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The transaction-level analysis of security price changes by Madhavan, Richardson, and
Roomans (1997, hereafter MRR) is a useful framework for financial analysis. The first-order
Markov property of trading indicator variables is a critical assumption in the MRR model,
which contradicts the information lag empirically demonstrated in high-frequency trading
processes. In this study, a nonparametric test is employed, which shows that the Markov
property of the trading indicator variables is rejected on most trading days. Based on the
spread decomposed structure, an MA-MRR model was proposed with a moving average
structure adopted to absorb the information lag as an extension. The empirical results
show that the information lag plays an important role in measuring the adverse selection
risk parameter and that the difference in this parameter between the original and the
extension is significant. Furthermore, our analysis suggests that the information lag
parameter is a useful measure of the average speed at which information is incorporated
into prices.

© 2023 China Science Publishing & Media Ltd. Publishing Services by Elsevier B.V. on
behalf of KeAi Communications Co. Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transaction-level analyses of security price changes have received increasing attention in financial economics. Madhavan
et al. (1997) proposed a spread decomposition model (MRR) to show that security prices change due to the arrival of new
information in the trading process. This model has been widely used in empirical studies to measure adverse selection risk
and liquidity costs in securities markets. For example, Bushee et al. (2018), Angelidis and Benos (2009), Sita and Westerholm
(2011), Green (2004), Riordan et al. (2013), Andros (2015), Ahern (2014), Lai et al. (2014), Armstrong et al. (2011), Gregoriou
and Rhodes (2017), and Sakawa and Ubukata (2014) adopted adverse selection risk as an important measure of symmetric
information in equity markets. It has also been used in the futures markets (for example, Mizrach and Otsubo, 2014; Medina
et al., 2014; Frijins and Tse, 2015; Ahn et al., 2002, 2008). Empirical studies on bond, fund, foreign exchange, and
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cryptocurrency exchange markets use adverse selection risk as a key indicator (Han and Zhou, 2014; Zhang, 2015; Chen and
Gau, 2014; Fernandez-Perez et al., 2019; Dyhrberg et al., 2018).

An important assumption in the MRR model is that trade initiation follows a first-order Markov process: This implies that
in the information set, only one period of lagged information is useful due to the Markov property. In particular, information
innovations could be incorporated into prices after one trade. Indeed, if the trade initiation variables could be immediately
adjusted to a full information level, the past initiation variables would be redundant and the current trade initiation variable
would be a sufficient statistic for predicting future trade. However, Hasbrouck (1991) and Dufour and Engle (2000) use the
impulse response function to test how long a unit of information innovation can be incorporated into the price. Their results
show that it takes at least 20 trades to reach a fully integrated level, with the first five trades playing a crucial role. This finding
contradicts the assumptions of the MRR model. Therefore, whether the asymmetric index estimated using the MRR model is
trustworthy remains a key question. In this study, we have tried to answer two fundamental questions. First, is the infor-
mation neglected by the MRR model essential for the estimation of adverse selection? If so, to what extent? Second, is lag
information a new component in the spread decomposition structure, and what role does it play in the trading process?

An extended model is proposed. The results presented below indicate that lag information plays an important role in
measuring adverse selection risk, and the lag information parameter can be used to measure the speed of incorporating
information into prices. We arrive at these conclusions in three steps.

First, we test the first-order Markov property using the conditional independence property developed by de Matos and
Fernandes (2007). Our empirical examination shows that the Markov property of the trade initiation variable is rejected
for most trading days. Therefore, the information structure employed by the MRR model may have neglected important
trading information, which directly led to deviations in the parameter estimation.

