Additionally, the optimal channel length 

that best describes the FIR filters pair that best describes the pipe channels according to the FRF 

model must also be estimated. Afterwards, the BCI problem is solved for all feasible values of the 

leading delay D  (i.e., the propagation time in the first channel), and then a cost function is defined to 

identify the best estimate among these. The next subsections concern the descriptions of these 

approaches. 

5.3.1 Spectrally constrained blind channel identification method 

According to the FRF model in Equation (2.5), the ideal pipe channel has a linear phase and a linear 

log-spectrum (this refers to the logarithm of the FRF magnitude), and accordingly, the second 

derivative of the phase and log-spectrum will be zero. However, in realistic cases, factors such as 

reflections, non-uniformity of pipes, and measurement noise, may cause these quantities to deviate 

from a linear form. Based on these, additional spectral constraints that penalise the deviation of the 

phase and log-spectrum of the channel estimates from a linear form are introduced in the NMCFLMS 

algorithm in order to ensure that the estimates conform to the form dictated by the FRF model. The 

modified cost function of the spectrally constrained algorithm that include these additional constraints 

is given by 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

e rb rb ph ph ls ls

2

ˆ                                        such that   1

J m J m m J m m J m m J m

m

  = − + +

=h
 (5.11) 
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where ( ) ( ) ( )e

H
J m m m= e e  is the cost function of the original NMCFLMS algorithm; ( )phJ m  is 

the phase penalty term; ( )lsJ m  is the log-spectrum penalty term; ( )rbJ m  is the 
p
-norm penalty 

term defined by He et al. (2018) for faster convergence and improved noise-robustness of the 

NMCFLMS algorithm; and ( )rb m , ( )ph m , and ( )ls m  are the step sizes for the 
p
-norm, phase, 

and log-spectrum constraints, respectively. The phase ( )ph,iJ m  and log-spectrum ( )ls,iJ m  penalty 

terms for the i th channel are defined as  

 ( ) ( ) ( ) ( )
2 1

2

ph, , 1 , , 1

2

2
L

i i k i k i k

k

J m m m m
−

+ −

=

=  −  +  (5.12) 

and 

 ( ) ( ) ( ) ( )
2 1

2

ls, , 1 , , 1

2

2
L

i i k i k i k

k

J m m m m
−

+ −

=

=  −  +  (5.13) 

where 
,i k  and 

,i k  are the k th element of unwrapped phase vector ( ) 10

,1
ˆunwrap arg ,i ih m=


Ω

, ( ) 10

,2
ˆ

T

i Lh m 


 and log-spectrum vector ( ) ( ) 10

,1
ˆlog ,i im h m=


Ψ , ( ) 10

,2
ˆ

T

i Lh m 


, respectively, 

 arg •  denotes the argument of a complex number, and  unwrap •  denotes the phase unwrapping 

operation. These penalty terms represent the squared summations of the second-order numerical 

differentiation of the unwrapped phase and of the log-spectrum. The update equations for the 

spectrally constrained NMCFLMS algorithm are obtained as (Appendix E2)  

 ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

rb rb,

10 10

bci e, bci ph ph,

ls ls,

ˆ ˆ, 1 ,

i

i i i i

i

m J m

L m L m J m m J m

m J m



  



 
 

+ = −  + −  
 
−  

h h  (5.14) 

where ( )e,iJ m  is given in Equation (5.6);  

( ) ( ) ( ) ( )( ) 
11 10 10

rb, bci 2
ˆ ˆ1 exp arg

p

i i L i iJ m p m m j m
−−

 = + −  P I h h  is the gradient of the 
p
-

norm term, 1j = −  is the imaginary unit, p  (1 2p  ) is the order of the 
p
-norm;  

( ) ( ) ( ) ph, 2

j

i i iJ m m m = T QΩ  is the gradient of the phase-related penalty term; 

( ) ( ) ( ) 1
ls, 2i i iJ m m m = T QΨ  is the gradient of the log-spectrum term; 

( )
( )

( )

( )

( )

10 10

,1 ,2

2 2
10 10

,1 ,2

ˆ ˆ
diag , ,

ˆ ˆ

i i L

i

i i L

m m
m

m m

 
 =
 
  

h h
T

h h

;  denotes element-wise multiplication; and  
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The gradients in Equation (5.14) are taken with respect to the complex conjugates of the channel 

estimates, i.e., ( )( )
*

10ˆ
i mh  (see Appendix E2). The step sizes are given by  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
†

rb ph ls rb, ph, ls, e,  i i i im m m J m J m J m J m     =  − −      (5.15) 

where 
†
 denotes the pseudoinverse. The spectrally constrained variant of the NMCFLMS in Equation 

(5.14) offers the computational advantages of the conventional NMCFLMS algorithm, while ensuring 

the estimated channels conform to the FRF model in Equation (2.5). Its robustness to noise is 

improved by the inclusion of the 
p
-norm constraint. 

5.3.2 Estimation of channel length 

In order to correctly identify the channel IRFs, it is necessary to ensure that the channel length L  is 

accurately estimated. In other words, there is need to estimate the channel length 
optL  of the FIR 

filters that best describe the pipe channels. If L  is underestimated (
optL L ), the BCI algorithm gives 

inaccurate estimates, while in the case of overestimation ( optL L ), the BCI solution is no longer 

unique. The estimation of optL  can be achieved using least sum of squared equation error (LSSE) 

method proposed by Gerstacker and Taylor (2003). This method is described as follows. As shown by 

Abed-Meraim et al. (1997a), the z-transforms ( )1
ˆ ,H z L  and ( )2

ˆ ,H z L  of the channel estimates 

obtained with an overestimated channel length optL L  will be of the form 

( ) ( ) ( )opt
ˆ , ,i iH z L R z H z L= , i.e., a product of the optimal (‘true’) channel transfer ( )opt,iH z L  of 

degree optL  with an unknown scalar polynomial ( )R z  of degree optL L− . As a result, the 

Diophantine equation in the coefficients of the scalar polynomials ( )1H z  and ( )2H z : 

 ( ) ( ) ( ) ( )1 2 2 1
ˆ ˆ, , 0H z L H z H z L H z− =  (5.16) 

will only have a solution for optL L  and no solution for optL L  (as the equation is underdetermined 

for these values). Under ideal conditions, the sum of the squares of the errors (denoted as ( )LSSE L ) 

in the least-squares solution ( ) ( )1 2

T

H z H z 
   of Equation (5.16) will be zero if and only if 
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optL L . For real conditions, it can be expected that ( )LSSE L  decreases significantly at the 

transition point 
opt 1L L= −  →  

optL L= . Based on this, in the LSSE method, 
optL  is given by the 

value of L  that minimises the cost function  

 ( )
( )

( )
LSSE

LSSE

LSSE 1

L
J L

L
=

−
 . (5.17) 

A unit-norm constraint is imposed on the least-squares solution of Equation (5.16) to avoid the 

all-zero trivial solution. The range of possible values for the channel length 
min maxL L L   is 

obtained by rearranging the cross-correlation equation: 

 

min peak

min

max

max peak

max

min

2 1
2

2 1
2

s

s

d c
L F

c

d c
L F

c





  +  
=  +   

   


 +  
=  +  

  

 (5.18) 

where 
sF  is the sampling rate; 

peak  is the time delay (in seconds) between the measured signals; 
minc  

and 
maxc  are the minimum and maximum values of the wave speed obtained by subtracting and 

adding some tolerance to a historical or calculated wave speed value; and •    and •    indicate the 

floor and ceiling functions, respectively. The inclusion of the factor of 2 and addition of 1 in the 

calculation of 
minL  and 

maxL  is due to the fact that the group delay of a linear-phase filter of length L  

is ( )1 2L −  samples. The channel estimates in the LSSE method are obtained with L  set to 
maxL , 

and the cost function ( )LSSEJ L  is evaluated for values in the range 
min maxL L L  . Since the 

channel length must be long enough to accommodate the time delay peak peak sT F=   (in samples) 

between the signals, an alternative approach to determine the channel length is to estimate the channel 

IRFs for progressively increasing values of L  until the difference between the propagation times 

becomes equal to peakT . After the optimal channel length optL  has been obtained, the propagation time 

in the first channel can then be estimated using the approach described in the next subsection.  

5.3.3 Estimation of propagation times of the leak noise in the acoustic leak pipe channels 

In order to estimate the leading delay optD  in the first channel, the channel estimates are first obtained 

for all feasible values of the leading delay max min0 2sD D d F c  =     with the channel length L  

set to optL . The upper limit of the leading delay (
maxD ) corresponds to a situation where the leak is 

exactly at the midpoint of the pipe. For each feasible value of D , a singleton constraint is imposed on 
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the first channel estimate by initialising the channel estimate as ( )1 opt
ˆ ,0Lh  = 

opt1 1

0,0, 0,1,0,0, 0

D L D− − −

 
 
 
 

. 

Note that it is assumed without loss of generality that the first measurement point is closer than the 

second measurement point to the leak. This constraint forces the BCI algorithm to assign the highest 

value in the channel FIR filter estimate to the D th coefficient. If the sign of 
peak  indicates that the 

second measurement point is closer, then the signals 
1x  and 

2x  should be swapped. The value of 
optD  

is then determined from the channel estimates via the two approaches described below.  

The first approach is to determine 
optD  as the value of D  that minimises a cost function 

( )opt,J D L  constructed from the deconvolution errors of the channel estimates: 

 ( )
( ) 
 

( ) 
 

2 2

1 opt 2 opt

opt 2 2

1 2

E , E ,
,

E E

e D L e D L
J D L

x x
 = +  (5.19) 

where  E •  denotes mathematical expectation or averaging, ( )opt
ˆ ˆ,i i ie D L x l h= −   is the 

deconvolution error for the i th channel estimate obtained with the channel length set to 
optL L=  and 

a singleton constraint set at the D th coefficient of the FIR filter of the first channel, and l̂  denotes an 

estimate of the input signal, which can be recovered from the measured signals using either the 

multichannel input/output theory (MINT) (Miyoshi and Kaneda, 1988) or the multiple-error least 

mean squares (ME-LMS) method (Elliott and Nelson, 1985). In both MINT and ME-LMS methods, l̂  

is given by 1 1 2 2
ˆ ˆ ˆl g x g x=  +  , where 

1ĝ  and 
2ĝ  are the multichannel inverse filters of the 

estimated channels 1ĥ  and 2ĥ . For SITO systems, the MINT and ME-LMS methods only differ in 

how the inverse filters are obtained. The cost function ( )opt,J D L  evaluates how well the estimated 

pipe IRFs 1ĥ  and 2ĥ , and the recovered source signal l̂  approximate the actual measured signals 

1 1x l h=   and 
2 2x l h=  . It attains a value of zero if and only if 

1 2 0e e= = , which is only possible 

if the estimated channels are scalar multiples of the true channels. The value 
optD D=  that minimises 

( )opt,J D L  is considered the leading delay in the first physical pipe channel. A similar approach was 

employed by Furuya and Kaneda (1997) for recovering an unknown source signal in a two-channel 

system. 

The second approach determines optD  as the value of D  that minimises a cost function 

( )opt,J D L  constructed from estimates of the pipe attenuation factor: 



Chapter 5 Acoustic leak detection as a system identification problem 

106 

 ( )
( )
( )

( )
( )

1 opt 2 opt

opt

2 opt 1 opt

ˆ ˆ, ,1
, 1
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 (5.20) 

where ( )1 opt
ˆ ,D L  and ( )2 opt

ˆ ,D L  are estimates of the attenuation factor obtained from the 

magnitude of the first and second estimated channel FRFs, respectively, for channel length 
optL  with a 

singleton constraint set at the D th coefficient of the FIR filter of the first channel. The attenuation 

factor is estimated via linear regression of the log-spectrum; specifically, ( )opt
ˆˆ ,i i iD L s d = − , 

where 
is  is the slope of the log-spectrum and ˆ

id  is the leak location estimate obtained using Equation 

(5.23) below. When the two pipe IRFs are accurately estimated (such that they conform to the FRF 

model), the values of ( )1 opt
ˆ ,D L  and ( )2 opt

ˆ ,D L  will be nearly equal, and ( )opt,J D L  will attain 

a small value. Conversely, if the channels are poorly estimated, then ( )opt,J D L  will be large.  

The use of two different cost functions improves the robustness of the BCI technique, as they 

can be used to check consistency, and the optimal leading delay optD  is taken as the average 

(approximated to the nearest integer) of the two estimates if they are close. Consequently, the 

propagation times 
1t  and 

2t  (in seconds) of the leak noise from the leak location to the first and 

second measurement points, respectively, are  

 

1 opt

opt

2 peak

s

s

t D F

D
t

F


 =



= +


 . (5.21) 

Since the group delay of a linear-phase FIR filter is given by the slope of its Fourier phase 

(Oppenheim et al., 1996), an alternative way to estimate the propagation times 
1t  and 

2t  is via linear 

regression of the unwrapped phase of the FT of the estimated channels. The leak location and wave 

speed values can be obtained in a straightforward manner from the propagation times, as described in 

the next section.  

5.4 Acoustic leak localisation procedures using blind channel identification  

The propagation wave speed in the pipe can be computed from the propagation times 
1t  and 

2t  as  

 
1 2 opt peak

ˆ
ˆ2

s

s

d Fd
c

t t D F


= =

+ + 
 . (5.22) 

Substituting this wave speed value and the time delay peak 2 1
ˆ t t = −  in the cross-correlation equation 

(Equation (1.1)) gives the leak location as 
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opt1

1

1 2 opt peak

ˆ
ˆ2 s

Dt
d d d

t t D F
= =

+ + 
 . (5.23) 

Locating the leak using Equation (5.23) does not require a priori knowledge of the wave speed in 

contrast with the conventional cross-correlation method. All necessary parameters are obtained from 

the measured leak signals exclusively. This leak localisation approach using a BCI technique can thus 

be considered minimalistic and self-contained. The procedures for locating a leak using the BCI 

technique are summarised as follows: 

i. Pre-process the signals by passing them through a bandpass filter whose passband lie in the 

frequency region where the leak signal is dominant over the noise. This region can be 

determined using either the coherence-based criterion (Muggleton et al., 2011) or the CPS 

magnitude criterion (Almeida, 2013) mentioned in Section 1.2.3. Determine the time delay 

peak̂  between the leak signals using any time delay estimator.  

ii. Determine 
minL  and 

maxL  using Equation (5.18). The value of 
maxL  will be employed as the 

overestimated channel length. Using the spectrally constrained NMCFLMS algorithm, 

estimate the pipe channel for this overestimated channel length and determine the optimal 

channel length optL  using the LSSE cost function in Equation (5.17) restricting the search to 

values of L  between 
minL  and 

maxL .  

iii. Using the spectrally constrained NMCFLMS algorithm, estimate the pipe channels for the 

optimal channel length 
optL  and all feasible values of the leading delay 

min0 2sD d F c     . Determine the optimal leading delay estimates 
optD  using the 

deconvolution error and attenuation-based cost functions in (5.19) and (5.20). Take the final 

common delay estimates optD  as the average (rounded to an integer) of the two estimates. The 

channel estimates corresponding to optL  and optD  are considered the best channel estimates. If 

the two estimates of optD  given by the cost functions are inconsistent (more than 3 samples 

apart), then considering modifying the parameters of the NMCFLMS algorithm, for example, 

adjusting 
minc  and 

maxc  or changing the frequency range for linear regression. If this does not 

lead to better results, then consider the method to have failed. The threshold of 3 samples is 

suggested based on simulation results.  

iv. Finally, calculate the wave speed and leak location using Equations (5.22) and (5.23).  

It is recommended that the spectral constraints be imposed only in the passband of the applied 

bandpass filter (if any). Also, the wave speed, leak location, and attenuation values obtained from 
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regressions in this frequency interval over multiple long signal segments can be averaged to reduce the 

effects of noise. In the next section, the viability of locating leaks using the proposed procedures is 

investigated using simulated and experimental leak signals. 

5.5 Results and discussion 

In this section, numerical simulations and experimental results are provided to investigate the 

effectiveness of the proposed system identification leak localisation approach and compare its 

performance with that of the conventional cross-correlation method. The code for the spectrally 

constrained NMCFLMS algorithm was implemented using functions provided in the Blind System 

Identification and Equalisation (BSIE) toolbox (Habets et al., 2011).  

5.5.1 Simulation results for the blind channel identification leak localisation method 

The BCI leak localisation technique was employed to locate a leak in a numerically simulated pipe, 

the properties of which are the same as the MDPE pipes in the leakage test rig ( c  = 354 m/s,   = 

52.1 10−  s/m.). With reference to the cross-correlation setup in Figure 1.1, the measurement points 

were arbitrarily set to be at distances of 
1d  = 9 metres and 

2d  = 25 metres from the leak. The 

simulation procedures were previously described in Section 4.5.1. With the sampling rate set at 1 kHz, 

the group delays of the simulated linear-phase FIR filters representing the pipe IRFs 
1h  and 

2h  in 

Equation (5.1) are 26 and 71 samples, respectively. Gaussian noise traces of the same power were 

added to the generated leak signals such that the first signal has an SNR of 6 dB. Prior to applying the 

BCI leak localisation algorithm, a random number of samples were removed from the start of the 

simulated signals. 

Using the BCC, the time delay between the two simulated leak signals was determined to be 

peak̂  = 45 ms. The minimum and maximum values of the wave speed were taken as 
minc  = 250 and 

maxc  = 450 m/s, respectively, thereby yielding the minimum filter length 
minL  = 101 and maximum 

length 
maxL  = 219. Figure 5.2(a) shows the plots of the LSSE cost function calculated for the channel 

estimates obtained for 
maxL , with the value of the candidate channel length restricted to the interval 

min maxL L L  . It can be observed that this cost function achieves its minimum at L  = 143, and 

hence this value is taken as the optimal channel length optL . The deconvolution error and attenuation-

based cost functions calculated for channel estimates corresponding to this channel length and values 

of leading delays between 0 and 
maxD  = 68 are also shown in Figure 5.2(b). Both cost functions are 

minimised at D  = 26, thus giving the optimal leading delay as optD  = 26. The channel estimates 
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obtained for the optimal filter length 
optL  = 143 and leading delay optD  = 26 are compared with the 

simulated pipe IRFs in Figures 5.3(a)–5.3(d). Each IRF has been normalised by its maximum 

coefficient. Examination of the IRFs and their frequency-domain representations shows that they have 

been correctly identified by the spectrally constrained NMCFLMS algorithm.  

 

(a) LSSE cost function for estimating the 

channel length. 

 

(b) Attenuation-based and deconvolution error cost 

functions for estimating the common delay. 

Figure 5.2: Determining optimal channel length and common delay in the simulated channels. 

Simulation parameters: c  = 354 m/s,   = 
52.1 10−  s/m, 

1d  = 9 metres, 
2d  = 25 metres, 

sF  = 1 

kHz. 

Substituting optD  = 26 and the time delay estimate peak̂  = 45 ms in Equations (5.22) and (5.23) 

yields the leak location and wave speed values as 1d̂  = 9.1 metres and ĉ  = 351 m/s. The leak location 

differs from the actual location by 0.1 metres, while the wave speed estimate is within 0.9% of the true 

value. The error in these estimates is related to the limited integer sample resolution of the propagation 

times. Alternatively, by performing linear regression of the unwrapped phase of the estimated FRFs 

(Figure 5.3(d)), the propagating times of the leak noise from the leak location to the measurement 

points are obtained as 
1t  = 25.2 ms and 

2t  = 69.7 ms. Note that the regression was restricted to 

frequencies up to 150 Hz in each FRF, i.e., the region where the unwrapped phase is approximately 

linear. Substituting these propagation times in Equations (5.22) and (5.23) results in leak location and 

wave speed estimates of 1d̂  = 9.03 metres and ĉ  = 358 m/s. The leak location is closer to the true 

value in this case since the estimates of the propagation times obtained via linear regression of the 

phase are not restricted to integer sample resolution. This numerical example demonstrates the validity 

of all aspects of the BCI leak localisation method, including the spectrally constrained NMCFLMS 

algorithm and the proposed cost functions. 

It should be noted that the performance of the method is expected to degrade in the presence of 

any factor that distorts the form of the pipe channel from the FRF model or introduces channel 

estimation errors. Such factors interfere with the ability to accurately estimate the channels using BCI  

(a) (b) 
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techniques. Examples include noise, non-uniformity of the pipe, reflections, and high signal 

attenuation. Like for other acoustic methods, it is expected that the proposed BCI method will become 

less effective at long distances between the leak and the measurement locations due to signal 

attenuation. The effect of background noise on the performance of the BCI leak localisation method 

was investigated numerically. White Gaussian noise was added to the generated leak signals to 

achieve SNR between -3 and 6 dB for the first signal. Figure 5.4 shows the average leak location and 

wave speed estimates obtained over 100 runs for each SNR value. It can be observed that these 

estimates are close to the true values of 9 metres and 354 m/s (indicated with horizontal lines on the 

plot). Even at a SNR of -3 dB, the average wave speed estimate differs from the true value by 14%, 

while the absolute leak localisation error is 1.1 metres. For comparison, the average leak location 

estimates calculated using the BCC and GCC-ML time delay estimates and the true wave speed are 

also shown in Figure 5.4. At high SNR above 2 dB, both the BCI and GCC methods give accurate leak 

location estimates within 10 centimetres of the true leak location even though knowledge of the wave 

speed value is not assumed in the BCI. As the SNR decreases, the accuracy of the BCI leak location 

estimate degrades more substantially than the GCC estimates. In practice, however, the wave speed 

 

(a) Simulated and estimated IRFs of the first 

channel. 

 

(b) Simulated and estimated IRFs of the second 

channel. 

 

(c) FRF magnitude 

 

(d) Unwrapped FRF phase. 

Figure 5.3: Comparison of the simulated pipe channels and the BCI channel estimates. Simulation 

parameters: c  = 354 m/s,   = 
52.1 10−  s/m, 

1d  = 9 metres, 
2d  = 25 metres, 

sF  = 1 kHz. 

(a) (b) 

(c) (d) 
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used in the cross-correlation equation may differ substantially from the true wave speed. As a result, 

the error in the GCC estimates may exceed that of the BCI estimate, even at high SNR (see the 

quantitative analysis in Section 6.1). These simulation results demonstrate the ability of the proposed 

method to perform relatively well in the presence of noise. It is important to note that without applying 

spectral constraints, the NMCFLMS algorithm is very sensitive to the presence of even little noise in 

the signals. The robustness of the spectrally constrained algorithm can be explained by the inclusion of 

the spectral constraints and the robust constraints, thus allowing the channel estimates to conform to 

the expected form even in the presence of noise. The effectiveness of the method is investigated 

further in the next section using experimental data. 

 

Figure 5.4: Average wave speed and leak location estimates obtained using the BCI and GCC for 

simulated leak signals. 

5.5.2 Application to experimental leak signals 

The BCI leak localisation technique was employed to locate leaks in the leakage test rig described in 

Chapter 2. The main information about the datasets containing steady-state leak signals, which are 

analysed in this subsection, has been provided previously in Section 3.4 (see Table 3.4). In order to 

reduce the computational burden of estimating the pipe IRFs, the measured signals were downsampled 

to 4 kHz prior to applying the BCI technique. At the original sampling rate of 40 kHz, setting 
minc  = 

250 m/s and 
maxc  = 450 m/s would require searching between 

minL  = 689 and 
maxL  = 1529. On the 

other hand, with 
sF  = 4 kHz, the minimum and maximum feasible FIR filter lengths become 

minL  = 

69 and 
maxL  = 155. The downsampled signals were also passed through a bandpass filter whose cut-

off frequencies correspond to the EB of the signals (as described in Section 2.3.2). Subsequent 

analyses including definition of spectral constraints and linear regression were restricted to this 

frequency region. A sample result is presented for the hydrophone signals measured at X1 and X2 in 

the Dataset 1 in Table 3.4. The time delay between the filtered X1 and X2 signals was estimated as 

peak̂  = 9.025 ms using the BCC. Figure 5.5(a) shows the LSSE, deconvolution error, and attenuation-

based cost functions obtained for these signals. The deconvolution error and attenuation-based cost 
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functions are calculated for common delay up to 
maxD  = 44. The optimal channel length can be 

determined to be 
optL  = 103 given by the location of the minimum of the LSSE cost function, while 

the optimal leading delay is obtained as optD  = 16 given by the average (rounded to the nearest 

integer) of the locations and of the minima of the deconvolution cost function (
optD  = 15) and 

attenuation-based cost function (
optD  = 16).  

 

(a) LSSE cost function. 

 

(b) Attenuation-based and deconvolution error cost 

functions. 

Figure 5.5: Determining the optimal channel length and common delay in the pipe channels from 

the X1 and X2 hydrophone leak signals in Dataset 1 in Table 3.4. 

Figure 5.6(a) shows the first and second pipe channel IRFs obtained for 
optL  and 

optD . The amplitude 

of each IRF has been normalised by its maximum value. Compared to the simulated pipe IRFs in 

Figures 5.3(a) and 5.3(b), these IRFs have significant side lobes, which are likely due to the presence 

of reflections in the acquired signals. The presence of reflections, however, does not appear to 

drastically reduce the effectiveness of the BCI method. From the value optD  = 16 and peak̂  = 9.025 

ms, the propagation times of the leak noise in the first and second pipe channels are estimated as 
1t  = 

4.00 ms and 
2t  = 13.03 ms, respectively. The low-pass nature and linear phase property of the pipe 

channels at low frequencies are evident from the FRF magnitude and phase shown in Figures 5.6(c) 

and 5.6(d), respectively. Substituting the propagation times 
1t  = 4.00 ms and 

2t  = 13.03 ms in 

Equations (5.22) and (5.23) yields the wave speed and the leak location as ĉ  = 323 m/s and 1d̂  = 1.3 

metres. These estimates differ from the true values by 9% and 0.14 metres, respectively. Again, it 

must be noted that the integer sample resolution of the propagation delay estimate limits the accuracy 

of the estimates. Alternatively, linear regression of the unwrapped phase of the FRF in Figure 5.6 (b) 

gives the propagation times as 
1t  = 3.95 ms and 2t  = 12.76 ms. These correspond to wave speed 

estimate ĉ  = 328 m/s and leak location estimate 1d̂  = 1.3 metres. These estimates are close to the true 

(a) 

(b) 
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values, demonstrating the effectiveness of the BCI leak localisation method for the experimental 

signals. 

