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Error Corrected References for Accelerated
Convergence of Low Gain Norm Optimal Iterative

Learning Control
David H Owens, Bing Chu

Abstract—To reduce the need for high gains (reduced control
weighting) for fast convergence in Norm Optimal Iterative
Learning Control (NOILC) the paper presents a simple data-
driven mechanism for accelerating the convergence of low gain
feedback NOILC controllers. The method uses a modification to
the reference signal on each NOILC iteration using the measured
tracking error from the previous iteration. The basic algorithm
is equivalent to a gradient iteration combined with a NOILC
iteration. The choice of design parameters is interpreted in terms
of the spectrum of the error update operator and the systematic
annihilation of spectral components of the error signal. The
methods apply widely, including continuous and discrete-time
end-point, intermediate point and signal tracking. The effects of
parameter choice are revealed using examples. A robustness anal-
ysis is presented and illustrated by frequency domain robustness
conditions for multi-input, multi-output discrete-time tracking,
and robustness conditions for end-point problems for state space
systems. Finally, the algorithm is extended to embed a number of
gradient iterations within a single NOILC iteration. This makes
possible the systematic manipulation of the spectrum, providing
additional acceleration capabilities with the theoretical possibility
of arbitrary fast convergence.

Index Terms—iterative learning control, performance optimi-
sation.

I. INTRODUCTION

Iterative Learning Control (ILC) is now well established as
part of the control scene and many papers have been published
[1], [2] plus several texts [3]–[7]. The area of study has
the challenges of Control Theory with the added ingredients
that (i) the system to be controlled must track an output
reference (or demand) signal to an arbitrary high accuracy
and (ii) the physical controlled process operates in a repetitive
manner. The reference signal could be a function or time
series defined on a finite interval, a desired end point, a finite
sequence of isolated intermediate points on a time interval or a
mixture of of these objectives as in multi-task ILC [7]. Typical
applications examples include robotic systems [8], chemical
batch processing [9], [10] and stroke rehabilitation [11].

The repetition (or iteration) offers the opportunity to use
measured input/output (and other) data from previous iter-
ations to improve on the performance observed in the first
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attempt to track the reference. Performance improvement is
typically expressed in terms of sequentially reducing a tracking
error norm and has the ultimate objective of producing much
higher accuracy than can be achieved by feedback control
alone. For mathematical analysis, the iterations are allowed
to be infinite in number. In practice, iterations will be finite
in number and the control improvement process will be
terminated when the tracking accuracy has been reduced to
desired levels.

A number of design paradigms [7], [12]–[31] have been
suggested and considerable insight has been obtained into the
nature of the control problem and performance limitations.
Issues of performance have focused primarily on the con-
vergence of the iterative process. Clearly convergence to a
desired solution is part of the requirement but, as each iteration
is a physical process in the real world (often involving the
organization of machines and operators), the speed of this
convergence (as expressed by the number of iterations needed
to achieve a desired tracking accuracy) is also important if
time and cost are to be within acceptable bounds. This paper
focuses on the use of the Norm Optimal Iterative Learning
Control (NOILC) algorithm introduced by Amann et al [18]
and brought together in the comprehensive text by Owens [7].
This class of algorithms constructs control inputs for each
iteration by minimizing a quadratic performance index. Further
details are provided in later sections but the essential properties
of NOILC for linear processes are that control improvements
are guaranteed theoretically from iteration to iteration but that
the rate of convergence depends upon the choice of parameters
used in the index. For state space systems, the general result
is that fast convergence requires the use of high gain state
feedback. High gain may be acceptable but, in circumstances
such as applications where measurements have some noise
component or where modelling errors are significant, high
gains may not be acceptable and other mechanisms that use
lower gains but retain the convergence speed of higher gains
would be preferred. This paper attempts to fill that need.

In this paper, good convergence rates are achieved without
high gain control by retaining the NOILC methodology but
adding the simple mechanism of changing the reference signal
r every iteration in a systematic manner. The original reference
r is still the signal to be tracked but, in achieving this objective,
it is replaced in NOILC calculations by a sequence of “error
corrected” references {rk+1}k≥0,

rk+1 = r + βk+1ek (1)
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where rk+1 denotes the (virtual) reference signal used on
iteration k+1, ek is the observed tracking error on the previous
iteration k and βk+1 is a scalar design parameter. The NOILC
parameters can then be chosen to avoid excessively high
gains in an implementation and convergence rates improved
by modifications to the reference signal on each iteration.
Note that the use of variable reference signals as a design
mechanism has not been explored in the literature and is a
distinct feature of the approach developed in this paper.

The contribution and organisation of the paper are as
follows:

1) The development in the paper summarizes (Section II)
the basic ideas of NOILC using the Hilbert space and
operator formulation used by Owens [7]. This has the
advantage of notational simplicity and generality as many
types of linear dynamics and control design problems
can be analysed and included. This is followed by a
discussion of the related Gradient ILC algorithm.

2) The error corrected algorithm is introduced (Section III)
and its properties analysed (Section IV) noting that,

• if the NOILC algorithm and the Gradient algorithm
are applied on alternate iterations, the basic conver-
gence properties of NOILC are still achieved,

• but that the two iterations steps can be combined to
form a new, simplified, iteration that takes the form
of NOILC with an error corrected reference signal.

Not only is the algorithm more rapidly convergent than
the use of NOILC alone, the choice of a free parameter in
the new algorithm can be approached using the concept of
spectral annihilation introduced by Owens in [7]. For state
space systems, this offers the opportunity to focus im-
proved convergence rates into selected frequency bands.
The important object needed to demonstrate the results is
the operator LLG relating errors on successive iterations.
This operator generates a function f(η) describing the
convergence rates associated with each spectral value η of
an operator GG∗. This function reveals the relationship
between the choice of parameters and that part of the
spectrum that can be annihilated/approximately annihi-
lated. The ideas open up the possibility of more complex
updates for the reference signals.

3) Error correction does influence the robustness of NOILC,
but a robustness analysis (Section V) characterizes the
change in robustness using the concept of “robust mono-
tonic error reduction” (Owens [7]). This analysis reveals
that low gain NOILC with error correction can have the
same robustness characteristics as the use of higher gain
NOILC without error correction.

4) To demonstrate this general design framework, interval
tracking and end point control problems for discrete time
systems are considered in Section VI with computational
aspects presented. Numerical examples are given in Sec-
tion VII to illustrate algorithm properties.

5) A generalization is considered (in Section VIII) with the
aim of achieving further acceleration by combining a
finite number of gradient iterations with one standard
NOILC iteration to form one NOILC iteration with a

modified reference signal. The greater the number of
gradient steps used, the more complex will be the off-line
computations needed so, ultimately, the generalisation is
primarily of theoretical interest. The limits of these possi-
bilities are demonstrated by showing that, in principle, an
arbitrary shape for the function f can be achieved, hence
achieving an arbitrary shape to the spectral convergence
and annihilation properties.

The paper substantially extends our previous conference
publication [32] by including i) a more comprehensive analysis
of the algorithm’s convergence properties, ii) a new section
on the robustness analysis, (iii) further generalisations of the
design approach, and iv) additional illustrative examples based
on applications to interval tracking and end-point control
problems.

II. UNDERLYING OPTIMIZATION ALGORITHMS

A. Models, Signals and Operators

The analysis aims to cover as many applications situations
as possible. This is achieved using the original methodology of
NOILC proposed in [18] and used more extensively in the text
[7]. The plant is assumed to be stable (to permit the collection
of data from plant experiments during the iterations). If not,
it is assumed that it already includes stabilizing control loops.
Its dynamics are assumed to be linear and described by a
bounded linear operator G mapping a real Hilbert space U of
input signals u into a real Hilbert space Y of output signals
y. The inner product in U (resp. Y) is denoted by ⟨u, v⟩U
(resp.⟨y, w⟩Y ). The induced norms in U (resp. Y) are then
given by ∥u∥U = ⟨u, u⟩

1
2

U (resp. ∥y∥Y = ⟨y, y⟩
1
2

Y ).
The model equations are represented in the form

y = Gu+ d, (2)

where d ∈ Y represents the initial condition and/or repeated
disturbances in the system dynamics. As noted in Owens [7],
this description covers many situations of practical interest
including convolution and state space descriptions of linear
continuous time state space models and sampled data and
multi-rate sampling systems plus problems where control
signals have specific structure exemplified by a requirement
that it is continuous and piecewise linear with discontinuities
only allowed at specific time instants. In a similar manner
to optimal control, the inner products and norms are design
variables that can be chosen to reflect physical properties of
the system, the control objective and/or the performance of
the iterative algorithm to be used.

To illustrate the possibilities of this formulation, a linear,
continuous-time, time-invariant, ℓ-input, m-output state space
system with input vector u(t) and output vector y(t) can be
associated with an input-output convolution relationship

y(t) =

∫ t

0

CeA(t−s)Bu(s)ds + CeAtx0 , t ∈ [0, tf ] (3)

which takes the form of (2) where G is the convolution oper-
ator defined by the impulse response matrix H(t) = CeAtB
and d(t) = CeAtx0. This is the representation used for
signal tracking problems. For end-point problems, the same
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relationship holds but where t takes the single value tf . In
both cases, the space U is the Cartesian product of ℓ copies
of L2[0, tf ] with inner product between two inputs u and v

⟨u, v⟩U =

∫ tf

0

uT (t)R(t)v(t)dt (4)

where R(t) is symmetric and positive definite for all t ∈
[0, tf ]. For the outputs, Y could be the product of m copies
of L2[0, tf ] with inner product between outputs y and w

⟨y, w⟩Y =

∫ tf

0

yT (t)Q(t)w(t)dt (5)

where Q(t) is symmetric and positive-definite for all t ∈
[0, tf ]. For end-point problems, this would be replaced by

⟨y, w⟩Y = yT (tf )Qw(tf ) , Q = QT > 0 . (6)

In practice [7], Q(t) can be meaningfully positive semi-
definite. For example, if tracking of a reference is only re-
quired on NI disjoint, closed sub-intervals [tj , tj+1] of [0, tf ],
then L2[0, tf ] could be replaced by the Cartesian product
of Hilbert spaces L2[tj , tj+1]. Q(t) should now be positive-
definite on these sub-intervals and zero elsewhere.

