
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Yiyun Cao (2024) ”The Use of Multi-Fidelity Simulation Optimisation for Real-Time Man-

agement of a Manufacturing Line”, University of Southampton, name of the University Faculty or

School or Department, PhD Thesis, pagination.





UNIVERSITY OF SOUTHAMPTON

Faculty of Social Sciences
Southampton Business School

The Use of Multi-Fidelity Simulation
Optimisation for Real-Time Management of

a Manufacturing Line

by

Yiyun Cao
MSc

A thesis for the degree of
Doctor of Philosophy

January 2024

http://www.southampton.ac.uk
https://orcid.org/0009-0002-3687-4343




University of Southampton

Abstract

Faculty of Social Sciences
Southampton Business School

Doctor of Philosophy
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Manufacturing Line

by Yiyun Cao

Manufacturers often rely on simulation models to support decision-making for a wide
range of tasks from system design to routine operations. There is scope for simulation
modelling to extend further to deal with situations that look for fast responses, ideally
in real time. Simulation models for manufacturing systems are usually complex and
large, meaning they take a long time to run. They are not able to support real-time
decision-making when working with conventional simulation optimisation
procedures which require multiple replications for producing the recommendations.
A multi-fidelity simulation optimisation framework is designed to address this
problem. It includes a low-fidelity metamodel to guide the search using the
high-fidelity simulation model, which aims to reduce the replications of the
high-fidelity model needed in the optimisation. The proposed method has been tested
on a well-known simulation model of an inventory system and a new model of a
production line. The results from both the textbook example and the manufacturing
system show that it satisfies the need for real-time optimisation and performs well. In
the production line case, we aim to optimise the repair policy when multiple machines
break down simultaneously. The order to repair the failed machines could affect how
the system would recover and would lead to different short-term system throughput.
By optimising the repair policy, the system throughput is optimised. In order to carry
out the optimisation in real time, a “hot-start” simulation model is structured for the
production line system. The state space of the metamodel for the production line is
modified and reduced in order to fit the metamodel with fewer data. An adaptive
sequential sampling method is developed to efficiently sample from the stochastic
simulation model.
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1

Chapter 1

Introduction

Digital twin technology has been applied in many different scenarios for
next-generation manufacturing. However, there is still a research gap related to digital
twin in using simulation to optimise the manufacturing system. A digital twin is a
virtual replica of a real machine, system or process that has the same behaviour or
function as the original real-world entity. Its applications can be found in many
manufacturing phases, for example, design, operation and maintenance. In system
operations, digital twin requires optimal solutions to be generated in real-time. Fast
(real-time/near real-time) simulation optimisation thus should lie at the core of digital
twin to obtain the best performance for the system. In the road map introduced by
Glaessgen and Stargel (2012), the digital twin was defined as an integrated
multiphysics, multiscale, probabilistic simulation of an as-built system.

This project focuses on proposing a method to utilise multi-fidelity simulation
optimisation for fast and reasonable decision support. After testing the method on a
textbook example (see Section 3.4), it is applied to a real-life problem. We build a
discrete event simulation model for a complex production line (see Chapter 4) and use
near real-time optimisation to select the best repair order when multiple machines on
the production line break down and request repair simultaneously.

Simulation optimisation is often used to obtain the optimal settings for those problems
containing some uncertainty that have no closed form of the objective function. As we
are working with a stochastic system and using stochastic simulation to describe it, we
aim to minimise the expected value of a random output variable. It can be represented
as

min
x∈Θ

f (x), (1.1)

where f (x) = E[Y(x, ξ)] (Fu, 2014). The objective function f (x) represents the
expectation of a random variable Y(x, ξ), where ξ stands for the randomness (which is
represented by the random numbers in a stochastic simulation model). Although the
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expectation is the most used objective function, other statistics can be used; for
example a quantile or a variance. As discussed in Hong and Nelson (2009), simulation
optimisation algorithms aim to maximise the information that can be obtained from a
fixed computational budget or reach certain accuracy criteria with a proper number of
simulation replications. A large number of simulation replications are normally
required for a conventional ranking and selection procedure, e.g. KN++ (Kim and
Nelson, 2006b), Optimal Computing Budget Allocation (OCBA) (Chen et al., 2000). It
is computationally expensive to simulate complex systems. Thus, the whole
optimisation process can be inevitably time-consuming. Running the algorithm on
more than one computing processor, such as parallel computing (Mubarak et al., 2017)
and cloud computing (Calheiros et al., 2009; Taylor et al., 2020), is a way to decrease
the computing time with the cost on devices or services. Apart from advanced
hardware, the multi-fidelity framework (Xu et al., 2014) is one of the approaches that
could help. This is the focus of this thesis.

Multi-fidelity models for simulation optimisation were introduced to involve a less
complex low-fidelity model in the procedure. It is used to identify promising solutions
which can then be tested on the high-fidelity model. This reduces the computational
burden at runtime and so improves the speed at which a response is returned. The
low-fidelity model is a simplified model with more assumptions and/or neglecting
some details. It can be a discrete event simulation model or a statistical metamodel.
The metamodel aims to map the relationship between input and output variables,
which describes the behaviour of the original simulation model. We choose to use a
neural network model in this project as our low-fidelity model. This allows us to
achieve good enough results when having a limited computing budget or limited time
for optimisation. A reduction in the number of replications means less computation is
needed to obtain the optimal selection, which leads to a faster process for simulation
optimisation.

In this project, a multi-fidelity model framework is used to find the best solution from
a given search space in a comparably fast sense for a production line. We test the
proposed method initially on a small example before implementing it on a simulation
of a manufacturing system.

1.1 Problem Description

We consider a complex production line made up of more than twenty workstations
consisting of either single or parallel machines. Having used simulation frequently in
the past for planning tasks associated with the production line, the manufacturer now
wishes to use simulation results in real-time for system optimisation, making use of
sensors to indicate the current state of the line. Results are required in near real-time if
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they are to be useful in facilitating decision-making. Incorporating a low-fidelity
model, such as a metamodel, into the optimisation procedure may enable it to be
practical for routine management. Building a statistical model from the real data
directly seems attractive and could bypass the time-consuming high-fidelity
simulation. However, very limited scenarios would have a chance to appear in
operation and be documented. The small amount of data from the shop floor makes it
hard to fit models from collected data. Building a metamodel from a simulation model
allows users to have more control over the process of data collection and thus be more
confident about the results.

We consider the problem of scheduling repairs on the production line when the
maintenance team is limited. Repairing all broken machines at the same time may not
be possible due to the limited capacity of the maintenance team. Priority should be
given to the machine whose recovery would have the most positive effect. The
optimisation is carried out by selecting a strategy for ordering repairs that would have
the highest expected simulated throughput in a three-hour time window.

In order to achieve the aim of the research, we work on the following tasks: designing
the overall multi-fidelity approach, testing the multi-fidelity approach on a textbook
example, building a simulation model and enabling “hot starts”, deciding on the state
space, designing experiments and collecting data, fitting the metamodel and testing
the multi-fidelity approach on the manufacturing system.

1.2 Project Overview

We overview the research of the multi-fidelity approach in Figure 1.1. It briefly
describes how major components of the project interact with each other and indicates
some of the contributions.

The state of the system is collected from the physical entity, which is input into the
simulation model and the metamodel during the optimisation. The metamodel can be
used to predict the performance of the system. The core part of the multi-fidelity
optimisation framework is to use estimates from the low-fidelity model to guide the
search using the high-fidelity model. We propose a method for doing this in Chapter 3.

The main components that are involved in forming the optimisation process are
connected in Figure 1.1. Two interlinked models lie in the centre. The whole process is
triggered when an optimisation request is raised. After that, the metamodel is run first
and its results are fed into the simulation optimisation procedure using the
high-fidelity model. The recommendation is sent back to support decision-making.

The metamodel is fitted to the output of the simulation model through the design of
experiments. For complex systems with a limited computing budget for data
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FIGURE 1.1: Overview of the Multi-Fidelity Approach

collection, a sampling method that sequentially collects data is developed to sample
efficiently from the simulation model.

The work presented in this thesis contributes to both academia and industry. It
contains both methodological contributions and empirical contributions. The
multi-fidelity simulation optimisation methodology developed in Chapter 3 optimises
the complex system in a fast sense while still giving reasonable recommendations.
Our framework uses metamodel as the low-fidelity model other than the simplified
simulation model in the literature and the estimations from the low-fidelity model are
used differently. Alternative solutions are sorted into groups with various sizes based
on the metamodel estimations so that we can put emphasis on the alternatives that are
predicted to have better performances. An experimental design method is proposed in
Section 4.4.2 to sequentially sample the complex system and make the most out of the
limited computing budget. The sampling method explores new areas and exploits the
sampled areas when necessary in each iteration. A case study that applies the
proposed method to a production line model is demonstrated in Chapter 4 and 5. The
relevant contents, for example, modelling the production line system and reducing the
dimension of the input variables contribute empirically.

The case study is based on the operations of a major company in the automobile
industry that runs a similar production plan and uses simulation models to support its
decision-making. The production system under study is modified from a small part of
the original line. We are not able to provide every detail for reasons of confidentiality.
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1.3 Research Questions

The thesis aims to address the following research questions, which draw on the
production line example and intend to fill gaps identified in the literature, as will be
discussed in Chapter 2.

1. How can existing ranking & selection procedures be improved to provide results
close to real-time?

The ranking and selection (R&S) procedures simulate all the candidate solutions
a number of times and select the one that performs the best. The procedure
would thus take a lot of time to run when the simulation model is large and
complex and/or there are a large number of candidate solutions. Both of these
may be true for many manufacturing systems. This means that conventional
R&S may not be able to meet the requirement of optimising in real-time for
manufacturing systems.

2. How to implement a multi-fidelity framework for fast (real-time) optimisation of
a production line?

The multi-fidelity approach utilises multiple models at various fidelities for
optimisation: typically a high-fidelity model and a low-fidelity model. The
estimation from the low-fidelity model is expected to guide the search using the
high-fidelity simulation model. Different algorithms in the literature cope with
the problem differently. We introduce a multi-fidelity framework that can speed
up the optimisation of a stochastic system.

3. What is the most efficient design for a metamodel of a production line
simulation?

There are a large number of variables for the system state in the “hot-start”
simulation model. A large amount of data is required for fitting the metamodel
and it could be time-consuming for collecting data. If the number of input
variables for the metamodel could be reduced, less data need to be collected for
fitting the metamodel thus the whole process could become faster. We describe a
state-space reduction that maintains the functionality of the metamodel.

4. How to quantify the performance of the metamodel on the quality of the
optimisation results?

The metamodel that works as the low-fidelity model in the multi-fidelity
framework guides the search for the optimal solution with the high-fidelity
model. Estimation accuracy is usually used to measure the performance of a
model/metamodel. However, there might be other metrics to efficiently quantify
the performance of the metamodel in the setting of a multi-fidelity approach.
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5. How to simulate a production line for optimising the repair order in real time?

For an asset like a production line, a normal way to build the simulation model
is to assume that the system would start from time zero when the system is
empty. However, this introduces significant bias to the evaluation of outputs for
real-time simulation optimisation. As a result, we describe the use of hot-start
simulation to ensure the initial state of the simulation closely matches that of the
real system. The repair policy is used as the decision variable in the hot-start
simulation which determines the repair orders in the simulation. It avoids the
option for repair orders to increase exponentially when the number of
breakdowns increases.

1.4 Structure of the Thesis

There are another five chapters in the rest of the thesis. We review the literature on the
topics related to the research in Chapter 2, which includes simulation in
manufacturing (Section 2.1), digital twin (Section 2.2), discrete simulation
optimisations (Section 2.3), multi-fidelity model for simulation optimisations (Section
2.4), simulation metamodels (Section 2.5) and experimental designs (Section 2.6). A
multi-fidelity simulation optimisation framework that utilises a metamodel along
with the simulation for optimisation is proposed in Chapter 3. We test the
methodology with a textbook example - an inventory system. The result of the
experiments and analyses are elaborated in Section 3.4. In Chapter 4, we illustrate the
process of structuring the simulation model and the metamodel for a production line.
An experimental design is proposed for efficiently collecting data and fitting the
metamodel in Section 4.4.2. In Chapter 5, we apply the proposed multi-fidelity
simulation optimisation framework to the production line models. The conclusion
and some future plans are given in Chapter 6.
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Chapter 2

Literature Review

This chapter is divided into six major sections and reviews the literature for the key
topics of the thesis. The contents move step by step from the big concepts down to the
specific approaches. The literature under review is the research published before 2022.
It begins by discussing research that concerns the utilisation of simulation in
manufacturing. Since the case study is based on an example in the automotive
industry, we review the application of simulation in the automotive industry in
Section 2.1. In the next section, a discussion of the literature associated with real-time
optimisation with digital twins and symbiotic simulation is given. We continue to
walk through the methodology of simulation optimisation and then the more focused
topic of multi-fidelity simulation optimisation. After that, methods for structuring
metamodel are reviewed, and next, the topic is extended to include multi-objective
simulation optimisation. The multi-objective optimisation is reviewed but not covered
in our proposed real-time simulation optimisation methodology due to the project
time limit. However, it is still valuable and would be part of the future work. Lastly, a
conclusion is given before we finish this chapter and move on to the methodology.

2.1 Simulation in Manufacturing

Simulation as a tool to model the behaviour of the system has been widely used in the
manufacturing industry. Smith (2003) reviewed the application of simulation in
manufacturing and classified the relevant research into three major groups, which are
manufacturing system design, manufacturing system operation and simulation
language. The review claims that system design concerns long-term plans (e.g. facility
layout design and system configuration) and system operation concerns short-term
decision-making. Later reviews (e.g. Negahban and Smith (2014); Mourtzis (2020))
follow the classification for the application of simulation and include more
state-of-the-art works.
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Negahban and Smith (2014) argue discrete event simulation has been widely used to
assist the planning and scheduling of manufacturing operations. Its applications
could be found in the research studying flow shop (Huang et al., 2013), job shop
(Thürer et al., 2012) and flexible manufacturing systems (Joseph and Sridharan, 2012).
Mourtzis (2020) categorised the research into finer phases in the product and
production lifecycle from system design to process planning to supply chain planning.
The author includes the ‘digitalisation of simulation’ in their survey, which refers to
the simulation research towards new technology such as digital twin, augmented
reality and virtual reality. Alrabghi and Tiwari (2015) reported that discrete event
simulation is the most widely used simulation technique (which has been applied to
sixty per cent of their reviewed papers) in their survey of simulation-based
optimisation for maintenance.

Automotive, as a major manufacturing industry, also attracts a lot of research interest
in applying simulation to model the manufacturing system. For example, Xu et al.
(2012) developed a simulation model for multi-criteria decision-making in an
automotive manufacturing system. Ordaz et al. (2015) described a simulation-based
virtual training system for educating and training the operators of an automotive
production line. El-Khalil (2015) implemented discrete-event simulation to identify
the bottleneck of the assembly line and optimise the production plan for an
automotive company.

2.2 Real-time Optimisation with Digital Twin and Symbiotic
Simulation

A digital twin can be thought of as a virtual replica of the real-world system that runs
alongside the physical system. When the system updates or input changes, data are
synchronised to the digital twin. The system state of the model is then modified and
the model parameters could also be reconfigured. The concept has been prevalent in
many different industries since the idea was mooted by NASA during the Apollo
project in 1969 (Glaessgen and Stargel, 2012). It also goes under different names,
digital twins (Glaessgen and Stargel, 2012), symbiotic simulation (Onggo et al., 2018)
and real-time simulation (Pedrielli et al., 2019) are the three most common ones. The
aim of this technology is to enable real-time decision-making that accounts for the
current state of the system.

Zhang and Zhu (2019) claimed that digital twins have three key parts: object, model
and data. While their focus in the paper is on its use at the machine level, digital twin
technology is applicable from the machine level to the production line level
(manufacturing system) to even the factory level (system of systems). Most research
on digital twins lies in optimising production processes, fault diagnosis and
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prognostics. They display an example of producing turbine blades under the
framework of a digital twin at the machine level by mounting extra sensors and a
vision system onto a computer numerical control (CNC) machine to track the
movement of the physical system. After this, both machine time and the precision of
the product are improved.

Digital twins rely on data from the systems being modelled and these data may come
from sensors or, as Ivanov et al. (2019) described, they can also make use of
radio-frequency identification (RFID) or geographic information systems (GIS) to
update the system state. The choice of input sources depends on the nature of the
system being modelled but is also constrained by the availability of data.

The framework proposed in Ivanov et al. (2019) makes use of blockchain, RFID and
GIS to communicate with the supply chain model in simulation and optimisation.
Their method aims to mitigate the risk and ripple effect by predicting disruptions and
taking recovery policies.

While in Rosen et al. (2018), the digital twin is regarded as a collection of data from
design, engineering and operation. The digital twin of a large-scale system could
consist of a set of smaller-scale digital twins. In addition, digital twin could be
circulated between suppliers and integrators to improve the value chain. It could even
become a part of the product. Rosen et al. (2018) showed a case study of a point
machine in the railway system for operating the turnouts involving a digital twin
from design to operation.

Onggo et al. (2018) claimed that a symbiotic system is comprised of the digital twin,
the optimisation methods, data collection and a control system, together with the
corresponding physical entity. It is designed to work with analytic approaches so that
the optimisation can interact with the physical system. Heuristic algorithms and
machine learning are considered two important groups of approaches for system
optimisation. Kück et al. (2016) consider symbiotic simulation promising for flexible
manufacturing systems, which are able to deal with changes in demands and product
customisations.

Zhang et al. (2022) structured a digital twin to schedule a shop floor. The authors
extend the multi-fidelity simulation optimisation framework proposed in Xu et al.
(2014) to work with heuristic algorithms. The algorithm developed in Xu et al. (2014)
is a multi-fidelity ordinal transformation optimal sampling framework which involves
a low-fidelity model to guide the search using a high-fidelity model to save the
computing budget for simulation optimisation. Goodwin et al. (2022) propose the
sequential allocation using machine-learning predictions as lightweight estimates
(SAMPLE) framework, which uses multiple simulation-based machine-learning
models to support real-time simulation optimisation for the digital twin.
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2.3 Discrete Optimisation via Simulation

Simulation optimisation or optimisation via simulation (OvS) is the technique to
minimise or maximise the expected value of objective(s) for a system. These systems
usually have stochastic processes, for which objective functions are either expensive or
difficult to build.

These simulation optimisation methods use the simulation as a proxy for the real
system and aim to maximize/minimize a given objective function. As the simulation
models we work with (typically Discrete Event Simulation (DES) models) have
stochastic or random outputs, the objective is typically the expected value of the
model output of interest. Using mathematical notation, we wish to minimise an
output f (x), where x is a vector of decision variables and f (x) is the expected value of
the random output Y(x),

f (x) = E[Y(x)]. (2.1)

Most researchers assume the problems have a single objective and consequently the
output f (x) is a single value. In this project, we focus on the problems where the
feasible decision region x has a limited number of discrete solutions. Problems of this
nature are described as ranking and selection (R&S) problems (Fu, 2014). R&S
procedures aim to select the best from the alternatives. Two main groups of R&S
methods are indifference-zone procedures and efficient simulation budget allocations
(Fu, 2014). Branke et al. (2007) discussed the R&S methods, indifference-zone
procedures guarantee frequentist correct selection and efficient simulation budget
allocation procedures quantify posterior evidence for correct selection.

2.3.1 Indifference-Zone Procedure

A practical approach to measuring confidence in the solution is to analyse the
probability of correct selection (PCS). For the indifference-zone procedures, the
selected best solution k is at least δ (the minimal distance, e.g. euclidean distance)
away from others, or they are regarded as having no difference from each other. This
ensures PCS ≥ α. The minimal distance δ is the smallest difference the decision maker
cares about and the α is the preset confidence level for the results (Law, 2015).
Bechhofer (1954) formulated the problem as Pr{select k | µk − µk−1 ≥ δ} ≥ 1− α

where µk is the performance of solution k (Kim and Nelson, 2006a).

Bechhofer’s Procedure (Bechhofer, 1954) is one of the earliest procedures and was
developed in the 1950s for choosing the most suitable medical treatment from a small
number of alternatives with relatively equal variances. It does not make any
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computation from the samples until the end of the procedure. Under the same
assumptions as the previous method, the sequential approach Paulson’s Procedure
(Paulson, 1967) was developed. It evaluates the selection once a new round of
replications is sampled. Solutions that are not competitive are removed for further
exploration, which makes the search more efficient. KN Procedure (Kim and Nelson,
2001) follows the concept of Paulson’s Procedure while reducing the limitation of their
assumption so that alternative solutions could have unknown and unequal variances.
In addition, it supports the application of common random numbers, a variance
reduction technique, which can help to reduce the number of replications needed to
obtain a statistically significant result. KN++ Procedure (Kim and Nelson, 2006b) is
one of the major developments that extend the validity of the procedure to
non-normal and dependent alternatives with faster convergence.

2.3.2 Efficient Simulation Budget Allocation Procedure

The efficient budget allocation methods are designed to intelligently allocate the
sampling budget to alternatives while they could still assure a high probability of
correctly selecting the optimal alternative. This would be achieved by assigning more
sampling budgets to the alternatives with high estimated mean performance and high
uncertainty. While those alternatives with low estimated mean performance or with a
low degree of uncertainty would be sampled less often.

The algorithms of efficient simulation budget allocation methods draw on the concept
from Bayesian statistics to describe the uncertainty of the estimated mean with a
posterior. Replications of simulation are assumed independent and distributed
normally. Optimal Computing Budget Allocation (OCBA) (Chen et al., 2000)
algorithm is an important class in this category.

A certain amount of replications are simulated in one iteration and then the variance
(σ2) of each alternative and their distances (d) to the best-performing solution in that
round are computed to derive the ratio of budget allocation for the next iteration.

Ni,t+1

Nj,t+1
=

(
σ̂idb,j

σ̂jdb,i

)2

, i ̸= j ̸= b (2.2)

Nb,t+1 = σ̂b

√√√√ ∑
i:i ̸=b

N2
i,t+1

σ̂2
i

(2.3)

where i and j are two different solutions other than the best one (b) in the previous
iteration, N is the budget allocated to one solution for the next iteration and σ̂ is the
sample standard deviation (Fu, 2014). The procedure stops when the budgets are
exhausted or the preset PCS is satisfied.
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Minimising expected opportunity cost (EOC) could be applied in place of maximising
PCS to measure the selection. EOC is the expected reward with additional information
subtract the reward without that information. Estimated EOC (EEOC) is defined as the
upper bound of EOC and is used in algorithms, EEOC(i) = ∑

j:j ̸=k

∫ +∞
0 x f ∗k,j,i(x)dx where

f ∗k,j,i(x) is the probability density function of the distance (x) between solution k and j
when solution i receives allocation (Fu, 2014). EEOC is calculated for every alternative
and the alternatives having the smallest EEOC get allocation for the next iteration. It is
worth noting that EOC is much more complicated to calculate compared to PCS. In
addition, EOC penalises bad choices more than slightly incorrect selections, which
makes it preferred over PCS when the performance is measured for economic value.

Derivatives of OCBA have been developed to work with multi-objective problems
(Lee et al., 2010b). These methods aim to give out an optimal subset (Zhang et al.,
2016) and have been used to assist heuristic optimisations (e.g. Particle Swarm
optimisation (Zhang et al., 2017)).

The Expected Value of Information (EVI) method has its root in Bayesian decision
theory (Fu, 2014). Both PCS and EOC mentioned in the previous paragraphs are
possible loss functions for EVI. The algorithm allocates additional samples with the
objective of minimising the expected loss after sampling. Linear Loss procedure (LL)
(Chick and Inoue, 2001) is a typical EVI procedure minimising EOC. It has an
important extension LL1 procedure (Chick et al., 2010) that simplifies the process of
allocating all budgets to a single solution and maximises EVI in one iteration.

There is another group of approaches called single-run simulation optimisation,
where all the solutions are concurrently simulated in one simulation run. One of the
latest research is Time Dilation - Optimal Computing Budget Allocation (TD-OCBA)
(Zhu et al., 2019). Time Dilation (TD) manages the time scale of the solutions in one
simulation run following the allocation recommendation obtained by OCBA (Hyden
and Schruben, 2000). TD-OCBA is more robust in terms of the parameter setting
compared to the original OCBA when the performance is claimed to remain similar.
The performance (PCS) in TD-OCBA increases quicker than applying TD alone when
having a low computing budget. Apart from the comments on the accuracy,
TD-OCBA needs only one warm-up period while conventional
multiple-replication-based simulation optimisation approaches require one warm-up
period for each experiment. For a system that has a long warm-up period, TD-OCBA
could be an option that saves computing budget.

2.3.3 Fast Simulation Optimisation for Real-time Decision Making

It is obvious that the ranking and selection procedures reviewed in this section rely
heavily on having enough computation to generate simulation replications. This leads
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to the fact that the time needed to derive the optimal solution can be significant. They
then become impractical when we are looking to obtain the optimal solution in a
real-time or near-real-time setting. More powerful computing ability is an instinctive
solution that may decrease the processing time. Parallel computing simultaneously
runs replications on multiple processors to reduce computing time. Simulation with
parallel computing often relies heavily on expensive hardware infrastructure. Parallel
and distributed simulation for discrete event simulation were surveyed in D’Angelo
and Marzolla (2014). The authors argued more work is necessary to enable available
hardware architectures to work well with the current algorithm to offer usable and
well-performed service.

