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Abstract

Designed surveys through sampling or census are the standard approach
to official statistics, where the targets are descriptive summaries of a given
population. Official statistics are also commonly produced by combining
relevant administrative registers, such as in the Nordic countries since
the 1960s. The scope of non-survey data sources are being extended to
include various so-called big-data sources, although so far relatively few
multisource statistics of this kind have been credited as official statistics.
Trustworthy evaluation of multisource official statistics is a fundamental
issue for creating a new quality assurance standard. In this paper, audit
sampling inference will be explained, illustrated and promoted to this end.

Keywords: Descriptive inference, survey sampling, auditing, census, social
media index, register household

1 Introduction

A large portion of official statistics are aimed at descriptive summaries of a real
finite population, such as the total, mean or quantiles of some specific values
associated with the given population units, as well as any functions of such
quantities. Although conceptually any such target parameter can be obtained
through an error-free census of the target population, errors are unavoidable
in practice despite the huge costs that may be required of the census survey
operation. Over the 20th century survey sampling has been established as the
standard approach to descriptive official statistics, which requires the sample
to be selected under a probability sampling design. Survey sampling is more
agile and costs much less than census survey. The inference of the associated
statistical uncertainty is primarily grounded in the known sampling design;
see Hansen (1987), Smith (1994), Kalton (2002), Rao (2005, 2011), Beaumont
and Haziza (2022) for reviews and appraisals.
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Since the 1960s, it has become increasingly common to produce official
statistics based on relevant administrative registers, as in the Nordic countries;
see e.g. Nordbotten (1966, 2010), UNECE (2007), Thygesen (2010). To satisfy
the high quality required of official statistics, it is typically necessary to have a
complete population frame, such as the Central Population Register, as well as
the possibility to combine data from multiple registers generally (Zhang, 2012).
In other words, a well coordinated system of statistical registers (Wallgren and
Wallgren, 2014) is the key both to enable register-based statistics on a broad
range of topics and to ensure that the statistics are fit-for-purpose.

Table 1: Multiple data sources for official statistics at present
Non-survey data Example

Register vital event, diagnosis
wage, income tax, VAT, welfare payment

Transaction

scanner data price, point-of-sales receipt
bankcard or giro payment

B2B or B2P invoice
property sales contract

Remote sensing, fixed
smart meter reading

weather station reading
traffic loop signal

Remote sensing, mobile

satellite image, drone image
airborne laser scanning

maritime AIS, lorry tracking signal
mobile phone signal

Internet web page, social media post

Survey data
census

probability sample
non-probability sample

Currently, the scope of multisource statistics are being extended to include
various ‘big data’ or ‘new’ sources. Zhang and Haraldsen (2022) summarise
the non-survey data sources available at present, which are reproduced here
in Table 1 alongside the survey data, where the broad types of non-survey
data sources are given in italics. Multisource statistics can be produced by
combing data from two or more sources exemplified in Table 1. Di Zio et al.
(2017) provide a synopsis of statistical methods for combining multiple sources
of administrative and survey data. A similarly high-level overview covering the
other non-survey data sources is yet to be compiled.

Regarding the quality of multisource official statistics, the ESSnet project
KOMUSO has investigated the combination of administrative and survey data.
The deliverables are available at the CROS portal (https://cros-legacy.ec.
europa.eu/content/essnet-quality-multisource-statistics-komuso_en), includ-
ing both guidelines for multisource statistics and multisource frames for social
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statistics, as well as a repository of statistical methods for measuring the out-
put quality of multisource statistics. See also Yung et al. (2022) for a recent
proposal of quality framework for statistical algorithms, which is relevant to
making use of many other non-survey data.

Of the many quality dimensions (or aspects), we shall focus on statistical
uncertainty (or accuracy) in this paper.

1.1 Approaches to descriptive inference

It is essential to recognise from the beginning the descriptive nature of the
targets for official statistics, whenever this is the case, in contrast to analytic
targets such as the life expectancy (of a hypothetical cohort of individuals) or
a model that can be used to understand the given population. We shall use
the term descriptive inference (Smith, 1983) to emphasise this epistemological
distinction when our interest lies with the descriptive targets.

