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The objective of this work is to propose a multilevel data-driven Bayesian framework to
minimise the sampling requirement for stochastic model identification of general nonlinear
aeroelastic systems. Adaptive Kriging based surrogate models are developed through multi-level
Bayesian modeling updating to represent limit cycle oscillation (LCO) response of the nonlinear
aeroelastic model. The proposed methodology is demonstrated on an aerofoil wing flutter model
together with LCO experimental testing data. The results is benchmarked by the counterpart
from a classical single-level approach. It is observed that the proposed approach offered a
74% reduction in training data requirement/run time and 3% accuracy improvement for the
surrogate model.

I. Introduction
Utilising lightweight materials and incorporating electric propulsion systems is deemed essential for improving the

efficiency and capabilities of aerospace systems. Modeling the dynamic response of lightweight aerospace structures
poses a challenge due to their substantial geometric deformation. This deformation introduces distributed nonlinearities
into structures, leading to intricate nonlinear dynamic behaviour [1, 2].

Nonlinearities in aeroelastic systems can result in subcritical post-flutter responses, leading to self-sustaining
oscillations known as Limit Cycle Oscillations (LCO) at velocities below the linear flutter threshold [3, 4]. Experimental
evidence of these behaviors has been observed in high-aspect-ratio flexible wings [5, 6], and recent studies have
identified subcritical LCO formation in highly flexible wings during low-speed flutter experiments [7, 8]. Despite the
importance of these nonlinear effects, they are often neglected in computational analyses due to complexity and high
computational costs, limiting the design space for aerospace systems. Bifurcation diagrams describing LCO behavior
are computationally expensive, and even with methods like harmonic balance continuation, computational efficiency
remains a challenge, especially in high-fidelity systems [9]. Validating mathematical models that accurately capture
system nonlinear responses is critical, as LCO identified through nonlinear analysis may pose structural risks in real
systems. Reliable mathematical models could reduce the need for costly experiments under various flow conditions for
certification.

Model updating is widely used to calibrate the parameters of mathematical or computation models based on
experimental data in the last few decades [10, 11]. Most conventional techniques, including Least Squares minimization,
Sensitivity-based model updating, and the Levenberg-Marquardt algorithm [12–14], offer deterministic parameter
estimates. While these methods excel in linear systems, they prove computationally expensive and sensitive to noise in
experimental data when applied to complex and high-dimensional dynamical systems [15]. Bayesian Model Updating
(BMU), first put forward in [16], is regarded as one of the most promising probabilistic nonlinear parameter estimation
techniques [17–19]. A significant advantage of BMU when compared to other probabilistic model updating techniques,
such as Maximum Likelihood Estimation, is its capacity to seamlessly integrate prior knowledge [20].

In previous work a probabilistic data-driven methodology to minimise computational burden and maximise accuracy
in identifying nonlinear models to capture LCO behaviour of aeroelastic systems was proposed [21]. Kriging models
are developed with databases generated from nonlinear aeroelastic systems using harmonic balance method-based
bifurcation analysis. LCO experimental data is obtained from a uniform wing test rig using control-based continuation
testing methods [22]. Bayseian inference is then implemented between a Kriging surrogate model and experimental data
to both estimate probabilistic parameters of the nonlinear model and rank the evidence supporting model selection. The
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method offered an improvement on accuracy compared to deterministic approaches. An improvement in computational
efficiency was also observed for forward uncertainty quantification. Lacking however, is interaction between the
surrogate model was model updating.

This work proposes to improve computational efficiency further through an adaptive multi-level approach, imple-
menting development of surrogate models within Bayesian model updating (BMU). As opposed to constructing a
single accurate surrogate model then performing Bayesian inference, posterior distributions obtained with low fidelity
surrogate models are used to build refined surrogate models. This process is repeated in levels until a converged solution
is reached.

