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A B S T R A C T

The launch and recovery (L&R) of a small vessel from a large mothership occurs in various settings, such as the
rescue of stranded personnel, extraction of unmanned autonomous sea monitoring sensors and the deployment
of rescue submersibles. L&R of a small vessel, from a large mothership, at high sea states is difficult and is often
avoided for safety reasons. This paper proposes sliding mode controllers to automate the process involving a
modified davit crane in which the suspension point is movable. This is the first time a robust control strategy
has been used to tackle this specific maritime problem.

In this work, a second-order sliding mode controller is used to change the length of the cable during the
recovery process and ensures that a pre-defined profile for the cable’s length is followed. This controller alone
proves to be sufficient for a safe recovery at low sea states. However, for higher sea states, the small vessel
and mothership collide under certain circumstances. An integral sliding mode controller is introduced to adjust
the crane’s boom, which modifies the position of the suspension point, such that the oscillations of the small
vessel are minimized. This controller aims to keep the distance between the mothership’s hull and the centre
of the small vessel at a constant value by adjusting the position of the crane’s boom and reducing the swing
angle. The overall control algorithm is found to be very effective, compared to the fixed boom case, ensuring
that collisions do not occur under any of the tested configurations, and a safe distance is maintained between
the mothership and the small vessel. The performance evaluation of the controller predicts that it will safely
operate in rough sea states for any initial combination of swing angle and velocity, if a safe recovery can be
carried out at a lower sea state for the same initial conditions.
1. Introduction

In calm water (i.e. up to sea state 3, where the wave height is
between 0.5m–1.25m) the L&R process can be carried out by a trained
operator using their experience and discretion. However, for higher sea
states (4 and above, with wave heights greater than 1.25m), despite the
presence of experienced operators, the uncertain nature of the waves
adds a significant amount of complexity to this process. This increases
the danger to any personnel on the small vessel, and increases the
possibility of damage to the mothership and the small vessel arising
from collisions (see Figs. 1 and 2). The existing mechanisms for L&R can
be broadly classified into three categories: ramps, intermediate capture
devices (Hanyok & Smith, 2010), and cranes. This paper focuses on the
use of cranes. L&R using cranes involves a diverse set of arrangements
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including side davits, boom, knuckle, extending, and A-frame cranes,
and any other combination of a boom and winch (Büchel & Åkerlund,
2015; Hanyok & Smith, 2010; Jin, Wan, Liu, Peng, & Guo, 2016).

During a crane based launch or recovery process, the winch control
operator has to deal with the oscillations of the small vessel and ensure
that it does not capsize. The oscillations when the small boat is clear of
the water during the recovery process can also result in collisions with
the hull of the mothership causing damage to both the mothership and
the small vessel. Oscillations of the small vessel is the major hindrance
to safe L&R. The motivation behind this paper is to develop a control
algorithm to aid crane operators and to partly automate the recovery
process of the small vessel in high sea states, and to help determine
the sea states and initial conditions for which recovery is viable. In this
967-0661/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
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Fig. 1. Launch of a smaller vessel from a larger mothership using a davit (Palfinger
NPDS series fast rescue boat davits, 2023).

Fig. 2. Capture of a smaller vessel with a stern cage on to the mothership (Fjelldal,
2017).

paper a modification to the traditional boom of the crane is consid-
ered. The boom position is assumed to be adjustable to enable lateral
movement of the suspension point to reduce the oscillations of the small
vessel. This modified crane is therefore similar to the telescopic boom
crane (Hong & Shah, 2019). However a typical dynamic crane system
is an underactuated system since the number of control variables is
less than the degrees of freedom (Kim & Hong, 2019; Ngo, Nguyen,
Nguyen, Tran, & Ha, 2017). There are many examples of engineering
systems which are underactuated: some examples include submarines
and VTOL (vertical takeoff and landing) aircraft which have 6DOF, but
usually only 4 actuated variables in the form of thrust in one direction
and torque control for angular orientation along each of the three
axes (Hua, Hamel, Morin, & Samson, 2009; Roza & Maggiore, 2014).
Other important examples of underactuated systems includes flexible
joint robots and the cart–pole system, where a single control input
is applied to a system with two degrees of freedom (Khan, Rsetam,
Cao, & Man, 2022; Maalouf, Moog, Aoustin, & Li, 2015). The crane-
small vessel assembly considered in this paper falls under Class III of
the underactuated systems classification as delineated by Olfati-Saber
(2001).

Typically, the primary goal of (any) crane control system is to
minimize unwanted motions of the payload during transport from one
location to another. Such motion can originate from the inertial forces
of the payload itself, base excitations of the supporting structure (in
this case, the mothership) or wind loads. In some situations the effect
of the inertial forces can be mitigated by the crane operator performing
the transport manoeuvres slowly. Control strategies for ameliorating
the external excitations can be classified into open-loop and closed-loop
control, and differ depending on the type of crane being used (gantry,
rotary, boom crane etc.).

Open-loop control methods include input-shaping, where the crane
operates along a pre-determined path (Hubbell, Koch, & McCormick,
2

1992; Parker, Petterson, Dohrmann, & Robinett, 1995; Takeuchi, Fu-
jikawa, & Yamada, 1988). An acceleration profile for the crane is
obtained such that the residual oscillations during transport of the
payload are minimal. Another open-loop control method is optimal
control where the velocity (Field, 1961) or acceleration (Beeston, 1969;
Manson, 1982) profiles are optimized. The optimization can be based
on minimizing oscillations or limited hoisting and transport time. Ge-
netic algorithms have also been implemented for the optimization
process (Kimiaghalam, Homaifar, & Bikdash, 1998). Zhang, Zhao, and
Ding (2022) developed a data-driven optimal adaptive control scheme
for a 2D overhead crane model to regulate the position of the crane and
its swing. Their data-driven controller does not rely on prior knowledge
of the dynamics of the system. Wu, Xu, Lei, and He (2020) used
feed-forward compensation control for the 2D overhead crane system
with uncertain disturbances (estimated using a nonlinear disturbance
observer) by converting the model into a quasi-integrator-chain form.
This was combined with a global SMC such that the nominal control
performance of the controller was preserved.

Closed-loop crane control of ships has been studied by a wide
number of researchers. Chin, Nayfeh, and Mook (2000) studied the
factors affecting the large excitations of the payload when transferring
it from one ship to another using a ship-mounted crane and high-
lighted the primary reasons as large wave amplitudes and small wave
amplitudes near the resonance of the payload (Idres, Youssef, Mook,
& Nayfeh, 2003). Fang, Wang, Sun, and Zhang (2014) developed a
dynamic model of an offshore boom crane using the Euler–Lagrange
method and studied the effects of the ship’s motion on the swing
angle of the payload. The controller was based on developing planned
trajectories for the cable length and the luff angle,3 and then devel-
oping a Sliding Mode Controller (SMC) to adhere to these trajectories.
These actuated variables were also used to ensure that the un-actuated
variable, the swing angle, goes to zero. The controller was shown to
be very robust in the sense of not being affected by the disturbances
resulting from ship motions. Sun, Fang, Chen, Fu, and Lu (2018)
implemented a coordinate transformation to represent the disturbances
in a different form to incorporate the ship’s roll and heave motions
as disturbances for the crane dynamics. They developed a closed-loop
control method to stabilize the ship-mounted crane in the presence
of roll and heave motions without any linearization or approximation
of the non-linear dynamics of the system. Küchler, Mahl, Neupert,
Schneider, and Sawodny (2011) used a prediction algorithm to obtain
the vertical motion of the ship and then an inversion-based control
algorithm was implemented to transport the payload and minimize the
disturbances. Kim and Hong (2019) implemented an adaptive SMC with
4DOF control for an offshore container crane experiencing unknown
disturbances. A sliding surface was determined to include the actuated
and un-actuated variables. SMC was used with two adaptation laws for
switching. The adaptation laws were used to compensate for the distur-
bances and minimize chattering around the sliding surface. They tested
this control scheme for sudden and unknown disturbances like wind
gusts, and found the controller to be robust in these conditions. The
only mothership motions considered for producing the disturbances
were roll and pitch. Chen and Sun (2021) developed a closed-loop
output feedback control scheme for a 5 degree-of-freedom offshore
crane system by considering the ship’s yaw and roll motions.

Cao and Li (2020) produced a review paper focusing on the anti-
swing controller characteristics for cranes onboard ships. Due to the
additional degrees of freedom that exist for cranes on ships compared
to land cranes, the control strategies vary immensely. This review
compiled the antiswing control research into three types of cranes
onboard of a ship: overhead, boom and tower cranes. The physical
methods included using a tagline and rider block to change the pen-
dulum’s frequency, Maryland rigging, changing the pulley length, and

3 Luff angle is the angle made by the crane’s boom with its horizontal base.
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the introduction of an active anti-pendulation arm. Researchers have
focused on the development of control schemes for these systems.
These can be categorized into linear control, feedback linearization,
backstepping control, sliding mode control, energy-based feedback con-
trol and intelligent control. Bozkurt and Ertogan (2023) developed a
control scheme for payload transfer between two ships in rough seas.
This was based on the use of Particle Swarm Optimization to obtain
the gains for Proportional–Integral–Derivative (PID) and Proportional–
Derivative-Second Derivative control (PDD2) systems. The PID con-
troller was used to control the horizontal and vertical movement of
the payload, while the PDD2 method was used to control the swing
of the payload. However, an extra telescopic boom was added to the
main boom for control purposes. Zhang and Chen (2022) developed an
adaptive controller based on online gravity compensation to estimate
any gravity based parameters for accurate transfer of the payload from
the ship. Qian, Hu, Chen, Fang, and Hu (2021) proposed an adaptive
neural network based control scheme for payload transfers between two
ships.

Since L&R operations at sea have traditionally been undertaken
manually — little in the way of existing literature is available that
addresses the dynamics and control of the entire process. The key
contribution of this paper is

• to study for the first time the development of a feedback control
system to automate the process of safely recovering a small vessel
to a mothership

• to understand/predict the range of sea states under which this
may be possible.

The only other relevant work the authors are aware of which addresses
this problem, is the recent paper (Zhang, Zhao, Li, Edwards, & Belmont,
2023). In Zhang et al. (2023) the L&R problem is considered based on
a relatively simple model of the mothership. These vessel dynamics are
used as the basis for an MPC design. The MPC formulation in Zhang
et al. (2023) relies on predicted future incoming wave profiles to pre-
dict the future response of the vessel involved in the L&R process over
a moving time horizon. This requires an on-board sea wave prediction
system (Al-Ani, Belmont, & Christmas, 2020) and an online real-time
optimization to solve the associated MPC problem. Here a completely
different control approach is adopted. In this paper a more complex
model of the mothership response is used as the basis for developing
(off-line) a parameter varying feedback gain synthesized from adopting
a ‘robust control’ paradigm (specifically in this case, a sliding mode
approach). The resulting controller is much less computationally inten-
sive to implement and does not require a sea wave prediction system.
The approach adopted in this paper therefore has potentially significant
benefits in terms of retrofitability and financial cost.

The control approach used in this paper is separated into control
of the crane cable length and control of the boom position, and hence
the suspension point. These two problems are addressed independently.
SMC has been used for length control and an Integral Sliding Mode
Control (ISMC) approach is used for the control of the lateral move-
ment of the boom. This approach has been adopted because of its
strong robustness properties which have been widely studied and well
documented (Shtessel, Edwards, Fridman, & Levant, 2014). To deal
with disturbances and the absence of robustness during the reaching
phase traditionally associated with SMC, integral sliding mode control
has been implemented for the control of many types of underactuated
systems like the flexible joint robot (Alam et al., 2018; Khan et al.,
2022), cart–pole system (Chawla, Chopra, & Singla, 2021) and a 4DOF
tower crane (Zhang, Zhang, & Cheng, 2019). Modelling of the L&R
system involves a modular approach consisting of wave motion ef-
fects, ship motion estimation, crane/small vessel modelling (and the
control algorithm). In particular, the wave motion and ship motion
prediction models will both possess inaccuracies when compared to
the real situation. Thus, it is essential to employ a robust control
3

approach which can deal effectively with modelled and unmodelled
Fig. 3. The six degrees of freedom and different coordinate systems for the ship (Perez,
2006).

system uncertainties. This paper is structured as follows. In Sections 2
and 3 the mathematical models of the mothership and the crane are
described respectively, in Section 4 the novel control architecture is
developed and in Section 5 some simulation results are shown. An
attempt is made to understand the range of sea states in which using
this approach is feasible. Some concluding remarks are provided at the
end of the paper.