As mentioned before, design-based descriptive inference of any population
parameter is the prevalent practice in survey sampling, where the uncertainty
of estimation is evaluated with respect to repeated sampling under the given
sampling design, while all the other values involved in estimation are treated as
constants associated with the given population. In contrast, by model-based
descriptive inference, the uncertainty of estimation would be evaluated with
respect to an assumed statistical model of the relevant population values, while
the selected sample is typically treated as fixed (Valliant et al., 2000).

The validity of design-based descriptive inference is assured by the known
sampling design for the given finite population, “whatever the unknown proper-
ties of the population” (Neyman, 1934). Although models are necessary when
the observations for inference are not obtained by probability sampling, model-
based descriptive inference may be invalid if the assumed model is misspecified
in any respects that matter to the task at hand, whether or not the available
observations are obtained by probability sampling.

Of course, models may still be necessary in practical survey sampling for
dealing with the non-sampling errors. For instance, Kalton (2002) notes that,
“Whenever there are missing data, models are needed in the survey analysis...
An important feature to note about all these compensation procedures is that
they are general-purpose strategies, intended to enable analysts to perform
any form of analysis. The models underlying these compensation procedures
are developed to this end...” In other words, models are accepted as necessary
practical remedies in such situations, which nevertheless does not negate the
validity of design-based descriptive inference, nor does it imply generally the
validity of fully model-based descriptive inference.

Finally, there are many model-assisted methods in survey sampling, where
models are formulated to motivate the use of available auxiliary information in
addition to the sampling design, in order to improve the efficiency of inference,
but the properties of the estimators are still evaluated only with respect to the
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sampling design (e.g. Särndal et al, 1992; Breidt and Opsomer, 2017). Such
methods will not be further discussed in this paper, because our focus here is
the validity of descriptive inference approaches.

1.2 Audit sampling inference for multisource statistics

Multisource statistics may or may not involve survey sampling at all. To keep
a sharp focus on the central thrust of this paper, we shall concentrate on the
case where multisource statistics can be produced without any designed survey
sampling. The approach of audit sampling inference, which is to be elaborated
in this paper, is applicable as well when survey sampling is one of the data
sources. However, it would require us to discuss the relevant technical means,
which are more complicated than what is necessary for our focal case; so we
kindly refer the interested readers to Zhang et al. (2023).

For an example that falls in the focus here, consider register-based statistics
of the highest level of education. As remarked by Zhang (2012), to make use
of the relevant registers of school enrolment records and examination results,
integration with the Central Population Register is necessary, in order to de-
lineate the target population as well as to reconcile any potentially overlapping
or conflicting information in the various registers. What can one say about the
statistical uncertainty of the resulting multisource statistics?

One possibility is to calculate some relevant indicators for the underlying
data generation process and the final outputs, albeit without providing any es-
timated biases, variances or confidence intervals of the disseminated figures.
Another option, which is less common in practice, is to explicitly model what
are considered as the most important data generation mechanisms, in order
to obtain various model-based uncertainty measures of the disseminated fig-
ures. For instance, let there be K distinct categories of the highest education
level, such that a simple model is to assume that each individual in the target
population follows independently the K-nomial distribution given the relevant
covariates. However, since any assumed model cannot be entirely correct, what
is the validity of such model-based descriptive inference?

To answer this last question, one needs validation data that are external
to the data that have been used to produce the disseminated figures in the
first place; otherwise some degree of circular reasoning would be unavoidable.
For instance, one can perform cross-validation, whereby the population is split
into a training set and a test set many times, such that the errors of a model
fitted to the training set can be observed in the test set and used to gener-
ate some uncertainty estimates. Nevertheless, the final uncertainty estimates,
obtained by combing the results from different test sets, would not directly
refer to the disseminated figures that are produced based on the model fitted
to the whole population (not just any subset of it). Moreover, the assumption
of independence between the individuals still cannot be validated by such a
cross-validation approach.
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By resorting to design-based audit sampling inference, or simply auditing,
one can avoid these conundrums for valid, model-based descriptive inference.
As formulated by Zhang (2021), “Wherever the goal of survey sampling is to
produce a point estimate of some target parameter of a given finite popula-
tion, auditing aims not to estimate the target parameter itself but some chosen
error measure of any given estimator of the target parameter, which may be
biased due to failure of the underlying model assumptions or other favourable
conditions that are necessary.”

