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Abstract

The launch and recovery (L&R) of a small vessel from a large mothership occurs in various settings, such
as the rescue of stranded personnel, extraction of unmanned autonomous sea monitoring sensors and the
deployment of rescue submersibles. L&R of a small vessel, from a large mothership, at high sea states is
difficult and is often avoided for safety reasons. This paper proposes sliding mode controllers to automate
the process involving a modified davit crane in which the suspension point is movable. This is the first time
a robust control strategy has been used to tackle this specific maritime problem.

In this work, a second-order sliding mode controller is used to change the length of the cable during the
recovery process and ensures that a pre-defined profile for the cable’s length is followed. This controller
alone proves to be sufficient for a safe recovery at low sea states. However, for higher sea states, the small
vessel and mothership collide under certain circumstances. An integral sliding mode controller is introduced
to adjust the crane’s boom, which modifies the position of the suspension point, such that the oscillations
of the small vessel are minimized. This controller aims to keep the distance between the mothership’s hull
and the centre of the small vessel at a constant value by adjusting the position of the crane’s boom and
reducing the swing angle. The overall control algorithm is found to be very effective, compared to the fixed
boom case, ensuring that collisions do not occur under any of the tested configurations, and a safe distance
is maintained between the mothership and the small vessel. The performance evaluation of the controller
predicts that it will safely operate in rough sea states for any initial combination of swing angle and velocity,
if a safe recovery can be carried out at a lower sea state for the same initial conditions.

Keywords: Launch and recovery, high sea states, underactuated system, crane, sliding mode control,
integral sliding mode control

1. Introduction

In calm water (i.e. up to sea state 3, where the wave height is between 0.5m - 1.25m) the L&R process can
be carried out by a trained operator using their experience and discretion. However, for higher sea states
(4 and above, with wave heights greater than 1.25m), despite the presence of experienced operators, the
uncertain nature of the waves adds a significant amount of complexity to this process. This increases the
danger to any personnel on the small vessel, and increases the possibility of damage to the mothership and
the small vessel arising from collisions.

1Vikram Rout is an Early Stage Researcher funded by the Marie Sk lodowska-Curie Grant #765579 - ConFlex.
2Liam Vile is supported by the EPSRC project EP/P022952/1.
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The existing mechanisms for L&R can be broadly classified into three categories: ramps [1, 2], intermediate
capture devices [3], and cranes. This paper focuses on the use of cranes. L&R using cranes involves a diverse
set of arrangements including side davits, boom, knuckle, extending, and A-frame cranes, and any other
combination of a boom and winch [3, 4, 5].

Figure 1: Launch of a smaller vessel from a larger mothership
using a davit [6]

Figure 2: Capture of a smaller vessel with a stern cage on to
the mothership [7]

During a crane based launch or recovery process, the winch control operator has to deal with the oscillations
of the small vessel and ensure that it does not capsize. The oscillations when the small boat is clear of
the water during the recovery process can also result in collisions with the hull of the mothership causing
damage to both the mothership and the small vessel. Oscillations of the small vessel is the major hindrance
to safe L&R. The motivation behind this paper is to develop a control algorithm to aid crane operators and
to partly automate the recovery process of the small vessel in high sea states, and to help determine the
sea states and initial conditions for which recovery is viable. In this paper a modification to the traditional
boom of the crane is considered. The boom position is assumed to be adjustable to enable lateral movement
of the suspension point to reduce the oscillations of the small vessel. This modified crane is therefore
similar to the telescopic boom crane [8]. However a typical dynamic crane system is an underactuated
system since the number of control variables is less than the degrees of freedom [9, 10]. There are many
examples of engineering systems which are underactuated: some examples include submarines and VTOL
(vertical takeoff and landing) aircraft which have 6DOF, but usually only 4 actuated variables in the form
of thrust in one direction and torque control for angular orientation along each of the three axes [11, 12].
Other important examples of underactuated systems includes flexible joint robots and the cart-pole system,
where a single control input is applied to a system with two degrees of freedom [13, 14]. The crane-small
vessel assembly considered in this paper falls under Class III of the underactuated systems classification as
delineated by Olfati-Saber [15].

Typically, the primary goal of (any) crane control system is to minimize unwanted motions of the payload
during transport from one location to another. Such motion can originate from the inertial forces of the
payload itself, base excitations of the supporting structure (in this case, the mothership) or wind loads.
In some situations the effect of the inertial forces can be mitigated by the crane operator performing the
transport manoeuvres slowly. Control strategies for ameliorating the external excitations can be classified
into open-loop and closed-loop control, and differ depending on the type of crane being used (gantry, rotary,
boom crane etc.).

Open-loop control methods include input-shaping, where the crane operates along a pre-determined path [16,
17, 18]. An acceleration profile for the crane is obtained such that the residual oscillations during transport
of the payload are minimal. Another open-loop control method is optimal control where the velocity [19]
or acceleration [20, 21] profiles are optimized. The optimization can be based on minimising oscillations or
limited hoisting and transport time. Genetic algorithms have also been implemented for the optimization
process [22]. Zhang et al. [23] developed a data-driven optimal adaptive control scheme for a 2D overhead
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crane model to regulate the position of the crane and its swing. Their data-driven controller does not rely
on prior knowledge of the dynamics of the system. Wu et al. [24] used feed-forward compensation control
for the 2D overhead crane system with uncertain disturbances (estimated using a nonlinear disturbance
observer) by converting the model into a quasi-integrator-chain form. This was combined with a global
SMC such that the nominal control performance of the controller was preserved.

Closed-loop crane control of ships has been studied by a wide number of researchers. Chin et al. [25] studied
the factors affecting the large excitations of the payload when transferring it from one ship to another
using a ship-mounted crane and highlighted the primary reasons as large wave amplitudes and small wave
amplitudes near the resonance of the payload [26]. Fang et al. [27] developed a dynamic model of an offshore
boom crane using the Euler-Lagrange method and studied the effects of the ship’s motion on the swing angle
of the payload. The controller was based on developing planned trajectories for the cable length and the
luff angle3, and then developing a Sliding Mode Controller (SMC) to adhere to these trajectories. These
actuated variables were also used to ensure that the un-actuated variable, the swing angle, goes to zero.
The controller was shown to be very robust in the sense of not being affected by the disturbances resulting
from ship motions. Sun et al. [28] implemented a coordinate transformation to represent the disturbances
in a different form to incorporate the ship’s roll and heave motions as disturbances for the crane dynamics.
They developed a closed-loop control method to stabilize the ship-mounted crane in the presence of roll
and heave motions without any linearization or approximation of the non-linear dynamics of the system.
Kuchler et al. [29] used a prediction algorithm to obtain the vertical motion of the ship and then an inversion-
based control algorithm was implemented to transport the payload and minimize the disturbances. Kim
et al. [10] implemented an adaptive SMC with 4DOF control for an offshore container crane experiencing
unknown disturbances. A sliding surface was determined to include the actuated and un-actuated variables.
SMC was used with two adaptation laws for switching. The adaptation laws are used to compensate for
the disturbances and minimize chattering around the sliding surface. They tested this control scheme for
sudden and unknown disturbances like wind gusts, and found the controller to be robust in these conditions.
The only mothership motions considered for producing the disturbances were roll and pitch. Chen et al. [30]
developed a closed-loop output feedback control scheme for a 5 degree-of-freedom offshore crane system by
considering the ship’s yaw and roll motions.

Cao et al. [31] produced a review paper focusing on the antiswing controller characteristics for cranes onboard
ships. Due to the additional degrees of freedom that exist for cranes on ships compared to land cranes, the
control strategies vary immensely. This review compiled the antiswing control research into three types
of cranes onboard of a ship: overhead, boom and tower cranes. The physical methods included using a
tagline and rider block to change the pendulum’s frequency, Maryland rigging, changing the pulley length,
and the introduction of an active anti-pendulation arm. Researchers have focused on the development of
the control schemes for these systems. These can be categorized into linear control, feedback linearization,
backstepping control, sliding mode control, energy-based feedback control and intelligent control. Bozkurt et
al. [32] developed a control scheme for payload transfer between two ships in rough seas. This was based on
the use of Particle Swarm Optimization to obtain the gains for Proportional-Integral-Derivative (PID) and
Proportional-Derivative-Second Derivative control (PDD2) systems. The PID controller was used to control
the horizontal and vertical movement of the payload, while the PDD2 method was used to control the swing
of the the payload. However, an extra telescopic boom was added to the main boom for control purposes.
Zhang et al. [33] developed an adaptive controller based on online gravity compensation to estimate any
gravity based parameters for accurate transfer of the payload from the ship. Qian et al. [34] proposed an
adaptive neural network based control scheme for payload transfers between two ships.

Since L&R operations at sea have traditionally been undertaken manually - little in the way of existing
literature is available that addresses the dynamics and control of the entire process. The key contribution
of this paper is

3Luff angle is the angle made by the crane’s boom with its horizontal base.
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• to study for the first time the development of a feedback control system to automate the process of
safely recovering a small vessel to a mothership

• to understand/predict the range of sea states under which this may be possible.