The second step extends the MRR model to accommodate a moving-average structure to compensate for the information
neglected by the original MRR model. Maximum likelihood (ML) estimation with an ARCH structure is introduced instead of
the generalized moment method (GMM) used in the original MRR model. This extension allows us to estimate more pa-
rameters than in the original model (the information lag parameter), revised adverse selection risk, and revised liquidity cost.
A positive estimated parameter indicates a positive information lag in the trading process, consistent with the results of
Hasbrouck (1991) and Dufour and Engle (2000). There is a sharp difference between the adverse selection risk parameter in
the MRR model and the revised one in our model, which is attributed to the different informational structures employed by
the two models; neglected information is responsible for the deviation. Furthermore, empirical results based on the original
MRR parameters are doubtful.

The third step is to explore the information lag parameters in the extended structure. Our analysis suggests that the in-
formation lag parameter can be used to measure the average speed at which information is integrated into prices. The larger
the parameter value, the slower the speed. Empirically, our findings are consistent with those of Hasbrouck (1991) and Dufour
and Engle (2000), and the information lag parameter provides further details on how information is integrated into prices.

The remainder of this paper is organized as follows. Section 2 introduces the high-frequency data used in the empirical
results. In Section 3, we extend the MRR model by examining the Markov properties of trading processes. In Section 4, we
provide an empirical comparison between the original and extended models and explore insights into the information lag
parameter. Finally, Section 5 presents the conclusions.

2. Data

For the empirical studies below, we use high-frequency data of 50 stocks from the Shanghai Stock Exchange of China (SSE)
constituent index and extract their transaction data from the China Center for Economic Research (CCER) database. These data
are sourced from the CCER high-frequency trading database made available by the Beijing Sinofin Information Service, which
includes the real-time bid-ask prices and associated limit order volumes at the top five levels on either side of the order book
for each transaction, as well as instantaneous transaction price, volume, transaction amount, aggregated transaction amount,
and the direction of order initiation. Our sample period is from September 1 to December 31, 2017.

The SSE is a purely order-driven market without designated market makers. It runs an electronic automated trading
system and is open fromMonday to Friday, with three sessions:09:15e09:25 for call auction, 09:30e11:30, and 13:00e15:00
for continuous trading double auctions. Only limit orders were allowed in the SSE. The orders are valid for one day and stored
in the limit order book, of which the best five bid and ask prices and the corresponding depths of the book are revealed
continuously to public investors. The tick size is 0.01 RMB, while the minimum trading quantity is 100 shares.

3. The MRR model and its extension

This section first briefly discusses the MRR model, then introduces a nonparametric density approach to test the Markov
property, and finally extends the model and presents a family of ML estimators with an ARCH structure.

3.1. The MRR model

Madhavan et al. (1997) presented a spread decomposed model(MRR), in which the post-trade expected value of a stock,
mi; ði¼ 1;2;/Þ evolves as
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Table 1
Nonparametric tests of the Markov property.

Number period Total number of bln ’s a ¼ 10% a ¼ 5% a ¼ 1% average of n

original duration morning 2414 1993 1832 1526 15130.46
afternoon 1924 1761 1499 13249.93

adjust duration morning 1918 1735 1376
afternoon 1818 1651 1355bln is the statistic that weakly converges to a standard normal distribution. Adjusted durations refer to the correction for the intra-day effects. The parameter

a is the significant level of normal distribution. n is the number of trades in each period.
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mi ¼mi�1 þ qðxi � E½xijxi�1�Þ þ εi (1)

where xi is the trade indicator variable, equaling þ1 if the trade is buy oriented, and �1 if it is sell oriented. The coefficient q

measures the degree of information asymmetry (or adverse selection risk) with surprise, in the order of ðxi � E½xijxi�1�Þ.
Orthogonal innovation εi accounts for the information accumulated since the most recent trade. With transactions taking
place either at the ask or bid, the transaction prices are given by Equation (2).

pi ¼mi þ 4xi þ xi (2)

where the coefficient 4 � 0 represents the cost per share borne by the supplier of liquidity and xi is an i.i.d. mean-zero

disturbance that accounts for rounding errors due to the discreteness of price changes. Madhavan et al. (1997) use the for-
mula E½xijxi�1� ¼ rxi�1,