Parallel OCBA (Luo et al., 2000) is one of the earliest works of parallel ranking and
selection and it enables an existing method to work in a distributed computing
environment with multiple processors. Another research parallelise OCBA could be
found in Yoo et al. (2009). Good Selection Procedure (Ni et al., 2017) guarantees the
probability of good selection which relaxes PCS and follows a standard output
assumption. The approach extends the Divide-and-Conquer procedure (Chen, 2005)
which divides the whole decision space into several parts and transfers the problem
into multiple R&S problems, the obtained in-group optimums then form a final R&S
problem.

Pei et al. (2018) proposed an expected false elimination rate, which is a novel objective
for parallel ranking and selection. The authors claim this new guarantee is able to deal
with a very large number of alternatives. Based on this, Parallel Survivor Selection
(PSS) (Pei et al., 2018) and Parallel Adaptive Survivor Selection (PASS) (Pei et al., 2018,
2022) are developed.

Another growing area of research aims to reduce the number of high-fidelity
replications for optimisation. Multi-fidelity framework (e.g. Xu et al. (2014); Huang
et al. (2006a); Pedrielli et al. (2019)) is a group of methodologies that are built towards
decision-making for manufacturing practice. Multi-fidelity framework is discussed in
the following section.

2.4 Multi-Fidelity Simulation Optimisation

The concept of multi-fidelity comes from reducing the computing cost without much
compromise on the accuracy of the result. A model with lower fidelity is involved in
working with the high-fidelity model in order to reduce the utilisation of the
high-fidelity model. While the computing budget is aimed to be minimised, the
quality of the optimisation remains significant. Thus, balancing the cost of computing
and the optimisation quality is crucial. The multi-fidelity framework has its origin in
computer science and is then adopted and widely applied in engineering. The
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multi-fidelity frameworks or algorithms discussed in this chapter focus on those in the
field of simulation optimisation.

2.4.1 MO2TOS

Xu et al. (2014) proposed Multi-fidelity Optimisation with Ordinal Transformation &
Optimal Sampling (MO2TOS) to leverage a low-fidelity model for narrowing down
the design space. All the alternative designs are first tested on a low-fidelity model
and then grouped based on the rankings of the estimates. The number of groups
needs to be decided beforehand. The optimal sampling part of MO2TOS borrows
ideas from OCBA to assign computational budgets to the groups obtained from the
low-fidelity model. For example, initial replications for different groups are sampled
and simulated via the high-fidelity model, which generates the initial means and
variances for each group.

Unlike the greedy sampling strategy which spends all computing budget on the
high-rank group from the low-fidelity simulation results, the optimal sampling
method samples from all groups in case the low-fidelity model has a large bias. The
procedure keeps running until the computing budgets are exhausted. The sampled
design with the best average performance is selected as the optimal solution.

The framework builds on the following assumptions. The high-fidelity model ( f (x)) is
a realisation of a random variable with finite variance. The low-fidelity model (g(x))
can be approximated by a uniformly distributed random variable when randomly
sampling x from the solution space, and g(x) is independent of the error
δ(x) = f (x)− g(x) for each solution. It should be pointed out that the optimisation
output could only guarantee a comparably good solution since the random sampling
process within each group in the optimal sampling stage only samples and simulates
part of the alternatives.

In Xu et al. (2016b), MO2TOS partners with three low-fidelity models with different
accuracy to check their effectiveness. The results show the surrogates have similar
performance in their tests. The same framework (MO2TOS) in Xu et al. (2016a)
includes a detailed application of assisting decision-making for operating a
semiconductor fabrication plant. In addition, the paper combined archived
high-fidelity simulation replications with low-fidelity simulation results to build the
low-fidelity approximation. The comparison shows the performance of MO2TOS
increases significantly compared to the test in Xu et al. (2014) when having a larger
computing budget.

Song et al. (2019) introduced the Expected Optimality Gap (EOG) to measure the
performance of the optimal sampling. The MO2TOS framework is referred to as the
Multi-Fidelity Optimal Sampling (MFOS) in this paper. When there are more than 3
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groups, MFOS has a larger upper bound of EOG than equal allocation policy and
OCBA. The variance of members in the group reduces with more groups, at the same
time, the sampling budgets allocated to each group decline as well. It would thus have
a lower chance of correctly identifying the best alternative among the groups. The
suggested proper number of groups is between 5 and 20, in which range MFOS
performs comparatively stable.

The performance of the MO2TOS has been tested on a semiconductor manufacturing
product line with 2 products, 5 workstations and a total of 37 machines (Xu et al.,
2014). Optimal sampling with ordinal transformation outperforms the OCBA and
equal allocation policy. Although the semiconductor production line in the paper is a
system with a reduced scale, it shares many common challenges and features with
large-scale systems, for example, the re-entry mechanism, priority schedule and batch
processing. More details and analysis of a similar scenario could be found in Song
et al. (2019). A Jackson network is applied as the surrogate or low-fidelity model while
discrete event simulation works as the high-fidelity model. MFOS saves two-thirds of
high-fidelity replications to attain the same EOG as OCBA does. It has been reported
that MFOS still achieves fairly good performance even when the correlation between
low-fidelity and high-fidelity models is as low as 0.6. The number of groups is
suggested to be set at around 10. The authors constrain the decision-making time so
that only 50 out of 128 plans could be simulated via the high-fidelity model for a
robust test. A five per cent loss in profit is caused by the schedule worked out by
MFOS while other competitors have at least a twelve per cent loss in profit.

Multi-Fidelity Budget Allocation (MFBA) (Peng et al., 2019) follows the concept of
MO2TOS. Estimates from the low-fidelity model form the information to cluster the
solutions in accordance with the Gaussian mixture model-based Bayesian framework
instead of evenly separated in MO2TOS.

MO-MO2TOS (Li et al., 2016) extended MO2TOS to work with multi-objective
problems.

2.4.2 MFSKO & VGO

MFSKO (Multi-Fidelity Sequential Kriging Optimisation) is an extension of a
stochastic optimisation method, Sequential Kriging Optimisation (SKO) (Huang et al.,
2006b), which looks for global optimum with cheaper cost of data (Huang et al.,
2006a). Models at different levels are combined together to form a kriging metamodel
(Rasmussen and Williams, 2005). The algorithm selects the fidelity level and data
points for the simulation in the next step using augmented expected improvement.
The algorithm holds the assumption that the solution space is connected and compact.
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An application of decision-making in the metal-forming process has been
demonstrated in the paper.

Value-based Global Optimisation (VGO) (Moore et al., 2014) has a similar structure to
MFSKO, but it uses a utility function to extract information of value (IoV) rather than
expected improvement to select the next point to refine the metamodel. The procedure
stops when IoV turns from positive to negative. The authors give an example of
designing a hydraulic hybrid vehicle.

2.4.3 Other Methods

Horng and Lin (2009) proposed a two-stage procedure to solve G/G/1/K polling
system problems with k limited. The optimisation aims to select the optimal service
limit (k). In the first stage, an Artificial Neural Network (ANN) assisted Genetic
Algorithm (GA) narrows down the candidate solutions by eliminating the low-rank
solutions in the design space. ANN model which works as the fitness function of GA
is a metamodel of the simulation. In the second stage, the algorithm iterates to
continue reducing the promising solutions gradually. The surrogates used in stage
two are refined with extra simulations that have various run lengths. The high-fidelity
model is used lastly to evaluate the rest of the solutions. Horng and Lin (2013) applied
an OCBA algorithm to select the best in the second stage after GA produced a good
enough subset. Horng and Lin (2013) and Horng and Lin (2009) reduced the
computing cost spent on the high-fidelity model in a way similar to MO2TOS.
However, these two methods simulate all candidates in the subset obtained from GA.
In this case, the surrogate would be expected to have limited bias. Among a list of
tested surrogate models, ANN with the Levenberg-Marguardt algorithm has a better
performance in a hotel booking limit problem.

Horng et al. (2013) proposed a memetic algorithm which adopts three phases with
different fidelity. The structure looks like a mixture of the two methods mentioned
above. In phase one, a GA optimisation is performed with an offline surrogate model
to shrink the solution number. In phase two, local search works with the refined
online surrogate to make the approximation for results from phase one and their
neighbours. In phase three, OCBA is used with the original model for the final result.

March and Willcox (2012) presented an approach avoiding computing high-fidelity
functions directly in the optimisation process. The errors of different fidelity functions
are modelled together with low-fidelity functions to approximate the behaviour of the
high-fidelity model. The result is proved convergent. The method has not yet been
applied to discrete event simulation, thus to verify how it would work needs further
research. The error between low and high-fidelity models is added to the low-fidelity
model in Pellegrini et al. (2016) to estimate the simulation (high-fidelity model)
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output. It is proposed to achieve accuracy close to the high-fidelity solver while
maintaining low computational costs. Numerical tests reveal that there is at least a
20% reduction in the computational cost compared to building the
high-fidelity-trained metamodel.

In Offline Simulation Online Application (OSOA) (Hong and Jiang, 2019), data
generated by the simulation model are analysed to build a predictive model. Simple
models or simple rules are normally used for the need for quick calculation. It is fast
but may not always lead to the best solution. The covariates that are built via
simulation offline are used to fit the closed-form predictive model. In the online
application, evaluation via the predictive model will be carried out to support
decision-making when the system observations are available.

Multi-fidelity model is applied to solve the aircraft recovery problem in
Rhodes-Leader et al. (2018) to achieve real-time simulation optimisation where integer
programming is used for the low-fidelity model. The stochastic process is eliminated
for simplifying the model. The simulation model is adopted as the high-fidelity
model. It searches the result area from integer programming for the optimal solution.
The paper shows the proposed algorithm could effectively provide the solution to the
aircraft recovery problem. The computational cost depends on the number of delay
events to alter which affects the simulation runs.

Generalised Ordinal Learning Framework (GOLF) (Pedrielli et al., 2019) was proposed
to support real-time decision-making for cyber-physical systems. The parameter of
the system is optimised once the scenario and the system states are updated. The
system responses vary for different scenarios and knowing all potential scenarios (e.g.
the realisation of stochastic demands) is not possible. The proposed framework
suggests sampling data from one or a small number of scenarios. Additional sampling
could be carried out on the actual scenario in use for model refinement. The authors
argue such expensive online sampling may not always be necessary to make a
near-optimal decision. The whole design space is partitioned into several regions for
efficient model building. An ordinal learning approach is applied to efficiently select
the optimum and is a key part of the framework. The objective function for the current
scenario consists of a weighted linear combination of a number of objective functions
fitted from data of the history scenario and their distances to the current one. One of
the constraints is that it is designed for single-objective optimisation. Considering the
expensive cost of simulating complex systems, the authors argue that computer
simulation could be extremely time-consuming even in an offline stage. They claim
that the structure of GOLF is able to cover most challenges in real-time optimisation.
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2.5 Simulation Metamodels

A metamodel is a model projecting the behaviour of another model that is usually
complex in structure and slow in running (for example, a simulation model in our
case) from input to output. There are not only conventional approaches like linear
regression, polynomial regression or radial basis function regression but also a surge
in machine learning methods like Gaussian process regression, tree-based algorithms
and artificial neural networks. Each method is described in turn. Besides, the
interpretability of the models and their suitability for adapting to streaming data (new
data are continuously generated from the system) are also discussed.

2.5.1 Polynomial Regression

The linear regression model for simulation is formulated as

y(x) = β0 + β1g1(x1, x2, ..., xd) + ... + βpgp(x1, x2, ..., xd) + ε (2.4)

according to Barton (2020), where ε is independent normal random quantities. It is in
the form of linearity between gi(x) (i = 1, 2, ..., p) and y(x) while each g(x) could be
either linear or non-linear. So that this generalised form of linear regression is able to
fit non-linear functions. When g(x1, x2, ..., xd) is a linear function, the estimation of
coefficient could be solved via ordinary least square [β̂0, β̂1...β̂p]T = β̂ = (XTX)−1XTy.
The linear regression model offers a straightforward relationship between variables
which implies an insight into the system. However, such a linear framework with
polynomial elements has limited flexibility and may not be proper for complex
systems.

2.5.2 Radial Basis Function Regression

Radial Basis Function (RBF) regression is one of the most commonly used basis
function regressions. It is formulated as

y(x) =
N

∑
i=1

ωi φ(||x− xi||), (2.5)

where φ(r) is the radial basis function and is weighted by the coefficient ωi. One
popular choice based on Gaussian function is φ(r) = e−(εr)2

. According to Barton and
Meckesheimer (2006), RBF regression has a simple form consisting of a series of
radially symmetric functions with different centres and widths. It is capable of
carrying out an approximation of non-linear processes. However, the model could
easily get over-fitted. Data need to be carefully processed (e.g. rescaling) before being
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sent to fit the model. These days, RBF is more often being used as a kernel in neural
networks to form RBF neural networks (RBFNN) or sometimes called RBF networks.
RBFNN has been used as a metamodel for a stochastic simulation shortly after it was
introduced (Meghabghab and Nasr, 1999).

2.5.3 Gaussian Process Regression

Gaussian Process Regression (GPR) is constituted of a mean function and a covariance
(also known as the kernel) function (Rasmussen and Williams, 2005). A GPR can be
noted as

f (x) ∼ GP(m(x), k(x, x′)), (2.6)

where function f (x) is distributed as Gaussian process with a mean function m(x) and
a covariance function k(x, x′). It is able to flexibly work for different non-linear
approximations with good accuracy. The training process treats the test data set as a
prior for Bayesian inference. Any non-negative definite function could be used as a
covariance function. It is not difficult to train the hyperparameter, which is a set of
coefficients from the mean and covariance functions since it assumes the data is
normally distributed. Despite its many advantages, GPR has a computational
complexity of O(n3) and a memory complexity of O(n2), which means the
complexities increase quadratically and cubically with the input size.

Sparse Gaussian Process (SGP) (Quiñonero-Candela and Rasmussen, 2005) and a
Mixture of Experts (ME) (Nguyen-Tuong et al., 2009) are two major groups to deal
with the problem of complexity. SGP trains the model through inducing inputs which
are selected from the training set (Quiñonero-Candela and Rasmussen, 2005). ME
partitions the training set into several subsets which are trained to be local models.
Local Gaussian Process (LGP) in Nguyen-Tuong et al. (2009) combines the idea of
Locally Weighted Projection Regression (LWPR) and GPR. LWPR makes
approximations through weighted averages over nearby local models which are
trained via clustered data. The application in approximating inverse robot dynamics
shows that LGP is capable of fast updates and could be applied to situations that look
for real-time responses.

2.5.4 Random Forest

Random Forest (RF) (Ho, 1995) integrates the output of a number of random decision
trees (Biau and Scornet, 2016). A decision tree (Quinlan, 1980) is a classification or
regression tree where each internal node divides a feature, each branch shows the
outcome of the division and end nodes give out results. The computing cost increases
linearly with larger-scale data sets. The idea is simple but empirically effective.
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However, we know little about the theory behind the method. Although the structure
of the decision tree is simple, it is sensitive to small differences in data. Stable and
Interpretable RUle Set (SIRUS) regression (Bénard et al., 2021) is developed to respond
to the demand for stability. It is a random forest regression with restrictions on node
splits. The restrictions have a limited impact on prediction accuracy while increasing
stability. Each decision tree in the model is then broken down into rules. Redundant
rules above the given threshold are selected to form an aggregated rule. The authors
claim that there are three minimum requirements for the interpretability of random
forests. They are simplicity, stability and predictivity.

The random forest has a lot of extensions to expand the usage scenarios, such as
adaptive random forest classifier (Gomes et al., 2017) for streaming data. It uses drift
monitoring for every decision tree to track warnings and drifts. A new tree will be
trained in the background when a warning is shown and replace the active one when
the warning turns into drift (Zhukov et al., 2017). The drift refers to the appearance of
new classes and the warning refers to a buffer before drift is triggered. Gomes et al.
(2018) proposed a regression algorithm to further implement the idea. It was applied
to three real-world datasets against several other tree-based ensemble learning
algorithms and has the lowest error rate among them.

RF model could be found being used as the metamodel in the literature. For example,
Shen et al. (2022) applied RF metamodel for optimising the design of wind-turbine
foundation, Bjerre et al. (2022) use the RF model as the metamodel for predicting
drainage fraction.

2.5.5 Artificial Neural Network models

Artificial Neural Network (ANN) is a modelling approach that became widely known
many years after the concept was developed in the 1940s (McCulloch and Pitts, 1943).
An ANN consists of a number of connected neurons (Ojha et al., 2017). An artificial
neuron that receives inputs and sums them to produce an activation is a basic unit of
the neural network. The sum is operated through a non-linear function which is
known as an activation function or transfer function. Different activation functions
and weights of neurons together with the way they are linked enable the neural
network to implement desired behaviour. Thus several non-linear stages may be
required for the realisation of certain functions where each stage is generally
understood as one layer. It will be called a deep neural network when there are
multiple hidden layers. Neural networks are suitable to deal with very large data sets
or we can say that more data points normally bring higher accuracy. It has successful
applications in numerous real-world problems. Nevertheless, it is a black-box system
with little interpretability. Feedforward Neural Network (FNN) is a kind of ANN that
could be used to perceive a model or a function, in which connections do not form a
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FIGURE 2.1: Feedforward Neural Network

loop (Ojha et al., 2017). The structure of FNN is shown in Figure 2.1. Barton and
Meckesheimer (2006) stated that a neural network could also be thought of as a
technique for obtaining coefficients of the metamodel.

According to the review in Negahban and Smith (2014), ANN models are often used
as metamodels in literature. The application could be found as early as 2003 in
Fonseca et al. (2003), where an ANN metamodel was used to estimate the lead time in
a job shop.

2.5.5.1 Deep Neural Network

A Deep Neural Network (DNN) is an ANN that has multiple hidden layers between
input and output layers. More hidden layers provide the neural network with a
greater capability to extract information from the data while too many hidden layers
could cause overfitting and reduce the generalisation of the model.

Other than the basic feedforward structure, there exist different forms of networks.
Recurrent Neural Network (RNN) that contains a loopback is proven to be good at
dealing with time-series data such as modelling language (Abiodun et al., 2018). Long
Short Term-Memory (LSTM) was developed to extend RNN to handle large historical
memory better, which has been successfully widely used in stock market forecasting
(Hochreiter and Schmidhuber, 1997). Convolutional Neural Network (CNN) with
convolution and pooling layers is another important variant of DNN that could
process visual analysis (Abiodun et al., 2018). DNN is also a major research target for
transfer learning. Transfer learning reuses the information from previous tasks and
transfers it to a new task. It may enable the metamodel to work with the scenarios that
are not covered by the metamodel but have appeared in the simulation model.
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Selecting DNN for metamodel places a potential to leverage rich relevant research in
machine learning.

2.5.6 Explainable Boosting Machine

Some algorithms mentioned above have extensions to cope with the problem of
interpretability or explainability. Some other methods (e.g. Local Interpretable
Model-agnostic Explanations (LIME), Partially Dependence) are trying to offer an
explanation for black-box models externally. At the same time, it is also concerned
from the very start when some new machine learning algorithms are developed.
Among which the ones that received great attention is the Explainable Boosting
Machine (EBM) (Nori et al., 2019). It builds on the generalised additive model with
interaction terms.

2.5.7 Comparison of modelling methods

Metamodel is a model of a model. The modelling technique used for metamodelling is
not different to modelling from the data. Regression analysis is a set of major
approaches in statistical modelling. Polynomial regression, radial basis function
regression, gaussian process regression, random forest and neural network are
reviewed in this chapter. Although they all have different advantages and
disadvantages, some papers carried out comparisons of the methods. We will have a
look at some of them in the following paragraphs. They may shed some light on
model selection.

Hultquist et al. (2014) analysed burn severity in the diseased forest via three machine
learning methods (Random Forest (RF), Support Vector Machine (SVM), Gaussian
Process Regression (GPR)) and multiple linear regression. All four types of models are
sensitive to the number of independent variables when it is under a certain level. The
prediction error slumps with the addition of variables before it reaches five. Different
variable combinations bring higher variance to RF & SVM than the other two
methods. All three machine learning algorithms outperform the multiple linear
regression. Two kernel-based approaches SVM and GPR have similar behaviour when
RF has better performance in the assessment.

Elsayed and Lacor (2014) compared the performance of the polynomial regression
models, Kriging, RBF and RBFNN for printing process problems. The predictions
from Kriging, RBF and RBFNN are close. The accuracies of these three approaches are
superior to polynomial regression, and they do not have a significant difference
between each other according to the author.
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2.6 Experimental Design

Design of experiments is a group of methodologies that compose the plan for
experiments to unveil the relation between the factors (variables) of interest. The data
collected from the computer simulations which are conducted following the
experimental design would be used to build the metamodel of the simulation in our
case.

The experimental design aims to efficiently reflect the variation of the design space
and describe the information in it (Durakovic, 2017). Full Factorial Design 2k and
Fractional Factorial Design 2k−p can work with multiple factors with two levels (low
and high) where k is the number of factors and p stands for the fraction of involved
full factorial (Law, 2015). The main effect of factors and the interaction of multiple
factors are considered in these methods. Confounding of the main factors and
interactions are assumed in the Fractional Factorial Design, and the experiments are
reduced to 1/2p of all 2k combinations. Factorial design is hard to deal with variables
with more than two levels, other approaches are needed if we are looking for
information in this situation. Central Composite Designs (CCD) extends the factorial
design for full second-order models (Sanchez et al., 2021). It collects nine points for
two variables with two levels. Four points of which are via a 22 factorial design, one
from the centre of the design space, and another four are on the axis. The design has
eight points lying on a circle and one at its centre for two factors (Law, 2015).

We are going to review the space-filling sampling methods and the adaptive
samplings. The space-filling methods are initially designed for deterministic
computer models where the factors need to be either continuous or discrete with a
large number of levels. Adaptive samplings are the sampling methods that are carried
out iteratively.

2.6.1 Space-filling Design

A space-filling design has sample points filling the design region with the smallest
gaps. It is intuitive to place the samples covering the design space so that the samples
can represent different areas of the design space. For p factors having feasible area X ,
X = [0, 1]p after normalisation (also called min-max scaling). Experimental design
D = {s1, . . . , sn} is a collection of design sample points si ∈ X .

The distance between one point in the design space and the experimental design is
measured by its distance to the closest design point, d(s, D) = min

si∈D
d(s, si), where s

stands for any point in the feasible area and si is a sample in the design. Euclidean
distance is a common choice for d(·). A smaller d(s, D) is desired as it implies the
design is close to the points in the design space therefore the design has good
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coverage over the design space. The data point that has the largest d(s, D) is the least
ideal location in the whole feasible area. The design quality could be controlled when
the least ideal point (max

s∈X
d(s, D)) is constrained.

min
D

max
s∈X

d(s, D) (2.7)

The above equation elaborates the concept of the Minimax distance design (Johnson
et al., 1990).

A different approach sharing the same root was proposed to solve the design problem.
Firstly, find the pair of design points that has the smallest distance, min

i,j
d(si, sj), where

si, sj ∈ D. By maximising this smallest distance, we can also obtain an experimental
design that fills the design space, this is Maximin distance design

max
D

min
i,j

d(si, sj). (2.8)

The Maximin distance design (Johnson et al., 1990) costs less computation than the
Minimax distance design because it calculates the pair-wise distance of the points in
the design rather than all the locations in the feasible area. Although the Minimax and
the Maximin distance design are straightforward to understand and easy to conduct
they have no guarantee on the coverage or sparsity of each individual factor or low
dimensional projection (Joseph, 2016).

FIGURE 2.2: Illustrations of the Maximin Distance Design (left) and the Minimax Dis-
tance Design (right)

Figure 2.2 illustrates the Maximin distance design and the Minimax distance design in
the same situation using Euclidean distance. The design space has two factors x1 and
x2. Two experimental designs with seven points are shown in the illustration. The
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factor x1 has four samples in the Maximin distance design and three samples in the
Minimax distance design when x2 has four and five samples respectively. Although it
could tell from the chart that the designs are space-filling, the projections on both x1

and x2 are not ideal. In addition, Pronzato (2017) points out the Maximin distance
design pushes the design points closer to the boundary of the feasible space.

McKay et al. (1979) introduced Latin Hypercube Sampling (LHS) (also known as Latin
Hypercube Design (LHD)). The concept is expanded from the Latin square which is a
n-by-n array with n symbols and the elements in each row and column are not
repeated. In the illustration given in Figure 2.3, we can see there is only one sample in
each row or column. However this is not the only possible design following the LHS,
it could also be a collection of points sitting on the diagonal which satisfies the criteria
but fails to fill the space.

In order to select the optimal design among all candidate designs, variants of the LHS
are developed. Morris and Mitchell (1995) proposed the Maximin Latin Hypercube
Sampling (MmLHS). It maintains good projection on every dimension (Joseph, 2016)
and non-collapsing (Liu et al., 2018) which means even when some points are not
working effectively, the rest part of the design still makes up an LHS design.