The only other relevant work the authors are aware of which addresses this problem, is the recent paper
[35]. In [35] the L&R problem is considered based on a relatively simple model of the mothership. These
vessel dynamics is used as the basis for an MPC design. The MPC formulation in [35] relies on predicted
future incoming wave profiles to predict the future response of the vessel involved in the L&R process over
a moving time horizon. This requires an on-board sea wave prediction system [36] and an online real-time
optimization to solve the associated MPC problem. Here a completely different control approach is adopted.
In this paper a more complex model of the mothership response is used as the basis for developing (off-
line) a parameter varying feedback gain synthesized from adopting a ‘robust control’ paradigm (specifically
in this case a sliding mode approach). The resulting controller is much less computationally intensive to
implement and does not require a sea wave prediction system. The approach adopted in this paper therefore
has potentially significant benefits in terms of retrofitability and financial cost.

The control approach used in this paper is separated into control of the crane cable length and control of the
boom position, and hence the suspension point. These two problems are addressed independently. SMC has
been used for length control and an Integral Sliding Mode Control (ISMC) approach is used for the control
of the lateral movement of the boom. This approach has been adopted because of its strong robustness
properties which have been widely studied and well documented [37]. To deal with disturbances and the
absence of robustness during the reaching phase traditionally associated with SMC, integral sliding mode
control has been implemented for the control of many types of underactuated systems like the flexible joint
robot [38, 14], cart-pole system [39] and a 4DOF tower crane [40]. Modelling of the L&R system involves a
modular approach consisting of wave motion effects, ship motion estimation, crane/small vessel modelling
(and the control algorithm). In particular, the wave motion and ship motion prediction models will both
possess inaccuracies when compared to the real situation. Thus, it is essential to employ a robust control
approach which can deal effectively with modelled and unmodelled system uncertainties. This paper is
structured as follows. In §2 and §3 the mathematical models of the mothership and the crane are described
respectively, in §4 the novel control architecture is developed and in §5.3 some simulation results are shown.
An attempt is made to understand the range of sea states in which using this approach is feasible. Some
concluding remarks are provided at the end of the paper.

2. Ship Motion Modelling

This section describes the simulation environment which has been developed to test the control algorithms
proposed for L&R. High-fidelity models of the sea can be obtained from Computational Fluid Dynamics
(CFD) methods like Large Eddy Simulations (LES), Direct Numerical Simulations (DNS) and Reynolds
Averaged Navier-Stokes (RANS) equations. They are also able to provide accurate estimates of fluid-
structure interactions between the vessels and the sea [41]. However, these methods are extremely time
consuming and computationally intensive processes and thus unsuitable for our purpose. Here a unified
seakeeping-manoeuvring model, which is used in advanced ship motion simulators that operate in the time
domain [41], is used to model the mothership motions. The sea environment and the ship model is based
on [41]. In conjunction with the highly cited book [41], the authors created a SIMULINK based Marine
Systems Simulator (MSS) [42]. This simulation package has been used to generate ship motions under
various sea conditions. The underlying mothership simulation is based on a unified state-space model. This
has many advantages over the simpler motion superposition models. In particular it includes the radiation
forces during manoeuvring with greater accuracy, as it considers the radiation forces produced due to control
action, along with those produced by the waves.
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Figure 3: The six degrees of freedom and different coordinate systems for the ship [41]

To integrate the motion of a ship with the on-board crane model which will be discussed in the sequel, the
following reference frames are needed [41]:

• The n-frame is centred about a fixed point on the earth.

• The b-frame is centred about a fixed point on its hull and coincides with the principal axes of rotation.

• The h-frame is centred relative to the time-averaged response of the ship. The plane xh, yh coincides
with the average water level, xh points in the average yaw direction and xh = yh = 0 at the average
centre of gravity.

For marine operations, the surface of the sea is broadly classified into sea states as shown in Table 1. This
classification is made on the basis of the significant height (H1/3) of the waves, which refers to the mean
wave height of the highest one-third of the waves.

Sea state H1/3 range (m) Sea description
0 0 Calm (glassy)
1 0 - 0.1 Calm (rippled)
2 0.1 - 0.5 Smooth (wavelets)
3 0.5 - 1.25 Slight
4 1.25 - 2.5 Moderate
5 1.25 - 4 Rough
6 4 - 6 Very rough
7 6 - 9 High
8 9 - 14 Very high
9 > 14 Phenomenal

Table 1: Sea state description [41]

3. 2D Adjustable Boom Model

This section focuses on the development of a two-dimensional model of a crane with an adjustable boom,
and its interaction with the small vessel to be recovered. Many rigid body models of crane systems exist in
the literature, but in this paper, a particular form of boom crane and its interaction with the ship model
will be described from first principles. This model will then be considerably simplified to obtain a ‘control
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oriented’ model which will be used for the design of the control system. In the literature crane modelling
can be broadly categorized into attempts to create either distributed-mass or lumped-mass models [43]. In
the distributed-mass model, the crane hoist cable is modelled as a distributed-mass system. The hook and
small vessel are combined to form a point mass and act as boundary conditions for the distributed-mass
hoisting cable. This model is valid when the lumped mass is of the same order of magnitude as the mass
of the cable. As expected, this has very limited applications. The lumped-mass model is the more common
and practical modelling method. In this section the hoisting cable is considered massless, with the hook and
small vessel being lumped together to form a point mass.

The most widely utilized method for crane modelling is the Euler-Lagrange approach. This method is based
on the conservation of energy and has been widely used by Nayfeh [44], Abdel-Rahman [43], Chin [25, 45],
Wen [46], Tuan [47] to obtain the equations of motion of the crane’s payload. An advantage of this method
is that the generalized variables can be selected and specified as per requirement.

A two-dimensional model of the mothership and crane is considered in this paper with the consideration
of roll, sway and heave motions. These motions have been considered out of the six degrees of freedom
available due to their prominent impact on the L&R process. Excessive movements in any of these degrees
of freedom can lead to possible collision of the small vessel with the hull of the mothership, and in worst
case scenarios, lead to the capsizing of the small vessel. The 2D crane model consists of a tower fixed on the
mothership, with a boom at a right angle to this tower. The boom is long enough to have its end extending
past the hull of the mothership. The hook is attached to the end of the boom (suspension point) using a
cable connected to the winch. Finally, the hook is attached to the small vessel being lifted from the sea
(or lowered into the water). A key feature of this model is that the suspension point is movable - i.e. the
boom length is not fixed. This flexibility will be exploited to introduce an additional control input to the
system.

The small vessel is represented by the solid blue circle in Figure 4, i.e. effectively as a point mass. The
mothership, denoted by the blue rectangle, is moving in the outward perpendicular direction from the
yb, zb−plane. All of the additional nomenclature used to describe the crane is presented in Table 2.

a Fixed length of the boom (m)
d Perpendicular distance between the suspension point and zb axis (m)
d0 Perpendicular distance between the suspension point and mothership’s hull (m)
dcol Perpendicular distance between the centre of the small vessel and mothership’s hull (m)
h Perpendicular distance between the boom and yb axis (m)
l Length of hoisting cable from the suspension point to the small vessel (m)
m Mass of the small vessel (kg)
M Mass of the boom (kg)
α Angle made by the hoisting cable with the zn axis (rad)

Table 2: Ship model nomenclature

The green line perpendicular to the hull represents the crane tower and the other green line represents the
boom. The blue line depicts the crane cable connecting the boom suspension point to the small vessel,
which is the payload here. The small vessel is considered a point mass in this model.

The following abbreviations will be used for the remainder of the developments: Sϕ = sinϕ, Cϕ = cosϕ,
Sϕ−α = sin(ϕ− α) etc. This simplifies notationally the developments which follow.

From Figure 4, the position vector of the small vessel in the n-frame, Pl, can be computed as

Pl =

[
dCϕ + lSα − hSϕ + η2
dSϕ − lCα + hCϕ + η3

]
(1)

where η2 and η3 denote the ship’s displacement (m) in the yn and zn directions from the origin of the b-frame
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to the origin of the n-frame. Both components of Pl are measured in metres. Note that here it is assumed
the yaw angle of the mothership, ψ ≈ 0 and the crane is positioned at xb = 0. It is also assumed that
the boom can be adjusted thus altering the point of suspension. This means that the quantity d is not a
constant but a function of time, and this results in an inertial effect caused by the boom. Here the boom
is modelled as a beam. For preliminary calculations, it has been modelled as a point mass located at the
centre of the boom. The position vector of this point in the b-frame is

Pboom =

[
d− a

2
h

]
(2)

where, a is the constant boom length, which can only move parallel to the yb axis.