  

Figure 5.6: IRFs and FRFs blindly estimated from X1 and X2 hydrophone leak signals in Dataset 1 

in Table 3.4. (a) Estimated IRFs of the pipe channels. (b) Magnitude and unwrapped phase of the 

estimated channel FRFs. 

Table 5.1 presents a cross-section of results obtained from the available datasets. The first 

measurement point is at X1, while the second measurement point is indicated along with the leak 

location and wave speed estimates. Also shown are the mean and RMSE of the estimates obtained for 

the X1-X2 and X1-X3 signal pairs in all the datasets. For comparison, the leak location estimates 

obtained using the BCC and the GCC-ML time delay estimates are also shown in Table 5.1. As 

indicated by the RMSE of the leak location estimates, in general, the BCI method performs better than 

the BCC but worse than the GCC-ML. The maximum absolute leak location error in the BCI leak 

location estimates is 0.17 metres compared to 0.23 and 0.13 metres for the BCC and GCC-ML 

methods, respectively. It should, however, be noted that the true wave speed value has been used in 

calculating the GCC leak location estimates, while such information was not made available to the 

BCI leak localisation algorithm. Remarkably, the maximum discrepancy in the BCI wave speed 

estimate is 12%. This is lower than the 21% difference between the true wave speed and the value 279 

m/s calculated from the wave speed equation if a typical value of pE  = 0.8 GPa is assumed for the 

Young’s modulus of the MDPE pipe (see Section 2.3.2). Using this calculated wave speed value in the 

cross-correlation equation with the GCC-ML time delay estimate yields a maximum absolute leak 

localisation error of 0.52 metres, about thrice larger than the error in the BCI leak location estimate. 

This demonstrates the danger of using the calculated wave speed value when the pipe properties are 

not reliably known or when the wave speed cannot be conveniently measured in-situ. In such cases, 

the BCI method can provide a preferable alternative to the conventional cross-correlation method. 

Hence, the method may be particularly useful for inaccessible buried pipes, the material properties of 

which may be impossible to measure. 

The experimental results presented in this section demonstrate that the proposed BCI method is 

capable of locating leaks under the cross-correlation setup without explicit knowledge of the wave 

speed or pipe material. Due to its inherent ability to estimate wave speed directly from the measured 

(a) 

(b) 
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leak signals, the method can achieve low leak localisation errors, even outperforming the conventional 

cross-correlation method in some cases. However, like for all results reported in this work, it is 

important to consider the limitations of the leakage test rig when generalising the experimental results 

to real pipe systems. In the next section, these along with the limitations of the proposed method and 

the current study are discussed.  

Table 5.1: Cross-section of BCI wave speed estimates and BCI and GCC leak location estimates 

obtained for experimental leak signals in the datasets described in Table 3.4. 

   Wave speed 

estimate ĉ  

(m/s) 

Leak location estimate 1d̂  (m) 

  Method BCI BCI BCC GCC-ML 

Dataset 

First 

measurement 

point 

Second 

measurement 

point 

    

1 

X1 

X2 328 1.31 1.29 1.14 

2 X2 344 1.2 1.32 1.16 

3 X3 355 1.15 1.23 1.23 

4 X3 373 1.12 1.40 1.26 

5 X2 319 1.29 1.30 1.21 

6 X2 328 1.25 1.25 1.17 

7 X2 328 1.23 1.40 1.26 

8 X3 344 1.2 1.08 1.12 

9 X3 367 1.1 1.17 1.17 

10 X3 310 1.34 1.39 1.30 

Mean   340 1.22 1.28 1.20 

RMSE   24.3 0.09 0.15 0.06 

5.6 Limitations of the system identification leak localisation method 

Issues that can be highlighted for the proposed BCI method include high computational complexity 

and ineffectiveness in non-uniform pipes. Since the BCI leak detection procedures involve exhaustive 

search over all feasible values of the channel length, it is more computationally expensive than the 

conventional cross-correlation method. The effectiveness of leak localisation using the BCI approach 

depends on how adequately the physical pipe channels are described by the FRF model in Equation 

(2.5). As a result, factors such as non-uniformity of the pipe, that distort this form of the pipe channel 

can limit the ability to accurately estimate the wave speed and leak location from the blindly identified 

IRFs. Hence, the method may not be effective in pipes consisting of different materials or deteriorated 

sections. Since such pipes constitute a significant proportion of pipes in water distribution networks, 

this may limit the scope of application of the method in real pipe systems. Furthermore, the BCI 

method is not immune to some of the issues limiting the conventional cross-correlation technique, for 

example, signal attenuation and non-robustness of TDE. Pipe channels can only be reliably estimated 
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if the leak signals are not severely attenuated. Hence, like the conventional cross-correlation method, 

the BCI method may fail in plastic pipes when the distance between the leak and the measurement 

points is too large. Since calculating the absolute propagation times and setting the additional 

singleton constraint requires knowledge of the time delay between the measured signals, it follows that 

any factor that affects the accuracy of the time delay estimate will also affect the BCI method.  

Like the multipath identification methods proposed in Chapter 4, certain properties of the 

leakage test rig makes it particularly favourable for the application of the system identification leak 

localisation method. The most important among these are the structural uniformity of the pipes and 

relatively short length of the rig. The former ensures that wave propagation in the rig is adequately 

described by the FRF model, while the latter implies that leak signals are not severely attenuated. Both 

of these factors make it easier to locate leaks in the leakage test rig using the proposed method.  

In addition to these issues, it is also important to note that the study carried out in this chapter 

represents a rather limited and rudimentary introduction of the system identification leak detection 

strategy without an in-depth analysis of its performance. Certain factors that are likely to affect 

performance have not been considered, including pipe properties, surrounding medium, presence of 

reflections, and inter-sensor distance, mostly due to unavailability of suitable data. Despite the limited 

nature of the study, the available simulation and experimental results demonstrate the potential 

viability of the proposed method for locating leaks in water pipes. A more rigorous investigation of the 

method is recommended as well as a more comprehensive validation of the method in a variety of 

practical situations. 

5.7 Summary and conclusion 

An alternative method for locating leaks in water pipes using a system identification approach has 

been introduced in this chapter. In this method, the impulse response functions (IRFs) relating the 

signal at the leak location and the measured acoustic/vibration signals are estimated exclusively from 

the measured signals using a blind channel identification (BCI) technique known as the normalised 

multichannel frequency least mean squares (NMCFLMS) method. A simple analysis of the channel 

estimates yields the propagation times of the leak noise to the measurement points, thereby allowing 

the leak location and wave speed to be determined. To ensure that the estimated channels conform to 

the form given by a model of the frequency response function (FRF) of the pipe, spectral constraints 

based on linearity of the Fourier phase and log-spectrum of the IRFs were introduced in the 

NMCFLMS algorithm. Three different cost functions were defined to identify the channel estimates 

that best describe the physical pipe channels according to the FRF model. Numerical simulations and 

experimental results demonstrated the good performance of the system identification leak localisation 

methodology, albeit in idealised and controlled conditions. The main advantage of the method is that 

in contrast with the conventional cross-correlation approach, a priori knowledge of the wave speed is 



Chapter 5 Acoustic leak detection as a system identification problem 

116 

no longer a prerequisite for leak localisation. Limitations of the method include high computational 

complexity, ineffectiveness in non-uniform pipes, and susceptibility to noise. Tackling these 

limitations can improve the applicability to real pipe systems.  
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CHAPTER 6 

CORRELATION QUALITY ASSESSEMENT 

As mentioned in Section 1.3, there are two aspects to the TDE problem in acoustic leak detection: 

improving the accuracy of the time delay estimate and quantifying the TDE error. Most of the existing 

research has focused mainly on the first aspect (see Gao et al. (2006), Almeida (2013), and references 

therein). However, it can be argued that the second aspect is just as important. Without a quantitative 

assessment of the accuracy of the time delay estimate, it is difficult to make informed inferences about 

the reliability of leak localisation results in a given situation. This chapter will therefore focus on this 

often-neglected aspect of the TDE problem. Alternative methods for improving the accuracy of the 

time delay estimate will be developed in Chapter 7. In this chapter, a quantitative analysis of the effect 

of the TDE error on leak localisation accuracy is first presented. Then metrics that are currently used 

for assessing the quality of TDE results are introduced, after which alternatives are proposed. Finally, 

the effectiveness of the proposed alternative metrics is investigated using experimental data. 

6.1 Quantitative assessment of the impact of time delay estimation error 

on leak localisation 

As discussed in Section 1.2, the accuracy of the time delay estimate is an important factor that 

determines the effectiveness of acoustic leak localisation using the cross-correlation technique. The 

effect of this factor can be assessed quantitatively as follows. Let 1d̂  denote the leak location 

calculated using the time delay estimate peak̂  and some wave speed value ĉ , which differ from the 

true time delay peak  and true wave speed c  by peak peak peak
ˆ   = −  and ˆc c c = − , respectively. 

Based on the cross-correlation equation (Equation (1.1)), the absolute error in leak location 

1 1 1
ˆd d d = −  is given by 

 

1 peak peak peak

peak peak peak1

peak peak

1

2

1
1 1 1

2 2 2

d c c c

cd c c c
d

d c c

  

  

 

 =  +  +  

           
=  − + + = + + −             

.  (6.1) 

The last two expressions in Equation (6.1) are only valid for peak 0  , i.e., when the leak is not 

exactly at the midpoint of the pipe, while the first expression is valid for all cases. Equation (6.1) 

shows that the absolute leak localisation error is affected by the true time delay and wave speed values 

as well as the absolute errors in their estimated values. It can be observed that even when the wave 

speed is exactly known, error in the leak location value due to the error in the time delay can be large. 
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This is illustrated in Figure 6.1, which shows the leak localisation error for different locations of the 

leak due to TDE error only with the inter-sensor distance and true wave speed set to d  = 100 metres 

and c  = 354 m/s, respectively. The error in the leak location estimate becomes higher when the true 

leak location is closer to one end of the pipe. For a fixed leak location and a given wave speed error, 

the leak localisation error increases linearly with the absolute TDE error. Assuming the wave speed 

value is exact, it can be seen from this plot that for 
1d d  = 0.2, a 10% error in the time delay estimate 

will result in an undesirable absolute leak localisation error of 
1d  = 3 metres.  

 

Figure 6.1: Leak localisation error due to TDE error for different relative leak locations in a cross-

section measurement setup with c  = 354 m/s and d  = 100 metres 

The simple illustration above underlines the practical importance of assessing the accuracy of 

the time delay during acoustic leak localisation. It should be noted that while in practice, the wave 

speed and inter-sensor distance are usually assumed to be known, these quantities can have errors as 

well. For example, locations calculated from Global Positioning System (GPS) maps may have errors 

of up to 2 metres (DoD, 2020). This is important to consider when assessing the overall uncertainty in 

the estimated leak location. This chapter only focuses on the time delay estimate. In the next section, 

quality metrics which have been proposed in the literature for assessing the quality of this quantity are 

briefly described. It is important to note that assessment of TDE accuracy is relevant not only in the 

conventional cross-correlation technique, but also in the alternative leak localisation methods proposed 

in the preceding two chapters. 

6.2 Existing time delay quality assessment metrics 

As stated above, there are very few research works dedicated to assessing the quality of the time delay 

estimate. Almeida (2013) proposed the ratio c   of the bandwidth of leak signals (or applied 
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bandpass filter)   to the centre frequency of the bandwidth 
c  as a parameter for characterising the 

shape of the CCF. Based on the effects of   and 
c  discussed in Section 1.2.3 (see the illustration 

in Figure 1.3), the ratio 
c  , which is termed the bandwidth-to-centre-frequency ratio (BCFR) in 

this thesis, quantifies both the distance between the main and adjacent peaks in the CCF as well as the 

broadness of the CCF peak. A large value of the BCFR implies that the main CCF peak is sharp, while 

the adjacent peak is relatively small and is located far from the main peak. Conversely, in a CCF 

characterised by a low BCFR, the main peak may be wide and of comparable height with adjacent 

peaks, thus making it difficult making it difficult to unambiguously identify the time delay. No 

threshold was given by Almeida (2013), but the results in that work seemed to suggest that BCFR 

values greater than 0.3 indicate good quality of the time delay estimate. The BCFR can be calculated 

alternatively as (Almeida, 2013) 

 ( )
1

BCFR 6 1 


 −  (6.2) 

where   is the ratio of the heights of the adjacent and main peaks in the envelope of the CCF. The 

BCFR has certain drawbacks that may render it ineffective for assessing the quality of TDE results. 

Firstly, the formulation of the BCFR considers only the effects of the bandwidth of the signals or 

applied bandpass filter and ignores other factors, such as noise. Hence, a large BCFR does not 

necessarily guarantee a ‘good’ CCF shape, especially if the signals are corrupted by noise. In this 

work, a CCF is said to ‘good’ shape when the main peak associated with the time delay is sharp and 

the correlation values off from the peak are small. Such a ‘good’ CCF shape is desirable for accurate 

TDE using correlation-based methods. Secondly, the BCFR does not really characterise the shape of 

the whole CCF, since it considers only the main peak and the peak immediately adjacent to it. Thirdly, 

as pointed out by Almeida (2013), the presence of resonances in the analysed bandwidth of the signal 

can adversely affect the ability to accurately determine the time delay estimate. Since the BCFR does 

not take this into account, this metric will be ineffective for quantifying the accuracy of the time delay 

estimate in leak signals with resonances. 

To denote the quality of the time delay estimate, Ayala Castillo (2019) proposed five indices: 

bandwidth index 
bk , coherence index 

cok , phase index phk , peak index pkk , and shape index 
shk , 

which are calculated as follows: 

 
( ) ( )  ( ) 

( )  ( )
1 2 1 2

1 2 1 2

2

b co ph phsecond peak

pk sh second peak

1 ;   E ;   1 var 1 ;   

max ;   1

x x x x

x x x x

k R k k

k k R

   

  

= − = = −  −

= = −

 (6.3) 

where ( )
1 2 second peakx xR   denotes the second highest peak in the CCF ( )

1 2x xR  , ( )
( )

1 2

1 2 1 2

x x

x x

R

x x



 
  =  is 

the normalised CCF, ( )ph  is the ratio of the experimental unwrapped cross-spectral phase to its 
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least squares fit,  var •  denotes variance, and  max •  denotes the maximum value. The mean of 

the coherence ( )
1 2

2

x x   in the coherence index and variance of ( )ph 1 −  in the phase index are 

calculated for frequencies in the interval 
1 2     where there is leak noise. Each of these indices 

assesses the impact of different factors on the CCF shape as follows: bandwidth of the leak noise 

(bandwidth index); external noise (coherence index); noise, structural dynamics of the pipe system, 

and wave reflections (phase index, peak index); correlated noise and reflections (shape index). To 

obtain a single parameter that quantifies the quality of the time delay estimate, Ayala Castillo (2019) 

proposed taking the geometric mean of the indices, i.e.,  

 5
b co ph pk shCQI k k k k k=  (6.4) 

with values 0-0.2, 0.2-0.7, and 0.7-1.0 indicating poor, good, and excellent quality of the time delay 

estimate, respectively. This index defined in Equation (6.4) is termed CCF Quality Index (CQI) in this 

work. While the CQI considers many factors affecting the CCF shape unlike the BCFR, it is more 

cumbersome to calculate. For example, the phase index requires linear regression of the unwrapped 

cross-spectral phase. Another issue with the CQI is that most of the indices considered in its 

formulation are correlated, and hence, may not necessarily provide independent assessment of the time 

delay estimate quality, which defeats the purpose of integrating multiple indices. Also, there is no 

guarantee that the phase index is non-negative. In some cases, its value may be negative, resulting in a 

complex CQI value, interpretation of which is unclear. Moreover, the shape index cannot distinguish 

between uncorrelated and correlated signals, since it attains a high value for both the CCF of 

uncorrelated signals and the CCF of leak signals with a ‘good’ shape.  

In the water industry, inferences about the reliability of leak localisation results are usually 

based on the peak-to-mean ratio (PMR) defined as the ratio of the CCF peak height 

( ) 
1 2max max x xR R =  to the mean of the absolute CCF values: 

 
( )

1 2c

max

1
PMR

x xN

R

R 
=


 (6.5) 

where 
cN  is the CCF size (number of lags in the CCF). The PMR describes how much the CCF peak 

‘sticks out’ above the mean CCF level. It can be observed that PMR of a CCF with a ‘good’ shape will 

be large, tending towards a value of 
cN . Conversely, a CCF characterised by a reduced main peak and 

relatively higher background correlation values will have a small PMR (tending towards unity). 

Although this measure has achieved some level of success in practice, its current use is purely based 

on heuristic principles and theoretical justification is currently lacking. An attempt to provide some 

theoretical foundation for this metric will be carried out in this chapter. 

In addition to the drawbacks already highlighted above, one issue common to the existing 

assessment metrics is that they consider only the CCF shape, without taking into account the actual 
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value of the time delay estimate. Any factor that introduces a bias in the time delay estimate without 

changing the shape of the CCF is likely to result in incorrect inference about the TDE quality using 

these metrics. An example of such factors is the presence of resonances. Also, since they are mostly 

proposed based on heuristic considerations, they lack strong theoretical foundation. This results in lack 

of robust methodology for selecting appropriate thresholds for their effective application. For example, 

the PMR threshold is usually set based on historical data1. However, in practical applications, the 

optimal thresholds are likely to vary depending on signal properties and measurement environment. 

From this discussion, it can be observed that the drawbacks of the existing metrics may render 

them practically ineffective for assessing the quality of the time delay estimate in some situations. 

Alternative approaches for assessing TDE quality are developed in the next section. 

6.3 Alternative approaches for assessing accuracy of the time delay 

estimate 

Assessing the accuracy of the time delay estimate is essentially a binary hypothesis problem, the end 

result of which is to infer whether there is good correlation between the measured signals. This 

chapter focuses only on the time delay estimate obtained using a correlation-based time delay 

estimator. The term good correlation or high quality will be used to indicate that the time delay 

estimate obtained from the CCF is accurate (close to the true value). Since the true delay is not known 

a priori, the accuracy of the time delay estimate can only be assessed indirectly by considering the 

properties of the CCF. Under the cross-correlation setup, the measured leak signals ( )1x t  and ( )2x t  

can be represented as in Equation (5.1), which is repeated here for convenience  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1

2 2 2 2 2

x t l t h n t l t n t

x t l t h n t l t n t

=  + = +


=  + = +

 (6.6) 

where ( ) ( )i il t l t h=   is the noise-free component of ( )ix t . The biased CCF ( )
1 2x xR   of the signals 

can be expressed as 

 ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2 1 2x x l l l n n l n nR R R R R    = + + +  (6.7) 

where ( ) ( ) ( )
0

1 T

uvR u t v t dt
T

 = + , and T  is the observation time. The properties of the CCF 

relevant for estimating the time delay are the location peak =  and the value ( )
1 2max peakx xR R =  of 

the highest peak in the CCF. The former gives the time delay estimate, while the latter affects the 

ability to unambiguously determine this time delay estimate. Three different approaches are 

considered in this section for indirectly assessing TDE accuracy based on these two properties. The 

 

1 Private communication with UK water companies 
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first is based on the probability distribution of 
maxR , while the second is based on the processing gain 

(PG) defined in terms of 
maxR  and background cross-correlation values. The third is a statistical 

approach that considers the time delay values estimated from multiple realisations of the CCF. For 

each approach, two extreme cases are considered: when the signals are uncorrelated and when there is 

good correlation between them.  

6.3.1 Information criterion approach 

This section presents an approach for assessing the quality of the time delay estimate by considering 

the probability distribution of cross-correlation values in cases of good and bad correlation. 

6.3.1.1 Distribution of the cross-correlation function peak value 

In the absence of a leak, the CCF in Equation (6.7) reduces to ( ) ( )
1 2 1 2x x n nR R = . If the background 

noise signals are assumed to be uncorrelated and have zero mean, then based on the central limit 

theorem, the cross-correlation values ( )
1 2n nR   are normally distributed with zero mean and variance 

2 2

1 2n n

N

 
, where 

2

u  denotes the variance of u  and N  is the signal length (Hanson and Yang, 2008; Roe 

and White, 1961). In this work, this is written as ( ) ( )
2 2

1 2

1 2
0,

n n

n n N
R

 
 , where the symbol  reads 

as “has the probability distribution of”. The probability distribution of ( ) 
1 2max max n nR R =  can be 

derived from the extreme value theorem (also known as the Fisher-Tippett-Gnedenko theorem), which 

can be stated as follows: the extremum of a very large collection of random observations from the 

same arbitrary distribution converges in distribution to a Type I, Type II, or Type III generalised 

extreme value (GEV) distribution (Haan and Ferreira, 2006). Specifically, let 

 1 2max , , , NY X X X=  be the maximum value of N  independent and identically distributed 

normal random variables 
1 2, , , NX X X  with a common cumulative distribution function (CDF) 

( ) ( )
iXF u u=  , 1,2, ,i N= .Then, ( ) ( )( )1GEV ,Y N s N  , where ( ) ( )( )1GEV ,N s N   

is the Type I GEV or Gumbel distribution with location parameter  

 ( ) ( )1 11
N

N −

 =  −  (6.8) 

and scale parameter  

 ( ) ( ) ( )1 1 11 11 1
N N

s N e− − −

 =  −  − −  (6.9) 

where ( )1− • is the inverse of the CDF (Kotz and Nadarajah, 2000). The expected value and variance 

of Y  are given by (Kotz and Nadarajah, 2000) 
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  ( ) ( )

  ( )
2 2

6

E

var

Y N s N

Y s N

  



= + 


=

 (6.10) 

where   = 0.5772 is the Euler-Mascheroni constant. Therefore, the distribution of 
maxR  for 

uncorrelated signals is the Type I GEV distribution, i.e., ( ) ( )( )
max max

max 1 c cGEV ,
R RF FR N s N  with

( )
max

1 2

R

n n

u
F u

N 

 
 = 
 
 

, where ( ) •  denotes the CDF of the standard normal distribution with 

mean 0 and variance 1. Note that the CDF of a normal random variable X  with mean  EX X =  

and variance  2 varX X =  is given by ( ) X
X

X

u
F u





 −
=  

 
, while the inverse of the CDF is 

given by ( ) ( )1 1

X X XF  − −• = +  •  (Pishro-Nik, 2014). The expected value and variance of 
maxR  

can be evaluated using Equation (6.10). 

In the case of correlated leak signals, based on Equation (6.7), ( ) 
1 2max max x xR R =  is the 

sum of the term ( )
1 2 peakl lR   and contributions from the noise terms ( )

1 2 peakN l nR R = ( )
1 2 peakn lR +

( )
1 2 peakn nR + . The value of ( )

1 2 peakl lR   over multiple realisations of the CCF can be assumed to be 

approximately constant since it is not affected by noise. Note that this assumption is not strictly true, 

since the value of ( )
1 2 peakl lR   depends on the leak noise ( )l t , a random signal. Since 

NR  is the sum 

of three normally distributed zero-mean random variables (CCFs of uncorrelated signals) in this case, 

( )
max max

2

max ,R RR    with mean ( )
max 1 2 peakR l lR =  and variance 

max

2

R  = 

( )
1 2 1 2 1 2

2 2 2 2 2 21
l n n l n nN

     + + .  

Figures 6.2(a) and 6.2(b) show the empirical PDFs of the CCF peak for white noise (an example 

of uncorrelated signals) and simulated leak signals, respectively, as well as the fitted GEV and normal 

distributions. The simulation procedures and parameters were outlined in Section 5.5.1 in Chapter 5. 

Also shown are the PDFs of the theoretical distributions ( ) ( )( )
max max

1 c cGEV ,
R RF FN s N  and 

( )
max max

2,R R   derived above. The empirical and fitted PDFs were estimated using the MATLAB 

function ‘ksdensity’, while the fitted PDFs were obtained using the MATLAB function ‘fitdist’ with 

required distribution (GEV or normal) specified as an input parameter. To quantify the relative 

agreement between the PDFs, the JD between the theoretical PDFs and the empirical and fitted PDFs 

were calculated using Equation (3.7). On Figures 6.2(a) and 6.2(b), the empirical and theoretical PDFs 

are denoted as empP  and 
thP , respectively, while the fitted normal and GEV PDFs are denoted as 
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normalP  and 
1GEVP , respectively. Based on the JD values, it can be observed that the CCF peak is best 

described by different distributions for uncorrelated noise (GEV) and leak signals (normal) as 

predicted by the analysis above. Hence, the assessment of the quality of cross-correlation between 

signals can be viewed as a model selection problem, or more specifically, as the problem of deciding 

whether the observed values of the CCF peak 
maxR  are best described by a Type I GEV distribution or 

a normal distribution. It is, however, important to note that the extent to which these distributions fit 

the CCF peak in the cases of uncorrelated signals and leak signals differs. By visual inspection and 

from the values of the JD in Figure 6.2(a), the GEV fits the distribution of 
maxR  for uncorrelated 

signals far better than the normal distribution, which is a much poorer fit as shown by the relatively 

high value of 
th normalJD( , ) 0.245P P = . On the other hand, while the normal distribution is the better 

fit for the distribution of 
maxR  for leak signals, the GEV appears to be a good fit as well in some 

regions, as shown by the relatively small value of 
1th GEVJD( , ) 0.010P P =  in Figure 6.2(b). This 

observation has important implication on how inference is made about the quality of the time delay 

estimate in the information criterion and processing gain approaches (as will be described in Sections 

6.3.1.3 and 6.3.2). Information criteria are widely employed in model discrimination problems. They 

are briefly described in the next section. 

 

(a.) white Gaussian noise signals. 

 

(b.) simulated leak signals. 

Figure 6.2: Comparison of the GEV and normal distributions for describing the PDF of the CCF 

peak in the case of: (a) uncorrelated noise. (b) correlated signals. 