To recapitulate, for valid descriptive inference of the errors of multisource
statistics based on non-survey data, one needs additional validation data.
Next, provided the validation data are obtained under a known probability
sampling design, auditing inference can yield design-based inference of these
errors (as descriptive targets). Finally, design-based auditing inference is valid
for the given population, regardless the models or algorithms that have been
used to produced the multisource statistics that are being assessed.

As remarked by De Waal et al. (2020), the KUMOSO project has developed
a number of “quality measures and methods to calculate them for separate
steps, or building blocks, in the statistical production process. We hope that
in the, hopefully near, future, an all-encompassing theory or framework to base
quality measures for multisource statistics upon will be developed. Such an all-
encompassing theory or framework should be able to handle several different
types of error sources at the same time and, preferably, use the same statistical
theory to treat these error sources.” Auditing inference does provide a general
and valid design-based framework, and one can apply it to the final statistical
outputs directly. The approach is as universally applicable as survey sampling
is for descriptive inference of finite populations.

Given the direction of travel, one can expect an ever increasing uptake of
register-based statistics and model-based statistics based on non-survey data
sources, where designed surveys are not directly needed for producing a range
of fit-for-purpose official statistics on a continuous basis. Auditing can save
cost in this context, as long as audit sampling can be conducted less frequently
or with a smaller sample size than that is needed for producing the target
statistics directly based on survey sampling.

Thus, we believe that auditing provides a feasible and trustworthy quality
assurance standard, the adoption of which can be important for upholding the
high quality required of official statistics and the public trust in them.

In the rest of the paper, we shall first explain the gist of auditing inference
in some generic settings in Section 2, where non-survey multisource statistics
may suffer from representation or measurement errors. Three real cases will
be discussed in Section 3, to enhance the conceptual transition from survey
sampling to auditing, as well as to provide some historic traces of the idea.
Some summary final remarks will be given in Section 4.
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2 Auditing inference in generic settings

Here we outline the gist of auditing inference in several generic settings, where
non-survey multisource statistics may suffer representation or measurement
errors. Let us start by introducing the following notations.

Denote by U = {1, ..., N} the target population. Denote by yU = {yi : i ∈ U}
the values of interest, which are associated with each population unit. Denote
by B a known set of units of the size NB. For any i ∈ B, one either observes yi
directly or xi in case measurement errors may be present. Both the units in B

and the values associated with them may result from combining and processing
multiple non-survey data sources (exemplified in Table 1).

Let Ȳ =
∑

i∈U yi/N be the population mean that is the descriptive target of
interest. Let ȳB =

∑
i∈B yi/NB be the corresponding mean in the set B if yi is

available, or x̄B =
∑

i∈B xi/NB in the presence of measurement errors.
Finally, denote by s a sample of units which, depending on the setting, is

either selected from U or U ∪B under a known probability sampling design.

2.1 The selection error

Meng (2018) considers big data selection error in the setting B ⊂ U , as Figure
1 illustrates, where B is not a probability sample but measurement errors are
absent. In this setup, a selection error exists if ȳB ̸= Ȳ .

U
B

Figure 1: Setting of selection error of set B (shaded) from population U .

Meng (2018) discusses the selection error in terms of three factors, referred
to as “data quantity” (i.e. the amount of data NB), “problem difficulty” (i.e.
the variation in the target variable yi), and “data quality” (i.e. the correlation
between the target variable yi and the unit inclusion in B), the last of which is
termed as the data defect correlation (ddc) regarding ȳB.

Meng (2022) observes that the ddc echos the unified criterion for selection
error proposed in Zhang (2019), which is given as follows. Let

δiB = I(i ∈ B | i ∈ U)
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indicate the B-set inclusion of any population unit. We have

ȳB − Ȳ =
1

NB

∑
i∈U

δiByi −
1

N

∑
i∈U

yi =
N

NB

ρU

where
ρU =

1

N

∑
i∈U

δiByi −
( 1

N

∑
i∈U

δiB
)( 1

N

∑
i∈U

yi
)
. (1)

Clearly, there would be no selection error, if the finite-population correlation
ρU between yi and δiB is 0. Zhang (2019) builds a non-parametric asymptotic
(NPA) non-informativeness assumption on ρU , which permits a unified criterion
for evaluating both the quasi-randomisation and super-population modelling
approaches in case one would like to adjust the observed B-set mean ȳB.