Finally, other examples including convolution descriptions
of discrete time systems, end-point and intermediate point
tracking problems can be found in [7] .

B. Iterative Learning Control (ILC)

Iterative Learning Control (ILC) considers a repetitive task
whose ultimate objective is to ensure that the output from
the system given by equation (2) tracks a given reference
signal r ∈ Y arbitrarily accurately. Using the formal definition
in the text by Owens [7], an ILC algorithm considers an
infinite sequence of iterations labelled by the iteration index
k = 0, 1, 2, 3, · · · . The iteration with index k = 0 is the
zeroth iteration and is characterized by the choice of an initial
control u0, measurement of the corresponding output y0 and
computation of the error signal e0 = r − y0. The choice of
initial input u0 is open to the user and could be generated
by empirical considerations based on simplicity, experience
and/or safety considerations. Alternatively, model-based, off-
line calculations based on one of the many feedback or optimal
control methodologies could be used. For future iterations, the
algorithm uses measurement data from iterations k′ ≤ k plus
model-based calculations and feedback, to construct an input
uk+1 for use on the next iteration k + 1. The result of this
input is the output yk+1 and tracking error ek+1 = r − yk+1.

The design issue for ILC is the construction of uk+1 and it
is here that different approaches can be taken. For the purposes
of this paper, the major requirement of the computation is that,

lim
k→∞

∥ek∥Y = 0 (7)

which expresses the ideal outcome that the ultimate value
of the tracking error is zero. The availability of relevant
measurement data is assumed and the convergence of the input
sequence {uk}k≥0 is also desirable. Once achieved, the issues
of convergence rates and robustness are important as is an
understanding of the nature of the converged input.

C. Norm Optimal Iterative Learning Control (NOILC)

NOILC [7], [18] now has a number of interpretations and
extensions, e.g., [33]. In this paper we consider its simplest
form. More precisely, given data (uk, yk) on the kth iteration,
NOILC constructs the input uk+1 to be used on iteration k+1
by minimizing the quadratic objective function

J(u) = ∥e∥2Y + ϵ2∥u− uk∥2U (8)

subject to the constraints given by the system dynamics (2). If
G is a state space model outlined in Section II-A and Y and U
are L2[0, tf ] spaces with inner products defined in that section,
this problem is a linear quadratic optimal control problem with
a familiar Riccati-style tracking solution.

A theoretical description of the behaviour of the algorithm
requires the use of G∗, the adjoint operator of G, i.e. the
uniquely defined and bounded linear operator Y → U sat-
isfying the condition that ⟨w,Gu⟩Y = ⟨G∗w, u⟩U for all
w ∈ Y, u ∈ U . The calculation of G∗ for a number of discrete
and continuous time state space problems can be found in [7].
They typically take the form of non-causal state space models
with terminal conditions although intermediate point problems
also need jump conditions to be included. For example, the
adjoint operator to the state space operator defined by (3)
with input and output spaces with inner products defined by
(4) and (5) has adjoint defined by v = G∗w in the form
v(t) = R−1(t)BT (t)ψ(t) where

ψ̇(t) = −ATψ(t)− CTQ(t)w(t) , ψ(tf ) = 0 . (9)

The terminal condition shows that G∗ is not causal as the
value of v(t) is depends on w(t′) for t′ ≥ t. The use of
optimal control methodologies makes it possible to construct
the minimizing solution for J(u) in a causal form.

Properties of the algorithm include:
1) The input update relationship is

uk+1 = uk + ϵ−2G∗ek+1 . (10)

For state space systems [7], this equation together with
the model equations form a two point boundary value
problem that can be solved using Riccati methodologies.

2) Operating on (10) with G gives yk+1 = yk +
ϵ−2GG∗ek+1. The error sequence therefore satisfies the
update relationship ek+1 = Lek, k ≥ 0 where the
operator L,

L = (I + ϵ−2GG∗)−1 . (11)

3) The error signal norm sequence is monotonic in the sense
that

∥ek+1∥Y < ∥ek∥Y , k ≥ 0 (12)

until input convergence has been achieved,
4) and the error signal converges to the signal given as

the orthogonal projection of e0 onto the subspace of Y
defined as the kernel of GG∗. If ker[GG∗] = {0}, then
the limit error is precisely zero.

5) The minimum value of J(u) is J(uk+1) = ⟨ek, Lek⟩Y ≤
J(uk) = ∥ek∥2Y .
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6) Finally, if the input sequence converges, it converges to
a limit u∞ that minimizes ∥u− u0∥2U . That is

u∞ = argmin{ ∥u− u0∥2U : r = Gu+ d } (13)

The parameter ϵ2 is a measure of the relative weight given
to the error and change in control signal. As it decreases, the
“controller gain” increases, and any feedback implementation
has a “high gain” form. High gain may introduce sensitivity
and robustness problems during each iteration so any algorithm
that ameliorates this issue will have attractive practical benefit
provided that convergence speeds can be retained.

D. Gradient-based Iteration

Gradient methodologies simplify the ILC algorithm struc-
ture. Using the approach of Owens in [7], a gradient algorithm
uses the update formula,

uk+1 = uk + βk+1G
∗ek , k ≥ 0 . (14)

Here G∗ is the adjoint of G and βk+1 > 0 is a scalar gain
parameter (the step length in normal gradient terminology).
The error update equation is, k ≥ 0,

ek+1 = LG(βk+1)ek , LG(β) = (I − βGG∗) . (15)

The algorithm retains the error monotonicity property if,

0 < βk+1 < 2∥G∗∥−2 , ∀k ≥ 0 , (16)

where ∥G∗∥ is the norm of the operator G∗. The NOILC
characterization of the limit also holds true in the case of
iteration independent gains [7].

E. A Note on Norm Evaluation

Firstly note that, in all cases, the operator norms satisfy

∥G∥2 = ∥G∗∥2 = ∥GG∗∥ = ∥G∗G∥ (17)

which provides alternative ways to characterize the problem.
In general, evaluation or estimation of the norm of GG∗ (or
G∗G) is a useful part of the design process. For example,

1) if GG∗ (or G∗G) is a matrix, with eigenvalues 0 ≤ · · · ≤
σ2
2 ≤ σ2

1 then its norm is the largest eigenvalue σ2
1 .

2) If the plant is a single-input, single-output (SISO), asymp-
totically stable discrete state space model characterized
by matrices A,B,C with a supervector model [7] defined
by a matrix G with u and y in the form of vector time
series of length N0 , then Y and U are the Hilbert spaces
RN0 . Consider the case when the inner products are

⟨y, w⟩Y = QyTw , ⟨u, v⟩U = RuT v (18)

where Q and R are strictly positive scalars, then an upper
bound for the norm is obtained from the inequality [7]

∥GG∗∥ = ∥G∥2 = ∥G∗∥2 ≤ sup
|z|=1

R−1Q|G(z)|2 (19)

(equality holding as N0 → ∞) where G(z) is the transfer
function of the system. This characterization provides
an important link to more traditional frequency domain
approaches to controller design. More general, multi-
input multi-output (MIMO) expressions can be found in
Owens [7].

III. ERROR CORRECTED REFERENCES AND
ACCELERATION OF NOILC

A. An Error Corrected Reference Algorithm

In principle, the choice of ILC algorithm can change from
iteration to iteration. For example, if iteration one is a gradient
iteration and iteration two is a NOILC iteration, the following
error update equation and monotonicity properties follow from
(11) and (15)

e2 = LLG(β1)e0 , ∥e2∥Y ≤ ∥e0∥Y . (20)

The corresponding input equations are

u1 = u0 + β1G
∗e0 , (Gradient Iteration)

u2 = u1 + ϵ−2G∗e2 , (NOILC Iteration) .
(21)

The crucial observation is that the two input equations can be
combined to give

u2 = u0 + ϵ−2G∗(ϵ2β1e0 + e2)

= u0 + ϵ−2G∗(r + ϵ2β1e0︸ ︷︷ ︸−y2) (22)

which has the structure of the NOILC update law (10) when
k = 0 if r is replaced by r1 = r + ϵ2β1e0 (a change in
reference signal) and y1 and u1 are replaced by the symbols
y2 and u2 (a change in labelling). This proves that

Theorem 1 (The Error Corrected Reference): The gradient
iteration followed by a NOILC iteration described above can
be combined into one NOILC iteration with the reference sig-
nal r replaced by the error corrected reference r1 = r+ϵ2β1e0
and the minimization of

J1(u) = ∥r1 − y∥2Y + ϵ2∥u− u0∥2U , (23)

which is just J(u) with r replaced by r1.
Note 1: As the gradient step has been incorporated with an

NOILC framework, the input generated by this minimization
will be denoted by u1 (rather than u2) to synchronize the
labelling with that of the error corrected reference signal r1.

