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Abstract. Random label noises (or observational noises) widely exist in practical

machine learning settings. While previous studies primarily focus on the affects

of label noises to the performance of learning, our work intends to investigate

the implicit regularization effects of the label noises, under mini-batch sampling

settings of stochastic gradient descent (SGD), with assumptions that label noises are

unbiased. Specifically, we analyze the learning dynamics of SGD over the quadratic

loss with unbiased label noises, where we model the dynamics of SGD as a stochastic

differentiable equation (SDE) with two diffusion terms (namely a Doubly Stochastic

Model). While the first diffusion term is caused by mini-batch sampling over the (label-

noiseless) loss gradients, as in many other works on SGD [1, 2], our model investigates

the second noise term of SGD dynamics, which is caused by mini-batch sampling

over the label noises, as an implicit regularizer. Our theoretical analysis finds such

implicit regularizer would favor some convergence points that could stabilize model

outputs against perturbation of parameters (namely inference stability). Though

similar phenomenon have been investigated by Blanc et al. [3], our work doesn’t assume

SGD as an Ornstein-Uhlenbeck like process and achieve a more generalizable result

with convergence of approximation proved.

To validate our analysis, we design two sets of empirical studies to analyze the

implicit regularizer of SGD with unbiased random label noises for deep neural networks

training and linear regression. Our first experiment studies the noisy self-distillation

tricks for deep learning, where student networks are trained using the outputs from

well-trained teachers with additive unbiased random label noises. Our experiment

shows that the implicit regularizer caused by the label noises tend to select models

with improved inference stability. We also carry out experiments on SGD-based linear

regression with unbiased label noises, where we plot the trajectories of parameters

learned in every step and visualize the effects of implicit regularization. The results

backup our theoretical findings.
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Doubly Stochastic Models 2
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1. Introduction

Stochastic Gradient Descent (SGD) has been widely used as an effective way to train

deep neural networks with large datasets [4]. While the mini-batch sampling strategy

was firstly proposed to lower the cost of computation per iteration, it has been considered

to incorporate an implicit regularizer preventing the learning process from converging

to the local minima with poor generalization performance [5, 1, 6, 7, 8]. To interpret

such implicit regularization, one can model SGD as gradient descent (GD) with gradient

noises caused by mini-batch sampling [9]. Studies have demonstrated the potentials of

such implicit regularization or gradient noises to improve the generalization performance

of learning from both theoretical [10, 11, 12, 13] and empirical aspects [1, 7, 8]. In

summary, gradient noises keep SGD away from converging to the sharp local minima

that generalizes poorly [1, 12, 13] and would select a flat minima [14] as the outcome of

learning.

In this work, we aim at investigating the influence of random label noises to the

implicit regularization under mini-batch sampling of SGD. To simplify our research, we

assume the training dataset as a set of vectors D = {x1, x2, x3, . . . , xN}.The label ỹi for
every vector xi ∈ D is the noisy response of the true neural network f ∗(x) such that

ỹi = yi + εi, yi = f ∗(xi), and E[εi] = 0, var[εi] = σ2 , (1)

where the label noise εi is assumed to be an independent zero-mean random

variable. In our work, the random label noises can be either (1) drawn from probability

distributions before training steps (but re-sampled by mini-batch sampling of SGD) or

(2) realized by the random variables per training iteration [15]. Thus learning is to

estimate θ̂ in f(x, θ̂) for approximating f ∗(x), such that

θ̂ ← argmin
∀θ∈Rd

{
1

N

N∑
i=1

L̃i(θ) :=
1

2N

N∑
i=1

(f(xi, θ)− ỹi)
2

}
. (2)

Note that we denote L∗
i (θ) =

1
2
(f(xi, θ)− yi)

2 as the loss based on a noiseless sample in

this work. Inspired by [14, 1], our work studies how unbiased label noises εi (1 ≤ i ≤ N)
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Doubly Stochastic Models 3

Symbols Definitions and Equations

xi, and yi = f ∗(xi) the ith data point and true label (1)

ỹi, and εi the ith noisy label and the label noise. (1)

f(x, θ) the output of neural network with parameter θ and input x. (2)

θ̂ the estimator of parameters of a neural network. (2)

L∗
i Li(θ) =

1
2
(f(xi, θ)− yi)

2 the loss based on a noiseless sample. (2)

L̃i L̃i(θ) =
1
2
(f(xi, θ)− ỹi)

2 the loss based on a noisy sample. (2)

SGD without assumptions on label noises

Bk the mini-batch of samples drawn by the kth step of SGD (3)

b = |Bk| the constant batch size of Bk (3)

θk the kth step of SGD . (3)

Vk SGD noise caused by mini-batch sampling of loss gradients. (5)

η the learning rate of SGD. (3)

Θ(t) the continuous-time dynamics of SGD. (6)

zk the random vector of standard Gaussian. (9)

W (t) the Brownian motion over time. (6)

θ̄k the kth step of discrete-time approximation to Θ(t). (7)

SGD with Unbiased Label Noises (ULN)

θULN
k the kth step of SGD with unbiased label noises . (8)

ξ∗k SGD noises thru. mini-batch sampling of TRUE loss gradients. (8)

ξULN
k SGD noise thru. mini-batch sampling of unbiased label noises. (8)

ΣSGD
N the covariance matrix of the TRUE loss gradients. (15),(16),(17)

ΣULN
N the covariance matrix based on unbiased label noises. (15),(16),(17)

ΘULN(t) the continuous-time doubly stochastic model. (16)

θ̄ULN
k the kth step of discrete-time doubly stochastic model. (17)

W1(t), and W2(t) two independent Brownian motions over time. (16)

zk, and z′k two independent random vectors of standard Gaussian. (9),(17).

ΘLNL(t) the continuous-time dynamics under Label-Noiseless settings. (20)

Table 1: Key Symbols and Definitions

would affect the “selection” of θ̂ from possible solutions, in the viewpoint of learning

dynamics [16] of SGD under mini-batch sampling [17, 18, 12]. For symbols used in this

paper, please refer to Table 1.

1.1. Backgrounds: SGD Dynamics and Implicit Regularization

To analyze the SGD algorithm solving the problem in Eq (2), we follow settings in [17]

and consider SGD as an algorithm that, in the kth iteration with the estimate θk, it

randomly picks up a b-length subset of samples from the training dataset i.e., Bk ⊂ D,
and estimates the mini-batch stochastic gradient 1

b

∑
∀xi∈Bk

∇L̃i(θk), then updates the
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Doubly Stochastic Models 4

estimate for θk+1 based on θk, as follow

θk+1 ←

(
θk −

η

|Bk|
∑

∀xi∈Bk

∇L̃i(θk)

)
, (3)

where η refers to the step-size of SGD. Furthermore, we can derive the mini-batch

sampled loss gradients into the combination of the full batch loss gradient and the

noise, such that

η

|Bk|
∑

∀xi∈Bk

∇L̃i(θk)

=
η

N

∑
∀xi∈D

∇L̃i(θk)−

(
η

N

∑
∀xi∈D

∇L̃i(θk)−
η

|Bk|
∑

∀xi∈Bk

∇L̃i(θk)

)
=

η

N

∑
∀xi∈D

∇L̃i(θk)−
√
ηVk(θk) ,

(4)

where η refers to the step-size of SGD, and Vk(θk) refers to a stochastic gradient noise

term caused by mini-batch sampling. The noise would converge to zero with increasing

batch size, as follow

Vk(θk) =
√
η

(
1

N

∑
∀xi∈D

∇L̃i(θk)−
1

|Bk|
∑

∀xi∈Bk

∇L̃i(θk)

)
→ 0d, as B → N . (5)

With dt = η → 0 and the constant batch size b = |Bk|, SGD algorithm would diffuse

to a continuous-time dynamics Θ(t) with a stochastic differential equation (SDE), with

weak convergence [17, 19], as follow,

dΘ = − 1

N

N∑
i=1

∇L̃i(Θ)dt+
(η
b
Σ̃SGD

N (Θ)
) 1

2
dW (t) (6)

where W (t) is a standard Brownian motion in Rd, and let us define ΣSGD
N (Θ) as the

sample covariance matrix of loss gradients ∇Li(Θ) for 1 ≤ i ≤ N . Please note

that, for detailed derivations to obtain above continuous-time approximation and the

assumptions, please refer to [17]. We follow [17] and do not make low-rank assumptions

on Σ̃SGD
N (Θ). Through Euler discretization [17, 11], one can approximate SGD as θ̄k

such that
θ̄k+1 ← θ̄k −

η

N

∑
∀xi∈D

∇L̃i(θ̄k) +
√
ηξk(θ̄k), and

ξk(θ̄k) =
(η
b
Σ̃SGD

N (θ̄k)
) 1

2
zk, zk ∼ N (0, Id) .

