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Introduction: Escaping predation is essential for species survival, but prey must

e�ectively match their response to the perceived threat imposed by a predator.

For social animals, one mechanism to reduce risk of predation is living in larger

group sizes, which dilutes each individual’s risk of capture. When a predator

attacks, individuals from a range of taxa (e.g., fishes, sharks, and amphibians)

perform an escape response, to evade the attack.

Methods: Using the schooling coral reef damselfish Chromis viridis, we

assess if there is an optimal group size that maximizes both individual escape

response performance as well as group cohesion and coordination following

a simulated predator attack, comparing schools composed of four, eight, and

sixteen fish. The escape response was assessed through simulated predator

attacks, measuring escape latency, kinematics (average turning rate, and

distance covered), and group dynamics (school cohesion and coordination). The

experiments were conducted with varying group sizes to analyze the impact on

escape performance and group behavior.

Results: We found that fish in various group sizes exhibited no di�erence in

their reaction timing to a simulated predator attack (i.e., escape latency), but

larger groups exhibited slower kinematics (i.e., lower average turning rate and

shorter distance covered during the escape response), potentially because larger

groups perceived the predator attack as less risky due to safety in numbers. Both

school cohesion and coordination (as measured through alignment and nearest

neighbor distance, respectively) declined in the 100 ms after the predator’s

attack. While there was no impact of group size on alignment, larger group sizes

exhibited closer nearest neighbor distances at all times.

Discussion: The findings suggest that larger group sizes in schooling coral

reef fish may lead to energy conservation by displaying less costly behavioral

responses to predator threats. This potential energy saving could be attributed to

a higher threshold of perceived threat required to trigger a rapid escape response

in larger groups. The study emphasizes the intricate interplay between individual

and collective behaviors in response to predation and sheds light on the nuanced

dynamics of group living in the face of predation.
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1 Introduction

Numerous fish species use social behavior as a strategy to

reduce the risk of predation and share the costs associated with

predator vigilance (1, 2). An individual’s vulnerability to predation

depends on factors such as the predator’s ability to detect the

group, the predator’s attack rate, and the likelihood of the individual

escaping the attack (3). Compared to individuals in smaller shoals,

individuals in larger shoals benefit from dilution of individual

risk of predation but also face a higher risk of being spotted by

predators due to increased visibility (4, 5). When a predator is

detected, shoals collectively adapt their response based on available

sensory and social information (6–8), with socially transmitted

information communicated more effectively when the group

exhibits a higher level of organization and greater connectedness

between neighbors (9).

However, larger group sizes also come with a tradeoff between

the defensive benefits they offer and the increased competition

for limited resources like food, habitat, and breeding partners

(10, 11). Social fishes maymodify their coordination (e.g., polarized

alignment) and cohesion (e.g., distance to the nearest neighbor)

based on the context. For example, hungrier fish have been shown

to become less cohesive, possibly to prioritize individual foraging

(12, 13). Conversely, shoals enhance cohesion and coordination

when facing threats (14). These tradeoffs lead to an optimal group

size that balances the costs of group living against its potential

benefits (5, 15, 16). In resource-scarce habitats, smaller groups

may be favored over larger groups to minimize competition (1).

Conversely, larger groups are likely preferred over smaller groups

when predation risk is high (17). Ward and Webster (18) found

that mid-sized groups (composed of 12–20 fish) of the three-spined

sticklebacks (Gasterosteus aculeatus) balanced decisions related to

foraging and risk better than either the smallest (with as few as

two fish) or largest group sizes (composed of up to 29 fish) tested.

Yet, we know little about the effect of group size on the response

to an attacking predator in the crucial first few milliseconds after a

predator attacks.