The same argument can be applied to future pairs of gradient
plus NOILC iterations and suggests the following algorithm.
Note the change in indexing used to reflect the combined
gradient and NOILC iteration. Note also that the algorithm
allows the use of the open or closed ranges,

0 < βk+1 < 2∥G∗∥−2, 0 ≤ βk+1 ≤ 2∥G∗∥−2 . (24)

The reason for this is stated in the following, easily proved
result:

Proposition 1 (Improvements on NOILC): The self-adjoint
operators satisfy the statements,

1) if β = 0, then LLG = L,
2) −L ≤ LLG(β) ≤ L if β lies in the closed parameter

range 0 ≤ β ≤ 2∥G∗∥−2 and
3) if the range R[G] is dense in Y , then −L < LLG(β) < L

if β lies in the open parameter range 0 < β < 2∥G∗∥−2.

That is, in the case of an open range of choices for β,
the error correction algorithm is guaranteed to improve on the
error reduction when compared with standard NOILC. In the
closed range, the worst case scenario is that the error norm is
no worse that that observed using pure NOILC.
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Intuitively, error reduction from the incorporation of a
gradient component will require that the open range is used.
The closed interval allows βk+1 = 0 which removes the
gradient component from the calculation. The benefits of the
value βk+1 = 2∥G∗∥−2 will emerge when parameter choice
is discussed in terms of the eigenstructure of the operators.

The above leads to the following error corrected algorithm.
Algorithm 1 (AN ERROR CORRECTED NOILC ALGO-

RITHM): Let r be the reference signal. The algorithm chooses
{βk+1}k≥0 to be an infinite sequence of scalar gains in the
closed range defined by (24) and defines the sequence of error
corrected reference signals

rk+1 = r + ϵ2βk+1ek , k ≥ 0 , (25)

where ek = r − yk is the actual measured tracking error on
iteration k.

The error corrected reference NOILC algorithm is defined
by the iterative process described below starting with index
k = 0:

Step 1 Given the data {uk, yk, ek}, choose βk+1, compute
rk+1 and construct the form of the input uk+1 by
minimizing the performance index

Jk+1(u) = ∥rk+1 − y∥2Y + ϵ2∥u− uk∥2U (26)

subject to the plant dynamics (2). Note that:

a) Jk+1 is a modified form of the original NOILC
performance index (8) with r replaced by rk+1.

b) The solution will typically be a mix of on-line
experiment and off-line computations depending on
the structure of the system, the controller realization
and user choice [7].

Step 2 Use this information to record the new plant input
uk+1 and observed plant output yk+1 and construct
the new data set {uk+1, yk+1, ek+1}.

Step 3 If the error ek+1 is satisfactory, terminate the algo-
rithm. Otherwise, continue to the next step.

Step 4 Replace k by k + 1 and return to Step 1.

B. Feedback and Feedforward Implementations

As in NOILC [7], [18], the error corrected algorithm can
be implemented typically in more than one way. The equation
defining the control calculation

uk+1 = uk + ϵ−2G∗(rk+1 − yk+1)

= uk + ϵ−2G∗(ϵ2β1ek + ek+1) (27)

has, at the formal level, a feedback structure which, for dynam-
ical systems, is non-causal and hence cannot be implemented
directly. For state space systems it can be transformed into a
causal state feedback algorithm using Ricatti methodologies
but with r replaced by rk+1.

An alternative approach is to use a model-based, feedfor-
ward computation using uk and the observed error ek to
compute uk+1 off-line before application to the system to
generate the data for iteration k + 1.

The feedforward computations are revealed by substituting
the relationship ek+1 = LLG(βk+1) into (27) to give, after a
little manipulation,

uk+1 = uk + ϵ−2(1 + ϵ2βk+1)G
∗Lek . (28)

The important thing to note here is that once Lek has been
computed, G∗Lek, and hence uk+1, can be evaluated using the
model G. Note that Lek is just the signal ek − zk+1 = Lek
generated by one iteration of a NOILC algorithm to compute
zk+1 = Gv1 where

v1 = argmin{∥ek − z∥2Y + ϵ2∥v − v0∥2U : v0 = 0, z = Gv}

Note that zero initial conditions are required in the evaluation
and the signal z is a signal tracking a known “reference” ek.

IV. ALGORITHM PROPERTIES

A. Error Convergence Properties

Under the conditions defined above, the algorithm generates
a sequence of tracking errors {ek}k≥0 that satisfies the mono-
tonicity property (12) of NOILC. The iterations also satisfy
a number of conditions, obtained from the the preceding
discussion.

1) The error evolution is described by the relationship

ek+1 = Lk+1ek, Lk+1 = LLG(βk+1) . (29)

2) Each Lk+1 is self-adjoint with range Y and, together with
L and GG∗, form a mutually commuting set of operators.
They satisfy the inequalities,

−I ≤ −L ≤ Lk+1 ≤ L ≤ I , k ≥ 0, (30)

where the symbol ≤ in (30) can be replaced by < if (16)
holds true and ker[GG∗] = {0} (i.e., if ker[G∗] = {0},
which implies that the range of G, R[G], is dense in Y).
In particular, as 0 ≤ L2

G(β) ≤ I for all permissible values
of β,

L2
k+1 ≤ L2 , ∀ k ≥ 0, (31)

so that the product operator

Πk
j=0L

2
j+1 ≤ L2(k+1) (32)

and hence, for all k,

∥ek∥2 ≤ ∥Lke0∥2 . (33)

That is, the error norm of the error corrected algorithm,
on a given iteration, is always less than or equal to the
error, on that iteration, that would be found from using
the NOILC methodology starting at e0.

3) For all k ≥ 0,

R[I − Lk+1] = R[I − L] = R[GG∗] ,

ker[I − Lk+1] = ker[I − L] = ker[GG∗] = ker[G∗]

which, in particular, implies that the orthogonal subspaces
R[I−L] and ker[I−L] are Lk+1-invariant for all k ≥ 0
with Lk+1e = e for all e ∈ ker[G∗].

These properties support the following convergence proof
which relies heavily on previous work in Section 5.2.2 in
Owens [7] and, in particular, the techniques of Theorem 5.9.
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Theorem 2 (Error Convergence): The error corrected
NOILC algorithm generates a sequence of error signals that
is monotonically decreasing in norm. In addition,

1) If e0 lies in the closure, R(I − L) = R[GG∗], of the
range of I − L, then

lim
k→∞

∥ek∥Y = 0. (34)

2) If e0 is arbitrary, then the iteration is monotonic with
limit

lim
k→∞

ek = e∞ = Pker[I−L]e0 (35)

where Pker[I−L] denotes the orthogonal projection of e0
onto ker[I − L] = ker[G∗] in Y .

3) Finally, if e0 ∈ R[I − L] = R[GG∗], then the iterates
{ek}k≥0 also satisfy the summability condition∑

k≥0

∥ek∥2Y <∞ . (36)

Proof. The theorem is essentially Theorem 5.9 in the text
by Owens [7]. It is proved in a similar way noting that the
subspace and invariance properties of each and every one of
the {Lk+1}k≥0 are identical to those of L. The main change
is in the proof of the final statement which is true as, for any
integer p ≥ 0,

p∑
k=1

∥ek∥2 =

p∑
k=1

⟨Πk
j=1Lje0,Π

k
j=1Lje0⟩

=

p∑
k=1

⟨e0,Πk
j=1L

2
je0⟩ ≤

p∑
k=1

⟨e0, L2ke0⟩ (37)

which gives
p∑

k=1

∥ek∥2 ≤
p∑

k=1

∥Lje0∥2 (38)

which is the error norm summation obtained in NOILC starting
at e0. Using Theorem 5.9 in Owens [7], this is uniformly
bounded over values of p and the theorem is proved.

Remark 1: In effect the error corrected algorithm inherits all
of the error convergence properties of NOILC. The arbitrary
choice of the {βk+1}k≥0 within the constraints of (24) permits
to use error correction only on selected iterations simply by
setting βk+1 = 0 when a NOILC iteration is preferred.

B. Input Convergence Properties

Although the theory proves that the error always converges,
the input sequence may not converge to a limit in U unless
r− d lies in the range of G, e.g. for a reference signal that is
discontinuous but in L2[0, tf ], an input to a strictly proper state
space system that produces zero error will contain implusive
components that cannot be implemented in practice. In this
section, suppose that there exists at least one input u∞ ∈ U
that satisfies the tracking condition r = Gu∞ + d. If more
than one such control exists then they form a linear variety

Su = {u ∈ U : r = Gu+ d} (39)

representing the set of all controls that produce a zero tracking
error. It can be written as Su = ũ + ker[G] for any ũ ∈ Su.
Under this condition, the input updating equation becomes

u∞ − uk+1 = u∞ − uk − ϵ−2G∗(r− yk+1 + ϵ2βk+1(r− yk))

which reduces to the update relationship

u∞ − uk+1 = L0(I − βk+1G
∗G)(u∞ − uk),

where
L0 = (I + ϵ−2G∗G)−1.

This equation has the same structure as that for error evolution
with G and G∗ interchanged and L replaced by L0.

The following theorem now follows from a simple change
of notation and the observation that, if u∞ − u ∈ ker[G], it
must be true that u ∈ Su.