For the purpose of auditing the selection error of ȳB, which is our topic here,
it is evident that all the terms in (1) are either known or can be estimated given
a probability sample s from U , where both yi and δiB are treated as constants
over sampling. Moreover, by virtue of the known audit sampling design of s,
design-based inference of the selection error ȳB − Ȳ (i.e. as a descriptive target)
is valid regardless how B has been generated. Finally, other functions of the
error, such as (ȳB − Ȳ )2, can also be estimated by auditing.

2.2 Auditing a model of selection mechanism

Consider still the problem of selection error (Figure 1). One common approach
to derive an adjusted estimator of Ȳ (i.e. instead of ȳB) is to introduce a selection
model of the B-set inclusion indicator δiB, denote by

pi = EM(δiB | yi)

for each i ∈ U , where EM denotes model expectation. Notice that although one
would usually let pi depend on other relevant covariates in addition to yi, for
simplicity we do not make them explicit in the notation here.

For the purpose of auditing the selection model that yields {pi : i ∈ U}, we
start by observing the identify

CovM(δiB, yi) = EMCovM(δiB, yi | yU) + CovM(pi, yi | yU) .

The first term on the right-hand side vanishes because CovM(δiB, yi | yU) ≡ 0.
Given a sufficiently large population size N , the two remaining CovM-terms
are essentially equal to the respective finite-population covariances because,
under the model-based framework, {(yi, δiB) : i ∈ U} are assumed to form an
independent and identically distributed (IID) sample generated by some true
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joint distribution of (yi, δiB). We have then∑
i∈U

δiByi
N

−
(∑

i∈U

δiB
N

)(∑
i∈U

yi
N

) .
=

∑
i∈U

piyi
N

−
(∑

i∈U

pi
N

)(∑
i∈U

yi
N

)
In other words, the selection model would be perfectly compatible with the
given (U,B), provided we have

1

N

∑
i∈U

δiByi −
1

N

∑
i∈U

piyi = 0 (2)

and
1

N

∑
i∈U

δiB − 1

N

∑
i∈U

pi = 0 (3)

Provided (3) is an estimating equation for the selection model parameters,
which is common, it would be satisfied by the estimated {p̂i : i ∈ U}, i.e.∑

i∈U δiB =
∑

i∈U p̂i, and auditing would only need to be concerned with (2). For
instance, one can examine a design-based estimate of

∑
i∈U δiByi/N−

∑
i∈U p̂iyi/N ,

or one can develop a significance test for (2) where the test-statistic distribution
is generated by repeated audit sampling under the given design.

2.3 The error of selection and coverage

Consider now the problem of selection error in combination with coverage error,
as illustrated in Figure 2, where B is not a probability sample, and B \ U ̸= ∅
but the joint subset BU = B ∩ U is unknown. Measurement errors are absent.
In this setup, an error due to selection and coverage exists if ȳB ̸= Ȳ .

U
B

Figure 2: Setting of selection and coverage error of set B (shaded), unknown
joint subset B ∩ U with target population U .

Let ȳBU be the mean among the units in BU , belonging to both B and U .
We have Ȳ = ȳB if Ȳ = ȳBU and ȳB = ȳBU . In other words, the selection and
coverage error of ȳB can be decomposed into the two selection errors of ȳBU in
terms of BU ⊂ U and BU ⊂ B, respectively. Let δiU = I(i ∈ U | i ∈ B) in addition
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to δiB = I(i ∈ B | i ∈ U) defined earlier. Auditing the selection and coverage
error of ȳB amounts then to audting ρU given by (1) earlier and auditing

ρB =
1

NB

∑
i∈B

δiUyi −
( 1

NB

∑
i∈B

δiU
)( 1

NB

∑
i∈B

yi
)

i.e. as long as audit sampling of s from U ∪B is feasible.