During predator attacks, fishes employ escape responses to

swiftly move away from danger, increasing their chances of evading

the predator and enhancing survival. These responses involve a

high-energy, anaerobic burst of movement, initiated either from

rest or routine swimming (19). This burst-swimming behavior

can be triggered by the acoustic-lateralis system and the brain

stem escape network, including a significant neuron pair called

Mauthner cells (M-cells) that process the threat information and

rapidly send signals to motor neurons (20–23). While escape

responses can occur in the absence of M-cell firing, the reaction

timing and angular speed of the response are significantly slower

than if the M-cell is stimulated (24). Following activation of this

neural network, the body contracts and bends into a C- or S-

shape, while typically positioning the head away from the startling

stimulus, before rapidly accelerating away from the predator (21,

25). Individuals in social groups must adjust these escape responses

to coordinate with their shoal mates, both to limit collisions when

moving at high speeds and to maximize predator “confusion” (i.e.,

the confusion effect, in which predators struggle to focus on a single

individual to attack in a rapidly moving and highly coordinated

group) (26).

The benefits of social grouping to defense become particularly

crucial in coral reef environments, which typically have high

predation pressure on small-bodied fishes (27, 28). Social

coral reef fishes develop strategies to avoid predation in these

environments, with some species relying on the protection

provided by living coral structures and displaying high site fidelity

(such as many damselfishes from the Pomacentridae family)

(29). The blue-green Chromis damselfish Chromis viridis is one

example of a site-attached, live-coral associated fish species,

ranging in group sizes composed of just three individuals to

larger aggregations comprising hundreds of members (30–32).

Several factors contribute to this observed variation in group

size. Coral cover and structural complexity are vital factors

influencing the distribution and group size of C. viridis, with

higher coral cover and greater structural complexity offering

habitat that can support larger aggregations (33). Predation risk

also plays a role, with higher predation pressure leading to larger

group formations as a defensive mechanism (34). Additionally,

competition for resources, such as food and nesting sites, can

impact group size, with larger groups forming in areas with

abundant resources (35).

In this study, we compared the collective escape behavior

and individual escape response among schools consisting of

four, eight, and sixteen individuals of the tropical damselfish

species C. viridis, which represent ecologically-relevant group

sizes for this species. We hypothesized that schools with fewer

individuals would display higher school cohesion and coordination

due to a perceived elevated threat level than individuals in

larger groups (5), resulting in shorter latency times and higher

kinematic performance due to greater connectedness between

neighbors (9) and reduced interactions within the smaller group

(36). This study seeks to enhance our understanding of the

factors influencing escape behavior in animals living in a social

context to better understand the fitness consequences for different

size groups.

2 Materials and methods

Experimental work was conducted in November to December

2014. The following research was performed with approval from

the James Cook University Animal Ethics Committee (approved

protocol number A2103), the Great Barrier Reef Marine Park

Authority (Permit G13/25909.1), and Queensland Government

General Fisheries (Permit 170251).

2.1 Study species, collection, and
husbandry

Using monofilament barrier netting, schools of juvenile blue-

green Chromis damselfish C. viridis (n = 336 fish) were captured

from reefs in the lagoon adjacent to the Lizard Island Research

Station (LIRS) in the northern Great Barrier Reef, Australia (14◦40
′

08
′′

S; 145◦27
′

34
′′

E) and immediately returned to the flow-through

aquarium facilities at LIRS. Schools were maintained in groups

of four, eight, and 16 individuals each (n = 36 schools; n =

12 schools per treatment) in 68L tanks (65 cm L × 41 cm W
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× 40 cm H). Due to the possibility that differences in body size

within and among schools could affect performance at both the

individual and school level (37), body size variation in terms

of standard length was minimized both within schools (0.5 cm

range from smallest to largest individual in a group) and among

schools (mean standard error: 3.32 cm ± 0.01 cm; range: 2.86

cm−3.70 cm). Fish were fed a body-mass specific diet composed

of freshly hatched Artemia spp. and INVE aquaculture pellets

twice daily, calculated using the mean mass of all fish (1.96 g) and

the number of fish in the tank (4–16 fish per tank). To ensure

that each school had sufficient time to recover from the stress

of collection, all fish were given 7–10 days following collection

before experimental testing. This species can acclimatize to a new

social context within 1–2 weeks (26). Fish were maintained in

a natural light cycle for the time of year at Lizard Island (13-h

light:11-h dark).