Theorem 3 (Input Convergence): The error corrected NOILC
algorithm generates inputs with the following properties:

1) If u∞−u0 lies in the closure, R(I − L0) = R[G∗G], of
the range of I − L0, then

lim
k→∞

∥u∞ − uk∥U = 0 & lim
k→∞

uk = u∞ . (40)

2) If u0 is arbitrary, then the input iteration has a limit û∞ ∈
Su satisfying

lim
k→∞

(u∞ − uk) = u∞ − û∞ = Pker[I−L0](u∞ − u0)

where Pker[I−L0] is the orthogonal projection of e0 onto
ker[I − L0] = ker[G] and, as a consequence, u∞ and
û∞ differ only in ker[G].

3) If u∞ − u0 ∈ R[I − L0] = R[G∗G], then the iterates
{u∞ − uk}k≥0 also satisfy the summability condition∑
k≥0

∥u∞ − uk∥2Y <∞ & lim
k→∞

uk = u∞ . (41)

Note 2: As U is the direct sum of the orthogonal closed
subspaces ker[G] and R[G∗G], the theorem covers all possi-
bilities.

The theorem is stated in a parallel form to that for error
convergence but the presence of the two inputs u∞ and û∞
can be removed by noting that u∞ can be chosen arbitrarily
in Su. Let it be the nearest point to u0 in Su. It follows
that ⟨u − u∞, u∞ − u0⟩ = 0 ∀ u ∈ Su. This implies that
u∞ − u0 is orthogonal to ker[G] leading to the conclusion
that Pker[I−L0](u∞ − u0) = 0 and hence, from the previous
theorem, that û∞ = u∞ which proves the following result,

Theorem 4 (Minimum Norm Property of the Input Limit):
The input sequence {uk}k≥0 converges to a limit u∞ that
retains the minimum input norm NOILC property

u∞ = argmin{∥u− u0∥2U : r = Gu+ d} (42)

C. Spectral Properties of the Error Convergence

Just as the eigenvalues of a matrix M govern the behaviour
of an iteration zk+1 = Mzk, k ≥ 0, the properties of
the algorithm presented in this paper are related to spectral
properties of the operators {Lk+1}k≥0. Using the notation
spec[Γ] to denote the set of spectral values of an operator
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Figure 1. The accelerating effect of β on the spectrum of Lk for Example 1

Γ : Y → Y , then the spectrum of Lk+1 is obtained from the
Spectral Mapping Theorem to be exactly

spec[Lk+1] =

{
1− βk+1η

1 + ϵ−2η
: η ∈ spec[GG∗] ⊂ [0, ∥GG∗∥]

}
and hence that the spectrum of Lk+1 depends on the spectrum
of GG∗ and lies on the curve

f(η, β) =
1− βη

1 + ϵ−2η
, β = βk+1 , η ∈ [0, ∥GG∗∥] .

This function has a simple form dictated by the NOILC
parameter ϵ2 and the choice of β. In particular,

f(0, β) = 1, ∀ β, & f(η, η−1) = 0, ∀ η ̸= 0 , &

−1 < f(η, β) < 1, ∀η ∈ (0, ∥G∗∥2], 0 ≤ β < 2∥G∗∥−2.

In addition, the special case of the spectral function f(η, 0)
generates the function for the original NOILC algorithm.

The shape of f(η, β) is illustrated in the following example
and underline the fact that f has modulus less than the
NOILC case for all parameters in the ranges of interest, i.e.,
|f(η, β)| < |f(η, 0)|.

Example 1: Consider the discrete-time SISO system

G(z) =
0.64

(z − 0.2)2
, sup

|z|=1

|G(z)| = 1, (43)

with zero initial conditions and inner products

⟨u, v⟩U =

N∑
t=1

u(t)R(t)v(t) , ⟨y, w⟩Y =

N∑
t=1

y(t)Q(t)w(t) .

Take time independent values Q = R = 1 and N = 200. It
follows that ∥G∗∥2 ≈ 1. Figure 1 shows the plot of f(η, β)
for ϵ2 = 1 with β = 0 , 0.5 , 1 , 1.5 , 2. The first represents
NOILC, the third a midpoint of interest and the fifth the largest
value of β that could be considered (i.e., 2∥G∗∥−2). It is
clearly seen that for any choice of β, the spectrum of the
learning operator is less than that of NOILC and thus faster
convergence is expected. For the choice of β = 1, the effect of
weighting ϵ2 on the spectrum of Lk is shown in Figure 2 where

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 2. The accelerating effect of ϵ on the spectrum of Lk when β = 1
for Example 1

ϵ2 decreases to take values 1, 0.5, 0.3, 0.2, 0.1, clearly showing
the attenuation effect of control weighting as expected.

To obtain a more detailed insight into the consequences,
consider the simplest case when all spectral values are eigen-
values. Let {ηj}j≥0 and {vj}j≥0 be the eigenvalues and
orthonormal eigenvectors of GG∗. As GG∗ is self-adjoint, all
eigenvalues will be real and positive. It follows that Lk+1 has
eigenvectors {vj}j≥0 and

Lk+1vj = f(ηj , βk+1)vj , j ≥ 0 , (44)

and, more generally,

Lk+1Lk · · ·L1vj = (Πk
p=0f(ηj , βp+1))vj , j ≥ 0 . (45)

The range of eigenvalues is given by

0 ≤ ηj ≤ ∥G∗∥2 = ∥G∥2 = ∥GG∗∥ = ∥G∗G∥ (46)

If η0 = 0 and the non-zero eigenvalues are ordered η1 ≥ η2 ≥
η3 ≥ · · · , the largest eigenvalue η1 = ∥G∗∥2. In particular
this means that the parameter range (16) is just

0 ≤ βk+1 < 2η−1
1 . (47)

In practice, the eigenstructure of GG∗ will frequently not be
known. Despite this fact, the functional dependence of the
spectrum of Lk+1 on that of GG∗ can be used to suggest
parameter choices. For example, if the initial error e0 has the
form

e0 =
∑

j≥0 ajvj , (48)

then the norm ∥e0∥2 =
∑

j≥0 a
2
j <∞. If there are an infinite

number of eigenvalues, then the contribution of eigenvectors
when j is large is small. If the number of eigenvalues is finite
but large in number then it will often be the case that the error
will be dominated by a smaller number of eigenvectors. As a
consequence, rapid convergence will typically be associated
with the rapid suppression of a finite number of eigenvector
contributions to e0.
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The convergence of NOILC iterations is revealed by writing

ek = Lke0 =
∑
j≥1

ajvj

(
1

1 + ϵ−2ηj

)k

=
∑
j≥0

ajvjf(ηj , 0)
k ,

which shows that the contribution of each and every eigenval-
ue/eigenvector reduces geometrically as iterations progress, the
smallest eigenvalues being associated with the slowest rate of
attenuation. Similarly, for the error corrected algorithm,

ek =
∑

j≥0 aj(Π
k
p=1f(ηj , βp))vj ,

∥ek∥2 =
∑

j≥0 a
2
jΠ

k
p=1f

2(ηj , βp) ,

which, together with Πk
p=1|f(ηj , βp)| ≤ |f(ηj , 0)|k, reveals

how the contribution of eigenvector components reduce more
rapidly than in the NOILC case and how the choice of βk+1

influences the reductions. For example, it follows that,
Proposition 2 (Almost Elimination of Eigencomponents):

1) If βp = η−1
j , (j ̸= 0), then, in the absence of modelling

errors, the contribution of vj to the error response is
eliminated for all iterations with index k ≥ p.

2) For a given choice of βp, the contribution of the eigenvec-
tors vj with eigenvalues close to β−1

p will be annihilated
or almost annihilated (and/or considerably attenuated) for
iterations k ≥ p.

It also follows that careful selection of the parameters
βk = η−1

k can, in theory, systematically annihilate the presence
of eigenvector components with eigenvalues greater than or
equal to ∥G∗∥2/2. In practice, of course, the eigenvalues will
frequently not be known. However, varying the {βk+1}k≥0

over the interval 0 < βk+1 < 2∥G∗∥−2 (or, preferably,
∥G∗∥−2 < βk+1 < 2∥G∗∥−2) will reduce errors faster
than the NOILC algorithm and, as f is continuous, almost
annihilate all eigenvectors close to the values β−1

k+1 , k ≥ 0.
Three Simple Options: based on the availability of an

estimate of ∥G∗∥2 are as follows,
1) The most cautious choice is to use a value, possibly small,

of β1 ∈ (0, ∥G∥−2) on all iterations. This will provide
some, but limited, acceleration of the algorithm.

2) Choose β1 ∈ [∥G∥−2, 2∥G∥−2] and use that value for all
iterations. For example, choosing βk+1 = ∥G∗∥−2 = η−1

1

for all iterations , immediately eliminates v1 and provides
very rapid reductions of the contributions of the very
largest eigenvalues (close to η1) plus improved reduc-
tions in the contributions of smaller eigenvalues when
compared with NOILC. This is shown in Figure 3 (for
the system of previous examples), and in Figure 4 over
two and four iterations. Note that the proposed algorithm,
in just two iterations (dotted cyan line in Figure 4),
outperforms NOILC over four iterations (red solid line
in Figure 4).

3) The third option is to vary β from iteration to iteration.
This can improve convergence rates considerably. For
example, choosing β1 = ∥G∗∥−2 and β2 = 2∥G∗∥−2

generates an error e2 = L2L1e0 which is associated
with the product f(η, 2∥G∗∥−2)f(η, ∥G∗∥−2) which is
shown in the Figure 4 where it is compared with the
equivalent NOILC function f2(η, 0) for the case of
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Figure 3. A Comparison of the NOILC spectrum and that of L1 with β1 = 1
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with constant and varying βs

ϵ2 = ∥G∗∥2, and the second choice of constant β = 1.
Their performance over four iterations, i.e., the spectra of
L4 and L4L3L2L1 = (L2L1)

2, (equivalent to choosing
β3 = β1, β4 = β2) are also shown. Note the considerable
implied improvement in convergence rates for spectral
values in the wide interval [0.2, 1]. Also note that the
choice of varying β outperforms the choice of constant
value β, particularly in the range of [0, 0.5].