The distinct pair-wise distances dk (previously marked as d(xi, xj)) are sorted into a list
{d1, . . . , dm} in ascending order, the number (Jk) of pairs of points with distance dk

makes up an index list {J1, . . . , Jm}. The design is called Maximin while the dk is
maximised and Jk is minimised (Morris and Mitchell, 1995). The authors also
proposed a scalar-valued design criterion to rank the designs. The design that has the
lowest ϕp(D) is the optimal design that meets the Maximin criterion,

ϕp(D) =

(
m

∑
k=1

Jk

dp
k

)1/p

, (2.9)

where p is a positive integer. The choice of p depends on the size of the design. The
design has higher dimensions and more points is a larger design. The parameter p is
suggested to pick from 5 for a small design to a value between 20 and 50 for a large
design by Morris and Mitchell (1995).

In Figure 2.3, we demonstrate a Maximin Latin Hypercube Sampling design on two
factors with seven points. The design fills both the space and the sub-spaces. Besides
the MmLHS, other variants use various criteria (e.g. entropy criterion (Park, 1994),
centred L2-discrepancy criterion (Fang et al., 2002)) to select the optimal experimental
design.

The experimental design methods discussed so far generate the design in one run, for
which the number of points in the design should be decided in advance. Sequential
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FIGURE 2.3: An illustration of the Maximin Latin Hypercube Sampling

sampling methods improve the efficiency of utilising computing budget by adding
new design points iteratively.

2.6.2 Adaptive Sequential Sampling

Adaptive sequential sampling begins with a small number of samples and adds more
data points iteratively until the budget (which could either be the number of
observations or the sampling time) is exhausted or the performance of the
model/surrogate reaches the preset measure of accuracy. Adaptive sequential
sampling maximises the effectiveness of the limited sampling budget. It reduces the
computational resource and time required for data collection when the sampling
process satisfies early stop criteria.

Some one-shot experimental design methods could be transferred and adapted to fit
into a sequential scheme. For example, methods like Incremental Latin Hypercube
Sampling (Nuchitprasittichai and Cremaschi, 2013) and Sequential Latin Hypercube
(Wang, 2003) are extended from the Latin Hypercube Sampling. van Dam et al. (2007)
deal with the problem differently by treating the sampling as an optimisation problem
and regarding space-filling as an objective.

Eason and Cremaschi (2014) proposed a sampling method for modelling deterministic
chemical processes with neural networks. Their mixed adaptive sampling combines
space-filling methods and adaptive approaches. It reduces the sample size required



2.7. Multi-Objective Simulation Optimisation 27

for the CO2 capture case study. Sequential sampling is also investigated in some
research regarding stochastic kriging (Ankenman et al., 2010) where the adaptive
sequential sampling is tailored for the kriging model. Binois et al. (2019) split the
sampling process into exploring and exploiting to collect data for stochastic kriging. It
balances different experiment areas by assigning more replications to the areas that do
not have smooth response surfaces. Liu et al. (2018) argued that exploiting and
exploring are two conflicting parts yet have equal importance. Exploiting finds the
region that has been sampled and is still of interest. These regions could have large
cross-validation errors, large prediction variance or other criteria that could represent
the prediction error. Exploring finds the region that has not been sampled.
Distance-based criteria could be used to identify the area.

2.7 Multi-Objective Simulation Optimisation

Real-life problems are normally complex and need to balance several different
objectives, sometimes even contradictory ones. Therefore it is more practical to take it
into consideration although it would increase the complexity of the problem and the
single-objective optimisation problem has a lower cost. Hunter et al. (2019) surveyed
nine industries that have multiple applications that have more than one objective.

2.7.1 Multiple Attribute Utility Theory

One way to address problems relevant to systems that have multiple performance
measurements is multiple attribute utility theory (MAU) (Butler et al., 2001). It
transfers multiple measurements into a single scalar in a way like calculating costs in
the business. It could also be applied in place of cost when accurate cost data do not
exist or are not suitable. The measurements could not only be scalars but also ranges
or probabilistic distributions. One form of a single-attribute utility function that has
been widely used is ui(xi) = Ai − Biexi RTi , where ui(xi) represents the utility value of
attribute xi, Ai and Bi are scaling constants of measurement i, RTi is risk tolerance to
measure i defined by the user. A general expression of MAU is

u(X) =
n

∑
i=1

wiui(Xi) +
n

∑
i=1

∑
j>i

wijui(Xi)uj(Xj)

+
n

∑
i=1

∑
j>i

∑
m>j>i

wijmui(Xi)uj(Xj)um(Xm) + ...

+ w12...nu1(X1)u2(X2)...un(Xn),

(2.10)

where different w show the weights of either single attributes or the interaction of
multiple attributes which need to be assigned by the user. In Butler et al. (2001), MAU
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was presented with an indifference zone approach to form an R&S procedure. The
planning for a land seismic survey operation which contains four configurations was
optimised using MAU and R&S in the paper.

2.7.2 Pareto Front

Another widely accepted concept is that there is no single best option exists for
multi-objective optimisation but a set of non-dominated solutions. The result set is a
Pareto set, Pareto front, Pareto frontier or non-dominated set (Lee et al., 2004). In order
to obtain the non-dominated set, we begin by defining what it means for one solution
(j) to dominate another solution (i). The solution j should at least have one objective
that outperforms solution i while the other objectives are no worse than solution i. The
probability of solution j dominants solution i in a minimisation problem is defined as
P(µj ≺ µi) = P(µjk ≤ µik for k = 1, 2...m), where µjk is the evaluation of object k of
solution j, in addition, there has to be at least one strict inequality. When the
measurements (objectives) are assumed independent, they could then be converted
into a product form for the overall probability of dominance between two solutions

∏m
k=1 P(µjk ≤ µik). Next, a performance index for each candidate solution dominated

by other solutions is calculated by summing up all relevant pairwise probability of
dominance, Ψi = ∑n

j=1,j ̸=i P(µj < µi). Finally, those alternatives that rank high (having
a small index Ψ) constitute the Pareto set. The number of elements in the Pareto set
could be controlled by a preset parameter (Lee et al., 2004).

Lee et al. (2004) proposed Multi-objective Optimal Computing Budget Allocation
(MOCBA) that combines classic OCBA procedure with the Pareto front, which extends
the capability of OCBA to multi-objective ranking & selection problems. After initial
replications are performed for each candidate solution, a Pareto set is formed based on
the simulation results. If the largest probability of dominance in the Pareto set is
smaller than the preset threshold Ψ∗, the Pareto set is confirmed to be the optimal
solution set. If the criteria are not satisfied, a certain amount of computing budget will
be allocated. Candidate configurations that would maximise the change of probability
of dominance for Pareto set members are selected. An OCBA-like process is then
applied to the several best-performing policies from the last step. The Pareto set is
then updated. Such a procedure iterates until the threshold is met or the computing
budget runs out. The paper contains a comparison between MOCBA, theoretical
optimal allocation (TOA) and theoretical uniform allocation (TUA) assuming the true
mean and variance of designs are known. The total number of replications required to
satisfy preset performance index Ψ∗ for three approaches are compared. MOCBA
requires 297 replications which is less than TOA (400 replications) and TUA (550
replications). It shows MOCBA could save computing budget when having a
requirement on performance. MOCBA was compared with uniform computing
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budget allocation (UCBA) in a more realistic scenario. MOCBA also outperformed
UCBA by allocating nearly half the number of replications as UCBA does.

Lee et al. (2010a) modified the performance index Ψi in MOCBA to calculate the extent
of non-dominance.

Ψi ≡ P(
⋂

j∈S,j ̸=i

(j⪰̂i)) (2.11)

MOCBA had a much higher probability of correct selection (PCS) than UCBA given
the same computing budget in one of their tests. The highest PCS that MOCBA
reaches in the test was very close to 100% while UCBA was only 75%. They borrowed
the idea of Type I and Type II errors from statistics and added it into the restricted
condition when minimising the simulation runs. For Type I errors, MOCBA and
UCBA do not have much difference and are both at low levels even with low
replications, while for Type II errors, MOCBA is significantly lower than UCBA.
Correlated objections were taken into consideration in one of the tests. UCBA
consumes around three times replications to attain the PCS that MOCBA gets with the
same correlation condition(positive, independent or negative). For both methods, PCS
increases in the order of positively correlated, independent and negatively correlated
for the same computing budget. A flight schedule problem with three objectives and
ten candidate policies displayed in Lee et al. (2010a) shows that MOCBA allocated
roughly half the simulation computing budget (2880 replications) to obtain the same
Pareto set as UCBA did (5649 replications).

Hunter et al. (2019) surveyed the multi-objective simulation optimisation methods,
and two approaches other than MOCBA are described. They are Sampling Criteria for
optimisation using Rate Estimators (SCORE) and Myopic Multi-Objective Budget
Allocation (M-MOBA).

SCORE is designed for problems with two objectives (Feldman and Hunter, 2018).
The probability of misclassification of non-dominated solutions converges to zero
when the sampling budget is infinite. Misclassification of inclusive (Type-I error) and
exclusive (Type-II error) are considered. Allocations are given based on the score of
non-Pareto systems. A score is formed to measure the minimum distance between a
non-Pareto system and phantom Pareto systems, which are artificially formed in the
objective function space. The method has been generalised to cope with more than
objectives in its extension MO-SCORE (Multi-Objective-SCORE) (Applegate et al.,
2020).

M-MOBA (Branke and Zhang, 2015; Hunter et al., 2019) is a bi-objective optimisation
concerning the expected value of information. The system that has the largest
probability to change the Pareto set after the next allocation will be regarded as the
best system and receive replications allocation. Its extension Myopic Multi-Objective
Budget Allocation based on HyperVolume (M-MOBA-HV) (Branke et al., 2016)
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measures the change of Pareto set over hypervolume, which demonstrates how close
solutions are to the true Pareto set. Hypervolume was claimed to be more relevant to
decision-makers than other measures by the authors.

Multi-Objective Multi-fidelity Optimisation with Ordinal Transformation Optimal
Sampling (MO-MO2TOS) (Li et al., 2016) extends the ability of MO2TOS.
Non-dominated sorting is performed first to obtain Pareto layers. Solutions are
grouped by the performance index. Each group forms a layer (which is the shape on
the plot for the cases having two objectives). The dominating layer ranks higher than
the ones that are dominated. The layers are selected via an OCBA-like procedure for
computing budget allocation. The crowding distance which shows the density around
the solution in the Pareto layer is calculated, and the solution with the smaller value
gets more attention. A lower value, which shows fewer similar alternatives around
the solution, draws a higher computing budget. MO-MO2TOS performs well and
better than random search after setting parameters carefully. It has been deployed to
optimise the capacity plan of a large-scale container terminal (Li et al., 2017).

2.8 Conclusion

In this chapter, we have reviewed papers on seven key topics for the project. In
accordance with the literature, some gaps in research are identified as we discuss
below. These gaps were used, alongside the practical problem, to develop the research
questions stated in Section 1.3.

Conventional simulation optimisation methods require multiple replications of the
simulation for each alternative solution. It is not able to meet the need to obtain the
optimisation result in real-time or in a short period of time, especially when there are a
large number of alternatives and the simulation model is complex and
time-consuming. Previous research shows that developing multi-fidelity models for
simulation optimisation helps to reduce the computational burden but they are still
not fast enough for optimising in real-time. This is a research gap that has been looked
into in this project. For which, RQ (Research Question) 2 is raised.

Following MO2TOS framework Xu et al. (2014) which utilises OCBA to deal with
evaluations from the metamodel, RQ1 is asked for further discussion on the gap of
how the existing simulation optimisation procedures (e.g. OCBA) could be used to
achieve real-time optimisation.

The low-fidelity models used in most research of optimisation via multi-fidelity
models do not aim to offer accurate estimations. There is a research gap here to take
the accuracy of the metamodel estimation into consideration (RQ4). The application of
the multi-fidelity method in an industrial environment is also a research gap that is
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explored in the project. Therefore, RQ3 and RQ5 (related to model building) are
raised. The answers to these research questions are expected to contribute
methodologically and practically.
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Chapter 3

Multi-fidelity Simulation
Optimisation

A multi-fidelity simulation optimisation algorithm is proposed in this section. It
extends MO2TOS to further improve the performance. Multi-fidelity simulation
optimisation uses a low-fidelity metamodel to guide the optimisation using the
high-fidelity model. There are three aspects that affect the quality of optimisation:
choice of the metamodel, guidance provided to metamodel estimates for high-fidelity
model and the utilisation of R&S procedure. A flowchart of the proposed algorithm is
given in Figure 3.1.

We use the multi-fidelity framework with a discrete event simulation (DES) model as
the high-fidelity model and a multi-layer feedforward neural network metamodel
(Ojha et al., 2017) as the low-fidelity model. The left-hand side of the flowchart (Figure
3.1) describes the offline process used to build the metamodel (more details in Section
3.2), while the right-hand side describes the online process followed when carrying
out the optimisation.

The optimisation procedure extends MO2TOS (Xu et al., 2014) to have a finer
operation on the output of the metamodel, which could be very useful when the
metamodels have high accuracy. Unlike MO2TOS which evenly separates the
candidate solutions, we cluster and then group solutions based on the metamodel’s
estimates of their output values so that we could have more control over the number
of solutions in each group. More details of the algorithm are given in Section 3.1. The
metamodel and how we measure its performance can be found in Section 3.2. We
explain the utilisation of the ranking and selection procedure in Section 3.3.
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FIGURE 3.1: Flowchart of the proposed algorithm. Left: offline process, output fitted
metamodel. Right: online optimisation process, output final solution.

3.1 Optimisation Algorithm

The right side of the flowchart (Figure 3.1) shows how our multi-fidelity optimisation
algorithm works. First, we use the validated metamodel to evaluate the solutions.
Next, we use the hierarchical agglomerative clustering method (Day and
Edelsbrunner, 1984) to partition the solutions into clusters based on their
performance. Then, the clusters are indexed in the order of their performance, where
cluster 1 contains the most-promising solutions and cluster P contains the
least-promising solutions (P is the predetermined number of clusters). We put clusters
into groups for the next stage of the process as this gives us more control over the
number of solutions in each group. The number of groups Q is predetermined. The
grouping is designed so that the high-rank groups contain fewer but more promising
clusters and low-rank groups contain more but less-promising clusters. A grouping
strategy with 5 groups is introduced for this purpose.

Clusters are grouped into a handful of groups following a preset proportion of
1 : 2a : 3a : 4a : 5a : · · · , where a is the aggression parameter. It controls the level of
aggressiveness of the grouping strategies. A larger aggression parameter leads to
more clusters and smaller average cluster size. The number of required clusters P is
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calculated from the predetermined number of groups Q and the selected aggression
parameter a,

P =
Q

∑
q=1

qa. (3.1)

The number of clusters comes from the summation of the grouping ratio rules where
the aggression parameter is the exponent in the ratio. When a increases, the
summation of the ratio sequence increases and more clusters are needed to hold these
alternatives. Since the quantity of the alternatives is fixed, more clusters would lead to
fewer solutions in each cluster on average. While the exact numbers of the in-cluster
members depend on the data structure (whether the response surface is smooth or
steep) and the clustering method. For example, in the case study in Section 3.4 we
tested 3 aggression parameters with 5 groups, where a = 1, 2 and 3 respectively. When
a = 1, the grouping strategy is 1 : 2 : 3 : 4 : 5, where there need to be 15 clusters in all.
When a = 2, there will be 55 clusters for grouping strategy: 1 : 22 : 32 : 42 : 52. When
a = 3, grouping strategy: 1 : 23 : 33 : 43 : 53 needs 225 clusters in all (Equation 3.1).

In the final stage of the optimisation, we use an R&S procedure, such as OCBA, to
sample from the groups and report the best solutions, where each group is treated as a
single solution. When a simulation replication is assigned to one group by the R&S
procedure, we randomly sample from the solutions in that group for simulation.

In our approach, a solution in a group with fewer clusters will have a higher chance of
being sampled. In other words, we sample more solutions from the promising group.
Our approach does not eliminate the chances of any solution being sampled.

Finally, we apply the following two questions to the best solutions obtained by the
R&S procedure:

1. Is the best group selected from the R&S the same as the first group identified by
the metamodel?

2. Do the best solutions belong to the first group?

If both questions get positive answers, we then run the high-fidelity model for the best
solutions to get more accurate results. Otherwise, the metamodel needs to be refitted
with additional simulation replications and a new experimental design to improve its
accuracy. Then the multi-fidelity framework is repeated until the two questions return
positive answers. This ensures the quality of the metamodel meets the requirements
of the proposed framework.
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3.2 Metamodel

The metamodel is a surrogate to the high-fidelity DES model, it no doubt plays a big
role in any multi-fidelity method. In our framework, fitting the metamodel is carried
out offline and the metamodel should be ready before running the online process.
Most papers in the field focus on the simplicity of the low-fidelity model. For
example, Xu et al. (2014) used M/M/C as a low-fidelity model to simplify a complex
semiconductor manufacturing system. Even so, seeking efficiency is not necessary to
compromise the estimation accuracy of the metamodel. The metamodel used in this
algorithm is expected to be capable of non-linear regression with sufficient accuracy.
The feedforward neural network is chosen as the metamodel in our multi-fidelity
framework. There are several reasons for this choice, 1, it is good at regression; 2, its
layer structure enables the opportunity to update the model by retraining some layers
while fixing the rest; 3, fitting a feedforward neural network for regression is quick.

The left side of the flowchart in Figure 3.1 shows how we develop the metamodel.
First, datasets for training and validating the metamodel are generated through the
high-fidelity simulation model following experimental design. Next, a metamodel is
trained with the selected modelling method. After that, the metamodel is validated by
comparing its estimates with the validation dataset. If the metamodel is a poor fit, we
then collect more simulated data and refit the metamodel.

In addition to the accuracy criteria (e.g. mean absolute error, mean square error)
applied during the fitting, the ordinal association between the estimates by the
simulation and the metamodel is also taken into consideration for validation. This is
because we want to have an idea of how the metamodel would perform in the
framework before running the online optimisation. The rank correlation of the models
could be a useful indicator since the metamodel estimations would be used to rank the
alternatives. Kendall’s τ coefficient (Kendall, 1938) was chosen to calculate this rank
correlation. It explicitly indicates the quality of the ranking by the metamodel. Two
sequences are highly positively correlated when τ is close to 1, and not correlated
when τ is close to 0. The equation to calculate Kendall’s τ is given in Equation 3.2
(Kendall, 1938).

τ =
nc − nd
n(n−1)

2

(3.2)

where nc, nd and n are the number of concordant pairs, discordant pairs and elements
in the sequence respectively. Let (xi, yi) and (xj, yj) be two observations from joint
random variables X and Y, where i < j. If xi > xj and yi > yj are both true or xi < xj

and yi < yj are both true, this pair of observations are concordant (Kendall, 1938). If
the above conditions are not met, they are discordant.
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An extra set of data is sampled and evaluated through both the metamodel and the
simulation for testing Kendall’s τ between the low-fidelity model and the high-fidelity
model. A limited number of experiments are carried out to calculate Kendall’s τ since
we want to keep the simulation running efficiently for preparing the test. The number
of experiments should also take the shape of the feasible area (e.g. half of a square in
the inventory system example) and the need for the experimental design into account.
Our test data set for Kendal’s τ in Section 3.4.2 has a size larger than 1/1000 of the
total number of alternatives.

If the simulation is costly in time, the test set for fitting the metamodel could be reused
to compute the rank correlation. Kendall’s τ offers a different angle to look at the
quality of metamodel. When the value is far away from 1, we need to check the
metamodel and do more sampling or fitting the metamodel if necessary. The validated
low-fidelity model is then used in the first step on the right side of the flowchart
where the solutions are evaluated via metamodel).

3.3 Ranking & Selection

Ranking and selection procedures are originally designed to compare a handful of
designs for a system and output the optimal selection. Multiple replications are
normally required for each design to give out the correct solution in a stochastic
system. These procedures become very slow and impractical when we have a large
number of candidates.

In Xu et al. (2014), they proposed to sample from groups of solutions instead of
running replications for each single solution for the OCBA procedure. We followed
the idea and used it in our approach. The modified OCBA algorithm (Fu, 2014) with
amended notation is given below:
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Algorithm 1 Optimal Computing Budget Allocation (OCBA) procedure for
grouped solutions

1: procedure OCBA (k, β, θ, n0)
2: INPUT
3: k−Groups of solutions
4: β− Total budget
5: θ − Increment of budget in one iteration (θ = 1 in the experiments)
6: n0 − Initial samples number for each group
7: INITIALISE
8: t← 0 ▷ iteration count
9: Sample n0 solutions from all groups, n1,t = n2,t = ... = nk,t ← n0

10: while ∑k
i=1 ni,t < β do

11: UPDATE
12: Means of sampled solutions in each group, x̄i = ∑

ni,t
j=1

xij
ni.t

13: Standard deviation of sampled solutions in each group, σ̂i =

√
∑

(xij−x̄i)
2

ni,t−1

14: Where xij is the jth solution sampled in the ith group, i = 1, 2, ..., k, j =

1, 2, ..., ni,t

15: b =argmax
i∈[1,k]

x̄i ▷ update the best group

16: ALLOCATE
17: Calculate
18:

n(i),t+1
n(j),t+1

=
(

σ̂(i)db,j
σ̂(j)db,i

)2
, (i) ̸= (j) ̸= b

19: nb,t+1 = σ̂b

√
∑

(i):(i) ̸=b

n2
(i),t+1

σ̂(i)2

20: i∗ =arg max
(i)∈[1,k]

(n(i),t+1 − n(i),t) ▷ find the group for more simulation

21: SIMULATE
22: Sample θ solutions from i∗ group
23: ni∗,t+1 ← ni∗,t + 1
24: t += 1
25: end while
26: k∗ =argmax

i∈[1,k]
x̄i ▷ find the best group

27: j∗ =arg max
j∈[1,ni,t]

x̄ij ▷ find the best solution

28: end procedure

Each group of solutions is regarded as equal to one alternative in the original OCBA
procedure (Chen et al., 2000). Each time we need to perform additional replications,
we sample from the group randomly to pick a solution for the simulation. The
procedure iterates until the budget β runs out. Group mean and standard deviation
are updated in every iteration. From this, the best group b in the iterations is obtained.
Replications are allocated based on the standard deviation of the groups and the
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distance between the best group b and other groups. The procedure produces the final
best group k∗ calculated in the last iteration and the best solutions j∗. There is a
possibility that the best solution j∗ is not in the best group k∗. The solutions in each
group are not exhaustively sampled and the j∗s are calculated among the sampled
solutions. The grouping strategy described in Section 3.1 is designed to ease this
drawback because the most promising group has fewer solutions and each one will
have a higher chance to be sampled.

3.4 Numerical Experiments

The proposed multi-fidelity simulation optimisation framework is tested on an
inventory problem from Law (2015) as a proof of concept. We optimise the ordering
policy so that the demands from the customer and the storage cost are balanced in the
inventory problem. More detailed descriptions can be found in Section 3.4.1. After
that, the metamodel for the simulation model is described in Section 3.4.2. The
application of the proposed optimisation procedure is then illustrated in Section 3.4.3
Finally, we give the results for the experiments on the inventory system in Section
3.4.4.

To provide a baseline for comparison, we run five replications of the inventory system
DES model at each feasible solution following the examples in Law (2015) and record
the results. The simulation outputs of these five replications are averaged to form the
‘standard’ which is used as the true value of that alternative solution, from which, we
obtain the solution with the lowest cost as the optimum. We formalise the hypotheses
as the following. The null hypothesis H0 is that the optimisation result obtained by the
proposed multi-fidelity simulation optimisation framework and the optimum are not
different, the true mean difference between them is zero: µd = 0. The alternative
hypothesis H1 is that the optimisation result obtained by the proposed framework and
the optimum are different, the true mean difference between them is not equal to zero:
µd ̸= 0. We measure the quality of the solutions obtained from our method with
different values of the aggression parameter and MO2TOS by comparing them against
the ‘standard’. Each optimisation outputs the top five solutions with the lowest
estimates for the objective function based on the final simulation optimisation results,
which will be referred to as the ’top-5’ in the following content. The performances of
alternative solutions are compared with the optimal solution which is the
best-performing solution according to the ‘standard’. We count how many of the
results among the top-5 are not significantly different from the optimum. The 90%
paired-t confidence intervals are calculated for the residual between the selected
solution and the optimum using data collected for the ‘standard’. Two solutions are
not statistically different when the confidence interval of the residual contains zero.
The best case is that all top-5 solutions are not significantly different from the
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optimum. A single run of the optimisation may not be able to provide a conclusive
result because both the optimisation algorithm and the discrete-event simulation
model involve multiple stochastic processes. Therefore, a large enough number of
experiments were carried out for each optimisation algorithm. We run the
optimisation one thousand times for each of the algorithms in comparison. The result
could be shown in a frequency distribution plot like Figure 3.7, in the best case, the
distribution would look extremely skewed to the left and having most experiments
come with all top-5 that are not significantly different from the optimum.

3.4.1 Inventory System Example

The inventory system model could be used for tracking and predicting inventory
levels, orders and their expected arrival time, and sales. In the manufacturing
industry, such a model could help to schedule the work and make a production plan
to ease the pressure of raw materials being overstocked or out of stock. We use an
inventory system model from Law (2015) to demonstrate our algorithm. This is a
well-known example that uses a DES model to describe the system behaviour and the
effect of ordering policies on costs.