(7)

The implicit regularizer of SGD is ξk(θ̄k) =
(

η
b
Σ̃SGD

N (θ̄k)
) 1

2
zk which is data-dependent

and controlled by the learning rate η and batch size B [20]. [10, 11, 12] discussed SGD for

varational inference and enabled novel applications to samplers [21, 22]. To understand
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Doubly Stochastic Models 5

the effect to generalization performance, [1, 20] studied the escaping behavior from the

sharp local minima [8] and convergence to the flat ones. [23] discover the way that SGD

could find a flat local minimum from information-theoretical perspectives and propose

a novel regularizer to improve the performance. Finally, [24] studied regularization

effects to linear DNNs and our previous work [18] proposed new multiplicative noises to

interpret SGD and obtain stronger theoretical properties.

1.2. Our Contributions

In this work, we assume the unbiased random label noises εi (1 ≤ i ≤ N) and the

mini-batch sampler of SGD are independent. When the random label noises have been

drawn from probability distributions prior to the training procedure, SGD re-samples

the label noises and generates a new type of data-dependent noises, in addition to the

stochastic gradient noises of label-noiseless losses, through re-sampling label-noisy data

and averaging label-noisy loss gradients of random mini-batchs [25, 26].

Our analysis shows that under mild conditions, with gradients of label-noisy losses,

SGD might incorporate an additional data-dependent noise term, complementing with

the stochastic gradient noises [17, 18] of label-noiseless losses, through re-sampling the

samples with label noises [26] or dynamically adding noises to labels over iterations [15].

We consider such noises as an implicit regularization caused by unbiased label noises,

and interpret the effects of such noises as a solution selector of learning procedure. More

specifically, this work has made unique contributions as follow.

1.2.1. Doubly Stochastic Models We reviewed the preliminaries [17, 27, 12, 18] and

extended the analytical framework in [17] to interpret the effects of unbiased label

noises as an additional implicit regularizer on top of the continuous-time dynamics of

SGD. Through discretizing the continuous-time dynamics of label-noisy SGD, we write

discrete-time approximation to the learning dynamics, denoted as θULN
k for k = 1, 2, . . . ,

as

θULN
k+1 ← θULN

k − η

N

N∑
i=1

∇L∗
i (θ

ULN
k ) +

√
ηξ∗k(θ

ULN
k ) +

√
ηξULN

k (θULN
k ), (8)

where L∗
i (θ) = (f(xi, θ)− f ∗(xi))

2 refers to the label-noiseless loss function with sample

xi and the true (noiseless) label yi, the noise term ξ∗k(θ) refers to the stochastic gradient

noise [17] of label-noiseless loss function L∗
i (θ), then we can obtain the new implicit

regularizer caused by the unbiased label noises (ULN) for ∀θ ∈ Rd, which can be

approximated as follow

ξULN
k (θ) ≈

(
ησ2

bN

N∑
i=1

∇θf(xi, θ)∇θf(xi, θ)
⊤

) 1
2

zk, and zk ∼ N (0d, Id) , (9)

where zk refers to a random noise vector drawn from the standard Gaussian distribution,

θk refers to the parameters of network in the kth iteration, (·)1/2 refers to the Chelosky
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Doubly Stochastic Models 6

decomposition of the matrix, ∇θf(xi, θ) = ∂f(xi, θ)/∂θ refers to the gradient of the

neural network output for sample xi over the parameter θk, and B and η are defined

as the batch size and the learning rate of SGD respectively. Obviously, the strength of

such implicit regularizer is controlled by σ2, B and η.

Section 3 formulates the algorithm of SGD with unbiased random label noises as a

stochastic dynamics based on two noise terms (Proposition 1), derives the Continuous-

time and Discrete-time Doubly Stochastic Models from SGD algorithms (Definitions 1

and 2), and provides approximation error bounds (Proposition 2). Proofs of two

propositions are provided in Appendix A and Appendix B

1.2.2. Inference Stabilizer as Implicit Regularizer The regularization effects of unbiased

random label noises should be

Ezk

∥∥ξULN
k (θk)

∥∥2
2
≈ ησ2

bN

N∑
i=1

∥∇θf(xi, θk)∥22 =
ησ2

bN

N∑
i=1

∥∥∥∥ ∂

∂θ
f(xi, θk)

∥∥∥∥2
2

, (10)

where ∇θf(x, θ) refers to the gradient of f over θ and the effects are controlled by the

batch size B and the variance of label noises σ2. Similar results have been obtained by

assuming the deep learning algorithms have been driven by an Ornstein-Uhlenbeck like

process [3], while our work does not rely on such assumption but is all based on our

proposed Doubly Stochastic Models.

Section 4 analyzes the implicit regularization effects of unbiased random label noises

for SGD, where we conclude the implicit regularizer as a controller of the neural network

gradient norm 1
N

∑N
i=1 ∥∇θf(xi, θ)∥22 in the dynamics (Proposition 3). We then offer

Remarks 2, 3 and 4 to characterize the behaviors of SGD with unbiased label noises:

(1) SGD would escape the local minimums with higher gradient norms, due to the larger

perturbation driven by the implicit regularizer, (2) the strength of implicit regularization

effects is controlled by the learning rate η and batch size b, and (3) it is possible to tune

the performance of SGD through adding and controlling the unbiased label noises, as

low neural network gradient norms usually correspond to flat loss landscapes.

We validate our findings through of a series of experiments. In Section 5,

we apply self-distillation with unbiased label noises [28, 29] for training deep neural

networks. Through the teacher-student learning paradigm, the well-trained model

beneficially escapes local minima by learning from its own noisy outputs. In Section 6, we

visualize implicit regularization effects using SGD-based linear regression with unbiased

label noises. We observe a Gaussian-like distribution, centered at the solution for

linear regression, with its (co-)variance determined by the covariance of data samples,

the learning rate, and the batch size. Collectively, the results of these experiments

substantiate our theory.

1.2.3. Significance of Our Contributions This work establishes a novel framework

that provides an in-depth understanding of the influence of unbiased label noises in

Stochastic Gradient Descent (SGD). The study highlights the implicit regularization
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Doubly Stochastic Models 7

effects within the learning process and demonstrates how these effects can be quantified

through doubly stochastic models. By assuming the independence of two noise sources

and using globally bounded assumptions, the paper brings new theoretical insights on

SGD dynamics, which are reinforced by empirical evidence obtained from Deep Neural

Networks (DNN) and linear regression models. Moreover, it provides a comprehensive

empirical studies on the impacts of additive noise during the self-distillation process

and SGD-based linear regression. Therefore, this study significantly contributes to the

learning space by elucidating the underlying mechanisms of SGD and broadening our

understanding of implicit regularization effects due to unbiased label noises, especially

in the context of complex machine learning algorithms.

2. Related Work

SGD Implicit Regularization for Ordinary Least Square (OLS) The most recent and

relevant work in this area is [27, 30], where the same group of authors studied the

implicit regularization of gradient descent and stochastic gradient descent for OLS. They

investigated an implicit regularizer of ℓ2-norm alike on the parameter, which regularizes

OLS as a Ridge estimator with decaying penalty. Prior to these efforts, F. Bach and his

group have studied the convergence of gradient-based solutions for linear regression with

OLS and regularized estimators under both noisy and noiseless settings in [31, 32, 33].