6.3.1.2 Description of information criteria 

Two information criteria that can be used to infer the distribution of the CCF peak value are the 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The AIC is defined 

as (Akaike, 1974) 

  AIC 2 2logM M Mk L= −  (6.11) 

while the BIC is given by (Schwarz, 1978; Wit et al., 2012) 

(a) (b) 
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    RBIC log 2logM M Mk N L= −  (6.12) 

where 
ML  is the maximised value of the likelihood function of a model (distribution) M , i.e., 

 max
ˆˆPr ,ML R M= , where ̂  are the parameter values that maximise the likelihood function, maxR̂  

is the observed CCF peak data, 
RN  is the sample size (number of CCF peak values), and 

Mk  is the 

number of parameters estimated by the model. The likelihood  max
ˆˆPr ,R M  denotes the probability 

of observing the CCF peak value data maxR̂  assuming the underlying distribution is given by M . Note 

that if the sample size is small, some correction is often necessary to address potential overfitting by 

the AIC. The AIC with a correction for small sample sizes (denoted as AICc) is defined as (Burnham 

and Anderson, 2002) 

 

2

R

2 2
AICc AIC

1

M M

M

k k

N k

+
= +

− −
 . (6.13) 

The AIC and BIC (and their variants) compare the likelihoods of the candidate models, 

balancing goodness of fit with simplicity. They reward goodness of fit (as assessed by the likelihood 

function) and penalise complexity of the model (i.e., the number of parameters in the distribution). 

Given a set of candidate models for the observed data, the preferred model is generally the one with 

the minimum AIC or BIC value. One critical difference between the AIC and BIC is the asymptotic 

property for well-specified and misspecified models (Ding et al., 2018). In contrast with the AIC, 

Bayesian analyses assume that one of the candidate models is the true model. To be specific, if the 

‘true model’ that generated the observed data is in the set of candidates, then BIC will select the ‘true 

model’ with probability 1, as 
RN → , whereas the probability can be less than 1 when the AIC is 

used (Burnham and Anderson, 2002; Vrieze, 2012). In general, if the goal is prediction, AIC is 

preferred, while the BIC is preferred if the goal is selection, inference, or interpretation (Aho et al., 

2014).  

Note that AIC and BIC do not provide information about the absolute quality of a model, only 

its quality relative to other models. Candidate models can be compared using the relative likelihood 

(RL) defined for each model M  as  

 ( )min

1
RL exp AIC AIC

2
M M

 
= − 

 
 (6.14) 

where minAIC  is the minimum AIC or AICc value obtained for candidate models. The AIC and its 

variants estimate the relative amount of information lost by a given model (Burnham and Anderson, 

2002), so RLM
 can be interpreted as being proportional to the probability that the model M  

minimises the (estimated) information loss. The less information a model loses, the higher the quality 

of the model. Analogously, candidate models can be compared using the Bayes factor (BF) defined as 
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the ratio of the likelihoods of two statistical models integrated over the prior probabilities of their 

parameters (Gill, 2002). For a large sample size, the BF between two models 
1M  and 

2M  can be 

approximated from their BICs as (Wagenmakers et al., 2010) 

 ( )
1 2 1 2,

1
BF exp BIC BIC

2
M M M M

 
= − − 

 
 . (6.15) 

Inference is generally made in favour of the model with the highest RL or BF. The main reason for 

comparing the models in terms of the RL and BF instead of comparing the JD, AIC, or BIC values 

directly is to allow an interpretation of the inference based on an appropriate scale. Two scales 

proposed by Kass and Raftery (1995) and Jeffreys (1998) for the interpretation of the BF are shown in 

Table 6.1. In both scales, inference is made in favour of 
1M  only if 

1 2,BFM M
 is greater than 

10 3.2 .  

Table 6.1: Scales for the interpretation of the BF. 

 
1 210 ,log BFM M

 
1 2,BFM M

 Strength of evidence in support of 
1M  

  Kass and Raftery (1995) Jeffreys (1998) 

0  1  Negative (supports 
2M ) 

0 to 1 2  1 to 3.2 Barely worth mentioning 

1 2  to 1 3.2 to 10 Substantial Substantial 

1 to 3 2  10 to 31.6 
Strong 

Strong 

3 2  to 2 31.6 to 100 Very strong 

2  100 Decisive 

6.3.1.3 Steps in the information criterion approach 

The process of assessing the quality of the time delay estimate using the RL or BF can be summarised 

as follows: 

1. Divide the measured signals into sufficiently long non-overlapping segments. Overlapping 

segments may result in correlated and similar CCF peak values, distribution of which may not 

conform to either GEV or normal. In order to obtain a good CCF estimate, the length of each 

segment should be at least 10 times the maximum lag of interest in the CCF (Bendat and Piersol, 

2010). For an accurate approximation of the AICc or BIC, it is important to ensure that the 

number of segments 
RN  is high (at least 30, see Lorah and Womack (2019)).  

2. Compute the CCF between corresponding segments of the two signals and determine the CCF 

peak value in each CCF realisation. Alternatively, the CCFs can be computed from multiple 

measurements of the same leak under the same conditions. 
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3. Calculate the AICc and the BIC for the CCF peak values, assuming a Type I GEV distribution 

(
1M ) and a normal distribution (

2M ). Using the AICc and BIC, calculate the RLs (
1

RLM
, 

2
RLM

) using Equation (6.14) and the BF (
1 2,BFM M

) using Equation (6.15).  

4. If 
2

RL 1M   or 
1 2,BF 3.2M M   (i.e., at least substantial evidence to support 

1M ), decide in 

favour of 
1M ; otherwise, decide in favour of 

2M . In the first case, it is inferred that the time 

delay estimated from the CCF of the signals is incorrect, while it is considered accurate in the 

second case. Note that the inference has been formulated as accepting or rejecting the GEV 

distribution. This is because as mentioned above, difficulty may arise in distinguishing between 

normal and GEV distributions for CCF peak value of correlated signals. On the other hand, the 

distribution of CCF peak value for uncorrelated signals is more strongly described by the GEV. 

Hence, presence of substantial evidence in support of 
1M  is expected when the signals are 

uncorrelated. 

Two practical difficulties with the application of this approach are high computational 

complexity associated with fitting distribution functions to the observed data and the need for multiple 

realisations of the CCF. It may, therefore, be difficult to employ in situations where practical 

constraints preclude capability for multiple or long measurements. The effectiveness of assessing the 

quality of the time delay estimate using information criteria will be investigated in Section 6.4.  

6.3.2 Processing gain approach 

A parameter generally used for assessing the performance of a signal processor is the PG, which is 

defined as the ratio of the SNR of its output 
outSNR  to the SNR of its input 

inSNR  (Casasent et al., 

1982). Signal processors with high PG are more robust to noise and other factors that may negatively 

impact performance. The input SNR 
inSNR  is the ratio of the signal power to the noise power, while 

the output SNR 
outSNR  of a correlation-based time delay estimator is the SNR of the CCF. For given 

signals, the input SNR is the same for all time delay estimators. Therefore, to compare the 

performance of different time delay estimators based on their PGs, it suffices to compare their output 

SNRs. The SNR of the CCF can be defined as the ratio of the ‘useful’ component to the ‘noise’ 

component in the CCF. Here, ‘useful’ components denote the parts of the CCF that contain 

information about the time delay. On the other hand, ‘noise components’ refer to the components that 

interfere with the ability to unambiguously determine the time delay in the CCF. Only the first term 

( )
1 2l lR   in Equation (6.7), or specifically, the location of its peak value, contains information about 

the time delay. In contrast, the other three terms related to the presence of noise in the measured 

signals may give rise to spurious peaks or reduce the CCF peak. In addition, if the side lobes of 
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( )
1 2l lR   are high, then it may become difficult to determine the time delay accurately. Hence, the 

‘useful’ components are the CCF peak height 
maxR  and its location 

peak̂ , while the ‘noise 

components’ include the side lobes of the CCF. Based on this, the SNR of the CCF can be defined as 

ratio of the CCF peak 
maxR  to a statistical property of a ‘noise component’ in the CCF. Possible 

choices for the property of the ‘noise component’ are the mean or variance of correlation values away 

from the peak, the highest side lobe or secondary peak, etc. Among these, the variance of correlation 

values at lags far from the CCF peak is selected because of its analytical tractability and ease of 

analysis. The output SNR of the time delay estimator can be expressed as  

 
( )
( ) 

1 2

1 2

2

peak

outSNR
var

x x

x x far

R

R




=  (6.16) 

where ( ) 
1 2

var x x farR   denotes the variance of correlation values at lags 
far  at least 

c 4N  samples 

away from 
peak  (the CCF ( )

1 2x xR   is computed in the lag interval ( ) ( )c c1 2 1 2N N− −   − ).  

In this work, the output SNR defined by Equation (6.16) will be referred to as the peak-to-side lobe 

ratio (PSR). It can be observed that the PSR in its definition is similar to the detection SNR defined for 

the ACF and the power cepstrum in Section 4.4.3. In fact, the PSR can be interpreted in the same way 

as the detection SNR, i.e., as an indication of noise tolerance, with higher values indicating better 

noise tolerance and higher ability to suppress side lobes resulting from noise and fluctuations of the 

leak noise in the CCF. It can also be interpreted as a quantitative measure of CCF peak detectability 

with a higher value indicating a CCF with a prominent peak and low values off from the peak, which 

is desirable for accurate TDE. In this sense, it characterises the CCF shape as the BCFR and PMR. 

The statistical properties of the PSR for uncorrelated and correlated signals will now be described. 

6.3.2.1 Peak-to-side lobe ratio 

Although the variance ( ) 
1 2

var x x farR   is a random variable, it can be assumed to be nearly constant, 

since the CCF of bandlimited signals vanish at large lags (Jenkins and Watts, 1968), and the quantity 

( )

( ) 
( )1 2

1 2

0,1
var

n n

n n

R

R




, i.e., a standard normal random variable. Thus, like the CCF peak value, 

in the case of uncorrelated signals, the square root of the PSR follows a Type I GEV distribution; 

specifically,  

 ( ) ( )( )1PSR GEV ,c cN s N 
 (6.17) 

where ( )cN  and ( )cs N  are evaluated using Equation (6.10). Based on the properties of the CCF 

described in Section 6.3.1, the expected value of the PSR for uncorrelated signals is given by 
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 ( ) ( ) ( )
2

1 1 11 1PSR 1 1 1
c cN N

e − − − = −  − +  − 
 

 . (6.18) 

Since the CDF is an increasing function, larger CCF size corresponds to a higher PSR value, but for a 

fixed CCF size, the PSR will be constant and independent of the powers of the uncorrelated signals.  

In the case of leak signals, the square root of the PSR is normally distributed, and assuming a 

flat leak noise spectrum in the analysed frequency interval, the PSR can be expressed as (Appendix F) 

 

1

1 2 1 2

2 1 1 1 1
PSR 1

T

d    

−

 
= + + + 

 
 (6.19) 

where 
( )

( )
i i

i i

l l

i

n n

R

R





, 1,2i = , are assumed to be nearly constant (i.e., the ACFs of the signal ( )il t  

and the noise ( )in t  are very similar). The quantities 
1  and 

2  are proportional to the SNRs of the 

signals. The PSR of leak signals depends on the observation time, SNRs of the measured signals, pipe 

attenuation factor, and the inter-sensor distance. Its value increases as the SNR of leak signals 

increases as indicated by Equation (6.19). These observations are illustrated in Figure 6.3, which 

shows the PSR values obtained for simulated leak signals with SNR between -10 and 6 dB. The SNR 

values on the x-axis denote the SNR of the leak signal at the first measurement point. For each SNR, 

the ‘noise PSR’ indicate the PSR values calculated from the CCF of the white noise signals added to 

the leak signals to achieve the given SNR. The simulation procedures and parameters were outlined in 

Section 5.5.1 in Chapter 5. Equation (6.19) also indicates that indicates that TDE is less accurate for 

signals measured in pipes with large attenuation factor and at longer distances from the leak in 

agreement with theoretical and experimental results (see the analysis in Sections 7.1.1 and 7.4.1 in 

Chapter 7).  

 

Figure 6.3: Comparison of the PSR for uncorrelated noise and correlated leak signals. The PSR is 

calculated for 
cN  = 1001, 2001, and 3001. The values on the x-axis are the SNR of the first leak 

signal. The noise PSR is calculated for the noise signals added to the leak signals to obtain the given 

SNR. 
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Inference about the quality of the time delay estimate is made by comparing the PSR value to a 

threshold 
PSR  that indicates the demarcation between good and bad correlation. The threshold can be 

calculated based on the distribution of the PSR for uncorrelated signals. The value of 
PSR  can be set 

using the approach employed for the NSM in Section 3.2.1.2 as  

 ( )
2

1

PSR PSR
1F − = −   (6.20) 

where   is the AFPR, and ( )1

PSR
F − •  is the inverse of the CDF of the type I GEV distribution 

( ) ( )( )1 c cGEV ,N s N  . In other words, 
PSR  is the value such that  PSRPr PSR =  . If the 

PSR exceeds the threshold 
PSR , then it is inferred that that the time delay estimate provided by the 

CCF is accurate. Otherwise, the time delay estimate is considered inaccurate. 

An advantage of the processing gain approach over the information criterion approach (and the 

statistical approach described in the next subsection) is that the PSR can be calculated from a single 

CCF realisation, making it practically more convenient. Also, use of a threshold set based on the 

statistical distributions of the PSR for uncorrelated signals is likely to reduce the chances of incorrectly 

inferring good correlation when there is none (i.e., incidents of false alarms). It is, however, important 

to mention that since this threshold does not take the distributions for correlated signals into account, it 

may not necessarily result in ability of the metric to correctly infer high quality of the time delay estimate 

in cases of good correlation (i.e., high ‘detection power’). Nonetheless, the threshold given by Equation 

(6.20) is likely to be more robust than the one set arbitrarily. The performance of the PSR for correlation 

quality assessment will be investigated in Section 6.4. 

6.3.2.2 Peak-to-mean ratio 

Based on its conceptual similarity to the PSR, the PMR can also be considered a measure of the output 

SNR of correlation-based time delay estimators. It can be shown that the PMR in the case of 

uncorrelated signals is distributed according to a Type I GEV distribution as follows. Since the cross-

correlation values of uncorrelated signals are normally distributed, their absolute values ( )
1 2x xR   

follow a folded normal distribution with mean ( ) 
2 2

1 2

1 2

2
2 var

x x

x x N
R

 

 
 =  and variance 

( ) ( )  ( ) 2 22
1 2

1 2

1
21 var

x x

x x N
R 

 




− 
−  =  (Cooray and Ananda, 2008). Therefore, based on the central limit 

theorem (provided the CCF size 
cN  is large), the mean of the absolute cross-correlation values will be 

normally distributed with mean 
2 2

1 2
2 x x

N

 

  and variance 
( ) 2 22

1 2

c

12

abs

x x

N N


 


− 


= . Approximating the mean of 

the absolute cross-correlation values by the expected value 
2 2

1 2
2

abs

x x

N

 


 =  (this is justified by the 
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small value of the variance), the quantity ( )
( )

( ) 
1 2

1 2
E

n n

n n

R

R


 


= ( )0, 2 , i.e., a normal random 

variable with zero mean and variance 
2


. Therefore, for uncorrelated signals,  

 ( ) ( )( )1 c cPMR GEV ,N s N   (6.21) 

where ( )cN  and ( )cs N  are evaluated using Equation (6.10) with ( )
2

u
F u



 
=  

 
 

 In this 

case, the PMR can be expressed analytically as 

 

( ) ( ) ( )

( ) ( ) ( )

2 2
c c

1 2

c c

1 1 11 1

2

1 1 11 1
2

PMR 1 1 1

1 1 1

n n

N
N N

N N

F F e

e


   



 

 

− − −

− − −

 = −  − +  −  
 

 = −  − +  −  
 

 . (6.22) 

This equation shows that the PMR and PSR are closely related for uncorrelated signals—the PSR is a 

squared value of the PMR scaled by a factor of 2  . Like the PSR, the PMR is dependent on the CCF 

size and independent of the powers of the uncorrelated signals.  

In the case of correlated leak signals, the PMR cannot be expressed analytically since there is no 

closed form expression for the absolute correlation value ( )
1 2x xR   of leak signals. Inability to 

express the PMR in an analytical form impairs further theoretical analysis and represents a 

disadvantage of the PMR (compared to the PSR). However, it can be easily observed that like the 

PSR, the PMR of leak signals will be normally distributed and will increase as the SNR of the signals 

increases. Following the same procedures used for the PSR, the PMR threshold 
PMR  for assessing the 

quality of the time delay estimate can be set as the value such that the AFPR  PMRPr PMR =  , 

i.e., 

 ( )1

PMR PMR 1F −= −  (6.23) 

where ( )1

PMRF −
•  is the inverse of the CDF of the type I GEV distribution ( ) ( )( )1 c cGEV ,N s N  .  

6.3.3 Statistical approach 

One issue with the information criterion and processing gain approaches described above is that they 

do not explicitly take the location of the CCF peak (i.e., the time delay estimate) into account while 

inferring TDE accuracy. Since the CCF peak may not occur at the correct time delay due to the effects 

of noise, resonances, and reflections, possible error in the value of the time delay estimate has to be 

considered when assessing its quality. To achieve this, a quality assessment criterion, referred to as the 

inconsistency score (ICS) 
sC  in this work, is proposed: 



Chapter 6 Correlation quality assessment 

132 

 ( )
R 2

peak, peak

1R

1
ˆ

N

s i

k

C
N

 
=

= −  (6.24) 

where 
RN  is the number of CCF realisations (obtained from signal segments or multiple 

measurements), 
peak,

ˆ
i  is the time delay estimate from the i th CCF realisation, and 

peak  is the 

assumed true delay taken as the statistical mode of the time delay estimates. Here, the term assumed is 

used to emphasise that the true delay is not known a priori. The ICS is similar to the standard deviation 

but defined in terms of the mode instead of the mean. A justification for the choice of the statistical 

mode over the statistical mean in the definition of the ICS is that the effects of outliers are less 

pronounced on the mode. When there is good correlation between the signals, the time delay estimates 

obtained from multiple CCF realisations will be nearly equal and close to the assumed true delay, thus 

resulting in a small ICS value. Conversely, a high ICS indicates large variability in the estimates. Note 

that it in employing the ICS, it is implicitly assumed that the time delay remains constant throughout 

the measurement period. In this work, a time delay estimate is said to be inconsistent if it differs from 

the assumed true time delay by more than some given value. The ICS assesses the overall 

inconsistency of time delay estimates obtained from multiple CCF realisations. Figure 6.4 shows the 

plots of the average ICS values and the proportion of inconsistent estimates (PiCE) obtained over 100 

runs for simulated leak signals and white noise signals used in calculating the PSR in Figure 6.3 in the 

preceding section and for the same SNR values between -10 and 6 dB. The white noise signals are 

used as an example to illustrate the properties of the ICS for uncorrelated signals. A time delay 

estimate is considered inconsistent in the simulation if it differs from the assumed true time delay by 

more than 2 samples. For each SNR, the ICS and PiCE values calculated from the CCF of the white 

noise signals added to the leak signals are also given. An important observation that can be made from 

the plots is that like the PSR, the ICS and PiCE are practically constant and independent of the noise 

power in the case of uncorrelated signals. On the other hand, their values decrease as the SNR of the 

leak signals increases, tending towards zero.  

 

Figure 6.4: Comparison of the ICS and PiCE for uncorrelated noise and leak signals. 

The workflow for the statistical approach is the same as that of the information criterion 

approach in Section 6.3.1 with the exception that the ICS is used in place of the RL and BF. In this 
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case, good quality of the time delay estimate is inferred if the value of 
sC  is less than some selected 

threshold 
ICS . Based on simulation results, an inconsistency threshold of 1 is suggested. This value 

may, however, be adjusted if necessary, depending on the properties of the signals being considered. 

Additionally, to avoid situations with a lot of outliers, it is required that the proportion of inconsistent 

estimates be small (for example, less than 20%).  

A benefit of the statistical approach over the two approaches described above is that it explicitly 

takes the value of the time delay estimate into account when assessing its quality. However, like the 

information criterion approach, it requires the computation of multiple CCF realisations either from 

many signal segments or many measurements of the same leak. This makes it computationally 

expensive as well as limits its applicability in situations where long measurements are not possible. In 

the next section, the viability of the proposed quality assessment approaches will be evaluated, and 

their performance compared with the existing quality metrics. 

6.4 Evaluation of quality assessment metrics using experimental leak 

signals 

In this section, the performances of the three approaches described in the preceding section are 

investigated using experimental signals. 

6.4.1 Comparative study of quality assessment metrics in leak signals 

The effectiveness of the proposed quality assessment metrics (RL, BF, PSR, ICS) is evaluated in terms 

of the true positive rate (TPR) and false positive rate (FPR), i.e., the proportion of correct positive 

inferences and the proportion of incorrect positive inferences, respectively. Good quality assessment 

metrics are characterised by a high TPR and a low FPR. Their performance are assessed for 

background noise and steady-state leak signals from the datasets previously described in Section 3.4. 

The CCFs of the X1-X2, X1-X3, and X1-X4 pairs of signals in the datasets were computed using the 

BCC with a maximum time lag of 8192 samples (205 ms). Each CCF of leak signals was classified 

either as ‘high-quality’ if it is characterised by a ‘good’ shape and gives an accurate time delay 

estimate, or as ‘low-quality’ otherwise. While this classification is somewhat subjective, it suffices for 

the purpose of this study. In this section, a time delay estimate is considered accurate if it is within 

one sample of the true delay and considered inconsistent if it differs from the assumed true delay by 

more than 2 samples (or 0.05 ms). A CCF that does not give an accurate time delay estimate is 

considered ‘low-quality’ regardless of its shape. There are a total of 31 high-quality CCFs, 14 low-

quality CCFs, and 20 noise-only cases. An example of a high-quality CCF of signals measured at X1 

and X2 is shown in Figure 6.5(a). This CCF is characterised by a prominent peak that occurs close to 

the correct time delay of 9 ms and low correlation values away from the peak. The slight error in the 



Chapter 6 Correlation quality assessment 

134 

time delay estimate is due to the limited integer resolution of the BCC method. Smaller peaks due to 

reflections in the signals can be observed close to the main CCF peak. However, these peaks do not 

interfere with the ability to unambiguously determine the time delay in this case. Figure 6.5(b) depicts 

a low-quality CCF calculated from signals acquired at X1 and X3 signals. This CCF is characterised 

by relatively low CCF peak that does not occur close to the correct time delay value (26 ms). It is 

impossible to obtain an accurate estimate of the time delay without first filtering the signals in this 

case. 

  

Figure 6.5: Examples CCFs obtained from accelerometer signals measured on the leakage rig in the 

presence of a leak at L1. (a) High-quality CCF of the X1 and X2 signals. (b) Low-quality CCF of 

the X1 and X3 signals. 

Table 6.2 shows the values of the existing and proposed quality metrics obtained for the two 

representative examples shown in Figure 6.5 as well as the values for noise signals measured at X1 

and X2. The RL, BF, and ICS were calculated from the CCFs of 1-second signal segments. Orange 

cells are used to highlight positive inference (i.e., values that exceed, or in the case of the ICS is less 

than, the corresponding threshold). The PSR and PMR thresholds were calculated with an AFPR of 

0.001 using the approach outlined in Section 3.2.1.2. All metrics correctly infer high quality for the 

first CCF and low quality for the CCF of the noise signals. Only the BCFR and CQI fail to correctly 

infer low quality for the second CCF. Their failure is associated with the presence of resonances and 

reflections in the signals acquired on the leakage test rig, which results in a high value for the BCFR 

and the bandwidth index (more details about resonances in the signals will be given in Section 7.5). 

The values of the BF indicate substantial and strong evidence to infer that the CCF peak values are 

distributed according to a type I GEV in the low-quality and noise-only cases, respectively. On the 

other hand, the evidence supports rejecting this distribution in the high-quality case, thus allowing one 

to infer good correlation in this case. Similarly, the RL supports a normal distribution in the high-

quality case and GEV distribution in the other two cases. It can be observed that all signal segments in 

the high-quality case yield consistent time delay estimates (as evidenced by the zero PiCE value). The 

high PiCE values in the low-quality and noise-only cases suggests high variability in the time delay 

(a) (b) 
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estimates obtained from the signal segments in these two cases. The assumed true delay is very close 

to the true delay in the high-quality case, in contrast with the low-quality cases. These observations 

demonstrate the soundness of the information criterion and statistical approaches. Based on the 

relative change in the values of the metrics, the ICS and PSR appear to be the most sensitive to change 

in correlation quality. These results indicate the ability of the proposed quality metrics to differentiate 

between high- and low-quality time delay estimates better than the BCFR and CQI. 

Table 6.2: TDE quality assessment results for experimental leak signals. 

Metric Threshold High-quality CCF Low-quality CCF Noise-only CCF 

True delay 
peak  (ms)  9 26 - 

Assumed true delay  

peak  (ms) 
 9.025 0 -103.7 

PiCE 0.2 0.0 0.91 0.98 

sC   0.38 225.0 5854 

1 2,BFM M
 3.2 0.1 9.5 22.7 

[
1

RLM ,
2

RLM ]  [0.17,1] [1,0.09] [1,0.001] 

PMR 7.3 49.9 5.8 5.01 

BCFR 0.3 0.54 0.33 0.053 

CQI 0.2 0.45 0.39 0.17 

PSR 33.6 13626 23.1 16.07 

Summary of the results obtained for the CCFs from the available datasets is presented in Table 

6.3 The results are presented for three categories: high-quality leak CCFs, low-quality leak CCFs, and 

CCFs of noise-only signals. Along with the average values for each metric, the proportion of cases 

correctly identified by the metric is shown in brackets. In addition to the TPR and FPR, the proportion 

of correct negative inferences, referred to as the true negative rate (TNR), and the proportion of 

incorrect negative inferences, referred to as the false negative rate (FNR) are also reported for each 

metric in Figure 6.6. Brighter colours are used to indicate values closer to unity, while darker shades 

of blue indicate values closer to zero. Note that the TNR and FPR have been calculated for low-quality 

leak CCFs without including the noise-only CCFs. It can be observed that on average all metrics are 

capable of distinguishing between accurate and inaccurate time delay estimates. However, they vary in 

their effectiveness, as shown by the TPR and FPR in Figure 6.6. From the proportion of correctly 

identified cases, It can be observed that the metrics achieve good performance in detecting high-

quality CCFs but are less efficient in differentiating low-quality CCFs. Among the metrics, the ICS is 

the most effective as it has the highest TPR and lowest FPR. The PSR and BF also achieve very good 

performance, vastly outperforming the other metrics (except the ICS). The least effective in terms of 

detecting low-quality CCFs are the BCFR and the CQI, which also exhibits the worst FPR. These two 

metrics are vastly inferior to the alternative metrics, especially the ICS, PSR, and BF. 