2. Ship motion modelling

This section describes the simulation environment which has been
developed to test the control algorithms proposed for L&R. High-fidelity
models of the sea can be obtained from Computational Fluid Dynamics
(CFD) methods like Large Eddy Simulations (LES), Direct Numerical
Simulations (DNS) and Reynolds Averaged Navier–Stokes (RANS) equa-
tions. They are also able to provide accurate estimates of fluid–structure
interactions between the vessels and the sea (Perez, 2006). However,
these methods are extremely time consuming and computationally
intensive processes, and thus unsuitable for our purpose. Here a unified
seakeeping-manoeuvring model, which is used in advanced ship motion
simulators that operate in the time domain (Perez, 2006), is used to
model the mothership motions. The sea environment and the ship
model is based on Perez (2006). In conjunction with their highly
cited book (Perez, 2006), the authors created a SIMULINK based Ma-
rine Systems Simulator (MSS) (Fossen & Perez, 2004). This simulation
package has been used to generate ship motions under various sea
conditions. The underlying mothership simulation is based on a unified
state-space model. This has many advantages over the simpler motion
superposition models. In particular it includes the radiation forces
during manoeuvring with greater accuracy, as it considers the radiation
forces produced due to control action, along with those produced by the
waves.

To integrate the motion of a ship with the on-board crane model
which will be discussed in the sequel, the following reference frames
are needed (see Fig. 3) as described in (Perez, 2006):

• The 𝑛-frame is centred about a fixed point on the earth.
• The 𝑏-frame is centred about a fixed point on the ship’s hull and

coincides with the principal axes of rotation.
• The ℎ-frame is centred relative to the time-averaged response of

the ship. The plane 𝑥ℎ, 𝑦ℎ coincides with the average water level,
𝑥ℎ points in the average yaw direction and 𝑥ℎ = 𝑦ℎ = 0 at the
average centre of gravity.

For marine operations, the surface of the sea is broadly classified
into sea states as shown in Table 1. This classification is made on the
basis of the significant height (𝐻1∕3) of the waves, which refers to the
mean wave height of the highest one-third of the waves.
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Table 1
Sea state description (Perez, 2006).
Sea state H1∕3 range (m) Sea description

0 0 Calm (glassy)
1 0–0.1 Calm (rippled)
2 0.1–0.5 Smooth (wavelets)
3 0.5–1.25 Slight
4 1.25–2.5 Moderate
5 1.25–4 Rough
6 4–6 Very rough
7 6–9 High
8 9–14 Very high
9 >14 Phenomenal

3. 2D adjustable boom model

This section focuses on the development of a two-dimensional
model of a crane with an adjustable boom, and its interaction with the
small vessel to be recovered. Many rigid body models of crane systems
exist in the literature, but in this paper, a particular form of boom crane
and its interaction with the ship model will be described from first
principles. This model will then be considerably simplified to obtain a
‘control oriented’ model which will be used for the design of the control
system. In the literature, crane modelling can be broadly categorized
into attempts to create either distributed-mass or lumped-mass mod-
els (Abdel-Rahman, Nayfeh, & Masoud, 2003). In the distributed-mass
model, the crane hoist cable is modelled as a distributed-mass system.
The hook and small vessel are combined to form a point mass and act as
boundary conditions for the distributed-mass hoisting cable. This model
is valid when the lumped mass is of the same order of magnitude as
the mass of the cable. As expected, this has very limited applications.
The lumped-mass model is the more common and practical modelling
method. In this section the hoisting cable is considered massless, with
the hook and small vessel being lumped together to form a point mass.

The most widely utilized method for crane modelling is the Euler–
Lagrange approach. This method is based on the conservation of en-
ergy and has been widely used by Nayfeh, Ragab, and Al-Maaitah
(2002), Abdel-Rahman et al. (2003), Chin, Nayfeh, and Abdel-Rahman
(2001), Chin et al. (2000), Wen, Homaifar, Bikdash, and Kimiaghalam
(1999), Tuan, Lee, Nho, and Cuong (2015) to obtain the equations of
motion of the crane’s payload. An advantage of this method is that the
generalized variables can be selected and specified as per requirement.

A two-dimensional model of the mothership and crane is considered
in this paper with the consideration of roll, sway and heave motions.
These motions have been considered out of the six degrees of freedom
available due to their prominent impact on the L&R process. Excessive
movements in any of these degrees of freedom can lead to possible
collision of the small vessel with the hull of the mothership, and in
worst case scenarios, lead to the capsizing of the small vessel. The 2D
rane model consists of a tower fixed on the mothership, with a boom
t a right angle to this tower. The boom is long enough to have its
nd extending past the hull of the mothership. The hook is attached to
he end of the boom (suspension point) using a cable connected to the
inch. Finally, the hook is attached to the small vessel being lifted from

he sea (or lowered into the water). A key feature of this model is that
he suspension point is movable - i.e. the boom length is not fixed. This
lexibility will be exploited to introduce an additional control input to
he system.

The small vessel is represented by the solid blue circle in Fig. 4,
.e. effectively as a point mass. The mothership, denoted by the blue
ectangle, is moving in the outward perpendicular direction from the
𝑏, 𝑧𝑏-plane. All of the additional nomenclature used to describe the
rane is presented in Table 2.

The green line perpendicular to the hull represents the crane tower
nd the other green line represents the boom. The blue line depicts the
rane cable connecting the boom suspension point to the small vessel,
4

i

hich is the payload here. The small vessel is considered a point mass
n this model.

The following abbreviations will be used for the remainder of the
evelopments: 𝑆𝜙 = sin𝜙, 𝐶𝜙 = cos𝜙, 𝑆𝜙−𝛼 = sin(𝜙 − 𝛼) etc. This
implifies notationally the developments which follow.

From Fig. 4, the position vector of the small vessel in the 𝑛-frame,
𝑙, can be computed as

𝑙 =
[

𝑑𝐶𝜙 + 𝑙𝑆𝛼 − ℎ𝑆𝜙 + 𝜂2
𝑑𝑆𝜙 − 𝑙𝐶𝛼 + ℎ𝐶𝜙 + 𝜂3

]

(1)

here 𝜂2 and 𝜂3 denote the ship’s displacement (m) in the 𝑦𝑛 and 𝑧𝑛
irections from the origin of the 𝑏-frame to the origin of the 𝑛-frame.
oth components of 𝑃𝑙 are measured in metres. Note that here it is
ssumed the yaw angle of the mothership, 𝜓 ≈ 0 and the crane is
ositioned at 𝑥𝑏 = 0. It is also assumed that the boom can be adjusted
hus altering the point of suspension. This means that the quantity 𝑑
s not a constant but a function of time, and this results in an inertial
ffect caused by the boom. Here the boom is modelled as a beam. For
reliminary calculations, it has been modelled as a point mass located
t the centre of the boom. The position vector of this point in the
-frame is

𝑏𝑜𝑜𝑚 =
[

𝑑 − 𝑎
2

ℎ

]

(2)

where, 𝑎 is the constant boom length, which can only move parallel to
the 𝑦𝑏 axis.

Applying a coordinate transformation to get its position in the
𝑛-frame yields

𝑃𝑎 =
[

𝐶𝜙 −𝑆𝜙
𝑆𝜙 𝐶𝜙

]

𝑃𝑏𝑜𝑜𝑚 +
[

𝜂2
𝜂3

]

=

[

𝑑𝐶𝜙 − 𝑎𝐶𝜙
2 − ℎ𝑆𝜙 + 𝜂2

𝑑𝑆𝜙 − 𝑎𝑆𝜙
2 + ℎ𝐶𝜙 + 𝜂3

]

(3)

oth components of 𝑃𝑏𝑜𝑜𝑚 and 𝑃𝑎 are measure in metres. An Euler–
agrange approach will now be adopted to develop a model of this
ystem. The complete development of the governing equations of mo-
ion in each generalized coordinate is given in Appendix. Exploiting
qs. (A.11d), (A.12d) and (A.13d) in the generic form of Eq. (A.7)
esults in the dynamical 2D model of the system which can be written
s

𝑚 0 −𝑚𝑆𝜙−𝛼
0 𝑚𝑙2 𝑚𝑙𝐶𝜙−𝛼

−𝑚𝑆𝜙−𝛼 𝑚𝑙𝐶𝜙−𝛼 𝑚 +𝑀

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑙
�̈�
𝑑

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑓𝑙(𝑞, �̇�)
𝑓𝛼(𝑞, �̇�)
𝑓𝑑 (𝑞, �̇�)

⎤

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝑓 (𝑞,�̇�)

+
⎡

⎢

⎢

⎣

𝜍𝑙
𝜍𝛼
𝜍𝑑

⎤

⎥

⎥

⎦

⏟⏟⏟
𝜍

=
⎡

⎢

⎢

⎣

𝜏𝑙
0
𝜏𝑑

⎤

⎥

⎥

⎦

(4)

here the internal forces 𝑓 (𝑞, �̇�) are

𝑓𝑙(𝑞, �̇�) = 𝑚
(

−𝑙�̇�2 − 𝑔𝐶𝛼
)

(5a)

𝑓𝛼(𝑞, �̇�) = 𝑚𝑙
(

2�̇��̇� + 𝑔𝑆𝛼
)

(5b)

𝑑 (𝑞, �̇�) = 𝑚
(

2�̇��̇�𝐶𝜙−𝛼 + 𝑙�̇�2𝑆𝜙−𝛼
)

(5c)

nd the external forces 𝜍 are given componentwise by

𝜍𝑙 = 𝑚(−2�̇��̇�𝐶𝜙−𝛼 − 𝑑�̈�𝐶𝜙−𝛼 + 𝑑�̇�2𝑆𝜙−𝛼 + ℎ�̈�𝑆𝜙−𝛼 + ℎ�̇�2𝐶𝜙−𝛼 + 𝑆𝛼 �̈�2 − 𝐶𝛼 �̈�3)

(6a)
𝜍𝛼 = 𝑚𝑙(−2�̇��̇�𝑆𝜙−𝛼 − 𝑑�̈�𝑆𝜙−𝛼 − 𝑑�̇�2𝐶𝜙−𝛼 − ℎ�̈�𝐶𝜙−𝛼 + ℎ�̇�2𝑆𝜙−𝛼 + 𝐶𝛼 �̈�2 + 𝑆𝛼 �̈�3)

(6b)

𝑑 = (𝑚 +𝑀) (−ℎ�̈� + 𝐶𝜙�̈�2 + 𝑆𝜙�̈�3 − 𝑑�̇�2 + 𝑔𝑆𝜙) +𝑀𝑎�̇�2∕2 (6c)

ote that in this paper it is assumed that 𝑞, 𝜙, 𝜂2, 𝜂3, and their
erivatives, are known and therefore 𝑓 (𝑞, �̇�) and 𝜍 are available for
ontrol design.

. Control design

In this section two controllers are proposed for the non-linear model

n (4). The first controller is a higher-order sliding mode one which is
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Fig. 4. 2D model of the mothership and small vessel.
Table 2
Ship model nomenclature.
𝑎 Fixed length of the boom (m)

𝑑 Perpendicular distance between the suspension point and 𝑧𝑏 axis (m)
𝑑0 Perpendicular distance between the suspension point and mothership’s hull (m)
𝑑𝑐𝑜𝑙 Perpendicular distance between the centre of the small vessel and mothership’s hull (m)
ℎ Perpendicular distance between the boom and 𝑦𝑏 axis (m)
𝑙 Length of hoisting cable from the suspension point to the small vessel (m)
𝑚 Mass of the small vessel (kg)
𝑀 Mass of the boom (kg)
𝛼 Angle made by the hoisting cable with the 𝑧𝑛 axis (rad)
N
a
o
k
m
m
l

w

𝜏

r

tasked with controlling the cable length 𝑙 through 𝜏𝑙, whilst the second
ontroller is tasked with minimizing the (oscillatory) motion of the
mall vessel when suspended. These two control objectives are treated
s decoupled for the purposes of design.