The simplified inventory system considers the situation of ordering and selling one
product. It has four types of events: 1. the arrival of an order from the supplier, 2.
demand for the product, 3. inventory evaluation and order placement following the
ordering policy and 4. termination of the simulation. The demands are IID
(Independent and Identically Distributed) random variables with preset probabilities.
The intervals between two demands are IID exponential random variables. Inventory
management includes some variable costs, for example, holding cost, order cost and
shortage cost. Holding cost is proportional to the inventory level which includes but is
not limited to the warehouse rent and overhead expenses. It is assumed that the
holding cost would be zero when having no product in stock although it would still
incur holding cost in the real world (e.g. rent). Making orders incurs extra
expenditures like commission fees or setup costs, which are fixed for each order in
addition to the product cost. Together they consist of the order cost. A penalty
(shortage cost) is applied when the product is out of stock (in other words, the
demands exceed the inventory level) to maintain backorders. The total cost is aimed
to be minimised which sums the holding cost, the order cost and the shortage cost.
These costs are directly affected by the ordering policy.

Ordering policies are described by two decision variables, (s, S), where s is the reorder
point of the inventory system and S is the maximum inventory. The ordering policy
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suggests an order size of Z:

Z =

{
S− I if I < s
0 if I ≥ s

where I is the inventory level. The simulation model is carried out at the beginning of
each month to generate a suggestion for the optimal ordering. We constrain the range
of decision variables such that s ∈ [1, 150], S ∈ [2, 151] and s < S which results in a
feasible area that includes 11,325 solutions regardless of the structure of the problem.
The structure of the problem refers to some of the (s, S) ordering policy combinations
that obviously would not work well, for example, [1, 2], [2, 3].

3.4.2 Building the Metamodel

This section demonstrates the metamodel development following the description in
Section 3.2 and the left part of the flowchart in Figure 3.1. The metamodel is fitted
offline and consequently, there is less of a time constraint on this procedure but we
still assume that the computational time should not be excessive. As a result, we
should not run the simulation model at every single design point which is not possible
when dealing with a complex system having a large feasible area. This procedure
would become more time-critical if we would like to update the simulation model and
the metamodel in real time.

The feedforward neural network metamodel was structured with Keras (Chollet,
2015) package in Python, where we use the mean absolute error (MAE) for the loss
function, Adaptive Moment Estimation (ADAM) (Kingma and Ba, 2015) for the
optimiser and Gaussian Error Linear Units (GELU) (Hendrycks and Gimpel, 2016) for
activation functions. For simplicity, the neural network is designed to have the same
number of neurons in its hidden layers. The numbers of neurons and hidden layers
were paired and tested to find the combination that leads to the lowest prediction loss.
After tuning, we result in a model with 2 hidden layers and there are 10 neurons in
each of the hidden layers.

Data prepared for training and testing the metamodel are collected from sampling the
simulation following the design of experiments. The experiments are designed with
Latin Hypercube Sampling (LHS) (Morris and Mitchell, 1995), a space-filling method.
Through LHS, the sampled data could evenly cover the feasible region. For stochastic
systems, multiple replications are normally required to have a stable performance
expectation. However, that reduces the efficiency of utilising the computing budget.
We would like to know whether that is always worth the extra effort to fit a
metamodel. We assume a fixed computational budget for the experimentation and
consider two options for the sampling: 1. a single replication at each design point and
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2. multiple replications at fewer design points. Specifically, we set the budget to 100
simulation replications and consider running the simulation with a single replication
at each of 100 design points (100× 1) and 5 replications at each of 20 design points
(20× 5). Each single design point is a distinctive combination of the reorder point s
and the maximum inventory S in the feasible region. Both 100 design points and 20
design points are sampled via LHS. The quality of the metamodel is determined by
comparing its estimations with the expected outputs from the simulation model using
MAE where both designs have twenty per cent of the collected data left out for the
test. The measurement for the multiple-replication strategy (20× 5) strategy is 3.929,
while the MAE for the single-replication strategy (100× 1) is lower at 1.8. (Nine
ordering policies tested in Law (2015) have their average total cost between 120 and
150.) The single-replication strategy outperforms the other strategy with multiple
replications in this case. The nature of our inventory system model that its
stochasticity is not at a high level may lead to the finding. It needs more work before
we can generalise the suggestion to a wider range of systems. Thus the metamodel
built with the single-replication strategy is used for the following experiments in the
multi-fidelity simulation optimisation framework. For the rank correlation, Kendall’s
τ of the metamodel based on 15 sampled points is 0.79. (When two sequences are
identical, Kendall’s τ = 1). It is reasonably good and indicates that the metamodel has
the capability to rank candidate solutions properly in accordance with their
estimations. So far, the metrics we use for measuring the quality of the metamodel
show the built neural network metamodel satisfies the need to work as the
low-fidelity model in the multi-fidelity simulation optimisation framework.

Next, we move one step further to understand how the metamodel works through the
response surface. This is to complete the comparison although it is not necessary and
may not be always possible in reality. A three-dimensional surface plot showing the
fitted metamodel which reflects reorder level s, the maximum level of inventory S and
the objective total cost is presented in Figure 3.2. It is clear that the estimated total
costs are high when s and S are both at their extremes. There is an obvious funnel
shape in the chart that shows the area may produce the desired low cost.

Figure 3.3 gives out the residual between the built metamodel and the simulation
model (which is the ‘standard’ described in the preamble of Section 3.4). The plot for
most areas is flat and close to zero residual. The only discrepancy between the two
models is in the area where both s and S are close to zero, the residual drops rapidly to
minus one hundred. We can see that the same area in the metamodel evaluation
(Figure 3.2) also has a decline but is still larger than the bottom of the funnel shape.
Similar to the previous paragraph, from the findings in these two charts, we can also
draw the conclusion that the metamodel works well for most solutions in the feasible
area.
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FIGURE 3.2: Evaluation of solutions
from metamodel

FIGURE 3.3: Residual between meta-
model and simulation model

3.4.3 Optimisation

We are going to elaborate on the online process (right side of the flowchart in Figure
3.1) of the proposed multi-fidelity framework via the given inventory system
experiment. Feasible solutions are first evaluated through the metamodel which is
built in the previous section. We plot the total costs estimated by the metamodel for all
feasible solutions (s, S) in Figures 3.4, 3.5 and 3.6 where they are separated by three
different sets of aggression parameter a respectively. Solutions have been placed in a
non-decreasing order for the metamodel estimation, as a result, the blue line is
monotonic increasing.

We then apply hierarchical clustering to the estimates. Solutions are superimposed by
orange vertical lines in Figure 3.4 when aggression parameter a = 1. Each separated
segment stands for one cluster. The number of clusters needs to be calculated
beforehand (Equation 3.1). They are dictated to be 15, 55 and 255 in order to align with
the selected aggression parameters a = 1, 2 and 3 respectively so that we could be
ensured to meet our designed 5 groups at the end of the process. In Figure 3.4, the
x-axis has the ranked candidate policies and the y-axis is the average total cost
calculated from the metamodel. The solutions are ranked for display; it is not a
necessary step in the optimisation since the hierarchical clustering contains ranking
automatically. We can see from the chart that the curve has a lower gradient and is
flatter in the higher ranks area (left side) while becomes steeper in the lower ranks
area (right side).

Next, clusters are sorted into fewer groups following the proposed rule with
aggression parameter a. The grouping strategy merges the clusters following the
preset proportions (1 : 2a : 3a . . . ) as detailed in Section 3.1. The number of solutions
contained in each group is given in Table 3.1, 3.2 and 3.3 for three levels of aggression
parameter respectively. The groupings are also visually shown in Figures 3.4 by
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FIGURE 3.4: Grouping clusters on ranked solutions (a=1)

remarks above the plot for a = 1 and in Figure 3.5 & 3.6 by red vertical lines for
a = 2 & 3. Remarks in Figure 3.4 attach group labels to the clusters to help explaining
how the grouping strategy works. Since the grouping is based on the clustering which
is resulted from the metamodel estimations, groups having more clusters would
contain a larger metamodel-estimation range while the numbers of in-group solutions
are not guaranteed to follow the same trend. For example, in Figure 3.5, the fourth
group has a larger metamodel-estimation range than the third group while the third
group has slightly more in-group solutions.
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FIGURE 3.5: Grouping clusters on
ranked solutions (a=2)
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FIGURE 3.6: Grouping clusters on
ranked solutions (a=3)

Lastly, we perform the simulation optimisation based on the guidance provided by the
groups. Five groups described in Tables 3.1, 3.2 and 3.3 are treated as five candidate
solutions by the modified OCBA (Algorithm 1), which has its computing budget for
simulation replications set to 100. This phase equates to online sampling and
consequently is time-critical, hence the comparably small number of replications for
OCBA. As detailed in Section 3.3, when OCBA selects a particular group for sampling,
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TABLE 3.1: Structure of the groups
(a=1)

Group
No. of

solutions
No. of

clusters
1 232 1
2 452 2
3 2071 3
4 4444 4
5 4126 5

TABLE 3.2: Structure of the groups
(a=2)

Group
No. of

solutions
No. of

clusters
1 204 1
2 1084 4
3 3175 9
4 2826 16
5 4036 25

TABLE 3.3: Structure of the groups (a=3)

Group No. of solutions No. of clusters
1 46 1
2 379 8
3 1863 27
4 4392 64
5 4645 125

one solution in that group is randomly chosen and gets simulated through the discrete
event simulation model. The sampled solution in the best group that performs the
best is the result of the proposed multi-fidelity simulation optimisation framework.

3.4.4 Results Analysis

The optimal ordering policy (s, S) for the inventory system is (23, 69), which is
identified by the ‘standard’ (with five replications for each alternative). The average
total cost with a 90% confidence interval of the optimal solution is 118.953±1.674. The
top-5 solutions obtained from the proposed method and MO2TOS are compared with
this optimal solution.

The optimisation algorithms are repeated 1000 times for both the proposed
multi-fidelity simulation optimisation (MFSO) with three aggression parameter
settings and MO2TOS. For each run, the number of solutions in the top-5 results that
are not significantly different from the optimum is recorded. The gathered data of four
competing algorithms with 1000 experiments are plotted as histograms in four
different colours side by side in Figure 3.7. The best situation is that all five top-5
solutions obtained from the optimisation algorithms are not significantly different
from the optimal solution. For this frequency distribution plot, more solutions in the
categories that are farther to the right stand for better performance. For example,
MO2TOS has 69 trials out of 1000 trials that identify all top-5 solutions as the red bar
in the rightmost group and has 23 trials that failed to identify any top-5 solutions in
Figure 3.7. The proposed MFSO (a=3) has the highest bar (in green) in the rightmost
group. There are 61.2% experiments that have all 5 solutions in top-5 that are not
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FIGURE 3.7: Comparison of the proposed method with different aggression parame-
ters and MO2TOS

significantly different from the optimum. The performance of other solutions in the
rightmost category are MFSO (a=2) (41%), MFSO (a=1) (22.9%) and MO2TOS (6.9%) in
descending order.

Overall, MFSO a = 2 (orange bars) and a = 3 (green bars) are both skewed extremely
to the left and have the highest bar in category five. Most experiments of these two
algorithms are concentrated in categories four and five. MFSO a = 2 has 35.8% and
41% of experiments returning results fall in these 2 categories respectively, and the
figures are 30.1% and 61.2% for MFSO a = 3. Furthermore, both aggression parameter
settings have a very low number of experiments in the left tail.

It is easy to notice that, in Figure 3.7, the distribution of MFSO a = 1 (in blue) and
MO2TOS (in red) are different from MFSO a = 2 and a = 3. The shape of the
histogram plots for both the proposed MFSO (a=1) and MO2TOS have similar
symmetric distributions. For MFSO (a=1), 37% and 22.9% experiments have four or
five solutions in top-5 that are not significantly different from the optimum
respectively, which is a lot lower than the same method with a = 2 and 3. For the same
two categories, MO2TOS has fewer experiments (22.5% and 6.9%). Furthermore, for
categories zero and one on the other side of the axis where either no solution or only 1
solution in the top-5 is not significantly different from the optimum, MFSO (a = 1) has
fewer solutions (0.3% and 2.5%) than MO2TOS has (2.3% and 11.8%). In contrast,
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MFSO (a = 3) has no experiment fit in these two categories and MFSO (a = 2) has
0.3% experiments in category one.

To sum up, the results from the experiments suggest that, in this inventory system
example, the proposed multi-fidelity simulation optimisation framework with
aggression parameter a = 3 outperforms other competing methods. We cannot reject
the null hypothesis that the true difference in means is equal to zero. Both MFSO
(a = 2) and (a = 3) lead to significant improvements over MO2TOS while a = 1 also
has a higher chance than MO2TOS to produce a higher quality top-5 solution set. The
proposed MFSO framework is able to efficiently deal with the ranking and selection
problem with a large number of alternatives and could perform reasonably well when
the aggression parameter is properly picked and the metamodel is carefully
structured.

Apart from the comparison given above for the metamodel that is well fit, we doubted
how the performance of the optimisation would look like if the metamodel is of lower
quality. This could happen in reality when very little data is available, the modelling
techniques are not properly used or the target system itself is difficult to be modelled.
Another metamodel was built with the same training dataset and reduced epoch to
achieve lower accuracy intentionally. This neural network has an MAE of 7.8 and
Kendall’s τ of 0.676 (MAE and Kendall’s τ for the higher quality metamodel are 1.8
and 0.79 respectively).

543210
Number of solutions in Top-5 that are not significantly different from optimum

0

50

100

150

200

250

300

350

Nu
m
be
r o

f e
xp
er
im
en
ts

10

67

165

277

310

171

96

294

363

176

58

13 2
22

119

234

373

250

120

290

346

171

59

14

Proposed method (a=1)
Proposed method (a=2)
Proposed method (a=3)
MO2TOS

FIGURE 3.8: Comparison of the proposed method with different aggression parame-
ters and MO2TOS for Less-accurate Metamodel



48 Chapter 3. Multi-fidelity Simulation Optimisation

The comparison of algorithms for the lower-quality metamodel is illustrated in Figure
3.8. Similar to the previous experiments, we also have MFSO with three sets of
aggression parameters and MO2TOS for this one. Frequency distribution for MFSO
(a = 1&3) (blue and green bars) are skewed to the right, where most experiments fall
into the categories zero, one and two. On the other hand, a = 2 is skewed left a little
bit, which has a similar pattern to MO2TOS. In this case, the larger aggression
parameter a does not achieve a better performance when the metamodel is of lower
quality.

Overall, the results we got from the inventory system example suggest that our
proposed method favours a well-fitted metamodel. When the metamodel is a good
description of the underlying response surface, the performance of our method
improves as the aggression level a increases. This suggests a general rule for
implementation but more investigation is needed on other examples to make this rule
more precise.

We move the focus back to the case with the well-fitted metamodel. In which, MFSO
a = 1 seems not as attractive as the other 2 aggression parameters. However, it is
understandable if we have a look back at the problem itself. There are 11,325
alternatives in the feasible area of our inventory system ordering policy selection
problem. When a = 1, the first group is constituted of 1430 solutions (Table 3.1) which
is relatively close to the group size (2265) in MO2TOS. While for a = 2 or 3, the first
group contains 211 or 70 respectively. They are at least 85% smaller than the first
group for a = 1.

The higher-quality metamodel gives a higher probability that the first group from the
metamodel would contain the high-ranking solutions in the simulation model. Thus,
the ranking and selection procedure would sample more from the first group. A
smaller first group leads to the fact that the solutions in the most promising area
would have a higher chance of being covered by the stochastic sampling process. It
aligns well with our observations from these experiments.

Groups in the proposed algorithm are formed based on the clustering results, which
depend on the shape of the response surface that is described by the metamodel.
Among all the clusters, the first one is especially linked closely to the performance of
the optimisation. The size of the clusters tends to be smaller when there are more
clusters. A larger aggression parameter leads to more clusters and, on average, a
smaller number of solutions per cluster. In this example with a well-fitted metamodel,
the first clusters contain 1430, 211 and 70 solutions for MFSO a = 1, 2, and 3
respectively. With the increase of aggression parameter a, the decrease of the size of
the first clusters slows down and the performance of the optimisation algorithm
improves less significant at the same time. It may finally decelerate the improvement
of the optimisation performance. In other words, if we keep increasing the aggression
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parameter when it is already large enough, we will not have the expected
improvement in the optimisation result. It needs to be noted that whether a is large
enough depends on the response surface of the metamodel.

When the metamodel is not well-fitted, as shown in Figure 3.8, a = 2 still produces an
acceptable result in this case. In spite of that, more research is needed before it could
be generalised.

3.5 Conclusion

In this chapter, a multi-fidelity simulation optimisation (MFSO) framework is
proposed in order to perform real-time optimisation via simulation. It guides the
high-fidelity simulation model to search the feasible area using a low-fidelity
metamodel built on the data collected from the simulation model. The solutions are
clustered and grouped with an aggression parameter a based rule in accordance with
the metamodel estimations followed by a second step, where they will go through a
ranking and selection procedure with the simulation model to derive the final result
for optimisation. The method was applied to a textbook example of an inventory
system model and the result shows the method performs well in comparison with a
leading competitor algorithm MO2TOS. MFSO is able to produce a suggestion that is
not significantly different to the true optimum solution with reduced replications
required from the optimisation algorithm. In the next chapter, the application on a
production line is explored where the system is more complicated and noisy.

So far, we have discussed a lot about the advantage of the proposed MFSO
framework, as a coin always has two sides, there is also some limitations. The
proposed MFSO is only useful for near real-time or relatively real-time
decision-making since the simulation is designed to be involved in the online phase of
the framework. The time required for the algorithm is still limited by the execution
time of the simulation model even though the simulation runs have been reduced.
There could be two ways to get out of the problem. The first one is to have a fast
simulation model. One of the options out there is parallel simulation, simulation is
coded in a way that multiple replications could be carried out at the same time. The
other possible way is to bypass the simulation model in the online optimisation phase
and only use the fitted metamodel. Since metamodel is deterministic, evaluation of the
interest system via the metamodel is much faster and is able to make the optimisation
closer to true real-time. However, more experiments on different problems and
systems are needed before the metamodel could be confidently applied on its own.

It is also worth mentioning that the proposed method is able to deal with problems
that do not have so many alternative solutions but some modification of the algorithm
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is needed. An example of the application with ten alternatives could be found in
Chapter 5 where all the details are included.

Performance changes are common for mechanical structures when they experience
metal fatigue, parts change, maintenance actions, etc. The metamodel would be able
to track these system changes if it could be updated with the data collected from the
operation when on-site operation data is available. One of the reasons that we selected
the neural network for metamodel is that it could be updated by re-training part of the
parameters in the model while fixing the others. Nevertheless, some questions need to
be answered in future research, for example, how much new data is needed? how
many and which neurons should be re-trained? Another direction that could improve
the proposed method in future is taking multiple objectives into consideration. Many
operational problems have more than one major objective in reality and none of them
is dominant. It meets the interest of the stakeholder to include multiple objectives in
the optimisation algorithm.
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Chapter 4

Modelling the Production Line

We have evaluated the proposed algorithm using the inventory system in Chapter 3.
To evaluate the algorithm using a more complex system, we choose a manufacturing
line that we will explain in this chapter. We first describe the manufacturing system
under study in Section 4.1 and the repair policies are elaborated in Section 4.2. A
simulation model for the production line is then described in Section 4.3, followed by
structuring a metamodel for the same system in Section 4.4. These two models are
applied together using a multi-fidelity simulation optimisation framework to obtain
the optimal repair policy in Chapter 5.

The system we are working on is a production line that is comprised of a series of
sequential workstations that have either a single machine or multiple parallel
machines carrying out the same task. There are limited repair staff available who are
responsible for the repair of the production line. The repair order of the broken
machines affects how the system recovers from a failure, which we measure using the
system throughput. We use the simulation model to estimate the throughput of the
system under different repair policies.

In this example, we assume an extreme scenario where only one machine can be
repaired at a time. The repair staff follow a repair policy which determines the repair
order of the broken machines. It is expected that, with the help of the models and the
algorithm, the selected repair policy would maximise the short-term throughput and
bring the system back to its normal level in the least possible time.

4.1 System Description

The production line consists of a series of operations, where parts and materials are
assembled or processed to produce final products. The studied production line
contains both single and parallel workstations. A single station has one machine that
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FIGURE 4.1: Frequency of overlapping breakdowns

carries out the designated task, while a parallel station has multiple similar machines
each carrying out the same process. The products on the conveyor are moved to the
next operation once the process in the current operation finishes. When the output
conveyor is full, the machine is blocked or congested and stops taking products from
its input. When a machine fails, a request for repair is raised. This can lead to
starvation of workstations downstream of the broken machine, particularly if the
buffer after the failed machine is empty or the repair takes a long time to complete.
Both ‘congestion’ and ‘starving’ could affect the throughput severely. Especially if the
‘starving’ condition happens to the stations close to the exit of the system, there would
be no throughput until the ‘starving’ is alleviated.

The production line we are working on has thirty-one machines in twenty-three
stations where five stations have parallel processes using either two or three machines.
Processing times, failure intervals and repair times are sampled from an empirical
distribution derived from operations data. Machinery faults that take place on-site are
documented, which includes details like machine identity, fault time, duration and
fault code. From the recorded data, it is possible to observe that the situation where
multiple machines fail together and wait for repair is common.

When a new failure happens, we count the number of broken-down machines on the
line (including the machine that is failing) from the recorded data of a physical
manufacturing system. In Figure 4.1, we display the percentage of all failures that see
these numbers of broken-down machines. We include only the breakdowns that last
over ten minutes since they are more likely to involve maintenance actions. Shorter
breakdowns can often be fixed by line operators, e.g. by resetting the machine. Over
half of the time (59% = 1− 41%) when we see a new failure, we would have more
than one machine broken down and over one-third of the situations
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FIGURE 4.2: Frequency of multiple simultaneous breakdowns

(31% = 1− 41%− 28%) have more than two breakdowns at the same time. These
results suggest that there is a need to determine a method for optimising the repair
strategy.

Figure 4.2 considers the scenarios in which there are two or more simultaneous
breakdowns. This shows the areas of the slices decrease when the overlapping
breakdowns increase. The situations with fewer simultaneous breakdowns take place
more often. We thus constrain the repair order problem to have at most five failures
simultaneously because this constitutes more than 90% of the cases.

Before describing our methodology for improving the decision-making process, we
discuss how the on-site team on the shop floor reacts to multiple maintenance
requests. Understanding the practical insights from the operations team could benefit
the development of the algorithm and affect how it should be embedded in the
system. Staff could make professional decisions on which machine to repair first
based on multiple factors and different levels of experience in order to maximise the
throughput. Factors that could be taken into account include the estimated repair
time, the positions of the broken machines, the load in the buffers, whether the
breakdown machines are adjacent to each other and whether it is in a single or parallel
station. When major faults that are difficult to repair happen, the availability of tools
and spare parts also affects the repair order. All these decisions are made manually in
the current manufacturing system and we are looking to automate the
decision-making process and offer optimised suggestions.

We measure the performance of a repair strategy using the throughput in the three
hours following the final breakdown. This short-term performance score is considered
the most relevant for the line manager, repair staff and operators in the shift.
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4.2 Repair Policies

Once the production line is set up and starts operating, maintenance gets involved as
a key part of the operation to keep the line working properly. In order to alleviate the
effects of performance deterioration, malfunction or even failure, maintenance is
needed.

The maintenance policy is the strategy designed for arranging the maintenance work
for a complex system. It could be generally classified into two categories, preventive
maintenance and corrective maintenance (Shafiee, 2015). More research attention has
been given to preventive maintenance, which is necessary for industries like aviation,
where in-operation failures might cause irreparable disasters (Kiyak, 2011). Preventive
maintenance aims to avoid unplanned system outages while corrective maintenance
reacts to breakdowns. Most research on corrective maintenance centres on fault
diagnosis, in other words, identifying the root cause of the failure (Wang et al., 2014).

Although it is ideal if precautionary maintenance always works as planned, it is still
likely that some unforeseen breakdown could happen and interrupt the service of the
system. When there is more than one failed machine, the decision needs to be made
on which one is repaired first. It is cost-effective to optimise the repair order since, by
doing that, we could improve the throughput without modifying or updating the
layout of the manufacturing system.

The permutations of possible repair orders rise exponentially with the increase in the
number of simultaneous breakdowns. In order to reduce the number of options we
consider in the optimisation and to incorporate new breakdowns that may occur
during the three-hour time window, we use repair policies instead of all possible
permutations. A repair policy is defined as a strategy for arranging multiple repair
jobs that has its roots in dispatch rules. The repair strategies are derived from the
scheduling rules (also known as dispatch rules or priority rules) that describe the
priority of a list of activities breakdowns in the waiting list and decide which machine
to repair next (Panwalkar and Iskander, 1977). The scheduling rules are commonly
used in job shop operations. The problem of selecting the optimal repair policy based
on real-time data on the current state of the production line has not been extensively
researched.