1 where r is the first-order autocorrelation of the trade indicator xi. By combining Equations (1) and (2),
the transaction price changes are given by

pi � pi�1 ¼ð4þ qÞxi �ð4þ rqÞxi�1 þ εi þ xi � xi�1 (3)

or
pi � pi�1 ¼4ðxi � xi�1Þþ qðxi � rxi�1Þþ εi þ xi � xi�1 (4)
Equation (3) forms the basis of price movements. Price shocks consist of three parts: fundamental shock, liquidity shock,
and market frictions. Meanwhile, q represents the intensity of the fundamental shock, and 4 represents the intensity of the
liquidity shock. In the absence of market friction, the model reduces to the classical description of an efficient market, in
which prices follow a randomwalk. However, in the presence of friction, transaction price movements reflect the order flow
and noise induced by price discreteness, as well as information shocks.

3.2. Testing the first-order Markov property

The MRR model employs the structure ðxi �E½xijxi�1�Þ to capture unexpected information in the trading process, or the
surprise in the order flow, which follows the assumption of Glosten and Milgrom (1985). This means that the time series xi,
the trade indicator variable, follows a first-order Markov process.

With the advent of new statistical methods, some quantitative tests(Souza et al. (2018) and Chen and Hong (2012)) have
enabled many fundamental assumptions in finance to be tested. The first-order Markov property is one of the most popular
assumptions in continuous-time models. However, is it true? De Matos and Fernandes (2007) tested whether discretely
recorded observations of a continuous-time process were consistent with the Markov property, using a smoothed
nonparametric density approach. They found evidence against the Markov properties. Chen and Hong (2012) used a con-
ditional characteristic function to check the implications of the Markov property, which is consistent with de Matos and
Fernandes (2007).

We use a smoothed nonparametric density approach to check theMarkov properties of the trade initiation variable. A brief
introduction of this method is provided below.

Suppose Xi (which could be any trading variable, and in our test, we are only concernedwith the trade indicator variable xi)
is a strictly stationary Markov time series process. Let ti denote the observation time of the process, then the time duration
between two consecutive observations diþ1 ¼ tiþ1 � ti is a measurable function of the path of Xi, and thus only depends on the
information available at time ti through Xi. This means the current duration is independent of the previous duration con-
ditional on the previous realization. Obviously, the property of conditional independence between consecutive durations is
the necessary condition of the Markov assumption Xi. So the test focuses on checking the conditional independence, inwhich
four density functions are estimated by a nonparametric smoothing method, and a statistic, bln is constructed (de Matos and
Fernandes (2007) for the details). In this method, the statistic, bln, weakly converges to a standard normal distribution, then a
1 It holds based on the assumption p½xi ¼ 1jxi�1 ¼ 1� ¼ p½xi ¼�1jxi�1 ¼�1� and p½xi ¼ 1jxi�1 ¼ � 1� ¼ p½xi ¼ � 1jxi�1 ¼ 1�.
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two-tailed test that rejects the null at the level a when jblnj is greater or equal to the
�
1�a

2

�
quantile of a standard normal

distribution. We only list the descriptive statistics of bln, in which the data, xi and di are given.
We adopt the intraday high-frequency data to construct the statistic bln to test whether the first-order Markov property is

satisfied in the trading process. As our samples comprise 50 stocks and each stock contains about 49 trading days, the total
number of bln is ultimately 4828.2 Table 1 reports the number rejecting the null at level a ¼ 0:1, a ¼ 0:05 and a ¼ 0:01. The
results show that the Markov hypothesis is mostly rejected, only suiting less than 19% and less than 23%, respectively, when
the original and adjusted durations3 are employed in the test at the 10% level.

We clearly reject the Markov property for the trade indicator variables on most trading days, indicating that previous
trades play an important role in the information integration process.

As shown above, the structure, ðxi �E½xijxi�1�Þ used in the MRR model may have lost some important information, that is,
Equation (3) could not capture the permanent impact of the order flow innovation on the price. Furthermore, the parameter q
may not capture asymmetric information accurately. Therefore, an alternative structure should be explored not only to
capture the permanent impact on price but also to facilitate model estimation.