Langevin Dynamics and Gradient Noises With similar agendas, [10, 11, 12] studied

limiting behaviors of SGD (or steady-state of dynamics) from the perspectives of

Bayesian/variational inference. They also promoted novel applications to stochastic

gradient MCMC samplers [21, 22]. Through connecting ΣSGD
N (θ) to the loss Hessian

1/N∇2Li(θ) in near-convergence regions, [1] studied the escaping behavior from the

sharp local minima, while [8] discussed this issue in large-batch training settings.

Furthermore, [20] discussed how learning rates and batch sizes would affect the

generalization performance and flatness of optimization results. Finally, [24] studied the

implicit regularization on linear neural networks and [18] proposed a new multiplicative

noise model to interpret the gradient noises with stronger theoretical properties.

Self-Distillation and Noisy Students Self-distillation [28, 34, 35, 29] has been examined

as an effective way to further improve the generalization performance of well-trained

models. Such strategies enable knowledge distillation using the well-trained ones as

teacher models and optionally adding noises (e.g., dropout, stochastic depth, and label

smoothing or potentially the label noises) onto training procedure of student models [15].

Deep Learning with Label Noises The influence of label noises on deep learning has

been explored in several studies, including [3, 36, 37]. Some of these findings align with

our work; for example, [3, 36] achieved similar results, through different approaches. [3]

also viewed SGD as a dynamical system and made similar observations by establishing
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Doubly Stochastic Models 8

stronger assumptions (please refer to the Discussion on the Relevant Work). Bar et

al. [36] applied a spectral analysis to the learned mapping of networks and provided

theoretical justification for the observed robustness to label noise. They associated

typical smoothness regularization to the suppression of high-frequency components

potentially caused by label noises. On a different note, a survey by Song et al. [37]

reviews deep learning algorithms for label noise. The studies featured in this survey

predominantly view label noises as a negative influencer of Deep Neural Network (DNN)

performance, proposing robust training algorithms as a countermeasure. Our work,

however, is more concerned with the potential advantages conferred by unbiased label

noises. This distinct aspect sets our work apart from other works.

Discussion on the Relevant Work Compared to above works, we still make

contributions in above three categories. First of all, this work characterizes the implicit

regularization effects of label noises to SGD dynamics. Compared to [27, 30] working on

linear regression, our proposed doubly stochastic model could be used to explained the

learning dynamics of SGD with label noises for nonlinear neural networks. Even from

linear regression perspectives [27, 30, 33], we precisely measured the gaps between SGD

dynamics with and without label noises and provide an new example with numerical

simulation to visualize the implicit regularization effects.

Compared to [38, 29], our analysis emphasized the role of the implicit regularizer

caused by label noises for model selection, where models with high inferential stability

would be selected. [39] is the most relevant work to us, where authors studied

the early stopping of gradient descent under label noises via neural tangent kernel

(NTK) [40] approximation. Our work made the analyze for SGD without assumptions

for approximation such as NTK.

In addition to NTK assumption, [3] assumes the deep learning algorithms are driven

by an Ornstein-Uhlenbeck (OU) like process and obtains similar results as the inference

stabilizer (the third result of our research), while our work makes contribution through

proposing Doubly Stochastic Models and reach the conclusion in a different way. We

also provide yet the first empirical results and evidences, based on commonly-used DNN

architectures and benchmark datasets, to visualize the effects of implicit regularizers

caused by the unbiased label noises in real-world settings.

Please note that an earlier manuscript [41] from us has been put on OpenReview

with discussion, where external reviewers demonstrated their concerns–part of results

has been investigated in [3] and we didn’t provide the results in a strong form (e.g.,

theorems or proofs). Hereby, this work shifts the main contributions from implicit

regularization of label noises to the doubly stochastic models with approximation error

bounds and proofs. The implicit regularization effects could be estimated via doubly

stochastic models directly without the assumption of OU process. To best of our

knowledge, this work is the first to understand the effects of unbiased label noises to

SGD dynamics, by addressing technical issues including implicit regularization, OLS,

self-distillation, model selection, and the stability inference results.
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Doubly Stochastic Models 9

3. Double Stochastic Models for SGD with Unbiased Random Label Noises

In this section, we present SGD with unbiased random label noises, derive the

Continuous-time/Discrete-time Doubly Stochastic Models, and provide convergence of

approximation between models.

3.1. Modeling Unbiased Label Noises in SGD

In our research, SGD with Unbiased Random Label Noises refers to an iterative

algorithm that updates the estimate incrementally from initialization θULN
0 . With mini-

batch sampling and unbiased random label noises, in the kth iteration, SGD algorithm

updates the estimate θULN
k using the stochastic gradient g̃k(θ

ULN
k ) through a gradient

descent rule , such that

θULN
k+1 ← θULN

k − ηg̃k(θ
ULN
k ) , (11)

Specifically, in the kth iteration, SGD randomly picks up a batch of sample Bk ⊆ D to

estimate the stochastic gradient, as follow

ηg̃k(θ
ULN
k ) =

η

|Bk|
∑
xi∈Bk

∇L̃i(θ
ULN
k )

=
η

|Bk|
∑
xi∈Bk

((
f(xi, θ

ULN
k )− yi

)
− εi

)
· ∇θf(xi, θ

ULN
k )

=
η

N

N∑
i=1

∇L∗
i (θ

ULN
k ) +

√
ηξ∗k(θ

ULN
k ) +

√
ηξULN

k (θULN
k ),

(12)

where ∇L∗
i (θ) for ∀θ ∈ Rd refers to the loss gradient based on the label-noiseless sample

(xi, yi) and yi = f ∗(xi), ξ∗k(θ) refers to stochastic gradient noises [17] through mini-batch

sampling over the gradients of label-noiseless samples, and ξULN
k (θ) is an additional noise

term caused by the mini-batch sampling and the Unbiased Random Label Noises, such

that

∇L∗
i (θ) =

∂

∂θ

(f(xi, θ)− f ∗(xi))
2

2
= (f(xi, θ)− f ∗(xi)) · ∇f(xi, θ) ,

ξ∗k(θ) =

√
η

|Bk|
∑

xj∈Bk

(
∇L∗

j(θ)−
1

N

N∑
i=1

∇L∗
i (θ)

)
,

ξULN
k (θ) = −

√
η

|Bk|
∑

xj∈Bk

εj · ∇θf(xj, θ) .

(13)

Proposition 1 (Mean and Variance of the Two Noise Terms). The mean and variance

of the noise terms ξ∗k(θ) and ξULN
k (θ) should be the vector-value functions as follow

EBk
[ξ∗k(θ)] = 0d, and VarBk

[ξ∗k(θ)] =
η

|Bk|
ΣSGD

N (θ)

EBk,εi [ξ
ULN
k (θ)] = 0d, and VarBkεi [ξ

ULN
k (θ)] =

η

|Bk|
ΣULN

N (θ) .
(14)
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Doubly Stochastic Models 10

The two matrix-value functions ΣSGD
N (θ) and ΣULN

N (θ) over θ ∈ Rd characterize the

variance of noise vectors. When we assume the label noises and mini-batch sampling

are independent, there has

ΣSGD
N (θ) =

1

N

N∑
j=1

(
∇L∗

j(θ)−
1

N

N∑
i=1

L∗
i (θ)

)(
∇L∗

j(θ)−
1

N

N∑
i=1

L∗
i (θ)

)⊤

ΣULN
N (θ) =

σ2

N

N∑
j=1

∇θf(xj, θ)∇θf(xj, θ)
⊤ as var[εj] = σ2 .

(15)

The two noise terms ξ∗k(θ) and ξULN
k (θ) that are controlled by the learning rate and the

batch size would largely influence the SGD dynamics. Please refer to Appendix A for

proofs.

With the mean and variance of two noise terms, we can easily formulate the learning

dynamics of SGD with unbiased label noises as follows.

3.2. Doubly Stochastic Models and Approximation

We consider the SGD algorithm with unbiased random label noises in the form

of gradient descent with additive data-dependent noise, such that θk+1 = θk −
η
N

∑N
i=1∇L̃i(θk) +

√
ηṼk(θk). To simplify the model and analysis involved, we assume

A1. The two noise terms ξ∗k(θk) and ξULN
k (θk) are independent.