.1. Length control

For the purposes of control design, the dynamics for the cable length
in (4) can be expressed as

̈ = 𝑆𝜙−𝛼𝑑 −
𝑓𝑙 + 𝜍𝑙 − 𝜏𝑙

𝑚
+ 𝜇𝑙 (7)

where 𝜇𝑙 represents an unknown, but bounded, uncertainty capturing
plant/model mismatch. In this paper the control law for 𝜏𝑙 is chosen to
have the following structure

𝜏𝑙 = 𝑚(𝜏𝑛𝑙 + 𝜏
𝑓
𝑙 + 𝜏𝑠𝑚𝑐𝑙 ) (8)

where 𝜏𝑛𝑙 is a non-linear feedback term, 𝜏𝑓𝑙 is a feed-forward term
epending on the demanded length profile, and 𝜏𝑠𝑚𝑐𝑙 is a term to induce
second-order sliding motion (Levant, 2005). Substituting (8) into (7)

ields

̈ = 𝑆 𝑑 −
𝑓𝑙 + 𝜍𝑙 + 𝜏𝑛 + 𝜏𝑓 + 𝜏𝑠𝑚𝑐 + 𝜇 (9)
5

𝜙−𝛼 𝑚 𝑙 𝑙 𝑙 𝑙
then selecting 𝜏𝑛𝑙 as

𝜏𝑛𝑙 = −𝑆𝜙−𝛼𝑑 +
𝑓𝑙 + 𝜍𝑙
𝑚

(10)

and substituting into (9) yields

𝑙 = 𝜏𝑓𝑙 + 𝜏𝑠𝑚𝑐𝑙 + 𝜇𝑙 (11)

ote that the term 𝜏𝑛𝑙 in (10) essentially decouples the dynamics
ssociated with the cable shown in (7) from the other two second
rder systems which make up the overall system in (4). This requires
nowledge of the ship states — but these would be readily available on
odern vessels. Any mismatches (for example inaccuracies in measure-
ent) would need to be absorbed into the term 𝜇𝑙 in (11) capturing the

umped mass model uncertainty. Define the sliding surface, 𝜎𝑙, as

𝜎𝑙 = 𝑙 − 𝑙0 (12)

where 𝑙0 is the reference length, then it follows from (11) that

�̈�𝑙 = 𝑙 − 𝑙0 = 𝜏𝑓𝑙 + 𝜏𝑠𝑚𝑐𝑙 + 𝜇𝑙 − 𝑙0 (13)

hich, by selecting
𝑓
𝑙 = 𝑙0 (14)

educes to
𝑠𝑚𝑐
�̈�𝑙 = 𝜏𝑙 + 𝜇𝑙 (15)



Control Engineering Practice 146 (2024) 105866V. Rout et al.

R
c
r
s
(
t

4

m
v
i
𝑙
p
b

𝑑

I
a

𝑑

(
l
r

𝑑

a

𝑑

F
𝑇

𝑇

s

t

s
r

w

𝐴

𝐷

Since the uncertainty 𝜇𝑙 appears in the second derivative of 𝜎𝑙, the
robustness term 𝜏𝑠𝑚𝑐𝑙 must be chosen as a second-order SMC to force
𝜎𝑙 = �̇�𝑙 = 0 and subsequently ensure 𝑙 → 𝑙0 despite the uncertainty. Ro-
bust finite time convergence of both 𝜎 and �̇� to zero in (15) was studied
in Levant (2005). Here 𝜏𝑠𝑚𝑐𝑙 is chosen as the following quasi-continuous
SMC (Levant, 2005) structure

𝜏𝑠𝑚𝑐𝑙 = −𝜌𝑙
�̇�𝑙 + |𝜎𝑙|

1
2 𝑠𝑖𝑔𝑛(𝜎𝑙)

|�̇�𝑙| + |𝜎𝑙|
1
2

(16)

emark. The controller for length regulation given in (8) where the
omponents 𝜏𝑛𝑙 , 𝜏𝑓𝑙 and 𝜏𝑠𝑚𝑐𝑙 are in turn given in (10), (14) and (16)
espectively, has only the gain 𝜌𝑙, which forms part of (16), as de-
ign freedom. This makes tuning straightforward. As proved in Levant
2005), if the gain 𝜌𝑙 is chosen sufficiently large enough with respect
o the magnitude of 𝜇𝑙, then 𝜎𝑙 → 0 and �̇�𝑙 → 0 in a finite time.

.2. Collision distance control

In this section a control law is designed for 𝜏𝑑 which aims to
aintain a specific distance between the mothership and the small

essel. This distance is referred to as the collision distance 𝑑𝑐𝑜𝑙 and
s defined such that 𝑑𝑐𝑜𝑙 < 0 indicates a collision has occurred. Since
is being controlled independently through 𝜏𝑙, it is assumed for the
urposes of control design that the effects of �̇� (m∕s) and l̈ (m∕s2) can
e ignored, this reduces the Euler–Lagrange model in (4) to
[

𝑚𝑙2 𝑚𝑙𝐶𝜙−𝛼
𝑚𝑙𝐶𝜙−𝛼 𝑚 +𝑀

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�(𝑞)

̈̃𝑞 +
[

𝑓𝛼(𝑞, ̇̃𝑞)
𝑓𝑑 (𝑞, ̇̃𝑞)

]

⏟⏞⏞⏟⏞⏞⏟
𝑓 (𝑞, ̇̃𝑞)

+
[

𝜍𝛼
𝜍𝑑

]

⏟⏟⏟
�̃�

=
[

0
𝜏𝑑

]

⏟⏟⏟
𝜏

(17)

where the new generalized coordinates are given by 𝑞 =
[

𝛼 𝑑
]𝑇 , and

the simplified internal forces are given by

𝑓𝛼(𝑞, ̇̃𝑞) = 𝑚𝑙𝑔𝑆𝛼 (18)

𝑓𝑑 (𝑞, ̇̃𝑞) = 𝑚𝑙�̇�2𝑆𝜙−𝛼 (19)

Solving (17) for ̈̃𝑞 yields

̈̃𝑞 = �̃�(𝑞)−1
(

𝜏 − 𝑓 (𝑞, ̇̃𝑞) − �̃�
)

(20)

and making substitutions from (17) and (18) into (20) and simplifying,
using the MATLAB Symbolic Maths Toolbox (MATLAB, 2021), produces
the following representation

�̈� =
𝐶𝜙−𝛼

(

𝑚𝑙𝑆𝜙−𝛼 �̇�2 − 𝜏𝑑 + 𝜍𝑑
)

𝑚𝑙 +𝑀𝑙 − 𝑚𝑙𝐶2
𝜙−𝛼

−
(𝑀 + 𝑚)

(

𝜍𝛼 + 𝑚𝑙𝑔𝑆𝛼
)

𝑚2𝑙2 +𝑀𝑚𝑙2 − 𝑚2𝑙2𝐶2
𝜙−𝛼

(21)

̈ =
𝜏𝑑 𝑙 − 𝜍𝑑 𝑙 + 𝜍𝛼𝐶𝜙−𝛼 − 𝑚𝑙2�̇�2𝑆𝜙−𝛼 + 𝑚𝑔𝑙𝑆𝛼𝐶𝜙−𝛼

𝑙(𝑀 + 𝑚 − 𝑚𝐶2
𝜙−𝛼)

(22)

n turn, (21) and (22) can be further simplified using a small angle
pproximation 𝐶𝜙−𝛼 = 𝐶𝛼 = 1, 𝑆𝛼 = 𝛼 and 𝑆𝜙−𝛼 = 𝜙 − 𝛼, so that

�̈� =
𝑚𝑙(𝜙 − 𝛼)�̇�2 − 𝜏𝑑 + 𝜍𝑑

𝑀𝑙
−

(𝑀 + 𝑚)(𝜍𝛼 + 𝑚𝑙𝑔𝛼)
𝑀𝑚𝑙2

(23)

𝑑 =
𝜍𝛼 + 𝑚𝑙𝑔𝛼

𝑀𝑙
−
𝑚𝑙(𝜙 − 𝛼)�̇�2 − 𝜏𝑑 + 𝜍𝑑

𝑀
(24)

Defining

𝜏𝑑 = 𝜏𝑑 − 𝑚𝑙(𝜙 − 𝛼)�̇�2 (25)

Eqs. (23) and (24) can be simplified to

�̈� =
𝜍𝑑 − 𝜏𝑑
𝑀𝑙

−
(𝑀 + 𝑚)(𝜍𝛼 + 𝑚𝑙𝑔𝛼)

𝑀𝑚𝑙2
(26)

̈ =
𝜍𝛼 + 𝑚𝑙𝑔𝛼

𝑀𝑙
−
𝜍𝑑 − 𝜏𝑑
𝑀

(27)
6

The objective is to create a Linear Parameter-Varying (LPV) system to
approximate (26)–(27) for control law design purposes: specifically

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿�̇�

𝛿�̇�

𝛿�̈�

𝛿𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
�̇�

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0

0 0 0 1

− 𝑔(𝑀+𝑚)
𝑀𝑙 0 0 0

𝑚𝑔
𝑀 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴(𝑙)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝛼

𝛿𝑑

𝛿�̇�

𝛿�̇�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝑥

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

− 1
𝑀𝑙

1
𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝐵(𝑙)

𝜏𝑑

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0 0

−𝑀+𝑚
𝑀𝑚𝑙2

1
𝑀𝑙

1
𝑀𝑙 − 1

𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷(𝑙)

⎡

⎢

⎢

⎣

𝜍𝛼 + 𝜇𝛼

𝜍𝑑 + 𝜇𝑑

⎤

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
�̃�

(28)

where 𝜇𝛼 and 𝜇𝑑 represent unknown but bounded uncertainties. In
28) the states 𝛿𝛼 and 𝛿𝑑 denote perturbations of 𝛼 and 𝑑 from the
inearization point (0, 𝑑0, 0, 0). From Fig. 4, the following geometrical
elationship can be derived

𝑐𝑜𝑙 = 𝑑 − 𝑙𝑆𝜙−𝛼 (29)

ssuming that 𝜙 ≈ 0 and using a small angle approximation

𝑐𝑜𝑙 ≈ 𝑑 + 𝑙𝛼 (30)

or the system in (28), define the coordinate transformation 𝑥 ↦ �̄� =
𝑥 where

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑙 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(31)

o that the new system state �̄� =
[

𝛿𝑑𝑐𝑜𝑙 𝛿𝑑 𝛿�̇� 𝛿�̇�
]𝑇 .

To improve low frequency performance, �̄� can be augmented with
he integral action state

�̇�𝑟 =
[

1 0 0 0
]

�̄� (32)

uch that �̃� = 𝑐𝑜𝑙(𝑥𝑟, �̄�). Ignoring terms related to �̇�, a linearized
epresentation is given by

̇̃𝑥 = �̃�(𝑙)�̃� + �̃�(𝑙)𝜏𝑑 + �̃�(𝑙)�̃� (33)

here the system matrices are

̃(𝑙) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0

0 0 0 𝑙 1

0 0 0 0 1

0 − 𝑔(𝑀+𝑚)
𝑀𝑙2

− 𝑔(𝑀+𝑚)
𝑀𝑙2

0 0

0 𝑚𝑔
𝑀𝑙 − 𝑚𝑔

𝑀𝑙 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, �̃�(𝑙) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

− 1
𝑀𝑙

1
𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

̃ (𝑙) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 0

0 0

0 0

−𝑀+𝑚
𝑀𝑚𝑙2

1
𝑀𝑙

1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(34)
⎣ 𝑀𝑙 −𝑀 ⎦



Control Engineering Practice 146 (2024) 105866V. Rout et al.

a

𝑊

I
𝑙
T
s
𝑙
1
f
c

𝑊

T
c

o
o
c
(
q
n
a

𝜎

w
i
m

𝜎

S

𝜎

T
s
c

𝜏

S
g

r
e

𝜏

𝜎

T

𝜎

I

𝜎

I

𝜎

a

The disturbance distribution matrix �̃�(𝑙) does not satisfy the matching
condition (Edwards & Spurgeon, 1998) but (33) can be represented by

̇̃𝑥 = �̃�(𝑙)�̃� + �̃�(𝑙)(𝜏𝑑 + 𝑓𝑚) + �̃�𝑢(𝑙)𝑓𝑢 (35)

where 𝑓𝑚 and 𝑓𝑢 respectively denote the matched and unmatched
components of �̃� and �̃�𝑢 is an appropriate distribution matrix. The
representation in (35), and in particular thinking of 𝑙 as a scheduling
parameter, means (35) can be thought of as a Linear Parameter Varying
(LPV) system.