The simulation is set to start from the current state of the system, where we only
consider situations where there are between two and five breakdowns. Other
machines have a chance to fail during the simulation and a function within the
simulation will reorder the repairs following the rules of the repair policy after each
new breakdown. Unlike the limit for the initial state, the number of concurrent broken
machines is not constrained during the simulation.
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Most of the ten repair policies we use below are modified from the scheduling rules in
Panwalkar and Iskander (1977) except for the last two which are proposed to take the
adjacency of the broken machines into consideration.

The repair policies included in this project are:

FIFO - First In First Out The earlier breakdowns get higher priorities for repair

LIFO - Last In First Out The later breakdowns get higher priorities for repair

SRT - Shortest Repair Time first The repair requiring the shortest time will be carried
out first

LRT - Longest Repair Time first The repair requiring the longest time will be carried
out first

FOR - Fewer Operations Remaining first The machine closest to the end of the line
has the highest priority for repair

MOR - More Operations Remaining first The machine closest to the start of the line
has the highest priority for repair

NOSQ - Next Operation with Shortest Queue first The broken machine that has the
smallest number of items in the buffer immediately following it will have the
highest priority.

COLQ - Current Operation with Longest Queue first The broken machine that has
the highest number of items in the buffer immediately before it will have the
highest priority.

AP - Adjacent Processes first Breakdowns on adjacent machines will have the highest
priority for repair.

NAP - Non-Adjacent Processes first Breakdowns on non-adjacent machines have the
highest priority for repair.

The first two rules, FIFO and LIFO, are time-based rules related to the fault time. SRT
and LRT are the decisions made in accordance with the estimated repair time. The
repair staff are assumed to have sufficient knowledge and experience to make
reasonable estimates on the repair time with the help of fault messages. FOR and
MOR are the strategies that consider the location of the broken machines, which is
relative to the beginning or end of the production line. NOSQ and COLQ are the rules
based on the size of the queue in the buffers located immediately after and before the
broken machines, respectively. AP and NAP take the adjacency of breakdowns into
account which is the relative locations of the fails. We limit the definition of the
adjacent machines to those in the same station or in the stations strictly next to each
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other. For those broken machines assigned the same priority, they further follow a
first-in-first-out rule.

These ten repair policies are five pairs of opposite rules that prioritise the repair tasks
based on five different criteria. In addition to these repair rules, we will always repair
single machines before parallel machines according to practical insights. Through
optimisation, we expect to find the most suitable repair policy that would lead to the
largest expected throughput for the given situation.

4.3 Simulation Model

We use a discrete event simulation model (DES) to describe the production line. The
simulation model has been accepted by industry-leading companies to assist
decision-making in operation for some time (Higgins and Ladbrook, 2018). The
simulation model is the foundation of the proposed multi-fidelity simulation
optimisation framework. It is not only applied in online optimisation but also used for
building the metamodel

We would see similar patterns in operational data repeatedly when the production
line works normally. However, those situations having malfunctions, in which we
have our interest, do not appear very often. With the simulation model, it is possible
to estimate the performances for the given state. Therefore simulation model sits at
the core of operation planning. Most manufacturers in the industry construct their
models for the production line using commercial software.

However, there are problems with communicating with simulation models in
commercial software with the coded optimisation algorithms. The commercial
software normally enables access to model output data through application
programming interfaces (API) and the output data could then be processed in the
optimisation algorithm. In order to achieve real-time optimisation, the interaction
between models and the optimisation algorithm should be efficient and convenient.
Therefore, we choose to build the models and the optimisation algorithm in the same
programming language. It is beneficial as we will have more control over the
model-algorithm communication. Python is used in our experiments to build and run
the simulation model, metamodel and optimisation algorithm for it has diversified
packages that support our needs from model structuring to data processing. In
addition, for a research project, building a simulation model from scratch instead of
using the existing one makes it tailored for the research objective and could include all
necessary details and desired functions (e.g. repair policies, hot-start).
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4.3.1 Simulation Model Structure

A discrete event simulation (DES) model is structured for the production line using
SimPy package (SimPy, 2020) in Python. SimPy offers basic components needed for a
DES model, such as shared resources, waiting process, interruption, etc. Its event
dispatcher is based on the Python generator object.

FIGURE 4.3: Illustration of a production line

The manufacturing system under research is a real-life production line. The products
are loaded onto the production line from the entry point and they start their journeys
on the line passing through the workstations that execute various operations. The
time it takes to complete the specific operation is the cycle time (CT) of the machine,
which we assume to be an independent and identically distributed (i.i.d.) random
variable. When the workstation has parallel machines, each one has its own CT
distribution. Machines could break down and two variables are used to describe the
events. They are the time between two failures (time between failure (TBF)) and the
time it requires for the repair (time to repair (TTR)), which we also assume to be i.i.d.
After the process in the machine is complete, the product will go through a quality
check, if it fails the check; the product is sent for rework. The rate of passing the
quality check follows the ‘first time through rate’ (FTT, i.i.d.). The product will go
through that machine again if it fails the check.

Once the product passes the quality check, it moves onto the conveyor towards the
next operation. If the next operation is still working on the previous job or there are
already products waiting in the queue, the product joins the queue and waits on the
conveyor. The size of the buffer (conveyor) is set to ten products in the experiments.
When the buffer is full, the machine before the buffer stops working until that buffer is
able to accept products again. When a product completes all the processes and leaves
the production line, the measurement of the processed units (throughput) is increased
by one. The random variables (CT, TBF, TTR) we use for simulation are sampled from
empirical distribution functions (edf) obtained from operation data collected from the
plant. They could also be drawn from suitable parametric distributions (e.g. normal
distribution, exponential distribution, gamma distribution). Both edf and parametric
distribution are enabled in the simulation program, we use edf to align with what the
company does in their simulation model.
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Three Python classes (machine, buffers and product) are designed for reuse and
generalisation so that the model can be easily adapted to a different production line.
Figure 4.3 graphically illustrates the way these modules work together on a
production line that has both single and parallel stations.

Algorithm 2 Simulating the production line

1: procedure SIMULATION (production line parameter, initial state, simulation time,
repair policy)

2: Buffers = Buffer (production line parameter) ▷ Buffer function reads in data
3: Machines = Machine (production line parameter) ▷ Machine function reads in

data
4: if initial state exists then
5: Load initial state
6: else
7: Start from empty line
8: end if
9: Throughput← Run Simulation

10: end procedure

Machines and buffers are instantiated from the given data at the beginning and the
products are instantiated one by one when they are loaded onto the line. If the model
does not start from time zero, the initial states are loaded. The throughput is output at
the end of the simulation. The procedure of simulation is briefly described in
Algorithm 2.

The characteristics of the machines (CT, TTR, TBF, FTT) are recorded in the input form
for parametric distribution. The empirical distribution function can be enabled by
setting the corresponding parameter to zero and the model will read data from the
relevant files. It also includes details of how the machines and conveyors are
connected to each other. Table 4.1 demonstrates a sample, where machine a is a single
process and machine b1 & b2 are the parallel processes.

TABLE 4.1: Input parameter form for DES model

machine
name

CT TBF TTR FTT
In Out

mean std mean mean rate
machine a 1.5 0.5 100 9 1 -1 0

machine b1 2.3 0.6 100 10 0.9 0 1
machine b2 2.1 0.7 100 11 1 0 1

The two rightmost columns are the input and output conveyors of the machine, the
first machine of the system will have ‘−1’ for ‘In’ while the last one will have ‘−2’ for
‘Out’. Other conveyors are labelled from zero. Five parameters of the machines (six
columns after the machine name) are used to form predetermined distributions. Mean
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values and standard deviation are recorded in accordance with the needs of the preset
distributions. For the cases without empirical distribution function, we assume CT
follows normal distribution (Johnson, 2002), TBF has exponential distribution
(Epstein, 1958) and TTR is Erlang distributed (Chen et al., 1993).

The simulation model is enabled to start from a given state instead of always from the
empty line. The starting state includes the availability of the machines, the buffer
loads, and whether the machine is occupied by any task. Table 4.2 is designed for
initialisation. It makes the simulation more practical since the product line is rarely
empty after the system comes into service.

TABLE 4.2: Input status for DES model

conveyor id location status
1 1 3
2 2 3
3 3 5
4 4 5
5 4 5

machine id machine loc processed time
machine 1 1 0.15
machine 2 2 0.15
machine 3 3 0.15
machine 4 4 0.15
machine 5 5 0.15
machine 6 4 0.15
machine 7 5 0.15

machine broken
5
10

Table 4.2 consists of three parts: the status of the conveyors, the status of the machines
and the broken-down machines. For the status of conveyors, ‘conveyor id’ is the
identification number of the conveyor while the location could be different when the
parallel machines exist. The ‘conveyor id’ is aligned with the code in the ‘In’ and ‘Out’
columns in Table 4.1. The ‘status’ is the load of the conveyor. For example, three and
five in the table means there are three or five products on the corresponding
conveyors. For the status of machines, it contains ‘machine id’, station number
(‘machine loc’) and the time of the product that has been processed by the machine in
‘processed time’ column. Figure 4.3 illustrates both conveyors and machines in Table
4.2. How much work has been done in the machine (‘processed time’) is not easily
accessible in most systems. They could be left at zero for simplification but at the cost
of losing some accuracy. For the machine availability, the identification numbers of the
broken-down machines are listed in the column ‘machine broken’.
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4.3.2 Simulation Output

The production line under study contains thirty-one machines in twenty-three stations
and twenty-four buffers. We demonstrate the performance of the simulated
production line using a 500-hour simulation with a ‘FIFO’ repair policy and cold start
from time zero. The model works with the empirical distribution functions for
initialisation. Although the optimisation would be applied with 3-hour system
performance, we display a much longer simulation in this section in order to provide
a more general view of the simulation model for the target manufacturing system.

The plots of the simulation output data can be found in Figure 4.4 and 4.5. The ticks
on the y-axis are removed for confidential reasons. Two charts are for the jobs
completed every hour with ‘FIFO’ and the rolling JPH (jobs per hour) with all ten
repair policies under the same random stream respectively. The plot for the hourly
throughput (Figure 4.4) fluctuates in a small range most of the time. But drops in
throughput could easily be observed when the system experiences bigger faults. The
manufacturing system simulation model is comprised of multiple stochastic processes,
which could lead to situations where outputs have large variances. Multiple
replications are made to obtain the expected system performance to fit the metamodel.

FIGURE 4.4: Plot of hourly throughput for a 500-hour simulation with ‘FIFO’ repair
policy

FIGURE 4.5: Plot of jobs per hour for 500-hour simulations with 10 repair policies

The other plot for the rolling JPH ( JPH = Throughput / Hours ) in Figure 4.5 is made
by having the same system work with all ten repair policies under the same random
stream (Figure 4.5). Ten simulations are marked in different colours for ten repair
policies. We can see from the chart that a similar trend is shared among different
repair policies when they have the same starting state and the same random stream.
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All ten line plots tend to be relatively smooth after a short time from starting the
simulation when the system has experienced a few breakdowns.

The rolling JPH diverts from 100 hours onward. Some repair policies perform better
than others. Also, different repair policies could outperform others in different time
periods. For example, SRT (in green) produces higher throughput between 100 hours
and 200 hours while NOSQ (in pink) is the best repair policy between 320 hours and
450 hours. This finding supports the reasonableness of performing optimisation for
finding the best repair policy under various system states. Two plots are both made
with one replication to show the viability and display the system behaviours, multiple
replications are made for both data collection and optimisation.

4.4 Metamodel

A metamodel is a surrogate model or emulator of a simulation model. Friedman and
Pressman (1988) define a metamodel to be “any analytic auxiliary model which is
used to aid in the interpretation of a more detailed model”. It is built from noisy
observations Y = [y1, y2, ..., yN ] at design points X = [xT

1 , xT
2 , ..., xT

N ] in a fixed feasible
area Rd. The X is the system input and the Y is the expected throughput. As discussed
in Section 3.2, we use a feedforward neural network for the low-fidelity metamodel in
the multi-fidelity algorithm.

The simulation model has two groups of input variables, describing the system
configuration and the state of the production line. If all of them were used as inputs to
the metamodel, there would be a large number of parameters to fit even for a shallow
(small-scale) neural network. The dimension of variables for the metamodel is
reduced to ease the burden of data collection. In order to reduce the dimensionality of
the problem, we use the structure and meaning of the input parameters to simplify the
state space. This is described in Section 4.4.1. Reducing the number of input
parameters for the neural network reduces the number of simulation replications
needed to fit the metamodel.

An adaptive sequential sampling method is proposed in Section 4.4.2, which aims to
design experiments for efficiently collecting data from a stochastic system and getting
the most out of a limited budget. New areas are sampled iteratively. A small number
of replications are applied at the designed points in the first place and more
replications are allowed when necessary. The experimental design balances the need
for exploring new areas and exploiting the sampled areas.
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4.4.1 Input Variables Formation

The output of the metamodel is the system throughput, which we define to be the
expected throughput in three hours, given the starting state of the system. The input
parameters/variables of the simulation model can be divided into two groups. The
first group gives the configuration of the production line (Table 4.1). The configuration
of the production line would become the implicit information of the metamodel after
fitting. A different line can use the same simulation model with a modified input file
but the metamodel needs to be rebuilt. The other group gives the initial state of the
system which becomes the starting point of the simulation (Table 4.2). The initial state
of the system will be the input to the metamodel, which contains the buffer states,
machine availability and the repair policy.

The state space of the metamodel is aimed to be reduced so that fewer simulation runs
are needed for the data collection which would be used for metamodel fitting. While
fewer input variables are desired, we should be cautious to avoid oversimplification.
The quality of the fit of the metamodel is taken into consideration since it directly
affects the performance of the multi-fidelity approach. The balance between the
number of input variables and the consequent estimation accuracy needs to be found.

Twenty-four conveyors in the production line could have the possible states as large
as (10 + 1)24 = 9.850× 1024 for the buffer state alone given the buffer capacity is ten
plus an empty state. If we evenly split the conveyors into four sections, each section
has six conveyors and there are sixty-one possible states for every section. The
possible states for the system are reduced to (6× 10 + 1)4 = 1.385× 107, which is 1017

times smaller than the original space. If the conveyors are split into three even sections
each with eight conveyors, there could be eighty-one in-section states. The system
would have (8× 10 + 1)3 = 5.314× 105 possible states. Fewer experiments could thus
cover the smaller state space if it is found reasonable through analysis.

We investigate whether the states of all buffers could be reduced to the states of
several sections of the line and how many sections we should have. We evenly split
the whole system and every section contains the same number of buffers. A pilot test
is designed with the simulation model where section states are limited to three
extreme cases and each has a set of certain buffer states (Table 4.3). At the same time,
the total content in each section is controlled to be the same. The test with the 3-section
design has eight buffers in each section and the starting state comes with 30 products
in each section. Other input system states remain the same in the test, all machines are
available at the beginning of the simulation and the repair policy is fixed at FIFO.

The capacity of the buffer is ten. Three extreme cases are products piling up and
congested at the beginning or the end of the section and products evenly distributed
in the buffers inside each section respectively. The assignment of the buffers for three
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TABLE 4.3: The assignment of the buffers for three sets of configurations within each
section in the pilot test (3-section design)

Extreme Case Buffer States
High Start; Low End 10, 10, 10, 0, 0, 0, 0, 0
Low Start; High End 0, 0, 0, 0, 0, 10, 10, 10

Balanced 3, 4, 4, 4, 3, 4, 4, 4

in-section extreme cases for the 3-section design can be found in Table 4.3. These three
extreme cases are designed to be three situations that have larger differences from
each other than from the other cases that are not tested. Thus, if the test results from
the extreme cases are reasonable, we will have confidence that the variable reduction
by sectioning the manufacturing system works.

TABLE 4.4: 27 scenarios of the 3-section design

Section 1 Section 2 Section 3
Scenario 1 (S1) High Start; Low End High Start; Low End High Start; Low End
Scenario 2 (S2) High Start; Low End High Start; Low End Low Start; High End
Scenario 3 (S3) High Start; Low End High Start; Low End Balanced
Scenario 4 (S4) High Start; Low End Low Start; High End High Start; Low End
Scenario 5 (S5) High Start; Low End Low Start; High End Low Start; High End
Scenario 6 (S6) High Start; Low End Low Start; High End Balanced
Scenario 7 (S7) High Start; Low End Balanced High Start; Low End
Scenario 8 (S8) High Start; Low End Balanced Low Start; High End
Scenario 9 (S9) High Start; Low End Balanced Balanced

Scenario 10 (S10) Low Start; High End High Start; Low End High Start; Low End
Scenario 11 (S11) Low Start; High End High Start; Low End Low Start; High End
Scenario 12 (S12) Low Start; High End High Start; Low End Balanced
Scenario 13 (S13) Low Start; High End Low Start; High End High Start; Low End
Scenario 14 (S14) Low Start; High End Low Start; High End Low Start; High End
Scenario 15 (S15) Low Start; High End Low Start; High End Balanced
Scenario 16 (S16) Low Start; High End Balanced High Start; Low End
Scenario 17 (S17) Low Start; High End Balanced Low Start; High End
Scenario 18 (S18) Low Start; High End Balanced Balanced Balanced
Scenario 19 (S19) Balanced High Start; Low End High Start; Low End
Scenario 20 (S20) Balanced High Start; Low End Low Start; High End
Scenario 21 (S21) Balanced High Start; Low End Balanced
Scenario 22 (S22) Balanced Low Start; High End High Start; Low End
Scenario 23 (S23) Balanced Low Start; High End Low Start; High End
Scenario 24 (S24) Balanced Low Start; High End Balanced
Scenario 25 (S25) Balanced Balanced High Start; Low End
Scenario 26 (S26) Balanced Balanced Low Start; High End
Scenario 27 (S27) Balanced Balanced Balanced

Table 4.4 gives out the design detail of all twenty-seven (33) scenarios for the 3-section
design. If the scenarios show similar performance, the splitting method is more likely
to preserve the information from the original system state. Each scenario is simulated
100 times to test with different instances of the scenario and common random
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numbers are applied to instances across various scenarios. The scenarios are then
compared with the balanced line (scenario 27 / S27 in Figure 4.6) using the difference
between them with 95% confidence intervals to determine the significance.

FIGURE 4.6: 95% CI of the differences between scenarios with even split of 3 sections

The differences and the confidence intervals (e.g. S1-S27 (the balanced line), S2-S27)
are plotted in Figure 4.6. Eight of twenty-six intervals contain zero which means these
scenarios are not statistically different from S27, while the other eighteen scenarios are
significantly different from S27. The averages of the differences lie between -13 and
+5. Two scenarios that are significantly better than the balanced case are scenarios 14
and 23. They both have ‘Low Start; High End’ for section 2 and section 3. The
scenarios having ‘High Start; Low End’ in section 3 have lower throughputs than all
other scenarios (e.g. S1, S4, S7). A cyclical pattern appears in the plot. Every three
scenarios form a cycle which aligns with the status designed for section 3. In each
cycle, scenarios follow the same sequence of ’High Start; Low End’, ’Low Start; High
End’ and ’Balanced’ for their third section respectively. It leads to the thought that
more attention may need to be given towards the end of the production line. Splitting
the production line into three sections does not work very well. We continue to repeat
the test with the 4-section design. Figure 4.7 plots the differences between 34 − 1 = 80
scenarios and the balanced line. Like the experiments for testing the 3-section split,
one hundred instances are simulated for all 81 scenarios.

TABLE 4.5: The assignment of the buffers for three sets of configurations within each
section in the pilot test (4-section design)

Extreme Case Buffer Status
High Start; Low End 10, 10, 0, 0, 0, 0
Low Start; High End 0, 0, 0, 0, 10, 10

Balanced 3, 3, 4, 3, 3, 4
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TABLE 4.6: 81 scenarios of the 4-section design

Section 1 Section 2 Section 3 Section 4
Scenario 1 (S1) High Start; Low End High Start; Low End High Start; Low End High Start; Low End
Scenario 2 (S2) High Start; Low End High Start; Low End High Start; Low End Low Start; High End
Scenario 3 (S3) High Start; Low End High Start; Low End High Start; Low End Balanced
Scenario 4 (S4) High Start; Low End High Start; Low End Low Start; High End High Start; Low End
Scenario 5 (S5) High Start; Low End High Start; Low End Low Start; High End Low Start; High End
Scenario 6 (S6) High Start; Low End High Start; Low End Low Start; High End Balanced
Scenario 7 (S7) High Start; Low End High Start; Low End Balanced High Start; Low End
Scenario 8 (S8) High Start; Low End High Start; Low End Balanced Low Start; High End
Scenario 9 (S9) High Start; Low End High Start; Low End Balanced Balanced

Scenario 10 (S10) High Start; Low End Low Start; High End High Start; Low End High Start; Low End
Scenario 11 (S11) High Start; Low End Low Start; High End High Start; Low End Low Start; High End
Scenario 12 (S12) High Start; Low End Low Start; High End High Start; Low End Balanced
Scenario 13 (S13) High Start; Low End Low Start; High End Low Start; High End High Start; Low End
Scenario 14 (S14) High Start; Low End Low Start; High End Low Start; High End Low Start; High End
Scenario 15 (S15) High Start; Low End Low Start; High End Low Start; High End Balanced
Scenario 16 (S16) High Start; Low End Low Start; High End Balanced High Start; Low End
Scenario 17 (S17) High Start; Low End Low Start; High End Balanced Low Start; High End
Scenario 18 (S18) High Start; Low End Low Start; High End Balanced Balanced
Scenario 19 (S19) High Start; Low End Balanced High Start; Low End High Start; Low End
Scenario 20 (S20) High Start; Low End Balanced High Start; Low End Low Start; High End
Scenario 21 (S21) High Start; Low End Balanced High Start; Low End Balanced
Scenario 22 (S22) High Start; Low End Balanced Low Start; High End High Start; Low End
Scenario 23 (S23) High Start; Low End Balanced Low Start; High End Low Start; High End
Scenario 24 (S24) High Start; Low End Balanced Low Start; High End Balanced
Scenario 25 (S25) High Start; Low End Balanced Balanced High Start; Low End
Scenario 26 (S26) High Start; Low End Balanced Balanced Low Start; High End
Scenario 27 (S27) High Start; Low End Balanced Balanced Balanced
Scenario 28 (S28) Low Start; High End High Start; Low End High Start; Low End High Start; Low End
Scenario 29 (S29) Low Start; High End High Start; Low End High Start; Low End Low Start; High End
Scenario 30 (S30) Low Start; High End High Start; Low End High Start; Low End Balanced
Scenario 31 (S31) Low Start; High End High Start; Low End Low Start; High End High Start; Low End
Scenario 32 (S32) Low Start; High End High Start; Low End Low Start; High End Low Start; High End
Scenario 33 (S33) Low Start; High End High Start; Low End Low Start; High End Balanced
Scenario 34 (S34) Low Start; High End High Start; Low End Balanced High Start; Low End
Scenario 35 (S35) Low Start; High End High Start; Low End Balanced Low Start; High End
Scenario 36 (S36) Low Start; High End High Start; Low End Balanced Balanced
Scenario 37 (S37) Low Start; High End Low Start; High End High Start; Low End High Start; Low End
Scenario 38 (S38) Low Start; High End Low Start; High End High Start; Low End Low Start; High End
Scenario 39 (S39) Low Start; High End Low Start; High End High Start; Low End Balanced
Scenario 40 (S40) Low Start; High End Low Start; High End Low Start; High End High Start; Low End
Scenario 41 (S41) Low Start; High End Low Start; High End Low Start; High End Low Start; High End
Scenario 42 (S42) Low Start; High End Low Start; High End Low Start; High End Balanced
Scenario 43 (S43) Low Start; High End Low Start; High End Balanced High Start; Low End
Scenario 44 (S44) Low Start; High End Low Start; High End Balanced Low Start; High End
Scenario 45 (S45) Low Start; High End Low Start; High End Balanced Balanced
Scenario 46 (S46) Low Start; High End Balanced High Start; Low End High Start; Low End
Scenario 47 (S47) Low Start; High End Balanced High Start; Low End Low Start; High End
Scenario 48 (S48) Low Start; High End Balanced High Start; Low End Balanced
Scenario 49 (S49) Low Start; High End Balanced Low Start; High End High Start; Low End
Scenario 50 (S50) Low Start; High End Balanced Low Start; High End Low Start; High End
Scenario 51 (S51) Low Start; High End Balanced Low Start; High End Balanced
Scenario 52 (S52) Low Start; High End Balanced Balanced High Start; Low End
Scenario 53 (S53) Low Start; High End Balanced Balanced Low Start; High End
Scenario 54 (S54) Low Start; High End Balanced Balanced Balanced
Scenario 55 (S55) Balanced High Start; Low End High Start; Low End High Start; Low End
Scenario 56 (S56) Balanced High Start; Low End High Start; Low End Low Start; High End
Scenario 57 (S57) Balanced High Start; Low End High Start; Low End Balanced
Scenario 58 (S58) Balanced High Start; Low End Low Start; High End High Start; Low End
Scenario 59 (S59) Balanced High Start; Low End Low Start; High End Low Start; High End
Scenario 60 (S60) Balanced High Start; Low End Low Start; High End Balanced
Scenario 61 (S61) Balanced High Start; Low End Balanced High Start; Low End
Scenario 62 (S62) Balanced High Start; Low End Balanced Low Start; High End
Scenario 63 (S63) Balanced High Start; Low End Balanced Balanced
Scenario 64 (S64) Balanced Low Start; High End High Start; Low End High Start; Low End
Scenario 65 (S65) Balanced Low Start; High End High Start; Low End Low Start; High End
Scenario 66 (S66) Balanced Low Start; High End High Start; Low End Balanced
Scenario 67 (S67) Balanced Low Start; High End Low Start; High End High Start; Low End
Scenario 68 (S68) Balanced Low Start; High End Low Start; High End Low Start; High End
Scenario 69 (S69) Balanced Low Start; High End Low Start; High End Balanced
Scenario 70 (S70) Balanced Low Start; High End Balanced High Start; Low End
Scenario 71 (S71) Balanced Low Start; High End Balanced Low Start; High End
Scenario 72 (S72) Balanced Low Start; High End Balanced Balanced
Scenario 73 (S73) Balanced Balanced High Start; Low End High Start; Low End
Scenario 74 (S74) Balanced Balanced High Start; Low End Low Start; High End
Scenario 75 (S75) Balanced Balanced High Start; Low End Balanced
Scenario 76 (S76) Balanced Balanced Low Start; High End High Start; Low End
Scenario 77 (S77) Balanced Balanced Low Start; High End Low Start; High End
Scenario 78 (S78) Balanced Balanced Low Start; High End Balanced
Scenario 79 (S79) Balanced Balanced Balanced High Start; Low End
Scenario 80 (S80) Balanced Balanced Balanced Low Start; High End
Scenario 81 (S81) Balanced Balanced Balanced Balanced
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The design for the experiments with 4 sections is altered slightly to include six buffers
in each section, where we have 34 = 81 scenarios. The buffer content in each section is
adapted to 20 so that the start and the end buffer of the section could be full in the
extreme case while the total buffer content on the production line is close to the
3-section design. The buffer state of the three extreme cases for the 4-section design is
given in Table 4.5. We record the design detail of all eighty-one scenarios for the
4-section design in Table 4.6. In the graph of the differences between scenarios and the
balanced line (Figure 4.7), forty-three in eighty of the scenarios contain zero in the
confidence interval, which is more than half of the scenarios in the test. Although no
scenario performs significantly better than the balanced line (S81) in the 4-section
design, there are four scenarios (i.e. S76, S77, S78 and S79) that have higher average
throughputs than the compared S81. Three of them (S76, S77 and S78) share the same
settings for the first three sections, where section 1 and section 2 are balanced, and
section 3 is ‘Low Start; High End’. The cyclic pattern still exists in the 4-section design,
there are three scenarios that always have lower average performance than the others
in a cycle of nine scenarios. These scenarios all have section 3 set to ‘High Start; Low
End’. The averages of the differences in Figure 4.7 lie between -6 and +0.5.