Building reduced order models through multi-level approaches has become common in engineering design [23–25].
Bayesian model updating has been used to assist in building reduced order models such as in [26] where prior distributions
define a reduced design space to construct reduced order models. In [27] the inverse is carried out, where BMU was
implemented to estimate parameters based on a data-driven reduced order model. Dodwell and co present a method
where reduced amounts of data is used to construct a coarse update of model through Baysiean inference [28, 29]. This
is repeated in levels until a stationary posterior distribution is reached. Through this method, the number of times the
potentially cost model is ran is reduced by up to three times compared to single-level approaches. The methodology
proposed in this work combines the concepts discussed here. While individual steps are not unique, the way they are
combined is novel. The leveled approach to model updating from [28, 29] is applied but fidelity of surrogate model is
not updated each level as opposed to amount of evidence data. As in [29] the prior distribution from BMU is used to
define the space the data-driven model is refined to.

This paper will present an adaptive data-driven approach through multi-level BMU and discuss how it differs from
the single-level approach in [21]. The nonlinear aeroelastic case study is then presented with experimental dated
and mathematical model. A reference study is then carried out using the single-level approach before applying the
multi-fidelity methodology to the case study. The sets of results are compared and benefits of each method discussed.
The main goal of the paper is to demonstrate, the number computationally expensive continuation runs can be reduced
in the multi-fidelity approach compared to the single level process.

II. Methodology
In this section, the principle of Bayesian model updating will be described as it is integral to understanding both

single- and multilevel data driven updating. The single-level updating process will then be presented, before the
multi-level method is laid out.

A. Bayesian model updating
The Bayesian interface is implemented to estimate posterior distributions of nonlinear parameters from a prior

distribution using input data and a likelihood function including experimental data. Posterior distributions of parameters
𝜃 are estimated with:

𝑃 (𝜃 |V) = 𝑃 (V|𝜃) .𝑃 (𝜃)
𝑃 (V) (1)

where V is the vector of experimental points. The prior distribution is represented by 𝑃(𝜃), 𝑃(V|𝜃) is the likelihood
function, 𝑃(V) is the evidence function and 𝑃 (𝜃 |V) is the posterior distribution. The evidence function acts as a
normalising constant to ensure the posterior integrates to one. Prior distributions reflect prior knowledge of the model
parameters from observations.

The likelihood function reflects the degree of agreement between obtained measurements V and the output of model
𝑓 (𝜃). Choice of likelihood function is dependent on the UQ metric. Assuming the error between observations and the
model follows a zero mean normal distribution, a maximum likelihood estimation function is implemented as follows
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Where 𝜎𝑖 is the variance of error between model and evidence. Equation 1 is evaluated by drawing samples from prior
distributions until converged mean posteriors are reached. As the goal of the sampling is to converge to an unknown
stationary distribution, standard methods (such as Monte-Carlo sampling) are not suited. Advanced sampling techniques
are therefore employed commonly for optimal efficiency[30]. Transitional Chain Monte Carlo (TMCMC) sampling is
implemented for this study based on the conclusions from previous study [21]. At the core of TMCMC, samples are
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(a) Single level (b) Multilevel

Fig. 1 Data-driven model updating process

drawn based on a proposal distribution. They are either accepted or rejected depending on if they are within the prior
distribution. An acceptance rate of between 0.15 to 0.5 with an optimal value of 0.234 ensures the design space is
efficiently explored [31]. A Normal distribution is the common choice for the proposal, with the mean based around
current sample 𝜃𝑖 and standard deviation 𝜎𝑝 that serves are the tuning parameter of the algorithm. Optimal 𝜎𝑝 (width
parameter) is tuned until an acceptance rate as close to 0.234 is reached [32].

B. Single-level updating
Figure 1a describes the concept of single-level updating whereby a single data-driven model is built covering a

full design space. Accuracy of the model is estimated based on mean comparison with a separate set of comparison
data. Once accuracy of the model has converged to an acceptable degree, Bayesian model updating (𝐵𝑀𝑈) is applied
with the same prior distribution used to gather training data for the data-driven model. Algorithm 1 gives specific
detail on estimating probabilistic response of high fidelity model 𝑓 with data driven single-level updating. Inputs for
unknown parameters 𝜃 are gathered with Latin Hypercube sampling (LHS) and then ran through the high fidelity model.
Output data Y and corresponding input X are fed into a training algorithm 𝑇𝑟𝑎𝑖𝑛 to produce the data-driven model.
Convergence criterion for data-driven models 𝑎 is based on the percentage difference in accuracy between data-driven
models with increasing amounts of training data. As the single model required in the single-level process is required to
have as high as possible accuracy, the convergence criterion is set high. Once accuracy of the model has converged
𝐵𝑀𝑈 is utilised to estimate 𝜃. With probabilistic estimates of 𝜃, probabilistic response data 𝚯 can be obtained with the
data-driven model and Monte-Carlo simulations (MCS) from the posterior distribution.