2.2 Escape response experimental
procedure

Experimental trials were conducted in a laminar flow swim

chamber that replicated the natural flow of a coral reef on a

calm-weather day (3.2 cm/s; Figure 1) (38). The water conditions

(i.e., oxygen, temperature) in the flow chamber were maintained

throughout each trial through continuous aeration and a chiller

unit in the sump for the swim chamber. The working section

measured 50 cm L × 40 cm W (filled to 9 cm depth), resulting in

a total two-dimensional area of 2000 cm2, with each fish having 125

cm2 (in groups of 16 fish) to 500 cm2 (in groups of 4 fish) of space

on average to execute behavioral responses. Food was withheld

from all fish for 6–12 h prior to testing. Once each experimental

school was placed in the swim chamber, they were acclimated for

4 h, as preliminary testing indicated that all shoals resumed routine

swimming behavior within this time frame following introduction

to the swim tunnel (39). Following this acclimation period, the

school’s escape response was stimulated using a standardized and

reproducible threat protocol, in which a black tapered test tube

(2.5 cm diameter × 12 cm length, 37.0 g) was released remotely

from 137 cm above the arena using an electromagnet. This stimulus

was discharged through a white PVC pipe (to prevent visual

detection of the stimulus prior to reaching the water surface) once

>50% of the school had gathered in the center of the arena (i.e.,

more than two body lengths from any arena wall) (26). A piece of

fishing line kept this stimulus from striking the experimental arena.

Both the tapered shape of the stimulus and the fishing line aided

in minimizing any ripples generated when the stimulus first made

contact with the water’s surface. Each trial was filmed using a high-

speed video camera through a mirror that was angled 45◦ beneath

the transparent swim chamber (240 fps; Casio Exilim HS EX-

ZR1000). Between each trial, the swim chamber was drained and

refilled with seawater from the LIRS flow-through system. During

the experiment, we conducted two trials per day, with one in the

morning and one in the afternoon, such that the acclimation for

the morning trial began ∼2 h after sunrise and the afternoon trial

finished ∼2 h prior to sunset. These times were balanced among

group sizes.

FIGURE 1

Illustration of the laminar flow swim chamber.

2.3 Behavioral analysis

Video recordings were examined frame by frame using the

application Potplayer (v. 1.7.21566) to find crucial points in the

individual’s and school’s response to the stimulus. Screenshots of

these timepoints were analyzed in ImageJ (v. 1.53n 7). Individual

escape performance was evaluated using reaction timing and

kinematics, including latency (the interval between the aerial

mechanical stimulus first breaking the water’s surface and the

fish’s initial head movement), average turning rate (the maximum

turning angle, θ, achieved by the fish during stage 1 divided by

the time it took to achieve that angle, which serves as a proxy

for the fish’s agility through speed of muscle contraction), and

distance covered [distance moved in the first 42ms of the reaction,

which is the average time for this species to achieve stages 1 and

2 (26); used as a proxy for swimming speed]. Since these traits are

influenced by the stimulus distance (the distance between the fish’s

center of mass and the stimulus), this trait was also measured and

included as a covariate in all analyses (23). Non-responders (n =

3 total, n = 1 in groups of 8 and n = 2 in groups of 16, 0.8%

of all fish included in this study; those fish that did not respond

within 2 s of the stimulus) were assigned the maximum measured

latency in this study (1003.8ms), though non-responders were not

included in analyses of average turning rate and distance covered.

Due to the limits that proximity to wall of the experimental arena

can have on kinematic performance (40), the kinematic attributes

(average turning rate and distance covered) were only assessed if

the fish was >3 cm (i.e., ∼one body length) away from any wall of

the experimental arena to ensure that our kinematic data was not

impacted by effects imposed by the walls of the arena.