Applying a coordinate transformation to get its position in the n-frame yields

Pa =

[
Cϕ −Sϕ

Sϕ Cϕ

]
Pboom +

[
η2
η3

]
=

[
dCϕ − aCϕ

2 − hSϕ + η2
dSϕ − aSϕ

2 + hCϕ + η3

]
(3)

Both components of Pboom and Pa are measure in metres. An Euler-Lagrange approach will now be adopted
to develop a model of this system. The complete development of the governing equations of motion in each
generalized coordinate is given in Appendix A. Exploiting equations (A.4d), (A.5d) and (A.6d) in the generic
form of equation (65) results in the dynamical 2D model of the system which can be written as
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 m 0 −mSϕ−α

0 ml2 mlCϕ−α

−mSϕ−α mlCϕ−α m+M

 l̈α̈
d̈

+

fl(q, q̇)fα(q, q̇)
fd(q, q̇)


︸ ︷︷ ︸

f(q,q̇)

+

 ςlςα
ςd


︸ ︷︷ ︸

ς

=

τl0
τd

 (4)

where the internal forces f(q, q̇) are

fl(q, q̇) = m
(
−lα̇2 − gCα

)
(5a)

fα(q, q̇) = ml
(
2l̇α̇+ gSα

)
(5b)

fd(q, q̇) = m
(
2l̇α̇Cϕ−α + lα̇2Sϕ−α

)
(5c)

and the external forces ς are given componentwise by

ςl = m(−2ḋϕ̇Cϕ−α − dϕ̈Cϕ−α + dϕ̇2Sϕ−α + hϕ̈Sϕ−α + hϕ̇2Cϕ−α + Sαη̈2 − Cαη̈3) (6a)

ςα = ml(−2ḋϕ̇Sϕ−α − dϕ̈Sϕ−α − dϕ̇2Cϕ−α − hϕ̈Cϕ−α + hϕ̇2Sϕ−α + Cαη̈2 + Sαη̈3) (6b)

ςd = (m+M) (−hϕ̈+ Cϕη̈2 + Sϕη̈3 − dϕ̇2 + gSϕ) +Maϕ̇2/2 (6c)

Note that in this report it is assumed that q, ϕ, η2, η3, and their derivatives, are known and therefore f(q, q̇)
and ς are available for control design.

4. Control Design

In this section two controllers are proposed for the non-linear model in (4). The first controller is a higher-
order sliding mode one which is tasked with controlling the cable length l through τl, whilst the second
controller is tasked with minimising the (oscillatory) motion of the small vessel when suspended. These two
control objectives are treated as decoupled for the purposes of design.

4.1. Length Control

For the purposes of control design, the dynamics for the cable length l in (4) can be expressed as

l̈ = Sϕ−αd̈−
fl + ςl − τl

m
+ µl (7)

where µl represents an unknown, but bounded, uncertainty capturing plant/model mismatch. In this paper
the control law for τl is chosen to have the following structure

τl = m(τnl + τfl + τsmc
l ) (8)

where τnl is a non-linear feedback term, τfl is a feed-forward term depending on the demanded length profile,
and τsmc

l is a term to induce a second-order sliding motion [48]. Substituting (8) into (7) yields

l̈ = Sϕ−αd̈−
fl + ςl
m

+ τnl + τfl + τsmc
l + µl (9)

then selecting τnl as

τnl = −Sϕ−αd̈+
fl + ςl
m

(10)

and substituting into (9) yields

l̈ = τfl + τsmc
l + µl (11)
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Note that the term τnl in (10) essentially decouples the dynamics associated with the cable shown in (7)
from the other two second order systems which make up the overall system in (4). This requires knowledge
of the ship states – but these would be readily available on modern vessels. Any mismatches (for example
inaccuracies in measurement) would need to be absorbed into the term µl in (11) capturing the lumped
mass model uncertainty. Define the sliding surface, σl, as

σl = l − l0 (12)

where l0 is the reference length, then it follows from (11) that

σ̈l = l̈ − l̈0 = τfl + τsmc
l + µl − l̈0 (13)

which, by selecting
τfl = l̈0 (14)

reduces to
σ̈l = τsmc

l + µl (15)

Since the uncertainty µl appears in the second derivative of σl, the robustness term τsmc
l must be chosen as

a second-order SMC to force σl = σ̇l = 0 and subsequently ensure l → l0 despite the uncertainty. Robust
finite time convergence of both σ and σ̇ to zero in (15) was studied in [48]. Here τsmc

l is chosen as the
following quasi-continuous SMC [48] structure

τsmc
l = −ρl

σ̇l + |σl|
1
2 sign(σl)

|σ̇l|+ |σl|
1
2

(16)

Remark: The controller for length regulation given in (8) where the components τnl , τ
f
l and τsmc

l are in
turn given in (10), (14) and (16) respectively, has only the gain ρl, which forms part of (16), as design
freedom. This makes tuning straightforward. As proved in [48], if the gain ρl is chosen sufficiently large
enough with respect to the magnitude of µl, then σl → 0 and σ̇l → 0 in a finite time.

4.2. Collision Distance Control

In this section a control law is designed for τd which aims to maintain a specific distance between the
mothership and the small vessel. This distance is referred to as the collision distance dcol and is defined
such that dcol < 0 indicates a collision has occurred. Since l is being controlled independently through τl,
it is assumed for the purposes of control design that the effects of l̇ (m/s) and l̈ (m/s2) can be ignored, this
reduces the Euler-Lagrange model in (4) to[

ml2 mlCϕ−α

mlCϕ−α m+M

]
︸ ︷︷ ︸

M̃(q̃)

¨̃q +

[
f̃α(q̃, ˙̃q)

f̃d(q̃, ˙̃q)

]
︸ ︷︷ ︸

f̃(q̃, ˙̃q)

+

[
ςα
ςd

]
︸︷︷︸

ς̃

=

[
0
τd

]
︸︷︷︸

τ̃

(17)

where the new generalized coordinates are given by q̃ =
[
α d

]T
, and the simplified internal forces are given

by

f̃α(q̃, ˙̃q) = mlgSα (18)

f̃d(q̃, ˙̃q) = mlα̇2Sϕ−α (19)

Solving (17) for ¨̃q yields
¨̃q = M̃

(
q̃)−1(τ̃ − f̃(q̃, ˙̃q)− ς̃

)
(20)
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and making substitutions from (17) and (18) into (20) and simplifying, using the MATLAB Symbolic Maths
Toolbox [49], produces the following representation

α̈ =
Cϕ−α

(
mlSϕ−αα̇

2 − τd + ςd
)

ml +Ml −mlC2
ϕ−α

−
(M +m)

(
ςα +mlgSα

)
m2l2 +Mml2 −m2l2C2

ϕ−α

(21)

d̈ =
τdl − ςdl + ςαCϕ−α −ml2α̇2Sϕ−α +mglSαCϕ−α

l(M +m−mC2
ϕ−α)

(22)

In turn (21) and (22) can be further simplified using a small angle approximation Cϕ−α = Cα = 1, Sα = α
and Sϕ−α = ϕ− α, so that

α̈ =
ml(ϕ− α)α̇2 − τd + ςd

Ml
− (M +m)(ςα +mlgα)

Mml2
(23)

d̈ =
ςα +mlgα

Ml
− ml(ϕ− α)α̇2 − τd + ςd

M
(24)

Defining
τd = τ̃d −ml(ϕ− α)α̇2 (25)

equations (23) and (24) can be simplified to

α̈ =
ςd − τ̃d
Ml

− (M +m)(ςα +mlgα)

Mml2
(26)

d̈ =
ςα +mlgα

Ml
− ςd − τ̃d

M
(27)

The objective is to create a Linear Parameter-Varying (LPV) system to approximate (26)-(27) for the
purposes of control law design.

δα̇

δḋ

δα̈

δd̈


︸ ︷︷ ︸

ẋ

=



0 0 1 0

0 0 0 1

− g(M+m)
Ml 0 0 0

mg
M 0 0 0


︸ ︷︷ ︸

A(l)



δα

δd

δα̇

δḋ


︸ ︷︷ ︸

x

+



0

0

− 1
Ml

1
M


︸ ︷︷ ︸

B(l)

τ̃d +



0 0

0 0

−M+m
Mml2

1
Ml

1
Ml − 1

M


︸ ︷︷ ︸

D(l)

ςα + µα

ςd + µd


︸ ︷︷ ︸

ς̃

(28)

where µα and µd represent unknown but bounded uncertainties. The states δα and δd denote pertubations
of α and d from the linearization point (0, d0, 0, 0).

From Figure 4, the following geometrical relationship can be derived

dcol = d− lSϕ−α (29)

assuming that ϕ ≈ 0 and using a small angle approximation

dcol ≈ d+ lα (30)

For the system in (28), define the coordinate transformation x 7→ x̄ = Tx

T =


l 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (31)
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where the new system state x̄ =
[
δdcol δd δα̇ δḋ

]T
.

To improve low frequency performance, x̄ can be augmented with the integral action state

ẋr =
[
1 0 0 0

]
x̄ (32)

such that x̃ = col(xr, x̄). Ignoring terms related to l̇, a linearised representation is given by

˙̃x = Ã(l)x̃+ B̃(l)τ̃d + D̃(l)ς̃ (33)

where the system matrices are

Ã(l) =



0 1 0 0 0

0 0 0 l 1

0 0 0 0 1

0 − g(M+m)
Ml2 − g(M+m)

Ml2 0 0

0 mg
Ml −mg

Ml 0 0


, B̃(l) =



0

0

0

− 1
Ml

1
M


, D̃(l) =



0 0

0 0

0 0

−M+m
Mml2

1
Ml

1
Ml − 1

M


(34)

The disturbance distribution matrix D̃(l) does not satisfy the matching condition [50] but (33) can be
represented by

˙̃x = Ã(l)x̃+ B̃(l)(τ̃d + fm) + D̃u(l)fu (35)

where fm and fu respectively denote the matched and unmatched components of ς̃ and D̃u is an appropriate
distribution matrix. The representation in (35), and in particular thinking of l as a scheduling parameter,
means (35) can be thought of as a Linear Parameter Varying (LPV) system.