These ideas are explored more fully using simulation ex-
amples in the following sections.

V. ALGORITHM ROBUSTNESS

A. Choice of Norm and Monotonicity

The previous sections have not considered the situation
where the plant model is uncertain. There are many types
of uncertainty but, to demonstrate that the error corrected
algorithm does possess some robustness properties, this section
considers the case where the case of a right multiplicative
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modelling error represented by a bounded, linear operator
U : U → U . The actual plant operator is then GU .

In [7], robustness analyses of several NOILC algorithms
are presented based on a modification of the notion that
robustness analysis ideally ensures that the algorithm retains
the property of monotonicity of the error norm ∥ek∥Y in the
presence of the uncertainty. This problem is difficult but it has
been demonstrated [7] that monotonicity of a topologically
equivalent norm can often be proved provided that U satisfies
some algebraic robustness conditions. The norm ∥ · ∥0 chosen
for the error corrected algorithm is defined by,

⟨e, w⟩0 = ⟨e, Lw⟩Y , ∥e∥20 = ⟨e, e⟩0 . (49)

The objective of the following analysis is to derive conditions
that ensure the monotonic reduction of {∥ek∥0}k≥0 as the
iterations progress, i.e., to characterize errors U that ensure
that

∥ek+1∥0 < ∥ek∥0, k ≥ 0 (50)

unless uk+1 = uk (when ek+1 = ek). Using the inequalities

∥e∥0 ≤ ∥e∥ ≤ (1 + ϵ−2∥G∥2)∥e∥0 , (51)

it is seen that the monotonicity of ∥e∥0 ensures the bound-
edness of ∥e∥ and, in particular, ∥ek∥ → 0 if, and only if,
∥ek∥0 → 0. Also the two norms are almost the same under
low gain conditions (represented by ϵ2 → +∞).

B. Robustness of a Feedforward Implementation

The feedforward algorithm is based on the input update (28),
and gives ek+1 = ek − ϵ−2(1 + ϵ2βk+1)GUG

∗Lek, so that

∥ek+1∥20= ∥ek∥20 − ϵ−2(1 + ϵ2βk+1)∆Ek+1 ,

where

∆Ek+1= ⟨G∗Lek,ΓG
∗Lek⟩Y ,

Γ= (U + U∗)− (ϵ−2 + βk+1)U
∗G∗LGU . (52)

This leads directly to the result that:
Theorem 5 (Algorithm Robustness): The error norm ∥e∥0

is always monotonically decreasing on iteration k + 1, in the
presence of right multiplicative modelling errors U , if

(U + U∗) > (ϵ−2 + βk+1)U
∗G∗LGU , (53)

with respect to the inner product ⟨·, ·⟩Y , on the range of G∗.
If, in addition, U has a bounded inverse Û on U , then this
condition is equivalent to the requirement that

Û + Û∗ > (ϵ−2 + βk+1)G
∗LG (54)

on the subspace R[UG∗].
Note:

1) As βk+1 increases, the set of U satisfying (53) gets
smaller indicating a reduction in robustness.

2) For a given value of ϵ2, the range of values of βk+1 that
satisfy the conditions are independent of iteration index
k ≥ 0. If at least one value β > 0 exists, then this range
takes the form β ∈ [0, β∗) for some β∗ > 0 .

3) If ker[G] = {0}, then R[G∗] is dense in U . If, in addition,
U is finite dimensional, then R[G∗] = U . This is the

case, for example, for discrete time state space systems
and, more generally, any problem where the input signal
is defined, linearly, by a finite number of parameters.

4) Replacing the range of G∗ (and UG∗) by U simplifies the
checks by removing the dependence on the (unknown)
perturbation U . It produces a more conservative result.

The presence of L in the robustness characterization can be
removed using either of the two relationships, proved using
the Spectral Mapping Theorem,

1

1 + ϵ−2∥G∥2
I ≤ L ≤ I , & G∗LG ≤ ∥G∥2

1 + ϵ−2∥G∥2
I .

These produce the following two separate sufficient conditions
for (53) to be true,

(a) (U + U∗) >
∥G∥2(ϵ−2 + βk+1)

1 + ϵ−2∥G∥2
U∗U ,

or (b) (U + U∗) > (ϵ−2 + βk+1)UG
∗GU , (55)

on the subspace R[G∗].
The first relationship (a) can be written in the form

(ζ−1I − U∗)(ζ−1I − U) < ζ−2I , ζ =
∥G∥2(ϵ−2 + βk+1)

1 + ϵ−2∥G∥2

which can be formalized in the following theorem:
Theorem 6: The Error Corrected Algorithm has the property

of robust error norm reduction on all iterations k ≥ 1 if

∥ζ−1I − U∥ < ζ−1 , where (56)

ζ =
∥G∥2(ϵ−2 + βmax)

1 + ϵ−2∥G∥2
, βmax = sup

k≥0
βk+1 . (57)

ζ increases as βmax increases. The following result there-
fore links increases in βmax to robustness,

Proposition 3: If U satisfies (56) for a given value ζ1, it
also satisfies the condition for all ζ2 ≤ ζ1.
Proof. Write, using norm inequalities,

∥ζ−1
2 I − U∥ ≤ ∥ζ−1

1 I − U∥+ (ζ−1
2 − ζ−1

1 ) < ζ−1
2 , (58)

as required.
Note that,

1) In later sections, (98) shows that ζ ≤ 2.
2) A necessary condition for (56) to be true is that U satisfies

the norm bound ∥U∥ < 2ζ−1.
3) (56) has a similar structure to the robustness conditions

found for the inverse ILC algorithm [7].
4) The nominal value of U is U = I . Using (55)(a), the

requirement that U = I is included in the permissible
uncertainty set generates the sufficient requirement that

0 ≤ βk+1 < 2∥G∥−2 + ϵ2 , (59)

which is true for all ϵ2 > 0 if βk+1 ∈ [0, 2∥G∥−2].
A sufficient condition for the existence of parameters satis-

fying (55)(a) is as follows,
Proposition 4 (Effect of Small Parameter Values): If U +

U∗ ≥ δI for some δ > 0, then the error corrected algorithm
has the property of monotonically decreasing norm with
respect to all small enough values of ϵ−2 + βk+1 , k ≥ 0.
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The condition is a strong form of positive-definiteness of
U + U∗ in the topology defined by ⟨·, ·⟩U in U and is linked
to the notion of positive real systems.

Finally, if βk+1 = 0 the robustness result for NOILC derived
in Theorem 9.6 in Section 9.2.2 of [7] is recovered and as
ϵ2 → ∞, L → I , and the characterization reduces to that of
the gradient algorithm discussed in Chapter 7 of that reference.

C. State Space Systems: Tracking Problems

Consider now a discrete state space systems (69) with m×ℓ
transfer function matrix G(z) using the notation of Section
VI-A and replacing R[G∗] by U . U can then be identified with
an ℓ×ℓ transfer function matrix U(z). The assumption that U+
U∗ ≥ δI for some δ > 0 can, if U(z) is asymptotically stable,
be replaced by the strictly positive real frequency domain form
(Section 4.8 in [7]),

∀ |z| = 1 , RU(z) + UT (z−1)R ≥ δR , δ > 0 ,
(60)

the positivity being defined in the Euclidean topology in Cℓ

defined by the inner product ⟨u, v⟩Cℓ = ūT v.
Proposition 5 (Robustness Condition (a)): Suppose that

U(z) is asymptotically stable. Consider the robustness con-
dition (55)(a) written as ∥ 1

ζ I − U∥ < 1
ζ . This can be written

in frequency domain form [7],

sup
|z|=1

r(
1

ζ
I − U(z))(

1

ζ
−R−1UT (z−1)R) <

1

ζ2
, (61)

where r(·) is the spectral radius of the argument, and ζ is
defined by (57).

The alternative robustness condition expressed in terms of
an asymptotically stable inverse Û(z) of U(z) is just

RÛ(z) + ÛT (z−1)R > ζR, ∀ |z| = 1 . (62)

For SISO systems, this reduces to the requirement that the
Nyquist plot of Û(z) should lie in the open region of the
complex plane to the right of the vertical line Re[z] = 1

2ζ.
Now, consider the robustness condition (55) (b) written in

the inverse form

Û + Û∗ > (ϵ−2 + βmax)G
∗G on U . (63)

This can be converted to a frequency domain form [7], to
obtain

Proposition 6 (Robustness Condition (b)): Suppose that both
U(z), Û(z) and G(z) are asymptotically stable. Robustness
condition (55)(b) is satisfied in error corrected NOILC tracking
problems for discrete state space systems if, ∀|z| = 1,

RÛ(z) + ÛT (z−1)R > (ϵ−2 + βmax)G
T (z−1)QG(z) ,

which is a positivity condition in Cℓ.
Note the following observations:

1) The requirement that both U(z) and Û(z) are asymptot-
ically stable is equivalent to the requirement that U(z) is
both asymptotically stable and minimum-phase.