3.3. An MA-MRR model

We are proposing a newmodel by extending theMRRmodel. We use Ii ¼ E½xijUi�1� to denote the full information structure
in comparison with E½xijxi�1�, under the Markov structure, where Ui�1 represents the full information set until trade i� 1. In
the MRRmodel, qðxi �E½xijxi�1�Þ represents the part of the price change from asymmetric information or the change of beliefs
due to order flow, so the parameter qmeasures the degree of information or the so-called permanent impact of the order flow
innovation. However, as analyzed in the above section, ðxi �E½xijxi�1�Þ represents the unexpected information conditional on
the latest trade, or in some degree just an approximation, only if the neglected part is small enough. Note that the unexpected
surprise of the trade should be the conditional expectation given all past information. We use xi � Ii to substitute the ðxi �
E½xijxi�1�Þ. Actually, ðxi �E½xijxi�1�Þ provides the structure, making it an easier empirical estimation. For the structure of xi � Ii,
a suitable approximation has to be determined to ensure that it can be estimated reasonably.

In time-series analysis, exponentially weighted moving-average rules are common technical strategies for impounding
historical information that is effective in forecasting. Therefore, we propose the following structure:

xi � Ii ¼ q0ðxi � E½xijxi�1�Þ þ q1ðxi�1 � Ii�1Þ; (5)

where q0 and q1 are the parameters. The parameter q0 measures the information of the current state and the parameter q1
measures the historical information. Notice that the formula is an iterative structure, which could represent a kind of cu-
mulative impact or a permanent impact.

With ðxi �E½xijxi�1�Þ replaced by xi � Ii in Equation (3), we have

pi � pi�1 ¼4ðxi � xi�1Þþ qðxi � IiÞþ εi þ xi � xi�1 (6)
Substituting Equation (5) into Equation (6) and simplifying the parameters, we obtain

pi � pi�1 ¼4ðxi � xi�1Þþ ~q0ðxi � E½xijxi�1� þ ~q1ðxi�1 � Ii�1ÞÞþ εi þ xi � xi�1; (7)

where ~q0 ¼ qq0 and ~q1 ¼ q1
q0
. If q0 ¼ 1, then ~q0 ¼ q and ~q1 ¼ q1 hold. Actually, from the perspective of estimating the pa-

rameters, Equation (5) is equivalent to this form, xi � Ii ¼ ðxi � E½xijxi�1�Þ þ q1ðxi�1 � Ii�1Þ. Compared with Equation (4), ~q0 as
a modified version of q measures the degree of information asymmetry, resulting in a permanent impact on price. ~q1 as an
information lag parameter accounts for the direction and the amount of the information left out by the MRR model.

It is necessary to estimate the unknown parameters for the application. In the MRRmodel, the parameters were estimated
using the GMM. Although the GMM avoids requiring a fully parametric distribution of the residual, when new market
characteristics are introduced into the MRR model, the GMM moment conditions need to be added to estimate the new
parameters. Note that inappropriate new moment conditions may lead to erroneous estimation results. Therefore, we
introduce an ML estimator with an ARCH structure.

Let Dpi ¼ pi � pi�1 � 4ðxi �xi�1Þ � ~q0ðxi �E½xijxi�1� �~q1ðxi�1 �Ii�1ÞÞ ¼ εi þ xi � xi�1 be the residual of the innovation of the
trade prices in Equation (7). Then

E½DpiDpi�1� ¼ E½ðεi þ xi � xi�1Þðεi�1 þ xi�1 � xi�2Þ�¼ � Ex2i�1 (8)
It can be verified that the Dpi follows the MA(1) model and can be written as
2 We divide each day into two parts, so the number of the bln is two times of that of the trading days.
3 the adjusted durations are obtained by eliminating the intraday pattern.
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Table 2
Estimation results of the two model.