The control scheme which will be proposed in this paper utilizes a result on scheduled control from [51]
which in particular involves a constructive method for finding a matrix F (l) such that

Ã(l) + B̃(l)F (l) (36)

is stable for all l ∈
[
lmin lmax

]
where (in this particular context) lmax > lmin > 0 represents the operating

range of the crane. The work in [51] suggest choosing

F (l) =


Fi, l = li

F̄i(l)W
−1(l), li < l < li+1

Fi+1, l = li+1

(37)

where

F̄i(l) =
li+1 − l

li+1 − li
FiWi +

l − li
li+1 − li

Fi+1Wi+1 (38)

and

W (l) =


Wi, l = li
li+1−l
li+1−li

Wi +
l−li

li+1−li
Wi+1, li < l < li+1

Wi+1, l = li+1

(39)

In the above, all the li ∈
[
lmin lmax

]
with li+1 > li where l1 = lmin and limax = lmax (i.e. they create

overlapping subintervals of
[
lmin lmax

]
). The feedback gains Fi are fixed gains which stabilise the plant

at the specific value of l (i.e. ensuring Ã(li) + B̃(li)Fi is Hurwitz for each fixed li) and must satisfy the
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stability covering condition [51] (i.e. there exists a feedback gain Fi which stabilises (Ã(l), B̃(l)) for all fixed
l ∈

[
lmin lmax

]
). The positive definite matrices Wi are chosen to satisfy

Wi

(
A(li) +B(li)Fi

)T
+
(
A(li) +B(li)Fi

)
Wi ≤ −κI (40)

where κ > 0. In [51] this choice of F (l) is shown to guarantee the stability of Ã(l) + B̃(l)F (l) for all
l ∈

[
lmin lmax

]
provided

|l̇| < min
i=1,..,imax−1

κ|li+1 − li|
∥Wi+1 −Wi∥

(41)

This choice of F (l) will be used as the basis for the development of a controller for (35).

Because of the presence of uncertainty, together with the emergence of plant model mismatches resulting
from the approximation used to obtain (35), a robust control methodology must be adopted. Here, a control
law for τ̃d can be designed using Integral Sliding Mode Control (ISMC) principles [52]. This methodology
requires a suitable choice of sliding surface, followed by an appropriate nonlinear control strategy to force
the closed loop system to evolve along the surface for all time.

Firstly consider a switching function defined by

σ = Gx̃−Gx̃(t0)−G

∫ t

t0

(
Ã(l) + B̃(l)F (l)

)
x̃(s)ds (42)

where
G =

[
0 0 0 0 M

]
(43)

and F (l) has been chosen so that Ã(l)+ B̃(l)F (l) is stable. A control law will be developed so that a sliding
motion maintaining σ = 0 for all time is achieved. First it will be demonstrated that if sliding can indeed
be maintained on σ = 0, then the sliding motion is given by

˙̃x =
(
Ã(l) + B̃(l)F (l)

)
x̃+

(
I − B̃(l)G

)
D̃u(l)fu (44)

To demonstrate this, differentiating (42) yields

σ̇ = G ˙̃x−GÃ(l)x̃−GB̃(l)F (l)x̃ (45)

Substituting from (35) and using the fact that GB(l) = I produces

σ̇ = τ̃d + fm +GD̃u(l)fu − F (l)x̃ (46)

The equivalent control necessary to maintain sliding can be found by setting σ̇ to zero and rearranging for
τ̃d [53]: in this specific case this yields

τ̃eqd = −fm −GD̃u(l)fu + F (l)x̃ (47)

Substituting τ̃eqd for τ̃d in (35) yields the equation of motion which governs sliding as (44) as claimed.

Note that in (44) the effects of the matched uncertainty is ameliorated due to the sliding mode. The specific
choice of G in (43) also ensures that ∥I −B(l)G∥ ∈

[
1,

√
2
]
for l > 1 since

∥I − B̃(l)G∥ =

√
1 +

1

l2
(48)

and so the effects of fu are effectively managed.

Next a control law to maintain sliding will be described. Specifically consider the ISMC control law

τ̃d = F (l)x̃− ρ(x̃) σ(t)
∥σ(t)∥ (49)
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where ρ(x̃) is a design scalar. In (49) assuming that the uncertainties fu and fm remain bounded, choose
ρ(x̃) to satisfy

ρ(x̃) ≥ ∥fm∥+ ∥GD̃u∥∥fu∥+ ϱ (50)

where ϱ is a positive design constant.

To demonstrate that sliding is maintained, it will be shown that the so-called reachability condition

σT σ̇ ≤ −ϱ∥σ∥ (51)

is satisfied [50].

Differentiating the expression for the switching function σ in (42) yields

σ̇ = G ˙̃x−GÃ(l)x̃−GB̃(l)F (l)x̃ (52)

By substituting for ˙̃x from (35), and using the fact that GB(l) = I2, equation (52) simplifies to

σ̇ = τ̃d + fm +GD̃u(l)fu − F (l)x̃ (53)

Then substituting for τ̃d from (49) means

σ̇ = −ρ(x̃) σ(t)
∥σ(t)∥ + fm +GD̃u(l)fu (54)

It follows

σT σ̇ = −ρ(x̃)∥σ∥+ σT fm + σTGD̃u(l)fu

≤ −ρ(x̃)∥σ∥+ ∥σ∥∥fm∥+ ∥σ∥∥GD̃u(l)∥∥fu∥ (55)

If ρ(x̃) is chosen to satisfy (50) then from (55)

σT σ̇ ≤ −ϱ∥σ∥ (56)

and so if σ(0) = 0, sliding is guaranteed to be maintained at all times [50].

4.3. Design Process

This subsection outlines the process of developing the control law for collision distance regulation.

1. Based on the LPV model in (28), together with the integral action component described in (32), and
adopting the change of coordinates in (31), form the time varying pair (Ã(l), B̃(l)) as defined in (34).

2. Using the pair (Ã(l), B̃(l)) from Step 1 the next step involves computing the (time-varying) matrix
F (l) to ensure (Ã(l) + B̃(l)F (l) is quadratically stable for all l ∈

[
lmin lmax

]
where lmin and lmax

represent the operating range of the crane. To synthesize F (l), the algorithm proposed in [51] is
suggested, which requires the creation of an overlapping set of intervals

[
li li+1

]
with li+1 > li which

must cover
[
lmin lmax

]
. The selection of the li’s constitutes design freedom.

3. Once the li from Step 2 have been selected, a sequence of parameters Wi and Fi must be chosen to
satisfy simultaneously the Lyapunov equations in (40) where all the matrices Wi must be positive
definite and the scalar κ appearing in (40) must be positive.

4. Using the Wi and Fi synthesised in Step 3, the feedback control gain F (l) can be computed as defined
in equation (37).

5. Once F (l) is chosen, all the elements of the switching function σ defined in (42) are specified since the
matrix G is fixed and must be selected as given in (43).
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6. The control law is given by

τ̃d = F (l)x̃− ρ(x̃) σ(t)
∥σ(t)∥

where the modulation gain in the switching term ρ(x̃) must be chosen to dominate the uncertainty as
specified in (50).

Note that for the purpose of implementation, the discontinuous term in (49) has been replaced by the
sigmoidal approximation

−ρ(x̃) σ(t)
∥σ(t)∥+δ

where δ is a small positive scalar used as a design parameter. The introduction of δ removes the discontinuity
which in turn removes chattering from the closed loop response [50].

5. Simulation Results

5.1. Crane and Ship Modelling
In the following simulations a ship model described from the ‘Marine Systems Simulator’ toolbox (2021
version) [41]. The toolbox contains hydrodynamic data for a number of ships: in the following results, the
S175 container ship is used as the mothership. The S175 is a large container ship with a length (between
perpendiculars) of 175m, a beam of 25.4m, a mean draught of 9.5m and a mass of 25 × 106 kg. These
simulations were carried out in SIMULINK 2020b on a Microsoft Windows machine with 32 GB RAM and
a processor speed of 4.3 GHz.

The crane model, shown in Figure 4 has a fixed length a = 5m, mass M = 500 kg and a height above
the yb axis h = 7m. The small vessel considered is a Rigid Hull Inflatable Boat (RHIB) with a (loaded)
mass m = 1750 kg and a beam of 1.75m. The lifting procedure considered starts at an initial cable length
lmax = 5m, which corresponds to the waterline of the mothership, and lifts the small vessel a total of 4m
over a period of 15 s, giving a final length of lmin = 1m. This ensures the small vessel is sufficiently clear of
the deck of the mothership so that it can be brought onboard.

5.2. Control Design
In (37) the feedback gains Fi are designed using a Linear Quadratic Regulator (LQR) approach, for fixed
values of l = 1.00, 1.25, ..., 4.75, 5.00m. The weighting matrices used in the control synthesis are chosen
as

Q(l) = diag(Q11(l), 400, 350, 0, 0), R = 14 (57)

where the values ofQ11(l) for different cable lengths are shown in Figure (5). InQ(l) the first two elements are
both associated with collision distance (dcol) (the first entry being the integral action state) and are weighted
heavily - since preventing collision is the controller’s main objective. The last two entries, associated with
the swing angle velocity (α̇) and suspension point velocity (ḋ), are set to zero since these are not important
for achieving the main control objective. The specific choice of Q11(l) ensures that at the beginning of
the lift (when l = 5m) the controller is focused on dampening any oscillations associated with the initial
conditions of the small vessel (i.e. control of the swing angle α is prioritised over dcol). As the lift progresses
(l < 5m), the priority aggressively increases to control of the collision distance.