By the making above assumption, the complexities of considering their potential

interaction or correlation can be bypassed. Furthermore, our later experiments (in

Sections 5 and 6) would show the robustness and correctness of our model and analysis

based on this assumption. In this way, when η → 0, we can follow the analysis in [19]

to derive the diffusion process of SGD with unbiased random label noises, denoted

as ΘULN(t) over continuous-time t ≥ 0. We define the Doubly Stochastic Models that

characterizes the continuous-time dynamics of SGD with unbiased label noises as follows.

Definition 1 (Continuous-Time Doubly Stochastic Models). Given an SGD algorithm

θULN
k defined and specified in Section 3.1, with η = dt, we assume Bk = B for

k = 1, 2, 3 . . . and formulate its continuous-time dynamics as

dΘULN = − 1

N

N∑
i=1

∇L∗
i (Θ

ULN)dt+
(η
b
ΣSGD

N (ΘULN)
) 1

2
dW1(t)

+
(η
b
ΣULN

N (ΘULN)
) 1

2
dW2(t) ,

(16)

where W1(t) and W2(t) refer to two independent Brownian motions over time, dt = η

and ΘULN(0) = θULN
0 .

Obviously, we can obtain the discrete-time approximation [17, 11] to the SGD

dynamics as follows.
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Doubly Stochastic Models 11

Definition 2 (Discrete-Time Doubly Stochastic Models). We denote θ̄ULN
k for k =

1, 2, . . . as the discrete-time approximation to the Doubly Stochastic Models for SGD

with Unbiased Label Noises, which in the kth iteration behaves as

θ̄ULN
k+1 ← θ̄ULN

k − η

N

N∑
i=1

∇L∗
i (θ̄

ULN
k ) +

√
η
(η
b
ΣSGD

N (θ̄ULN
k )

) 1
2
zk

+
√
η
(η
b
ΣULN

N (θ̄ULN
k )

) 1
2
z′k,

(17)

where zk and z′k are two independent d-dimensional random vectors drawn from a

standard d-dimensional Gaussian distribution N (0d, Id) per iteration independently, and

θ̄ULN
0 = ΘULN(0).

The convergence between θ̄ULN
k and ΘULN(t) is tight when t = kη and the

convergence bound is as follow.

Proposition 2 (Convergence of Approximation). Let T ≥ 0. Let ΣSGD
N (θ) and ΣULN

N (θ)

be the two diffusion matrices defined in Eq. 15. Assume that

A2. There exists some M > 0 such that max
i=1,2,...,N

{(∥∇L∗
i (θ)∥2)} ≤ M and

max
i=1,2,...,N

{(∥∇θf(xi; θ)∥2)} ≤M ;

A3. There exists some L > 0 such that ∇Li(θ) and ∇θf(x, θ) for ∀x ∈ D are Lipschitz

continuous with bounded Lipschitz constant L > 0 uniformly for all i = 1, 2, ..., N .

The continuous-time dynamics of SGD with unbiased label noises (ULN), denoted as

ΘULN(t) in Eq. (16), is with order 1 strong approximation to the discrete time SGD

dynamics θ̄ULN
k in Eq. (17). I.e., there exist a constant C independent on η but depending

on σ2, L and M such that

E∥ΘULN(kη)− θ̄ULN
k ∥2 ≤ Cη2, for all 0 ≤ k ≤ ⌊T/η⌋. (18)

Please refer to Appendix B for proofs.

Note that the boundedness and smoothness assumptions made in this proposition

have been also used in series of previous studies [17, 2, 42, 43, 44]. We believe the

assumptions are reasonable under the deep learning settings. For example, the Rectified

Linear Unit (ReLU) activation function [45], commonly used in DNNs, has a globally

bounded derivative, being either 0 or 1. The boundedness of DNN also depends on the

norms of weight matrices, while well-trained DNNs are often with norm-bounded weight

matrices [46, 47, 48, 49]. Techniques like weight normalization or layer normalization

can further maintain this boundedness.

Remark 1. With above strong convergence bound for approximation, we can consider

θ̄ULN
k – the solution of Eq. (17) – as a tight approximation to the SGD algorithm with

unbiased label noises based on the same initialization. A tight approximation to the noise

term ξULN
k (θ) (defined in Eq. (27)) could be as follow

ξULN
k (θ) ≈

(η
b
ΣULN

N (θ)
) 1

2
z′k, and z′k ∼ N (0d, Id) . (19)
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Doubly Stochastic Models 12

We use such discrete-time iterations and approximations to the noise term ξULN
k (θ) to

interpret the implicit regularization behaviors of the SGD with unbiased label noises

algorithm θULN
k accordingly.

4. Implicit Regularization Effects to Neural Networks

In this section, we use our model to interpret the regularization effects of SGD with

unbiased label noises for general neural networks, without assumptions on the structures

of neural networks.

4.1. Implicit Regularizer Influenced by Unbiased Random Label Noises

Compared the stochastic gradient with unbiased random label noises g̃k(θ) and the

stochastic gradient based on the label-noiseless losses, we find an additional noise term

ξULN
k (θ) as the implicit regularizer.

To interpret ξULN
k (θ), we first define the diffusion process of SGD based on Label-

NoiseLess losses i.e., L∗
i (θ) for 1 ≤ i ≤ N as

dΘLNL = − 1

N

N∑
i=1

∇L∗
i (Θ

LNL)dt+
(η
b
ΣSGD

N (ΘLNL)
) 1

2
W(t) . (20)

Through comparing ΘULN(t) with ΘLNL(t), the effects of ξULN
k (Θ) over contin-uous-time

form should be
√
η/B(ΣULN

N (Θ))1/2dW (t). Then, in discrete-time, we could get results

as follow.

Proposition 3 (The implicit regularizer ξULN
k (θ)). The implicit regularizer of SGD with

unbiased random label noises could be approximated as follow,

ξULN
k (θ) ≈

(
σ2η

bN

N∑
i=1

∇θf(xi, θ)∇θf(xi, θ)
⊤

) 1
2

zk, and zk ∼ N (0d, Id) . (21)

In this way, we can estimate the expected regularization effects of the implicit regularizer

∥ξULN
k (θ)∥2 as follow,

Ezk∥ξULN
k (θ)∥22 =

ησ2

bN

N∑
i=1

∥∇θf(xi, θ)∥22 . (22)

Please refer to Appendix C for proofs.

We thus conclude that the effects of implicit regularization caused by unbiased

random label noises for SGD is proportional to 1
N

∑N
i=1 ∥∇θf(xi, θ)∥22 the average

gradient norm of the neural network f(x, θ) over samples.
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Doubly Stochastic Models 13

4.2. Understanding the Unbiased Label Noises as an Inference Stabilizer

Here we extend the existing results on SGD [1, 50] to understand Proposition 3 and

obtain remarks as follows.

Remark 2 (Inference Stability). In the partial derivative form, the gradient norm could

be written as
1

N

N∑
i=1

∥∇θf(xi, θ)∥22 =
1

N

N∑
i=1

∥ ∂
∂θ

f(xi, θ)∥22 (23)

characterizes the variation of neural network output f(x, θ) based on samples xi

(for 1 ≤ i ≤ N) over the parameter interpolation around the point θ. Lower
1
N

∑N
i=1 ∥∇θf(xi, θ)∥22 leads to higher stability of neural network f(x, θ) outputs against

the (random) perturbations over parameters.

Remark 3 (Escape and Converge). When the noise ξULN
k (θ) is θ-dependent (section

4 would present a special case that ξULN
k (θ) is θ-independent with OLS), we follow [1]

and suggest that the implicit regularizer helps SGD escape from the point θ̃ with high

neural network gradient norm 1
N

∑N
i=1 ∥∇θf(xi, θ̃)∥22, as the scale of noise ξULN

k (θ̃) is

large. Reciprocally, we follow [50] and suggest that when the SGD with unbiased

random label noises converges, the algorithm would converge to a point θ∗ with small
1
N

∑N
i=1 ∥∇θf(xi, θ

∗)∥22. Similar results have been obtained in [3] when assuming the deep

learning algorithms are driven by an Ornstein–Uhlenbeck process.