Panel A: Descriptive statistics

GMM for MRR MLE for MRR MLE for MA-MRR

q 4 q 4 ~q0 4

Mean 0.001515982 0.005165877 0.001520183 0.005165197 0.001051878 0.005307157
Max 0.03000628 0.03242293 0.03002076 0.03241331 0.02173876 0.03311298
Median 0.000559031 0.004610459 0.00056368 0.004617087 0.000401217 0.004704861
Min 4.4e-05 0.003938002 4.46e-05 0.003944034 3.18e-05 0.004155266

Panel B: The difference between the corresponding parameters of the two model

Parameter q 4

M1 to M2 M1 to M3 M2 to M3 M1 to M2 M1 to M3 M2 to M3

Absolute Error 4.84578e-06 0.00046410 0.00046830 4.13578e-06 0.00014589 0.00014709
Relative Error 0.008086639 0.4276726 0.4342362 0.000884136 0.02734282 0.02756596

The absolute error is the absolute value of the average/relative difference of the corresponding parameter, take the first column of parameter q as an
example, the absolute error is calculated by MEANðjqðM1Þ � qðM2Þj Þ and the relative error is calculated by MEANðjqðM1Þ � qðM2Þj=ðqðM1Þ þ qðM2Þ Þ Þ. M1
(M2) represents the estimates from the original MRR model estimated by the GMM (MLE) method. M3 represents the estimates from the extended version
estimated by the MLE method.
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Dpi ¼ð1�jBÞei (9)

where B is the backshift operator, j is the coefficient, and ei is the further error. In a general setup, following the framework of
autoregressive conditional heteroscedasticity (Engle, 1982), we have the error, sharing the ARCH(1) model as the first step.

ei ¼ sizi; s
2
i ¼ b0 þ b1e

2
i�1; (10)

where b0 >0, b1 � 0, zi is an i.i.d. random variable. In application, it is appropriate to assume that zi follows a normal dis-
tribution for ML or quasi-ML estimation.4 A more general ARCH structure uses the GARCH rules of Bollerslev (1986).

With zi following a normal distribution and combining Equations (9) and (10), the conditional log-likelihood function is

lðDp1;Dp2;/DpT jQÞ¼ �
XT
i¼2

"
1
2
ln s2i þ

1
2
ðDpi � jiDpi�1Þ2

s2i

#
; (11)

where Q is the parameter vector. Maximizing l leads to the MLE of Q.

4. Empirical results

In this section, we first estimate the parameters in the twoMRRmodels, the original MRR and the extended version, with a
detailed analysis and comparison, and then explore the information lag parameter.

4.1. Model comparison

For the original MRR model, we employ two methods to compare the parameters. The MLE method can be obtained from
Equations (4) and (9)e(11), and the GMMmethod adopts moment conditions, as in Madhavan et al. (1997). Equations (7) and
(9)e(11) provide details of the MLE method for the extended model. Table 2 lists the summary statistics of the parameters of
adverse selection risk and liquidity cost estimated using the two methods. Because our sample comprised 50 stocks, each
parameter contained 50 values. It is worthmentioning that all the estimated parameters are significant at the 1 percent level,
which is not shown in this paper.

From Tables 2 and it is clear that the values of q and 4 estimated by the MLE are approximate to those estimated by the
GMM in the original MRRmodel. From the perspective of themodel comparison, the difference between the 4 s is slight while
the difference between the revised adverse selection risk ~q0 and the adverse selection risk q is obvious. Specifically, the
bottom line in Panel B of Table 3 shows the difference between q from the perspective of relative error. It is worth noting that
the relative error of parameter q greater than 40% is not acceptable in calculating.

Furthermore, we aimed to determine the statistical properties of these differences, particularly if the distributions of these
parameters were identical. Further details may be obtained by examining and testing the cumulative distribution of the
estimated variables.
4 We also adopt a heavy-tailed distribution such as a standardized Student distribution and the results are similar.
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Table 3
Kruskal-Wallis Tests on parameters.