Throughout the response, the school’s cohesion and

coordination were measured through nearest neighbor distance

and alignment, respectively. Nearest neighbor distance represents

the distance between each fish’s center of mass and their most

proximal neighbor’s center of mass in the school. Alignment

measures the variation in each school’s member orientation with

respect to the water’s flow (0◦) (41). This variation was quantified

by using the program Oriana 4 (42) and determining each school

members’ angle then calculating the length of mean circular vector

Frontiers in Fish Science 03 frontiersin.org

https://doi.org/10.3389/frish.2023.1294259
https://www.frontiersin.org/journals/fish-science
https://www.frontiersin.org


Bacchus et al. 10.3389/frish.2023.1294259

(r) of the group, which ranges from 0 (all members are at random

angles) to 1 (all angles perfectly aligned). These characteristics

were examined at intervals following the stimulus, including

0ms (representing the school’s cohesiveness and coordination

immediately prior to the stimulus), 30ms (representing the typical

time for this species to complete stage 1), and 100ms (the average

time for individuals to complete both stages 1 and 2). Here,

time was used as a categorical variable with these time stamps

representing different stages of the escape response.

2.4 Statistical analyses

R Programming Language (v. 1.3.1093) was used for all

statistical analyses (43). The differences among treatment groups

were evaluated using linear mixed-effects models (LMM), using

the packages “lme4” (44), “car” (45), “MuMIn” (46), “emmeans”

(47) and “ggplot2” (48). Latency, average turning rate, and distance

covered were analyzed using LMMs, with group size as a fixed

effect, stimulus distance as a covariate, the interaction between

group size and stimulus distance, and school identifier as a random

effect (so that each individual was nested within their school).

School traits (nearest neighbor distance and alignment) were

measured with group size, time post-stimulus (0, 30, 100ms),

and their interaction as fixed effects. For the alignment analysis,

school identifier was included as a random effect to account

for the repeated measures design. Nearest neighbor distance was

measured on an individual level, so individual was nested within the

school identifier as a random effect. To verify that the assumptions

of normality and homogeneity of variance were met for each

model, we visually inspected the quantile-quantile and residuals

plots and used Shapiro–Wilk and Bartlett tests. To meet these

assumptions, all response variables (except average turning rate

and alignment) were boxcox transformed using the package “car”

(45). Best-fit models were identified using the Akaike Information

Criterion (AIC) (49) model selection. When significant fixed effects

were identified, they were further explored using Tukey’s multiple

comparison post-hoc tests. The R2 for all models is also detailed

below, including the marginal and conditional R2 (R2m and

R2c, respectively), which represent the variance explained by the

fixed effects only (R2m) and the fixed effects plus the random

effects (R2c).

3 Results

3.1 Individual escape performance

For latency, the most complex model was deemed the best-

fit through AIC model selection, including group size, stimulus

distance, and their interaction as fixed effects. There was no effect

of group size on latency [LMM: F(2, 35) = 2.07, p = 0.14, R2m

= 0.17, R2c = 0.30], with all group sizes exhibiting comparable

reaction timing. However, there was a non-significant trend in

the interaction between group size and stimulus distance [LMM:

F(2, 307) = 2.98, p = 0.05; Figure 2], as the relationship between

latency and stimulus distance varied with group size. As expected,

FIGURE 2

E�ect of group size on the latency of escape response in groups

composed of four (gray circles), eight (yellow triangles), and sixteen

(blue squares) fish with twelve schools per treatment, as stimulus

distance increases. Each data point represents one individual, with

lines indicating a linear regression by treatment and shading

representing the 95% CI. The y-axis is logged for visual clarity of

trends among treatments.

latency increased (indicating a slower reaction timing) as stimulus

distance increased [LMM: F(1, 328) = 52.02, p < 0.0001].

For average turning rate, the best-fit model was again the

most complex model, including group size, stimulus distance, and

their interaction. Average turning rate decreased as group size

increased [LMM: F(2, 34) = 4.15, p = 0.02, R2m = 0.15, R2c =

0.33; Figure 3], as individuals from groups of 16 exhibited an∼25%

lower average turning rate than individuals from groups of four

(Tukey’s post-hoc test: p4−16 = 0.02; all other pairwise comparisons

had p > 0.05). Average turning rate also declined with rising

stimulus distance [LMM: F(1, 267) = 16.35, p < 0.0001]. There was

a significant interaction between group size and stimulus distance

[LMM: F(2, 267) = 4.33, p= 0.01], due to variation in the strength of

the relationship between average turning rate and stimulus distance

in different group sizes.