FIGURE 4.7: 95% CI of the differences between scenarios with even split of 4 sections

From the findings, the 4-section design has over half of the scenarios (43/80) that are
not significantly different from the balanced scenario which is a higher proportion
than the 3-section design (8/26). It shows that more extreme scenarios in the 4-section
design could be represented by each other in terms of the short-term throughputs. The
4-section design also has a much smaller average difference ([-6,+0.5]) than the
3-section design ([-13, +5]). For these less extreme scenarios in the 4-section design, we
believe they would have more similarities and less difference in their performances.
We thus deduce the 4-section design works better than the 3-section design. We do not
increase the sections of the production line further to five as more sections would
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bring a larger number of extreme scenarios and would take a longer time to carry out
the test. Also, the possible states would increase while the simplification that we are
looking for becomes less significant. Therefore, the 4-section design has been applied
to reduce the state space for the metamodel while losing less information from the
original system even though the 3-section design could reduce more state space.

In addition to the buffers, the variables concerning the machines are also grouped into
four parts which align with the sections divided for the buffers. So that the locations
of the failures are preserved with fewer variables as well. Since breakdowns are the
major factors directly linked to the repair order and how the system would recover
from the disruptions, they are further divided into finer groups based on whether they
belong to a single or parallel station. Specifically, we count how many single or
parallel machines fail in four sections respectively. A total of thirty-one machines are
turned into four sections of parallel machines that contain six, three, two, and two
machines respectively and four sections of non-parallel machines that have three, five,
five and five machines respectively.

Furthermore, the adjacency of the broken machines is included to offer more
information about the failures, which aims to further narrow down the possible
locations of the breakdowns with reduced variables. Two elements are used to
describe the adjacency and they are designed in a heuristic way. One counts the
number of adjacent broken machines and another counts the number of groups that
adjacent failures form. The adjacent information works better in some cases than
others. For example, when one single machine and one parallel machine fail in the
system shown in Figure 4.3, there are twelve options since three single machines and
four parallel machines are in the section. If the adjacency is (2,1) at the same time, the
options are reduced to two since machine 3 and machine 4 / 6 are the two only
combinations of parallel and non-parallel machines that are adjacent to each other. If
the adjacency is (0,0), there are ten possible options where we exclude the two above
cases. A total of ten variables are used for the availability of machines which is
one-third of thirty-one machine states. As we limit the number of failures to five, most
location information could be preserved with the proposed ten reduced variables.
Lastly, the decision variable repair policy is an input to the metamodel as well.

Five groups of variables with the 4-section design are thus considered to describe the
situation on the production line, they are the final choices of the input variables for
our metamodel based on the investigations in this section. They are listed below and
clarified in the following paragraph.

• Variable 1 - The sum of buffer content in each of 4 sections

• Variable 2 - The number of parallel machines that are broken down in each of the
4 sections
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• Variable 3 - The number of single machines that have broken down in each of the
4 sections

• Variable 4 - A measure of the adjacency of breakdowns

• Variable 5 - The repair policy

Variables 1,2 and 3 are 4-dimensional. Each dimension of variable 1 stands for the
total number of products in the buffers in a section. Each dimension of variable 2 and
variable 3 is the number of failures in the corresponding section for parallel and
non-parallel machines respectively.

Variable 4 uses two dimensions to describe the adjacency of the interrupted machines
across the whole line. The first element shows how many of the machines among the
failures meet the requirement of adjacency. The second one is the number of groups
the adjacent machines could form. The adjacency defined in this research is limited to
1-station adjacency, which means machines in two neighbouring stations are regarded
as adjacent. For example, if machines 2, 6, and 7 in Figure 4.3 are broken
simultaneously, V4 (Variable 4) would be (2,1) because machine 6 and machine 7 are
two adjacent machines and they form one adjacent group.

Variable 5 is 9-dimensional and each dimension refers to a distinct repair strategy (e.g.
FIFO, LIFO, ... see Section 4.2). It is transferred from the categorical variable of repair
strategy through dummy encoding (Suits, 1957) where the corresponding dimension
will be set to ‘1’ when the repair policy is in use. When all the dimensions are zero, it
represents SRT (Shortest Repair Time first). Hence, the 9-dimension variable is used
for ten repair policies.

To summarise, the variables used to describe the status of the production line are
reduced to 5 groups (23 dimensions in all) and the relationship between them is
organised better than directly listing the state of each buffer and machine. Among the
input variables, one variable represents the situation of the line, three of them describe
the attributes of breakdowns and another one is the decision variable.

4.4.2 Experimental Design

In this section, we elaborate on how the data for fitting the metamodel is collected
from the simulation model. In the previous Section 4.4.1, we reduced the high
dimensional input variable for the simulation used to train the metamodel to a lower
dimension with twenty-three elements in five groups. The experiments are designed
for this re-formed metamodel input variable space. Since the production line
simulation is stochastic, multiple simulation replications are expected to be run at
each single data point so that we could have the average performance which alleviates
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the stochastic effect on the performance evaluation. For some sample points in the
input variable space, more data is needed than others to keep dispersion at a similar
level. The unbalanced sampling design could save the computing budget for those
points with low variability and make the best use of the computing budget. As a
result, the one-shot design is not the best choice since different areas could need
different replications in our task and it is not possible to foresee in advance.

Sequential sampling is then adopted instead of a one-shot design to assign need-based
unbalanced samples. Under sequential sampling, the sampling procedure is separated
into several iterations. The later rounds are designed based on the previous
samplings. We develop our own sequential sampling approach for a stochastic system
which is inspired by the ideas in the literature. Eason and Cremaschi (2014)
introduced and applied their adaptive sequential sampling method to model chemical
processes with the neural networks where the authors assume the process they are
dealing with is deterministic. Nevertheless, their proposed method is still useful and
valuable for bringing multiple criteria into consideration. Sequential sampling is also
investigated in some research regarding stochastic kriging (Ankenman et al., 2010).
For example, Binois et al. (2019) takes both exploring and exploiting into consideration
in their paper. These methods limit their application to stochastic kriging only but the
idea of balancing exploitation and exploration processes is useful for our application.

Adaptive Sequential Sampling Method

The heuristic sampling method applied in the project combines sequential sampling,
the space-filling method and explore-exploit balancing to form our adaptive
sequential sampling for stochastic models. The whole process consists of a series of
iterations which begins with an initial sampling. The sampling budget is a fixed
number of simulation runs for both each one of the sampling iterations and the whole
process based on the way of transferring the samples in the metamodel input variables
to the simulation input variables (Equation 4.1). This means that exploring a new area
in the state space and exploiting the sampled area are going to share the sampling
budget in each iteration when they are both included in the procedure. A flowchart of
the algorithm is given in Figure 4.8. We also attach the pseudocode in Algorithm 3.

The whole sampling procedure is initialised by applying Latin Hypercube Design
(LHD) in the metamodel input variable space of V1, V2 and V3 to obtain 20 samples.
Each one of the samples is then randomly instantiated to three sets of input for the
simulation model (buffer content of every conveyor and the breakdown machines)
where each instance is paired with ten repair policies (V5). This comes from the
application where repair policies are compared with the system state (V1, V2 and V3).
The system state and V5 being crossed variables in the data collection stage is believed
to have the benefit of reducing the confounding in the metamodel estimation. By
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Start

Perform LHD for initialising the sampling

Exploit: Select nexploit current samples
with high coefficient of variation

in simulation results for further sampling

Explore: Generate a large number of candidate sample points
Select nexplore candidate samples that are
both high in nearest neighbour distance

and the metamodel-prediction variance for the sample

Stop criteria is met?
(Number of samples)

End

Yes

No

FIGURE 4.8: Flowchart of the Experimental Design

simulating the performances of different repair policies under the same system state
and the same random stream, the effects caused by factors other than the decision
variable are excluded. We focus on the difference in the performance of the repair
policies. Each instance combination for simulation is assigned one replication so every
set of metamodel variables (V1, V2, V3 & V5) has three replications.

The variables concerning machine availability (V2 & V3) limit the feasibility of the
measure of adjacency of breakdowns (V4) due to the structure of the production line.
So that V4 is not included in the space-filling design. It is generated from the instances
of V2 and V3. A simplified expression of instantiation is given in Equation 4.1 to show
how 20 samples are turned into 600 simulation runs in each iteration. (Hence, we are
looking for 20 samples in each round of sampling.) The corresponding simulation is
carried out following this first round of sampling and they form the initial impression
of the model.
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600 simulation-budget← 20 samples× 3 instances× 10 repair policies (4.1)

A neural network model with a single hidden layer is built after each sampling round
to check the performance of the model built from the sampled data. The sampling is
continued until the size of the data meets the one in ten rule (Peduzzi et al., 1996)
which requires data for training to be at least ten times as large as the number of
parameters the metamodel has.

Algorithm 3 Proposed algorithm for experimental designs

1: procedure ADAPTIVE SEQUENTIAL SAMPLING METHOD (N,n)
2: ▷ N: Total samples, n: samples for each iteration
3: SampleInitial← Run Latin Hypercube Design ▷ initialisation
4: Collect SampleInitial ▷ instantiate sample and simulate instances
5: Sampled← SampleInitial
6: while len(Sampled) < N do

▷ Exploiting process
7: NextExploit← [sample if CV (sample)>0.5 for sample in Sampled] ▷ CV:

Coefficient of Variation
8: nexploit ← len(NextExploit)

▷ Exploring process
9: nexplore ← n - nexploit

10: Randomly Generate a large number of (L) NextExploreCandidate
11: NN[l]← the distance of NextExploreCandidate[l] and its nearest neighbour

in Sampled
12: Build 10 models from Sampled with jackknife resampling method
13: variances = [ ]
14: for candidate in NextExploreCandidate do
15: Estimates = [Estimate candidate with 10 models]
16: Append variance of Estimates to variances
17: end for
18: score← [ NN[l]/Max(NN)+variances[l]/Max(variances) for l in L ]
19: ▷ sum the nearest neighbour distance and the estimation variance
20: NextExplore ← [candidate in NextExploreCandidate if its score is top

n explore high]
21: Collect (NextExploit + NextExplore)
22: textbfAppendSampled NextExploit + NextExplore to Sampled
23: end while
24: end procedure

In the following iterations, data sampling would be implemented from an exploiting
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process and an exploring process. In the process of exploiting, the points that have
already been sampled and have a large coefficient of variation are selected and receive
more replications, while in the process of exploring, we search for new positions for
sampling. The computing budget n for each iteration is fixed at 20 samples, which
could turn into 600 simulation runs. In each iteration of the sampling procedure, the
exploitation is carried out first and the rest of the budget would be spent on
exploration.

For the process of exploiting, we first group the sampled data points by the metamodel
input so that the samples in the same group will have the same input variables (V1,
V2, V3, V4 and V5). The Coefficient of Variation (CV = standard deviation

mean ) is computed
for each group over the simulated throughput. The coefficient of variation is also
known as the relative standard deviation. Those groups having a large CV receive one
more round of instantiation for the sample combination (V1, V2 and V3), which means
each of them will be used to generate another three instances for simulation inputs.

The criterion of CV is determined by the simulation data that is collected to form a
gold standard for the metamodel. The gold standard is prepared for being the test set
for the metamodel. It includes one hundred data points in the metamodel input space
and each one has got one hundred replications (which is 10,000 simulation runs in
total). According to the analysis of the gold standard, the average CV for the same set
of inputs is 0.298. Based on this, the criterion of CV for re-instantiating the sample is
set to 0.5. It is slightly larger than the average of the gold standard because a much
smaller replication per sample than the gold standard is expected in the experimental
design. If the value is too small, the budget left for exploring would shrink. If it is too
large, we will lose the desired control of data dispersion. The CV needs to be carefully
selected and catered to the target model and data.

A higher CV means the data spread in a wider range, hence the system is more
stochastic in that area. More efforts (replications) are then given to exploit these areas
with higher stochasticity. In the new round, each sample for exploiting will have
another three instances, where the instances and the repair policies (V5) are crossed
(Equation 4.2).

Exploiting budget← nexploit samples× 3 instances× 10 repair policies (4.2)

After that, we move on to the exploring part with the rest sample budget (Equation
4.3).

nexplore = n samples− nexploit (4.3)
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where n is the sampling budget in each iteration (Algorithm 3). The samples for
exploration will go through the same steps as the samples for exploitation before
getting simulated (Equation 4.4).

Exploring budget← nexplore samples× 3 instances× 10 repair policies (4.4)

600 simulation-budget← Exploiting-budget + Exploring-budget (4.5)

In order to obtain the samples for exploration, we first need to randomly generate a
large number (L, e.g. 500) of candidate samples where the samples for exploration will
be selected. Two criteria are applied to decide which points would get sampled. One
is the distance between the candidate point and the sampled points, the other one is
the metamodel-prediction variance. This part of the sampling method is termed the
mixed adaptive sampling algorithm in the literature (Eason and Cremaschi, 2014).

The first criterion is the nearest neighbour distance (dl). For each candidate point, the
Euclidean distances between itself and all the points in the existing data set are
calculated, the minimum of them is the nearest neighbour distance of the candidate
point and the existing samples.

The metamodel-prediction variance (Kleijnen and Beers, 2004) is evaluated through
the jackknife resampling method. The jackknife method is a statistical technique that
utilises subsamples to estimate bias and variance. K subsamples are obtained while
leaving K equal-size disjoint sets out. Each subsample is (K-1)/K of the size of the
parent set. We apply the jackknife resampling to the collected data and train one
surrogate model for each of the K subsamples. The surrogate model is a neural
network model with a single hidden layer that has the same size as the input layer.
The surrogates have Gelu activation functions (Hendrycks and Gimpel, 2016) and are
trained using Adam optimiser (Kingma and Ba, 2015) with a step size of 0.001 for 1000
epochs. From this, we would obtain K surrogates. These surrogates have the same
function as the final metamodel which predicts the throughput of the production line.
The candidate samples are sent to K surrogates and receive K throughput estimations.
Variance ( ˆδl

2) for each candidate among these K estimations is calculated, which is an
estimation for the variance of the sampled data (collected data) at the given candidate
sample.

The candidate sample which has a higher prediction variance sample would have a
higher priority to be simulated for data collection. The prediction variances ( ˆδl

2)
would decline after the corresponding design space has been thoroughly explored.
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ηl =
dl

max
l∈L

(dl)
+

ˆδl
2

max
l∈L

( ˆδl
2)

, for l ∈ L = {1, ..., l, ..., L}. (4.6)

An indicator ηl is used to combine the criteria and measure the priority for candidate
sample points (Equation 4.6). For each candidate sample point l in the L-member
candidate set L, dl is the nearest neighbour distance and ˆδl

2 is the estimated variance
of metamodel-prediction. The indicator ηl sums the normalised nearest neighbour
distance and the normalised estimated predictor variance. Therefore, the range of the
indicator is constrained to 0 ≤ ηl ≤ 2. The samples have ηl closer to zero shows that
these points are low in both nearest neighbour distance (dl) and metamodel-prediction
variance ( ˆδl

2), thus they have lower priority for sampling. In contrast, the points with
high ηl that is closer or equal to two are high in both nearest neighbour distance (dl)
and metamodel-prediction variance ( ˆδl

2). These points are assigned high priority to
get sampled. The nexplore candidate points with the largest ηl get sampled. The
samples for exploitation and exploration are instantiated and simulated. This is one
iteration of the adaptive sequential sampling. The process is repeated until the
sampling budgets are exhausted.

4.4.3 Test Set Preparation

The metamodel will be applied to rank the candidate repair policies and guide the
search with the high-fidelity simulation model. Ten test sets are separately designed
and collected in order to mimic the application scenario and to form a gold standard.
Each test set begins with sampling from the metamodel input variable space (i.e. V1,
V2, V3) randomly, the test set is then translated to an input instance for simulation
(buffer content of every conveyor and the breakdown machines) randomly. For
example, each dimension of V1 would be randomly mapped to a six-value set
standing for the levels of six in-section buffers with its summation equal to the
corresponding value in V1. The process of preparing the test sets is followed by
combining with ten repair policies after which, 100 replications are assigned to each
combination (Equation 4.7). The whole process of obtaining the test set is similar to
the data collection for training or fitting the metamodel. Besides, more replications are
applied to single instances for the gold standard in order to have a stable and
converged result for the stochastic system. The test sets allow us not only to check the
error between predictions and true values (for example, mean absolute error (MAE) or
root mean square error (RMSE)) but also enable the possibility of verifying the ranking
capability of the metamodel. Also, the test sets are applied to check how the
multi-fidelity simulation optimisation framework works for the production line. The
sample in Equation 4.7 refers to the randomly sampled metamodel input.
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10 test sets← 10 samples× (1 instances× 10 repair policies× 100 replications) (4.7)

The V1 (buffer states) samples for ten test sets are visualised in Figure 4.9. Four plots
are made for four sections of the production line which are marked as V11, V12, V13
and V14 respectively. Each section could have the sum of its buffer content between 0
and 60 (x-axis). Bars are plotted in various colours for different test sets. Number
labels are attached to the right of the bars for the sampled buffer levels. The y-axis
shows the identification number of the test set. By putting the plots horizontally, the
buffer levels of test sets are displayed as they would be on the production line.

FIGURE 4.9: Production line section buffer level (V1) of 10 test sets

FIGURE 4.10: Breakdowns (instances of V2 & V3) of 10 test sets

The breakdown instances of the V2 & V3 for test sets are given in a grid table (Figure
4.10). The leftmost column contains the machine identification numbers. Each column
shows the machine availability in the test sets. The cells that correspond to the
broken-down machines are filled with colours. The blue cells are for the non-parallel
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broken machines and the yellow ones are for the parallel broken machines.
Additionally, the stations that are composed of parallel machines are arranged in a
single row. Three thickened lines (below M4,6,8, M16 and M23 respectively) divide
the machines into four parts according to the variable design. The instances of the
breakdown states are plotted. While this allows us to observe the availability of
parallel and single stations, it also enables us to demonstrate the adjacency of
breakdowns (V4) visually. For example, in test set 1, M10 and M11 are adjacent
breakdowns and in test set 7, M22 and M23 are adjacent breakdowns.

TABLE 4.7: Average throughput of the collected data for test

Test set
Rank

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1 320.98 316.18 315.94 315.75 315.67 315.63 315.59 315.05 315.03 314.66
LIFO NOSQ FIFO AP MOR SRT COLQ NAP FOR LRT

2 260.87 259.55 259.49 256.7 254.97 249.15 236.92 232.49 225.68 221.93
AP FOR COLQ FIFO SRT LIFO NOSQ LRT NAP MOR

3 278.24 276.95 276.23 264.53 261.38 260.81 259.94 243.06 242.73 239.77
AP FOR NAP SRT LIFO COLQ FIFO NOSQ LRT MOR

4 280.69 274.4 273.12 271.73 271.69 271.03 270.62 270.3 269.61 269.41
NOSQ AP COLQ SRT NAP FIFO LRT FOR MOR LIFO

5 171.13 169.7 169.61 163.4 159.85 158.8 135.8 131.85 121.07 108.88
AP FOR NOSQ COLQ SRT FIFO LRT LIFO NAP MOR

6 270.5 269.69 269.39 267.5 266.35 265.71 264.85 258.48 258.47 255.3
SRT NAP COLQ FIFO MOR LRT LIFO AP NOSQ FOR

7 243.65 243.17 240.38 240.09 234.43 229.2 227.68 225.51 224.46 219.03
COLQ AP NAP FOR SRT FIFO LIFO NOSQ LRT MOR

8 177.66 174.66 174.49 174.36 173.93 172.78 172.73 171.62 170.25 169.77
COLQ SRT LRT MOR NOSQ LIFO AP FOR FIFO NAP

9 246.62 244.35 243.88 243.05 242.5 242.41 242.13 241.72 241.5 241.04
COLQ AP LIFO SRT LRT FIFO NOSQ NAP MOR FOR

10 276.24 270.76 269.72 268.25 266.5 265.16 264.7 260.99 257.53 256.27
SRT MOR NOSQ COLQ FIFO LIFO AP LRT FOR NAP

The average throughput (Table 4.7) is computed from 1000 replications for every test
set, where each repair policy gets an allocation of 100 replications. The highest
average value of ten repair policies is the optimal solution and is regarded as the ’true
best’. Each row in the table shows the result for one test set and each column is the
ranked repair policy and its average throughput. The test sets are treated as a ’gold
standard’ since they consist of a lot more data than the data for fitting the metamodel
or the simulations made during the optimisation.

4.4.4 Fitting the Metamodel

The metamodel projects the modified state of a manufacturing system to its
corresponding expectation of the throughput. We chose to use the neural network
regression model for the metamodel because it performed well in the inventory
system example. The production line model is also a non-linear system but comes
with higher dimensions, larger variable spaces, more stochastic processes (which
include machine operating time, the time between failures and time to repair) and
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higher variability in the output. The neural network regression model has the
flexibility in its model structure to cope with our task.

Following the design of experiments in the previous Section 4.4.2, we simulate the
specified instances of the samples. The simulated throughputs are averaged over
samples to obtain their expectations before being sent to train the metamodel.

The stopping criterion of the experimental design is the number of samples reaching
ten times the number of parameters in the metamodel. We assume the model to be a
neural network with a single hidden layer and the hidden layer has the same size
(number of hidden neurons) as the input layer. The model has one output neuron for
the expected throughput. The input layer has 23 neurons to accept data from five
groups of input variables. This single-layer neural network would have
23× 23 + 23× 1 = 552 parameters and consequently, we need at least 552× 10 = 5520
samples to fit the metamodel. In the experiments, it took 35 iterations of sequential
sampling to attain 6,910 samples from 21,000 simulations.

The model is tuned to minimise the prediction error (mean absolute error) through
grid search. The final neural network has one hidden layer with 15 neurons. The
activation function is Gelu (Gaussian Error Linear Unit) (Hendrycks and Gimpel,
2016) which has been used in the inventory system example. The metamodel is
trained using Adam optimiser (Kingma and Ba, 2015) with a step size of 0.0005 and
7000 epochs. The metamodel is tested on the designated ten test sets described in
Section 4.4.3. Metamodel accuracy and ranking relevant metrics are utilised to
evaluate the metamodel and are presented in the following paragraphs.

The mean absolute error between the metamodel predictions and the simulations is
21.92. The error is 9.05% of the average throughput as the average throughput for all
sampled test sets is 242.26. The overall ranking capability of the metamodel is
measured with the ranking correlation coefficient Kendall’s tau following its use in the
previous chapter. Although the ranking correlation coefficient is useful, it does not
reflect the quality of ranking in the specific area (e.g. the top solutions). The high-rank
area is where more effort is put in by the aggression parameter and should receive
emphasis.