Examining the two CCFs shown in Figure 6.5 reveals a possible reason for the bad performance 

of the CQI and the BCFR. Reflections present in the signals measured on the test rig manifest as 
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additional peaks close to the main peak in the CCF. As can be observed from Equations (6.2) and 

(6.3), reflection peaks immediately adjacent to the main CCF peak results in a low values for the 

BCFR and the bandwidth index even in CCFs with a ‘good’ shape, possibly leading to an incorrect 

inference. These additional peaks will tend to increase the mean of the absolute values of the 

correlation values, whereas they have no effect on the variance of the far points. As a result, the PSR 

will outperform the PMR for such signals, especially when the CCF size is small. The high FPR of the 

BCFR and CQI may be related to the choice of their thresholds. Since the PSR and PMR thresholds 

are set based on their probability distribution for uncorrelated signals, these metrics exhibit lower FPR 

than the BCFR and CQI whose thresholds are set heuristically without rigorous analysis. Increasing 

the BCFR and CQI thresholds to 0.4 lowers their FPR to almost zero; however, this also decreases 

their TPR. Note that to avoid getting complex CQI values, the absolute value of the phase index is 

taken prior to calculating the geometric mean in the CQI. This may have contributed to the higher FPR 

of this metric.  

Table 6.3: Summary of TDE quality assessment results for experimental leak signals measured on 

the leakage test rig at X1, X2, and X3. The leak signals are from the datasets described in Table 3.4. 

Metric Threshold High quality Low quality Noise-only 

PiCE 0.2 0.03 0.84 0.97 

sC  1.0 0.55 (1.0) 332.8 (0.93) 3626 (1.0) 

1 2,BFM M
 3.2 0.76 (0.97) 5.8 (0.86) 31.4 (1.0) 

[
1

RLM ,
2

RLM ] - [0.31, 1] (0.94) [1, 0.62] (0.79) [1, 0.042] (1.0) 

PMR 7.3 33.4 (0.97) 6.8 (0.79) 4.9 (1.0) 

BCFR 0.3 0.69 (0.90) 0.24 (0.21) 0.036 (1.0) 

CQI 0.2 0.76 (0.94) 0.31 (0.36) 0.15 (1.0) 

PSR 33.6 9835 (1.0) 28.2 (0.86) 14.7 (1.0) 

 
Figure 6.6: Summary of correlation quality assessment metrics for experimental signals acquired on 

the leakage test rig at X1, X2, and X3. The leak signals are from the datasets described in Table 3.4. 

The BF achieves a better performance than the RL as can be inferred from its higher TPR and 

lower FPR. As stated in Section 6.3.1.2, the BF is known to be better for inference, which is the goal 
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in the TDE quality assessment problem. The lower TPR of the RL indicates that the AICc overfits the 

distribution of the CCF peak, deciding more frequently than the BIC in favour of the more complex 

GEV distribution in correlated leak signals. The slightly inferior performance of the BF compared to 

the ICS and PSR may be related to the small sample size. For each signal, 30 CCF realisations were 

used in calculating the BIC. Improvement in the performance of the BF and RL is possible with a 

larger sample size but at the cost of higher computational burden and longer computation time. 

However, the sample size is restricted by the signal length, since CCFs calculated from short signal 

segments may be inaccurate. This represents one disadvantage of the information criterion metrics: 

they are effective mostly when applied to long signals. 

Based on these results, it can be concluded that the ICS, PSR, and BF are the best-performing 

metrics for assessing the quality of the time delay estimate. Their TNR is, however, less than unity, 

implying that they sometimes fail to recognise bad correlation between signals. Also, non-zero FPR 

shows that they sometimes infer good correlation when there is none. It is suggested to combine the 

metrics so that good correlation is inferred only when the ICS and at least one of PSR or BF give 

positive inferences. Unlike the use of a single approach, this combined approach considers both CCF 

shape and the time delay values in making an inference, possibly improving performance. It is 

interesting to observe that while very good results were reported for the CQI by Ayala Castillo (2019) 

and BCFR by Almeida (2013), their performances are less satisfactory for the signals being considered 

in this section. This seems to suggest that performance of quality metrics may be system specific. As 

already stated above, the poor performance of the BCFR and CQI in this case may be related to the 

choice of threshold, so refinement of the threshold selection methodology may improve their 

performance. The next subsection explores a relevant practical application of the proposed quality 

assessment metrics for selecting good TDE parameters. 

6.4.2 Selection of time delay estimation parameters using quality assessment metrics 

Owing to their capability for assessing the accuracy of the time delay estimate (as demonstrated 

above), the quality metrics can be used to assess the effectiveness of available choices for TDE 

parameters, including bandpass filters and GCC weighting functions. To illustrate the effectiveness of 

using the metrics for this purpose, they were applied to leak signals acquired in a buried 200-metre 

long 150-mm diameter PVC pipe system located in a leakage test facility in Ottawa Canada. A 

detailed description of the test site and measurement procedures has been given by Hunaidi et al. 

(2000). The schematic of the test site is shown in Figure 6.7(a). Leak signals from a leaky joint were 

measured using hydrophones installed on risers connected to two hydrants 109.5 metres apart, one 

32.8 metres upstream and the other downstream of the joint. These distances include the lengths of the 

upstream and downstream risers: 3.2 metres and 3.7 metres, respectively. During data acquisition, the 

hydrophone-measured signals were each passed through an anti-aliasing filter with the cut-off 

frequency set at 200 Hz and sampled at a frequency of 500 Hz for duration of 66 seconds. With the 
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acoustic wave speed in the pipe experimentally estimated to be 484 m/s (Gao et al., 2006), based on 

the distances between the leak position and the measurement points, the true time delay between the 

leak signals is 90.7 ms. Figures 6.7(b)–6.7(d) show the CPS (magnitude and unwrapped phase) and 

MSC of the measured hydrophone signals, while their CCF calculated with a maximum time lag of 

2048 samples (4 s) is shown in Figure 6.8(a). This CCF is characterised by a ‘bad shape’, and its peak 

does not occur at the correct time delay value. The low quality of the time delay estimate in this case 

can be attributed to the presence of tonal components and resonances in the measured signals as 

indicated by peaks in their cross-spectral magnitude shown in Figure 6.7(b) (see Almeida (2013)). The 

presence of tonals in the raw signals can also be inferred from the periodic shape of the CCF and the 

presence of additional phase jumps in the unwrapped cross-spectral phase in Figure 6.7(c).  

 

 

(a.) Schematic of the measurement setup. 

 

(b) CPS magnitude. 

 

(c) Unwrapped CPS phase. 

 

(d) Magnitude-squared coherence. 

Figure 6.7. Schematic of the Ottawa leakage test facility and spectral properties of the experimental 

hydrophone signals acquired at the facility. 

Figures 6.8(b)–6.8(e) show the CCFs obtained after passing the signals through different 

bandpass filters. The cut-off frequencies shown on the plots encompass frequencies where the 

coherence of the signals exceeds the indicated threshold. Application of the filters leads to noticeable 

improvement in both the shape of the CCF and the accuracy of the time delay estimate. However, only 

the third and fourth filters (Figures 6.8(d)–6.8(e)) lead to the correct time delay estimate. In practice, 

since the true time delay is not known a priori, it may be difficult to know which of the filters yields 

(a) 
(b) 

(d) 

(c) 
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good results. Use of the proposed quality assessment metrics provides a simple way to resolve this 

issue. Figure 6.8(f) shows the values of the quality metrics for the filtered signals. Values that exceed 

the quality threshold are highlighted with yellow cells and red font, while values below the threshold 

are indicated by blue cells and white font.  

  

  

  

Figure 6.8: Quality assessment of CCFs of raw and filtered hydrophone leak signals acquired at the 

Ottawa facility. (a) Raw signals. (b)-(e) Filtered signals. (f) Quality assessment metrics. 

The proposed alternative metrics and the PMR correctly infer the quality of the time delay estimate in 

all five cases considered. These metrics attain higher values for the filtered signals characterised by 

higher TDE accuracy and better CCF shape. On the other hand, the BCFR and the CQI leads to 

(b) (a) 

(c) (d) 

(e) 

(f) 
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incorrect inference in 2 and 3 cases, respectively. This example demonstrates the sensitivity of the 

BCFR and CQI to the presence of resonances in the analysed signal bandwidth. In comparison with 

the PMR, the ICS, PSR, and BF appear to be more sensitive to changes in the quality of the time delay 

estimate. Hence, by comparing the values of these metrics, one can select the best among possible 

choices of bandpass filters. This helps to resolve the issue associated with selection of bandpass filters 

and weighting functions in the GCC methods, identified in Chapter 1. The PSR will be used to select 

best parameters for accurate TDE results in the alternative TDE methods proposed in Chapter 7. 

The best GCC weighting function for given leak signals be determined in the same fashion, as 

can be illustrated using the PMR and PSR. Figure 6.9 shows the CCFs of the unfiltered hydrophone 

signals, which were obtained using the GCC-PHAT and GCC-ML methods. The PMR and PSR values 

obtained for each CCF are also shown, as well as the quality threshold for each metric. Comparison of 

the CCFs and the corresponding values of the quality metrics shows that the metrics attain higher 

values for weighting functions that give a more accurate time delay estimate. Their values get closer to 

the threshold as TDE accuracy increases. A large difference between the values obtained for the basic 

CCF in Figure 6.8(a) and generalised CCFs in Figure 6.9 reflects the noticeable improvement in the 

time delay accuracy and CCF shape. In this case, the highest value is attained by the GCC-ML, whose 

estimate is the most accurate, differing from the true delay by one sample (2 ms). In terms of the 

relative change in quality metric values, the PSR appears to be more sensitive to change in CCF 

quality than the PMR. Based on these results, the PSR is recommended for the purpose of selecting 

best TDE parameters. 

.  

(a) GCC-PHAT. 

 

(b) GCC-ML. 

Figure 6.9: Weighted CCFs of raw hydrophone signals.  

It is important to note that the quality assessment metrics can only be used to assess the relative 

quality of available options of bandpass filters and weighting functions. In order words, they only 

present a means for selecting the best option among available choices which have been designed using 

some other approaches. Hence, they are only useful for this purpose if good choices are among the 

available choices; otherwise, the quality assessment metrics simply select the best one among the bad 

choices.  

(a) (b) 
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The experimental results obtained in this section show that the proposed quality assessment 

metrics can discriminate between low-quality and high-quality time delay estimates, thereby providing 

a means for partially assessing the reliability of cross-correlation results and selecting parameters for 

accurate TDE in leak signals. Based on the results of the comparative study above, the ICS, PSR, and 

BF perform well in terms of sensitivity to correlation quality. These metrics are recommended as 

robust options for assessing the quality of the time delay estimate in acoustic leak detection practice. 

To summarise this chapter, possible limitations of the proposed quality metrics are discussed in the 

next section. 

6.5 Limitations of the correlation quality assessment metrics  

The first issue that can be highlighted for the quality assessment metrics is that they determine the 

cross-correlation quality a posteriori. In other words, the quality of the time delay estimate can only be 

determined after the TDE process has already been completed. This may make the approaches 

computationally demanding when they are used to compare a large number of TDE parameter options, 

as the CCF must be computed for each option considered.  

The second issue is that the proposed information criterion and PG approaches do not assess the 

accuracy of the time delay estimate per se, but rather assume that CCFs that have a ‘good’ shape or 

follow some given distribution must necessarily give accurate time delay estimate. This may not be 

true in practice. For example, the presence of a large bias in the CCF peak location will result in a poor 

time delay estimate, even when the CCF has a ‘good’ shape. Any definition of time delay quality that 

does not explicitly take the time delay value into account is inadequate. While the ICS deals with this 

issue, it has drawbacks of its own, including effects of large outliers and requirement for a large 

number of CCF realisations. A few abnormally large or small erroneous time delay estimates among 

otherwise accurate estimates can substantially increase the ICS. The suggested combined approach 

with a majority rule can mitigate the second issue to some extent. As already stated, an issue common 

to the information criterion and statistical approaches is that they require a sufficiently high number of 

CCF realisations for accurate results. Hence, they may be difficult to employ in situations where there 

is limited capacity for multiple measurements or long recordings.  

The third issue is associated with the definition of the proposed quality metrics. Only two 

extreme cases were considered in deriving the metrics: when the signals are uncorrelated and when the 

correlation between them is good. Hence, the metrics may fail for cases where the background noise 

signals are correlated, in which they are likely to incorrectly infer the presence of accurate time delay 

estimate. Since this situation may be encountered in practice, it is necessary to investigate measures 

for detecting the presence of correlated noise in the measured signals in order to distinguish between 

whether the positive inference is caused by good correlation between leak signals or correlation 

between the background noise. Another related issue concerns the selection of the quality assessment 
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thresholds. Since the threshold has been set based on the assumption that ‘bad’ CCFs only result from 

uncorrelated signals, it may not be robust for cases where the background noise is correlated. Setting 

appropriate thresholds should be based on rigorous analysis, and properties of the measured signals 

and measurement environment must be considered.  

To address the highlighted issues, there is need for further in-depth analysis of the quality 

metrics and their experimental validation in different measurement environments. Nevertheless, the 

present study represents an important step in providing a means to objectively assess the quality of 

cross-correlation results.  

6.6 Summary and conclusion 

In this chapter, three approaches were considered for assessing the quality of the time delay estimate. 

In each approach, quality metrics were derived based on properties of the cross-correlation function 

(CCF) of uncorrelated noise and correlated leak signals. The first metrics are the Bayesian Factor (BF) 

and relative likelihood (RL) derived from the Bayesian Information Criterion (BIC) and a variant of 

the Akaike Information Criterion (AIC). These metrics assess the time delay quality by considering 

the probability distribution of the CCF peak values. The second metric referred to as the Peak-to-Side 

lobe ratio (PSR) quantitatively describes the detectability of the CCF peak relative to the variance of 

the background correlation values. It is derived based on the processing gain (PG) of correlation-based 

time delay estimators. The third metric termed the inconsistency score (ICS) describes the time delay 

accuracy in terms of root-mean square of deviations of the time delay estimates from their statistical 

mode. Numerical simulations and experimental results demonstrated the viability of the proposed 

quality assessment approaches. Among the metrics, the ICS and PSR achieved the best performance. 

Certain issues affecting the effectiveness of the proposed approaches were highlighted. The results of 

the study have shown that the proposed approaches provide viable means of assessing the accuracy of 

the time delay estimate in acoustic leak detection applications. Also, the proposed metrics can be 

employed as figures of merit for selecting the best parameters for the TDE process.  
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CHAPTER 7 

ALTERNATIVE TIME DELAY ESTIMATION 

METHODS 

The aspect of the TDE problem in acoustic leak detection, involving assessment of the accuracy of the 

time delay estimate was investigated in Chapter 6. This chapter focuses on the aspect of the TDE 

problem concerning improvement of accuracy of the time delay estimate. Specifically, the aim of this 

chapter is to address the issues identified in Chapter 1 regarding selection of cut-off frequencies of the 

bandpass filter and GCC weighting functions. This is important for acoustic leak localisation using the 

conventional cross-correlation technique or any method where the time delay plays an integral role, 

including the multipath identification and system identification techniques proposed in Chapters 4 and 

5. Instead of proposing means to improve selection of the cut-off frequencies and weighting function, 

a different approach is taken in this work: development of TDE methods where the choice of either is 

not required. Two such alternatives are presented in this chapter, the first based on transforms with 

inherent filtering capability and the second based on cepstral analysis. The basic principles, 

performance analysis, and implementation of these two approaches are outlined in this chapter. 

7.1 Time delay estimators with inherent filtering property 

This section introduces the general principles of the TDE method based on transforms with inherent 

filtering property and analyses its performance for leak signals. For convenience, this method will be 

referred to as inherent bandpass TDE method (abbreviated as IB-TDE). As a subset of the GCC 

method, the IB-TDE estimates the time delay peak  between the measured leak signals from the CCF 

( )
1 2x xR   of ( ) ( ) ( )1 1x t w t x t=   and ( ) ( ) ( )2 2x t w t x t=  , where ( )w t  is a function constructed 

from an appropriate transform. In contrast with the commonly used GCC weighting functions which 

are constructed based solely on signal and noise properties (see Table 1.1), ( )w t  is designed using the 

wavelet transform (WT) and data-adaptive decompositions. An important advantage of using these 

transforms is that there is no longer any need to explicitly filter the leak signals prior to estimating the 

time delay as will be demonstrated in Section 7.5. The variance of the time delay estimate peak̂  given 

by the location of the peak of ( )
1 2x xR   is derived and analysed for leak signals in terms of pipe and 

signal properties in the next subsection, while the implementations of the wavelet-based and data-

adaptive IB-TDE methods are described in Sections 7.2 and 7.3, respectively. 
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7.1.1 Variance of the time delay estimate 

The variance of the IB-TDE time delay estimate is derived under the following assumptions: 

A1. The signals ( )l t , ( )1n t , and ( )2n t  in Equation (6.6) are stationary bandlimited zero-mean 

signals, uncorrelated with each other. The signal ( )l t  is ergodic.  

A2. The spectrum of ( )l t  is flat with power spectral density 
0S . The noise signals ( )1n t  and ( )2n t  

have identical double-sided bandwidths 
02B  and power spectral densities 

0N . Additionally, the 

leakage of the autospectra of ( )il t  and ( )in t  outside their bandwidths is negligible, and the 

bandwidth of ( )il t  is smaller than 
0B .  

Assuming the time delay estimate 
peak̂  given by the location of the peak of ( )

1 2x xR   lies in the 

neighbourhood of the true delay 
peak , the estimate 

peak̂  can be shown to be unbiased and its variance 

peak

2

ˆ ,IB  is derived as (Appendix G1) 
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where ( )W   is the IB-TDE weighting function given by ( ) ( ) 
2

FW w t = . If the magnitude of 

the IB-TDE weighting function is approximated as ( ) 1W  =  in the analysed frequency band 

1 2    , i.e., the frequency region in which the leak noise is considered to be significant relative 

to the background noise, then Equation (7.1) can be expressed as (Appendix G1) 
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where 
2

il
B  denotes the effective bandwidth of 

il . In this chapter, the effective bandwidth of a signal is 

defined as the RMS radian frequency in its spectrum (see Equation (G.16) in Appendix G1). The 

variance of the time delay estimate in Equation (7.2) has been expressed in terms of the analysed 

bandwidth and properties of the signals and noise. It is worthwhile to examine the effects of pipe 

properties as well. By substituting the FRF model (Equation (2.5)) in Equation (7.2) and evaluating the 

resulting expression, the variance of the time delay estimate for acoustic pressure signals is obtained as 

(Appendix G1) 
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The expression in Equation (7.3) is valid for small 
1 , 

2 1  , and 0id  . The variance of the 

time delay estimate is affected by the SNRs of the measured signals, the bandwidth of the weighting 

function, pipe attenuation, inter-sensor distance, and actual leak location as well as measurement time 

and leak noise spectrum. Effects of these factors are considered in the next subsection.  

7.1.2 Factors affecting the variance of the time delay estimate 

In this subsection, the effects of the SNRs, bandwidth of the leaks, pipe attenuation, and inter-sensor 

distance on the variance of the time delay estimate are discussed. When 
1SNR  and 

2SNR  are large, 

the third term in the numerator of Equation (7.3) can be neglected, and the variance of the time delay 

estimate can be approximated as 

 ( )1 2

peak

2 22 2
42

ˆ ,IB 2
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In the case where 
1SNR  and 

2SNR  are small, the first two terms in the square brackets in the 

numerator of Equation (7.3) can be neglected for typical values of pipe attenuation factor and 

distances (assuming the leak is not very close to one end of the pipe), and 
peak

2

ˆ ,IB  can be 

approximated as  

 ( ) ( )1 2

peak

2 2 23
6 62 302

ˆ ,IB 22 2 2
low

0 0 1 2 012 SNR SNR 3

l l N
d d

B S T T S


   
     = 


 . (7.5) 

The variance of the time delay estimate is inversely proportional to the product of the SNRs of 

the signals in low-SNR conditions, whereas it varies inversely as each of the SNRs in the high-SNR 

case. This implies the existence of a thresholding phenomenon, i.e., there is an SNR value below 

which the low-SNR expression is a better approximation of the variance, and above which, the high-

SNR approximation is more accurate. This can be observed in Figure 7.1, where the approximation in 

Equations (7.5) and (7.4) are compared with the full expression in Equation (7.3). The SNRs of the 

first and second signals have been set to be equal. 

In both low and high-SNR cases, high values of the attenuation factor and inter-sensor distance 

result in a large variance of the time delay estimate. The variance in the high-SNR case is minimised 

when the leak is equidistant from both sensors (i.e., 1 2 1d d = ) and becomes larger as the leak gets 

closer to any one end of the pipe. This agrees with the results obtained from the quantitative analysis 
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of the effects of TDE error on leak localisation in Section 6.1 (see Figure 6.1). On the other hand, the 

actual location of the leak does not affect the variance when the SNR is low. The cut-off frequency 
2  

is polynomially proportional to the variance in the low-SNR case but has little effect in the high-SNR 

case. This direct relationship between the variance and the analysed bandwidth of the signals in the 

low-SNR case contrasts with the result obtained for systems without frequency-dependent attenuation 

by Quazi (1981). In such systems, the low-SNR approximation of the variance of the time delay 

estimate is proportional to ( )3 3 3

2 1 21 1  −  . Since the noise spectrum is assumed to be flat, 

increase in the analysed bandwidth effectively increases the contributions of the noise. On the other 

hand, frequency-dependent attenuation (represented by the monotonically decreasing term 1
d

e
 −

  

in the denominator of Equation (7.2) essentially reduces the contributions of the leak noise at higher 

frequencies. These two factors result in the observed increase in variance, which becomes more 

substantial when 
2  is increased way above the frequency region where the leak noise is dominant.  

 

Figure 7.1: Comparison of the low-SNR and high-SNR approximations of the variance. Parameters: 

  = 
52.1 10−  s/m, d  = 100 metres, 

1d  = 20, 1T = , 
2  = 2 100   rad/s. 

Among the parameters that affect the time delay estimate, only the measurement time and cut-

off frequency can be adjusted by the operator, so the only possible measures for reducing the TDE 

variance in a given measurement setup are increasing the measurement time T  and properly selecting 

the cut-off frequency 
2 . The latter is automatically facilitated by the choice of transforms used in 

implementing the IB-TDE method. The next two sections introduce two such transforms: the WT and 

data-adaptive decompositions. 

7.2 Wavelet transform-based time delay estimator 

The main motivation for considering the WT in the implementation of the IB-TDE method is its 

ability to decompose signals by scale (Xu et al., 1995b). This property makes the WT particularly 

attractive for analysing bandlimited signals, including acoustic leak signals. In the WT-based 
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implementation of the IB-TDE method, ( )w t  is selected as a wavelet ( )t  at an appropriate scale, 

and thus, the modified signals ( )1x t  and ( )2x t  are the WTs 
1W x  and 

2W x  with respect to ( )t . 

The WT W x  of a signal ( )x t  is defined as (Mallat, 2008)  

 ( ) ( ) ( )*, t b
s

W x s b x t dt 


−

−
=   (7.6) 

where ( ) ( )
1 2

,
t b

s b s
t s 

− −=  consists of a family of normalised dilations (controlled by scale 

parameter s ) and translations in time (controlled by translation parameter b ) of ( )t .  

An important property that must be satisfied by the WT used in implementing the IB-TDE 

method is shift-invariance. A shift-invariant WT preserves any delay present in the signals. In other 

words, a shift in the input signal manifests as an equivalent shift in the WT coefficients at all scales 

(Bradley, 2003). Two choices for shift-invariant WTs are the continuous wavelet transform (CWT) 

and the maximal overlap discrete wavelet transform (MODWT). The MODWT is a non-decimated 

version of the conventional discrete wavelet transform (DWT) that operates over dyadic scales 

2 ks −= , k  , and integer translations b n=   (Percival and Walden, 2000). Since the MODWT 

is more computationally efficient than the CWT, it is preferred for implementing the IB-TDE method. 

For a given scale 2 ks −= , the CCF ( )
1 2x xR   can be defined in terms of the MODWTs of the signals 

as 

 ( ) ( ) ( ) ( )
1 2 1 2 1 2, 2 , 2 ,k k

x x x x

n

R R k W x n W x n

   − −= = +  (7.7) 

where the parameter 1,2,3,k =  is referred to as the decomposition level. In this work, this method 

of computing the time delay using Equation (7.7) is termed wavelet transform cross-correlation 

(WTCC), and when necessary, denoted as WTCC-wav, where ‘wav’ indicates the wavelet used.  

The weighting function ( )W   in the WTCC method is the squared magnitude of the FT of the 

selected wavelet at the given decomposition level ( )k   

 ( ) ( )  ( )
2 2

2 ,
F 2 2k

k k

k n
t    −

−= =  (7.8) 

where ( ) ( ) F t  = . An important observation is that the bandwidth of ( )k   depends on the 

decomposition level. Like all variants of the DWT, the MODWT is efficiently implemented using a 

quadrature filter bank (Mallat, 2008). Each level of the filter bank consists of a low-pass filter and a 

high-pass filter, which provide the approximation and the detail coefficients of the signal, respectively. 