Remark 4 (Performance Tuning). Considering ησ2/B as the coefficient balancing the

implicit regularizer and vanilla SGD, one can regularize/penalize the SGD learning

procedure with the fixed η and B more fiercely using a larger σ2. More specifically, we

could expect to obtain a regularized solution with lower 1
N

∑N
i=1 ∥∇θf(xi, θ)∥22 or higher

inference stability of neural networks, as regularization effects become stronger when σ2

increases.

5. Experiments on Self-Distillation with Unbiased Label Noises

The goal of this experiment is to understand Proposition 3 andRemarks. 3 & 4, i.e.,

examining (1) whether the unbiased label noises would lower the gradient norm of the

neural networks; (2) whether such unbiased label noises would improve the performance

of neural networks; and (3) whether one can carry out performance tuning through

controlling the variances of unbiased label noises, all in real-world deep learning settings.

5.1. Experiments Design

To evaluate SGD with unbiased label noises, we design a set of novel experiments based

on self-distillation with unbiased label noises. In addition to learn from noisy labels

directly, our experiment intends to train a (student) network from the noisy outputs of

a (teacher) network in a quadratic regression loss, where the student network has been
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Doubly Stochastic Models 14

initialized from weights of the teacher one and unbiased label noises are given to the

soft outputs of the teacher network randomly.

We aim to directly measure the gradient norm 1
N

∑N
i=1 ∥∇θf(xi, θ)∥22 of the neural

network after every epoch to testify the SGD implicit regularization effects of unbiased

label noises (i.e., Proposition 3). The performance comparisons among the teacher

network, the student network (trained with unbiased label noises), and the student

network (trained noiselessly) demonstrate the advantage of unbiased label noises in

SGD for regression tasks (i.e., Remarks. 3 & 4 ).

Particularly, we design a set of novel experiments based on self-distillation with

unbiased label noises and elaborate in which way the proposed SGD with unbiased

label noises fits the settings of self-distillation with unbiased label noises. Further, we

introduce the goal of our empirical experiments with a list of expected evidences, then

present the experiment settings for the empirical evaluation. Finally, we present the

experiment results with solid evidence to validate our proposals in this work.

5.2. Noisy Self-Distillation

Given a well-trained model, Self-Distillation algorithms [28, 35, 29, 34] intend to further

improve the performance of a model through learning from the “soft label” outputs (i.e.,

logits) of the model (as the teacher). Furthermore, some practices found that the self-

distillation could be further improved through incorporating certain randomness and

stochasticity in the training procedure, namely noisy self-distillation, so as to obtain

better generalization performance [34, 29]. In this work, we study two well-known

strategies for additive noises as follow.

(i) Gaussian Noises. Given a pre-trained model with L-dimensional logit output, for

every iteration of self-distillation, this simple first draws random vectors from a L-
dimensional Gaussian distribution N (0L, σ

2IL), then adds the vectors to the logit

outputs of the model. It makes the student model learn from the noisy outputs.

Note that in our analysis, we assume the output of the model is single dimension

while, in self-distillation, the logit labels are with multiple dimensions. Thus, the

diagonal matrix σ2IL now refers to the complete form of the variances and σ2

controls the scale of variances of noises.

(ii) Symmetric Noises.. Basically, this strategy is derived from [15] that generates

noises through randomly swapping the values of logit output among the L
dimensions. Specifically, in every iteration of self-distillation, given a swap-

probability p, every logit output (denoted as y here) from the pre-trained model, and

every dimension of logit output denoted as yl, the strategy in probability p swaps

the logit value in the dimension that corresponds to yl with any other dimension

ym̸=l in equal prior (i.e., in (L− 1)−1 probability). In the rest 1− p probability, the

strategy remains the original logit output there. In this way, the new noisy label ỹ
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Doubly Stochastic Models 15

is with expectation E[ỹ] as follow,

E[ỹl] = (1− p) · yl +
p ·
∑

∀m̸=l ym

L− 1
(24)

This strategy introduces explicit bias to the original logit outputs. However, when

we consider the expectation E[ỹ] as the innovative soft label, then the random noise

around the new soft label is still unbiased as E[ỹ − E[ỹ]] = 0 for all dimensions.

Note that this noise is not the symmetric noises studied for robust learning [51].

Thus, literately, our proposed SGD with Unbiased Label Noises settings well fit the

practice of noisy-self distillation.

5.3. Datasets and DNN Models

We choose the ResNet-56 [52], one of the most practical deep models, for conducting

the experiments on three datasets: SVHN [53], CIFAR-10 and CIFAR-100 [54]. We

follow the standard training procedure [52] for training a teacher model (original model).

Specifically we train the model from scratch for 200 epochs and adopt the SGD optimizer

with batch size 64 and momentum 0.9. The learning rate is set to 0.1 at the beginning of

training and divided by 10 at 100th epoch and 150th epoch. A standard weight decay with

a small regularization parameter (10−4) is applied. As for noiseless self-distillation, we

follow the standard procedure [55] for distilling knowledge from the teacher to a student

of the same network structure. The basic training setting is the same as training the

teacher model.

For the settings of noisy self-distillation, we divide the original training set into

a new training set (80%) and a validation set (20%). For clarity, we also present the

results using varying scales of unbiased label noises on all three sets, where the original

training set is used for training.

5.4. Experiment Results

Figure 1 presents the results of above two methods with increasing scales of noises, i.e.,

increasing σ2 for Gaussian noises and increasing p for Symmetric noises. In Figure 1(a)–

(c), we demonstrate that the gradient norms of neural networks 1
N

∑N
i=1 ∥∇θf(xi, θ)∥22

decrease with growing σ2 and p for two strategies. The results backup our theoretical

investigation , which means the model would be awarded high inferential stability, as

the variation of neural network outputs against the potential random perturbation in

parameters has been reduced by the regularization. In Figure 1(d)–(f) and (g)–(i),

we plot the validation and testing accuracy of the models obtained under noisy self-

distillation. The results show that (1) student models are with lower gradient norms of

neural networks 1
N

∑N
i=1 ∥∇θf(xi, θ)∥22 than teacher models, the gradient norm further

decreases with increasing scale of noises (i.e., σ2 and P ); (2) some of models have been

improved through noisy self-distillation compared to the teacher model, while noisy self-

distillation could obtain better performance than noiseless self-distillation; and (3) it is
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Figure 1: Gradient Norms (corresponding to the inference stability), Validation

Accuracy, and Testing Accuracy in Noisy Self-Distillation using ResNet-56 with varying

scale of label noises (e.g., p and σ2) based on SVNH, CIFAR-10 and CIFAR-100 Datasets.

possible to select noisily self-distilled models using validation accuracy for better overall

generalization performance (in testing dataset). All results here are based on 200 epochs

of noisy self-distillation.

We show the evolution of training and test losses during the entire training

procedure, and compare the settings of adding no label noises, symmetric and Gaussian

noises for noisy self-distillation. Figure 2 presents the results on the three datasets, i.e.,

SVHN, CIFAR-10 and CIFAR-100 with the optimal scales of label noises on validation

sets. It shows all algorithms would finally converge to a local minima with a training loss

near to zero, while the local minimas searched by the SGD with Symmetric noise would

be flatter with better generalization performance (especially for CIFAR-100 dataset).
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Figure 2: Training and Validation Loss per Epoch during the Training Procedure

6. Experiments on Linear Regression with Unbiased Label Noises

To validate our findings in linear regression settings, we carry out numerical evaluation

using synthesize data to simply visualize the dynamics over iteration of SGD algorithms

with label-noisy OLS and label-noiseless OLS.

6.1. Linear Regression with Unbiased Label Noises

We here hope to see how unbiased label noises would influence SGD iterates for ordinary

linear regression (OLS), where a simple quadratic loss function is considered for OLS,

such that

β̂OLS ← argmin
β∈Rd

{
1

N

N∑
i=1

L̃i(β) :=
1

2N

N∑
i=1

(
x⊤
i β − ỹi

)2}
, (25)

where samples are generated through ỹi = x⊤
i β

∗ + εi, E[εi] = 0 and var[εi] = σ2. Note

that in this section, we replace the notation of θ with β to present the parameters of

linear regression models.