C. Multilevel updating
The multi-level approach is introduced with two goals (1) to reduce the amount of training data (2) to improve the

accuracy of the converged data-driven model compared to the single-level process. Figure 1b presents the concept.
Model updating is carried out with coarse models and the resulting prior distribution is used to gather training data for a
less coarse data-driven model specialised to a reduced design space. Width parameter 𝜎𝑝 of the proposal distribution
is reduced at each level converging with the estimate that would be used in the single-level process. In the current
algorithm it is reduced by a factor related the the total number of levels and the current level. With larger width
parameters at higher levels, the algorithm is able to explore more of the parameter space with coarse models. A detailed
description of the process is presented in Algorithm 2. The key different with single-level updating is the presence
of the a feedback loop over a set number of levels. At each level 𝜎𝑝 is reduced starting from 𝑁𝑙𝑒𝑣𝑒𝑙 × 𝜎𝑝 until 𝜎𝑝 is
reached at the final level. In the multilevel process, relative convergence criterion for data-driven models should be
made lower than for the single-level process. This allows for initial coarse models to be developed with minimal training
data. When constructing data-driven models after level 1, training points that were gathered for the previous layer
that fall within the design space of the new prior distribution are held on to and those that fall outwith are discarded.
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Algorithm 1 Single-level data-driven BMU
Input: Experimental data V, Prior distribution 𝑃(𝜃), Width parameter 𝜎𝑝, Training data increment 𝑖𝑛𝑐0, Surrogate

model convergence factor 𝑎
Output: Probabilistic response data 𝚯, Posterior distribution 𝑃(𝜃 |V), Surrogate model 𝑓

1: 𝑖𝑛𝑐 = 𝑖𝑛𝑐0
2: 𝑐𝑜𝑛𝑣 = 𝑎 + 1
3: 𝑖 = 0
4: while 𝑐𝑜𝑛𝑣 > 𝑎 do
5: 𝑖 = 𝑖 + 1
6: X𝑖𝑛𝑐 = 𝐿𝐻𝑆(𝑃(𝜃), 𝑖𝑛𝑐)
7: Y𝑖𝑛𝑐 = 𝑓 (X𝑖𝑛𝑐) {High fidelity model}
8: 𝑓𝑖 = 𝑇𝑟𝑎𝑖𝑛(X,Y) {Construct low fidelity model through data driven method}
9: 𝐴𝑖 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶ℎ𝑒𝑐𝑘 ( 𝑓𝑖)

10: if 𝑖 ≥ 2 then
11: 𝑐𝑜𝑛𝑣 = |𝐴𝑖 − 𝐴𝑖−1 |
12: end if
13: 𝑖𝑛𝑐 = 𝑖𝑛𝑐 + 𝑖𝑛𝑐0
14: end while
15: 𝑓 = 𝑓𝑖
16: 𝑃(𝜃 |V) = 𝐵𝑀𝑈 (𝑃(𝜃),V, 𝜎𝑝 , 𝑓 )
17: 𝜃 = 𝑀𝐶𝑆(𝑃(𝜃 |V)) {Draw samples from posterior distribution through Monte-Carlo simulations}
18: 𝚯 = 𝑓 (𝜃)

Beginning with level 2 this gives models a starting base of data and reduces the number of times the costly high fidelity
model is run. Once each layer is complete the final data-driven model and posterior distribution are saved and used to
generate final probabilistic response data.

III. Case study
In this section the nonlinear aeroelatic test case is presented. First the experimental setup will be described followed

by the employed mathematical model. Application of the multilevel process to the test case is then laid out. Finally
results from both single- and multilevel data-driven updating are shown and compared.