The control scheme which will be proposed in this paper utilizes
a result on scheduled control from Stilwell and Rugh (1999) which in
particular involves a constructive method for finding a matrix 𝐹 (𝑙) such
that

�̃�(𝑙) + �̃�(𝑙)𝐹 (𝑙) (36)

is stable for all 𝑙 ∈
[

𝑙𝑚𝑖𝑛 𝑙𝑚𝑎𝑥
]

where (in this particular context)
𝑙𝑚𝑎𝑥 > 𝑙𝑚𝑖𝑛 > 0 represents the operating range of the crane. The work
in Stilwell and Rugh (1999) suggests choosing

𝐹 (𝑙) =

⎧

⎪

⎨

⎪

⎩

𝐹𝑖, 𝑙 = 𝑙𝑖
𝐹𝑖(𝑙)𝑊 −1(𝑙), 𝑙𝑖 < 𝑙 < 𝑙𝑖+1
𝐹𝑖+1, 𝑙 = 𝑙𝑖+1

(37)

where

𝐹𝑖(𝑙) =
𝑙𝑖+1 − 𝑙
𝑙𝑖+1 − 𝑙𝑖

𝐹𝑖𝑊𝑖 +
𝑙 − 𝑙𝑖
𝑙𝑖+1 − 𝑙𝑖

𝐹𝑖+1𝑊𝑖+1 (38)

nd

(𝑙) =

⎧

⎪

⎨

⎪

⎩

𝑊𝑖, 𝑙 = 𝑙𝑖
𝑙𝑖+1−𝑙
𝑙𝑖+1−𝑙𝑖

𝑊𝑖 +
𝑙−𝑙𝑖
𝑙𝑖+1−𝑙𝑖

𝑊𝑖+1, 𝑙𝑖 < 𝑙 < 𝑙𝑖+1
𝑊𝑖+1, 𝑙 = 𝑙𝑖+1

(39)

n the above, all the 𝑙𝑖 ∈
[

𝑙𝑚𝑖𝑛 𝑙𝑚𝑎𝑥
]

with 𝑙𝑖+1 > 𝑙𝑖 where 𝑙1 = 𝑙𝑚𝑖𝑛 and
𝑖𝑚𝑎𝑥 = 𝑙𝑚𝑎𝑥 (i.e. they create overlapping subintervals of

[

𝑙𝑚𝑖𝑛 𝑙𝑚𝑎𝑥
]

).
he feedback gains 𝐹𝑖 are fixed gains which stabilize the plant at the
pecific value of 𝑙 (i.e. ensuring �̃�(𝑙𝑖) + �̃�(𝑙𝑖)𝐹𝑖 is Hurwitz for each fixed
𝑖) and must satisfy the stability covering condition (Stilwell & Rugh,
999) (i.e. there exists a feedback gain 𝐹𝑖 which stabilizes (�̃�(𝑙), �̃�(𝑙))
or all fixed 𝑙 ∈

[

𝑙𝑚𝑖𝑛 𝑙𝑚𝑎𝑥
]

). The positive definite matrices 𝑊𝑖 are
hosen to satisfy

𝑖
(

𝐴(𝑙𝑖) + 𝐵(𝑙𝑖)𝐹𝑖
)𝑇 +

(

𝐴(𝑙𝑖) + 𝐵(𝑙𝑖)𝐹𝑖
)

𝑊𝑖 ≤ −𝜅𝐼 (40)

where 𝜅 > 0. In Stilwell and Rugh (1999) the choice of 𝐹 (𝑙) in (37) is
shown to guarantee the stability of �̃�(𝑙)+�̃�(𝑙)𝐹 (𝑙) for all 𝑙 ∈

[

𝑙𝑚𝑖𝑛 𝑙𝑚𝑎𝑥
]

provided

|�̇�| < min
𝑖=1,…,𝑖𝑚𝑎𝑥−1

𝜅|𝑙𝑖+1 − 𝑙𝑖|
‖𝑊𝑖+1 −𝑊𝑖‖

(41)

his choice of 𝐹 (𝑙) will be used as the basis for the development of a
ontroller for (35).

Because of the presence of uncertainty, together with the emergence
f plant model mismatches resulting from the approximation used to
btain (35), a robust control methodology must be adopted. Here, a
ontrol law for 𝜏𝑑 can be designed using Integral Sliding Mode Control
ISMC) principles (Castaños & Fridman, 2006). This methodology re-
uires a suitable choice of sliding surface, followed by an appropriate
onlinear control strategy to force the closed loop system to evolve
long the surface for all time.

Firstly consider a switching function defined by

= 𝐺�̃� − 𝐺�̃�(𝑡0) − 𝐺 ∫

𝑡

𝑡0

(

�̃�(𝑙) + �̃�(𝑙)𝐹 (𝑙)
)

�̃�(𝑠)𝑑𝑠 (42)

where
[ ]
7

𝐺 = 0 0 0 0 𝑀 (43) t
and 𝐹 (𝑙) has been chosen so that �̃�(𝑙)+ �̃�(𝑙)𝐹 (𝑙) is stable. A control law
ill be developed so that a sliding motion maintaining 𝜎 = 0 for all time

s achieved. First it will be demonstrated that if sliding can indeed be
aintained on 𝜎 = 0, then the sliding motion is given by

̇̃𝑥 =
(

�̃�(𝑙) + �̃�(𝑙)𝐹 (𝑙)
)

�̃� +
(

𝐼 − �̃�(𝑙)𝐺
)

�̃�𝑢(𝑙)𝑓𝑢 (44)

To demonstrate this, differentiating (42) yields

̇ = 𝐺 ̇̃𝑥 − 𝐺�̃�(𝑙)�̃� − 𝐺�̃�(𝑙)𝐹 (𝑙)�̃� (45)

ubstituting from (35) and using the fact that 𝐺𝐵(𝑙) = 1 produces

̇ = 𝜏𝑑 + 𝑓𝑚 + 𝐺�̃�𝑢(𝑙)𝑓𝑢 − 𝐹 (𝑙)�̃� (46)

he equivalent control necessary to maintain sliding can be found by
etting �̇� to zero and rearranging for 𝜏𝑑 (Utkin, 1992): in this specific
ase this yields

̃𝑒𝑞𝑑 = −𝑓𝑚 − 𝐺�̃�𝑢(𝑙)𝑓𝑢 + 𝐹 (𝑙)�̃� (47)

ubstituting 𝜏𝑒𝑞𝑑 for 𝜏𝑑 in (35) yields the equation of motion which
overns sliding as (44) as claimed.

Note that in (44) the effects of the matched uncertainty is amelio-
ated due to the sliding mode. The specific choice of 𝐺 in (43) also
nsures that ‖𝐼 − 𝐵(𝑙)𝐺‖ ∈

[

1,
√

2
]

for 𝑙 > 1 since

‖𝐼 − �̃�(𝑙)𝐺‖ =
√

1 + 1
𝑙2

(48)

and so the effects of 𝑓𝑢 are effectively managed.
Next a control law to maintain sliding will be described. Specifically

consider the ISMC control law

̃𝑑 = 𝐹 (𝑙)�̃� − 𝜌(�̃�) 𝜎(𝑡)
‖𝜎(𝑡)‖ (49)

where 𝜌(�̃�) is a design scalar. In (49) assuming that the uncertainties 𝑓𝑢
and 𝑓𝑚 remain bounded, choose 𝜌(�̃�) to satisfy

𝜌(�̃�) ≥ ‖𝑓𝑚‖ + ‖𝐺�̃�𝑢‖‖𝑓𝑢‖ + 𝜚 (50)

where 𝜚 is a positive design constant.
To demonstrate that sliding is maintained, it will be shown that the

so-called reachability condition

𝜎𝑇 �̇� ≤ −𝜚‖𝜎‖ (51)

is satisfied (Edwards & Spurgeon, 1998).
Differentiating the expression for the switching function 𝜎 in (42)

yields

̇ = 𝐺 ̇̃𝑥 − 𝐺�̃�(𝑙)�̃� − 𝐺�̃�(𝑙)𝐹 (𝑙)�̃� (52)

By substituting for ̇̃𝑥 from (35), and using the fact that 𝐺𝐵(𝑙) = 1,
Eq. (52) simplifies to

�̇� = 𝜏𝑑 + 𝑓𝑚 + 𝐺�̃�𝑢(𝑙)𝑓𝑢 − 𝐹 (𝑙)�̃� (53)

hen substituting for 𝜏𝑑 from (49) means

̇ = −𝜌(�̃�) 𝜎(𝑡)
‖𝜎(𝑡)‖ + 𝑓𝑚 + 𝐺�̃�𝑢(𝑙)𝑓𝑢 (54)

t follows

𝑇 �̇� = −𝜌(�̃�)‖𝜎‖ + 𝜎𝑇 𝑓𝑚 + 𝜎𝑇𝐺�̃�𝑢(𝑙)𝑓𝑢
≤ −𝜌(�̃�)‖𝜎‖ + ‖𝜎‖‖𝑓𝑚‖ + ‖𝜎‖‖𝐺�̃�𝑢(𝑙)‖‖𝑓𝑢‖ (55)

f 𝜌(�̃�) is chosen to satisfy (50) then from (55)

𝑇 �̇� ≤ −𝜚‖𝜎‖ (56)

nd so if 𝜎(0) = 0, sliding is guaranteed to be maintained for all
ime (Edwards & Spurgeon, 1998).
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.3. Design process

This subsection outlines the process for developing the control law
or collision distance regulation.

1. Based on the LPV model in (28), together with the integral
action component described in (32), and adopting the change
of coordinates in (31), form the time varying pair (�̃�(𝑙), �̃�(𝑙)) as
defined in (34).

2. Using the pair (�̃�(𝑙), �̃�(𝑙)) from Step 1 the next step involves com-
puting the (time-varying) matrix 𝐹 (𝑙) to ensure (�̃�(𝑙) + �̃�(𝑙)𝐹 (𝑙))
is quadratically stable for all 𝑙 ∈

[

𝑙𝑚𝑖𝑛 𝑙𝑚𝑎𝑥
]

where 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥
represent the operating range of the crane. To synthesize 𝐹 (𝑙),
the algorithm proposed in Stilwell and Rugh (1999) is suggested,
which requires the creation of an overlapping set of intervals
[

𝑙𝑖 𝑙𝑖+1
]

with 𝑙𝑖+1 > 𝑙𝑖 which must cover
[

𝑙𝑚𝑖𝑛 𝑙𝑚𝑎𝑥
]

. The
selection of the 𝑙𝑖’s constitutes design freedom.

3. Once the 𝑙𝑖 from Step 2 have been selected, a sequence of
parameters 𝑊𝑖 and 𝐹𝑖 must be chosen to satisfy simultaneously
the Lyapunov equations in (40) where all the matrices 𝑊𝑖 must
be positive definite and the scalar 𝜅 appearing in (40) must be
positive.

4. Using the 𝑊𝑖 and 𝐹𝑖 synthesized in Step 3, the feedback control
gain 𝐹 (𝑙) can be computed as defined in Eq. (37).

5. Once 𝐹 (𝑙) is chosen, all the elements of the switching function
𝜎 defined in (42) are specified since the matrix 𝐺 is fixed and
must be selected as given in (43).

6. The control law is given by

𝜏𝑑 = 𝐹 (𝑙)�̃� − 𝜌(�̃�) 𝜎(𝑡)
‖𝜎(𝑡)‖

where the modulation gain in the switching term 𝜌(�̃�) must be
chosen to dominate the uncertainty as specified in (50).

Note that for the purpose of implementation, the discontinuous term
n (49) has been replaced by a sigmoidal approximation which removes
he discontinuity which in turn removes chattering from the closed loop
esponse (Edwards & Spurgeon, 1998).

. Simulation results

.1. Crane and ship modelling

In the following simulations, a ship model from the ‘Marine Systems
imulator’ toolbox (2021 version) (Perez, 2006) is used. The toolbox
ontains hydrodynamic data for a number of ships: in the following
esults, the S175 container ship is used as the mothership. The S175 is
8

large container ship with a length (between perpendiculars) of 175m, 𝜏
beam of 25.4m, a mean draught of 9.5m and a mass of 25 × 106 kg.
he simulations were carried out in SIMULINK 2020b on a Microsoft
indows machine with 32 GB RAM and a processor speed of 4.3 GHz.
The crane model, shown in Fig. 4 has a fixed length 𝑎 = 5m, mass
= 500 kg and a height above the 𝑦𝑏 axis ℎ = 7m. The small vessel

onsidered is a Rigid Hull Inflatable Boat (RHIB) with a (loaded) mass
= 1750 kg and a beam of 1.75m. The lifting procedure considered

tarts at an initial cable length 𝑙𝑚𝑎𝑥 = 5m, which corresponds to the
aterline of the mothership, and lifts the small vessel a total of 4m
ver a period of 15 s, giving a final length of 𝑙𝑚𝑖𝑛 = 1m. This ensures
he small vessel is sufficiently clear of the deck of the mothership so
hat it can be brought onboard.

.2. Control design

In (37) the feedback gains 𝐹𝑖 were designed using a Linear Quadratic
egulator (LQR) approach, for fixed values of 𝑙 = 1.00, 1.25,… , 4.75,
.00m. The weighting matrices used in the control synthesis are chosen
s

(𝑙) = 𝑑𝑖𝑎𝑔(𝑄11(𝑙), 400, 350, 0, 0), 𝑅 = 14 (57)

here the values of 𝑄11(𝑙) for different cable lengths are shown in
ig. 5. In 𝑄(𝑙) the first two elements are both associated with collision
istance (𝑑𝑐𝑜𝑙) (the first entry being the integral action state) and are
eighted heavily — since preventing collision is the controller’s main
bjective. The last two entries, associated with the swing angle velocity
�̇�) and suspension point velocity (�̇�), are set to zero since these are not
mportant for achieving the main control objective. The specific choice
f 𝑄11(𝑙) ensures that at the beginning of the lift (when 𝑙 = 5m) the
ontroller is focused on dampening any oscillations associated with the
nitial conditions of the small vessel (i.e. control of the swing angle 𝛼
s prioritized over 𝑑𝑐𝑜𝑙). As the lift progresses (𝑙 < 5m), the priority
ggressively increases to control of the collision distance.