Through the use of Linear Matrix Inequality (LMI) software [54] it can be verified that for each fixed value of
li, and corresponding gain Fi, there is a common solution to the Lyapunov function (40) so that Wi+1 =Wi

for all i. Therefore the bound in (41) becomes infinite - guaranteeing stability of (36) for any value of l̇
within the region l ∈

[
1 5

]
.

In the simulations, to prevent ‘chattering’ [50], the following sigmoidal approximation of the control law τ̃d,
from (49) has been used

τ̃d = F (l)x̃− ρ(x̃) σ(t)
∥σ(t)∥+δ (58)

where δ is a small positive design constant. In this paper ρ(x̃) = 0.2 and δ = 0.015 has been chosen. For
the second-order SMC in (16), ρl is chosen as 0.3 (which represents the only design parameter).
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Figure 5: Plot of Q11(l) with respect to l

5.3. Results

5.3.1. Ship Motions

The controller test scenarios are based on the motions of the S175 mothership, described in §5.1. During
the simulations the S175 is kept at a constant speed of 10m/s and at a constant heading of 30◦ (through the
respective use of the engine and rudder). The sea is selected as the ITTC spectrum [55] with a spreading
factor of 2. Figure 6 shows the responses of the S175 at two different sea states with significant wave heights
H1/3 = 0.5m (sea state 2) and H1/3 = 5m (sea state 6). These motions have been shown here because of
their relevance and use in the modelling of the crane-small vessel system. It can be seen that at sea state
6, a maximum heave displacement of under 1m occurs and an absolute roll peak just over 4◦ is obtained,
while the lower sea state has peak roll and heave displacements of 0.2◦ and 0.03m respectively. Note that
there is a 1 s period in the following simulation results where an initialisation procedure takes place which
aims to smooth the initial control response.

5.3.2. Crane motion for fixed boom cases

This section considers three scenarios: a low sea state condition with neutral initial conditions for the small
vessel; a high sea state condition with neutral initial conditions; a high sea state condition with challenging
initial conditions. Figures 7 and 8 show the cable length (l), swing angle (α) and the suspension point’s
overhang (d − wm) for the crane with a fixed point of suspension. Here d is the horizontal distance of the
suspension point from the origin of the b-frame, defined in Figure 4, and wm = 12.7m is equal to half the
width of the mothership. The initial position of the boom is such that the suspension point is at d = 14.2m.
This results in an overhang distance of 1.5m. The distance between the small vessel and the hull (dcol−wp)
along with the absolute value of the control force along the length of the cable (τl) are also shown in these
figures. The variable dcol is the distance between the ship’s hull and the centre of the small vessel, as defined
in Figure 4, and wp = 0.8m is equal to half the width of the small vessel. The small vessel collides with the
mothership when dcol − wp = 0m.

As seen from Figures 7(a) and 8(a) the length profile of the hoisting cable accurately follows the reference
profile and the length control of the crane cable works as desired for all three cases. This shows the robustness
of the length controller with respect to various sea states and initial conditions. The length controller is
used to define a fixed trajectory for the cable length, such that the velocity of the cable before and after the
recovery process is zero.

As the boom does not move, the overhang distance of the suspension point remains fixed at d−wm = 1.5m
as shown in Figures 7(b) and 8(b).
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(a) (b)

(c)

Figure 6: Ship motion comparison for significant wave heights of H1/3 = 0.5 m and H1/3 = 5 m: (a) Heave; (b) Roll; and, (c)
Sway.

The initial condition for swing angle in Figure 7(c) is α0 = 0◦. For the lower sea state with H1/3 = 0.5m,
the swing angle of the cable remains low and does not exceed 1◦, whereas for the higher sea state, the cable
swings with an amplitude of about 4.5◦ after the completion of the recovery of the small vessel. When
considering a non-zero initial condition for the swing angle (α0 = −6◦) and velocity (α̇0 = −6 ◦/s) in
Figure 8(c) for the higher sea state, it is seen that the oscillations of the cable are much larger and reach an
amplitude of 30◦ after the completion of the recovery process.

The distance between the edge of the small vessel and the hull is shown in Figure 7(d) for the low and high
sea state cases with zero initial conditions for the swing angle and angular velocity. It is seen that the small
vessel does not collide with the mothership for either sea state. However, when the crane cable has an initial
angular value of α0 = −6◦ and an angular velocity of α̇0 = 6◦/s, Figure 8(d) shows that a collision will
occur shortly before 5 s. This warrants the need for a controller to reduce the oscillations of the crane cable
to prevent the collision between the mothership and the small vessel.

The absolute value of the control force on the crane cable is shown in Figures 7(e) and 8(e). This force acts
in the form of tension in the cable. For the lower sea state with zero initial conditions, the force remains
consistent about 17.1 kN. This is equal to the gravitational pull on the small vessel of mass 1750 kg, which
is F = mg = 1750 kg × 9.81m/s2 = 17.168 kN. At the higher sea state, it is seen that the control force is
more oscillatory in nature. This can be attributed to the larger heave and roll motions in this case, which
in turn have an impact on the external forces as well as the swing angle. In comparison with the higher sea
state with non-zero angular initial conditions (α0 ̸= 0◦, α̇0 ̸= 0 ◦/s), it is seen that while the oscillations are
still centered about 17.1 kN, they are much larger in value due to the significantly higher swing angle which

16



(a) (b)

(c) (d)

(e)

Figure 7: Comparison of crane motions comparison with fixed boom for significant wave heights of H1/3 = 0.5 m and H1/3 =
5 m, with initial conditions α0 = 0◦, α̇0 = 0◦/s: (a) Cable length (l); (b) Suspension point overhang (d−wm); (c) Swing angle
(α); (d) Separation distance (dcol − wp); and, (e) Tension in crane cable (|τl|)

ranges between ±30◦.

5.3.3. Crane motion for adjustable boom cases with different initial conditions

This section considers the case where the suspension point is adjustable for the same scenarios as in §5.3.2.
Some additional ‘awkward’ initial conditions are also considered here. Figure 9 displays the response of the
system for the low and high sea state situations with zero initial conditions for the cable swing angle and
angular velocity. The length profiles in Figure 9(a) show that the (length) controller is robust as the cable
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 Collision

(a) (b)

(c) (d)

(e)

Figure 8: Crane motions with fixed boom for a significant wave height of H1/3 = 5 m, α0 = −6◦ and α̇0 = −6◦/s: (a) Cable
length (l); (b) Suspension point overhang (d−wm); (c) Swing angle (α); (d) Separation distance (dcol −wp); and, (e) Tension
in crane cable (|τl|)

length follows the controller-defined trajectory perfectly for both sea states.

Figure 9(b) shows the overhang distance of the suspension point on the boom, which is adjustable, and this
movement is driven by the controller output. For the lower sea state, it is seen that the crane does not show
any large movement with the maximum deviation from the initial overhang distance being around 0.013m.
For the higher sea state, there is a larger change from the initial position with the maximum value being
d− wm = 1.77m resulting in a change of 0.27m. The goal of this movement is to minimize the oscillations
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of the crane cable, which is represented by the swing angle (α).

The swing angle for the higher sea state is larger than that in the lower sea state as seen in Figure 9(c). This
results in the distance between the small vessel and mothership’s hull deviating from the desired value of
0.7m by a greater extent. This is shown in Figure 9(d), but it can be seen that no collision occurs in either
case. The larger deviation from the desired separation distance requires a larger movement of the boom to
bring the distance between the small vessel and mothership’s hull to 0.7m and this is seen in the overhang
distance. Due to the control action on the boom, it can be seen that the separation distance remains around
0.7m for both cases, thus demonstrating the benefit of adding a controller for the boom.

The tension in the crane cable is shown in Figure 9(e) for the low and high sea states. It exhibits behaviour
similar to that seen in the previous section for the fixed-boom cases. The lower sea state results in a
consistent force of about 17.1 kN, while the higher sea state case shows some oscillations centered around
this value due to the additional forces caused by the larger heave and roll motions, and the acceleration of
the boom. The absolute values of the control forces on the boom (τd) is shown in Figure 9(f). For the lower
sea state, as the separation distance remains in the vicinity of the desired 0.7m value, the force on the boom
is very low with a maximum value around 0.08 kN. For the higher sea state, the maximum force applied on
the boom is around 1.8 kN to counter the larger separation distance.

Figures 10(a) - 10(f) show the plots for the higher sea state with non-zero initial conditions for the swing
angle and angular velocity: specifically (α0, α̇0) = {(−6,−6), (6,−6), (−6, 6), (6, 6)}. The length profiles
in all four cases follow the desired profile as seen in Figure 10(a), once again showing the robustness of the
length controller and its feasibility in operating concurrently with the boom controller under various initial
conditions.