The best-fit model for distance covered was the most

complex model, including group size, stimulus distance, and

their interaction. As with average turning rate, distance covered

decreased with group size [LMM: F(2, 35) = 5.51, p= 0.008, R2m=

0.18, R2c= 0.29; Figure 4], with individuals from groups of sixteen

exhibiting a 35% reduction in distance covered when compared

to individuals in groups of four (Tukey’s post-hoc test: p4−16 =

0.005; all other pairwise comparisons had p> 0.05). While distance

covered decreased with rising stimulus distance [LMM: F(1, 271) =

36.06, p < 0.0001], the interaction between group size and stimulus

distance was not significant [LMM: F(2, 263) = 1.51, p= 0.22].

3.2 School traits

All school traits were influenced by time after the predator

stimulus, while group size impacted how school cohesion (i.e.,
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FIGURE 3

E�ect of group size on the average turning rate of the escape

response in groups composed of four (gray circles), eight (yellow

triangles), and sixteen (blue squares) fish with twelve schools per

treatment. Large data points represent the estimated marginal mean

for each group size (±95% CI) from linear mixed-e�ects model

analysis (controlling for stimulus distance, with each individual

nested within the school with which they were tested). Small data

points represent one individual.

nearest neighbor distance) changed in the period following the

predator stimulus. For nearest neighbor distance, the best-fit model

was the most complex model, including group size, time, and their

interaction. As group size increased, nearest neighbor distance

declined [LMM: F(2, 40) = 14.32, p < 0.0001, R2m = 0.09, R2c

= 0.61; Figure 5], indicating that individuals in larger groups

were closer to their nearest neighbor (Tukey’s post-hoc test: p4−8

= 0.003; p4−16 = 0.0003; p8−16 > 0.05). Conversely, nearest

neighbor distance increased with time post predator stimulus

[LMM: F(2, 666) = 10.56, p < 0.0001], as groups decreased cohesion

as individuals mounted individual escape responses (Tukey’s post-

hoc test: p0−100 = 0.0004; p30−100 = 0.0003). At each time point,

individuals in groups of four exhibited an ∼30%−40% higher

nearest neighbor distance than groups composed of sixteen fish

(Tukey’s post-hoc test, 0 ms: p4−8 = 0.002; 30 ms: p4−16 =

0.0007; 100 ms: p4−16 < 0.0001). Groups of eight and sixteen

were not significantly different at any time point (Tukey’s post-hoc

test: p > 0.05 for all pairwise comparisons) and the interaction

between time and group size was not statistically significant [LMM:

F(4, 66) = 1.60, p= 0.17].

For alignment, the best-fit model was the most complex model,

including group size, time, and their interaction. While group size

did not have a significant effect on alignment [LMM: F(2, 33) =

1.44, p = 0.25, R2m = 0.22, R2c = 0.64; Figure 6], alignment

decreased significantly with time post-simulated predator threat

[LMM: F(2, 66) = 21.70, p < 0.0001]. Alignment was 17% higher

immediately prior to stimulation than it was at 30 and 100ms

after this simulated threat (Tukey’s post-hoc test: p0−100 < 0.0001;

p0−30 < 0.0001; p30−100 > 0.05). The interaction between group

size and time was not significant [LMM: F(4, 66) = 1.98, p

= 0.11].

FIGURE 4

E�ect of group size on the distance covered of the escape response

in groups composed four (gray circles), eight (yellow triangles), and

sixteen (blue squares) fish with twelve schools per treatment. Large

data points represent the estimated marginal mean for each group

size (±95% CI) from linear mixed-e�ects model analysis (controlling

for stimulus distance and the interaction between stimulus distance

and group size, with each individual nested within the school with

which they were tested). Small data points represent one individual.