2.4 The error of representation and measurement

Consider still the setting of Figure 2, but suppose that measurement errors
exist in addition such that only x̄B is available but not ȳB directly. In this setup,
an error due to representation (pertaining to both selection and coverage) and
measurement exists if x̄B ̸= Ȳ .

One can view x̄B − Ȳ as a descriptive parameter of the given union B ∪ U ,
with associated values {xi : i ∈ B} for domain B and {yi : i ∈ U} for domain U ,
respectively. Similarly for any functions of it, such as (x̄B − Ȳ )2. However, since
x̄B is known, auditing such a descriptive parameter essentially requires only
design-based estimation of Ȳ given an audit sample s from U .

The reader is therefore entitled to wonder how auditing differs to survey
sampling in this setting after all. Indeed, the same question would be pertinent
for ρU as well, as long as Ȳ is the only unknown quantity in (1).

To answer this question, let us recall an earlier remark that auditing can
save cost, “as long as audit sampling can be conducted less frequently or with
a smaller sample size than ... survey sampling”, and consider it in the example
of register-based statistics of the highest education level.

First, less frequent surveying is a fact in the Nordic countries, because the
question about the highest education level is omitted in all the social surveys
in these countries, such as the Labour Force Survey or EU-SILC, while at
the same time this register variable can be used as auxiliary information for
reducing the sampling error or the nonresponse bias of other survey variables
at the estimation stage.

Next, should any Nordic country undertake an auditing of these statistics,
the audit sampling design would surely differ to that of survey sampling in
a country that does not have the same register capacity. For instance, the
overall sample size can be smaller because the register variable provides strong
auxiliary information in any case, and one could allocate a much larger part
of the sample to the subpopulations where the register data are perceived to
have a relatively low quality, such as the more recent immigrants.

Finally, we note that the difference between auditing and survey sampling
will again manifest itself in the case illustrations to be discussed next.
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3 Case discussions

Zhang (2021) defines audit sampling inference generally, where it is applied
to the transaction-based proxy expenditure weights for Consumer Price Index.
The idea of auditing of non-survey multisource statistics has actually a long
tradition in official statistics, in which context it is often referred to as quality
surveys. For instance, quality surveys have been common in the Nordic coun-
tries in connection with register-based censuses (e.g. Axelson et al., 2016), and
Statistics Canada used to conduct a semi-annual survey to measure the errors
in the Business Register (e.g. Lorenz and Laniel, 1992). Below we discuss three
other cases of auditing in more details.

3.1 U.S. census coverage error

The U.S. Census Bureau traditionally conducts a post-enumeration survey
(PES), and derives a so-called dual system estimator (DSE) of the population
sizes by combining the census and the PES. Figure 3.1 illustrates the setting
of target population U , census enumeration B and the PES sample s that is
taken from B ∪ U . If the DSE results are disseminated as the final popula-
tion size estimates, then one should rightly view them as multisource official
statistics. If the census counts are disseminated as official statistics, while the
differences between the DSE results and the census counts are disseminated
as estimates of the census net coverage errors, then the PES serves indeed the
purpose of auditng the census coverage error.

B

s

U

Figure 3: Population U , census enumeration B, PES sample s (shaded)

The debate between the two points of view, both statistically and legally,
went on for decades. The decisions not to adjust the 1980 and 1990 censuses,
i.e. not to accept the DSE results as the official population sizes, were upheld
by the legal system. In January 1999, the U.S. Supreme Court ruled that the
DSE adjusted numbers may not be used for apportioning Congress, i.e. the
allocation of congressional seats to states. This finally sealed the PES as audit
sampling instead of survey sampling. A headline of The Washington Post reads,
“High Court Rejects Sampling In Census”.
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Several important lessons can be learned from this case. First, although one
may readily accept the validity of design-based descriptive inference, the prac-
tically unavoidable non-sampling errors can still cast doubts on the results.
As remarked by Freedman and Wachter (2001), “from a technical perspective,
sampling is not the issue. The crucial questions are about the size of process-
ing errors, and the validity of statistical models for missing data, correlation
bias, and homogeneity — in a context where the margin of allowable error is
relatively small.” Nevertheless, these obstacles for accepting the DSE results
as official statistics apparently do not prevent one from accepting the same
estimates for the purpose of auditing.