The detail coefficients from the k th level of the filter bank encompass frequencies in the interval 

)12 , 2k k

s sF F+ . Hence, the decomposition levels represent a set of bandpass filters with different 

frequency windows. Lower decomposition levels correspond to higher frequencies and larger 
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bandwidths while higher decomposition levels correspond to lower frequencies and smaller 

bandwidths. Therefore, the variance of the WTCC time delay estimate will depend on the 

decomposition level, especially when the SNR is low (see Equation (7.5)). Implementing the WTCC 

involves the selection of two parameters: the wavelet and the decomposition level. Their selection can 

be based on important properties of wavelets, discussed below. For efficiency, only discrete wavelets 

will be considered. 

7.2.1 Selection of wavelet function and decomposition level 

The selection of discrete wavelets for any application is governed by properties such as orthogonality, 

vanishing moments, regularity, support length, and symmetry (Guo et al., 2022). Among these 

properties, the most important for TDE are the number of vanishing moments and orthogonality. The 

former has a direct effect on the bandwidth of wavelets, while the latter determines the efficiency of 

computing the WT (Dremin et al., 2001). The computational burden of the MODWT implemented 

using an orthogonal wavelet is the same as that of the FFT algorithm (Percival and Walden, 2000). 

Examples of orthogonal wavelets include Daubechies (‘db N ’), symlet ( ‘sym N ’), coiflet ( ‘coif N ’), 

and Fejer-Korovkin wavelets ( ‘fk N ’). Here, N  denotes the number of vanishing moments. For a 

description of these wavelets, see Mallat (2008). The frequency responses of different orthogonal 

wavelets (haar, db4, sym8, fk22) at various decomposition levels are shown in Figure 7.2. The Haar 

wavelet (denoted as ‘haar’) is the same as ‘db1’.  

  

  

Figure 7.2: Frequency responses of haar, db4, sym14, fk18 wavelets at different decomposition 

levels. (a) Level 1. (b) Level 2. (c) Level 3. (d) Level 5. 

(a) (b) 

(c) (d) 
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It can be observed that wavelets with more vanishing moments have lower centre frequencies and 

smaller bandwidths, generally resulting in better frequency localisation (Guo et al., 2022). On the 

other hand, wavelets with fewer vanishing moments have larger bandwidth (but smaller responses) 

and larger side lobes. High side lobes imply that the WT may spread frequency information between 

frequency windows, thereby showing contents outside the frequency range of interest. However, since 

these sidelobes are much smaller than the main lobes, this is not likely to be a serious issue in the 

WTCC. Since wavelets with fewer vanishing moments are less computationally expensive and allow 

more low-frequency contents to pass, they are a good choice for analysing leak signals. Using 

wavelets with high number of vanishing moments increases the computational burden of the WTCC. 

Thus, the best choice of wavelets in the TDE method is orthogonal wavelets with fewer vanishing 

moments.  

For accurate TDE results, it is desirable for the bandwidth of the weighting function to be 

located in the frequency region where the leak noise spectrum is significant relative to the noise 

(Almeida, 2013). Hence, when implementing the WTCC, it is important to avoid wavelet 

decomposition levels whose bandwidth include very low-frequency regions dominated by noise or 

high-frequency regions that have been severely attenuated by the filtering effects of the pipe. To select 

the best decomposition level(s), the relative wavelet energy (RWE) criterion can be employed. The 

RWE for each decomposition level k  is defined as (Rosso et al., 2001) 

 
1, 2,

1,tot 2,tot

RWE
k k

k

E E

E E
= +  (7.9) 

where ( )2

, 2 ,k

i k i

n

E W x n

−=  represents the energy encompassed by the k th decomposition level in 

the WT of the i th signal, and ( )2

,toti i

n

E x n=  is the total energy in the signal. A justification for 

using this criterion is that the MODWT partitions signal variance or energy by scale (Percival and 

Walden, 2000). Hence, decomposition levels where the leak signal energy is significant will have 

higher energy compared to those with only noise, so the best decomposition levels are those with the 

highest RWE. The PSR proposed in Chapter 6 can also be used to select the best decomposition levels. 

Because of the shift-invariant property of the MODWT, an approach that may be useful for improving 

TDE accuracy with very little increase in computational complexity is to estimate the time delay from 

the sum of the wavelet coefficients at the decomposition levels with high RWE or PSR.  

Figure 7.3(a) shows the variance of the time delay estimate calculated using Equation (7.1) for 

the first 10 decomposition levels of haar, db4, sym8, and fk22 wavelets and simulated leak signals 

with SNRs of 3 dB. The details of the simulation procedures are described in Section 4.5.1. An 

important observation that can be made from the plot is that the wavelets all achieve the smallest 

variance at the same decomposition levels. Also, wavelets with fewer vanishing moments achieve 

smaller variance at a given decomposition level than more complex wavelets. Based on the plot, these 
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wavelets are also more likely to give good results over a larger number of decomposition levels. As 

stated above, the higher side lobes in these wavelets do not seem to have substantial effects on the 

variance. It can also be observed from Figure 7.3(b) that the RWE and PSR attain their highest values 

at the decomposition levels where the smallest variance is achieved, thus confirming the soundness of 

employing these criteria for selecting the best decomposition levels. These results suggest that the 

accuracy of the time delay estimate is determined primarily by the selected decomposition level rather 

than the wavelet used. As shown by the higher variance achieved at these levels in Figure 7.3(a), the 

very low and high decomposition levels are likely to be unsuitable for TDE in noisy signals. This is 

because these decomposition levels have their bandwidths either in the low-frequency region 

dominated by noise or include frequency regions where the leak noise is severely attenuated. In the 

next subsection, the performance of the WTCC for leak signals is evaluated further using numerical 

simulations. 

 
 

Figure 7.3: Simulation results for the WTCC. (a) Variance of the time delay estimate. (b) RWE 

and PSR for the db4 wavelet. 

7.2.2 Simulation results for the wavelet transform-based time delay estimator 

The RMSE (Equation (3.8)) of the WTCC time delay estimates obtained over 1000 Monte Carlo 

simulation runs for acoustic pressure signals is compared with that of the BCC, GCC-PHAT, and 

GCC-ML estimates for SNR values between -9 dB and 6 dB in Figure 7.4. The simulation procedures 

are as described in Section 4.5.1, and the simulation parameters are shown in the caption of Figure 7.4. 

For each run, a different realisation of the added noise was used. Regardless of the wavelet used, the 

WTCC achieves the lowest RMSE and outperforms the GCC methods at the third and fourth 

decomposition levels. However, its performance degrades significantly outside these levels, becoming 

worse than the GCC estimators especially at low SNR. In particular, the very low decomposition 

levels especially in wavelets with high number of vanishing moments are essentially useless for 

estimating the time delays as shown by the large variance. This again confirms the more crucial role of 

the decomposition level relative to the type of wavelet. Since the choice of wavelet is not crucial, one 

(a) 

(b) 
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can use the simplest orthogonal wavelet, the Haar wavelet in computing the CCF ( )
1 2

,x xR k   in order 

to reduce the computational load of the WTCC. Thus, the WTCC effectively requires the choice of 

only one parameter—the decomposition level, which can be easily selected using the RWE or PSR. 

Since the very low frequencies in leak signals are usually dominated by noise (Gao et al., 2006), it is 

suggested to restrict the number of decomposition levels considered to ( )2 5
log 1sF  −
 

, where 

 2log •  denotes binary logarithm. This ensures that only decomposition levels whose lower cut-off 

frequencies are above 5 Hz are considered in the WTCC. For example, the suggested maximum levels 

to consider when estimating delays in signals sampled at 500 Hz and 1 kHz will be 5 and 6, 

respectively. The performance of the WTCC will be further investigated using experimental leak 

signals in Section 7.5. 

  

  

Figure 7.4: RMSE of the WTCC and GCC time delay estimates for different wavelets: (a) haar. (b) 

db4. (c) sym14. (d) fk18. Simulation parameters: c  = 354 m/s,   = 
52.1 10−  s/m, 

1d  = 9 metres, 

2d  = 25 metres, 
sF  = 500 Hz.  

7.3 Data-adaptive time delay estimator 

The second approach for implementing the IB-TDE method is based on the use of data-adaptive 

decompositions. Data-adaptive decompositions are heuristic analysis tools which resolve signals into 

their multi-resolution components in the time domain. Unlike the WT, they do not use fixed basis 

(a) (b) 

(c) 
(d) 
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functions but instead extract different resolutions from the signals directly. Examples include the 

empirical mode decomposition (EMD) (Huang et al., 1998), variational mode decomposition (VMD) 

(Dragomiretskiy and Zosso, 2014), and empirical wavelet transform (EWT) (Gilles, 2013). These 

data-adaptive decompositions separate a signal ( )x t  into a set of complete and almost orthogonal 

components ( )IMFk t , known as intrinsic mode functions (IMFs): 

 ( ) ( ) ( )
imf

1

IMF
N

k

k

x t t res t
=

= +  (7.10) 

where 
imfN  is the number of IMFs, and ( )res t  is the residual. They achieve the decomposition of 

signals in very different ways. The EMD works recursively on the time-domain signal to extract 

progressively lower frequency IMFs via a sifting operation, whereas the VMD starts by identifying 

signal peaks in the frequency domain and extracts all modes concurrently. The sifting operation in the 

EMD basically involves the calculation of the moving average of the envelopes connecting extrema of 

the signal. On the other hand, the EWT extracts the IMFs by designing an adaptive wavelet filter bank 

based on segmentation of Fourier spectrum of the signal, achieved by detecting the local maxima in 

the spectrum. In contrast with the VMD and EWT, which have theoretical foundations, the EMD is 

purely algorithmic. As a result, the filters used in the VMD and EWT decompositions are available to 

the user.  

The EMD is used in this section to illustrate some properties of data-adaptive decompositions 

relevant to the implementation of the IB-TDE method. Due to the lack of a theoretical description for 

the EMD, extensive numerical simulations were used to study its properties for leak signals. The 

simulation process and parameters are the same as in Section 4.5.1. Figure 7.5 shows the PSDs of the 

first 5 IMFs of the simulated leak signal and the binary logarithm of the number of zeros crossing 

zcrossN  in the IMFs. The PSDs and the number of zero crossings were averaged over 1000 simulation 

runs. Different realisations of white Gaussian noise was added during each simulation run so that the 

simulated leak signal has an SNR of -3 dB. The PSDs have been normalised by their maximum value. 

The number of zero crossings is a rough measure of the centre frequency of each IMF. It can be 

observed that the PSDs of the IMFs are very similar to the weighting functions obtained at the 

decomposition levels of the MODWT (compare Figures 7.5 and 7.2). Furthermore, the centre 

frequency of the IMFs decreases on a dyadic scale just like that of the decomposition levels in the 

MODWT. This implies that the EMD recursively separates the signal into approximations (low-

frequency components) and details (high-frequency components), essentially a bandpass filtering 

operation just like the MODWT. Similar results were obtained for white noise (Wu and Huang, 2004) 

and fractional Gaussian signals (Flandrin et al., 2004). Like the EMD, the VMD and EWT can also be 

viewed as a set of bandpass filters. However, the centre frequencies of VMD and EWT IMFs do not 

necessarily change on a dyadic scale (this is mainly related to the way the signals are decomposed by 

these data-adaptive decompositions). Among the data-adaptive decompositions, only the EWT shares 
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the energy-preserving property of the MODWT. In other words, the sum of the energy in all the 

decomposition levels in the MODWT and EWT is equal to the energy in the original signal, whereas 

this property is not found in the EMD and VMD techniques (Huang et al., 2008). Another important 

difference to note is that unlike the EMD IMFs, the contents of individual VMD and EWT IMFs are 

dependent on the number of IMFs being extracted (Wu et al., 2020; Shi et al., 2017). One important 

consequence of these differences is that IMFs of two signals from the same decomposition level 

obtained using the VMD or EWT do not necessarily have similar frequency content. These differences 

have important consequence when the IB-TDE method is implemented using these data-adaptive 

decompositions as described below. 

  

Figure 7.5: EMD of simulated leak signals. (a) Auto-power spectra of the IMFs. (b) Binary 

logarithm of the number of zero crossings. 

The IB-TDE CCF ( )
1 2x xR   can be implemented as the discrete CCF of the IMFs 

,1IMFk
 and 

,2
IMF

k
 of signals ( )1x t  and ( )2x t , i.e.,  

 ( ) ( ) ( ) ( )
1 2 1 2 ,1 ,2

, IMF IMFDD

x x x x k k
n

R R k n n  = =  +  (7.11) 

where 
,2

IMF
k

 denotes the IMF of ( )2x t  that encompasses the same frequency range as the IMF 

,1IMFk
 of ( )1x t . As in the WTCC, the parameter 1,2,k =  will also be referred to as the 

decomposition level. Due to the dyadic decomposition scheme inherent in the EMD, ,2,2
IMF IMFkk

=  

when the IB-TDE is implemented using the EMD, i.e., the IMFs used in computing ( )
1 2x xR   

correspond to the same decomposition level. This is not necessarily the case for the VMD and EWT. 

In the case of implementation of the IB-TDE using these decompositions, 
,2

IMF
k

 has to be selected as 

the IMF whose centre frequency is closest to that of ,1IMFk . This presents very little difficulty in 

practice as the filters used in the VMD and EWT decompositions are available to the user (in contrast 

with the EMD). This method of estimating the time delay from ( )
1 2

,DD

x xR k  defined in Equation (7.11) 

will be denoted in this work as ‘DD-CC’, where ‘DD’ denotes the type of data-adaptive decomposition 

employed. It requires the choice of only one parameter—the decomposition level k . Since the EMD 

(a) 

(b) 



Chapter 7 Alternative time delay estimation methods 

154 

and VMD do not preserve energy of the signals, the proportion of energy in the IMFs is not an 

appropriate criterion for selecting the best decomposition level in the EMD-CC and VMD-CC. As a 

result, only the PSR can be used to facilitate the selection of the best decomposition levels in the 

EMD-CC and VMD-CC. On the other hand, analogously to the WTCC, the selection of the best IMF 

in the EWT-CC can be achieved using either the PSR or the Relative IMF Energy (RIE) criterion 

defined as 

 
2,IMF2,IMF

1,tot 2,tot

RIE k k

k

EE

E E
= +  (7.12) 

where ( )2

1,IMF ,1IMF
k k

n

E n=  and ( )2

2,IMF ,2
IMF

k k
n

E n=  represent the energies in the selected 

IMFs. Like in the WTCC, an improvement in the TDE process may be achieved by summing the best 

IMFs in each signal prior to calculating the CCF. 

The performance of the DD-CC was investigated using the EMD for the same simulated leak 

signals used in Section 7.2.2. Figure 7.6(a) shows the RMSE of the time delay estimates obtained for 

the first 5 IMFs. The first two IMFs achieve a substantially lower RMSE than higher IMFs, 

considerably outperforming the GCC estimators. The average RIE and PSR values are also maximum 

for these IMFs as shown in Figure 7.6(b). In contrast with the first wavelet decomposition level (which 

essentially defines a high-pass filter), the first IMF appears to be useful for TDE in leak signals. This 

is because the first IMF allows a higher proportion of low-frequency components to pass (compare 

Figures 7.5(a) and 7.2(a)). Since the bandwidth and centre frequency of the EMD IMFs become 

progressively smaller at higher decomposition levels, the search for the best IMF may be restricted to 

the first few decomposition levels. Based on the differences noted above, the best EMD IMFs will be 

contiguous and correspond to the lower decomposition levels, whereas that may not be the case with 

the VMD and EWT. Further experimental investigation of the DD-CC will be conducted in Section 

7.5. 

  

Figure 7.6: Simulation results for the EMD-CC. (a) RMSE of time delay estimate. (b) RIE and PSR. 

Simulation parameters: c  = 354 m/s,   = 
52.1 10−  s/m, 

1d  = 9 metres, 
2d  = 25 metres, 

sF  = 

500 Hz. 

(a) 

(b) 
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7.4 Cepstral time delay estimator 

An interesting filtering property of the cepstrum is that it converts signals combined by convolution 

into sums of their cepstra for possible linear separation (Oppenheim et al., 1968). From the third term 

in Equation (4.12), it can be observed that the power cepstrum of a multipath leak signal contains 

impulses of alternating signs at integer multiples of the TDOA of the reflection. The inherent filtering 

ability and structure of the power cepstrum suggest an alternative approach for estimating time delays 

in leak signals, which is described as follows.  

The sum ( )1z t  and difference ( )2z t  of the measured signals ( )1x t  and ( )2x t  in Equation 

(6.6)can be expressed as 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 1 2 1

2 1 2 1 2 2

z t x t x t h t h t l t v t

z t x t x t h t h t l t v t

 = + = +  +   


= − = −  +   

 (7.13) 

where ( ) ( ) ( )1 1 2v t n t n t= +  and ( ) ( ) ( )2 1 2v t n t n t= − . The signals ( )1z t  and ( )2z t  are composite 

signals consisting of attenuated copies of ( )l t  corrupted by additive noise signals ( )1v t  and ( )2v t . If 

in addition to Assumption A1 in Section 7.1.1, ( )1n t  and ( )2n t  are assumed to be Gaussian, then 

( )1v t  and ( )2v t  are both zero-mean identically distributed Gaussian random signals with the same 

true auto-power spectra: ( ) ( ) ( )
1 1 2 2v v v v vvG G G  = = . Using the procedures in Appendix C, the 

power cepstra of ( )1z t  and ( )2z t  are then obtained as 
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where ( ) ( ) ( )  1

1 2 F log SR q R q G −= = , ( ) ( ) ( ) ( )
1 1 2 2S l l l l vvG G G G   = + + , 

( ) ( )  1

, F
m

i m ig q  −= , ( )
( )

( )
i i

i

i
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= , ( )i   denotes the random fluctuations in the 

spectral estimate of ( )
i iz zG  ; ( ) ( ) 1Fk kQ q M −= , ( )kM   are polynomial functions of 
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= +  denotes the sum of the SNRs (in the 

frequency domain) of the measured leak signals. It can be observed that the signs of the impulses at 
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the quefrencies corresponding to the time delay 
peak  and its odd harmonics differ in ( )1z q  and 

( )2z q . Therefore, only the impulses at the quefrencies corresponding to the time delay and its odd 

harmonics are preserved in the ‘residual cepstrum’ ( ) ( ) ( )1 2z q z q z q= − :  

 ( )
( )

( ) ( ) ( )( )
1

12, peak

1 1

1
2 1

m

m k

m k

z q g q Q q q k
m

 

−
 

= =

−
= +   −   (7.15) 

where ( ) ( )12, 1, 2,m m mg g q g q= − . Based on the properties of ( )kQ q , the height of the impulses 

reduces as k  increases, so the highest peak will be observed at 1k = . Hence, an estimate of the time 

delay 
peak̂  between ( )1x t  and ( )2x t  can be obtained as the location of the highest peak in the 

residual cepstrum. Due to the symmetry of the power cepstrum (Mandava, 1992), only the first half of 

( )z q  is considered when estimating the time delay. This method of estimating the time delay is 

referred to as cepstral TDE method in this work (abbreviated as ‘CEPS-TDE’). The CEPS-TDE is 

similar to a TDE approach algorithmically described by Choudhary et al. (2015) for an underwater 

multipath environment. Since ( )i   is a zero-mean process, the effects of the terms 
12,mg  in 

Equation (7.15) can be reduced by averaging many realisations of ( )z q  obtained from segments of 

the signals. To avoid cepstral aliasing, the length of the segments should be sufficiently long or zero-

padded as discussed by Bolton and Gold (1984). In the next subsection, the performance of CEPS-

TDE for leak signals is analysed in terms of pipe and signal properties. 

7.4.1 Variance of the cepstral time delay estimate 

The variance 
peak,CEPS

2

̂  of the cepstral time delay estimate can be expressed as (Appendix G2) 

 ( ) ( ) ( ) ( ) ( ) 
2

peak,CEPS

1

2

2 3 3 2

ˆ 2 1 1E
3

a e d
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−

 
= −  
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where the first-order exponential function  1E u  is related to the exponential integral  Ei u  by 

   1E Eiu u= − −  (Gradshteyn and Ryzhik, 2007). The expression ( ) ( ) ( ) 1Ee
 

     tends 

towards unity as ( )  →  and towards zero as ( ) 0  →  (Abramowitz and Stegun, 1964, page 

242). Hence, when the SNRs of the signals are high ( ( ) 1   for 
1 2    ), the variance of the 

time delay estimate 
peak,CEPS

2

̂  can be approximated as 
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In the interval 0 1u  , the exponential function  1E u  can be approximated as (Abramowitz and 

Stegun, 1964, page 231) 

     2 3 4 5

1 1 2 3 4 5E logu u a u a u a u a u a u − − + + + + +  (7.18) 

where   is Euler-Mascheroni constant, and 
1 2 5, , ,a a a  are real constants. Noting that 

( )
1e

 
  for 

( ) 1   and ( ) 02vvG N =  under Assumption A2 above, 
peak,CEPS

2

̂  can be approximated in low-

SNR conditions as 
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where the first-order and higher monomial terms in Equation (7.18) have been neglected.  

In both high and low-SNR conditions, the variance of the cepstral time delay estimate varies 

polynomially as the analysed bandwidth and pipe attenuation factor. In high-SNR case, for a given 

pipe and analysed bandwidth, the variance of the cepstral time delay estimate is essentially a constant 

independent of signal properties. Like in the IB-TDE method, the variance does not depend on the 

actual leak location when SNR is low. Possible measures for reducing the variance are increasing the 

observation time and adjusting the value of 
2 . However, this frequency cannot be set arbitrarily; pipe 

attenuation and signal properties must be considered. In the next section, the performance of the 

cepstral time delay estimate is compared with that of the IB-TDE method.  

7.4.2 Comparison of cepstral and inherent bandpass time delay estimators 

It can be shown that the CEPS-TDE always achieves a lower variance than the IB-TDE method in 

low-SNR conditions as follows. To facilitate the comparison of the two methods, the expressions for 

the variance are expressed in alternative forms. Since ( )   can be neglected in low-SNR conditions, 

the low-SNR approximation of the IB-TDE time delay estimate variance in Equation (7.2) can be 

expressed as 
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The ratio of 
peak

2

,IB
low

  in Equation (7.20) to 
peak,CEPS

2

low
  in Equation (7.19) is obtained as 
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where the inequality follows from ( )  ( ) 1E log 1     +   for small values of ( )  . 

The superior performance of the CEPS-TDE is associated with the logarithmic conditioning in the 

cepstrum, as previously discussed in Section 4.4.3.  

Figure 7.7 shows the RMSE of the CEPS-TDE time delay estimate for the simulated leak 

signals used in Section 7.2.2. It can be observed that the CEPS-TDE outperforms the conventional 

GCC methods at all SNR values considered. The superiority of the CEPS-TDE over the IB-TDE 

method can be verified by comparing the RMSE in Figures 7.4, 7.6(a), and 7.7. Apart from exhibiting 

a lower TDE variance than the IB-TDE method, another advantage of the CEPS-TDE is simplicity, as 

it does not require the selection of any parameter. One disadvantage that can be highlighted for the 

CEPS-TDE is inability to determine the sign of the time delay estimate. However, if necessary, the 

sign may be determined by considering the relative attenuation of the signals or inferred from their 

CCF.  

 

Figure 7.7: RMSE of the CEPS-TDE time delay estimate for simulated leak signals. Simulation 

parameters: c  = 354 m/s,   = 
52.1 10−  s/m, 

1d  = 9 metres, 
2d  = 25 metres, 

sF  = 500 Hz. 

7.5 Experimental results 

The performance of the proposed IB-TDE and CEPS-TDE methods is investigated in this section 

using experimental data. The main features of the methods are illustrated with steady-state leak signals 

measured with accelerometers at X1 and X2 with a leak simulated at L1 in the leakage test rig 

described in Chapter 2. The sampling rate of the signals is 40 kHz, and the time delay between them is 

9 ms. Figures 7.8(a)–7.8(c) show the CPS (magnitude and unwrapped phase) and MSC of the two 

signals. The signals have high coherence and approximately linear cross-spectral phase in the 
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frequency range 154-1048 Hz. The BCC and GCC-ML methods yield time delay estimates of 9.025 

and 8.975 ms, respectively, while the GCC-PHAT method yields an estimate of 0 ms. Two possible 

reasons can be highlighted for the bad performance of the GCC-PHAT in this case. The first reason is 

the presence of resonances in the signals, as indicated by the peaks in the CPS magnitude (Figure 

7.8(a)) and the appearance of a large negative peak in the CCF in Figure 7.8(d) (Almeida, 2013). The 

second reason is that the cross-spectral phase is extremely noisy above 2.2 kHz indicating that it 

cannot be successfully unwrapped above this frequency. Because the GCC-PHAT estimates the time 

delay from the phase only, it is severely affected by the presence of resonances and noisy phase 

(Almeida, 2013). These factors are mitigated to some extent in the BCC and GCC-ML due to 

weighting of the phase by the CPS magnitude and coherence, respectively, both of which are very 

small in the frequency region with noisy phase. When the signals are first filtered in the frequency 

range with a linear phase, the GCC-PHAT estimate improves to 8.925 ms. As illustrated by this 

example and the results obtained in Section 6.4.2, the effectiveness of estimating time delays in leak 

signals using the conventional GCC approach is affected by the type of weighing function employed 

as well as the cut-off frequencies of any applied filter. Incorrect selection of any of these parameters 

may result in inaccurate time delay estimates. As will be demonstrated in this section, the proposed 

alternative TDE methods do not have such limitation. 

 

(a) Cross-spectral magnitude. 

 

(b) Unwrapped cross-spectral phase. 

 

(c) Magnitude-squared coherence. 

 

(d) Cross-correlation function. 

Figure 7.8: Spectral properties and CCF of the X1 and X2 experimental leak signals. 

(a) (b) 

(d) (c) 
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The RWE, RIE, and PSR values obtained for the unfiltered signals for the first 10 

decomposition levels of different wavelets and data-adaptive decompositions are shown in Figure 7.9. 