Figure 2a shows the experimental flutter rig comprised of a NACA-0015 wing profile rigidly attached to a stainless
steel shaft. The aerofoil is supported by rotational bearings on each end allowing for rotation and a bearing system
allowing vertical displacement. The spring in the heave degree of freedom behaves in a linear manner. In the bearings,
leaf springs are introduced to create a nonlinear hardening effect in pitch motion. Airspeed in the wind tunnel was
increased and amplitude data for LCO was gathered. Data was collected using control-based continuation (CBC),
providing access to both stable and unstable responses of the system (see [33] for more explanations about CBC and
its exploitation in this context). Experimental points are shown in Figure 3, where subcritcal behaviour is observed.
Further detail on the experiment is found in [33].

The flutter rig is modelled as the two-degree-of-freedom system shown in Figure 2b coupled with an unsteady
aerodynamic model described by Abdelkef et al. [34]. The mathematical model takes the form of the standard nonlinear
aeroelastic equation

M¥𝑥 + D ¤𝑥 + K𝑥 + 𝑞𝑛𝑙 𝑓𝑛𝑙 = A(𝜌) ¥𝑥 + B(𝜌𝑉) ¤𝑥 + C(𝜌𝑉2)𝑥 (3)

Where 𝑥 denotes the system’s degrees of freedom and M,D and K are the structural mass, damping and stiffness matrices
respectively. Matrices A B and C are aerodynamic matrices which are dependent on air density and freestream velocity.
All matrices are size 𝑁 × 𝑁 where 𝑁 is the number of degrees of freedom of the system. The nonlinear function 𝑓𝑛𝑙 is
used to represent different types of nonlinearities encountered in aeroelastic systems. The 𝑁 × 1 vector 𝑞𝑛𝑙 is utilised to
implement the nonlinear equations in the degrees of freedom they impact. The content and parameter values of each
matrix is laid out in [21]. For this study the assumed spring stiffness is approximated by quadratic and cubic terms in
pitch degree of freedom (which is typically used to represent geometrical nonlinearities):

𝑓𝑛𝑙 = 𝐾𝛼2𝛼
2 + 𝐾𝛼3𝛼

3 (4)
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Algorithm 2 Multi-level data-driven BMU

Input: Experimental data V, Initial prior distribution 𝑃(𝜃)0, Number of levels 𝑁𝑙𝑒𝑣𝑒𝑙 , Width parameter 𝜎𝑝 , Training
data increment 𝑖𝑛𝑐0, Surrogate model convergence factor 𝑎

Output: Probabilistic response data 𝚯, Final posterior distribution 𝑃(𝜃 |V), Final surrogate model 𝑓
1: Initialization 𝑃(𝜃)1 = 𝑃(𝜃)0

2: 𝑛 = 0
3: while 𝑛 ≤ 𝑁𝑙𝑒𝑣𝑒𝑙 do
4: 𝑛 = 𝑛 + 1
5: 𝜎𝑛

𝑝 = 𝜎𝑝 ∗ (𝑁𝑙𝑒𝑣𝑒𝑙 + 1 − 𝑛)
6: 𝑖𝑛𝑐 = 𝑖𝑛𝑐0
7: 𝑐𝑜𝑛𝑣 = 𝑎 + 1
8: 𝑖 = 0
9: while 𝑐𝑜𝑛𝑣 > 𝑎 do

10: 𝑖 = 𝑖 + 1
11: X𝑖𝑛𝑐 = 𝐿𝐻𝑆(𝑃(𝜃)𝑛, 𝑖𝑛𝑐)
12: Y𝑖𝑛𝑐 = 𝑓 (X𝑖𝑛𝑐) {Samples already in data base are not rerun}
13: 𝑓𝑖 = 𝑇𝑟𝑎𝑖𝑛(X,Y)
14: 𝐴𝑖 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶ℎ𝑒𝑐𝑘 ( 𝑓𝑖)
15: if 𝑖 ≥ 2 then
16: 𝑐𝑜𝑛𝑣 = |𝐴𝑖 − 𝐴𝑖−1 |
17: end if
18: 𝑖𝑛𝑐 = 𝑖𝑛𝑐 + 𝑖𝑛𝑐0
19: end while
20: 𝑓𝑛 = 𝑓𝑖 {Converged surrogate model at 𝑛𝑡ℎ layer}
21: 𝑃(𝜃 |V)𝑛 = 𝐵𝑀𝑈 (𝑃(𝜃)𝑛,V, 𝜎𝑛