Through the use of Linear Matrix Inequality (LMI) software (Lof-
erg, 2004) it can be verified that for each fixed value of 𝑙𝑖, and
orresponding gain 𝐹𝑖, there is a common solution to the Lyapunov
unction (40) so that 𝑊𝑖+1 = 𝑊𝑖 for all 𝑖. Therefore the bound in (41)
ecomes infinite — guaranteeing stability of (36) for any value of �̇�
ithin the region 𝑙 ∈

[

1 5
]

.
In the simulations, to prevent ‘chattering’ (Edwards & Spurgeon,

998), the following sigmoidal approximation of the control law 𝜏𝑑 ,
rom (49) has been used

̃ = 𝐹 (𝑙)�̃� − 𝜌(�̃�) 𝜎(𝑡) (58)
𝑑
‖𝜎(𝑡)‖+𝛿



Control Engineering Practice 146 (2024) 105866V. Rout et al.

w
a
c

5

5

m
i
(
l
o
w
(
r
I
u
w
a
s
a

5

w
c
c
s
c
o
a

Fig. 6. Ship motion comparison for significant wave heights of 𝐻1∕3 = 0.5 m and 𝐻1∕3 = 5m: (a) Heave; (b) Roll; and, (c) Sway.
p
T
s
t
t
a
i
w

c
o
r
a
t
a

p

t
r
t
o
c
i
t
c

s
c
s
H

here 𝛿 is a small positive design constant. In this paper 𝜌(�̃�) = 0.2
nd 𝛿 = 0.015 has been chosen. For the second-order SMC in (16), 𝜌𝑙 is
hosen as 0.3 (which represents the only design parameter).

.3. Results

.3.1. Ship motions
The controller test scenarios are based on the motions of the S175

othership, described in Section 5.1. During the simulations the S175
s kept at a constant speed of 10m∕s and at a constant heading of 30◦
through the respective use of the engine and rudder). The sea is se-
ected as the ITTC spectrum (Pawlowski, 2009) with a spreading factor
f 2. Fig. 6 shows the responses of the S175 at two different sea states
ith significant wave heights 𝐻1∕3 = 0.5m (sea state 2) and 𝐻1∕3 = 5m

sea state 6). These motions have been shown here because of their
elevance and use in the modelling of the crane-small vessel system.
t can be seen that at sea state 6, a maximum heave displacement of
nder 1m occurs and an absolute roll peak just over 4◦ is obtained,
hile the lower sea state has peak roll and heave displacements of 0.2◦
nd 0.03m respectively. Note that there is a 1 s period in the following
imulation results where an initialization procedure takes place which
ims to smooth the initial control response.

.3.2. Crane motion for fixed boom cases
This section considers three scenarios: a low sea state condition

ith neutral initial conditions for the small vessel; a high sea state
ondition with neutral initial conditions; a high sea state condition with
hallenging initial conditions. Figs. 7 and 8 show the cable length (𝑙),
wing angle (𝛼) and the suspension point’s overhang (𝑑 − 𝑤𝑚) for the
rane with a fixed point of suspension. Here 𝑑 is the horizontal distance
f the suspension point from the origin of the b-frame, defined in Fig. 4,
nd 𝑤 = 12.7m is equal to half the width of the mothership. The initial
9

𝑚 a
osition of the boom is such that the suspension point is at 𝑑 = 14.2m.
his results in an overhang distance of 1.5m. The distance between the
mall vessel and the hull (𝑑𝑐𝑜𝑙 − 𝑤𝑝) along with the absolute value of
he control force along the length of the cable (𝜏𝑙) are also shown in
hese figures. The variable 𝑑𝑐𝑜𝑙 is the distance between the ship’s hull
nd the centre of the small vessel, as defined in Fig. 4, and 𝑤𝑝 = 0.8m
s equal to half the width of the small vessel. The small vessel collides
ith the mothership when 𝑑𝑐𝑜𝑙 −𝑤𝑝 = 0m.

As seen from Figs. 7(a) and 8(a) the length profile of the hoisting
able accurately follows the reference profile and the length control
f the crane cable works as desired for all three cases. This shows the
obustness of the length controller with respect to various sea states
nd initial conditions. The length controller is used to define a fixed
rajectory for the cable length, such that the velocity of the cable before
nd after the recovery process is zero.

As the boom does not move, the overhang distance of the suspension
oint remains fixed at 𝑑 −𝑤𝑚 = 1.5m as shown in Figs. 7(b) and 8(b).

The initial condition for swing angle in Fig. 7(c) is 𝛼0 = 0◦. For
he lower sea state with 𝐻1∕3 = 0.5m, the swing angle of the cable
emains low and does not exceed 1◦, whereas for the higher sea state,
he cable swings with an amplitude of about 4.5◦ after the completion
f the recovery of the small vessel. When considering a non-zero initial
ondition for the swing angle (𝛼0 = −6◦) and velocity (�̇�0 = −6 ◦∕s)
n Fig. 8(c) for the higher sea state, it is seen that the oscillations of
he cable are much larger and reach an amplitude of 30◦ after the
ompletion of the recovery process.

The distance between the edge of the small vessel and the hull is
hown in Fig. 7(d) for the low and high sea state cases with zero initial
onditions for the swing angle and angular velocity. It is seen that the
mall vessel does not collide with the mothership for either sea state.
owever, when the crane cable has an initial angular value of 𝛼0 = −6◦

◦
nd an angular velocity of �̇�0 = 6 ∕s, Fig. 8(d) shows that a collision
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ill occur shortly before 5 s. This warrants the need for a controller
o reduce the oscillations of the crane cable to prevent the collision
etween the mothership and the small vessel.

The absolute value of the control force on the crane cable is shown
n Figs. 7(e) and 8(e). This force acts in the form of tension in the cable.
or the lower sea state with zero initial conditions, the force remains
onsistent about 17.1 kN. This is equal to the gravitational pull on the
mall vessel of mass 1750 kg, which is 𝐹 = 𝑚𝑔 = 1750 kg × 9.81m∕s2 =
7.168 kN. At the higher sea state, it is seen that the control force is
ore oscillatory in nature. This can be attributed to the larger heave

nd roll motions in this case, which in turn have an impact on the
xternal forces as well as the swing angle. In comparison with the
igher sea state with non-zero angular initial conditions (𝛼0 ≠ 0◦,
�̇�0 ≠ 0 ◦∕s), it is seen that while the oscillations are still centred about
7.1 kN, they are much larger in value due to the significantly higher
wing angle which ranges between ±30◦.
10

t

.3.3. Crane motion for adjustable boom cases with different initial condi-
ions

This section considers the case where the suspension point is ad-
ustable for the same scenarios as in Section 5.3.2. Some additional
awkward’ initial conditions are also considered here. Fig. 9 displays
he response of the system for the low and high sea state situations with
ero initial conditions for the cable swing angle and angular velocity.
he length profiles in Fig. 9(a) show that the (length) controller is
obust as the cable length follows the controller-defined trajectory
erfectly for both sea states.

Fig. 9(b) shows the overhang distance of the suspension point on
he boom, which is adjustable, and this movement is driven by the
ontroller output. For the lower sea state, it is seen that the crane does
ot show any large movement with the maximum deviation from the
nitial overhang distance being around 0.013m. For the higher sea state,
here is a larger change from the initial position with the maximum
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alue being 𝑑−𝑤𝑚 = 1.77m resulting in a change of 0.27m. The goal of
his movement is to minimize the oscillations of the crane cable, which
s represented by the swing angle (𝛼).

The swing angle for the higher sea state is larger than that in the
ower sea state as seen in Fig. 9(c). This results in the distance between
he small vessel and mothership’s hull deviating from the desired value
f 0.7m by a greater extent. This is shown in Fig. 9(d), but it can be
een that no collision occurs in either case. The larger deviation from
he desired separation distance requires a larger movement of the boom
o bring the distance between the small vessel and mothership’s hull
o 0.7m and this is seen in the overhang distance. Due to the control
ction on the boom, it can be seen that the separation distance remains
round 0.7m for both cases, thus demonstrating the benefit of adding
controller for the boom.

The tension in the crane cable is shown in Fig. 9(e) for the low
nd high sea states. It exhibits behaviour similar to that seen in the
revious section for the fixed-boom cases. The lower sea state results
n a consistent force of about 17.1 kN, while the higher sea state case
11
hows some oscillations centred around this value due to the additional
orces caused by the larger heave and roll motions, and the acceleration
f the boom. The absolute values of the control forces on the boom
𝜏𝑑) are shown in Fig. 9(f). For the lower sea state, as the separation
istance remains in the vicinity of the desired 0.7m value, the force on
he boom is very low with a maximum value around 0.08 kN. For the
igher sea state, the maximum force applied on the boom is around
.8 kN to counter the larger separation distance.

Figs. 10(a)–10(f) show the plots for the higher sea state with non-
ero initial conditions for the swing angle and angular velocity: specifi-
ally (𝛼0, �̇�0) = {(−6,−6), (6,−6), (−6, 6), (6, 6)}. The length profiles in all

four cases follow the desired profile as seen in Fig. 10(a), once again
showing the robustness of the length controller and its feasibility in
operating concurrently with the boom controller under various initial
conditions.

The swing angle profile in Fig. 10(c) shows a starting value of
−6◦ and an initial angular velocity of −6◦∕s. The separation distance
between the small vessel and the mothership reduces from the initial
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ength (𝑙); (b) Suspension point overhang (𝑑 −𝑤𝑚); (c) Swing angle (𝛼); (d) Separation distance (𝑑𝑐𝑜𝑙 −𝑤𝑝); (e) Tension in crane cable (|𝜏𝑙|); and, (f) Control force on boom (𝜏𝑑 ).
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alue of 0.17m moving towards collision. The boom controller acts
uickly and aggressively to bring this separation distance back to 0.7m
nd hence has large initial fluctuations as seen in Fig. 10(f). The effect
f this force is seen in the sharp increase in the displacement of the
uspension point in Fig. 10(b). The sudden change in the acceleration
f the boom also affects the control action along the length cable as
een in Fig. 10(e). As a consequence of the control action on the boom
t is seen that at the end of the recovery phase of the small vessel, there
s significant reduction in the swing angle.

The green line in Fig. 10(c) shows the swing angle when the initial
ngle is 6◦ and the swing angle velocity is −6◦∕s. This means that
he position of the small vessel is such that its distance of separation
rom the mothership’s hull is larger than the desired 0.7m, but moves
owards the mothership due to the negative angular velocity as shown
n Fig. 10(d). As the small vessel is approaching the desired separation
istance of 0.7m on its own, the external control action on the boom,
n Fig. 10(f), is very low in comparison to the previous case, where the
12

ontroller was aggressive in nature to prevent collision and maintain i
he desired separation distance. The effect of this lower control force
s seen on the overhang distance in Fig. 10(b), where the maximum
verhang distance is less than 0.5m from that experienced in the
−6,−6) case. The effect of the lower acceleration of the boom is also
een in the less aggressive control action along the length of the cable
een in Fig. 10(e).

The red line in Fig. 10(c) covers the scenario where the initial
onditions of (𝛼0, �̇�0) = (−6, 6), which is the polar opposite of the case
onsidered above, which had initial conditions of (𝛼0, �̇�0) = (6,−6). The
egative swing angle shown in Fig. 10(c) depicts that the small vessel
s closer to the ship in comparison to its position at equilibrium. The
ositive angular velocity means that the small vessel is moving away
rom the mothership, thus increasing the separation distance as seen in
ig. 10(d). As in the previous case, due to the small vessel moving to-
ards the desired separation distance of 0.7m with its own momentum,

he control force applied on the boom is not very aggressive (Fig. 10(f)).
s a result of this force, the suspension point is moved by about 0.6m

n Fig. 10(b) to counter the effect of the small vessel moving away from
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Fig. 10. Crane motions with adjustable boom for a significant wave height of 𝐻1∕3 = 5m and (𝛼0 , �̇�0) = (±6,±6): (a) Cable length (𝑙); (b) Suspension point overhang (𝑑 −𝑤𝑚); (c)
wing angle (𝛼); (d) Separation distance (𝑑𝑐𝑜𝑙 −𝑤𝑝); (e) Tension in crane cable (|𝜏𝑙|); and, (f) Control force on boom (𝜏𝑑 ).
f
d
s
b
i

c
f

5

a
a
6
c
0

he mothership. The low acceleration of the suspension point, in turn,
as a less aggressive impact on the required tension in the cable during
he recovery of the small vessel as seen in Fig. 10(e).