All wavelets achieve their highest RWE values at exactly the same decomposition levels, in this case, 

at decomposition levels 4-6. There is a good correlation between the PSR and the RWE for wavelets 

with high number of vanishing moments at all decomposition levels. In contrast with the RWE, the 

PSR achieves high values at the decomposition levels 1-3 for the Haar wavelet and levels 2-3 for the 

‘db4’ wavelet. This implies that even though the proportion of signal energy at the low levels is 

relatively small, they may still be useful for estimating time delays using wavelets with small number 

of vanishing moments. This agrees with the simulation results in Section 7.2.1 (see Figure 7.3(a)). It 

can be observed from Figure 7.9(b) that the few IMFs that have a high proportion of signal energy also 

achieve the highest PSR values: IMFs 2-3 for the EMD, IMF 9 for the VMD, and IMFs 7 and 10 for 

the EWT. As expected from the discussion in Section 7.3, the best decomposition levels are 

contiguous in the EMD and MODWT, while the situation is different for the EWT. 

  

Figure 7.9: Selection of best decomposition levels for X1 and X2 experimental leak signals. (a) 

RWE and PSR. (b) RIE and PSR. 

The WTCC and DD-CC time delay estimates obtained at all 10 decomposition levels are shown in 

Figure 7.10(a). It can be observed that the most accurate time delay estimates are obtained at the 

decomposition levels that yield the highest value of the RWE, RIE, and PSR. In agreement with 

simulation results, all the wavelets yield fairly accurate estimates at these decomposition levels, again 

confirming that the choice of decomposition level is more crucial than the type of wavelet employed. 

It should be noted, however, that the WTCC and DD-CC fail to give accurate time delay estimates if 

implemented using a decomposition level with low RWE, RIE, and PSR values, as shown by the 

estimates in Figure 7.10(a). In agreement with the conclusion from Figure 7.9 above, unlike more 

complex wavelets, the Haar wavelet yields accurate time delay even at the lowest decomposition 

levels. The CEPS-TDE yields the time delay estimate as 8.975 ms given by the location of the peak in 

the residual power cepstrum of the two signals shown in Figure 7.10(b).  

(b) 

(a) 
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Figure 7.10: Time delay estimates for unfiltered leak signals. (a) WTCC and DD-CC. (b) Residual 

power cepstrum. 

As stated in Sections 7.2.1 and 7.3, improvement in the performance of the time delay estimator 

may be achieved by computing the time delay from the sum of the WT coefficients or IMFs at the 

decomposition levels with high RWE, PSR, or RIE. This is illustrated using the EMD-CC in Figure 

7.11, where the CCFs obtained from the best IMF (IMF 3) and the sum of the IMFs with high PSR 

(IMFs 2 and 3) are compared. It can be observed that the CCF computed from the sum of the IMFs 

provides a slightly higher peak as well as a more accurate estimate of the time delay (9.0 ms) than the 

value 9.075 ms provided by the third IMF only.  

 

Figure 7.11: CCFs obtained from the EMD IMFs for the X1 and X2 signals: (a) IMF 3 only. 

(b) Sum of IMFs 2 and 3. 

In order to demonstrate the ability of the proposed methods to estimate the time delay without 

pre-processing in situations where existing GCC methods fail, they were applied to the Ottawa 

hydrophone leak signals used for investigating quality assessment metrics in Section 6.4.2. As shown 

in that section, without first filtering the signals with a properly selected bandpass filter, the BCC, 

GCC-PHAT, and GCC-ML methods yield estimates of 448, 88, and 86 ms (see Figure 6.8(a) and 

Figure 6.9), which differ from 90 ms the value of the true time delay. Figures 7.1(a)–7.1(b) show the 

(b) 

(a) 
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RWE, RIE, and PSR calculated for the first 5 decomposition levels of the hydrophone signals. Since 

the sampling rate of the signals is 500 Hz, only the first 5 decomposition levels are considered in the 

WTCC and DD-CC as suggested in Section 7.2.1. With the exception of the PSR for the Haar wavelet, 

the criteria attain their maximum values at the following decomposition levels: 3 (wavelet), 1 (EMD), 

5 (VMD), and 1 (EWT). While the PSR achieves its maximum at the first decomposition level of the 

Haar wavelet, it still has a high value at the third decomposition level of this wavelet.  

  

 
 

Figure 7.12: Estimating time delay in the Ottawa hydrophone signals. (a) RWE and PSR. (b) RIE 

and PSR. (c) Residual cepstrum. (d) Time delay estimates for raw and filtered signals. 

Figure 7.12(d) shows the WTCC and DD-CC time delay estimates obtained at the above-mentioned 

decomposition levels with and without the application of bandpass filters, the cut-off frequencies of 

which are indicated on the plot. The selection of these filters was described in Section 6.4.2. Also 

presented are the GCC and CEPS-TDE results. Time delay estimates that correspond to the correct 

time delay value of 90 ms are indicated with yellow cells and red font. Estimates that deviate from the 

true value are indicated with white font. The further an estimate deviates from the true value, the 

darker the shade of blue used to denote its cell. Without first filtering the signals, the GCC methods 

fail to correctly estimate the time delay in the signals. On adjusting the cut-off frequencies of the filter 

to the frequency region 11-91 Hz where the leak noise dominates and coherence is high, the BCC, 

GCC-PHAT, and GCC-ML estimates improve to 92, 92, and 90 ms, respectively, which are closer to 

the actual time delay. In contrast with the GCC methods, the alternative TDE methods all provide 

(a) (b) 

(d) 

(c) 
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accurate time delay estimates even without first filtering the signals. In fact, the application of a 

bandpass filter has little or no effect on the WTCC, EMD-CC, VMD-CC, and CEPS-TDE time delay 

estimates. The residual power cepstrum of the unfiltered signals is shown in Figure 7.12(c), where it 

can be observed that the peak occurs at 90 ms. In complete agreement with the analysis in Section 7.2, 

practically the same time delay estimate is obtained for different wavelets at the selected 

decomposition level, thus confirming that only the choice of the decomposition level is important, not 

the type of wavelet used. Bandpass filtering appears to affect the EWT-CC, with the EWT-CC 

estimate becoming inaccurate with the application of the filters with the smallest bandwidths. Based 

on this, it is recommended not to apply any bandpass filter when estimating time delays using the 

EWT-CC.  

These results demonstrate that in contrast with the conventional GCC method, the effectiveness 

proposed IB-TDE (except the EWT-CC) and CEPS-TDE methods in providing accurate time delay 

estimates are not affected by the cut-off frequencies of any applied filter. Based on their performances, 

the WTCC, EMD-CC, and CEPS-TDE methods are recommended as effective alternatives to 

conventional GCC methods. They provide practically convenient and effective means of estimating 

delays in acoustic leak detection. These methods can be implemented in leak noise correlators for 

more robust leak localisation performance. To conclude this study, the benefits and limitations of the 

proposed time delay estimators are briefly discussed in the next section. 

7.6 Benefits and limitations of the time delay estimators 

One obvious advantage of the proposed IB-TDE and CEPS-TDE methods is that the time delay can be 

obtained without requiring spectral information of the noise and leak signals or first filtering the 

signals. Due to their inherent filtering and denoising capabilities, the proposed methods achieve good 

performance when GCC methods fail as shown by the simulation and experimental results. They can 

be adopted as an effective way to accurately determine time delays between leak signals when the 

spectral characteristics of the signals and noise cannot be reliably estimated. Also, since these methods 

require the choice of not more than one parameter, their application simplifies the TDE process. This 

contrasts with the GCC approach where success is dependent on the selection of cut-off frequencies 

and choice of weighting function. The single parameter required in the WTCC and DD-CC methods, 

namely the decomposition level, can be effectively and easily selected using the RWE, RIE, and PSR, 

as demonstrated in this chapter. Ease of automation is another benefit of the proposed TDE methods, 

as they can be employed without need for any user input. In contrast, the coherence-based criterion 

(Muggleton et al., 2011) and cross-power spectrum-based criterion (Almeida, 2013) for selecting cut-

off frequencies in the conventional GCC approach are generally difficult to apply without user 

interaction. The possibility for automated operation makes the proposed methods suitable for use by 

people who may lack the technical expertise required to select appropriate weighting functions and 
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cut-off frequencies in leak localisation systems. These advantages make the proposed methods 

practically attractive for estimating time delays in acoustic leak detection.  

The only serious disadvantage that can be highlighted for the IB-TDE and CEPS-TDE methods 

is higher computational complexity compared to the conventional GCC methods. For example, the 

CEPS-TDE method involves calculation of multiple cepstra, while the IB-TDE methods require 

additional decomposition of the signals as well as selection of best decomposition level. As already 

stated, the computational burden of the WTCC can be reduced by using the simplest orthogonal 

wavelet, the Haar wavelet. The fast EMD algorithm (Myakinin et al., 2014; Zhang et al., 2021) can be 

employed to reduce the computational burden of the EMD-CC. Further works will focus on 

refinement of the methods in terms of reducing their computational complexity. 

7.7 Summary and conclusion 

This chapter focused on the aspect of time delay estimation (TDE) problem in acoustic leak detection 

concerning the improvement of the accuracy of the time delay estimate. To achieve this, two 

alternative methods that do not require explicit selection of cut-off frequencies and weighting 

functions were introduced. The first referred to as inherent bandpass filtering method (IB-TDE) 

applies transforms with inherent filtering capability, namely the wavelet transform (WT) and data-

adaptive decompositions, to leak signals and then completes the cross-correlation processing on the 

decomposed signals. The second referred to as the cepstral method (CEPS-TDE) calculates the power 

cepstra of the sum and difference of the leak signals and then estimates the time delay from the 

location of the highest peak in the difference of the resulting two cepstra.  

While the proposed methods are more computationally expensive compared to conventional 

generalised cross-correlation (GCC) methods, numerical simulations and experimental results show 

that they have fewer failures and lower estimate errors than the GCC methods. Their superiority over 

the GCC is due to their feature of inherently filtering the signals prior to calculating the time delay. An 

important conclusion is that the accuracy of the wavelet-based and data-adaptive methods is 

determined primarily by the selected wavelet decomposition level rather than the wavelet or data 

decomposition employed. The selection of best decomposition levels is facilitated using simple 

criteria, such as the relative wavelet energy (RWE), relative IMF energy (RIE), and the peak-to-side 

lobe ratio (PSR). By eliminating the need for preliminary filtering and choice of weighting functions, 

these methods provide an attractive alternative for robust TDE in acoustic leak detection without the 

limitations of the conventional GCC methods.  
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CHAPTER 8 

COMBINING TRANSIENT AND STEADY-STATE 

METHODS FOR ACOUSTIC LEAK DETECTION 

An important conclusion from the results in the preceding chapters in this thesis is that each acoustic 

leak detection method, transient or steady-state, offers practical benefits but suffers from issues that 

limit its applicability in some situations. Moreover, each method is suitable only for specific leak 

detection tasks. As a result, no one method is adequate for detecting and locating leaks in all 

application scenarios. Robust and reliable performance can only be achieved through a systematic 

synergy of different methodologies. The primary aim of this chapter is to explore the possibility of 

employing this strategy in order to improve acoustic leak detection. To achieve this aim, different 

acoustic leak detection methodologies are compared, and an approach for their simultaneous 

application is developed. Experimental results are provided to investigate the effectiveness of the 

proposed approach. 

8.1 Comparison of acoustic leak detection methods 

In this section, the acoustic leak detection methods are compared in terms of cost, ease of 

implementation and data analysis, and suitability for leak detection tasks. Table 8.1 summarises the 

use, advantages, and shortcomings of transient and steady-state methods, including those proposed in 

Chapters 3–5. Use of listening devices is suitable for routine acoustic leak surveys and pinpointing of 

discovered leaks. This technique is the least expensive among acoustic methods in terms of hardware 

cost. However, it is labour-intensive and so inefficient for regularly inspecting a large pipe network. 

Moreover, analysis and interpretation of results require a trained and experienced technician to 

distinguish between sounds from leaks and extraneous noise. Modern electroacoustic listening devices 

that include features such as digital filters and electronic displays improve leak detection effectiveness 

and aid objective interpretation of results (Sewerin, 2023).  

Compared to use of listening devices, acoustic noise logging and cross-correlation incur 

substantially higher equipment cost but less labour costs (Hunaidi et al., 2004). While acoustic noise 

logging is applicable for discovering leaks, cross-correlation can only be used to locate leaks after 

their discovery. They are effective options for discovering and locating leaks in busy or inaccessible 

areas where manual surveys may not be feasible or effective. Practical application of these methods 

requires technical expertise to set appropriate data analysis parameters, for example, filters in leak 

noise cross-correlators. Depending on the capabilities of the employed leak detection devices, a 

trained technician may be needed to interpret the data acquired by the devices, especially lower-end 
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Table 8.1: Summary of steady-state and transient methods. 

Method Suitable tasks Advantages Shortcomings 

Steady-state methods 

Listening 

devices 

Leak detection and 

pinpointing 

Simplicity and ease of use.  

Relatively inexpensive. 

Minimal system interruption. 

Needs no calibration or further 

analysis. 

Labour-intensive. 

Infrequent surveys. Possibly 

significant water loss before 

leak discovery. 

Subjective results. 

Small leak detection range. 

 

Acoustic noise 

logging 

Leak awareness 

Suitable for busy areas. 

Provides long-term record. 

Automated operations. 

May be used with other 

loggers to quantify leaks. 

Can detect old and new leaks. 

Not suitable for locating leaks. 

High false alarm rates and 

questionable hardware 

reliability. (Van Der Kleij and 

Stephenson, 2002) 

Takes a long time to detect and 

confirm leaks. 

Passive steady-

state detection 

Faster than acoustic noise 

logging. 

Only a single measurement 

required. 

Simple to implement. 

Requires initial calibration for 

robust operation.  

Cannot locate leak. 

May be ineffective for 

detecting ‘weak’ leaks. 

 

Conventional 

cross-

correlation 

Leak localisation 

Simple to deploy and use. 

Suitable for pipes in 

inaccessible routes.  

Minimal system interruption. 

Requires knowledge of wave 

speed. 

Relatively high equipment 

cost. 

Inefficient for plastic and 

large-diameter metallic pipes 

(Hunaidi, 2012). 

Technical knowledge required 

to set appropriate parameters. 

Blind Channel 

Identification 

Knowledge of wave speed is 

not required. Suitable for 

buried pipes with unknown 

properties. 

Capability to estimate the 

wave speed. 

Affected by channel estimation 

errors. 

Susceptibility to noise. 

May be ineffective in non-

uniform pipe sections. 

Less expensive than 

conventional cross-correlation 

Multipath 

identification 

A priori knowledge of wave 

speed not required. 

Capability to estimate the 

wave speed.  

Requires accurate pipe system 

schematic and presence of 

known discontinuities. 

Affected by multipath 

identification errors and noise. 

Not effective in pipes with 

high attenuation, for example, 

large-diameter pipes. 

Reduced leak detection range. 
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models (EPA, 2010). Higher-end devices include additional features such as frequency filtering, 

digital readouts, and correlating analysis, thereby providing more ‘automated’ interpretation of data 

(Kilinski, 2019). However, their use increases the cost of leak detection. It should be noted that 

devices that combine the functionalities of acoustic noise logging and leak cross-correlation (the so-

called correlating leak noise loggers) are commercially available (Hamilton and Charalambous, 2020). 

The use of such devices can reduce the overall hardware cost of acoustic leak detection. Another 

measure for reducing cost is to employ cross-correlation systems that use personal computers instead 

of dedicated leak noise correlator hardware devices. Acoustic noise logging and cross-correlation can 

be implemented either using permanently installed devices or employed in an ad-hoc manner using a 

‘lift and shift’ scheme. Data from permanently installed devices are generally downloaded during a 

‘drive-by’ survey. In the 'drive by' scheme, at regular interval, the devices are driven past by an 

operative with a leak detection system in their van. The devices transmit data via radio to the leak 

detection system during the ‘drive-by’ survey (Bykerk and Valls Miro, 2022).  

The passive steady-state leak awareness method proposed in Chapter 3 offers the possibility of 

discovering leaks from a short-term measurement in a timelier manner than is possible with acoustic 

noise logging. In fact, only a single measurement is required to identify the presence of a leak in the 

pipe using this method. While this method is simple to apply, it may not be effective for detecting 

‘weak’ leaks that do not exhibit clearly distinguishable features in their signal spectrum. Furthermore, 

it requires the availability of leak-free reference signals to set the LDM normalisation factor for robust 

performance. The steady-state system identification and multipath identification methods proposed in 

Chapters 4 and 5, respectively, can locate leaks without knowledge of pipe properties or wave speed 

unlike the leak noise correlation method. They are also relatively less expensive than cross-correlation 

techniques that use dedicated leak noise correlators. However, both methods are susceptible to noise 

and any factor that adversely affects TDE accuracy. The system identification method may not be 

effective in pipes with non-uniform sections. Compared to other steady-state acoustic leak localisation 

methods, the range of the multipath identification method is reduced. Also, this method is not likely to 

be effective in pipes with high attenuation, for example, large-diameter pipes used in transmission 

Transient methods 

Method Suitable tasks Advantages Shortcomings 

Passive 

transient 

detection 

Leak awareness Fast, real-time detection. 

Simple to implement. 

Requires only a single 

recording. 

Continuous sensor operation. 

Cannot locate leak. 

Can only detect new leaks. 

Active 

transient 

(matching 

method) 

Leak awareness, 

Leak localisation 

Fast, real-time detection. 

Knowledge of wave speed is 

not required. 

Capability to estimate the 

wave speed. 

Can detect old and new leaks. 

Requires accurate pipe system 

schematic and presence of 

known discontinuities. 

Effectiveness depends on 

ability to locate reflections. 

Lack extensive experimental 

validation on real systems. 
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applications. Furthermore, it can only be applied in the presence of known discontinuities close to the 

sensor location.  

In contrast with most steady-state methods, transient methods by their nature are suitable for 

identifying leaks in real time. They, however, require permanently installed sensor systems that 

operate and transmit data continuously to a central server. The passive transient leak awareness 

method proposed in Chapter 3 is only capable of discovering new leaks that trigger ‘strong’ acoustic 

transients. Also, this method may issue false alarms in the presence of a new persistent non-leak signal 

source. Among all the methods listed in Table 8.1, only the active transient (matching) method is 

capable of both detecting and locating old and new leaks. All the other methods are suitable for either 

leak awareness or for locating discovered leaks. Unlike other leak localisation methods, the matching 

method can be implemented using only one sensor. It offers the capability of estimating the wave 

speed. However, like the multipath identification steady-state method, it requires accurate pipe system 

schematic and presence of known discontinuities in the pipe. Since its effectiveness generally depends 

on the ability to locate reflections in measured leak signals, it is affected by multipath identification 

errors and noise. Due to the additional cost associated with battery, data storage, and data 

transmission, transient methods are likely to incur higher hardware cost than steady-state methods. 

Hence, these methods may not be cost effective in large pipe systems, and it may be more appropriate 

to limit their application to critical sections with multiple leak possibilities. It should be noted that 

steady-state methods, acoustic noise logging in particular, can also be used for continuous monitoring 

of the pipe system if the acoustic noise loggers are programmed to operate continuously. Since 

transient methods do not require the presence of an operator after the initial set-up (for example, for 

‘drive by’ or manual data download), they are less labour intensive. Transient methods are generally 

more computationally expensive than steady-state methods due to complexity involved in processing 

and interpreting transient data. 

It can be seen acoustic leak detection methods differ in terms of cost, ease of implementation 

and data analysis, suitability for leak detection tasks, and the level of expertise required to translate the 

inspection data into a more comprehensive format for interpretation. Each leak detection method can 

only be applied when certain conditions are satisfied. Apart from the active transient (matching) 

method which can be implemented using only one sensor, the other leak localisation methods in Table 

8.1 require two sensors bracketing the suspected leak. Any method that employs reflectometry 

principles can only be employed when multiple known discontinuities are present not far (< 100 

metres) from the sensor locations. Otherwise, the reliability of such methods reduces significantly. 

These conditions limit the application scenarios under which the acoustic methods can be applied. The 

reliability of any acoustic method depends on a number of factors, particularly, the pipe material and 

size, measurement environment, and mode of deployment. Acoustic methods are generally less 

reliable in non-metallic pipes and in large-diameter pipes (greater than 300 millimetres) due to high 

level of acoustic attenuation (Hunaidi, 2012). Due to signal attenuation, all acoustic methods can only 
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be used to detect and locate leaks not too far (< 100 metres for plastic pipes) from the sensor location. 

Their reliability is also reduced in very noisy environments, such as city centres.  

An important conclusion from the comparison of the results in Table 8.1 is that both transient 

and steady-state methods can potentially play crucial roles in acoustic leak detection practice. Based 

on their advantages and shortcomings, each method is suitable for some situations but not others. A 

synergy of these two categories of methods is likely to improve reliability of acoustic leak detection, 

compared to the use of a single method. Such a possibility is explored in the next section. 

8.2 Combined acoustic leak detection approach 

This section concerns the development of an acoustic leak detection approach that combines different 

transient and steady-state leak detection methods. In addition to the requirements outlined in Section 

1.5 in Chapter 1, such a combined approach must also satisfy the following:  

• Capability for simultaneous acquisition and processing of acoustic transients and steady-state 

leak signals under a common (existing) measurement and data acquisition setup. 

• Capability for fast and possibly real-time leak detection. 

• Suitability for essential leak detection tasks, namely, leak awareness and leak localisation. 

• Ability to provide and systematically combine independent estimates of the leak location. 

• Ability to infer all required parameters from readily available data. 

In developing such an approach, several important factors must be considered, including 

selection of leak detection methods, choice of data acquisition system and measurement setup, and 

techniques for combining results. The selection of acoustic leak detection methods and sensors is 

briefly discussed in the next subsection, while data fusion techniques are outlined in Section 8.2.2. 

8.2.1 Selection of leak detection methods and sensors in the combined approach 

Generally, selection of leak detection methods for a water pipe system ultimately depends upon the 

performance requirements specific to the pipe system and involves a trade-off between various 

criteria, such as cost, effectiveness, maintenance requirements, and computational complexity (ADEC, 

1999). Effectiveness deals primarily with the performance related aspects of a leak detection method 

and is evaluated in terms of sensitivity, accuracy, reliability, and robustness. Focus on attaining ideal 

performance in one area usually results in some degradation of the other criteria. For example, a 

sensitive leak detection method is normally very reliable but will frequently generate alarms during 

normal pipeline operations.  

Selection of appropriate methods for a pipe system can be achieved via multi-criteria decision 

analysis (MCDA), which is concerned with solving decision and planning problems involving 
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multiple conflicting criteria (Saaty, 1987). Each criterion is assigned a weight that denotes its relative 

importance in the decision making. Such weightings can vary depending on the application scenario 

being considered, for example, material, size, and criticality of the pipe. They can be derived either 

from multi-parameter studies or based on synthesis of past reported performances in field trials. Cost 

is typically the most important criterion considered when selecting methods for small-diameter pipes 

with diameter less than 300 mm (Yazdekhasti et al., 2018). Reliability and robustness are crucial in the 

case of critical large-diameter pipes used in transmission applications. It is challenging to derive set of 

representative weightings when there is a wide range of application scenarios and criteria. Therefore, 

instead of employing the MCDA approach to select specific methods for each possible application 

scenario, all the steady-state and transient methods listed in Table 8.1 (except use of listening devices) 

are considered for inclusion in the combined approach. The use of listening devices is excluded 

because it does not have capability for data storage and advanced signal processing. Another reason 

for considering all available methods in the combined approach is that all acoustic methods considered 

in this thesis can be realised using existing measurement setup and sensors. The methods can be 

implemented using simple algorithms on a personal computer and do not require high technical 

expertise for interpretation of results. Hence, there is no substantial difference in cost (hardware, 

software, labour, and data analysis) between the methods. The only criteria that may vary vastly 

between the methods are suitability for a given pipe system and leak detection task.  

In the combined approach, one algorithm involving the available methods is developed, and 

then all methods applicable to the pipe system under consideration are ‘activated’ during leak 

detection. The term ‘activated’ is used to indicate that the measured data can be analysed using the 

given method. For example, cross-correlation can only be employed when there are two sensors on 

either side of the suspected leak. On the other hand, multipath identification methods require 

knowledge of locations of discontinuities in the pipe system. Including all available methods and then 

‘activating’ the applicable ones maximises the scope of the combined approach and ensures that 

essential leak detection tasks can be performed in a lot of application scenarios. It should be noted that 

due to the inherent inability of acoustic methods to directly estimate leak intensity, leak size estimation 

is not considered in the combined approach. It is, however, possible to incorporate additional signal 

processing techniques in order to estimate leak size from acoustic/vibration data, for example, using 

machine learning tools (see Butterfield (2018)). This is outside the scope of this research.  

As stated in previous chapters, any acoustic pressure or vibration sensor can be employed for 

acoustic leak detection (Gao et al., 2005; Almeida, 2013). In addition to cost, the important factors that 

must be considered when choosing a sensor system are pipeline access requirements, mode of 

deployment, communication protocols, and maintenance requirements. Hydrophones must be inserted 

into the water via openings on fire hydrants or other outlets along the pipeline. In contrast, 

accelerometers are mounted directly on the surface of the pipe or on any fixture in contact with it. Use 

of hydrophones is therefore more restrictive compared to accelerometers. More importantly, it should 
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be noted that in most acoustic methods, the type of sensor used does not make a substantial difference 

(as shown by the similarity of results obtained for hydrophone and accelerometer signals by Almeida 

(2013)). It is more important to ensure that any sensors employed have good metrological 

characteristics, including high accuracy, consistency, validity, uniqueness, and data completeness 

(Romano, 2012). Also, the sensor system must be capable of operating in the mode required by the 

included leak detection methods. Transient methods can only be deployed with a sensor system 

capable of operating and transmitting data in real time. On the other hand, intermittent operation and 

manual data collection may be employed for steady-state methods without impacting reliability. 

8.2.2 Description of combined leak detection approach 

A combined approach that fulfils the requirements outlined above is depicted by the algorithm shown 

in Figure 8.1. The algorithm consists of major steps geared towards specific signal processing or leak 

detection tasks, most of which can be accomplished using multiple approaches: data acquisition, 

transient detection, transient extraction, leak awareness, leak localisation, and data fusion. Apart from 

the measured signals, the input data may also include metadata about the pipe system layout, pipe 

materials, mode of sensor operation, and sensor locations. The additional input information is required 

to determine what methods are applicable. Each step of the algorithm is briefly described. 