Next, in retrospect, one can see that the case of the U.S. population census
does provide a long-standing example of auditing in official statistics, although
the conceptual transition from survey sampling may have been obscured to
many, perhaps partly because the technical argument has often been framed
as a question: what could be wrong with either the census or DSE.

Table 2: Net coverage error of U.S. census (Source: census.gov)
Census 1990 2000 2010 2020

Net coverage error (%) -1.61 0.49 0.01 -0.24
Standard error (%) 0.20 0.20 0.14 0.25
Hypothetical standard error (%) 0.30 0.30 0.22 0.38

Finally, Table 2 shows the overall census net coverage error estimates from
1990 to 2020, together with the estimated standard errors, which can be openly
obtained from the Census Bureau’s online repository. In the bottom line of the
table we have listed the corresponding hypothetical standard errors in italics,
based on a conjectured 50% reduction of the PES sample size assuming that
the variance is inversely proportional to the sample size. The question we would
like to ask the reader is the following one. Suppose these hypothetical figures
are proposed as the accuracy benchmarks for the PES auditing design, would
you consider them to be acceptable for the purpose of quality assessment? If
the answer is yes, then one can save cost; indeed, one might have saved costs
historically, had the view of PES as auditing been crystal to all.

3.2 Bias of Social Media Index

Daas et al. (2015) use selected Dutch social media messages (e.g. Facebook,
Twitter, LinkedIn, Google+) with sentiment classification (positive, neutral, or
negative) to construct a Social Media Index (SMI), which aimed to emulate the
Consumer Confidence Index (CCI) that is produced by Statistics Netherlands
on the basis of a monthly survey. Figure 4 shows that the two indices resemble
each other over the given 27 months, denoted by SMIt and CCIt for t = 1, ..., 27,
where the empirical correlation coefficient between them is 0.88.

11
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Figure 4: Monthly SMI (cross) and CCI (circle), by Daas et al. (2015, Fig. 4)

Patone and Zhang (2020) study the descriptive validity of SMI. Denote by θt
the target of CCI in month t, for which the CCI is assumed to be approximately
unbiased. Consider the SMI as an estimator with its own expectation and
variance. Denote by ξt the expectation of SMIt in month t. Given the large
number of messages underlying each SMIt, its variance is practically negligible
compared to that of CCIt, such that

CCIt − SMIt
.
= CCIt − ξt and Ep(CCIt − SMIt)

.
= θt − ξt

where Ep denotes expectation over repeated sampling for the CCI.
Treating θt− ξt as a descriptive parameter of the monthly Dutch population,

Patone and Zhang (2020) develop formally a test statistic for

H0 : θt − ξt = µ vs. H1 : θt − ξt ̸= µ

where the distribution of the test statistic is generated by repeated sampling
for the CCI.

One could only obtain the CCI from the homepage of Statistics Netherlands
but not its sampling variances directly. A plot of the 95% confidence interval
of CCI over 2000 - 2014 is available in van den Brakel et al. (2017), from which
one can gauge the coefficient of variation (CV) of CCIt to be between 0.01 and
0.34 over the 27 months in consideration here. Patone and Zhang (2020) let
η = CV(CCIt) be a constant over time, which ranges from 0.05 to 0.5. Given
each η, the sampling variances of CCIt are calculated as (ηCCIt)2. Applying the
test yields then the p-value of H0 accordingly.

As can be seen from Figure 5, the p-value is very close to 0, say, if η ≤ 0.2

and it would only exceed 0.05 for η > 0.37 (marked by the horizontal line). In
other words, viewing the Consumer Confidence Survey as an audit of the SMI,
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Figure 5: P-value of H0 given CV(CCIt), by Patone and Zhang (2020, Fig. 3)

one may reject the null hypothesis that the SMI deviates from the target of CCI
by a constant over time.