Let us combine Eq. (25) and Eq. (11). We write the SGD for Ordinary Least

Squares with Unbiased Label Noises as the iterations βULN
k for k = 1, 2, 3 . . . as follow

βULN
k+1 ← βULN

k − η

N

N∑
i=1

∇L∗
i (β

ULN
k ) +

√
ηξ∗k(β

ULN
k ) +

√
ηξULN

k (βULN
k ), (26)

where ∇L∗
i (β) for ∀θ ∈ Rd refers to the loss gradient based on the label-noiseless sample
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Doubly Stochastic Models 18

(xi, yi) and yi = x⊤
i β

∗, ξ∗k(β) refers to stochastic gradient noises caused by mini-batch

sampling over the gradients of label-noiseless samples, and ξULN
k (β) is an additional noise

term caused by the mini-batch sampling and the unbiased label noises, such that

∇L∗
i (β) =

∂

∂β

(x⊤
i β − x⊤

i β
∗)2

2
= xix

⊤
i (β − β∗),

ξ∗k(β) =

√
η

|Bk|
∑

xj∈Bk

(
∇L∗

j(β)−
1

N

N∑
i=1

L∗
i (β)

)
,

ξULN
k (β) = −

√
η

|Bk|
∑

xj∈Bk

εj · xj .

(27)

We denote the sample covariance matrix of N samples as

Σ̄N =
1

N

N∑
i=1

xix
⊤
i . (28)

According to Remark 1 for implicit regularization in the general form, we can write the

implicit regularizer of SGD with the random label noises for OLS as,

ξULN
k (β) ≈

(
ησ2

B
Σ̄N

) 1
2

z′k =

(
ησ2

bN

N∑
i=1

xix
⊤
i

) 1
2

z′k, and z′k ∼ N (0d, Id), (29)

which is unbiased E[ξULN
k (β)] = 0d with invariant covariance structure, and is

independent with β (the location) and k (the time).

Let us combine Proposition 2 and linear regression settings, we obtain the

continuous-time dynamics for linear regression with unbiased label noises, denoted as

βULN(t). According to [33, 56], we can see SGD and its continuous-time dynamics

for noiseless linear regression (denoted as βLNL
k and βLNL(t)) would asymptotically

converge to the optimal solution β∗. As the additional noise term ξULN is unbiased

with an invariant covariance structure, when t → ∞, we can simply conclude that

lim
t→∞

E βULN(t) = lim
t→∞

E βLNL(t) = β∗, lim
t→∞

dβULN(t) = (ησ
2

B
Σ̄N)

1/2dW (t). By definition

of a distribution from a stochastic process, we could conclude βULN(t) converges to a

stationary distribution, such that βULN(t) ∼ N (β∗, ησ
2

B
Σ̄N), as t→∞. .

Remark 5. Thus, with k →∞, the SGD algorithm for OLS with unbiased label noises

would converge to a distribution of Gaussian-alike as follow

lim
k→∞

E [βULN
k ] = β∗, and lim

k→∞
Var [βULN

k ] =
ησ2

B
Σ̄N , (30)

The span and shape of the distribution are controlled by σ2 and Σ̄N when η and B are

constant.

In this experiment, we hope to evaluate above remark using numerical simulations,

so as to testify (1) whether the trajectories of βULN
k converges to a distribution of

N (β∗, ησ
2

B
Σ̄N); (2) whether the shape of convergence area could be controlled by the

sample covariance matrix the data Σ̄N of; and (3) whether the size of convergence area

could be controlled by the variance of label noises σ2.
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Doubly Stochastic Models 19

(a) σ2 = 0.25 (b) σ2 = 0.5 (c) σ2 = 1.0 (d) σ2 = 2.0

(e) Σ1,2 = 10 · Id (f) Σ1,2 = 100 · Id (g) Σ1,2 = ΣVer (h) Σ1,2 = ΣHor

Figure 3: Trajectories of SGD over OLS with and without Unbiased Random Label

Noises using various σ̃2 and Σ1,2 settings for (noisy) random data generation. For

Figures (a)–(d), the experiments are setup with a fixed Σ1,2 = [[20, 0]⊤, [0, 20]⊤] and

varying σ̃2. For Figures (e)–(h), the experiments are setup with a fixed σ̃2 = 0.5 and

varying Σ1,2, where we set ΣVer = [[10, 0]⊤, [0, 100]⊤] and ΣHor = [[100, 0]⊤, [0, 10]⊤] to

shape the converging distributions.

6.2. Experiment Setups

In our experiments, we use 100 random samples realized from a 2-dimension Gaussian

distribution Xi ∼ N (0,Σ1,2) for 1 ≤ i ≤ 100, where Σ1,2 is an symmetric covariance

matrix controlling the random sample generation. To add the noises to the labels, we

first draw 100 copies of random noises from the normal distribution with the given

variance εi ∼ N (0, σ2), then we setup the OLS problem with (Xi, ỹi) pairs using

ỹi = X⊤
i β

∗ + εi and β∗ = [1, 1]⊤ and various settings of σ2 and Σ1,2. We setup the

SGD algorithms with the fixed learning rate η = 0.01, and batch size B = 5, with the

total number of iterations K = 1, 000, 000 to visualize the complete paths.

6.3. Experiment Results

Figure 3 presents the results of numerical validations. In Figure 3(a)–(d), we gradually

increase the variances of label noises σ2 from 0.25 to 2.0, where we can observe (1)

SGD over label-noiseless OLS converges to the optimal solution β∗ = [1.0, 1.0]⊤ in a fast

manner, (2) SGD over OLS with unbiased random label noises would asymptotically

converge to a distribution centered at the optimal point, and (3) when σ2 increases,

the span of the converging distribution becomes larger. In Figure 3(e)–(h), we use four

settings of Σ1,2, where we can see (4) no matter how Σ1,2 is set for OLS problems, the

SGD with unbiased random label noises would asymptotically converge to a distribution
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Doubly Stochastic Models 20

centered at the optimal point.

Compared the results in (e) with(f), we can find that, when the trace of Σ1,2

increases, the span of converging distributions would increase. Furthermore, (5) the

shapes of converging distributions depend on Σ1,2. In Figure 3(g), when we place the

principal component of Σ1,2 onto the vertical axis (i.e., ΣVer = [[10, 0]⊤, [0, 100]⊤]), the

distribution lays on the vertical axis principally. Figure 3(h) demonstrates the opposite

layout of the distribution, when we set ΣHor = [[100, 0]⊤, [0, 10]⊤] as Σ1,2. The scale and

shape of the converging distribution backups our theoretical investigation in Eq (29).

Note that the unbiased random label noises are added to the labels prior to the

learning procedure. In this setting, it is the mini-batch sampler of SGD that re-samples

the noises and influences the dynamics of SGD through forming the implicit regularizer.

7. Discussion and Conclusion

In this work, we have advanced the understanding of the impact of random label noises

in the context of stochastic gradient descent (SGD) under mini-batch sampling. Unlike

most prior studies [57],[39] focusing on performance degradation due to label noises or

corrupted labels, we intend study to the implicit regularization effects caused by these

random label noises.

By adopting a dynamical systems viewpoint of SGD, our work decomposes SGD

with unbiased label noises, into three distinct components – ∇L∗(θ), the true gradient

of label-noiseless loss functions; ξ∗k(θ), noise introduced via mini-batch sampling on the

label-noiseless loss gradients; and ξULN
k (θ), noise influenced by both random label noises

and mini-batch sampling. The unpublished noise term, ξULN
k (θ) emerges as an implicit

regularizer, contributing to a lower neural network gradient norm, a signature of higher

model stability against random parameter perturbations.

Our extensive experiments offer robust testimony for our theoretic analyses.

Notably, experiments involving self-distillation with deep neural networks substantiate

the role of implicit regularizer in lowering the gradient norm of neural networks and

enhancing model stability. This process, enhanced by iteratively adding noises to the

outputs of teacher models, eventually results in resolution with better generalization

performance. Complementary evidence comes from our linear regression analysis, where

the derived SGD dynamics are vividly manifested in the observed trajectories of SGD-

based linear regression under the influence of random label noises. These empirical

observations echo our theoretical findings, affirming the critical controlling role of data

distribution, learning rate, and batch size for the convergence behavior.