The data acquisition step is responsible for the acquisition of transient and steady-state data. 

This is accomplished using a sensor system consisting of one or multiple acoustic/vibration sensors 

installed at strategic locations in the pipe system. The next task after data acquisition is transient 

detection, the aim of which is to detect and locate acoustic transients in the measured signals. This can 

be achieved using the NSM transient detector proposed in Chapter 3. Further analysis with transient 

methods is only possible in case of positive transient detection inference. 

The leak awareness step can be accomplished using four independent methods: passive transient 

method (Chapter 3), passive steady-state method (Chapter 3), active transient (matching) method 

(Chapter 4), and acoustic noise logging. In contrast with the other methods, passive transient method 

requires continuous sensor operation in order to detect new leaks. The applicability of the matching 

method is dependent on the presence of known discontinuities in the pipe, as discussed in Chapter 4. 

To improve robustness of leak detection, a majority rule may be employed to reduce the chances of a 

false positive: a leak alert is only given if at least two of the ‘activated’ leak awareness methods give 

positive inferences about the presence of leaks in the pipe. Otherwise, it is classified as a false alarm.  

If the presence of a leak is confirmed, the signals are further analysed to locate the leak. Four 

methods are available for leak localisation: matching method (Chapter 4), steady-state multipath 

identification (Chapter 4), and steady-state blind channel identification (Chapter 5), and conventional 

cross-correlation. In contrast with the conventional cross-correlation, the other three methods calculate 

the leak location exclusively from the measured signals without a priori knowledge of the wave speed. 
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They also provide estimates of the wave speed, which can be used to obtain additional leak location 

estimates via the cross-correlation technique. In case none of the alternative methods is activated, the 

leak can only be located with the cross-correlation method using the calculated wave speed value. Like 

the matching method, the condition required to ‘activate’ the steady-state multipath identification 

method is knowledge of discontinuities in the pipe. While the matching method is feasible with only 

one sensor, the other leak localisation methods require two sensors bracketing the detected leak.  

In the last step of the algorithm, the leak location estimates from the ‘activated’ leak localisation 

methods are systematically combined to produce the final leak location value. Two ways to achieve 

this are simple averaging and inverse-variance weighting (Hartung et al., 2008). In the former, the 

final value is simply the average of the leak location estimates, while in the latter, it is their weighted 

average using the inverse variance of the ‘activated’ methods as weights. Inverse-variance weighting 

is preferable if the variances of historical estimates obtained on the same pipe or similar measurement 

 

Figure 8.1: Combined acoustic leak detection approach. 
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environments are available. A majority rule can be employed such that the final leak location estimate 

is taken as the (weighted) average of the two most consistent estimates.  

In order to improve performance when transient and steady-state methods are ‘activated’ 

simultaneously, an optional step of transient extraction using spectral subtraction (Vaseghi, 1996) can 

be carried out after an acoustic transient has been detected. This step separates transient and steady-

state components of the measured signal. In the spectral subtraction method, the time-averaged 

spectrum of the steady-state component (assumed to be stationary during the measurement period) is 

subtracted from the spectrum of the composite signal (‘total’ spectrum) in order to obtain the ‘residual 

spectrum’, which is considered the spectrum of the transient component. The time-averaged spectrum 

of the steady-state component is estimated from the portion of the measurement preceding the 

transient onset. To restore the transient component, the ‘residual spectrum’ is combined with the phase 

of the whole signal and then transformed via IFT to the time domain. The extracted transient and 

steady-state components are then analysed further using appropriate transient and steady-state 

methods, respectively.  

The practical advantages of the combined approach as well as its limitations will be discussed at 

the end of this chapter. In the next section, its effectiveness is investigated using experimental data.  

8.3 Experimental results 

The combined approach described in the preceding section was applied to three categories of datasets 

acquired on the leakage test rig. These datasets have been previously described in Section 3.4. The 

first dataset category contains leak transients generated when a leak was simulated by opening the 

valve at L1, while the second category contains transients generated by pipe impacts in the presence of 

an ongoing leak at L1. The third category comprises steady-state leak signals. The reason for selecting 

three different datasets is to illustrate the ability of the combined approach to detect and locate leaks in 

a ‘self-contained’ manner by automatically ‘activating’ applicable transient and steady-state methods 

depending on the signals and the input information. Note that the results presented in this section is 

somewhat a concatenation of previous results, so for brevity, only the results for signals measured 

with a leak at L1 are presented. The only input information available to the proposed algorithm are the 

measured signals, inter-sensor distance d  = 5.5 metres, and locations of the known discontinuities 

(endcaps, elbow, inlet valve, inlet tee connection).  

To assess the effectiveness of the combined approach, the cross-validation technique usually 

used in machine learning applications was employed. The available datasets described in Section 3.4 

were considered the training subset, while new datasets not previously analysed, one from each 

category, was considered the validation subset. Table 8.2 shows the summary of the results obtained 

for the training datasets in Chapters 3-5, including the success rate of the leak awareness methods, and 
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the average value and standard error (standard deviation) of the leak location estimate for the leak 

localisation methods.  

Table 8.2: Leak location estimates using the combined approach. 

Input to 

algorithm:  

• X1 and X2 signals 

• Continuous sensor operation 

• Inter-sensor distance d  = 5.5 metres 

• Location of known discontinuities 

Dataset 

 
Leak 

transients 

Active 

transients 

Steady-

state 

signals 

Method   

 

Proportion of 

correct 

inferences 

 

Passive transient 0.89 ✓ ✓  

Passive steady-state 1.00 ✓ ✓ ✓ 

Acoustic noise logging - - - - 

 Leak location estimate 1d̂  (m)  

 

Mean ± 

standard 

error (m) 

(Wave speed estimate ĉ  (m/s)) 

Active transient (matching 

method) 

1.65±0.41 
- 1.29 (371.5) - 

Passive multipath identification 
1.16 ±0.06 

1.05 (349) 1.12 (349) 
1.18 

(349) 

Blind channel identification 
1.21 ±0.08 

1.10 (367) 1.04 (367) 
1.10 

(367) 

Conventional 

cross-

correlation 

calculated wave 

speed 

1.69 ±0.04 

1.45 (279) 

matching method 

wave speed 
- 1.01 - 

passive multipath 

identification 

wave speed 

1.05 1.12 1.18 

BCI wave speed 1.10 1.04 1.10 

Final estimate 

1d̂  (m) 

Simple 

averaging 

 
1.08 1.10 1.14 

Inverse-

variance 

weighting 

 

1.07 1.06 1.14 

The passive transient and steady-state leak detection methods exhibit good performance with a success 

rate of 89% and 100%, respectively. While the conventional cross-correlation method achieves a 

lower standard error than the alternative leak localisation methods proposed in this thesis (namely, the 

matching, passive multipath identification, and BCI methods), it can be observed that it has a higher 

bias in the leak location estimate due to the systematic error in the calculated wave speed. Note that 

the time delay estimate in the cross-correlation method was accurately obtained using the WTCC 

proposed in Chapter 7, which explains the low standard error of the estimates. In practical situations 

where there certainly exists some error in the wave speed (due to uncertainties in pipe material 
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properties and environmental conditions), the alternative methods are likely to provide a more accurate 

leak location value closer to the actual leak location in the pipe. Among these methods, the passive 

multipath identification approach appears to be the most accurate for the leakage test rig, as it exhibits 

the lowest variance in the leak location estimates. This is perhaps not surprising, since the reflections 

from the endcap close to X1 are very easily detectable in the X1 signals given its proximity to the X1 

access point. The matching method exhibits the largest standard error because of the very small 

sample size used to calculate the error. As can be seen in Section 4.6.1, only 4 successful cases were 

available. 

The results obtained for the X1 and X2 signals from the validation subset are reported in Table 

8.2. This validation set contains signals measured with a leak simulated at L1 and an active transient 

introduced by hitting the endcap close to X3. If a given method is ‘activated’ for a dataset, the results 

are indicated with orange cells, while inapplicable methods are indicated with blue cells. Where 

necessary, the wave speed estimate is also presented. A checkmark ✓ is used to indicate a positive 

leak detection result, while the symbol  indicates a negative result. It can be observed that the 

matching method was only successfully ‘activated’ for the signals with active transients. On the other 

hand, all the leak localisation methods were ‘activated’ for the three datasets. In all three cases, the 

conventional cross-correlation using calculated wave speed value was not ‘activated’ as the ‘activated’ 

multipath identification and BCI methods provide the required wave speed information. The results 

obtained for different methods exhibit varying level of accuracy in spite of being calculating from the 

same input signals. This is related to the reliability of the extra information available to each method 

and the precision of the adopted signal processing methods. For example, error in the location of the 

known discontinuities or TDOAs of reflections reduces the accuracy of the estimates in the multipath 

identification methods. The BCI method exhibits the highest leak localisation error of 0.13 metres 

compared to 0.12 metres for the matching and passive multipath identification methods. It can be 

noted that the cross-correlation leak location estimates are identical to the estimates of the method 

supplying the wave speed value (except the matching method). This is because the passive multipath 

identification and BCI methods are formulated based on the cross-correlation equation. Only the leak 

location estimate obtained using the wave speed estimated by the matching method is independent. 

Simple averaging gives more accurate final leak location estimates than inverse-variance weighting in 

this case. As already stated, this is because of the large variance attributed to the matching method. 

Nonetheless, the largest error in final estimates obtained via inverse-variance weighting is less than the 

largest leak localisation error for the individual methods. The maximum absolute error in the leak 

location estimates are 0.09 metres for simple averaging and 0.11 metres for inverse-variance 

weighting. Both are less than the maximum error observed for the single methods (0.13 metres for the 

BCI method and 0.12 metres for the matching and passive multipath identification methods). Despite 

the varying accuracy of results from individual methods, the final estimates obtained via simple 

averaging and inverse-variance weighting are fairly accurate, thus demonstrating the effectiveness of 
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these fusion approaches. This shows that the ability to combine independent estimates from multiple 

methods indeed improves the robustness and reliability of acoustic leak detection.  

This experimental example demonstrates the potential viability of detecting and locating leaks 

in a practically convenient ‘self-contained’ manner directly from the measured signals using the 

proposed combined approach. The benefits and limitations of the approach are discussed in the next 

section.  

8.4 Benefits and limitations of the combined leak detection approach 

A couple of advantages can be highlighted for the combined approach. One big advantage is that 

acoustic leak detection is carried out using only readily available data. The ‘self-contained’ nature of 

the approach ensures that all parameters required by one method can be inferred from another method 

even when pipe properties are unknown. For instance, the matching method can estimate the wave 

speed, which can then be used in the cross-correlation method, thereby eliminating the need to rely on 

‘third-party’ wave speed value. Conversely, results from steady-state methods can be used to 

‘calibrate’ or adjust settings in the transient methods. By including most of the available acoustic 

methods, the combined approach presents a holistic approach that ensures that essential leak detection 

tasks, namely, leak awareness and leak localisation, can be accomplished in a lot of application 

scenarios. Applicable leak detection methods for each task are automatically selected based on the 

available input information, making the approach more universal and practically convenient than use 

of a single method. Independent estimates from applicable methods can also be combined to provide 

more accurate results. This redundancy makes the combined approach more robust. As stated 

previously, all methods considered in the combined approach operate on the same input 

acoustic/vibrations signals, thus eliminating the need for multiple data acquisition systems, 

measurement setup, or sensor types. Another benefit offered by the combined approach is the reduced 

time required for leak detection and localisation. Instead of relying on acoustic logging that may take 

days to detect the presence of leaks in the pipe systems, the integration of transient methods allows for 

near real-time leak detection. Furthermore, transient methods can help in highlighting possible leak 

locations in the network, thereby reducing the search area to pinpoint leaks using steady-state 

methods.  

There are certain issues that may affect the practical application of the combined approach. 

Firstly, the combined method is not immune to the physical limitations of the component acoustic 

methods, especially as regards pipe attenuation. Severe signal attenuation results in inaccurate leak 

location estimates no matter how computationally sound the applied signal processing tools are. The 

range at which leaks can be effectively detected is still limited by the maximum range of the 

component methods. To cover a large extent of the pipe system, it is necessary to install many sensors 

at strategic locations, which may increase the cost of the leak detection system. Secondly, the 
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assumption about independence of estimates from different methods is not strictly true since all 

included methods analyse the same data. Hence, any error in the measured signals is likely to affect all 

estimates, thereby skewing the final result. Also, error can potentially propagate from one method to 

the other due to use of wave speed estimate from one method in the other. Since the final leak location 

estimate is a (weighted) average of the obtained estimates, a large error in one estimate may skew the 

final result. Thirdly, the computational complexity of the combined approach is higher compared to 

use of a single method since it involves very different signal processing methodologies. As a result, 

the implementation of the approach in hardware is likely to be practically challenging. Apart from 

computational considerations, other practical issues which may also limit hardware implementation 

are suitability for real-time operation, space requirements, frequency of operation, etc. Lastly, like 

most acoustic methods, the combined approach in the current form is incapable of estimating leak size. 

As noted above, it is possible to incorporate this functionality by employing a machine learning 

technique. It could be worthwhile to investigate this possibility in future studies.  

It is necessary to tackle the identified issues to improve the practical applicability of the 

combined approach. Further validation in a variety of practical application scenarios is also required. 

Nonetheless, despite the highlighted limitations, the results obtained in this chapter have demonstrated 

that a combined approach that involves simultaneous application of multiple leak detection 

methodologies is an attractive and potentially viable way to improve acoustic leak detection process in 

the water industry. 

8.5 Summary and conclusion 

In order to overcome the limitations of individual acoustic methods, an approach that combines 

transient and steady-state leak detection methodologies has been presented in this chapter. The 

combined approach included most of the existing acoustic methods and the alternative methods 

proposed in this thesis, allowing leaks to be detected and located in a variety of practical scenarios. 

Based on the available input data, all applicable leak detection methods are automatically selected, and 

the independent leak detection results are then combined in a systematic way. The advantages of the 

combined approach were discussed, including suitability for real-time operation, ability to detect and 

locate leaks in a ‘self-contained’ manner directly from the measured signals, and improved robustness 

compared to use of a single method. Its limitations were also identified, in particular, effect of 

systematic data errors, high computational burden, and limited range due to pipe attenuation. This 

method was experimentally validated using data from the leakage test rig, with the results showing the 

proposed method presents a potentially viable approach to achieve more robust and effective acoustic 

leak detection in water pipes. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

In this chapter, the main conclusions of this thesis are summarised together with suggestions for future 

work.  

9.1 Conclusions 

In this thesis, possible strategies for tackling some issues limiting the effectiveness of detecting and 

locating leaks in water pipes (especially in plastic pipes) using acoustic methods have been 

investigated. These strategies were developed by considering acoustic leak detection through a number 

of alternative perspectives: as a transient/signal detection, as a multipath identification, and as a 

system identification problem. The main conclusions of the work in this thesis can be summarised as 

follows: 

1. Leak occurrence is accompanied by acoustic transients that can be detected using 

acoustic/vibration sensors installed in the fluid or on the pipe. In contrast with acoustic 

transients induced by normal pipeline operations, acoustic transients generated by leak 

occurrence introduce sustained changes in the temporal and spectral properties of the signals 

resulting in a new steady state. The presence of a new leak can thus be inferred by detecting 

acoustic transients and identifying the type of change they introduce in the measured signals 

as outlined in Chapter 3.  

2. It has been found that signal properties that characterise the shape and variation of signal 

spectrum are sensitive to the presence of a leak, with their values differing vastly for 

background noise and leak signals. Hence, leaks can be discovered by defining a leak 

detection metric (LDM) that quantifies spectral shape and spectral variation in 

acoustic/vibration signals. This approach is able to detect leaks that do not generate strong 

transients or cause substantial changes in the time-domain properties of the measured signals. 

3. Acoustic transients can be detected by quantifying the local non-stationarity of the signal with 

respect to a statistical parameter as described in Chapter 3. It was found that such a transient 

detector is more general than those based on a generalised likelihood ratio test (GRLT) since it 

makes no assumption about the distribution of the background noise and the transient. Also, it 

has a high detection power and can precisely locate the onset and end of acoustic transients in 

signals.  
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4. The phenomenon of acoustic wave reflection at discontinuities provides a viable means for 

detecting and locating leaks as demonstrated in the transient and steady-state methods 

developed in Chapter 4. In the transient method, the wave speed and location of leaks in a pipe 

is estimated by minimising a cost function that matches the times difference of arrival 

(TDOAs) of reflections of acoustic transients in acoustic/vibration signals with the location of 

known discontinuities in the pipe. It was also shown that the wave speed and leak location can 

be obtained from steady-state leak signals in a variety of practical scenarios by solving a 

system of two equations formulated from the TDOAs of leak noise reflections.  

5. The TDOA of a reflected wave with reference to a direct-path wave in an acoustic/vibration 

signal can be estimated from the autocorrelation function (ACF) and cepstrum of the signal, as 

was shown in Chapter 4. It was found that the effectiveness of detecting and estimating the 

TDOA is lower in pipes with high attenuation and in the presence of high background noise 

level. Numerical and experimental results showed that the cepstral method is vastly superior to 

the autocorrelation method. Unlike the autocorrelation method, the cepstral method can detect 

reflections even in the presence of tonal components or resonances in the signals. 

6. The impulse response functions (IRFs) of the pipe that relate the signals generated at the leak 

location and the signals acquired at the measurement points can be estimated from the 

measured signals exclusively using a blind channel identification (BCI) technique as 

demonstrated in Chapter 5. By introducing spectral constraints on the estimated pipe IRFs, the 

propagation times of the leak noise in the physical channels can be estimated. Using this 

information, the leak location can be determined without knowledge of the wave speed or pipe 

material properties.  

7. A quantitative analysis of the cross-correlation equation in Chapter 6 showed that even a small 

error in the time delay estimate can result in a large leak localisation error, especially if both 

the wave speed and time delay are simultaneously over-estimated. The quality of the time 

delay estimate in correlation-based time delay estimation (TDE) methods can be inferred from 

the statistical properties of the cross-correlation function (CCF), including probability 

distribution, processing gain (PG), and deviations of time delay estimates from their statistical 

mode. It was found that quality assessment metrics based on these properties can also be used 

to evaluate the effectiveness of possible choices of filters and weighting functions for TDE.  

8. Two alternative methods, one based on wavelet transform (WT) and data-adaptive 

decompositions, and the other based on cepstral analysis, were developed in Chapter 7 for 

TDE in acoustic leak detection. It was found that the accuracy of the time delay estimate is 

determined primarily by the decomposition level of the WT or data-adaptive decomposition, 

and the choice of wavelet function or type of data-adaptive decomposition scheme is less 

crucial. Selection of best decomposition level is facilitated using simple criterion like the 
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relative wavelet energy (RWE), relative IMF energy (RIE), or the quality metrics proposed in 

Chapter 6. An advantage of these methods is that they are capable of estimating time delays 

without need to first filter the signals unlike the conventional generalised cross-correlation 

(GCC) methods.  

9. Improved acoustic leak detection can be achieved by combining different leak detection 

methods as demonstrated in Chapter 8. It was found that such a combined approach presents 

an effective way to carry out acoustic leak detection in a ‘self-contained’ and ‘automated’ 

manner directly from the measured signals. Based on the input data, appropriate methods 

applicable for a given leak detection task, for example, leak awareness and leak localisation, 

can be automatically selected, and parameters (for example wave speed) required by one 

method can be provided by another. The independent leak detection results from the different 

component methods can then combined in a systematic way. 

The methods proposed in this thesis were validated using experimental data acquired on an in-

vacuo laboratory pipe leakage test rig, which is described in Chapter 2. Overall, test results generally 

agreed with numerical simulation results. They demonstrated the effectiveness of the leak detection 

methods based on transient/signal detection, multipath identification, and system identification 

principles as well as the combined approach. The experimental results indicate that the alternative 

TDE methods and the metrics proposed for assessing the quality of the time delay estimate are 

generally robust and achieve good performance for leak signals.  

9.2 Recommendations for future work 

One major limitation of this work is that the proposed alternative leak detection and signal processing 

methods have only been validated using data from a limited leakage test rig that differs from real 

water distribution systems in a lot of ways. The reported results can only be generalised after a 

thorough investigation in real pipe systems. A more representative database of signals can be collected 

from different pipe systems to compare with the results reported in this thesis. This would allow for 

the possibility of investigating important factors that may have negligible effects on signals from the 

test rig but substantial effects on signals from real systems, for example, surrounding medium and 

high number of discontinuities. In addition, this could be useful for validating some observations made 

in this thesis but from which no definite conclusions could be drawn. An important example is the 

effects of the type of sensor on the multipath identification leak detection methods. This could be 

investigated further with the availability of signals acquired using different sensors in real pipe 

systems. 

As indicated throughout the thesis, some of the studies have been limited mostly due to 

constraints associated with unavailability of suitable data and hardware. One particularly relevant 
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research direction that has been hindered by this constraint is investigating the possibility of extracting 

acoustic signals from data acquired by transient loggers. This can be considered with availability of 

suitable data, as it may be a viable means of improving acoustic leak detection. Another recommended 

research direction is investigating the possibility of incorporating acoustic/vibration sensors in 

transient loggers to allow for the continuous sensor operation required in the acoustic transient 

methods. These two directions were mentioned as possible measures for tackling the challenge 

associated with real-time applicability of the active acoustic transient leak detection method.  

In some of the methods investigated, it has been indicated that performance may be highly 

dependent on the selected parameters. While the current implementation of the methods is considered 

adequate for analysing the data acquired on the leakage test rig, a more general and robust 

methodology is required to select the necessary parameters in the methods. Two particularly important 

examples are the selection of statistical features and inference thresholds for the non-stationarity 

measure (NSM) transient detector and the leak detection metric (LDM). More general and robust 

alternatives for defining the LDM and setting the parameters could be explored. The possibility of 

employing the LDM for leak detection without need for noise-free template can also be investigated.  

The results obtained during the investigation of the passive acoustic transient leak detection 

method seem to suggest that the strength of leak transients does not necessarily correlate with the 

amount of change introduced by the leak in the subsequent steady-state signals. The relationship 

between leak transients and the amount of change introduced by the subsequent steady-state signals 

generated by the leak can be studied. An interesting and potentially useful direction is investigating the 

possibility of inferring more information about a leak, for example, its size, from the detected acoustic 

transients.  

The alternative methods presented in this thesis could be implemented in practical acoustic leak 

detection systems. However, to achieve this, the various issues highlighted for the methods have to be 

addressed, particularly those related to computational complexity and robustness issues. Possible 

measures for refining the proposed methods and dealing with the identified issues could be 

investigated, for example, optimised pre-processing and denoising. The quality metrics are only valid 

for assessing the accuracy of time delay estimates obtained using a correlation-based method. More 

universal metrics capable of assessing the quality of estimates obtained using other time delay 

estimators could be developed. 

Apart from the brief comparison between transient and steady-state methods, the methods 

proposed in this work have all been studied mostly in isolation. This represents another limitation of 

the research project. A more comprehensive comparative study of the methods is recommended, as it 

may provide more insights into their applicability for practical leak detection. The possibility of 

employing more complex data fusion techniques in obtaining the final leak location estimate in the 

combined approach could be explored instead of simple averaging and inverse-variance weighting. 
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Also, more functionalities, leak size estimation in particular, could be included in the combined 

approach. 

The current research has focused on detecting only one leak in the pipe. Research into the 

applicability of the proposed methods (especially the reflection-based methods) in multi-leak 

situations could be conducted in future studies.  
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APPENDICES 

Appendix A. Formulae for time-domain and spectral features 

In Table A.1, x  is the mean of x , 
2

x  is the variance of x , N  is the signal length, 
kf  and 

ks  are the 

frequency and spectral value (magnitude or power spectrum) at frequency bin k , respectively; 
1K  and 

2K  are the band edges, in bins, over which to calculate the spectral descriptor; 
2 1K K K = − ; 

f  is 

the mean frequency, 
s  is the mean spectral value, p  is the norm order,   is the specified energy 

threshold (usually 0.95 or 0.85).  

Table A.1: Formulae for time-domain and frequency-domain features. 

Feature Equation Feature Equation 
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−
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Feature Equation Feature Equation 

Spectral 

flux 

( ) flux E flux t =  where  
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Appendix B. Deriving the distribution of the non-stationarity measure 

The probability distribution of the second-order NSM 
ry  given in Equation (3.3) is derived as 

follows. For a large window length 
gL , the r th moment 

rm  of signal x  approximately follows the 

Gaussian distribution according to the Central Limit Theorem. This is denoted as ( )2,
rr r mm m  , 

where 
rm  and 

2

rm  are the expectation and variance of 
rm , respectively. Specifically for the second 

moment, 

22
2 2

2 2

gx
g x

g x

x L
m L x

L






  
 + = + 

  

 and  
2

4 22
2 2 2

2 2

2
2 2 2x x

m g g x

g x g

x
L L x

L L

 
 



 
 +  = + 

 
, 

where x  and 
2

x  are the mean and the variance of x , respectively. This follows from the normal 

approximation to a scaled chi-squared distribution with 1gL −  degrees of freedom (Douillet, 2009; 

Lee, 2009). 