The swing angle profile in Figure 10(c) shows a starting value of −6◦ and an initial angular velocity of −6◦/s.
The separation distance between the small vessel and the mothership reduces from the initial value of 0.17m
moving towards collision. The boom controller acts quickly and aggressively to bring this separation distance
back to 0.7m and hence has large initial fluctuations as seen in Figure 10(f). The effect of this force is seen
in the sharp increase in the displacement of the suspension point in Figure 10(b). The sudden change in the
acceleration of the boom also affects the control action along the length cable as seen in Figure 10(e). As a
consequence of the control action on the boom it is seen that at the end of the recovery phase of the small
vessel, there is significant reduction in the swing angle.

The green line in Figure 10(c) shows the swing angle when the initial angle is 6◦ and the swing angle velocity
is −6◦/s. This means that the position of the small vessel is such that its distance of separation from the
mothership’s hull is larger than the desired 0.7m, but moves towards the mothership due to the negative
angular velocity as shown in Figure 10(d). As the small vessel is approaching the desired separation distance
of 0.7m on its own, the external control action on the boom, in Figure 10(f), is very low in comparison to
the previous case, where the controller was aggressive in nature to prevent collision and maintain the desired
separation distance. The effect of this lower control force is seen on the overhang distance in Figure 10(b),
where the maximum overhang distance is less than 0.5m from that experienced in the (−6,−6) case. The
effect of the lower acceleration of the boom is also seen in the less aggressive control action along the length
of the cable seen in Figure 10(e).

The red line in Figure 10(c) covers the scenario where the initial conditions of (α0, α̇0) = (−6, 6), which
is the polar opposite of the case considered above, which had initial conditions of (α0, α̇0) = (6,−6). The
negative swing angle shown in Figure 10(c) depicts that the small vessel is closer to the ship in comparison
to its position at equilibrium. The positive angular velocity means that the small vessel is moving away from
the mothership, thus increasing the separation distance as seen in Figure 10(d). As in the previous case,
due to the small vessel moving towards the desired separation distance of 0.7m with its own momentum,
the control force applied on the boom is not very aggressive (Figure 10(f)). As a result of this force, the
suspension point is moved by about 0.6m in Figure 10(b) to counter the effect of the small vessel moving
away from the mothership. The low acceleration of the suspension point, in turn, has a less aggressive impact
on the required tension in the cable during the recovery of the small vessel as seen in Figure 10(e).
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Comparison of crane motions with adjustable boom for a significant wave heights of H1/3 = 0.5 m and H1/3 = 5 m,
with initial conditions α0 = 0◦ and α̇0 = 0◦/s: (a) Cable length (l); (b) Suspension point overhang (d− wm); (c) Swing angle
(α); (d) Separation distance (dcol − wp); (e) Tension in crane cable (|τl|); and, (f) Control force on boom (τd)

The final case that has been represented by the black lines in Figures 10(a) - 10(f) considers the initial
conditions (α0, α̇0) = (6, 6). These values refer to a situation where the small vessel is farther from the
mothership than its equilibrium position and continues to move away from it as seen in Figure 10(c). As the
small vessel is moving away from the mothership, the separation distance increases as seen in Figure 10(d).
Even though there is no threat of a collision with the mothership, this situation is treated by the controller in
a manner similar to the (−6,−6) case as the key variable for the boom controller is the displacement from the
desired separation distance of 0.7m. Thus, the boom controller acts aggressively, as seen in Figure 10(f), to
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Crane motions with adjustable boom for a significant wave height of H1/3 = 5 m and (α0, α̇0) = (±6,±6): (a) Cable
length (l); (b) Suspension point overhang (d − wm); (c) Swing angle (α); (d) Separation distance (dcol − wp); (e) Tension in
crane cable (|τl|); and, (f) Control force on boom (τd)

bring the small vessel to the desired separation distance by pulling the small vessel closer to the mothership,
and then quickly moving in the opposite direction to avoid collision due to the small vessel’s momentum.
The effect of this control force on the suspension point is seen in Figure 10(b), where the overhang distance
reduces to 0.5m before increasing. Figure 10(e) shows that the sudden change in the acceleration of the
boom affects the force applied by the length controller in an abrupt manner, similar to what was seen in
the (−6,−6) case.
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The sliding surfaces for the length control and collision prevention controllers, from equations (12) and (42)
respectively, are shown in Figure 11 for the four cases discussed above.

(a) (b)

Figure 11: Sliding surfaces for the length adjustment and collision prevention controllers. (a) Sliding surface defined in (12);
(b) Sliding surface defined in (42)

5.3.4. Minimum separation distance

This section shows the minimum separation distance for the fixed and adjustable boom cases for a range of
initial conditions for the swing angle (α0) and swing velocity (α̇0). The range for both α0 and α̇0 is [−6 : 6].
Figure 12 shows the worst case separation distance for the fixed-boom case under low sea state conditions.
The small vessel comes within 0.1m of the mothership’s hull when the initial conditions for (α0, α̇0) is a
subset of {(−6,−6), (−6, 6), (6,−6), (6, 6)}. The two-dimensional plot in Figure 12(b) shows symmetrical
behaviour for the separation distance with the small vessel being farthest from the mothership under zero
initial conditions. When the higher sea state is considered in Figure 13, it is seen that collisions between
the small vessel and the mothership will occur under various initial conditions.

(a) (b)

Figure 12: Surface plots for the minimum separation distance (dcol−wp) between the small vessel and mothership with a fixed
crane boom for a range of initial swing angle (α0) and velocities (α̇0) for a significant wave height of H1/3 = 0.5 m: (a) 3D
plot; (b) 2D plot
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(a) (b)

Figure 13: Surface plots for the minimum separation distance (dcol−wp) between the small vessel and mothership with a fixed
crane boom for a range of initial swing angle (α0) and velocities (α̇0) for a significant wave height of H1/3 = 5 m: (a) 3D plot;
(b) 2D plot

(a) (b)

Figure 14: Surface plots for the minimum separation distance (dcol − wp) between the small vessel and mothership with an
adjustable crane boom for a range of initial swing angle (α0) and velocities (α̇0) for a significant wave height of H1/3 = 0.5 m:
(a) 3D plot; (b) 2D plot

The effect of the adjustable boom is seen for the lower sea state in Figure 14. In this case the minimum
separation distance is not symmetric in nature. The low separation is only seen in the cases where the
initial position of the small vessel is already close to the mothership (α0 = −6◦). However, if the position of
the small vessel is away from the mothership (α0 = 6◦), then the boom controller ensures that separation
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distance never reduces to the levels seen with a fixed boom. The benefit of this controller is further seen in
Figure 15 for the higher sea state situation where collision is prevented under all defined initial conditions,
unlike the fixed-boom cases.

(a) (b)

Figure 15: Surface plots for the minimum separation distance (dcol − wp) between the small vessel and mothership with an
adjustable crane boom for a range of initial swing angle (α0) and velocities (α̇0) for a significant wave height of H1/3 = 5 m:
(a) 3D plot; (b) 2D plot;

5.4. Collision Analysis

The plots in Figure 16 depict the results for various combinations of the initial swing angle (α0) and swing
angle velocities (α̇0) at various sea states. The sea states shown here correspond to the study of the
performance of the controller in sea conditions considered as rough and worse. The green sections denote
the safe operation region i.e. initial conditions for which a collision free recovery can be obtained, and the
red area depicts the initial conditions under which a collision occurs. The asymmetry is due to the fact
that when the swing angle is negative, it implies that the small boat is initially closer to the hull of the
mothership and hence more likely to collide with it. It is seen that for α0 = (−9,−10), the boat is already
too close to the mothership so that any movement, even with the support of the anti-collision controller,
will still result in a collision. However, for α0 = (−7,−8) the collision region depends on the magnitude
and direction of the swing angle velocity as the collision prevention controller can negate the effect of the
momentum of the payload to ensure safe operation.

It is important to note that the closest separation distance between the mothership and the small boat
is experienced between 0 < t < 1 s. During this period, the length adjustment controller is inactive.
Thus the separation distance is heavily influenced by the swing angle of the cable. The magnitude of the
swing angle in the direction towards the ship is the highest for the lowest sea state with H1/3 = 0.5m
for similar initial values of α and α̇. This is likely due to the control force τd applied on the crane boom
being maximum for the lowest sea state, causing the movement of the small boat in the opposite direction
to be maximized. This also explains the additional point of collision for the lower sea states as seen in
Figure 16(a) at (α0, α̇0) = (−7,−7), while collision does not occur for the higher sea states as shown in
Figure 16(b).
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(a) (b)

Figure 16: Analysis of the separation distance between the mothership and small boat for a range of initial swing angle and
velocities for multiple significant wave heights. The red regions indicate a collision, while the green regions indicate safe
operation region. (a) H1/3 = 0.5 m, H1/3 = 5 m and H1/3 = 7.5 m; (b) H1/3 = 11.5 m and H1/3 = 14 m

6. Conclusion

This paper has proposed a control scheme for the Launch and Recovery of a small vessel to a mothership. A
model has been developed for testing controllers exploiting the Marine Systems Simulator (MSS) software
package, which is based on a unified seakeeping-manoeuvring model, and is used to provide the response of
the mothership to the sea waves. A modified boom crane and small vessel are considered together to obtain
the equations of motion governing the small vessel by utilizing the Euler-Lagrange method. Two different
sea states have been considered to demonstrate the functioning of the controllers in low (sea state 3) and
high (sea state 6) sea conditions. Simulations have been performed using a variety of initial conditions for
the crane cable swing angle and velocity, which would be seen in real-life situations.