𝑝 , 𝑓𝑛)
22: 𝑃(𝜃)𝑛+1 = 𝑃(𝜃 |V)𝑛 {Define prior for next level as posterior of previous layer}
23: [X,Y] = 𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝐷𝑎𝑡𝑎(𝑃(𝜃 |V)𝑛, [X,Y]) {Discard data from training data base that is not within 𝑛𝑡ℎ prior

distribution}
24: end while
25: 𝑃(𝜃 |V) = 𝑃(𝜃)𝑛+1

26: 𝑓 = 𝑓𝑛−1
27: 𝜃 = 𝑀𝐶𝑆(𝑃(𝜃 |V))
28: 𝚯 = 𝑓 (𝜃)

(a) Experimental configuration [33] (b) 2 DOF Freebody diagram

Fig. 2 Nonlinear flutter test rig
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Fig. 3 Labelled experimental data (• stable LCO) (• unstable LCO)

Fig. 4 Multilevel data-driven BMU applied to nonlinear aeroelastic case

Nonlinear parameters 𝐾𝛼2 and 𝐾𝛼3 are treated as unknowns. The methodology described in this paper will work
to estimate the nonlinear parameters with the described processes. The flowchart in Figure 4 details how the data
driven multilevel updating is applied to the aeroelastic test case. Presence of the highlighted feedback loop is the key
difference between the sing- and multilevel process. High fidelity model 𝑓 is a Harmonic Balance (HBM) continuation
process [9, 35]. Based on inputs 𝐾𝛼2 and 𝐾𝛼3, a bifurcation diagram is produced with data for velocity and LCO heave
amplitude output. Even with this low degree of freedom case study, this process can take between 3-10 seconds. A
Kriging algorithm is used to train data-driven model 𝑓 [36]. To effectively capture subcritical behaviour, 𝑓 is set up
with 𝐾𝛼2, 𝐾𝛼3 and LCO amplitude as inputs and velocity as the output. This set up allows the subcritcal behaviour
to be effectively recreated as only unique pairings of 𝐾𝛼2, 𝐾𝛼3 and LCO amplitude should exist in the training data.
Further detail on this process can be found in previous studies where the single-level approach is applied [21].

A. Single-level
The single-level process is applied to the case study and results are presented here as a reference case for the

multilevel study. Inputs to the algorithm are displayed in Table 1. Prior distributions 𝑃(𝜃) for each parameter is taken to
be uniform within the defined boundaries. Based on prior knowledge and experiments, the magnitude of quadratic
stiffness should not exceed 1𝑒3 [𝑁/𝑟𝑎𝑑2] and for cubic stiffness 1𝑒4 [𝑁/𝑟𝑎𝑑3]. It is possible however for parameters to
be both positive and negative. Width parameter was determined based on experiments with the converged surrogate
model. Bayesian model updating with TMCMC sampling is carried out until acceptance rate is as close to the idea
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(a) Nonlinear parameter histograms (b) TMCMC scatter plot

(c) Probabilistic response (− surrogate
mean), (■ 95% confidence region),(−−
HBM continuation), (• CBC data)

Fig. 5 Single-level data-driven BMU probabilistic parameters and response

Table 1 Single-level data-driven BMU inputs and outputs

inputs outputs

𝑃(𝜃) 𝜎𝑝 𝑖𝑛𝑐0 𝑎 mean 𝐶𝑂𝑉 𝑓 accuracy 𝑓 runs 𝑓 runs
𝐾𝛼2: Uniform(-1𝑒3, 1𝑒3) 0.6 10 0.5% 𝐾𝛼2: 508.6𝑁/𝑟𝑎𝑑2 6.43% 96.7% 1200 2000
𝐾𝛼3: Uniform(-1𝑒4, 1𝑒4) - - - 𝐾𝛼3: 2549.9𝑁/𝑟𝑎𝑑3 11.68% - - -

value of 0.234 as possible.
In constructing a single surrogate model spanning the whole design space, accuracy is found to converge at 75%.