FIGURE 5

E�ect of group size (four, eight, and sixteen fish with twelve schools

per treatment, in gray circles, yellow triangles, and blue squares,

respectively) on nearest neighbor distance at 0, 30, and 100ms

following a stimulated predator threat. Large data points represent

the estimated marginal mean for each group size (±95% CI) from

linear mixed-e�ects model analysis (controlling for the interaction

between stimulus distance and group size, with each individual

nested within the school with which they were tested). Small data

points represent one individual. Time was included as a categorical

fixed e�ect, as data was only collected at three distinct time points.

4 Discussion

The results of this study demonstrate that the escape

performance of individual fish is plastic and influenced by social
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FIGURE 6

E�ect of group size (four, eight, and sixteen fish with twelve schools

per treatment, in gray circles, yellow triangles, and blue squares,

respectively) on alignment (in terms of length of mean circular

vector, r) at 0, 30, and 100ms following a stimulated predator threat.

Large data points represent the estimated marginal mean for each

group size (± SE) from linear mixed-e�ects model analysis

(controlling for the interaction between stimulus distance and group

size, with each individual nested within the school with which they

were tested). Small data points represent one individual. Time was

included as a categorical fixed e�ect, as data was only collected at

three distinct time points.

group size. Individuals’ preferred group size can change depending

on the context (50, 51). For example, group size typically increases

in response to a predation cue (i.e., chemical alarm cue) and

decreases in response to a food resource (10).While reaction timing

(i.e., latency) was consistent across group sizes, kinematic traits,

including average turning rate and distance covered, declined as

group size increased. The kinematic results are in line with those of

Domenici and Batty (36), who measured a higher average turning

rate in solitary than schooling fish, similar to the results presented

here. While faster performance in solitary fish has been linked

to increased escape success (52), our results suggest that larger

groups exhibit lower performance than small groups. Kinematic

performance may have declined with group size due to lower

perceived risk of predation due to safety in numbers, higher risk

of false alarms, and to avoid collisions with group-mates, which are

all more likely to occur in larger schools (36).

Prey in smaller shoals are more at risk of predation per capita

than those in larger shoals (4), so they may need to maintain higher

individual kinematic performance to effectively avoid predators.

In addition to diluting individual risk of predation, individuals

in larger schools benefit from information sharing with group-

mates that results in a greater collective intelligence (53), including

information about predator risk (54). As a result, in larger groups,

schooling fish may perceive a reduced risk due to safety in

numbers through social buffering of stress (55–58), and hence

reduce investment in kinematic performance. For example, in

the gregarious cichlid Neolamprologus pulcher, individuals mount

a reduced behavioral (activity) and physiological (cortisol) stress

response to a predation-like stressor (i.e., air exposure) when they

recovered with group-mates than alone (57). Conversely, larger

groups may experience a higher frequency of false alarms, where

individuals mistakenly initiate rapid defensive maneuvers, which

is likely more prevalent in larger group sizes (59). Similarly, due

to smaller nearest neighbor distances, fish in larger schools may

be more at risk of collisions with group-mates, so fish may reduce

their locomotor performance to limit risk of colliding other rapidly

moving fish (36, 60). The M-cell response is highly plastic, with

evidence suggesting that responses in the absence of M-cell firing

result in reduced kinematic performance (24), as seen here in fish

from larger group sizes. Any factor that increases the threshold of

threat necessary to initiate a rapid, M-cell driven escape response,

such as perceived safety, frequency of false alarms, or collision risk,

could act to reduce each individual’s kinematic performance.

In contrast to past studies that compared solitary and schooling

fishes (36, 61), we found no change in reaction timing (i.e., latency)

as group size increased. Social context could modulate latency for

a range of reasons. A faster latency could be expected as predator

detection increases with larger group sizes or responsiveness

increases with greater socially transmitted information in a larger

group (62, 63). Conversely, a slower latency may occur if schooling

fish are distracted by unfamiliar group mates (26) or if fish are

attempting to more accurately determine the most effective escape

trajectory based on socially-transmitted information (19). While

Domenici and Batty (36) measured a slower latency in schooling vs.

solitary fish, Webb (61) found that several schooling fishes either

reacted more quickly or the same as solitary counterparts. Here,

we found no change in latency with group size, which could stem

from several sources. Unlike Domenici and Batty (36) and Webb

(61), we compared latency across a group-size gradient, rather than

a solitary vs. social condition. Further, we used different species

and predator stimuli [mechanical vs. sound as in Domenici and

Batty (36) or electric shock as in Webb (61)], which may affect the

initiation of the escape response.