For the recovery of the small vessel, a single second-order sliding mode controller is used to adjust the
length of the hoisting cable which is suspended from the end of the boom of the crane. Finally, an Integral
Sliding Mode Controller is proposed to keep the distance between the mothership’s hull and the small vessel
centre at a desired value to prevent collisions, by manipulating the suspension point. The control algorithm
demonstrates its robustness by ensuring safe recovery of the small vessel in low and high sea states for
various challenging initial conditions.

One of the limitations of the work presented here is that several approximations have been introduced
in order to create the model used as the basis for the ISMC controller design: specifically, small angle
approximations have been employed; and also terms involving the rate of change of the cable length have
been ignored in order to create the LPV model. However that said, the selection of a robust ISMC controller
helps in the mitigation of these issues during the control stage. Also, currently the controller requires all
the states of the LPV model to be measured. This is quite a strong assumption and further work could
consider the introduction of an observer system to estimate the unmeasured states. Additionally, from a
purely practical perspective, the proposed method of moving the suspension point will not be possible on
all existing crane systems and requires modification of existing crane setups.

Future work will focus on implementing the controller on an experimental lab-based setup to test their effi-
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cacy of the developed control algorithm. The experimental setup will include a trolley capable of transverse
motion in one direction (representing the crane boom), and a pendulum that swings parallel to this direction
(representing the crane cable and the small vessel to be recovered). The whole system will be mounted on
a gimbal arrangement to allow simulated mothership motion.

Appendix A

This appendix gives details of the development of the equations of motion of the crane system which appears
in §3. From (2) and (3) the velocity of the small vessel and the boom is

Ṗl =

[
ḋCϕ − dϕ̇Sϕ + l̇Sα + lCαα̇− hϕ̇Cϕ + η̇2
ḋSϕ + dϕ̇Cϕ − l̇Cα + lSαα̇− hϕ̇Sϕ + η̇3

]
(59)

and

Ṗa =

[
ḋCϕ − dϕ̇Sϕ +

aϕ̇Sϕ

2 − hϕ̇Cϕ + η̇2

ḋSϕ + dϕ̇Cϕ − aϕ̇Cϕ

2 − hϕ̇Sϕ + η̇3

]
(60)

respectively. The kinetic energy, KE (J), can be obtained from the above equations as

KE =
1

2
m||Ṗl||2 +

1

2
M ||Ṗa||2 (61)

The potential energy (J), PEl and PEa, of the small vessel and the boom respectively, are

PEl = mgPlz = mgdSϕ −mglCα +mghCϕ +mgη3 (62a)

PEa =MgPaz
=MgdSϕ −Mg

aSϕ

2
+MghCϕ +Mgη3 (62b)

where, Plz and Paz
are components of the position vectors, for the small vessel and boom respectively, in

the zn direction. The total potential energy, PE (J), of the system is

PE = PEl + PEa

= mgdSϕ −mglCα +mghCϕ +mgη3 +MgdSϕ −Mg
aSϕ

2
+MghCϕ +Mgη3 (63a)

The Lagrangian, L (J), of this model is

L = KE − PE =
1

2
m||Ṗl||2 +

1

2
M ||Ṗa||2 − PEl − PEa (64)

Exploiting the Euler-Lagrange approach [56]

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τ (65)

where, the generalized coordinates have been chosen as q = [l, α, d]
T
and τ = [τl, 0, τd]

T
are the generalized

forces. In (65), τl denotes tension (N) in the cable and τd denotes the force (N) applied to the boom in the
yb direction (to alter the point of suspension).
From the expressions in (59) and (60) it follows that

||Ṗl||2 = l̇2 + ḋ2 + η̇22 + η̇23 + d2ϕ̇2 + h2ϕ̇2 + l2α̇2 − 2hḋϕ̇+ 2lḋα̇Cϕ−α − 2dl̇ϕ̇Cϕ−α − 2l̇ḋSϕ−α

− 2ldϕ̇α̇Sϕ−α + 2hl̇ϕ̇Sϕ−α − 2hlϕ̇α̇Cϕ−α − 2hϕ̇Cϕη̇2 + 2lα̇Cαη̇2 + 2ḋCϕη̇2 + 2l̇Sαη̇2

− 2dϕ̇Sϕη̇2 − 2hϕ̇Sϕη̇3 + 2lα̇Sαη̇3 + 2ḋSϕη̇3 − 2l̇Cαη̇3 + 2dϕ̇Cϕη̇3

(A.1)
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||Ṗa||2 = ḋ2 + d2ϕ̇2 + h2ϕ̇2 +
a2ϕ̇2

4
− adϕ̇2 − 2hḋϕ̇+ η̇22 + η̇23 + 2ḋCϕη̇2 − 2dϕ̇Sϕη̇2 + aϕ̇Sϕη̇2

− 2hϕ̇Cϕη̇2 + 2ḋSϕη̇3 + 2dϕ̇Cϕη̇3 − aϕ̇Cϕη̇3 − 2hϕ̇Sϕη̇3

(A.2)

Substituting (A.1), (A.2), (62a) and (62b) into (64) yields

L =
1

2
m(l̇2 + ḋ2 + η̇22 + η̇23 + d2ϕ̇2 + h2ϕ̇2 + l2α̇2 − 2hḋϕ̇+ 2lḋα̇Cϕ−α − 2dl̇ϕ̇Cϕ−α − 2l̇ḋSϕ−α

− 2ldϕ̇α̇Sϕ−α + 2hl̇ϕ̇Sϕ−α − 2hlϕ̇α̇Cϕ−α − 2hϕ̇Cϕη̇2 + 2lα̇Cαη̇2 + 2ḋCϕη̇2 + 2l̇Sαη̇2

− 2dϕ̇Sϕη̇2 − 2hϕ̇Sϕη̇3 + 2lα̇Sαη̇3 + 2ḋSϕη̇3 − 2l̇Cαη̇3 + 2dϕ̇Cϕη̇3) +
1

2
M(ḋ2 + d2ϕ̇2 + h2ϕ̇2

+ aϕ̇Sϕη̇2 +
a2ϕ̇2

4
− adϕ̇2 − 2hḋϕ̇+ η̇22 + η̇23 + 2ḋCϕη̇2 − 2dϕ̇Sϕη̇2 − 2hϕ̇Cϕη̇2 + 2ḋSϕη̇3

+ 2dϕ̇Cϕη̇3 − aϕ̇Cϕη̇3 − 2hϕ̇Sϕη̇3) +mglCα −mgdSϕ −mghCϕ −mgη3 −MgdSϕ

+Mg
aSϕ

2
−MghCϕ −Mgη3

(A.3)

Applying the Euler-Lagrange approach for the cable length l,

∂L
∂l

= m(lα̇2 + ḋα̇Cϕ−α − dϕ̇α̇Sϕ−α − hϕ̇α̇Cϕ−α + α̇Cαη̇2 + α̇Sαη̇3 + gCα) (A.4a)

∂L
∂l̇

= m(l̇ − dϕ̇Cϕ−α − ḋSϕ−α + hϕ̇Sϕ−α + Sαη̇2 − Cαη̇3) (A.4b)

d

dt

(
∂L
∂l̇

)
= m

(
l̈ − ḋϕ̇Cϕ−α − dϕ̈Cϕ−α + dϕ̇(ϕ̇− α̇)Sϕ−α − d̈Sϕ−α − ḋ(ϕ̇− α̇)Cϕ−α

+ hϕ̈Sϕ−α + hϕ̇(ϕ̇− α̇)Cϕ−α + α̇Cαη̇2 + Sαη̈2 + α̇Sαη̇3 − Cαη̈3
)

(A.4c)

d

dt

(
∂L
∂l̇

)
− ∂L

∂l
= m(l̈ − 2ḋϕ̇Cϕ−α − dϕ̈Cϕ−α + dϕ̇2Sϕ−α − d̈Sϕ−α + hϕ̈Sϕ−α + hϕ̇2Cϕ−α

+ Sαη̈2 − Cαη̈3 − lα̇2 − gCα) (A.4d)

For the cable swing angle α,

∂L
∂α

= m(lḋα̇Sϕ−α − dl̇ϕ̇Sϕ−α + l̇ḋCϕ−α + ldϕ̇α̇Cϕ−α − hl̇ϕ̇Cϕ−α − hlϕ̇α̇Sϕ−α

+ l̇Cαη̇2 − lα̇Sαη̇2 + l̇Sαη̇3 + lα̇Cαη̇3 − glSα) (A.5a)

∂L
∂α̇

= m
(
l2α̇+ lḋCϕ−α − ldϕ̇Sϕ−α − hlϕ̇Cϕ−α + lCαη̇2 + lSαη̇3) (A.5b)

d

dt

(
∂L
∂α̇

)
= m

(
2ll̇α̇+ l2α̈+ l̇ḋCϕ−α + ld̈Cϕ−α − lḋ(ϕ̇− α̇)Sϕ−α − l̇dϕ̇Sϕ−α

− lḋϕ̇Sϕ−α − ldϕ̈Sϕ−α − ldϕ̇(ϕ̇− α̇)Cϕ−α − hl̇ϕ̇Cϕ−α − hlϕ̈Cϕ−α

+ hlϕ̇(ϕ̇− α̇)Sϕ−α + l̇Cαη̇2 − lα̇Sαη̇2 + lCαη̈2 + l̇Sαη̇3 + lα̇Cαη̇3 + lSαη̈3
)