3.3 The case of Norwegian register households

Statistical Household Register (HR) can be produced from combining multiple
administrative registers of Population, Dwelling, Employment, Education, Post,
etc. Household unit errors arise if people in the same household are allocated
to different register households, or people in different households are allocated
to the same register household. Zhang (2011) illustrates the unit error problem
of register households with the fictive data in Table 3. As can be seen, there
are 4 households both in reality and according to the HR, with quite similar
household and associated individual characteristics. Only Lena is assigned
the wrong household in the HR (marked as bold in Table 3),

Next, Table 4 compares different household counts (by size and type) in the
Municipality Kongsvinger, which are based on the Central Population Register,
the 2001 census of housing and a proxy HR, respectively. The proxy HR differs
to the HR in production because it does not use the data from the 2001 census;
see Zhang (2011) for details. The households compiled from the Central Pop-
ulation Register use only the family relationships by birth or marriage, which
is the reason why the counts differ notably to the census results.

For a more rigorous and general assessment of the unit errors in the HR,
Zhang (2011) introduces the allocation matrix to formally represent the data
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Table 3: Fictive data at Storgata 99, by Zhang (2011, Tab. 1)
Reality

Dwelling Family Household Person Name Sex Age Income
H101 1 1 1 Astrid Female 72 y1
H102 2 2 2 Geir Male 35 y2
H102 2 2 3 Jenny Female 34 y3
H102 2 2 4 Markus Male 5 y4
H201 3 3 5 Knut Male 29 y5
H201 4 3 6 Lena Female 28 y6
H202 5 4 7 Ole Male 28 y7

Household Register
Dwelling Family Household* Person Name Sex Age Income

H101 1 1 1 Astrid Female 72 y1
H101 2 2 2 Geir Male 35 y2
H101 2 2 3 Jenny Female 34 y3
H101 2 2 4 Markus Male 5 y4
H101 3 3 5 Knut Male 29 y5

- 4 4 6 Lena Female 28 y6
- 5 4 7 Ole Male 28 y7

of any given block of individuals. For the fictive data in Table 3, we have

A =



1 0 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


and A∗ =



1 0 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


where A refers to the true matrix and A∗ that according to the HR.

Any error in the register-based statistics of households or their attributes,
such as income or wealth, can be expressed as a function of finite-population
joint distribution of (A,A∗), denoted by fU(A,A

∗). By audit sampling, one can
obtain a design-based estimate of fU(A,A∗), denoted by f̂U(A,A

∗), and any error
of interest as a function of f̂U(A,A∗).

Table 5 provides an example of auditing inference of the errors in the register
household statistics (by size) for Kongsvinger. Specifically, the expectations of
census results are calculated here conditional on the register, i.e. according
to f̂U(A | A∗), as well as the root squared errors of prediction (RSEP), from
which one can derive the interval estimates of household counts and compare
them to the register-based statistics. Notice that technically it is possible to
derive the estimates either with or without taking into account the estimation
uncertainty of f̂U(A | A∗), as illustrated in Table 5.

There is a tacit assumption for the approach of Zhang (2011) reviewed above.
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Table 4: Household counts in Kongsvinger, by Zhang (2011, Tab. 2)
Source: Central Population Register

Household size
Household Type 1 2 3 4 5 6+ Total

Single 4143 0 0 0 0 0 4143
Couple without Children 0 1505 0 0 0 0 1505
Couple with Children 0 0 766 965 279 51 2061
Single Adult with Children 0 557 250 63 13 1 884
Others 0 4 0 0 0 0 4

Total 4143 2066 1016 1028 292 52 8597
Source: Census 2001

Household size
Household Type 1 2 3 4 5 6+ Total

Single 3051 0 0 0 0 0 3051
Couple without Children 0 1845 0 0 0 0 1845
Couple with Children 0 0 826 966 283 61 2166
Single Adult with Children 0 433 197 58 10 1 699
Others 0 41 37 26 17 15 136

Total 3051 2319 1060 1080 310 77 7897
Source: Proxy Household Register

Household size
Household Type 1 2 3 4 5 6+ Total

Single 3050 0 0 0 0 0 3050
Couple without Children 0 1791 0 0 0 0 1791
Couple with Children 0 0 811 977 281 55 2124
Single Adult with Children 0 418 190 52 10 1 671
Others 0 60 60 44 42 23 229

Total 3050 2269 1061 1073 333 79 7865

The joint distribution fU is defined for each pair of allocation matrices (A,A∗),
which requires blocking the individuals by judgement a priori, assuming that
the individuals in the different blocks cannot possibly belong to the same
household in reality. (It is easily ensured that blocking does not separate the in-
dividuals in the same register household.) This is similar to blocking in record
linkage of large files. However, since the true blocks are not all known, blocking
can induce errors in the inference.