Denoting ( )i rm i = , it can be observed that 
ry  calculated in Equation (3.3) with a rectangular 

window is the biased sample variance of the multivariate normal variable 

( ) ( )1 2, , , ,
g

T

L r r  =θ m Σ , where the expectation vector 
rm  is the 1gL   vector with 

elements all equal to 
rm , and the covariance matrix 

rΣ  is given by the symmetric Toeplitz matrix 

 

1 1
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Σ  . (B.1) 

This matrix is derived by observing that the covariance  cov ,n n k  +  between the n th component 

n  and the ( )n k+ th component 
n k +

 of θ  is given by 

   ( ) ( )
( ) 2

2

1 1
cov , cov ,

g g
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g g

n L n k L
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n n k

i n L i n k Lg g g
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  − 
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   . (B.2) 

Let M  be a matrix such that = −Mθ θ , where   is the mean of the vector θ . This matrix 

is given by ( )
1

1

g g gg

T T

L L LL

−

= − = −M I 1 1 1 1 I J , where 
gLI  denotes an g gL L  identity matrix, 1  is 

the gL -length column vector of ones, and 
gLJ  denotes an g gL L  matrix of ones. Since 

T =M M  

and =MM M , the sum of squares ( )
2

1

gL

r i

i

Y  
=

= −  is given by the quadratic form of θ : 
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 ( ) ( ) ( )
2

1

gL
T T T T

r i

i

Y  
=

= − = = = Mθ Mθ θ M Mθ θ Mθ  . (B.3) 

The distribution of the quadratic form of a normally distributed multivariate variable is given by the 

weighted sum of independent, potentially non-central, chi-squared random variables (Mathai and 

Provost, 1992). Specifically, 

 
2

1

gL

T

r i i

i

Y U
=

= =θ Mθ  (B.4) 

where 1, ,
gL   are the eigenvalues 

1 2 1 2

r r r=Σ MΣ Σ M . It is easy to verify that M  is of rank 1gL −  

with one eigenvalue equal to zero and 1gL −  eigenvalues equal to one (see Paolella (2019)). Hence, 

rΣ M  is positive definite with positive eigenvalues, and the PDF 
rYf  of 

rY  can be calculated based on 

Equation (B.4). A simple scale transformation yields the PDF 
ryf  of the NSM output 

ry  as 

( ) ( )
r ry g Y gf u L f L u=  . Likewise, the SDF of 

ry  is obtained as    Pr 1 Prr r gy u Y L u = −  .  
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Appendix C. Power cepstrum of leak signals  

The estimated auto-power spectrum ( )ˆ
xxG   of the composite leak signal with a signal reflection 

given in Equation (4.8) can be expressed as the sum of the true auto-power spectrum ( )xxG   given in 

Equation (4.10) and random fluctuations ( )   due to the finite signal length: 
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where 
PR PWd d d = − , 

PR d c =   is the time delay between the direct and reflected signals, and 

( ) PW2 d

d llG G e
 −

=  is the auto-spectrum of the direct-path signal. Equation (C.1) can be rewritten 

as 
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+
. The logarithm of ( )ˆ

xxG   is then given by 

 ( )  ( )  ( ) ( ) ( )  ( ) PR
ˆlog log log 1 cos log 1xx IG G a B      = + + + +  .  (C.3) 

The last two terms in Equation (C.3) can be expanded using the logarithmic expansion 

( ) ( )
1

1

log 1 1
k

k

k

u
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+

=

+ = −  for 1u  . Since ( ) 1B    and by the AM-GM inequality, ( ) 1a   , 

the second term can be expanded as  
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where ( )kM   is the coefficient of ( )PRcos k  obtained by applying the trigonometric identity 

(Beyer, 1987) 

 

( )( )

( )( )

1 2

1
0

2 1

1
0

1
cos 2                           for odd 

2
cos

1 1
cos 2        for even 

22 2

k

k
nk

k

k k
n

k
n k k

n

k k
n k k

k n







−

−
=

−

−
=

  
−  

  
= 

    + −   
   





 . (C.5) 



Appendices 

188 

The values of the coefficients of ( )kM   for the first few integers k  are  

( )
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where ( ) ( ) ( )A a B  = . To expand the last expression in Equation (C.3), it will be assumed that 

the fluctuations in the spectral estimate are small such that ( ) 1   . It then follows that  

 ( )  ( )
( )1

1

log 1 1

k
k

k k

 
 


+

=

+ = −  . (C.6) 

Substituting Equations (C.4) and (C.6) into Equation (C.3) and taking the IFT of the resulting 

expression yields the power cepstrum as 
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where ( ) ( )  1F log IR q G −= ; ( ) ( )  ( ) ( )1

1 1

m   times

F m

mg q g q g q −= =   ; 

( ) ( ) 1Fk kQ q M −= ; and ( ) •  denotes the Dirac delta function.  
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Appendix D. Deriving the performance metrics of the autocorrelation and 

cepstral multipath identification methods 

Appendix D1. Time delay resolution 

The time delay resolution is given by the width of the ACF or cepstral peak that corresponds to the 

time delay estimate. The time delay resolution 
res,ACF  of the ACF can thus be calculated as 

 

( )

( )

( )

( )

2 2
1

2

res,ACF 22

1
2

2

0

2

0

2
2

2
2

dd
ll

dd PR
ll

d

d

R d
G e d

R
G e d

e d d

e d

 



 



 

 

 
 




 

 














 −

−−

 −

−

 −



 −

 
 

= =
 
  

 
 

= =
 
  

 







 (D.1) 

where ( ) ( )d ll PR rR R    =   −   denotes the component of the ACF in Equation (4.11) that 

contains the time delay peak and the leak noise spectrum ( )llG   is assumed to be flat. The second 

equality in Equation (D.1) results from Parseval’s theorem.  

The time delay resolution of the power cepstrum is given by  
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where it has been assumed that all the terms except ( )1Q q  in Equation (4.12) as well as the 

subsequent higher-order peaks in ( )1Q q  are negligible at the time delay 
PRq = , 

( )

( )
d

nn

G

d G




  is 

negligible (i.e., high SNR) or nearly constant, and 
2 d

e
 − 

  is small 

Appendix D2. Detection signal-to-noise ratio 

The variance ( ) ˆvar xxR   of the ACF estimate ( )ˆ
xxR   is given by (Bendat and Piersol, 2010) 
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where ( )IG   is as defined in Appendix C, and T  is the observation time. The second expression in 

Equation (D.3) results from Parseval’s theorem, and the last approximation is valid for lags much 

greater than the correlation time of the signal. Thus, the detection SNR for the autocorrelation method 

is given by  
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where 
2 d

e
 − 

  is assumed to be small, and 
dB  is the statistical bandwidth of the direct-path signal, 

which is defined as (Bendat and Piersol, 2010) 
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The cepstral peak at 
PRq =  (Equation (4.12)) must be detected in a background noise given by the 

term 
( )

( )
1

CEP

1

1
m

m

m

g q
m



−


=

−
= . For large observation time T , the spectral noise ( )   in the auto-

power spectrum estimate can be approximated as a zero-mean white noise process with the property 

(Lindgren and Gong, 1974) 
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        +  . (D.6) 

Based on this property, the variance of the background noise 
CEP  is evaluated as 
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where 
2 1   = − , and 

1 2     is the analysed frequency region, i.e., the frequency region in 

which the leak noise is considered to be significant relative to the noise. This yields the detection SNR 

as  
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Appendix E. Deriving the spectrally constrained normalised multichannel 

frequency least-mean squares (NMCFLMS) blind channel identification 

algorithm 

Appendix E1. Deriving the blind channel identification update equation  

The bulk of the derivation in this appendix is based on the documentation for BSIE toolbox (Habets et 

al., 2011). Each output signal 
ix , 1,2i = , is first divided into M  time blocks of L  samples (

( ) ( )  i im x mL= x ( )1  ix mL + ( )1
T

ix mL L+ −  , 1,2, ,m M= ). The time-domain cross-

relation (CR) 
2 1 1 2x h x h −   in the m th time blocks is given by ( ) ( ) ( )12 21m m m= −e y y , where 

( ) ( )ij i jm m= y x h . The linear convolution ( )ij my  can be obtained using the overlap-save 

technique from the last L  samples of the circular convolution ( )ij my  (Rabiner and Gold, 1975) 

 ( ) ( ) ( )10ˆ
i

ij jx m
m m=y C h  (E.1) 

where ( ) ( )10

1
ˆ ˆ

T
T T

j j Lm m 
 =
 

h h 0  is the j th channel estimate with L  zero padding, 
K P0  denotes a 

null matrix of size K P , and 

( )
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i i i
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+ − + − −  

C  is the 2 2L L  circulant matrix 

constructed from ( ) ( ) ( )1
T

T T

i i im m m = − x x x ( )  ix mL L= − ( )1  ix mL L− +

( ) 1
T

ix mL L+ −  . It should be noted that the channel estimates ( )1
ˆ mh  and ( )2

ˆ mh  depend on 

the selected block size L , but this dependency will be omitted in this derivation for brevity. Note that 

the first column of ( )ix m
C  is given by ( )i mx , and subsequent columns are shifted versions of ( )i mx . 

A 50% overlap has been employed such that previous L  samples of ( )1i m −x  are included in 

( )i mx . Thus, ( )ij my  can be extracted from ( )ij my  as 

 ( ) ( ) ( ) ( ) ( ) ( )01 01 10 01 10

2 2 2 2
ˆ ˆ

i i
ij L L ij L L j L L L L jx m x m

m m m m   = = =y W y W C h W C W h  (E.2) 

where  01

2L L L L L L  =W 0 I ,  10

2

T

L L L L L =W I 0 , and KI  is the K K  identity matrix. The 

circulant matrix ( )ix m
C  can be diagonalised by a DFT (Davis, 2012) as 

( ) ( )1

2 2
i

L i Lx m
m−=C F F , where 
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KF  denotes a K K  DFT matrix, while the corresponding inverse DFT matrix is denoted as 

1 1 H

K KK

− =F F , ( )
H

•  denotes the Hermitian transpose, and ( )i m  is a diagonal matrix with diagonal 

elements being given by the 2L -point DFT of ( )i mx . In this appendix, an underscore is used to 

indicate a frequency-domain parameter. Hence, the frequency-domain CR error ( )me  can be written 

as 

 ( ) ( ) ( )  ( ) ( ) ( ) ( ) 01 10 10

12 21 2 1 2 2 2 2 1
ˆ ˆ

L L L L L L Lm m m m m m m  = − = −e F y y h h     (E.3) 

where ( ) ( )ˆ ˆ
i L im m=h F h , 

01 01 1

2 2 2L L L L L L

−

 = F W F , and 
10 10 1

2 2 2L L L L L L

−

 = F W F . Estimates of the two 

channels 1ĥ  and 2ĥ  are obtained by minimising the cost function ( )eJ m  given by the mathematical 

expected of the instantaneous error ( ) ( ) ( )e

H
J m m m= e e  using the LMS algorithm. For 

1,2, ,m M= , the LMS channel estimates are given by (Huang and Benesty, 2003b) 
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F e
, 

bci  is the step-size parameter for the LMS algorithm, 
bci  is the regularisation parameter (a small 

number) to avoid singularities during matrix inversion, and ( ) ( ) ( )*

i i im m m=P  is computed 

using a recursive scheme  

 ( ) ( ) ( ) ( ) ( )*

bci bci1 1i i k km m m m = − + −P P ,  i k  (E.6) 

where 
( )

1
1

bci 3 1
1

L

L


+

+
 = −
 

 is the forgetting (smoothing) factor.  

Appendix E2. Deriving the update equation for the spectrally constrained NMCFLMS 

The modified NMCFLMS cost function that includes phase and log-spectrum spectral constraints is 

shown in Equation (5.11). Minimisation of this cost using the LMS algorithm and derivation of the 

update equation for the channel estimates require the computation of the gradient of each penalty term 

with respect to the complex conjugate ( )( )
*

10ˆ
i mh  of each channel estimate (see the LMS procedures 

in He et al. (2018)). The gradient ( )e,iJ m  of the cost function in the original NMCFLMS algorithm 

is given in Equation(E.5). The gradient ( )rb,iJ m  of ( )rb,iJ m  has been derived by He et al. (2018) as 
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where 1j = −  is the imaginary unit, p  (1 2p  ) is the order of the 
p
-norm, and  denotes the 

Hadamard (element-wise) product. The derivative ( )ph,iJ m  of the phase penalty term ( )ph,iJ m  in 

Equation (5.12) is calculated as 
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( )

( )( )
( )

( )( )

( )

( )
ph, ph,

ph, * *
10 10ˆ ˆ

i ii

i

i
i i

J m J mm
J m

mm m

 
 = =

 

Ω

Ωh h

 . (E.8) 

The k th element of the first term in this equation can be evaluated using the Wirtinger derivative 

   *

1

2 Re Im
j

u u u

   
= +     

 (Petersen and Pedersen, 2012) as 

 
( )

( )( ) ( )( )
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, ,, ,

ˆ ˆIm
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ˆ 2 ˆˆ ˆ Re

i ki k i k

i k i ki k i k

h mm h mj

h m h mh m h m

 
   = =

 
   

 . (E.9) 

Here,  Re u  and  Im u  denote the real and imaginary parts of the complex number u , respectively. 

The k th element of the second term in Equation (E.8) is evaluated as 

 

( )

( ) ( )
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( ) ( ) ( )

( ) ( )

2 1
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=  −  +

 

=  −  + 

−  + 



 (E.10) 

for 2 2 1k L  − . By substituting Equations (E.9) and (E.10) in Equation (E.8), ( )ph,iJ m  is 

obtained in matrix form as 

 ( ) ( ) ph, 2

j

i i iJ m m = T QΩ  (E.11) 

where ( )
( )

( )

( )

( )

10 10

,1 ,2

2 2
10 10
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i i L

h m h m
m

h m h m

  
  =   
    

T  is a diagonal matrix whose k th diagonal 

element is given by 
( )

( )

10

,

2
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,

ˆ

ˆ

i k

i k

h m

h m
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 . 
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In a similar manner, the gradient ( )ls,iJ m  of the log-spectrum penalty term ( )ls,iJ m  in 

Equation (5.13) is given by 

 ( )
( )

( )( )
( )

( )( )
( )

( )
ls, ls,

ls, * *
10 10ˆ ˆ

i ii

i

i
i i

J m J mm
J m

mm m

 
 = =

 

Ψ

Ψh h

 . (E.12) 

The k th element in the first term of this equation can be evaluated as  

 
( )

( )( )
( )

( )

10

, ,

* 2
1010

,,

ˆ1

2 ˆˆ

i k i k

i ki k

m h m

h mh m


=



 (E.13) 

while the elements in the second term have the same form as the terms in Equation (E.10). 

Consequently, ( )ls,iJ m  is obtained in matrix form as 

 ( ) ( ) 1
ls, 2i i iJ m m = T QΨ  . (E.14) 

Employing the same LMS algorithm procedures as He et al. (2018), the update equations for the 

spectrally constrained NMCFLMS algorithm can be expressed as 

 ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

rb rb,

10 10

bci e, bci ph ph,

ls ls,

ˆ ˆ, 1 ,

i

i i i i

i

m J m

L m L m J m m J m

m J m



  



 
 

+ = −  + −  
 
−  

h h  (E.15) 

where the step sizes are calculated analogously to the step size in variable step multichannel frequency 

LMS method (Haque and Hasan, 2007) as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
†

rb ph ls rb ph ls em m m J m J m J m J m     =  − −        (E.16) 

where 
rbJ , phJ , 

lsJ , and 
eJ  are stacked column vectors for the respective gradients in the two 

channels ( 1i =  and 2i = ); and 
†
 denotes the pseudoinverse. Finally, substituting Equations (E.5), 

(E.7), (E.11), (E.14), and (E.16) in Equation (E.15) yields the required update equations.  
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Appendix F. Deriving the expressions for the peak-to-side lobe ratio 

If the leak noise spectrum is assumed to be flat, ( ) 0llG S = , the expected value of the CCF peak 

( )
1 2max peakx xR R =  is given by 

   ( )
1 2

0
max peakE l l

S
R R

d



= =  (F.1) 

where ( ) ( )  ( ) peak

1 2 1 2

1 1F F
jd

l l l l llR G G e e
 

  
−−− −= =  is the biased CCF of the noise-free 

components of measured leak signals (i.e., the first term in Equation (6.7)). For a long measurement 

time T , the variance of the cross-correlation value at an arbitrary lag   is given by (Bendat and 

Piersol, 2010) 

 

( )  ( ) ( ) ( ) ( )( )
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( ) ( )

1 2 1 1 2 2 1 2 2 1

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 2 2 1

1
var

1

x x x x x x x x x x

l l l l l l n n

n n l l n n n n

l l l l

R R R R R d
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−
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 + + −

 +
 

= + + 
 
 + + − 





 . (F.2) 

The cross-correlation values of bandlimited signals approaches zero at lags   much greater than the 

correlation time of the signals, which implies that ( ) ( ) ( ) ( )
1 1 2 2 1 2 2 1x x x x x x x xR R R R     + −  for 

0  (Bendat and Piersol, 2010). Thus, for a large far = , the variance can be approximated as 

 ( ) 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 2 2 1 1 2 2

1 2

1 1 2 2 1 1 2 2

1
var

l l l l l l n n

x x far

n n l l n n n n

R R R R
R d

T R R R R

   
 

   



−

+ 
  

 + + 
  . (F.3) 

Assuming similar correlation functions (Gaussian) for the leak signals and noise, and defining 

( )

( )
i i

i i

l l

i

n n

R

R





=  as being nearly constant, then the variance at the far point can be rewritten as 
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( ) ( )
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−



−
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= + + + 
 





 (F.4) 

where the last expression follows from Parseval’s theorem. Rewriting the auto-power cepstra in terms 

of the pipe FRF (Equation (2.5)), the PSR is obtained as 

 
 

( ) 
1 2

12

max

1 2 1 2

E 2 1 1 1 1
PSR 1

var x x far

R T

dR     

−

 
= = + + + 

 
 . (F.5) 
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Appendix G. Deriving the variance of the time delay estimate  

Appendix G1. Inherent bandpass filtering time delay estimate 

The derivation in this appendix follows the approach used by Azaria and Hertz (1984). The biased 

CCF ( )
1 2

ˆ
x xR   of filtered leak signals ( ) ( ) ( )1 1x t w t x t=   and ( ) ( ) ( )2 2x t w t x t=   can be 

separated into two parts: a signal term ( )
1 2

ˆ
l l

R   and a noise term ( )ˆ
N

R   

 ( ) ( ) ( )
1 2 1 2

ˆ ˆ ˆ
x x Nl l

R R R  = +  (G.1) 

where  

 ( ) ( ) ( )
1 2

1 2
0

ˆ
T

l l
R l t l t dt = +  (G.2) 

and 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
0 0 0

ˆ
T T T

N
R l t n t dt n t l t dt n t n t dt   = + + + + +    (G.3) 

where T  is the measurement duration. The symbol 


 is used to denote a single realisation or estimate 

of a parameter, while its expected or true value will be written without any embellishment. The 

estimate peak
ˆ =  is found by setting the first derivative ( )

( )
1 2

1 2

peak

peak

ˆ

ˆ
ˆ ˆ

x x

x x

R
R

 





=

 
 =  

 
 

 = 

( ) ( )
1 2

peak peak
ˆ ˆˆ ˆ 0

Nl l
R R  + = . In the neighbourhood of the true delay peak = , the signal term 

( )
1 2

ˆ
l l

R   can be expanded in a Taylor series up to second order as  

 ( ) ( ) ( ) ( )
1 2 1 2 1 2

2
1

peak peak peak2
ˆ ˆ ˆ ˆ

l l l l l l
R R R     + −  (G.4) 

where ( )
( )

1 2

1 2

2

2

ˆ
ˆ l l

l l

R
R







 =


. Note that ( )

1 2
peak

ˆ 0
l l

R    based on Assumption A1 in Section 7.1.1. 

Using the approximation in Equation (G.4) yields  

 
( )
( )

1 2

peak

peak peak

peak

ˆ ˆ
ˆ

ˆ
N

l l

R

R


 



−
− =


 . (G.5) 

To calculate the expectation  peak peak
ˆE  − , the unknown peak̂  in the numerator in Equation 

(G.5) can further be approximated by its true value peak  to make the resulting expressions 

independent of individual estimates. Since ( )l t , ( )1n t , and ( )2n t  are all uncorrelated based on 
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Assumption A1 in Section 7.1.1, it follows that ( ) peak
ˆE 0

N
R  = , and hence,  peak peak

ˆE 0 −  , 

indicating that 
peak̂  is an unbiased estimate of the time delay.  

In order to compute ( ) peak

2
2

ˆ peak peak
ˆE  = − , note that since 

1l  and 
2l  are ergodic (based on 

Assumption A1 in Section 7.1.1), for a large 
peakT  , the fluctuation 

( ) ( ) ( )( )
1 2 1 2 1 2

peak peak peak

1 ˆ
l l l l l l

R R T R
T

   −   is negligible compared to ( )
1 2

peakl l
R  . By neglecting 

the fluctuation ( )
1 2

peakl l
R  , the second derivative ( )

1 2
peak

ˆ
l l

R   can be approximated as 

( ) ( )
1 2 1 2

peak peak
ˆ

l l l l
R T R    . Therefore, it also follows that the time delay estimation variance 

peak

2

̂  is 
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 . (G.6) 

The expression ( )( )
2

peak
ˆE

N
R 

  
 

 can be expressed as 
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 (G.7) 

where the expectations of the cross products of the three integrals in Equation (G.7) are set to zero due 

to Assumption A1 in Section 7.1.1. To simplify Equation (G.7), it can be noted that the variance of the 

integral of a zero-mean stochastic process ( )g t  is given by (Papoulis and Pillai, 2014) 

 ( )  ( ) ( ) ( )
0

var 1
T T

gg ggT
T

g t dt T R d R d


   


− −
=  −     (G.8) 

where the approximation is valid for observation time T  much larger than the correlation duration of 

( )g t . Using this property, ( )( )
2

peak
ˆE

N
R 

  
 

 can be simplified as 
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1 11 1 2 2 2 2

1 1
2 2

2
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ˆE n nN l l n n l l

n n n n

R T R R d T R R d

T R R d

      

 

 

   − −



 −

  =  +  
 

+ 

 



 . (G.9) 

The first and second derivatives of the ACF of a zero-mean stationary process ( )g t  are given by 

(Bendat and Piersol, 2010) 
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( ) ( ) ( )

( ) ( ) ( )

gg gg g g

gg g g g g

R R R

R R R

  

  

 

  

 = = −

 = = −
 . (G.10) 

By integrating the first and third terms in Equation (G.9) by parts and using Equation (G.10), the 

expression for ( )( )
2

peak
ˆE

N
R 

  
 

 can be simplified further as 
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Finally, the variance of the time delay estimate can be obtained by substituting Equation (G.11) in 

Equation (G.6) to obtain 
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.   (G.12) 

By applying Wiener–Khinchin theorem, Equation (G.12) can be expressed in the frequency domain as 
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     (G.13) 

or in terms of the IB-TDE weighting function ( )W   as 
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To simplify and analyse the variance, the magnitude of ( )W   is approximated without loss of 

generality as ( ) 1W  =  in the analysed frequency band 
1 2    , i.e., the frequency region in 

which the leak noise is considered to be significant relative to the background noise. Two important 

quantities relevant to the analysis are now defined: SNR i
 is defined as 

 
( )2

2

0 0

0
SNR

2

i i i

i

l l l

i

n

R

B N




= ,  1,2i =  (G.15) 

where 
2

u  denotes the variance of ( )u t , while the effective bandwidth 
il

B  of ( )il t  is defined as 

(Stein, 1981) 

 ( ) ( )2 2

i i i i il l l l lB G d G d    
 

− −
=    . (G.16) 
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Substituting Equations (G.15) and (G.16) into Equation (G.14) and using Assumptions A1 and A2 in 

Section 7.1.1, the variance of the time delay estimate is obtained as 

 

( )

2 1

1 2

peak
2

1 2
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2 2 3 3

2 1
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1 2 0 1 22
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 −
+ + 

  
=

 
  

 . (G.17) 

Equation (G.17) can be rewritten in terms of pipe properties for acoustic pressure measurements by 

expressing the auto-spectra of ( )il t  in terms of the FRF ( ), iH d  in Equation (2.5). By evaluating 

the resulting integrals in the expression have been evaluated using the relation (Gradshteyn and 

Ryzhik, 2007) 
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  ,  0a   (G.18) 

the effective bandwidth 
il

B  can be calculated under Assumption A2 in Section 7.1.1 as 

( )
2

2

1

2
il

i

B
d

 . This value is valid for small 
1  and 

2 1  . Assuming a flat spectrum for the leak 

noise ( ) 0llG S = , the integral in the denominator of Equation (G.17) is evaluated as 

( )
( )

2

1 2
1

2 0

3

2
l l

S
G d

d




  


 . Finally, the variance of the time delay estimate can be expressed in 

terms of the pipe and signal properties as  
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Appendix G2: Cepstral time delay estimate 

The residual cepstrum in Equation ( )z q  in Equation (7.15) is the sum of two parts: 

 ( ) ( ) ( )s Nz q z q z q= +  (G.20) 

where ( ) ( ) ( )( )peak

1

2 1s k

k

z q Q q q k 


=

=   −  denotes the part that contains the time delay 

information, and ( )
( )

( )
1

12,

1

1
m

N m

m

z q g q
m

−


=

−
=  denotes the contribution from the background noise. 

Note that in separating ( )z q  this way, the contribution of the term ( )B   to the background noise 
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has been neglected. However, as noted by Hassab and Boucher (1976), the contributions of this term 

to be background noise in low-SNR conditions is negligible compared to that of the other noise terms. 

Since ( ) 12,E 0mg q = , it follows that  peak peak
ˆE 0 −  , which implies that the cepstral time 

delay estimator is unbiased. Following the same procedures as in Appendix G1, 

( ) peak

2
2

ˆ ,ceps peak peak
ˆE  = −  is approximated as 
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Based on Equation (D.6), ( ) ( ) 1 2E i j     can be evaluated as 
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Consequently, the term ( )( ) 
2

peakE Nz   in the numerator of Equation (G.21) can be evaluated as 
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To further simplify the evaluation of the term ( ) ( )
2

peakE sz  , the higher-order terms in the second 

summation as well as higher-order terms in ( )1Q q  in the residual cepstrum in Equation (7.15) are 

neglected. This is a good approximation particularly for low SNRs or when the relative attenuation 

between the measured signals is high (see Hassab and Boucher (1976)). The term ( ) ( )
2

peakE sz   

can be approximated in the frequency domain as 
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  . (G.24) 

Substituting Equations (G.23) and (G.24) into Equation (G.21) and noting that ( ) E B   = 

( ) ( ) ( ) 1Ee
 

     (Hassab and Boucher, 1976) gives the expression for the variance of the 

cepstral time delay estimate as 
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 (G.25) 

where  1E •  denotes the first-order exponential function.  
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