To sum up, our work underscores the significance of understanding and harnessing

the influence of random label noises in SGD. The emergence of the implicit regularizer,

ξULN
k (θ), could help shape future algorithms to harness noise in a positive way, leading

to improved model stability and performance. This study thus opens up new avenues

for future research in designing more effective and robust learning procedures.
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Appendix A. Proof of Proposition 1

Proof. As the mini-batch Bk are randomly, independently, and uniformly drawn from

the full set sample D, thus for ∀θ ∈ Rd and ∀xj ∈ Bk, there has

Exj∈Bk

[
∇L∗

j(θ)
]
=

1

N

N∑
i=1

∇L∗
i (θ)⇒ EBk

 1

|Bk|
∑

xj∈Bk

∇L∗
j(θ)

 =
1

N

N∑
i=1

∇L∗
i (θ) .

(A.1)

In this way, we can derive that

EBk
[ξ∗k(θ)] = EBk

√
η

(
1

|Bk|

k∑
i=1

∇∗
j(θ)−

1

N

N∑
i=1

L∗
i (θ)

)

=
√
η

(
EBk

[
1

|Bk|

k∑
i=1

∇∗
j(θ)

]
− 1

N

N∑
i=1

L∗
i (θ)

)
= 0d .

(A.2)

Further, for any θ ∈ Rd there has

Var[ξ∗k(θ)] = EBk
(ξ∗k(θ)− EBk

ξ∗k(θ)) (ξ
∗
k(θ)− EBk

ξ∗k(θ))
⊤

= EBk

[
ξ∗k(θ)ξ

∗
k(θ)

⊤]
=

η

|Bk|2
∑

xj∈Bk

Var[∇L∗
j(θ)]

=
η

|Bk|N

N∑
j=1

(
∇L∗

j(θ)−
1

N

N∑
i=1

L∗
i (θ)

)(
∇L∗

j(θ)−
1

N

N∑
i=1

L∗
i (θ)

)⊤

=
η

|Bk|
ΣSGD

N (θ),

(A.3)

where ΣSGD
N (θ) is defined as Eq. (15).

Similarly, as the mini-batch Bk are randomly, independently, and uniformly drawn

from the full set sample D, there for ∀θ ∈ Rd, there has

Exj∈Bk
[∇θf(xj, θ)] =

1

N

N∑
i=1

∇θf(xi, θ) . (A.4)

Thus, there has

EBk,εi [ξ
ULN
k (θ)] = −

√
η

|Bk|
∑
xi∈Bk

{Exi∈Bk
[∇f(xi, θ)] · Eεi [εi]} = 0d . (A.5)
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Again, by the definition, there has

VarBk,εi [ξ
ULN
k (θ)] = EBk,εi

[
ξULN
k (θ)ξULN

k (θ)⊤
]

Let us assume Bk and εi for 1 ≤ i ≤ N are independent.

=
η

|Bk|2
∑

xj∈Bk

EBkεi

[
(εi · ∇θf(xi, θ)− EBkεi(εi · ∇θf(xi, θ))

2
]

As Var[εi] = σ2 for 1 ≤ i ≤ N , there has

=
ησ2

|Bk|N

N∑
i=1

∇θf(xi, θ)∇θf(xi, θ)
⊤ =

ησ2

|Bk|
ΣULN

N (θ) .

(A.6)

where ΣULN
N (θ) is defined as Eq. (15).

Appendix B. Proof of Proposition 2

Proof. We show that, as η → 0, the discrete iteration θ̄k of Eq. (17) in strong norm and

on finite–time intervals is close to the solution of the SDE. (16). The main techniques

follow [58], but [58] only considered the case when ΣSGD
N (θ) and ΣULN

N (θ) are constants.

Let C1(θ) =
√

1
B
ΣSGD

N (θ), C2(θ) =
√

1
B
ΣULN

N (θ) and L∗(θ) = 1
N

∑N
i=1 L

∗
i (θ). Let

Θ̂(t) be the process defined by the integral form of the stochastic differential equation

Θ̂(t)− Θ̂(0) = −
∫ t

0

∇L∗(Θ̂⌊ s
η
⌋η)ds+

√
η

∫ t

0

C1(Θ̂(⌊s
η
⌋η))dW1(s)

+
√
η

∫ t

0

C2(Θ̂(⌊s
η
⌋η))dW2(s) , Θ̂(0) = θ0 .

(B.1)

Here for a real positive number a > 0 we define ⌊a⌋ = max {k ∈ N+, k < a}. From

Eq.(B.1) we see that we have, for k = 0, 1, 2, ...

Θ̂((k + 1)η)− Θ̂(kη) =− η∇L∗(Θ̂(kη))−√ηC1(Θ̂(kη))(W1((k + 1)η)−W1(kη))

−√ηC2(Θ̂(kη))(W2((k + 1)η)−W2(kη)).
(B.2)

Since
√
η(W1((k + 1)η) − W1(kη)) ∼ N (0, η2I) and

√
η(W2((k + 1)η) − W2(kη)) ∼

N (0, η2I), we could let ηzk+1 =
√
η(W1((k + 1)η) − W1(kη)) and z′k+1 =

√
η(W2((k + 1)η) − W2(kη)), where zk+1 and z′k+1 are the i.i.d. Gaussian sequences

in (16). From here, we see that

Θ̂(kη) = θ̄ULN
k , (B.3)

where θ̄ULN
k is the solution to (17).

We then try to bound Θ̂t in Eq. (B.1) and ΘULB(t) in Eq. (16). Finally we could

obtain the error estimation of θ̄ULN
k = Θ̂(kη) and ΘULN(kη) by simply set t = kη. Since

we assumed that ∇L∗
i (θ) and ∇θf(x, θ) are L–Lipschitz continuous, we get

∥C1(θ1)− C1(θ2)∥2 =

√√√√ 1

bN

N∑
i=1

∥∇L∗
i (θ1)−∇L∗

i (θ2)∥22 ≤ L∥θ1 − θ2∥2 (B.4)
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since the batch size b ≥ 1. In the same way,

∥C2(θ1)− C2(θ2)∥2 =

√√√√ σ2

bN

N∑
i=1

∥∇θf(xi, θ1)−∇θf(xi, θ2)∥22 ≤ σL∥θ1 − θ2∥2 (B.5)

since the batch size B ≥ 1. Thus C1(θ) and C2 are both L–Lipschitz continuous. Take

a difference between (B.1) and (16) we get

Θ̂(t)−ΘULN(t) =−
∫ t

0

[∇L∗(Θ̂(⌊s
η
⌋η))−∇L∗(ΘULN(s))]ds

+
√
η

∫ t

0

[C1(Θ̂(⌊s
η
⌋))− C1(Θ

ULN(s))]dW1(s)

+
√
η

∫ t

0

[C2(Θ̂(⌊s
η
⌋))− C2(Θ

ULN(s))]dW2(s).

(B.6)

We can estimate

∥∇L∗(Θ̂(⌊s
η
⌋η))−∇L∗(ΘULN(s))∥22

≤2∥∇L∗(Θ̂(⌊s
η
⌋η))−∇L∗(ΘULN(⌊s

η
⌋η))∥22 + 2∥∇L∗(Θ(⌊s

η
⌋η))−∇L∗(ΘULN(s))∥22

≤2L2∥Θ̂(⌊s
η
⌋η)−ΘULN(⌊s

η
⌋η)∥22 + 2L2∥Θ̂(⌊s

η
⌋η)−ΘULN(s)∥22 ,

(B.7)

where we used the inequality derived from L-Lipschitz. Similarly, we estimate

∥C1(Θ̂(⌊s
η
⌋η))− C1(Θ

ULN(s))∥22

≤2∥C1(Θ̂(⌊s
η
⌋η))− C1(Θ

ULN(⌊s
η
⌋η))∥22 + 2∥C1(Θ

ULN(⌊s
η
⌋η))−ΘULN(s))∥22

≤2L2∥Θ̂(⌊s
η
⌋η)−ΘULN(⌊s

η
⌋η)∥22 + 2L2∥ΘULN(⌊s

η
⌋η)−ΘULN(s))∥22 .