A more satisfactory solution to blocking is to base the sampling design on
graph sampling techniques (Zhang, 2022). Denote by P = {i1, .., iN} all the
individuals relevant to the target household population, and R = {k1, ..., kM}
the register households, and H = {h1, ..., hM ′} the households in reality. Define
undirected simple graph G = (U,L), with nodes U = P∪R∪H, edges (ki), (ih) ∈ L

if person i belongs to register household k and household h. The graph setting
is illustrated in Figure 6, where the nodes P , R are known but not H, and the
edges between P and R are known but not those between P and H.

15



Table 5: Auditing register household errors, by Zhang (2011, Tab. 4)
Household size

1 2 3 4 5 6+

Proxy Household Register 3050 2269 1061 1073 333 79
Census 3051 2319 1060 1080 310 77
Conditional Expectation of Census 3100 2314 1053 1063 317 81
RSEP without estimation uncertainty 30 17 10 8 6 5
RSEP including estimation uncertainty 38 20 10 8 6 5

i1 h1

k1 i2 h2

k2 i3 h3

i4

k3
... h4

... ... ...

kM iN hM ′

Figure 6: Illustration of setting for graph audit sampling, register households
R = {k1, ..., kM}, individuals P = {i1, .., iN}, households H = {h1, ..., hM ′}

Each true block of individuals is then a component in the graph G defined
above. By graph sampling, starting from any initial sample of nodes selected
from R ∪ P , denoted by s0, one would observe the edges incident to each node
in s0, such that any adjacent nodes not in s0 can be included which form the
first wave of snowball sample, denoted by s1. Snowball sampling wave by wave
amounts to repeating this incident observation procedure (Zhang, 2022), until
no new nodes can be added in this way.

The obtained sample graph would contain a subset of all the components of
G, each of which must have one or more nodes selected in the initial sample s0.
Let Ω denote all the components of G, which are unknown in advance, and let
Ωs denote the components observed in the sample graph. For each κ ∈ Ω, there
exists a paired allocation matrices (Aκ, A

∗
κ), such that the target population

distribution fU(A,A
∗) is just the empirical distribution of {(Aκ, A

∗
κ) : κ ∈ Ω},

with the point mass 1/|Ω| on each element of Ω.
Snowball sampling yields a sample of (Aκ, A

∗
κ) for any κ ∈ Ωs, each of which

corresponds to a block of individuals in reality. Various estimators of fU(A,A∗)

can now be constructed according to the graph sampling theory (Zhang, 2022),
which are unbiased with respect to repeated graph sampling.
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4 Final remarks

Great cost reduction can be achieved by fit-for-purpose multisource official
statistics when these can replace (repeated) survey sampling that would have
been necessary otherwise. There are also huge potentials for increasing the
scope or frequency of the relevant statistical outputs.

No matter how good the available non-survey data and the required models
(or algorithms) actually are in such cases, descriptive inference based on them
cannot be validated without additional data.

Audit sampling inference (Zhang, 2021) provides a general design-based sta-
tistical framework to error evaluation, where the uncertainty of the assessment
is grounded in the known audit sampling design, just like survey sampling is
general and valid for descriptive inference, “irrespectively of the unknown prop-
erties of the target population studied” (Neyman, 1934).

We have explained the gist of auditing inference in several generic settings,
where non-survey multisource statistics may suffer from selection, coverage
or measurement errors. We have also shown that the idea actually has a long
tradition in official statistics, as well as many important applications. However,
the awareness of the conceptual transition from survey sampling (for producing
the statistical outputs) to audit sampling (for error evaluation) may still need to
be enhanced among the practitioners, in order to capitalise on the cost saving
the transition can offer to the enterprise of official statistics.

We believe auditing should be adopted as a quality assurance standard
for descriptive official statistics that can be produced using whichever data
sources, models or algorithms. The validity and generality of such a standard
can be important for upholding the high quality required of official statistics
and the public trust in them.
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