2) For strictly proper systems, G(z) becomes very small
around the high frequency point z = −1 . The condition

therefore allows greater uncertainty in this frequency
range before monotonicity is lost.

3) Robustness decreases as the sum ϵ−2 + βmax increases
and stays constant if this sum is constant. Lower gains
are introduced if ϵ2 is increased but the same degree of
robustness reclaimed, and some or all of the convergence
rate regained, by increasing β. This observation reinforces
the assertion that error correction accelerates low gain
NOILC with little effect on algorithm robustness.

D. State Space Systems: End-Point Control

Using the notation of Section VI-B, (55)(a) is

U + U∗ > ζU∗U , on the subspace R[G∗] , (64)

where the parameter ζ is computed using the norm ∥G∥2 =
∥GG∗∥. The evaluation of this quantity is discussed in Section
VI-B and is the largest eigenvalue of the m×m matrix GG∗.

The condition requires verification of the m × m matrix
inequality

GUG∗ +GU∗G∗ > ζGU∗UG∗ . (65)

The dependence on U is, however, implicit. This problem is
removed by replacing R[G∗] by U when the condition

Û + Û∗ > ζI , on U , (66)

reduces the robustness condition to that of the previous section.
It is simply the value of the norm ∥G∥2 that changes.

E. Robust Error Convergence

It is known that {∥ek∥0}k≥0 is monotonic and bounded. In
what follows the possibility that {∥ek∥0} (and hence {∥ek∥Y}
converges to zero is discussed.
Convergence in Norm: Write the error evolution in the
form ek+1 = LU (βk+1)ek where LU (βk+1) = I − (ϵ−2 +
βk+1)GUG

∗L and consider the quantity

⟨e, LUe⟩0 = ⟨e, (L− (ϵ−2 + βk+1)LGUG
∗L)e⟩Y (67)

Using the robustness condition (53) yields ⟨e, LGUG∗Le⟩Y >
0, ∀e ∈ Y . It follows that LU (βk+1) < I in the Hilbert
topology in Y with the inner product ⟨·, ·⟩0.

Returning to ⟨e, LGUG∗Le⟩Y ≤ ∥U∥⟨e, LGG∗Le⟩Y
where ∥U∥ is the induced operator norm in the Hilbert
topology in U induced by ⟨·, ·⟩U . Using the identity LGG∗ =

(I − L)ϵ2 ≤ ∥G∥2

1+ϵ−2∥G∥2 I then gives

⟨e, LU (βk+1)e⟩0 ≥ (1− ∥U∥ζ)⟨e, e⟩0 (68)

where ζ is defined in (57). It follows that (−1 + µ)I <
LU (βk+1) < I (in the ⟨·, ·⟩0 topology) for any µ < 2−ζ∥U∥.
It is easily shown that the existence of such a value µ > 0 is
guaranteed if the robustness criterion (56) is satisfied.

The relation (−1 + µ)I < LU < I, µ > 0 is precisely the
condition required to prove convergence of the error, in norm,
to zero when the βk+1 are iteration independent (Theorem
5.9 in [7]). The iteration dependent result follows in a similar
manner. The details are omitted for brevity.
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VI. DISCRETE TIME SYSTEMS: INTERVAL TRACKING &
END POINT CONTROL PROBLEMS

In this section, we discuss the application of the general
design framework to two commonly met ILC design problems,
namely the interval tracking problem and end point control
problem. Consider a linear, time-invariant, ℓ-input, m-output,
state dimension n, discrete time state space system with
sample interval h on a time interval [0, tf ] with sample points
t = 0, h, 2h, · · · , Nh = tf . Simplifying the notation by
assuming that h = 1, the model has the classical form,

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t), t = 0, 1, 2, · · · , N (69)

The input time series {u(0), u(1), · · · , u(N − 1)}
can be regarded as generating the output time series
{y(1), y(2), · · · , y(N)}.

A. Interval Tracking Problem

The objective is to find an input time series, represented by
the column matrix u = [uT (0), · · · , uT (N − 1)]T , such that
the output y = [yT (1), · · · , yT (N)]T tracks a reference time
series r = [rT (1), · · · , rT (N)]T . The transfer function matrix
of the system is G(z) and the associated operator denoted
G. The norm ∥G∗∥2 = ∥G∥2 = ∥G∗G∥ = ∥GG∗∥ can be
estimated using the computations found in Section 4.8.1 in
Owens [7]. More precisely, using the Hilbert space U of inputs
with the inner product ⟨u, v⟩ =

∑N−1
t=0 uT (t)Rv(t) where R

is ℓ×ℓ, symmetric and positive definite and the Hilbert space Y
of outputs with the inner product ⟨y, w⟩ =

∑N
t=1 y

T (t)Qw(t)
where Q is m × m, symmetric and positive definite, the
operator norm is bounded [7] by

∥G∥2 ≤ sup
|z|=1

r
(
R−1GT (z−1)QG(z)

)
, (70)

where r(·) is the spectral radius of the argument. The accuracy
of the upper bound increases as the length of the time interval
Nh increases, becoming exact when N → ∞.

Given a starting input time series u0 and the error e0,
iterations are based, for all k ≥ 0, on tracking the error
corrected reference r(t) + ϵ2βk+1ek(t) , t ≥ 0 by using
optimal control methods to minimize the objective function

J =

N∑
t=1

( (rk+1(t)− y(t))TQ(rk+1(t)− y(t))

+ϵ2(u(t− 1)− uk(t− 1))TQ(u(t− 1)− uk(t− 1)) ) (71)

The choice of the parameters {βk+1}k≥0 can be based on
the ideas outlined in the section on endpoint control but,
for tracking problems of the type discussed here, there is a
useful frequency domain interpretation. The details can be
found in Section 7.2.3 in the text by Owens [7] but, in
essence, a choice of β will almost annihilate eigencomponents
of GG∗ at all frequencies where the gain of the eigenvalues of
G(z)R−1GT (z−1)Q take the value β−1. The details are omit-
ted here for brevity but the simplest case of SISO systems can
be summarised as follows: if zj are the distinct N th complex

roots of unity then W (zj) = [1, zj , · · · , zN−1
j ]T , 1 ≤ j ≤ N ,

are a (complex) basis for Y representing “sinusoidal ” varia-
tion. The useful relationship here is as follows,

GG∗W (zj) ≃ R−1Q|G(zj)|2W (zj) , 1 ≤ j ≤ N , (72)

the approximation being increasingly accurate as N increases.
That is, the squared modulus of G(z) can be regarded as
an “approximate eigenvalue” and the oscillatory time series
W (zj) as an approximate eigenvector. This suggests that
choosing β = RQ−1|G(z)|−2 will approximately annihilate
the frequency component of the error at the frequency z. The
is illustrated in the examples of the next section.

B. End Point Control Problem

Consider the case of end point control [7], [34], [35] where
it is desired that the control sequence is chosen to reach a
desired end point y(N) = yf . In ILC terms, the aim is to find
the input time series column vector u = [uT (0), · · · , uT (N −
1)]T that takes the output y = y(N) to the final value r = yf .
The error on the kth iteration will simply be

ek = r − yk = yf − yk(N) . (73)

The dynamics has the alternative form y = Gu+ d where

G = [CAN−1B, · · · , CAB,CB], d = CANx0.

In terms of the notation of previous sections, use the inner
product ⟨y, w⟩ = yTQw in the output Hilbert space Rm of
m × 1 columns of real numbers. The m × m matrix Q is
symmetric and positive definite. The Hilbert space of inputs
will be taken to be of the form defined by the inner product
⟨u, v⟩ = uTRv in the Hilbert space Rℓ(N−1). Typically R is
block diagonal of the form R = blkdiag[R1, R2, · · · , RN ],
where each Rj is symmetric and positive definite. From the
text by Owens [7], the adjoint operator

G∗ = R−1GTQ ⇒ GG∗ = GR−1GTQ (74)

which is an m ×m matrix with m positive, real eigenvalues
η1 ≥ η2 ≥ · · · , ηm ≥ 0 with ηm > 0 if and only if G has
full rank. This matrix (and its eigenstructure) can be estimated
using a model and the quantity ∥GG∗∥ = ∥G∗G∥ = ∥G∥2 =
∥G∗∥2 set equal to the largest eigenvalue. The case of single-
input, single output (SISO) systems with m = ℓ = 1 and Q
and R multiples of the identity, gives

∥GG∗∥ = ∥GR−1GTQ∥ = R−1Q∥H∥2 , (75)

where ∥H∥2 =
∑N

t=1(CA
t−1B)2 is the squared Euclidean

norm of the impulse response sequence for the system trun-
cated to the interval of interest.

The operators and norms associated with error evolution for
NOILC and the error corrected algorithm are m×m matrices,

L = (I + ϵ−2GR−1GTQ)−1, LG(β) = I − βGR−1GTQ ,

∥G∗∥2 = η1, 0 ≤ β ≤ 2η−1
1 .

The range of GG∗ is the span of eigenvectors of GR−1GTQ
associated with non-zero eigenvalues whilst the kernel of GG∗

is the span of eigenvectors having zero eigenvalues. In order
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that all possible output final values yf can be reached, all
eigenvalues must be non-zero.

Starting with an initial control sequence, u0, the problem to
be solved for the (k+1)th iteration is, given the error from the
kth iteration and a choice of βk+1, to construct the error ek =
yf − yk and the corrected reference rk+1 = yf + ϵ2βk+1ek
and then to find the input time series vector uk+1 minimizing

J = (rk+1 − y(N))TQ(rk+1 − y(N))

+ ϵ2
N−1∑
t=0

(u(t)− uk(t))
TRt+1(u(t)− uk(t)) . (76)

This is a well defined optimal control problem that can be
computed off-line (a feedforward solution) or solved on-line
(a feedback solution) using Riccati matrix methods.