This is deemed too large an error to extract meaningful results from in the single-level process. It is theorised the low
accuracy is a result of the large amount of varied behaviour between different combinations of positive and negative
inputs for nonlinear parameters. To resolve this, the design space is divided into four sub design spaces based on the
sign of each nonlinear stiffness parameter. As there is two input parameters this results in +/+, +/-, -/+ and -/- regions.
Separate data-driven models are built and linked into a full model with an "if" statement. This is similar to the method
used in the previous study [21]. Accuracy of the segmented model converges at 96.7% with 1200 training samples in
total.

With TMCMC, 1000 samples are drawn from the data-driven model to ensure a stationary solution was reached. A
further 1000 samples are drawn via MCS from 𝑓 to determine probabilistic behaviour. The data-driven model takes
on average 0.0012 seconds to run. The results are displayed in Figure 5 and Table 1. Histograms with normal shapes
are produced, with relatively low coefficient of variance (𝐶𝑂𝑉) suggesting a single-modal solution. The bifurcation
diagram produced captures a majority of the behaviour within the confidence bands. Using mean parameter estimates
directly with HBM continuation produces results that slightly deviate from the surrogate model mean. Particularly at
low amplitude points close to the hopf bifurcation. This leaves room for improvement in accuracy of the final Kriging
model. These results are used as a reference point for the multilevel study.

B. Multilevel
The multilevel process is now applied to the case study. Results are presented then compared to the single-level

results. Inputs into the algorithm are shown in Table 2. Initial prior distributions are the same as the prior distributions
from the single-level study. Final width parameter also remains the same so results can be compared effectively.
Accuracy convergence criterion of the data-driven model is increased from 0.5% to 2% to allow for coarser models at
lower levels. In this study, the number of levels was set to three.

Figure 6 displays the evolution of the process at each level. All training data at each level is shown, and the TMCMC
scatter plots generated using the resulting data-driven models is presented. It can be observed, that the algorithm
effectively updates the design space based on the current model and uses the updated prior to gather refined training
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Table 2 Multilevel data-driven BMU inputs and outputs

inputs outputs

𝑃(𝜃)0 𝑁 𝜎𝑝 𝑖𝑛𝑐0 𝑎 mean 𝐶𝑂𝑉 𝑓 accuracy 𝑓 runs 𝑓 runs
𝐾𝛼2: Uniform(-1𝑒3, 1𝑒3) 3 0.6 10 2% 𝐾𝛼2: 499.9𝑁/𝑟𝑎𝑑2 5.0% 99.8% 309 4000
𝐾𝛼3: Uniform(-1𝑒4, 1𝑒4) - - - - 𝐾𝛼3: 2356.6𝑁/𝑟𝑎𝑑3 8.3% - - -

(a) training data (b) TMCMC scatter plot (c) Probabilistic bifurcation diagrams

Fig. 6 Level comparison (• level 1),(• level 2),(• level 3)

data. It is apparent the process has converged to a single modal solution. Evolution of the probabilistic response is
displayed in Figure 6c with shaded areas representing 95% confidence regions. The response at level 1 is chaotic. The
mean response of level 2 and 3 is almost identical but with a noticeable increase in confidence between the levels.

Figures 7 and 8 describe the process through which training data is gathered for each data-driven model. The shaded
area in Figure 8 is based on the prior distribution from model updating shown in Figures 7b and 7c. Data within the
shaded area is saved and used in construction of the next model. Figure 9 shows the accuracy convergence of each
data-driven model. Average accuracy of the model improves by up to 30% between level 1 and 2. The final surrogate
model converges close to 100%.