Group cohesion increased with group size, suggesting that

school performance may have increased despite reduced individual

performance. Partridge (64) found a similar effect in schooling

minnows (Phoxinus phoxinus), in which nearest neighbor distance

decreased by more than half when the group size increase from

two to four individuals. In the study presented here, as the size

of the arena was consistent across treatments, the density in

the experimental arena would also have increased with group

size. In schooling herring (Clupea harengus), Rieucau et al. (65)

found that higher density schools execute more cohesive collective

escape responses than lower density schools, potentially due to

faster propagation of social information between neighboring fish

than under lower density conditions. Further, in larger groups,

individuals may join smaller sub-groupings to promote cohesion

and swimming performance among its members, with the larger

group acting according to the consensus of its sub-groups (66, 67).

While density of group-mates was inevitably higher in the larger

groups, all fish had at least 125 cm2 on average to execute their
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responses (see details in “Materials and Methods” section). Thus,

space limitation was likely not the driving factor altering kinematic

performance. However, research into the space requirements

necessary for ecologically relevant behavioral measurements in

social fishes would be useful to confirm space limitation did not

influence these findings.

To successfully survive a predator’s attack, prey must effectively

initiate rapid defensive behavior (52, 68). Synchronization was

traditionally thought to be an essential component of a successful

collective antipredator response to minimize the oddity effect (69,

70) and maximize predator confusion caused by the coordinated

movements of its group-living prey (7). In some contexts,

confusion may be generated more effectively when the prey’s

response is random than if the group remains highly coordinated

(71). A study on the same species, C. viridis, observed a similar

effect, in which the group’s cohesion and coordination declined

in the 30–100ms following the predator’s attack (26). Similar

reductions in group cohesion and coordination immediately

following the predator attack have been seen in other fishes as well.

Romenskyy et al. (72) found that schools of the Pacific blue-eye

(Pseudomugil signifier) responded to an attack by the predatory

flat-headed gudgeon (Philypnodon grandiceps) through a so-called

“flash expansion,” a rapid increase in the school’s volume in three

dimensions but recovered quickly to baseline levels.

While laboratory studies are useful for controlling variation

among treatments, natural conditions are rarely fully replicated

in a laboratory setting (73). Therefore, field studies are crucial to

validate the functional consequences of these behavioral changes

to prey survival of predator attacks (74). Freely formed group

sizes are highly context dependent, with fish establishing schools

of varying sizes in response to food or predator cues (10). However,

while the cohesion of larger groups could have been constrained

by the size of the experimental arena, C. viridis are often found in

large aggregations on coral reefs (33), so a larger group size will

often result in higher density conditions in this species. In follow-

up studies, allowing schooling fishes to freely form various school

sizes may further validate the results found in the present study,

particularly in the largest group sizes found for this species (in

excess of 100 individuals). Further, we did not record the group size

that fish originated from in all experimental schools, which may

have influenced the behavioral phenotype of some fish during tests

of their fast start response. Future studies could test if the shoal size

of fish in the wild influences their anti-predator behavior in groups

of varying sizes.

In conclusion, we found that kinematic performance declines

in fish in larger groups, though larger group sizes maintain

stronger group cohesion than smaller group sizes before, during,

and after a predator attack. Though we typically associate a

faster escape performance with a greater chance of survival of

predator attacks (52), these findings suggest that fish in larger

groups may be able to save energy on mounting energetically-

costly behavioral responses while evading predator attacks due

to a greater perceived safety in numbers (55). The greater

capacity for predator vigilance in larger group sizes comes

with the tradeoff of greater competition for limited resources,

such as food and habitat (11), which theoretically results in an

optimal group size that balances these costs against potential

benefits (15).
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