The final case, represented by the black lines in Figs. 10(a)–10(f),
onsiders the initial conditions (𝛼0, �̇�0) = (6, 6). These values refer to
situation where the small vessel is farther from the mothership than

ts equilibrium position and continues to move away from it as seen
n Fig. 10(c). As the small vessel is moving away from the mothership,
he separation distance increases as seen in Fig. 10(d). Even though
here is no threat of a collision with the mothership, this situation is
reated by the controller in a manner similar to the (−6,−6) case as
he key variable for the boom controller is the displacement from the
esired separation distance of 0.7m. Thus, the boom controller acts
ggressively, as seen in Fig. 10(f), to bring the small vessel to the
esired separation distance by pulling the small vessel closer to the
othership, and then quickly moves in the opposite direction to avoid

ollision due to the small vessel’s momentum. The effect of this control
13

i

orce on the suspension point is seen in Fig. 10(b), where the overhang
istance reduces to 0.5m before increasing. Fig. 10(e) shows that the
udden change in the acceleration of the boom affects the force applied
y the length controller in an abrupt manner, similar to what was seen
n the (−6,−6) case.

The sliding surfaces for the length control and collision prevention
ontrollers, from Eqs. (12) and (42) respectively, are shown in Fig. 11
or the four cases discussed above.

.3.4. Minimum separation distance
This section shows the minimum separation distance for the fixed

nd adjustable boom cases for a range of initial conditions for the swing
ngle (𝛼0) and swing velocity (�̇�0). The range for both 𝛼0 and �̇�0 is [−6 ∶
]. Fig. 12 shows the worst case separation distance for the fixed-boom
ase under low sea state conditions. The small vessel comes within
.1m of the mothership’s hull when the initial conditions for (𝛼0, �̇�0)
s a subset of {(−6,−6), (−6, 6), (6,−6), (6, 6)}. The two-dimensional plot
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Fig. 11. Sliding surfaces for the length adjustment and collision prevention controllers. (a) Sliding surface defined in (12); (b) Sliding surface defined in (42).
Fig. 12. Surface plots for the minimum separation distance (𝑑𝑐𝑜𝑙 − 𝑤𝑝) between the small vessel and mothership with a fixed crane boom for a range of initial swing angle (𝛼0)
and velocities (�̇�0) for a significant wave height of 𝐻1∕3 = 0.5m: (a) 3D plot; (b) 2D plot.
in Fig. 12(b) shows symmetrical behaviour for the separation distance
with the small vessel being farthest from the mothership under zero
initial conditions. When the higher sea state is considered in Fig. 13, it
is seen that collisions between the small vessel and the mothership will
occur under various initial conditions.

The effect of the adjustable boom is seen for the lower sea state in
Fig. 14. In this case the minimum separation distance is not symmetric
in nature. The low separation is only seen in the cases where the
initial position of the small vessel is already close to the mothership
(𝛼0 = −6◦). However, if the position of the small vessel is away
from the mothership (𝛼0 = 6◦), then the boom controller ensures that
separation distance never reduces to the levels seen with a fixed boom.
The benefit of this controller is further seen in Fig. 15 for the higher
sea state situation where collision is prevented under all defined initial
conditions, unlike the fixed-boom cases.

5.4. Collision analysis

The plots in Fig. 16 depict the results for various combinations of
the initial swing angle (𝛼0) and swing angle velocities (�̇�0) at various
sea states. The sea states shown here correspond to the study of the
14
performance of the controller in sea conditions considered as rough and
worse. The green sections denote the safe operation region i.e. initial
conditions for which a collision free recovery can be obtained, and the
red area depicts the initial conditions under which a collision occurs.
The asymmetry is due to the fact that when the swing angle is negative,
it implies that the small boat is initially closer to the hull of the
mothership and hence more likely to collide with it. It is seen that for
𝛼0 = (−9,−10), the boat is already too close to the mothership so that
any movement, even with the support of the anti-collision controller,
will still result in a collision. However, for 𝛼0 = (−7,−8) the collision
region depends on the magnitude and direction of the swing angle
velocity as the collision prevention controller can negate the effect of
the momentum of the payload to ensure safe operation.

It is important to note that the closest separation distance between
the mothership and the small boat is experienced between 0 < 𝑡 < 1 s.
During this period, the length adjustment controller is inactive. Thus
the separation distance is heavily influenced by the swing angle of the
cable. The magnitude of the swing angle in the direction towards the
ship is the highest for the lowest sea state with 𝐻1∕3 = 0.5m for similar
initial values of 𝛼 and �̇�. This is likely due to the control force 𝜏𝑑 applied
on the crane boom being maximum for the lowest sea state, causing the
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Fig. 13. Surface plots for the minimum separation distance (𝑑𝑐𝑜𝑙 − 𝑤𝑝) between the small vessel and mothership with a fixed crane boom for a range of initial swing angle (𝛼0)
and velocities (�̇�0) for a significant wave height of 𝐻1∕3 = 5m: (a) 3D plot; (b) 2D plot.
Fig. 14. Surface plots for the minimum separation distance (𝑑𝑐𝑜𝑙 −𝑤𝑝) between the small vessel and mothership with an adjustable crane boom for a range of initial swing angle
(𝛼0) and velocities (�̇�0) for a significant wave height of 𝐻1∕3 = 0.5m: (a) 3D plot; (b) 2D plot.
movement of the small boat in the opposite direction to be maximized.
This also explains the additional point of collision for the lower sea
states as seen in Fig. 16(a) at (𝛼0, �̇�0) = (−7,−7), while collision does
not occur for the higher sea states as shown in Fig. 16(b).

6. Conclusion

This paper has proposed a control scheme for the Launch and
Recovery of a small vessel to a mothership. A model has been developed
for testing controllers exploiting the Marine Systems Simulator (MSS)
software package, which is based on a unified seakeeping-manoeuvring
model, and is used to provide the response of the mothership to the
sea waves. A modified boom crane and small vessel are considered
15
together to obtain the equations of motion governing the small vessel
by utilizing the Euler–Lagrange method. Two different sea states have
been considered to demonstrate the functioning of the controllers in
low (sea state 3) and high (sea state 6) sea conditions. Simulations
have been performed using a variety of initial conditions for the crane
cable swing angle and velocity, which would be seen in real-life situa-
tions.

For the recovery of the small vessel, a single second-order sliding
mode controller is used to adjust the length of the hoisting cable which
is suspended from the end of the boom of the crane. Finally, an Integral
Sliding Mode Controller is proposed to keep the distance between the
mothership’s hull and the small vessel centre at a desired value to
prevent collisions, by manipulating the suspension point. The control
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Fig. 15. Surface plots for the minimum separation distance (𝑑𝑐𝑜𝑙 −𝑤𝑝) between the small vessel and mothership with an adjustable crane boom for a range of initial swing angle
(𝛼0) and velocities (�̇�0) for a significant wave height of 𝐻1∕3 = 5m: (a) 3D plot; (b) 2D plot;.
Fig. 16. Analysis of the separation distance between the mothership and small boat for a range of initial swing angle and velocities for multiple significant wave heights. The
red regions indicate a collision, while the green regions indicate safe operation region. (a) 𝐻1∕3 = 0.5m, 𝐻1∕3 = 5m and 𝐻1∕3 = 7.5m; (b) 𝐻1∕3 = 11.5m and 𝐻1∕3 = 14m. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
algorithm demonstrates its robustness by ensuring safe recovery of the
small vessel in low and high sea states for various challenging initial
conditions.

One of the limitations of the work presented here is that several
approximations have been introduced in order to create the model
used as the basis for the ISMC controller design: specifically, small
angle approximations have been employed; and also terms involving
the rate of change of the cable length have been ignored in order to
create the LPV model. However that said, the selection of a robust
ISMC controller helps in the mitigation of these issues during the
16
control stage. Also, currently the controller requires all the states of
the LPV model to be measured. This is quite a strong assumption and
further work could consider the introduction of an observer system to
estimate the unmeasured states. Additionally, from a purely practical
perspective, the proposed method of moving the suspension point will
not be possible on all existing crane systems and requires modification
of existing crane setups.

Future work will focus on implementing the controller on an exper-
imental lab-based setup to test their efficacy of the developed control
algorithm. The experimental setup will include a trolley capable of
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transverse motion in one direction (representing the crane boom), and a
pendulum that swings parallel to this direction (representing the crane
cable and the small vessel to be recovered). The whole system will
be mounted on a gimbal arrangement to allow simulated mothership
motion.
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Appendix

This appendix gives details of the development of the equations of
motion of the crane system which appears in Section 3. From (2) and
(3) the velocity of the small vessel and the boom is

�̇�𝑙 =
[

�̇�𝐶𝜙 − 𝑑�̇�𝑆𝜙 + �̇�𝑆𝛼 + 𝑙𝐶𝛼 �̇� − ℎ�̇�𝐶𝜙 + �̇�2
�̇�𝑆𝜙 + 𝑑�̇�𝐶𝜙 − �̇�𝐶𝛼 + 𝑙𝑆𝛼 �̇� − ℎ�̇�𝑆𝜙 + �̇�3

]

(A.1)

and

�̇�𝑎 =
⎡

⎢

⎢

⎣

�̇�𝐶𝜙 − 𝑑�̇�𝑆𝜙 + 𝑎�̇�𝑆𝜙
2 − ℎ�̇�𝐶𝜙 + �̇�2

�̇�𝑆𝜙 + 𝑑�̇�𝐶𝜙 − 𝑎�̇�𝐶𝜙
2 − ℎ�̇�𝑆𝜙 + �̇�3

⎤

⎥

⎥

⎦

(A.2)

respectively. The kinetic energy, 𝐾𝐸 (J), can be obtained from the
above equations as

𝐾𝐸 = 1
2
𝑚‖�̇�𝑙‖

2 + 1
2
𝑀‖�̇�𝑎‖

2 (A.3)

The potential energy (J), 𝑃𝐸𝑙 and 𝑃𝐸𝑎, of the small vessel and the boom
espectively, are

𝑃𝐸𝑙 = 𝑚𝑔𝑃𝑙𝑧 = 𝑚𝑔𝑑𝑆𝜙 − 𝑚𝑔𝑙𝐶𝛼 + 𝑚𝑔ℎ𝐶𝜙 + 𝑚𝑔𝜂3 (A.4a)

𝐸𝑎 =𝑀𝑔𝑃𝑎𝑧 =𝑀𝑔𝑑𝑆𝜙 −𝑀𝑔
𝑎𝑆𝜙
2

+𝑀𝑔ℎ𝐶𝜙 +𝑀𝑔𝜂3 (A.4b)

where, 𝑃𝑙𝑧 and 𝑃𝑎𝑧 are components of the position vectors, for the small
vessel and boom respectively, in the 𝑧𝑛 direction. The total potential
energy, 𝑃𝐸 (J), of the system is

𝑃𝐸 = 𝑃𝐸𝑙 + 𝑃𝐸𝑎

= 𝑚𝑔𝑑𝑆𝜙 − 𝑚𝑔𝑙𝐶𝛼 + 𝑚𝑔ℎ𝐶𝜙 + 𝑚𝑔𝜂3 +𝑀𝑔𝑑𝑆𝜙 −𝑀𝑔
𝑎𝑆𝜙
2

+𝑀𝑔ℎ𝐶𝜙 +𝑀𝑔𝜂3

(A.5a)

The Lagrangian,  (J), of this model is

 = 𝐾𝐸 − 𝑃𝐸 = 1
2
𝑚‖�̇�𝑙‖

2 + 1
2
𝑀‖�̇�𝑎‖

2 − 𝑃𝐸𝑙 − 𝑃𝐸𝑎 (A.6)

Exploiting the Euler–Lagrange approach (Goldstein, Poole, & Safko,
2014)

𝑑
𝑑𝑡

(

𝜕
𝜕�̇�

)

− 𝜕
𝜕𝑞

= 𝜏 (A.7)

where the generalized coordinates have been chosen as 𝑞 = [𝑙, 𝛼, 𝑑]𝑇

nd 𝜏 =
[

𝜏 , 0, 𝜏
]𝑇 are the generalized forces. In (A.7), 𝜏 denotes
17

𝑙 𝑑 𝑙
tension (N) in the cable and 𝜏𝑑 denotes the force (N) applied to the
boom in the 𝑦𝑏 direction (to alter the point of suspension).