Final results of the process are summarised in Figure 10 and Table 2. The shape of the histogram and the scatter plot
is close to the final result of the single-level result. The probabilistic response takes a slightly different shape, capturing
less of the data within the confidence region. The mean plot from the data-driven model is in closer agreement with the
plot directly from HBM continuation than in the single-level study. This suggest greater confidence can be placed in the
results. With reference to Tables 1 and 2, final result for mean 𝐾𝛼2 and 𝐾𝛼3 are within 2% of the single-level results
but with lower 𝐶𝑂𝑉 . Table 3 breaks down the multilevel results form each level. The change mean between level 2
and 3 is less than 1% but there is a noticeable reduction in 𝐶𝑂𝑉 and data-driven model accuracy. The result of this
is on the probabilistic response can be seen in Figure 6c. Accuracy of the level 3 model offers an improvement over

(a) Level 1 (b) Level 2 (c) Level 3

Fig. 7 Prior distributions at each level
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(a) Level 1 to 2 (b) Level 2 to 3

Fig. 8 Training data selection (• discarded data),(• saved data)

(a) Level 1 (b) Level 2 (c) Level 3

Fig. 9 Accuracy of data-driven model at each level (− mean accuracy),(− −std accuracy)
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Table 3 Progression of results at each level

Level mean 𝐾𝛼2 COV 𝐾𝛼2 mean 𝐾𝛼3 COV 𝐾𝛼3 Surrogate accuracy 𝑓 runs
1 235.6𝑁/𝑟𝑎𝑑2 79.9% 345.7𝑁/𝑟𝑎𝑑3 338.8% 74.9% 180
2 497.3𝑁/𝑟𝑎𝑑2 11.6% 2356.9𝑁/𝑟𝑎𝑑3 20.6% 97.1% 40(+29)
3 499.9𝑁/𝑟𝑎𝑑2 5.0% 2356.6𝑁/𝑟𝑎𝑑3 8.3% 99.8 % 100(+95)

(a) Nonlinear parameter histogram (−−
mean line) (b) TMCMC scatter plot

(c) Probabilistic response (− surrogate
mean), (■ 95% confidence region),(−−
HBM continuation), (• CBC data)

Fig. 10 Multilevel data-driven BMU probabilistic parameters and response (• Multilevel),(• Single-level)

the 96.7% accurate model in the single-level study. Level 2 model is also more accurate than the single-level model.
Training data requirement is the key area where the largest disparity is observed. Despite the model construction taking
40 input runs at level 2, 11 points from the 180 gathered in the level 1 are within the shaded area in Figure 8a. So only
29 additional training points are required. Similarly at level 3, 5 points from the previous level’s data collection are
within the design space. This results in a total training data requirement of 309 input continuation runs. That is a 74%
reduction on the 1200 samples required in the single-level study. The data-driven model is run 1000 times at each level
and 1000 further times to determine probabilistic behaviour. Average time to run 𝑓 is 6.5s and 𝑓 is 0.0012s. This gives
a total run time of 2.17 hours for single-level and 33.56 minutes for multilevel. Potential run time is reduced also by
74% in the multilevel study. Neither the single or multilevel process perfectly capture the behaviour of the experimental
data, both producing similar results. The difference between the prediction and experimental results is likely down to
the choice of a low-degree of freedom model or character of the nonlinearity.

IV. Conclusion
The results of this study have demonstrated that the proposed multilevel data-driven approach can both significantly

reduce training data requirements and improve surrogate accuracy compared to the single-level approach through
Bayseian model updating. Using the nonlinear aerofoil aeroelatic test case, nonlinear parameters were stochastically
identified with single- and multilevel approaches and compared. The proposed multilevel approach offered a 74%
reduction in training data requirements/run time and 3% increase in data-driven model accuracy whilst producing
parameter estimates within 2% of that from single-level BMU study. However, neither study fully capture the LCO
behaviour observed in the experimental data, suggesting the mathematical model could be improved further. Taking
forward the promising results from this study, the full benefits of the multilevel approach should be demonstrated on a
high fidelity aeroelastic test case. Further work should also be conducted on determining accuracy criterion of the
coarse data-driven models, with the goal of reducing training data requirements further.
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Single-level Multilevel
mean 𝐾𝛼2 [𝑁/𝑟𝑎𝑑2] 508.6 499.9
𝐶𝑂𝑉 𝐾𝛼2 [%] 6.4 5.0
mean 𝐾𝛼3 [𝑁/𝑟𝑎𝑑3] 2549.9 2356.6
𝐶𝑂𝑉 𝐾𝛼3 [%] 11.7 8.3
𝑓 accuracy [%] 96.7 99.8
𝑓 runs 1200 309
𝑓 runs 2000 4000
run time [mins] 130.2 33.6

Table 4 Caption
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