For end point problems with only non-zero eigenvalues,
the first thing to note is that the choice of the parameters
βp = η−1

p , p = 1, · · · ,m will, in theory reduce the end-
point error to zero on the mth iteration k = m. More
generally, choosing βp, sequentially, to be equal to the distinct
eigenvalues will reduce the end-point error to zero in ≤ m
iterations. In the process, the algorithm finds the control that
transfers the system from its initial state to the desired final
output, using a control time series that minimizes

∥u− u0∥2 =

N−1∑
t=0

(u(t)− u0(t))
TRt+1(u(t)− u0(t)). (77)

The SISO case will achieve the objective in one iteration
using the error corrected reference r1 = yf+ϵ

2R−1Q∥H∥2e0.
More generally, the eigenvalues are not known but, if the norm
∥GG∗∥ can be estimated, an approximation to the desired
range of parameters βk+1 will be available.

Finally, note that,
1) u0 will influence the form of the converged input. It is

natural to use one of a desirable or convenient form even
if it fails to meet the end point condition. For example,
u0 could be generated by a single NOILC iteration
attempting to track a nominal reference rnom time series
starting at Cx0 and terminating at y(N) = yf . The
nominal trajectory could be chosen to represent the sort
of motion that fits the characteristics of the application.

2) The intermediate point control problem [7], [24], [26]
also lead to relatively low order matrix descriptions of L
and GG∗ of dimension ≪ N so similar comments can
be made for this case but are omitted for brevity.

VII. ILLUSTRATIVE COMPUTATIONAL EXAMPLES

In this section, we provide several numerical examples to
illustrate the performance of the design algorithms.

A. Interval Tracking Problems

The following examples are designed to verify the validity
of the theory and its interpretation. In all cases, ϵ2 = 1.

Example 2: Annihilating a Single Frequency/Spectral
Value. As noted above, in [7], it is shown that, for a discrete
SISO state space system (A,B,C) operating on an interval

t = 0, 1, 2, · · · , N with transfer function G(z) and a suitable
choice of sinusoidal vector α(z) = {1, z, z2, · · · , zN}, the
relation (

GG∗ −R−1Q|G(z)|2I
)
α(z) ≈ 0 , (78)

with good accuracy if control is on a long enough interval. The
interpretation of this is that α(z) is an approximate eigenvector
of GG∗ with approximate eigenvalue R−1Q|G(z)|2. This
suggests that the choice of

β1 = RQ−1|G(z)|−2 (79)

will almost annihilate an initial error α(z) in one iteration.
For example, considering the linear SISO discrete system with
transfer function

G(z) =
0.7

z − 0.7
, sup

|z|=1

|G(z)| = 2.333 . (80)

Zero initial conditions are assumed and a reference signal
defined by the oscillating time series

r = {r(t)}0≤t≤N , r(t) =
1

c
sin(

π

2
t) =

1

c
Im

[
it
]
, (81)

with a frequency z = i, trial length N = 2000, and a constant
c = 31.6228 normalising the reference norm (to be unity). The
weights in the performance index are chosen as Q = R = 1.

Approximate annihilation of the single frequency refer-
ence is approached by using (79) to choose βk+1 = 3 ≈
RQ−1|G(i)|−2. The algorithm is initiated with u0 = 0. The
first iteration gives the error norm values

∥e0∥ = ∥r∥ = 1 , ∥e1∥ = 0.0222. (82)

The substantial reduction in error provides a simple illustration
of the approximate annihilation properties of the new algo-
rithm. Note the gain used does not satisfy (16) and is not
necessarily an acceptable choice for further iterations.

Example 3: Annihilating a Frequency/Spectral Band.
Reference signals, in most cases, contain a wide band of
frequencies and plant dynamics are more complex. A simple
illustration of possible approaches to such cases is the choice

G(z) =
0.64

(z − 0.2)2
(83)

with zero initial conditions and a reference signal r(t) =
t, t = 1, 2, · · · , N .

Again take Q = R = 1 and N = 200. Then (19) suggests
that ∥G∗∥2 ≈ 1. Taking the initial control u0 = 0, the results
obtained for NOILC and two error corrected approaches are
shown in the plot of the evolution of the error norm in Fig. 5.
The two approaches are:

1) Approach One: Take βk+1 = β to be iteration inde-
pendent and let β = 1 to approximately annihilate the
contribution of the eigenvectors corresponding to the
largest eigenvalues of GG∗. Alternatively, (78), the choice
will approximately annihilate the DC and part of the
low frequency bandwidth content of the error. Fig. 5
confirms the initial and long term improvements in rate of
convergence compared with NOILC. Given the simplicity
of the error correction mechanism, its benefits are clear.
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Figure 5. Logarithmic error norm convergence for NOILC and error corrected
algorithms showing order of magnitude increases in convergence rates for
Example 4

2) Approach Two: By letting the gains vary from iteration
to iteration, different frequency contributions can be ap-
proximately annihilated. The constraint of (24) is taken
to ensure that overall error reduction is guaranteed as the
iterations progress. This means that we must focus on the
frequencies where

0.5 ≤ |G(z)|2 ≤ 1 . (84)

The values of these frequencies are not required for the
choice of βk+1. All that is needed is to choose βk+1 ∈
[1, 2]. To illustrate the possibilities, the choices are made
to ‘cover’ this interval, for example,

β1 = 1.0, β2 = 1.2, β3 = 1.4, β4 = 1.6, β5 = 1.8 (85)

and, for simplicity, βk+1 = 2.0 thereafter. As the gain
of G(z) decreases with frequency, the motivation for this
choice is to sequentially and approximately annihilate the
frequency content of the error in the range represented by
(84), beginning with the lowest frequency.
The algorithm behaviour is shown in Fig. 5 . Although
NOILC and Approach One produce monotonic reductions
in norm, varying βk+1 further accelerates the algorithm
producing even more rapid reductions in error norm.
The two approaches used for gain selection show different
behaviours. For the first iteration, the norm reduction is
the same (as the gain value is the same). For Approach
One, error norm reductions are two orders of magnitude
better than NOILC over twenty iterations. For further
iterations, varying the gains in Approach Two adds to
the acceleration by a further two orders of magnitude as
it is more effective in eliminating frequency content in
the range (84).

B. End Point Control

The following example illustrates the the error corrected
algorithm for end point control. Note the weighting chosen is
ϵ2 = 1.

Example 4: Consider the state space model (69) with

A =



1 0 0 0 0 0 0 0
0.001 1 0 0 0 0 0 0
0 0.001 1 0 0 0 0 0
0 0 0.001 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0.001 1 0 0
0 0 0 0 0 0.001 1 0
0 0 0 0 0 0 0.001 1


,

B =

[
0.001 5× 10−7 0 0 0 0 0 0
0 0 0 0 0.001 5× 10−7 0 0

]T
C =

[
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

]
with x0 = 0 and a sampling time of h = 0.001s. This
is a model used in functional electrical stimulation based
stroke rehabilitation after applying a feedback linearisation
controller (see [36] for more detail). The input to this model
is the electrical stimulation levels applied to two pairs of arm
muscles, and the two outputs are angle positions of two arm
joints. The design objective is to compute the input such that
the output reaches the following desired position at tf = 6s
(or equivalently at sample number N = 6000)

yf =

[
−0.3
−0.6

]
.

With the choice of R = I,Q =

(
2 0
0 1

)
it is easy to compute

GG∗ =

[
2.2217 0

0 1.1109

]
,

whose eigenvalues are η1 = 2.2217, η2 = 1.1109. From the
above discussion, if we choose β1 = η−1

1 = 0.4501, β2 =
η−1
2 = 0.9002, the tracking error will be eliminated in 2

iterations. To show this, if we choose u0 = 0, the tracking
error can be computed as follows:

e0 =

[
−0.3
−0.6

]
, e1 =

[
0

−0.1421

]
, e2 =

[
0
0

]
,

confirming convergence to zero error in two iterations. This is
true for all choices of u0 and almost all R and Q. Exceptions
include, for example, the choice of R = I and Q as a multiple
of the identity matrix when convergence is achieved in one
iteration!

The examples provide evidence that the acceleration pro-
duced by the simple, easily implemented, error correction
mechanism can, in the absence of modelling errors, be sub-
stantial.

VIII. SPECTRAL MANIPULATION: A GENERALIZATION

A. A Modified Error Corrected Reference Algorithm

It is natural to consider the possibility of undertaking mG

off-line gradient steps between each on-line NOILC iteration
and ask whether or not the process can be replaced by a single
error corrected NOILC iteration.