From the expressions in (A.1) and (A.2) it follows that

‖�̇�𝑙‖
2 = �̇�2 + �̇�2 + �̇�22 + �̇�

2
3 + 𝑑

2�̇�2 + ℎ2�̇�2 + 𝑙2�̇�2 − 2ℎ�̇��̇� + 2𝑙�̇��̇�𝐶𝜙−𝛼
− 2𝑑�̇��̇�𝐶𝜙−𝛼 − 2�̇��̇�𝑆𝜙−𝛼
− 2𝑙𝑑�̇��̇�𝑆𝜙−𝛼 + 2ℎ�̇��̇�𝑆𝜙−𝛼 − 2ℎ𝑙�̇��̇�𝐶𝜙−𝛼 − 2ℎ�̇�𝐶𝜙�̇�2 + 2𝑙�̇�𝐶𝛼 �̇�2
+ 2�̇�𝐶𝜙�̇�2 + 2�̇�𝑆𝛼 �̇�2
− 2𝑑�̇�𝑆𝜙�̇�2 − 2ℎ�̇�𝑆𝜙�̇�3 + 2𝑙�̇�𝑆𝛼 �̇�3 + 2�̇�𝑆𝜙�̇�3 − 2�̇�𝐶𝛼 �̇�3 + 2𝑑�̇�𝐶𝜙�̇�3

(A.8)

‖�̇�𝑎‖
2 = �̇�2 + 𝑑2�̇�2 + ℎ2�̇�2 +

𝑎2�̇�2

4
− 𝑎𝑑�̇�2 − 2ℎ�̇��̇� + �̇�22 + �̇�

2
3 + 2�̇�𝐶𝜙�̇�2

− 2𝑑�̇�𝑆𝜙�̇�2 + 𝑎�̇�𝑆𝜙�̇�2
− 2ℎ�̇�𝐶𝜙�̇�2 + 2�̇�𝑆𝜙�̇�3 + 2𝑑�̇�𝐶𝜙�̇�3 − 𝑎�̇�𝐶𝜙�̇�3 − 2ℎ�̇�𝑆𝜙�̇�3

(A.9)

Substituting (A.8), (A.9), (A.4a) and (A.4b) into (A.6) yields

 = 1
2
𝑚(�̇�2 + �̇�2 + �̇�22 + �̇�

2
3 + 𝑑

2�̇�2 + ℎ2�̇�2 + 𝑙2�̇�2 − 2ℎ�̇��̇� + 2𝑙�̇��̇�𝐶𝜙−𝛼

− 2𝑑�̇��̇�𝐶𝜙−𝛼 − 2�̇��̇�𝑆𝜙−𝛼
− 2𝑙𝑑�̇��̇�𝑆𝜙−𝛼 + 2ℎ�̇��̇�𝑆𝜙−𝛼 − 2ℎ𝑙�̇��̇�𝐶𝜙−𝛼 − 2ℎ�̇�𝐶𝜙�̇�2 + 2𝑙�̇�𝐶𝛼 �̇�2
+ 2�̇�𝐶𝜙�̇�2 + 2�̇�𝑆𝛼 �̇�2
− 2𝑑�̇�𝑆𝜙�̇�2 − 2ℎ�̇�𝑆𝜙�̇�3 + 2𝑙�̇�𝑆𝛼 �̇�3 + 2�̇�𝑆𝜙�̇�3 − 2�̇�𝐶𝛼 �̇�3 + 2𝑑�̇�𝐶𝜙�̇�3)

+ 1
2
𝑀(�̇�2 + 𝑑2�̇�2 + ℎ2�̇�2

+ 𝑎�̇�𝑆𝜙�̇�2 +
𝑎2�̇�2

4
− 𝑎𝑑�̇�2 − 2ℎ�̇��̇� + �̇�22 + �̇�

2
3 + 2�̇�𝐶𝜙�̇�2 − 2𝑑�̇�𝑆𝜙�̇�2

− 2ℎ�̇�𝐶𝜙�̇�2 + 2�̇�𝑆𝜙�̇�3
+ 2𝑑�̇�𝐶𝜙�̇�3 − 𝑎�̇�𝐶𝜙�̇�3 − 2ℎ�̇�𝑆𝜙�̇�3) + 𝑚𝑔𝑙𝐶𝛼 − 𝑚𝑔𝑑𝑆𝜙 − 𝑚𝑔ℎ𝐶𝜙 − 𝑚𝑔𝜂3
− 𝑀𝑔𝑑𝑆𝜙

+ 𝑀𝑔
𝑎𝑆𝜙
2

−𝑀𝑔ℎ𝐶𝜙 −𝑀𝑔𝜂3

(A.10)

Applying the Euler–Lagrange approach for the cable length 𝑙,
𝜕
𝜕𝑙

= 𝑚(𝑙�̇�2 + �̇��̇�𝐶𝜙−𝛼 − 𝑑�̇��̇�𝑆𝜙−𝛼 − ℎ�̇��̇�𝐶𝜙−𝛼 + �̇�𝐶𝛼 �̇�2

+ �̇�𝑆𝛼 �̇�3 + 𝑔𝐶𝛼) (A.11a)
𝜕
𝜕�̇�

= 𝑚(�̇� − 𝑑�̇�𝐶𝜙−𝛼 − �̇�𝑆𝜙−𝛼 + ℎ�̇�𝑆𝜙−𝛼 + 𝑆𝛼 �̇�2 − 𝐶𝛼 �̇�3)

(A.11b)
𝑑
𝑑𝑡

(

𝜕
𝜕�̇�

)

= 𝑚
(

𝑙 − �̇��̇�𝐶𝜙−𝛼 − 𝑑�̈�𝐶𝜙−𝛼 + 𝑑�̇�(�̇� − �̇�)𝑆𝜙−𝛼 − 𝑑𝑆𝜙−𝛼

− �̇�(�̇� − �̇�)𝐶𝜙−𝛼
+ ℎ�̈�𝑆𝜙−𝛼 + ℎ�̇�(�̇� − �̇�)𝐶𝜙−𝛼 + �̇�𝐶𝛼 �̇�2 + 𝑆𝛼 �̈�2

+ �̇�𝑆𝛼 �̇�3 − 𝐶𝛼 �̈�3
)

(A.11c)
𝑑
𝑑𝑡

(

𝜕
𝜕�̇�

)

− 𝜕
𝜕𝑙

= 𝑚(𝑙 − 2�̇��̇�𝐶𝜙−𝛼 − 𝑑�̈�𝐶𝜙−𝛼 + 𝑑�̇�2𝑆𝜙−𝛼 − 𝑑𝑆𝜙−𝛼

+ ℎ�̈�𝑆𝜙−𝛼 + ℎ�̇�2𝐶𝜙−𝛼

+ 𝑆𝛼 �̈�2 − 𝐶𝛼 �̈�3 − 𝑙�̇�2 − 𝑔𝐶𝛼) (A.11d)

or the cable swing angle 𝛼,
𝜕
𝜕𝛼

= 𝑚(𝑙�̇��̇�𝑆𝜙−𝛼 − 𝑑�̇��̇�𝑆𝜙−𝛼 + �̇��̇�𝐶𝜙−𝛼 + 𝑙𝑑�̇��̇�𝐶𝜙−𝛼 − ℎ�̇��̇�𝐶𝜙−𝛼

− ℎ𝑙�̇��̇�𝑆𝜙−𝛼

+ �̇�𝐶𝛼 �̇�2 − 𝑙�̇�𝑆𝛼 �̇�2 + �̇�𝑆𝛼 �̇�3 + 𝑙�̇�𝐶𝛼 �̇�3 − 𝑔𝑙𝑆𝛼) (A.12a)
𝜕
𝜕�̇�

= 𝑚
(

𝑙2�̇� + 𝑙�̇�𝐶𝜙−𝛼 − 𝑙𝑑�̇�𝑆𝜙−𝛼 − ℎ𝑙�̇�𝐶𝜙−𝛼 + 𝑙𝐶𝛼 �̇�2 + 𝑙𝑆𝛼 �̇�3
)

(A.12b)
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𝑑
𝑑𝑡

( 𝜕
𝜕�̇�

)

= 𝑚
(

2𝑙�̇��̇� + 𝑙2�̈� + �̇��̇�𝐶𝜙−𝛼 + 𝑙𝑑𝐶𝜙−𝛼 − 𝑙�̇�(�̇� − �̇�)𝑆𝜙−𝛼 − �̇�𝑑�̇�𝑆𝜙−𝛼

− 𝑙�̇��̇�𝑆𝜙−𝛼 − 𝑙𝑑�̈�𝑆𝜙−𝛼 − 𝑙𝑑�̇�(�̇� − �̇�)𝐶𝜙−𝛼 − ℎ�̇��̇�𝐶𝜙−𝛼 − ℎ𝑙�̈�𝐶𝜙−𝛼
+ ℎ𝑙�̇�(�̇� − �̇�)𝑆𝜙−𝛼 + �̇�𝐶𝛼 �̇�2 − 𝑙�̇�𝑆𝛼 �̇�2 + 𝑙𝐶𝛼 �̈�2 + �̇�𝑆𝛼 �̇�3

+ 𝑙�̇�𝐶𝛼 �̇�3 + 𝑙𝑆𝛼 �̈�3
)

(A.12c)
𝑑
𝑑𝑡

( 𝜕
𝜕�̇�

)

− 𝜕
𝜕𝛼

= 𝑚(2𝑙�̇��̇� + 𝑙2�̈� + 𝑙𝑑𝐶𝜙−𝛼 − 2𝑙�̇��̇�𝑆𝜙−𝛼 − 𝑙𝑑�̈�𝑆𝜙−𝛼

− 𝑙𝑑�̇�2𝐶𝜙−𝛼 − ℎ𝑙�̈�𝐶𝜙−𝛼

+ ℎ𝑙�̇�2𝑆𝜙−𝛼 + 𝑙𝐶𝛼 �̈�2 + 𝑙𝑆𝛼 �̈�3 + 𝑔𝑙𝑆𝛼) (A.12d)

For the boom location on the horizontal axis 𝑑,
𝜕
𝜕𝑑

= 𝑚(𝑑�̇�2 − �̇��̇�𝐶𝜙−𝛼 − 𝑙�̇��̇�𝑆𝜙−𝛼 − �̇�𝑆𝜙�̇�2 + �̇�𝐶𝜙�̇�3 − 𝑔𝑆𝜙)

+ 𝑀(𝑑�̇�2 −
𝑎�̇�2

2
− �̇�𝑆𝜙�̇�2 + �̇�𝐶𝜙�̇�3 − 𝑔𝑆𝜙) (A.13a)

𝜕
𝜕�̇�

= 𝑚(�̇� − ℎ�̇� − �̇�𝑆𝜙−𝛼 + 𝐶𝜙�̇�2 + 𝑆𝜙�̇�3 + 𝑙�̇�𝐶𝜙−𝛼) +𝑀(�̇� − ℎ�̇�

+ 𝐶𝜙�̇�2 + 𝑆𝜙�̇�3) (A.13b)
𝑑
𝑑𝑡

(

𝜕
𝜕�̇�

)

= 𝑚
(

𝑑 − ℎ�̈� − 𝑙𝑆𝜙−𝛼 − �̇�(�̇� − �̇�)𝐶𝜙−𝛼 − �̇�𝑆𝜙�̇�2 + 𝐶𝜙�̈�2

+ �̇�𝐶𝜙�̇�3 + 𝑆𝜙�̈�3
+ �̇��̇�𝐶𝜙−𝛼 + 𝑙�̈�𝐶𝜙−𝛼 − 𝑙�̇�(�̇� − �̇�)𝑆𝜙−𝛼

)

+𝑀(𝑑 − ℎ�̈� + 𝐶𝜙�̈�2
− �̇�𝑆𝜙�̇�2 + 𝑆𝜙�̈�3

+ �̇�𝐶𝜙�̇�3) (A.13c)
𝑑
𝑑𝑡

(

𝜕
𝜕�̇�

)

− 𝜕
𝜕𝑑

= 𝑚(𝑑 − ℎ�̈� − 𝑙𝑆𝜙−𝛼 + 2�̇��̇�𝐶𝜙−𝛼 + 𝐶𝜙�̈�2 + 𝑆𝜙�̈�3 + 𝑙�̈�𝐶𝜙−𝛼

+ 𝑙�̇�2𝑆𝜙−𝛼

− 𝑑�̇�2 + 𝑔𝑆𝜙) +𝑀(𝑑 − ℎ�̈� + 𝐶𝜙�̈�2 + 𝑆𝜙�̈�3 − 𝑑�̇�2 +
𝑎�̇�2

2
+ 𝑔𝑆𝜙)

(A.13d)

sing these equations in (A.7) yields the differential equations in (4).

eferences

bdel-Rahman, E. M., Nayfeh, A. H., & Masoud, Z. N. (2003). Dynamics and control
of cranes: A review. Journal of Vibration and Control, 9(7), 863–908.

l-Ani, M., Belmont, M., & Christmas, J. (2020). Sea trial on deterministic sea waves
prediction using wave-profiling radar. Ocean Engineering, 207, Article 107297.

lam, W., Mehmood, A., Ali, K., Javaid, U., Alharbi, S., & Iqbal, J. (2018). Nonlinear
control of a flexible joint robotic manipulator with experimental validation.
Strojniški Vestnik-Journal of Mechanical Engineering, 64(1), 47–55.

eeston, J. (1969). Closed-loop time optimal control of a suspended load. In Proceedings
of the 4th IFAC World Congress (pp. 39–50). Warsaw, Poland.

ozkurt, B., & Ertogan, M. (2023). Heave and horizontal displacement and anti-sway
control of payload during ship-to-ship load transfer with an offshore crane on very
rough sea conditions. Ocean Engineering, 267, Article 113309.