(A.5c)

d

dt

(
∂L
∂α̇

)
− ∂L
∂α

= m(2ll̇α̇+ l2α̈+ ld̈Cϕ−α − 2lḋϕ̇Sϕ−α − ldϕ̈Sϕ−α − ldϕ̇2Cϕ−α − hlϕ̈Cϕ−α

+ hlϕ̇2Sϕ−α + lCαη̈2 + lSαη̈3 + glSα) (A.5d)

For the boom location on the horizontal axis d,

∂L
∂d

= m(dϕ̇2 − l̇ϕ̇Cϕ−α − lϕ̇α̇Sϕ−α − ϕ̇Sϕη̇2 + ϕ̇Cϕη̇3 − gSϕ) +M(dϕ̇2 − aϕ̇2

2
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− ϕ̇Sϕη̇2 + ϕ̇Cϕη̇3 − gSϕ) (A.6a)

∂L
∂ḋ

= m(ḋ− hϕ̇− l̇Sϕ−α + Cϕη̇2 + Sϕη̇3 + lα̇Cϕ−α) +M(ḋ− hϕ̇+ Cϕη̇2 + Sϕη̇3) (A.6b)

d

dt

(
∂L
∂ḋ

)
= m

(
d̈− hϕ̈− l̈Sϕ−α − l̇(ϕ̇− α̇)Cϕ−α − ϕ̇Sϕη̇2 + Cϕη̈2 + ϕ̇Cϕη̇3 + Sϕη̈3

+ l̇α̇Cϕ−α + lα̈Cϕ−α − lα̇(ϕ̇− α̇)Sϕ−α

)
+M(d̈− hϕ̈+ Cϕη̈2 − ϕ̇Sϕη̇2 + Sϕη̈3

+ ϕ̇Cϕη̇3) (A.6c)

d

dt

(
∂L
∂ḋ

)
− ∂L
∂d

= m(d̈− hϕ̈− l̈Sϕ−α + 2l̇α̇Cϕ−α + Cϕη̈2 + Sϕη̈3 + lα̈Cϕ−α + lα̇2Sϕ−α

− dϕ̇2 + gSϕ) +M(d̈− hϕ̈+ Cϕη̈2 + Sϕη̈3 − dϕ̇2 +
aϕ̇2

2
+ gSϕ) (A.6d)

Using these equations in (65) yields the differential equations in (4).
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Reply to Reviewer’s Comments 
 
We would like to thank the reviewers for their time in reviewing this paper and for their constructive comments. Below are our 
specific responses to each of the reviewer’s comments. Significant changes to the revised paper are highlighted in red in the 
manuscript itself. 
 
Associate Editor’s Comments 
 
Q1) The contribution and novelty of this work presented are not convincing. Despite the authors' claim that the application 
scenario has not been researched before, the essential novelty of the scientific problem studied is unclear.  
 
Q2) The comparison with other methods to demonstrate the advantage of the proposed method is not included. The authors 
employed a sliding mode controller, which raises confusion as to why other controllers cannot be used.  

 
A1) We have revised the introduction to try to clarify its novelty. To the best of our knowledge there is no other published 
literature on the subject of automating the safe recovery of small vessels to a mothership (other than some recent work by 
some of the authors involving an MPC strategy). We believe the key contribution of this paper is 
 

• to study for the first time the development of a feedback control system to automate the process of safely recovering a 
small vessel to a mothership in high sea states 

• to understand/predict the range of sea states under which this may be possible. 
 
A2) Other than recent work by some of the authors involving an MPC strategy [REF1, REF2], to the best of our knowledge there 
is no other published literature on the subject of safe recovery of small vessels to a mothership.  The MPC approach described in 
[REF1] and [REF2] requires a sea wave prediction system on board the vessel to predict the disturbances caused by in-coming 
waves. Such systems do exist, but are still in development. They are costly and require an onboard radar system. They also 
require significant real-time computation to process the data from the radar system [REF3]. The MPC approach described in 
[REF1] and [REF2] also require, as all MPC approaches do, the online real-time solution of an optimization problem.  The ISMC 
proposed here is much less computationally demanding and verifiable. Because of the simplifications we make to obtain the 
model used for the controller design (together with the inevitable uncertainty associated with the system – e.g. the loading level 
on the small vessel, the effects of local wind turbulence resulting from the motion of the mothership etc), a robust control 
approach has been adopted.  
 
We do not make any claims that other controllers could not be used, but the grant that funded this work was interested in 
exploring the use of sliding mode schemes. Since there is no other published work on this specific problem, there is no other 
controller from the literature which can indisputably be used as a benchmark. If the reviewers wish to point to a specific paper 
or methodology which they would like us to use for comparison, we would consider attempting a new design based on that 
approach – although it is difficult (at least in our opinion) to see what would be gained from this.  

 
[REF 1] Y Zhang, C Edwards, M Belmont, G Li, “Modelling and Sliding-Mode Control for Launch and Recovery System in 
Predictable Sea States With Feasibility Check for Collision Avoidance”, IEEE Transactions on Control Systems Technology 30 (6), 
2658-2671. 
 
[REF 2] Y Zhang, H Zhao, G Li, C Edwards, M Belmont, “Robust Nonlinear Model Predictive Control of an Autonomous Launch and 
Recovery System”, IEEE Transactions on Control Systems Technology 31, 2082 – 2092. 
 
[REF 3] M. Al-Ani, M. Belmont, and J. Christmas, “Sea trial on deterministic sea waves prediction using wave-profiling radar,” 
Ocean Engineering, vol. 207, p. 107297, 2020. 
 
 
Reviewer #1:  
 
The paper still has the following problems: 
 
Q1) The title should be improved by involving the application of this research considered. 
 
A1) We have re-titled the paper so that it is more descriptive of the problem it addresses. Specifically the paper title is now 



 
“Control of the Launch and Recovery of Small Boats to a Mothership in High Sea States Using Sliding Mode Methods” 
 
Q2) The motivation of the paper should be pointed out in the introduction section. 
 
A2) Currently the Launch and Recovery of small vessels onto a mothership is undertaken manually. During the recovery process, 
the winch control operator has to deal with the oscillations of the small vessel resulting from the dynamics of the mothership 
and other external factors. The oscillations when the small boat is clear of the water during the recovery process can result in 
collisions with the hull of the mothership, causing damage to both the mothership and the small vessel and also endangering the 
crew of the small vessel. Oscillations of the small vessel are the major hindrance to safe L&R. Currently such operations are 
limited to low sea states. The motivation behind this paper is to develop a control algorithm to aid crane operators and to partly 
automate the recovery process of the small vessel in high sea states, and to help determine the sea states and initial conditions 
for which recovery is viable. We have added a paragraph explaining this in the paper itself. It is highlighted in red on page 2. 
 
Q3) The introduction should be enriched by relevant research on underactuated system applications and Singular Perturbation 
Based Adaptive Integral Sliding Mode Control for Flexible Joint Robots. 
 
A3) We have added a new paragraph in red to enrich and expanded on other research related to underactuated systems. This 
appears in red on page 2. We now explain that other examples of underactuated systems include submarines, the cart-pole 
system and flexible joint robots. New references have been added to give examples of these systems and the associated 
research [11,12,13,14]. 
 
Q4) Better discussion is necessary for limitations of the proposed method? 
 
We have modified the conclusions to include a discussion on the limitations of our work to date and our future plans. This new 
exposition now appears in red on page 25. 
 
Q5) Put a new remark about which classification of the considered system falls into the underactuated system classification.  
 
We have included a citation to the classification introduced by Olfati-Saber (reference [15]). We believe the system controlled by 
the ISMC controller, falls under the Class IIa/III of underactuated systems in his classification. The degrees of freedom are the 
suspension point position and the crane cable swing angle, while only the former is actuated.  
 
 

Reviewer #3:  
 
Q1) The authors do not provide satisfactory modifications, for example, experimental results are not given. Furthermore, the 
novelty and originality of the research are limited. 
 
A1) We understand why the CEP is keen to publish experimental results. However the automated launch and recovery of small 
vessels onto a mothership has never been attempted (physically) and hence there is no precedent in the existing literature. To 
undertake on-board at sea testing, we would need to modify an existing physical crane system (since most existing manual L&R 
systems use a fixed boom davit system). It would be enormously costly (probably in excess of £250k) to undertake, and would 
require a separate commercially funded R&D project. The work we have presented in this paper emerged from an EU funded 
Innovative Training Network for ECRs. 
 
For the record we believe the key contribution of this paper is 

• to study for the first time the development of a feedback control system to automate the process of safely recovering a 
small vessel to a mothership 

• to understand/predict the range of sea states under which this may be possible. 
 
 
 
Reviewer #4:  
 
There is no further comment. The author has well revised the manuscript point by point. 
 
We thank the reviewer for their time and their positive evaluation of the revised paper. 
 