Therefore, three other metrics are designed in addition to Kendall’s tau. They are
’Top3 captured’, ’top1rank’ and ’actual rank pred’. ’Top3 captured’ indicates how
many true top-3 solutions from the test set are captured by the metamodel. It could be
a value between zero and three, where zero is the situation that none of the true top
three solutions is ranked top three by the metamodel. ’Top1rank’ is the rank of the
true best solution by the metamodel. ’Actual rank’ is the true rank of the repair policy
that is predicted the best by the metamodel. For example, in test set 1 (Table 4.8), one
of the true top-3 solutions in the ‘gold standard’ is estimated to have top-3
performance by the metamodel. The solution that performs the best in the ‘gold
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standard’ ranks nine among the metamodel estimations. And the best solution from
the metamodel estimation ranks seven in the ‘gold standard’.

TABLE 4.8: Metrics recorded for the metamodel

Testset 1 Testset 2 Testset 3 Testset 4 Testset 5
Kendal’s tau 0.155 0.644 0.466 0.644 0.555

top3 captured 1 2 1 2 2
top1rank 9 1 1 2 1

actual rank 7 1 1 2 1
Testset 6 Testset 7 Testset 8 Testset 9 Testset 10 Average

Kendal’s tau -0.155 0.511 0.244 0.155 0.422 0.3641
top3 captured 1 1 2 1 1 1.4

top1rank 5 4 2 5 1 3.1
actual rank 8 2 2 2 1 2.7

The performance of the metamodel for ten test sets on these three metrics is recorded
in Table 4.8 with their average values calculated. The performance of the metamodel is
shown very differently among the ten test sets. The average Kendall’s tau is 0.36
which is not high. This could be caused by having extremely low values in some tests,
such as test set 6 (-0.155), test set 1 (0.155), and test set 9 (0.155). Four tests have
Kendal’s tau over 0.5, they are test set 2, set 4, set 5 and set 7. The average of the
top3 captured is 1.4 which is close to the median (1.5). At least one of the true top-3
solution got captured by the metamodel prediction and four of them (test set 2, 4, 5
and 8) caught two of the top-3 solutions. From the third and the fourth row, we can
find that test 2, test 3, test 5 and test 10 have both values found 1 which indicates the
metamodel correctly predicts the true best for these four test sets. From ‘actual rank’,
four other tests rank the second-best solution as ‘the best’ repair policy. The
metamodel average predicts the solution that ranks 2.7 as the best from the
metamodel in ten tests.

We find that the performance of the metamodel in terms of ranking capability in the
high-rank area is acceptable although the overall ranking correlation coefficient
Kendall’s tau is not satisfactorily high. According to the discussion of the metamodel
evaluation with the proposed metrics, the fitted neural network regression metamodel
is believed to be able to work well with the multi-fidelity simulation optimisation
framework.

4.5 Summary

In this chapter, we describe the production line simulation model and the construction
of a neural network regression model as a metamodel for the simulation. The models
are structured to work with the multi-fidelity simulation optimisation framework so
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that we can optimise the repair order in near real-time and mitigate the effect of
disruption on the system throughput as we discuss in the next chapter.

The main contributions of this chapter are proposing an approach to building a
metamodel for the production line simulation model and the experiment design
developed for fitting the metamodel. A secondary contribution is tailoring metrics for
evaluating the performance of metamodel for a multi-fidelity optimisation framework.

The repair policy is included in the simulation model to order the machines that are
waiting for the repair. We reduce the dimensions of metamodel inputs by carefully
selecting the input variables. This is achieved by using variables relating to different
sections of the line rather than each machine and by considering what features of a
breakdown are important in governing subsequent behaviour. Fewer experiments are
thus required to cover the feasible space and fit the metamodel.

An adaptive sequential sampling method is proposed to design experiments for fitting
the metamodel based on the simulation output. The uneven sampling balances the
need to exploit the sampled area and exploring the new region so that it makes the
best use of the limited computing budget.

The metamodel is evaluated via estimates of prediction error and metrics that
measure the accuracy of the ranking of repair strategies. The metamodel is tested on
ten designated test sets. These test sets are prepared to offer a ‘gold standard’, which
will be used for testing the optimisation as well.

The analysis suggests that the metamodel produces reasonable predictions and
rankings for the repair policies. The contributions in this chapter bridge the
multi-fidelity optimisation algorithm and the scenario for industrial application.
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Chapter 5

Real-Time Optimisation of the
Production Line

In this chapter, we describe an application of the multi-fidelity simulation
optimisation (MFSO) algorithm to the production line model. The algorithm aims to
find the optimal repair policy when experiencing multiple machines breakdown
simultaneously. The optimal repair policy is defined as the policy that when applied
results in the highest expected throughput in the next three hours. We intend to find
the optimal solution in a comparably short time so that it is possible to support
real-time on-site decision-making. When the repair requests are raised, it takes time to
assign the task, collect the tools and move to the site before the actual repair could
happen. In the meantime, the optimisation algorithm could be carried out to offer
suggestions on the ordering of the repairs. The maximum duration of the optimisation
algorithm is thus defined as 10 minutes in the experiments to fit the scenario.

The optimal repair policy is selected from ten candidate repair policies as described in
Section 4.3. This is a slightly different problem from the inventory system example
discussed in Section 3.4. First, the numbers of candidate solutions are on very
different scales. The inventory system example has more than 10, 000 solutions while
the production line example has only 10 repair policies to choose from. Although the
MFSO framework is able to work with a large number of alternatives, reducing the
state space reduces the number of input variables for the metamodel. This reduces the
data required for building the metamodel. This is essential especially when the model
is complex, large and slow to run. Besides, the production line model describes a
real-life system that is more complicated than the inventory model, which means that
it takes longer to run one replication. When designing a metamodel, an additional
difficulty is that the current state of the system is more complex to define. Last, but not
least, one suggestion is given out by the optimisation algorithm in this repair policy
selection problem while top-five solutions are suggested in the inventory system
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example. Consequently, the multi-fidelity simulation optimisation framework
proposed in Chapter 3.4 is altered to adapt to the application scenario as described in
the next section. This also shows the flexibility of the framework.

5.1 Multi-fidelity Framework

The optimisation algorithm introduced in Section3.1 is revised in order to adapt to the
production line repair policy selection problem. The idea behind the algorithm
remains the same, which is that high-ranked solutions according to the metamodel
estimations would have more chances to be sampled for simulation in the online
optimisation stage. As there are only ten alternatives to choose between, the clustering
of solutions step is removed and we group alternatives directly based on the
metamodel estimates of throughput rank. The flowchart of the modified algorithm is
shown in Figure 5.1.

Start

Evaluate the solutions via metamodel

Rank the solutions and
group them with the aggression parameter a

Perform Ranking & Selection to obtain the best group
and the best solution sampled in the best group

Output the solution
(best solution in the best group)

End

FIGURE 5.1: Flowchart of the Multi-fidelity Simulation Optimisation Framework re-
turning single solution

The solution that has the highest average simulation output from the best group
obtained from the ranking and selection procedure is selected as the final result of our
multi-fidelity simulation optimisation (MFSO) framework.
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The repair policies are grouped according to the ranks of predicted throughput. The
ratio of group members follows the rule (1a : 2a : 3a · · · ) with the aggression parameter
a where a is a natural number. The optimisation algorithm with three possible settings
of the aggression parameter, 1,2 and 3, is tested. The exact number of solutions in
groups while applying the aggression parameter to ten repair policies are given in
Table 5.1.

TABLE 5.1: Structure of the groups

Group No. of solutions (a=1) No. of solutions (a=2) No. of solutions (a=3)
1 1 1 1
2 2 22=4 23+1=9
3 3 5
4 4

The first thing we notice in Table 5.1 is that the numbers of groups are not fixed for
different a in this case. Secondly, the solutions are not always able to be grouped
strictly following the proposed ratio since there are only ten repair policies. In the
second column of the table, the solutions are divided into four groups and fit well with
the grouping ratio when a = 1. While in the third column (a = 2), the third group has
only five solutions when we have a larger group 2. The size of the second and the third
groups does not meet the expectation under this aggression parameter setting as these
two groups should have a larger difference than the one between the first and the
second group. The leftover solutions for the last group are merged with the previous
group when the leftover solutions are less than the solutions in the previous group. It
would violate the design of increasing the group size while the ranks of solutions rise
if the last solution is placed into an individual group instead of being merged. For
example, the last solution is merged into group two in the column a = 3 (Table 5.1).

FIGURE 5.2: Illustration of aggression parameter for 10 repair policies

Three sets of grouping rules (aggression parameter a = 1, 2, 3) for ten solutions are
also visualised in Figure 5.2. Three rows show the groupings under three aggression
parameters. The numbers in the figure represent the ranks of repair policies based on
the metamodel predictions. Solutions in different groups are coloured differently. The
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difference in group sizes is meant to increase. However, the difference may not be
obvious due to the limited total solution number (e.g. group 2 and group 3 for a = 2).

When multiple machines are broken down on the production line, we first evaluate
the situation (V1, V2, V3 & V4 (Section 4.4.1)) with ten candidate repair policies (RPs;
V5) using the metamodel (Section 4.4.4) to estimate the expectation of the system
throughput in three hours. The RPs are then ranked according to the predicted
throughput and sorted into fewer groups following the strategies with the selected
aggression parameter a. After that, a ranking and selection (R&S) method is applied to
these groups and each group is treated as a single solution. OCBA (Optimal
Computing Budget Allocation) (Section 3.3) is the R&S procedure used in the
experiments with the production line simulation model like in the inventory system
example. Replications are allocated to the groups based on the average performance
of the solutions sampled in each group. Next, a solution from that selected group is
randomly sampled to be simulated. The ranking and selection procedure will give out
the group that has the highest average in-group sample performance when the online
computing budget is exhausted. Finally, the solution that has the largest mean value
of the simulation outputs in that selected group is returned as the final result of the
optimisation (Figure 5.1).

We set the null hypothesis H0 to be that the average throughput for the repair policy
obtained by the proposed MFSO framework is not different from the average
throughput from the true optimum for the system, modelled here by the gold
standard. The averages are taken over the subsequent three hours. This can be written
as µd = 0. The alternative hypothesis H1 is that the true difference between the
throughputs is not equal to zero: µd ̸= 0.

5.2 Numeric Experiments

In this section, we compare approaches for selecting the optimal repair policy for the
production line model. The multi-fidelity simulation optimisation framework is hence
compared with the default policy, FIFO (First in first out), which is regarded as no
optimisation, the uniform assignment (UA) where all the online simulation budget is
uniformly assigned to each repair policy and the AP (Adjacent Process first) policy
which is the most frequently best-performing repair policy (more explanation in the
following paragraph). We also compare these results with making a decision directly
from the metamodel estimates.

The repair policy AP is the strategy that most frequently outperforms the other repair
policies in the collected simulation data for fitting the metamodel (Figure 5.3). When
the instantiated sample is simulated with ten repair policies, the one that performs the
best with the highest throughput is recorded. In the figure, we can see that, in addition
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FIGURE 5.3: Histogram for the situation when the repair policy performs the best from
the collected simulation data

to AP, the queue-length-based repair policies (i.e. NOSQ (Next Operation with
Shortest Queue first) and COLQ (Current Operation with Longest Queue first)) are
also performing well, while LIFO (Last In First Out) and LRT (Longest Repair Time
first) have the lowest chance of being the best strategy. All-time AP policy is thus
compared against other methods.

The algorithms that have an online simulation optimisation stage are tested with a
small amount of budget since we are aiming to support real-time or near-real-time
decision-making. Two online budgets are tested in the experiments, they are 50
simulation-run and 100 simulation-run for the whole procedure. They take roughly
five and ten minutes respectively to work with the production line model. Under each
of the two different budgets, the MFSO algorithm and the UA algorithm are carried
out to select the optimal repair policy. Since the MFSO and UA incorporate some
randomness in how they choose the optimal strategy, they may not produce the same
result every time. In order to obtain a stable performance of the algorithms, they are
repeated ten times for each of the ten test sets and the average result is reported.

The result (optimal repair policy) obtained from the trial m of the optimisation
algorithm for test set t is measured by its performance in the ‘gold standard’ which is
obtained from the N-replication test sets. The best solution (b) in the ’gold standard’ is
regarded as the optimal solution. In order to compare the repair policies with the
optimum, we first calculate the elementwise difference dtnm to the best from all N
replications.

Let M = 10 (m = 1, . . . , M) be the number of times we run the process for each test set.
We assume that we have T testsets, t = 1, . . . , T and for each we run N replications,
n = 1, . . . , N. Let N = 100 be the number of replications in the gold standard, and
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T = 10 be the number of test sets. And let dtnm be the difference between the output of
the chosen strategy ytnm and the best strategy ytnb on the mth trial with the test set t on
the nth replication of the ‘gold standard’.

dtnm = ytnb − ytnm . (5.1)

As the performances of repair policies are compared, dtnm could be negative since ytnb

is not guaranteed to be larger than ytnm in every replication n. The difference between
the output of the chosen strategy and the best strategy on the mth trial with the test set
t obtained from the algorithm is assumed to follow a normal distribution
Dm ∼ N(µm, σ2

m), where

µm =
1
N

N

∑
n=1

dtnm , (5.2)

σ2
m =

1
N − 1

N

∑
n=1

(dtnm − µm)
2 . (5.3)

The obtained mean (µm) and variance (σ2
m) of the difference between the optimal repair

policy and other alternatives for all ten tests can be found in Appendix A. We find that
alternative repair policies could behave very differently in the randomly generated
tests. The difference in throughput between the best and worst strategy could be as
small as six in test 1 or as large as sixty in test 5. Thus the alternatives that have better
performance (higher throughput) might be easier to identify in test 5 than in test 1.

Then, the confidence interval (Equation 5.4) is computed for Dm

CIm = µm ± z1−α/2

√
σ2

m
N

. (5.4)

We calculate the 95% (α = 0.05) confidence interval of the solution for T test sets on M
trials using the N-replication simulation data. The obtained repair policy in mth trial is
not statistically different from the optimum in test t if CIm contains zero in the range of
the confidence interval.

The optimisation results for the production line on one of M trials are shown in Table
5.2. Their specific confidence intervals are documented in Table 5.3. The full results of
the tests are available in Appendix B. The first three methods in Table 5.2 and 5.3 (i.e.
FIFO, AP and metamodel) do not involve multiple trials as they do not have an online
simulation stage in the process and the results are deterministic. The optimal repair
policy obtained by MFSO and UA varies for different trials and they are not
guaranteed to be the best.
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Testset 1 Testset 2 Testset 3 Testset 4 Testset 5 Testset 6 Testset 7 Testset 8 Testset 9 Testset 10
Gold Standard AP AP AP NOSQ AP SRT COLQ COLQ COLQ SRT
FIFO (Default) FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO

AP AP AP AP AP AP AP AP AP AP AP
Metamodel COLQ AP AP AP AP AP AP SRT AP SRT
100 Sim Run

UA FIFO FIFO FOR FIFO FIFO FIFO FOR COLQ FOR FIFO
MFSO a→1 NOSQ FOR AP LRT AP AP AP COLQ MOR SRT
MFSO a→2 SRT AP AP AP AP AP COLQ FOR LIFO LRT
MFSO a→3 COLQ AP AP NOSQ AP COLQ AP SRT AP NAP
50 Sim Run

UA AP AP AP AP LIFO LIFO AP AP AP AP
MFSO a→1 FIFO AP AP AP AP COLQ AP LIFO AP COLQ
MFSO a→2 LRT NOSQ AP AP AP AP AP SRT AP SRT
MFSO a→3 AP AP AP AP FOR COLQ AP SRT MOR SRT

TABLE 5.2: Optimisation result for the production line model on one trial (yellow cells
capture the optimal repair policies and the light blue cells capture the repair policies

that are not significantly different from the optimum)

Each row in Table 5.2 shows the results for one method and each column contains the
results for one of the ten prepared test sets. Table 5.2 is split into three parts by the
horizontal lines below the ‘gold standard’. From the top to the bottom of the table,
they are the records for non-online-optimisation methods and the records for the
methods with online simulation optimisations with 100 and 50 simulation runs
respectively. For the first group, we have the default first in first out (FIFO) rule which
is the situation where no optimisation is involved in the repair process. The AP
(Adjacent Process first) is the repair policy that has the highest frequency to perform
the best in the data collected from the simulation (Figure 5.3). The performance of
optimisation solely with metamodel prediction is on the third row. For the other two
groups, each has the same four methods: the uniform allocation (UA) and the
proposed MFSO framework with three aggression parameters a = 1, 2 & 3.

Testset 1 Testset 2 Testset 3 Testset 4 Testset 5 Testset 6 Testset 7 Testset 8 Testset 9 Testset 10
FIFO

(Default)
5.04
±3.439

4.17
±4.689

18.3
±5.142

9.66
±4.51

12.33
±6.445

3
± 3.221

14.45
± 5.694

7.41
± 4.519

4.21
± 3.48

9.74
± 4.71

AP
5.23
±3.443

0 0
6.29
±5.357

0
12.02
±4.743

0.48
± 6.163

4.93
± 4.592

2.27
± 3.97

11.54
± 5.049

Metamodel
5.39
±3.814

0 0
6.29
±5.357

0
12.02
± 4.732

0.48
± 6.163

3
± 4.385

2.27
± 3.97

0

100 Sim Run

UA
5.04
± 3.439

4.17
± 4.689

1.29
± 2.292

9.66
± 4.51

12.33
± 6.445

3
± 3.221

3.56
± 5.442

0
5.58
± 5.796

9.74
± 4.71

MFSO
a→1

4.8
± 3.554

1.32
± 4.727

0
10.7
± 5.293

0
12.02
± 4.732

0.48
± 6.163

0
5.12
± 5.349

0

MFSO
a→2

5.35
± 3.841

0 0
6.29
± 5.357

0
12.02
± 4.743

0
6.04
± 4.758

2.74
± 6.338

15.25
± 7.099

MFSO
a→3

5.39
± 3.814

0 0 0 0
1.11
± 2.517

0.48
± 6.163

3
± 4.385

2.27
± 3.97

19.97
± 5.831

50 Sim Run

UA
5.23
± 3.443

0 0
6.29
± 5.357

39.28
± 10.868

5.65
± 3.813

0.48
± 6.163

4.93
± 4.592

2.27
± 3.97

11.54
± 5.049

MFSO
a→1

5.04
± 3.439

0 0
6.29
± 5.357

0
1.11
± 2.517

0.48
± 6.163

4.88
± 5.642

2.27
± 3.97

7.99
± 4.501

MFSO
a→2

6.32
± 3.902

23.95
± 6.26

0
6.29
± 5.357

0
12.02
± 4.732

0.48
± 6.163

3
± 4.385

2.27
± 3.97

0

MFSO
a→3

5.23
± 3.443

0 0
6.29
± 5.357

1.43
± 4.807

1.11
± 2.517

0.48
± 6.163

3
± 4.385

5.12
± 5.349

0

TABLE 5.3: Difference between selected solution and optimum on one trial
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Some cells in Table 5.2 are filled with colour. The cells are highlighted in yellow when
the methods give out the true optimum for the corresponding test. The light blue cells
are the test results that do not match the true optima but have no significant difference
from the optimal repair policies. The yellow cells have their corresponding cells in
Table 5.3 zero (CIm = 0) and the corresponding cells of blue cells in the same table
contain zero in the confidence intervals.

FIGURE 5.4: Aggregated frequency of optimisation results meet the optimal repair
policies and the alternatives that are not significantly different from the optimum

We calculate how often different methods would catch the true optimal solution and
the solutions that are not significantly different from the optimum in ten tests. This
measures the performance of the methods across various test sets. For example, MFSO
a→ 3 (100 Sim run) catches four optima in yellow and four solutions that are not
statistically different to the optima in blue on the trial recorded in Table 5.2. We
average the counts among ten trials and plot the results in Figure 5.4. The orange bar
shows the average number of tests that find the optimal solution and the blue bar
stands for the average number of tests that find a solution that has no significant
difference from the optimum. Summed together, they constitute the average
performance of each method (included as the number above the blue bar). Since there
are ten designated test sets in all, the maximum each bar could possibly reach is ten,
which is plotted in white as the background of the bars.

In Figure 5.4, the three tallest orange bars that capture the four true best solutions are
three MFSOs with a 100 simulations online budget and the metamodel. The MFSO
with a budget of 50 replications and the AP are slightly lower with three optimum
catches. On the other hand, the lowest orange bar is FIFO which does not have any
result in 10 tests equal to the best solution. However, when considering results that are
not significantly different from the best (blue bars), we see a slightly different
ordering. MFSO (a = 3, 100 sim) slightly outperforms other methods with 7.4 out of
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10. MFSO (a = 2, 100 sim) and metamodel come second at 7. They are followed by
two MFSOs (a = 2, 3) with 50 online simulation budgets and reaching 6.2 and 6.4
respectively. Generally speaking, MFSO (100 sim) performs better than MFSO (50 sim)
with an average raise of 0.7 for the chance to catch the optimal repair policies in our
ten tests and 0.9 for the chance to catch not only the optimal solutions but also those
repair strategies that are not significantly different from the optimum. When having
the same online budget, MFSO (a = 2, 3) make better suggestions than UA in terms of
finding both the optimal solutions alone and with the solutions that are not
significantly different from the optimum. FIFO remains the least ideal method with
the lowest bar which has an overall height of two.

To sum up, the MFSO (a = 3) with a 100-simulation budget achieves the best
performance among the methods in comparison for being the highest bar for both
with only the orange part and with the stacked blue part in Figure 5.4. Both a larger
aggression parameter a and a higher online budget can benefit the MFSO framework
to perform better. What is more, metamodel alone also shows strong performance in
the tests. We find that the default FIFO is the least ideal method. This implies that
applying any optimisation in the comparison could make an improvement in the
throughput of the manufacturing system.

After analysing Figure 5.4, we further structure a way to quantify the overall
performance of the optimisation procedures. We assume that the differences for each
test set among M trials follow a normal distribution such that the random variable
Dt ∼ N(µt, σ2

t ), where:

µt =
1
M

M

∑
m=1

µm , (5.5)

σ2
t =

1
M2

M

∑
m=1

σ2
m . (5.6)

When reporting results, we first sum the differences in T tests,

DΣ =
T

∑
t=1

Dt . (5.7)

Assuming normality, we have DΣ ∼ N(µ, σ2). We can therefore estimate the mean and
variance of the sum, DΣ,

µΣ =
T

∑
t=1

µt , (5.8)

σ2
Σ =

T

∑
t=1

σ2
t . (5.9)
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We then look for the mean error over all of the test sets, DΣ/T. In this case, the mean
of the normal distribution is

µT = µΣ/T , (5.10)

and the variance is
σ2

T = σ2
Σ/T2 . (5.11)

From the mean and the variance of DΣ/T, the confidence interval could be derived as:

CI = µT ± z1−α/2

√
σ2

T . (5.12)

Method Aggregated difference
FIFO (Default) 8.831 ± 4.687

AP 4.276± 4.042
Metamodel 2.945 ± 3.723

UA (100 Sim Run) 4.920 ± 4.427
MFSO a→1 (100 Sim Run) 4.416 ± 4.039
MFSO a→2 (100 Sim Run) 3.400 ± 3.814
MFSO a→3 (100 Sim Run) 2.638 ± 3.659

UA (50 Sim Run) 4.718 ± 4.389
MFSO a→1 (50 Sim Run) 5.865 ± 4.502
MFSO a→2 (50 Sim Run) 3.919 ± 4.013
MFSO a→3(50 Sim Run) 3.984 ± 4.031

TABLE 5.4: Aggregated difference between selected solution and optimum

FIGURE 5.5: Aggregated difference to the optimum

The 95% confidence intervals of the aggregated difference for all methods are recorded
in Table 5.4 and plotted in Figure 5.5. The vertical blue bars in the diagram are the
confidence intervals of the methods marked on the x-axis. The y-axis shows the value
of differences to the optimum. The red line parallel to the x-axis is zero difference.
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The methods that have confidence intervals intersect the zero line are able to select the
repair policy that is not significantly different to the best solution in the ‘gold
standard’. Five methods have zero in their intervals in Figure 5.5. They are the
proposed MFSO framework with the aggression parameter a = 2 and 3 with both 100
and 50 simulation budgets and the metamodel. These five methods are showing better
performance than other methods in the comparison. We find that MFSO (a = 3, 100
sim) has the lowest aggregated mean difference at 2.638 and the narrowest interval at
±3.659 in Table 5.3. It is also observed that MFSOs with higher online budgets come
with narrower confidence intervals. We can not reject the null hypothesis that MFSO
can find either the right repair policy or the policy that is not significantly different
from the best when the aggression parameter a = 2 or 3.

To round up, the results shown in Figure 5.4 and 5.5 agree with each other. The five
methods having the highest bars in Figure 5.4 also have confidence intervals that
intersect the zero line in Figure 5.5. MFSO (a = 3 100 sim) performs the best in both
plots.

We are aware that using the metamodel on its own for optimisation, without running
the ranking and selection step also generates acceptable solutions. This makes the
simulation seem not to offer extra information and doubt could be raised on whether
the online simulation should remain in the optimisation procedure. However, this
should not be a surprise since the average ‘actual rank’ of the metamodel in Table 4.8
is 2.7. The final optimisation result would not differ a lot from the suggestion based on
the metamodel estimations when the metamodel is of high quality. A high-quality
metamodel is highly accurate in terms of both the prediction and the ranking ability,
especially in the high-rank area. Online simulation optimisation offers extra
confidence in the optimisation result.