Panel A: Triple Comparison

Parameter q 4

Test Statistic 4.9097 3.5715
P-value 0.08588 0.1677

Panel B: Pairwise Comparison

Parameter q 4

M1 to M2 M1 to M3 M2 to M3 M1 to M2 M1 to M3 M2 to M3

Test Statistic 0.0068436 3.631 3.6995 0.0007604 2.6469 2.692
P-value 0.9341 0.05671 0.05443 0.978 0.1037 0.1009

The test statistic is used to test the null hypothesis that the parameter value for all three volume samples is drawn from identical populations versus the
alternative hypothesis that at least one of the populations tends to furnish greater observed values than the other populations. The parameter q includes the
adverse selection risk estimated by GMM and MLE in the original MRR model and the revised adverse selection risk estimated by MLE in the extended
version. 4 is the liquidity cost.
The test statistic is used to test the null hypothesis that two samples are drawn from identical populations against the alternative that their distributions are
different. M1 (M2) represents the estimates from the original MRR model estimated by the GMM (MLE) method. M3 represents the estimates from the
extended version estimated by the MLE method.
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To compare these distributions, we used the Kruskal-Wallis test, which determines whether the compared population
distribution functions are identical. Specifically, we tested whether one of the three populations differed from the others.
Table 3 lists the test statistics.

The Kruskal-Wallis test in Panel A of Table 3 shows that the null hypothesis about the adverse selection parameter q is
rejected with a test statistic of 0.08588, which is well above the 0.1 confidence level. The test statistic 4 is 0.1677, suggesting
no significant differences in the liquidity cost estimates. In Table 3, panel B, the test statistics of q and 4 in the comparison of
“M1 to M2” indicate that there is not a significant difference between the two estimate methods. However, the test statistic of
the adverse selection parameter q in the comparisons of “M1 to M3” and “M2 to M3” verifies the fact that the difference
between the revised adverse selection risk ~q0 and the adverse selection risk q is significant, attributed to the different
structures of the models. Meanwhile, the effect of different structures of the models on the estimates 4 is not significant with
the test statistics of values 0.1037 and 0.1009 in the comparisons of “M1 to M3” and “M2 to M3,” respectively.

Based on the analysis of the non-Markov property of the trade indicator variables and the Kruskal-Wallis tests, the
variability in the estimates suggests that the information lag component plays an important role in revealing significant
differences in the estimates of adverse selection risk.

4.2. Economic implication of the model

Our model emphasizes the contradiction between MRR model assumptions and the non-Markovian nature of real-world
data. We then account for delayed information in the MA-MRR model and find that the liquidity parameter barely changes,
whereas the adverse selection cost parameter exhibits significant differences.

Currently, there is no universally accepted metric for assessing adverse selection risks. The MRR model deviated from the
Markov structure, and Zhang et al. (2015) established that this inflates the estimates of adverse selection risk, lending
substantiation to our conclusions. Moreover, from a statistical standpoint, we validated the notable dissimilarities in the
estimation of parameters for adverse selection risk.

Empirical evidence confirms a significant discrepancy in adverse selection risk between the two models based on the
consideration of a delayed information term. In our study, quarterly data were used for parameter estimation, and the dis-
crepancies between the two models were analyzed. We confirm that significant discrepancies (or errors) may arise in
parameter estimation when the actual data fail to satisfy the Markov property.

4.3. Insight into the information lag parameter

We now focus on the ~q1 in Equation (7), which is the information lag parameter. The empirical results show that all ~q1
values are positive, ranging from 0.1069351 to 0.459482. Fig. 1 shows detailed estimates for the 50 stocks. It is notable that all
estimates are significant at the 1 percent level. The maximumwas 0.459482, occurring at the 44th stock, and the minimum
was 0.1069351, occurring at the 8th stock. The mean and median are 0.2275045 and 0.2339847, respectively, as represented
by the dot-dashed and solid lines in Fig. 1.