(B.8)

In the same way, based on the inequality derived from L-Lipschitz, we can also have

∥C2(Θ̂(⌊s
η
⌋η))− C2(Θ

ULN(s))∥22

≤2∥C2(Θ̂(⌊s
η
⌋η))− C2(Θ

ULN(⌊s
η
⌋η))∥22 + 2∥C2(Θ

ULN(⌊s
η
⌋η))−ΘULN(s))∥22

≤2σ2L2∥Θ̂(⌊s
η
⌋η)−ΘULN(⌊s

η
⌋η)∥22 + 2σ2L2∥ΘULN(⌊s

η
⌋η)−ΘULN(s))∥22 .

(B.9)

On the other hand, from (B.6), the Itô’s isometry [59] and Cauchy–Schwarz
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inequality we have

E|Θ̂(t)−ΘULN(t)|2 ≤2E
∥∥∥∥∫ t

0

[∇L(∗(Θ(⌊s
η
⌋η))−∇L∗(ΘULN(s))]ds

∥∥∥∥2
2

+ 2ηE
∥∥∥∥∫ t

0

[C1(Θ̂⌊ s
η
⌋)− C1(Θ

ULN(s))]dW1(s)

∥∥∥∥2
+ 2ηE

∥∥∥∥∫ t

0

[C2(Θ̂⌊ s
η
⌋)− C2(Θ

ULN(s))]dW1(s)

∥∥∥∥2
≤2
∫ t

0

E
∥∥∥∥∇L(∗(Θ(⌊s

η
⌋η))−∇L∗(ΘULN(s))

∥∥∥∥2
2

ds

+ 2η

∫ t

0

E
∥∥∥C1(Θ̂⌊ s

η
⌋)− C1(Θ

ULN(s))
∥∥∥2 ds

+ 2η

∫ t

0

E
∥∥∥C2(Θ̂⌊ s

η
⌋)− C2(Θ

ULN(s))
∥∥∥2 ds .

(B.10)

Combining Eqs. (B.7), (B.8), (B.9) and (B.10) we obtain that

E∥Θ̂(t)−ΘULN(t)∥22

≤ 2

∫ t

0

(
2L2E∥Θ̂(⌊s

η
⌋η)−ΘULN(⌊s

η
⌋η)∥22 + 2L2E∥Θ⌊ s

η
⌋η −ΘULN(s))∥22

)
ds

+ 2η

∫ t

0

(
2L2E∥Θ̂(⌊s

η
⌋η)−ΘULN(⌊s

η
⌋η)∥22 + 2L2E∥ΘULN(⌊s

η
⌋η)−ΘULN(s))∥22

)
ds

+ 2η

∫ t

0

(
2σ2L2E∥Θ̂(⌊s

η
⌋η)−ΘULN(⌊s

η
⌋η)∥22 + 2σ2L2E∥ΘULN(⌊s

η
⌋η)−ΘULN(s))∥22

)
ds .

=4(1 + η + ησ2)L2·(∫ t

0

E∥Θ̂(⌊s
η
⌋η)−ΘULN(⌊s

η
⌋η)∥22ds+

∫ t

0

E∥ΘULN(⌊s
η
⌋η)−ΘULN(s))∥22ds

)
.

(B.11)

Since we assumed that there is an M > 0 such that maxi=1,2...,N(|∇L∗
i (θ)|) ≤ M ,

we conclude that |∇L∗(θ)| ≤ 1

N

∑N
i=1 |∇L∗

i (θ)| ≤M and

∥C1(θ)∥2 ≤
1√
b

√√√√ 1

N

N∑
i=1

∥∇L∗
i (θ)∥22 ≤M, (B.12)

∥C2(θ)∥2 ≤
1√
b

√√√√σ2

N

N∑
i=1

∥∇θf(xi, θ)∥22 ≤ σM (B.13)

since B ≥ 1. By Eq. (16), the Itô’s isometry [59], the Cauchy-Schwarz inequality and

0 ≤ s− ⌊ s
η
⌋η ≤ η we know that
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E∥ΘULN(⌊s
η
⌋η)−ΘULN(s))∥22

=E

∥∥∥∥∥−
∫ s

⌊ s
η
⌋η
∇L∗(Θu)du+

√
η

∫ s

⌊ s
η
⌋η
C1(Θu)dW1(u) +

√
η

∫ s

⌊ s
η
⌋η
C2(Θu)dW2(u)

∥∥∥∥∥
2

2

≤2E

∥∥∥∥∥
∫ s

⌊ s
η
⌋η
∇L∗(Θu)du

∥∥∥∥∥
2

2

+ 2ηE

∥∥∥∥∥
∫ s

⌊ s
η
⌋η
C1(Θu)dW1(u)

∥∥∥∥∥
2

2

+ 2ηE

∥∥∥∥∥
∫ s

⌊ s
η
⌋η
C2(Θu)dW2(u)

∥∥∥∥∥
2

2

≤2E

(∫ s

⌊ s
η
⌋η
∥∇L∗(Θu)∥du

)2

+ 2η

∫ s

⌊ s
η
⌋η
E∥C1(Θu)∥22du+ 2η

∫ s

⌊ s
η
⌋η
E∥C2(Θu)∥22du

≤2η
∫ s

⌊ s
η
⌋η
E|∇L∗(Θu)|2du+ 2η

∫ s

⌊ s
η
⌋η
E∥C1(Θu)∥22du+ 2η

∫ s

⌊ s
η
⌋η
E∥C2(Θu)∥22du

≤2η2M2 + 2η2M2 + 2η2σ2M2 = (4 + 2σ2)η2M2 .
(B.14)

Combining (B.14) and (B.11) we obtain

E∥Θ̂(t)−ΘULN(t)∥22

≤4(1 + η + ησ2)L2 ·
(∫ t

0

E∥Θ̂(⌊s
η
⌋η)−ΘULN(⌊s

η
⌋η)∥22ds+ (4 + 2σ2)η2M2t

)
.

(B.15)

Set T > 0 and m(t) = max
0≤s≤t

E|Θ̂s − ΘULN(s))|2, noticing that m(⌊ s
η
⌋η) ≤ m(s) (as

⌊ s
η
⌋η ≤ s), then the above gives for any 0 ≤ t ≤ T ,

m(t) ≤ 4(1 + η + ησ2)L2 ·
(∫ t

0

m(s)ds+ (4 + 2σ2)η2M2T

)
. (B.16)

By Gronwall’s inequality we obtain that for 0 ≤ t ≤ T ,

m(t) ≤ 4(1 + η + ησ2)(4 + 2σ2)L2η2M2Te4(1+η+ησ2)L2t. (B.17)

Suppose 0 < η < 1, then there is a constant C which is independent on η s.t.

E∥Θ̂(t)−ΘULN(t)∥22 ≤ m(t) ≤ Cη2. (B.18)

Set t = kη in (B.18) and make use of (B.3), we finish the proof.

Appendix C. Proof of Proposition 3

Proof. To obtain Eq (22), we can use the simple vector-matrix-vector products transform

that, for the random vector v and symmetric matrix A there has Ev[v
⊤Av] =
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trace(AE[vv⊤]), such that

Ezk∥ξULN
k (θ)∥22 = Ezk

[
ξULN
k (θ)⊤ξULN

k (θ)
]

≈ ησ2

b
Ezk

[
z⊤k

(
1

N

N∑
i=1

∇θf(xi, θ)∇θf(xi, θ)
⊤

)
zk

]

=
ησ2

b
trace

((
1

N

N∑
i=1

∇θf(xi, θ)∇θf(xi, θ)
⊤

)
Ezk [zkz

⊤
k ]

)
as Ezk [zkz

⊤
k ] = Id for zk ∼ N (0d, Id)

=
ησ2

b
trace

(
1

N

N∑
i=1

∇θf(xi, θ)∇θf(xi, θ)
⊤

)

=
ησ2

bN

N∑
i=1

∥∇θf(xi, θ)∥22 .

(C.1)
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