üchel, D., & Åkerlund, N. (2015). Development of overhead launch and recovery
system (Master’s thesis).

ao, Y., & Li, T. (2020). Review of antiswing control of shipboard cranes. IEEE/CAA
Journal of Automatica Sinica, 7(2), 346–354.

astaños, F., & Fridman, L. (2006). Analysis and design of integral sliding manifolds
for systems with unmatched perturbations. IEEE Transactions on Automatic Control,
51, 853–858.

hawla, I., Chopra, V., & Singla, A. (2021). Robust stabilization control of a spatial
inverted pendulum using integral sliding mode controller. International Journal of
Nonlinear Sciences and Numerical Simulation, 22(2), 183–195.

hen, H., & Sun, N. (2021). An output feedback approach for regulation of 5-DOF
offshore cranes with ship yaw and roll perturbations. IEEE Transactions on Industrial
Electronics, 69(2), 1705–1716.

hin, C., Nayfeh, A. H., & Abdel-Rahman, E. M. (2001). Nonlinear dynamics on a boom
crane. Journal of Vibration and Control, 7(2), 199–220.

hin, C., Nayfeh, A. H., & Mook, D. (2000). Dynamics and control of ship mounted
cranes. Journal of Vibration and Control, 7(6), 891–904.

Edwards, C., & Spurgeon, S. (1998). Sliding mode control: Theory and applications. Taylor
and Francis.

ang, Y., Wang, P., Sun, N., & Zhang, Y. (2014). Dynamics analysis and nonlinear
control of an offshore boom crane. IEEE Transactions on Industrial Electronics, 61(1),
414–427.
18
Field, J. (1961). The optimization of the performance of an ore bridge. Transactions of
the Engineering Institute of Canada, 5(3), 163–169.

Fjelldal, R. (2017). Launch and recovery in an integrated, flexible and safe system
(Presentation). In Launch and recovery forum, London.

Fossen, T., & Perez, T. (2004). Marine Systems Simulator (MSS). URL https://github.
com/cybergalactic/MSS.

Goldstein, H., Poole, C., & Safko, J. (2014). Classical mechanics (3rd ed.). Harlow:
Pearson.

Hanyok, L. W., & Smith, T. C. (2010). Launch and recovery system literature review,
Technical Report, Naval Surface Warfare Center Carderock Division Bethesda MD.

Hong, K.-S., & Shah, U. H. (2019). Dynamics and control of industrial cranes. Springer.
Hua, M.-D., Hamel, T., Morin, P., & Samson, C. (2009). Control of a class of thrust-

propelled underactuated vehicles and application to a VTOL drone. In 2009 IEEE
International Conference on Robotics and Automation (pp. 972–978).

ubbell, J. T., Koch, B., & McCormick, D. (1992). Modern crane control enhancements.
In Ports’ 92 (pp. 757–767). ASCE.

dres, M., Youssef, K., Mook, D., & Nayfeh, A. (2003). A nonlinear 8-DOF coupled crane-
ship dynamic model. In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference (p. 1855).

in, Y., Wan, B., Liu, D., Peng, Y., & Guo, Y. (2016). Dynamic analysis of launch &
recovery system of seafloor drill under irregular waves. Ocean Engineering, 117,
321–331.

han, R. F. A., Rsetam, K., Cao, Z., & Man, Z. (2022). Singular perturbation-based
adaptive integral sliding mode control for flexible joint robots. IEEE Transactions
on Industrial Electronics, 70(10), 10516–10525.

im, G. H., & Hong, K. S. (2019). Adaptive sliding-mode control of an offshore container
crane with unknown disturbances. IEEE/ASME Transactions on Mechatronics, 24(6),
2850–2861.

imiaghalam, B., Homaifar, A., & Bikdash, M. (1998). Using genetic algorithm for
optimal crane control. In NASA URC conference.

Küchler, S., Mahl, T., Neupert, J., Schneider, K., & Sawodny, O. (2011). Active
control for an offshore crane using prediction of the vessels motion. IEEE/ASME
Transactions on Mechatronics, 16(2), 297–309.

Levant, A. (2005). Quasi-continuous high-order sliding-mode controllers. IEEE
Transactions on Automatic Control, 50(11), 1812–181.

Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB.
In 2004 IEEE International Conference on Robotics and Automation (IEEE cat. no.
04CH37508) (pp. 284–289).

Maalouf, D., Moog, C. H., Aoustin, Y., & Li, S. (2015). Classification of two-degree-
of-freedom underactuated mechanical systems. IET Control Theory & Applications,
9(10), 1501–1510.

anson, G. (1982). Time-optimal control of an overhead crane model. Optimal Control
Applications & Methods, 3(2), 115–120.

ATLAB (2021). Symbolic maths toolbox.
ayfeh, A. H., Ragab, S. A., & Al-Maaitah, A. A. (2002). Effect of bulges on the stability

of boundary layers. Physics of Fluids, 31(4), 796.
go, Q. H., Nguyen, N. P., Nguyen, C. N., Tran, T. H., & Ha, Q. P. (2017). Fuzzy sliding

mode control of an offshore container crane. Ocean Engineering, 140, 125–134.
lfati-Saber, R. (2001). Nonlinear control of underactuated mechanical systems with
application to robotics and aerospace vehicles (Ph.D. thesis), Massachusetts Institute
of Technology.

alfinger NPDS series fast rescue boat davits. (2023). https://www.palfingermarine.
com/en/boats-and-davits/davits/fast-rescue-boat-davits. (Accessed on 06 Decem-
ber 2023).

arker, G. G., Petterson, B., Dohrmann, C., & Robinett, R. D. (1995). Command shaping
for residual vibration free crane maneuvers. In Proceedings of 1995 American Control
Conference, vol. 1 (pp. 934–938). IEEE.

awlowski, M. (2009). Sea Spectra Revisited. In 10th International Conference on Stability
of Ships and Ocean Vehicles. St Petersberg, Russia.

erez, T. (2006). Ship Motion Control: Course Keeping and Roll Stabilisation Using Rudder
and Fins. Springer.

Qian, Y., Hu, D., Chen, Y., Fang, Y., & Hu, Y. (2021). Adaptive neural network-
based tracking control of underactuated offshore ship-to-ship crane systems subject
to unknown wave motions disturbances. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 52(6), 3626–3637.

Roza, A., & Maggiore, M. (2014). A class of position controllers for underactuated VTOL
vehicles. IEEE Transactions on Automatic Control, 59(9), 2580–2585.

Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding mode control and
observation, Birkhäuser, New York, NY.

Stilwell, D. J., & Rugh, W. J. (1999). Interpolation of observer state feedback controllers
for gain scheduling. IEEE Transactions on Automatic Control, 44(6), 1225–1229.

un, N., Fang, Y., Chen, H., Fu, Y., & Lu, B. (2018). Nonlinear stabilizing control for
ship-mounted cranes with ship roll and heave movements: Design, analysis, and
experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(10),
1781–1793.

akeuchi, S., Fujikawa, H., & Yamada, S. (1988). The application of fuzzy theory for a
rotary crane control. In Proceedings. 14 Annual Conference of the Industrial Electronics
Society: vol. 2, (pp. 415–420).

http://refhub.elsevier.com/S0967-0661(24)00026-1/sb1
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb1
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb1
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb2
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb2
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb2
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb3
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb3
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb3
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb3
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb3
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb4
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb4
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb4
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb5
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb5
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb5
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb5
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb5
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb6
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb6
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb6
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb7
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb7
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb7
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb8
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb8
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb8
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb8
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb8
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb9
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb9
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb9
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb9
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb9
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb10
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb10
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb10
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb10
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb10
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb11
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb11
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb11
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb12
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb12
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb12
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb13
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb13
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb13
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb14
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb14
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb14
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb14
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb14
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb15
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb15
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb15
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb16
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb16
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb16
https://github.com/cybergalactic/MSS
https://github.com/cybergalactic/MSS
https://github.com/cybergalactic/MSS
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb18
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb18
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb18
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb19
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb19
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb19
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb20
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb21
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb21
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb21
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb21
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb21
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb22
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb22
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb22
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb23
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb23
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb23
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb23
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb23
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb24
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb24
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb24
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb24
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb24
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb25
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb25
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb25
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb25
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb25
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb26
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb26
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb26
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb26
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb26
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb27
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb27
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb27
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb28
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb28
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb28
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb28
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb28
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb29
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb29
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb29
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb30
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb30
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb30
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb30
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb30
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb31
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb31
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb31
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb31
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb31
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb32
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb32
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb32
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb33
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb34
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb34
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb34
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb35
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb35
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb35
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb36
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb36
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb36
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb36
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb36
https://www.palfingermarine.com/en/boats-and-davits/davits/fast-rescue-boat-davits
https://www.palfingermarine.com/en/boats-and-davits/davits/fast-rescue-boat-davits
https://www.palfingermarine.com/en/boats-and-davits/davits/fast-rescue-boat-davits
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb38
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb38
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb38
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb38
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb38
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb39
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb39
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb39
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb40
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb40
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb40
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb41
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb41
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb41
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb41
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb41
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb41
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb41
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb42
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb42
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb42
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb43
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb43
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb43
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb44
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb44
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb44
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb45
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb45
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb45
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb45
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb45
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb45
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb45
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb46
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb46
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb46
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb46
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb46


Control Engineering Practice 146 (2024) 105866V. Rout et al.

W

Tuan, L. A., Lee, S.-G., Nho, L. C., & Cuong, H. M. (2015). Robust controls for ship-
mounted container cranes with viscoelastic foundation and flexible hoisting cable.
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, 229(7), 662–674.

Utkin, V. I. (1992). sliding modes in control and optimization.
Wen, B., Homaifar, A., Bikdash, M., & Kimiaghalam, B. (1999). Modeling and optimal

control design of shipboard crane. In Proceedings of the American Control Conference:
vol. 1, (no. June), (pp. 593–597).

u, X., Xu, K., Lei, M., & He, X. (2020). Disturbance-compensation-based continuous
sliding mode control for overhead cranes with disturbances. IEEE Transactions on
Automation Science and Engineering, 17(4), 2182–2189.
19
Zhang, R., & Chen, H. (2022). An adaptive tracking control method for offshore cranes
with unknown gravity parameters. Ocean Engineering, 260, Article 111809.

Zhang, M., Zhang, Y., & Cheng, X. (2019). Model-free adaptive integral sliding mode
control for 4-DOF tower crane systems. In 2019 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (pp. 708–713).

Zhang, H., Zhao, C., & Ding, J. (2022). Online reinforcement learning with passivity-
based stabilizing term for real time overhead crane control without knowledge of
the system model. Control Engineering Practice, 127, Article 105302.

Zhang, Y., Zhao, H., Li, G., Edwards, C., & Belmont, M. (2023). Robust nonlinear model
predictive control of an autonomous launch and recovery system. IEEE Transactions
on Control Systems Technology, 31, 2082–2092.

http://refhub.elsevier.com/S0967-0661(24)00026-1/sb47
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb47
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb47
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb47
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb47
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb47
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb47
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb48
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb49
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb49
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb49
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb49
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb49
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb50
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb50
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb50
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb50
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb50
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb51
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb51
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb51
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb52
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb52
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb52
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb52
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb52
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb53
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb53
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb53
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb53
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb53
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb54
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb54
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb54
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb54
http://refhub.elsevier.com/S0967-0661(24)00026-1/sb54

	Control of the launch and recovery of small boats to a mothership in high sea states using sliding mode methods
	Introduction
	Ship Motion Modelling
	2D Adjustable Boom Model
	Control Design
	Length Control
	Collision Distance Control
	Design Process

	Simulation Results
	Crane and Ship Modelling
	Control Design
	Results
	Ship Motions
	Crane motion for fixed boom cases
	Crane motion for adjustable boom cases with different initial conditions
	Minimum separation distance

	Collision Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix
	References