Our concern in this study is to gain insight into the information lag parameter rather than why the estimates differ ac-
cording to stock. We remove the information part ~q0ðxi �E½xijxi�1� þ~q1ðxi�1 �Ii�1ÞÞ from Equation (7)and explore the meaning
of the parameter ~q1 from the perspective of information integration into the price.

Consider one unit information shock in the first trade, that is x1 � I1 ¼ x1 � E½x1jx0� ¼ x1 � E½x1�. Then the information
shock in the second trade can be expressed as x2 � I2 ¼ ðx2 � E½x2jx1�Þ þ ~q1ðx1 � I1Þ, from which it can be deduced that a
58



Fig. 1. The values of information lag parameters of 50 stocks.
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proportion of the information in the first trade, about ~q1, lags behind the second trade. In other words, only a proportion about
1� ~q1 of the first shock is integrated into the price at the first trade. From this, it is easy to see that the cumulative proportion
of the first shock integrated into the price at the n th trade is 1� ~q1

n
. Obviously, if j~q1j<1, the shock information will be

integrated to a full level when n approximates to infinity. So the value of ~q1 can be seen as an index to measure the speed of
information integration. The smaller the value is, the faster the information integrates into the price in each trade. Fig. 2
intuitively illustrates the information integration processes according to the corresponding ~q1 values.

In Fig. 2, the horizontal axis represents the transaction time from the first trade to the 20th trade. The vertical axis rep-
resents the proportion of cumulative information incorporated into the prices. Although the velocities corresponding to ~q1 are
dramatically different, all the curves of the cumulative information integrated in the price cross the 99 percent line,
approximating a full level after seven trades. Furthermore, from the perspective of the average effect (the mean of ~q1 is 0.23),
the curve with ~q1 ¼ 0:30 shows that more than 99 percent of the information about the shock information is integrated into
the price after the first five trades. Hasbrouck (1991) employs an impulse response function to explore how long one unit of
information shock is integrated into a price. Their results indicate that it takes approximately 20 trades to reach a fully
Fig. 2. Information integration processes according to the corresponding ~q1 values.
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incorporated level, and that the first five trades are critical, inwhichmost of the information shock is integrated into the price.
He suggests that a VAR structure with five lags is well suited for empirical studies. From the perspective of the total trans-
action time and average information integration speed of all stocks, our empirical results are consistent with those of
Hasbrouck (1991) and Dufour and Engle (2000). However, from the perspective of individual stocks, a VAR structure with five
lags may be insufficient or redundant. For example, the bottom curve in Fig. 2, in the case of ~q1 ¼ 0:46, shows that seven
trades are required to reach a 99 percent level, whereas the top curve in Fig. 2, in the case of ~q1 ¼ 0:10, shows that only two
trades are required to reach a 99 percent level. Our data come from the most frequent stock; otherwise, it will take at least 18
trades to reach a 99% confidence level when the estimate ~q1 is 0.80 as example. Therefore, the information lag component can
provide a useful reference for empirical studies on transaction-level analysis.

5. Conclusion

This study presents an MA-MRR model that provides a new approach to measuring adverse selection risk that seems
particularly well suited to financial data. The lag component in the model captures the speed of information integration as an
indicator of market quality, which is closely related to market liquidity and price informativeness.

When the data do not satisfy theMarkov property, a moving average process oftenmakes themodel more reasonable. Our
tests reject the assumption of the first-order Markov property of the trading indicator variables for most trading days.
Therefore, the empirical application of the adverse selection risk estimated by theMRR is questionable because the first-order
Markov property assumed in thismodel is doubtful. We further show that the difference between the adverse selection risk of
the MRRmodel and the corresponding parameter of the extended version is significant because there is an information lag in
the trading process. This new estimate of the adverse selection risk of the extended model provides a more accurate measure
of asymmetric information. Moreover, the speed of information integration by the information lag component in the
decomposed structure can provide useful clues for other empirical studies.
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