On the (k + 1)th iteration, the error resulting from the
gradient calculations has the form (I−GG∗Φ(GG∗))ek where
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Φ(λ) is a polynomial of degree mG− 1 with Φ(0) > 0. More
precisely,

Φ(λ) = λ−1

1−
mG∏
j=1

(1− β
(j)
k+1λ)

 , (86)

where {β(j)
k+1} are the gradient gains used in the mG gradient

steps. This demonstrates that the gradient steps are equivalent
to a single gradient update with

uk → uk +G∗Φ(GG∗)ek . (87)

Following the gradient steps by a NOILC calculation, sug-
gests an input update equation of the form

uk+1 = uk + ϵ−2G∗(ϵ2Φ(GG∗)ek + ek+1) (88)

which becomes an error corrected reference algorithm with

rk+1 = r + ϵ2Φ(GG∗)ek , k ≥ 0 . (89)

The calculation of rk+1 is based on model-based computation
of the terms such as (GG∗)pek, 1 ≤ p ≤ mG − 1 , typically
using simulation methods. The resultant relationship between
successive errors takes the form ek+1 = LLGek with LG

defined by

LG =

mG∏
j=1

(I − β
(j)
k+1GG

∗) =I −GG∗Φ(GG∗) . (90)

B. Properties of the Algorithm

If each of the gradient steps reduces the error norm, it
follows that −I ≤ LG ≤ I , from which

−L ≤ LLG ≤ L . (91)

Hence, using techniques to those used earlier, the error norm
sequence reduces faster than the standard NOILC algorithm
and has identical convergence properties. The details are
omitted for brevity.

The nature of the convergence depends on the choice of
gradient parameters and the spectrum of LLG,

spec[LLG] = {f(η) : η ∈ spec[GG∗]} ⊂ (−1, 1] .

Define, for 0 ≤ η ≤ ∥G∥2, the function f ,

(−1)

1 + ϵ−2η
≤ f(η) =

1− ηΦ(η)

1 + ϵ−2η
≤ 1

1 + ϵ−2η
(92)

The form of f describes the rate of convergence of the
component of the error associated with the spectral value η.

Example 5: Consider the same system (and the settings) as
in Example 1. If mG = 2 and LG = (I−α1GG

∗)(I−α2GG
∗)

with αj ∈ [0, 2∥G∥−2], j = 1, 2, then Φ(λ) = (α1 + α2) −
α1α2λ. Choosing α1 = 1 and α2 = 2 produces an f(η) of the
form illustrated in the Figure 6 and compared with the form
for a single standard NOILC iteration. Note that, in principle,
the improvement in convergence speed is substantial.

In conclusion the error corrected algorithms has the po-
tential to produce very rapid convergence which will reduce
the on-line gains needed in the NOILC phase by allowing an
increase in the value of ϵ2. In effect, error correction allows
fast convergence without high gain feedback.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

NOILC

1
=1,

2
=2

Figure 6. The effect of two gradient updates on the spectrum spectral function
f(η) when α1 = 1, α2 = 2 for Example 5

C. Robustness Properties

The robustness of the algorithm in the presence of a right
multiplicative perturbation U is affected by the more general
form of Φk+1(η). The feedforward algorithm is described by

uk+1 = uk + ϵ−2G∗(ϵ2Φk+1(GG
∗) + LLG)ek ,

ek+1 = ek − ϵ−2GUG∗(ϵ2Φk+1(GG
∗) + LLG)ek

= ek −GUG∗(Φk+1(GG
∗) + ϵ−2I)Lek (93)

Robustness is expressed in terms of the monotonic reduction
of an appropriate norm. The inner product chosen is

⟨e, w⟩0 = ⟨e, (Φ(GG∗) + ϵ−2I)Lw⟩Y (94)

and the induced norm ∥e∥20 = ⟨e, e⟩0 which is a norm as the
gradient property requires that GG∗Φ(GG∗) ≥ 0 and hence
that Φ(GG∗) ≥ 0. With the plant dynamics GU this yields,
after a little manipulation,

∥ek+1∥20 = ∥ek∥20 − ⟨v,Γv⟩Y , (95)

where

v = G∗(Φk+1(GG
∗) + ϵ−2I)Lek,

Γ = U + U∗ − U∗GL(Φ(GG∗) + ϵ−2I)GU.

As a consequence, the plant algorithm has the property of
robust monotonicity if Γ > 0 i.e.

U + U∗ > U∗GL(Φ(GG∗) + ϵ−2I)GU (96)

on R[G∗] with respect to the inner product ⟨·, ·⟩Y .
Using the property,

G∗L(Φ(GG∗) + ϵ−2I)G ≤ ζI where , (97)

0 ≤ ζ = sup{ η(Φ(η)+ϵ−2)
1+ϵ−2η : η ∈ [0, ∥G∥2]}

= sup{ 1− f(η) : η ∈ [0, ∥G∥2]}
≤ sup{ 2+ϵ−2η

1+ϵ−2η : η ∈ [0, ∥G∥2]} = 2 ,

(98)

yields the familiar sufficient condition,

U + U∗ > ζUU∗ , (99)
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which is identical in form to that seen in Section V.
Note 3: Finally, the predicted degree of robustness is uncer-

tain as the robustness condition is sufficient but not necessary.
The fact that ζ ≤ 2 does indicate, however, that there will be
a degree of robustness for all permissible parameter choices.

D. The Theoretical Possibilities when choosing mG > 1

The form of the function f(η) links the spectrum of the
algorithm evolution operator LLG to convergence properties.
Intuitively, as mG increases, the shape of f and hence con-
vergence characteristics may change significantly. This short
section investigates just how much control the choice of Φ
can have on the form of f . In what follows, Φ is regarded
as a design “parameter” rather than a consequence of gradient
computations. It addresses the question of shaping the function
f(η) under the constraint that the algorithm improves on
standard NOILC. More precisely, given a desired, continuously
differentiable function fd(η) that improves on the NOILC
function fN = (1 + ϵ−2η)−1 in the sense that

(i) − fN (η) < fd(η) < fN (η) , η ∈ (0, ∥G∥2] ,

(ii) fd(0) = 1 , (iii)
dfd
dη

|η=0 <
dfN
dη

|η=0 , (100)

is it possible to choose a polynomial Φ(η) such that f
satisfies these constraints and also approximates fd to an
arbitrary accuracy on [0, ∥G∥2]? The norm used to represent
the accuracy is that used for continuous functions, ∥f−fd∥c =
sup{ |f(η)− fd(η)| : η ∈ [0, ∥G∥2] }.

Theorem 7 (Spectral Shaping): With the above notation,
there exists a polynomial Φ(η) such that the spectral function
f(η) associated with the operator L(I − GG∗Φ(GG∗)) is
arbitrarily close to fd(η) with respect to the ∥ · ∥c norm and
satisfies the conditions (100).

Note 4: There is no requirement that I−ηΦ(η) has roots that
lie only in [−1, 1] for η ∈ [0, 2∥G∥−2], or even that its roots
are real, so the choice may not have a gradient interpretation.

Proof. Ψd = f−1
N fd is continuously differentiable with

a derivative that can, using the Weierstrass Theorem, be
arbitrarily accurately approximated by a polynomial Ψd(η)
on [0, ∥G∥2]. Construct Φ from Ψ(η) = 1 +

∫ η

0
Ψd(σ)dσ =

1−ηΦ(η) yields the result for all sufficiently accurate approx-
imations.

In effect, the error corrected algorithm provides a large
degree of control over the form of the spectral function f(η).
Previous sections have seen the potential benefits of this using
mG = 1, 2 but it is an open question as to whether, in practice,
the flexibilities in the use of even higher values merits the
additional computational load.

IX. CONCLUSIONS

The paper has addressed the practical issue that NOILC
algorithms can achieve rapid convergence rates only by using
“high gain” feedback solutions (represented by a small control
weight factor ϵ2 ). It has been shown that a combination
of NOILC and Gradient ILC into one iterative step yields a
highly attractive approach in the form of a simple and easy to
implement modification to the reference signal from iteration

to iteration using the previously observed tracking error. The
approach chosen is that used by Owens [7] which shows that
the ideas are quite general applying to a range of NOILC
applications including tracking and end-point problems for
continuous and discrete state space systems, the more gen-
eral “multi-task” problems introduced by Owens in [7], to
static/algebraic problems and to delay systems and similar
complications. In all cases the modified algorithm inherits the
properties of NOILC including error convergence and input
convergence to a minimum norm solution.

Two additional parameters are used. In the simple form
presented, it is useful to have an estimate of the squared
norm ∥G∥2 of the plant operator. Fortunately, such norms can
often be estimated using a plant model. Another parameter,
βk+1 > 0, is chosen on iteration k + 1. It is generated
from gradient algorithm considerations but choosing values
can be, more usefully, related to the idea of annihilating the
contribution of selected parts of the spectrum of the operator
GG∗ to the tracking error. The effect of the error correction
can be assessed using the graphical form of a function f(η)
representing the attenuation of the contribution of a spectral
value η. For state space systems, the choice can be linked
to the systematic removal of frequency components from the
error. Simple examples verify the ideas and demonstrate the
potential benefits of careful parameter selection.

A robustness analysis based on retention of a form of error
norm monotonicity is possible using a topologically equivalent
norm , carefully chosen to match the structure of the algorithm.
The robustness criteria derived extend the substantial NOILC
robustness studies in [7] to the new algorithm and also
provide robustness results for state space tracking and end-
point problems. Frequency domain conditions for robustness
can be derived for some cases of interest with the robustness
condition for the “inverse algorithm” underlying all results.
The robustness criteria reveal the trade off between “gain” and
error correction showing how the combined effect can have a
neutral effect on algorithm robustness.

The ideas generalize to include a finite number mG of gradi-
ent computations between each NOILC iteration. This mecha-
nism makes arbitrary convergence characteristics possible but
at the expense of increased computational load. Furthermore,
beyond ILC there are other methods with an iterative nature,
e.g., reinforcement learning [37], Bayesian optimization [38].
Whether or not ideas from these methods can be applied in
ILC, in particular, to accelerate the convergence, would be an
interesting question. The above constitutes part of our future
research and will be reported separately.
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