5.3 Conclusions

In this chapter, we apply the multi-fidelity simulation optimisation (MFSO)
framework proposed in Section 3 to a real-life problem with the simulation model and
the metamodel that has been described in Section 4. During the application, we have
the following contributions: 1. The application of the MFSO framework to a practical
example in manufacturing for real-time optimisation; 2. The design of an MFSO
framework that can be used for real-time decision-making with a complex simulation
model. Through analysing the test results, we find that the proposed MFSO
framework works well for the real-time optimisation of a manufacturing system,
especially when the aggression parameter a is 3 and has a 100 online simulation
budget.
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The proposed MFSO framework works alongside the simulation model and the
metamodel, which forms a digital twin to select the optimal repair policy in near real
time. The stochasticity of the system is preserved in the optimisation procedure by
keeping the simulation in the online phase. On the other hand, the metamodel helps
to focus more on the promising alternatives and saves computing time. The positive
findings show that the proposed MFSO is able to quickly optimise a stochastic
process. This implies the potential of the MFSO framework to have broad applications
across a range of different application areas.

In order to achieve real-time or near real-time optimisation, only a small number of
replications should be made in the online phase. The online budget could be
understood as being used to double-check the metamodel prediction since MFSO puts
emphasis on the solutions with better metamodel performance. Estimations from the
deterministic metamodel could be corrected in the online ranking and selection with
simulation. Simulation has its value in securing the quality of the optimisation. In
situations where there is not sufficient time for online simulation, using the
metamodel alone could be an alternative.
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Conclusions

We explore digital twin technology in real-time/near-real-time optimisation for
stochastic systems. A multi-fidelity framework, where a low-fidelity metamodel is
included to work with the high-fidelity simulation model, is proposed in order to
achieve fast optimisation. The research on the multi-fidelity simulation optimisation
(MFSO) framework and its application in managing a production line in real-time has
been elaborated on in the previous chapters. Deploying the proposed MFSO to the
production line could boost the throughput as the experiment results suggest. We
conclude the thesis in this chapter by highlighting the contributions to the academic
literature in Section 6.1, describing the implications for practice in Section 6.2 and
showing our outlook for some future works in the field of real-time simulation
optimisation for digital twins in Section 6.3.

6.1 Contributions

The research is carried out for a real-life problem on the production line where the
priorities of corrective maintenance need to be determined and assigned for multiple
simultaneous breakdowns. An MFSO framework has been proposed to solve the
problem. It can be fit into a larger framework of a digital twin where the simulation
model is complex and computationally expensive and/or has a large number of
alternatives. The method is tested on two examples, a textbook example and an
example of a production line.

The work in this project makes contributions both to academia and to industry. The
major methodological contributions are the proposed optimisation framework for
real-time simulation optimisation and a design of experiments (DoE) method for
stochastic systems while the budget for sampling is limited.
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6.1.1 Methodological Contributions

The multi-fidelity simulation optimisation framework is proposed in Chapter 3.
MFSO extends the MO2TOS framework (Xu et al., 2014), a leading multi-fidelity
optimisation framework, to work with an uneven grouping strategy for the
alternatives. The proposed framework forms our solution for real-time simulation
optimisation and answers research question (RQ) 1 (which is raised for improving
existing ranking and selection procedures for producing results in near real-time). The
optimisation is designed to focus more on the solutions that are estimated to work
well by the metamodel. The uneven grouping strategy (1a : 2a : 3a · · · ) can be adjusted
by an aggression parameter a. Two applications of the proposed framework have been
demonstrated. The framework is able to work with situations that have a very large
number of alternatives by clustering them first before grouping. The example of an
inventory system with over 10,000 alternatives is tested. The results suggest a high
probability of the MFSO generating optimisation output that is not significantly
different from the true optimal solution, where MFSO outperforms the MO2TOS.

The proposed adaptive sequential sampling method has been described in Section
4.4.2. It efficiently assigns the sampling budget for a stochastic system. Unlike many
methods in the literature, our approach does not rely on specific modelling techniques
(e.g. stochastic kriging). The experimental design combines an exploiting process and
an exploring process in each iteration to collect data from the feasible area. The
uncertainty at different locations could be different so extra replications are assigned
only for the locations that are highly varied in the exploiting process. In the exploring
process, we seek new locations for sampling, which are both far from the existing
samples and having high prediction variance. The adaptive sequential sampling
forms part of the solution for RQ3 which is about training the metamodel efficiently.

6.1.2 Empirical Contributions

The MFSO framework has been applied to two examples, the inventory system
example and a production line example. The inventory system evaluates MFSO and
the proposed method performs very well in dealing with the optimisation problem
with a large number of alternatives. This is the basis for applying the proposed
method to the manufacturing system. In the production line case, we are looking for
the optimal repair policy when multiple machines break down simultaneously. The
simulation model of the manufacturing system is structured to enable hot-start and
repair policies, which answers RQ5 for simulating a production line. The input
variables are transformed before fitting the metamodel in order to reduce its
dimension. The system is segmented into four sections, the section states are used to
describe the system instead of taking the states of every buffer and machine. A
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measurement for the adjacency of the failures is proposed to provide extra
information to reduce information loss caused by transforming the state space. The
experiments required to collect data for training the metamodel are then reduced so
that we can fit the metamodel with less time and computing budget (RQ3).

For quantifying the performance of the metamodel (RQ4), we measure the ranking
performance of the metamodel in addition to estimating the loss function (e.g. mean
absolute error) which measures the accuracy of a machine learning model. The
ranking correlation coefficient Kendall’s tau is applied in the inventory system
example. The high value indicates that the metamodel is working well for ranking the
predictions. In the production line case, the metrics for the quality of ranking the top
solutions are introduced in section 4.4.4 (top3 captured, top1rank and actual rank)
besides Kendall’s tau since this area would cause a greater impact on the optimisation.

The MFSO framework is modified to the application of the production line (RQ2) with
ten repair policies by directly grouping the alternatives and adapting the grouping
ratio. It is able to select a repair policy that has no significant difference from the
optimal solution.

Our work contributes both to academia, by proposing methods to solve problems
from the industry and to practice by implementing the proposed methods in a real-life
setting.

6.2 Implications for Practice

Our proposed MFSO is a method that could assist decision-making and solve
manufacturing problems in near real time. The method could support fast feedback
when the system is abnormal with the suggestion from the framework which helps to
bring the system back to normality faster than using methods not based on
optimisation. The throughput is thus increased by minimising the losses which are
caused by the machine breakdowns.

The proposed MFSO framework is developed based on the MO2TOS. In MFSO, we
use a metamodel that is higher in estimation precision than MO2TOS to guide the
online simulation optimisation. In the online phase, the solutions that the metamodel
predicts will have better performance have higher chances of getting sampled for
simulation. It is achieved by having a smaller group for highly ranked solutions, while
MO2TOS evenly groups solutions that will have various performances predicted by
the metamodel. By doing that, we would have a higher probability of identifying the
optimal solution with a limited online computing budget for simulation.
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Limitations

Since simulation is involved in the MFSO framework as a key component in the online
phase, the time available for running the optimisation is constrained by the running
time of the simulation model. A well-built simulation model that simulates the
behaviour of a complex manufacturing system easily gets large in size and can be
computationally expensive to run. In the experiments, we assume that a ten-minute
response time is allowed for the algorithm to run and return the optimisation result as
this will not cause extra time costs for on-site staff. The staff will receive the
suggestions produced by the optimisation algorithm before they arrive at the location
of the failed machines. In other application scenarios, the computing budget may be
different and this is something that needs to be decided by the problem owner. For
example, in a situation where the maximum allowed response time for the
optimisation algorithm is very short, such as one minute. If a single run of the
simulation model takes ten seconds, there would not be enough time for the MFSO to
give out a proper result. In these cases, making the decision with metamodel
estimations alone could be an alternative but more research is needed to determine its
reliability. Also, a more accurate metamodel might be needed since the solutions are
not going to be assessed through the high-fidelity simulation model.

Cost

Deploying the proposed MFSO algorithm to the manufacturing system could boost
the throughput while no big updates on the facilities are needed. However, there
might still need some extra expenses associated with collecting, transmitting,
processing and storing information from the manufacturing system. This forms the
infrastructure of the digital twin that connects the physical system, the virtual models
and the optimisation algorithms. The capability of the existing system significantly
affects what and how many modifications would be needed for the transformation.

We need at least the real-time production line buffer state to enable the optimisation.
The sensor is normally used to attain such information. Cameras with computer
vision could be a substitute (Panahi et al., 2022). The collected data is then transmitted
via cable or wireless communication to the server where the data could be processed
to remove the noise from both the system and the environment for sensor data or be
processed by computer vision algorithms for camera data. After that, the processed
data can then be used as the system state and input to the optimisation procedures.
The devices that are necessary for the data collection and preparation stage are the
cost of deploying the MFSO algorithm to the production line.
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6.3 Future Work

The proposed MFSO framework works well for the tested inventory problem and a
production line repair order problem. We believe the proposed framework could be
applied to more optimisation problems in manufacturing; for example, designing
precautional maintenance plans, making production plans and arranging labour
schedules. For a different production line, in addition to another sequential
production line, it is also worth exploring the application to a flexible or
reconfigurable line (Wang et al., 2016). It refers to a production line that is designed to
accommodate multiple tasks where the workstations can be reconfigured and adapted
to handle different jobs so that different product variants or types are able to share one
production line.

There are two other directions for future research. One is to enable the proposed
algorithm to deal with multiple objectives and the other is to test different modelling
techniques for fitting the metamodel of the simulation model. More details are
elaborated in Section 6.3.1 and 6.3.2 respectively.

6.3.1 Fusing multi-objective optimisation into the multi-fidelity simulation
optimisation framework

The proposed MFSO frame has been designed and tested to optimise a single
objective, however, in reality, there are many situations in which more than one
objective function need to be considered when performing the optimisation for the
manufacturing system. Different objectives could conflict with each other which
means improving one objective would compromise the other objectives. For example,
a shorter cycle time of the machine might reduce the quality of the job. The
multi-objective optimisation balances various demands and finds the optimal
trade-off among the conflicting objectives. There are a few methods that have been
developed to deal with multi-objective optimisation, such as multiple attribute utility
theory (Butler et al., 2001) and Pareto front (Lee et al., 2004).

Multiple attribute utility theory sets a weight coefficient for each objective and the
interaction of objectives. This satisfies the situation where the objectives have different
priorities. These weights directly affect the optimisation and thus they are not easy to
determine and need expert knowledge for the specific scenario.

On the other hand, the Pareto front equally treats all the conflict objectives and
regards them as nontrivial. A solution is non-dominated when it is not able to be
improved while not sacrificing any objective. There normally exists more than one
solution that meets the requirement of being non-dominated. The qualified solutions
form the Pareto front. The concept of the Pareto front has been applied to the ranking
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and selection procedure in the research like Lee et al. (2004), Applegate et al. (2020)
and Hunter et al. (2019). Li et al. (2016) developed an variant of MO2TOS to cope with
multiple objectives. We would like to incorporate the Pareto front into the proposed
MFSO framework. The solutions could be sorted into a number of Pareto layers based
on the metamodel estimations where the solutions in each layer are not dominated by
each other. The Pareto front is the layer with solutions that are estimated to perform
the best. The Pareto layers could then be grouped in accordance with the proposed
grouping ratio with aggression parameter a. The specific rule may need adjustment to
adapt to the multi-objective optimisation. We believe this could extend the ability of
MFSO to deal with multi-objective optimisation problems close to real time.

6.3.2 Working with different types of metamodels

In our proposed MFSO framework, the metamodel is used as a low-fidelity model to
guide the optimisation via simulation so that the simulation replications required for
the optimisation are reduced. Feedforward neural network regression model has been
used and tested as the metamodel in the proposed MFSO. It works well in the tests.
We believe it is worth trying other modelling techniques and it would be valuable to
check their performance working with our proposed framework. For example, the
Gaussian processes model (Rasmussen and Williams, 2005) is also a popular choice for
regression as a simulation metamodel.

MO2TOS (Xu et al., 2014) used a Jackson network (Meyn and Down, 1994) to simplify
the high-fidelity simulation model. Their low-fidelity model has large biases in the
estimations, yet the ordinal rankings are regarded as ‘largely correct’ by the authors.
This could be the next thing to explore, whether and how the balance between the
accuracy in estimation and the model complexity could be achieved in a low-fidelity
queue theory model.

Since the information extracted from the low-fidelity model is the rankings of the
solutions, we consider building a metamodel of the high-fidelity simulation that
suggests the rankings directly instead of estimating the solutions first and then
ranking the estimations. Learn-to-rank (Liu et al., 2009) is a group of algorithms that
have been widely used by web search engines to give out a sequence of results based
on the keywords given by the users. The idea was introduced by Fuhr (1992) in 1992.
There are now three major groups of methods for learn-to-rank, the pointwise
approach (Crammer and Singer, 2001), the pairwise approach (Burges et al. (2005), Liu
et al. (2020)) and the listwise approach (Xu and Li (2007), Cao et al. (2007), Swezey
et al. (2021)). Unlike early research concentrated on the pointwise approach, most
recent research in the field focuses on the pairwise approach and listwise approach.
Although the major application of the learn-to-rank is still web searching, it is also an
essential technology for electronic commerce applications (Huzhang et al., 2020).
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Apart from them, Forman (2021) adapt the learn-to-rank method for geolocation in
package delivery. There is a lack of research to apply the learn-to-rank methods to
more industries such as manufacturing, which would make it a meaningful attempt to
build a metamodel for production line simulation model using learn-to-rank methods.
The collected data needs to be re-organised to fit a listwise learn-to-rank metamodel.
Data should be transformed into a series of lists that contain the same system state
with ten repair policies. The output of the metamodel would be the performance rank
of the input repair policies, which also need extra data processing from the simulation
output. In addition, more data may need to be collected to fit the metamodel, which
depends on the number of parameters contained in the learn-to-rank metamodel.
Although little research applies learn-to-rank methods for simulation metamodel, it is
still worth it to explore the potential of a different class of modelling techniques.
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Appendix A

Difference Between the Optimal
Repair Policy and Other
Alternatives in 100-replication Gold
Standard (Dm)

TABLE A.1: Difference between the optimal repair policy and other alternatives (Dm)
Part 1

Testset 1 Mean Var
FIFO 5.04 307.958
LIFO 0 0
SRT 5.35 384.048
LRT 6.32 396.260
FOR 5.95 346.351
MOR 5.31 422.519

NOSQ 4.80 328.889
COLQ 5.39 378.685

AP 5.23 308.543
NAP 5.93 351.500

Testset 2 Mean Var
FIFO 4.17 572.244
LIFO 11.72 797.658
SRT 5.90 561.263
LRT 28.38 2284.501
FOR 1.32 581.614
MOR 38.94 2352.845

NOSQ 23.95 1020.008
COLQ 1.38 501.026

AP 0 0
NAP 35.19 2298.559

Testset 3 Mean Var
FIFO 18.30 688.192
LIFO 16.86 847.798
SRT 13.71 725.521
LRT 35.51 807.869
FOR 1.29 136.693
MOR 38.47 767.989

NOSQ 35.18 754.452
COLQ 17.43 402.773

AP 0 0
NAP 2.01 179.808

Testset 4 Mean Var
FIFO 9.66 529.499
LIFO 11.28 977.658
SRT 8.96 988.806
LRT 10.07 729.298
FOR 10.39 609.392
MOR 11.08 943.488

NOSQ 0 0
COLQ 7.57 800.955

AP 6.29 747.157
NAP 9.00 744.525
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100-replication Gold Standard (Dm)

TABLE A.2: Difference between the optimal repair policy and other alternatives (Dm)
Part 2

Testset 5 Mean Var
FIFO 12.33 1081.193
LIFO 39.28 3074.567
SRT 11.28 1796.466
LRT 35.33 3888.789
FOR 1.43 601.520
MOR 62.25 4777.301

NOSQ 1.52 718.798
COLQ 7.73 2630.664

AP 0 0
NAP 50.06 2664.865

Testset 6 Mean Var
FIFO 3.00 270.000
LIFO 5.65 378.553
SRT 0 0
LRT 4.79 549.703
FOR 15.20 626.202
MOR 4.15 334.795

NOSQ 12.03 596.130
COLQ 1.11 164.867

AP 12.02 585.616
NAP 0.81 248.115

Testset 7 Mean Var
FIFO 14.45 843.987
LIFO 15.97 1252.292
SRT 9.22 1349.729
LRT 19.19 1052.499
FOR 3.56 770.916
MOR 24.62 1275.491

NOSQ 18.14 873.576
COLQ 0 0

AP 0.48 988.697
NAP 3.27 793.633

Testset 8 Mean Var
FIFO 7.41 531.618
LIFO 4.88 828.632
SRT 3.00 500.505
LRT 3.17 346.062
FOR 6.04 589.433
MOR 3.30 261.101

NOSQ 3.73 491.472
COLQ 0 0

AP 4.93 548.854
NAP 7.89 505.372

Testset 9 Mean Var
FIFO 4.21 315.299
LIFO 2.74 1045.689
SRT 3.57 606.005
LRT 4.12 459.682
FOR 5.58 874.387
MOR 5.12 744.794

NOSQ 4.49 584.838
COLQ 0 0

AP 2.27 410.239
NAP 4.90 1052.899

Testset 10 Mean Var
FIFO 9.74 577.507
LIFO 11.08 614.297
SRT 0 0
LRT 15.25 1311.886
FOR 18.71 797.905
MOR 5.48 1083.727

NOSQ 6.52 639.606
COLQ 7.99 527.485

AP 11.54 663.564
NAP 19.97 884.979
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Appendix B

Complete Experiment Results in
Production Line Example



104 Chapter B. Complete Experiment Results in Production Line Example

TABLE B.1: Complete experiment results for 10 testsets in 10 trials

Algorithm Trial Testset 1 Testset 2 Testset 3 Testset 4 Testset 5 Testset 6 Testset 7 Testset 8 Testset 9 Testset 10
UA (100 Sim) 1 FIFO FIFO FOR FIFO FIFO FIFO FOR COLQ FOR FIFO

2 LRT LIFO LIFO LRT FOR SRT COLQ AP SRT LRT
3 SRT SRT FOR MOR FOR SRT COLQ MOR LIFO SRT
4 LIFO FOR FOR MOR FIFO LIFO AP LIFO LIFO LIFO
5 SRT FOR AP SRT NOSQ FIFO AP SRT LRT SRT
6 AP AP AP AP SRT AP AP NOSQ AP AP
7 FOR FOR FOR MOR NOSQ MOR SRT COLQ MOR MOR
8 LIFO LIFO FOR AP AP AP COLQ FOR LIFO LIFO
9 FIFO FIFO NAP FIFO FIFO FIFO COLQ SRT FIFO FIFO

10 FIFO AP NAP FIFO AP FIFO FIFO FIFO FIFO FIFO
MFSO a→ 1 (100 Sim Run) 1 NOSQ FOR AP LRT AP AP AP COLQ MOR SRT

2 MOR COLQ FOR SRT AP AP FIFO COLQ FIFO NOSQ
3 NOSQ COLQ AP FOR FIFO SRT COLQ MOR FOR MOR
4 NOSQ AP FOR SRT AP COLQ NOSQ AP SRT COLQ
5 FIFO FOR FOR LIFO AP SRT FOR NOSQ LIFO FIFO
6 COLQ AP AP FOR AP AP NOSQ SRT COLQ LIFO
7 AP COLQ FOR SRT NOSQ FIFO FOR AP NOSQ LIFO
8 NOSQ SRT AP NOSQ FIFO SRT AP COLQ SRT COLQ
9 COLQ AP AP AP AP AP FIFO NOSQ COLQ SRT
10 COLQ AP FOR COLQ AP FIFO AP FIFO AP LIFO

MFSO a→ 2 (100 Sim Run) 1 SRT AP AP AP AP AP COLQ FOR LIFO LRT
2 SRT COLQ FOR NAP AP MOR AP AP COLQ COLQ
3 FIFO AP AP LIFO NOSQ FIFO AP LIFO SRT MOR
4 NOSQ AP AP NOSQ NOSQ AP COLQ LRT SRT MOR
5 LIFO AP AP AP AP FIFO COLQ LIFO AP FOR
6 MOR AP AP COLQ AP SRT AP SRT COLQ COLQ
7 LIFO AP AP AP NOSQ COLQ FOR MOR FOR SRT
8 COLQ AP AP COLQ AP FOR COLQ COLQ COLQ SRT
9 COLQ NAP AP AP AP AP COLQ LRT AP SRT
10 COLQ AP AP AP AP COLQ AP SRT AP SRT

MFSO a→ 3 (100 Sim Run) 1 COLQ AP AP NOSQ AP COLQ AP SRT AP NAP
2 COLQ FOR AP FOR AP AP AP SRT FOR SRT
3 COLQ AP AP NOSQ FOR COLQ AP SRT FOR SRT
4 AP AP AP AP AP COLQ AP SRT FIFO SRT
5 COLQ AP AP AP AP AP AP SRT AP SRT
6 FOR AP AP AP AP MOR AP SRT FOR SRT
7 COLQ COLQ AP NAP AP NOSQ AP FIFO AP SRT
8 COLQ FOR AP AP AP SRT AP COLQ AP SRT
9 COLQ AP AP AP AP AP COLQ SRT AP SRT
10 COLQ AP AP AP AP COLQ AP SRT AP SRT

UA (50 Sim Run) 1 AP AP AP AP LIFO LIFO AP AP AP AP
2 COLQ COLQ COLQ COLQ COLQ COLQ COLQ COLQ COLQ COLQ
3 SRT FOR FOR FOR FOR FOR FOR NOSQ FOR SRT
4 LRT AP NAP AP AP SRT AP LRT LRT SRT
5 FOR COLQ NAP SRT NOSQ LIFO COLQ MOR LIFO SRT
6 LIFO FOR SRT COLQ FOR COLQ COLQ SRT SRT SRT
7 MOR AP AP MOR SRT MOR MOR MOR MOR MOR
8 COLQ COLQ AP COLQ AP COLQ COLQ AP LRT COLQ
9 LIFO FIFO FOR LIFO FIFO MOR NAP MOR FIFO LIFO
10 LIFO FOR NAP FIFO SRT LIFO FOR FIFO FIFO LIFO

MFSO a→ 1 (50 Sim Run) 1 FIFO AP AP AP AP COLQ AP LIFO AP COLQ
2 FOR NAP FIFO NAP SRT NOSQ SRT COLQ NAP COLQ
3 MOR SRT FOR COLQ NOSQ FIFO AP NOSQ FIFO MOR
4 NAP FIFO AP SRT FIFO SRT COLQ MOR SRT SRT
5 COLQ SRT AP AP FIFO COLQ NOSQ COLQ NOSQ FIFO
6 AP AP AP AP AP AP SRT FOR SRT AP
7 FIFO FOR AP FOR SRT FOR LIFO LIFO FOR SRT
8 COLQ FOR AP LRT AP AP COLQ FOR LRT SRT
9 COLQ AP NOSQ AP FIFO SRT COLQ SRT AP AP

10 COLQ COLQ AP AP FIFO FOR NOSQ AP AP SRT
MFSO a→ 2 (50 Sim Run) 1 LRT NOSQ AP AP AP AP AP SRT AP SRT

2 FIFO COLQ SRT LIFO SRT NOSQ FOR COLQ COLQ MOR
3 NAP FOR AP NOSQ NOSQ FIFO FOR LRT FIFO SRT
4 LRT COLQ AP LIFO NOSQ MOR COLQ AP NOSQ COLQ
5 LIFO COLQ FOR AP AP COLQ COLQ MOR FOR NOSQ
6 FOR AP SRT AP FIFO MOR COLQ FIFO AP SRT
7 MOR FOR AP AP AP NAP AP AP COLQ SRT
8 COLQ AP AP AP AP AP AP FOR AP FOR
9 FIFO AP LIFO NOSQ AP AP AP SRT SRT SRT
10 COLQ AP AP AP NOSQ COLQ FOR COLQ AP SRT

MFSO a→ 3 (50 Sim Run) 1 AP AP AP AP FOR COLQ AP SRT MOR SRT
2 FOR SRT AP NAP FOR COLQ COLQ SRT NAP MOR
3 MOR AP LIFO AP AP NAP FOR SRT COLQ NAP
4 MOR FIFO AP LIFO AP LRT AP COLQ AP SRT
5 COLQ AP LIFO LIFO AP AP SRT LRT AP NAP
6 FIFO AP AP AP AP AP FOR SRT AP SRT
7 SRT AP AP AP AP AP AP SRT AP SRT
8 COLQ LIFO AP LIFO AP AP NAP SRT AP NOSQ
9 COLQ AP AP AP AP AP AP SRT AP SRT
10 NOSQ AP AP COLQ AP LIFO AP FIFO AP SRT

FIFO (default) FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO
AP AP AP AP AP AP AP AP AP AP AP

Metamodel COLQ AP AP AP AP AP AP SRT AP SRT
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