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A B S T R A C T   

Simulations of cryo-electron microscopy (cryo-EM) images of biological samples can be used to produce test 
datasets to support the development of instrumentation, methods, and software, as well as to assess data 
acquisition and analysis strategies. To be useful, these simulations need to be based on physically realistic models 
which include large volumes of amorphous ice. The gold standard model for EM image simulation is a physical 
atom-based ice model produced using molecular dynamics simulations. Although practical for small sample 
volumes; for simulation of cryo-EM data from large sample volumes, this can be too computationally expensive. 
We have evaluated a Gaussian Random Field (GRF) ice model which is shown to be more computationally 
efficient for large sample volumes. The simulated EM images are compared with the gold standard atom-based 
ice model approach and shown to be directly comparable. Comparison with experimentally acquired data shows 
the Gaussian random field ice model produces realistic simulations. The software required has been implemented 
in the Parakeet software package and the underlying atomic models are available online for use by the wider 
community.   

1. Introduction 

In cryo-electron microscopy (cryo-EM), projection images of samples 
embedded in amorphous ice are acquired using a transmission electron 
microscope (TEM). The physics of the electron scattering, and image 
formation are well understood, and realistic EM images are routinely 
simulated using the multislice algorithm [1,2]. These simulations can 
assist in the interpretation of experimentally acquired cryo-EM images. 
They also allow the limitations [3] of different data acquisition schemes 
to be evaluated by performing in silico experiments that sample the 
available space of data acquisition parameters [4]. TEM simulations are 
a key component in the creation of a “digital twin” that models a real 
microscope, sample, and detector. Such a digital twin can be used to 
determine optimal data acquisition schemes, design new hardware, and 
provide phantom test datasets that can be used in the development of 

data processing and analysis software. 
Ice exists in several crystalline and amorphous forms; the most 

common being hexagonal crystalline ice [5]. As well as reducing image 
quality as a result of diffraction, crystalline ice often causes severe 
damage to most biological structures by withdrawing water molecules 
from the hydration shells of the specimen or from the specimen itself [6, 
7]. In contrast, amorphous ice preserves the specimen in a near native 
state, avoiding the formation of ice crystals, and the formation of 
amorphous ice drives most cryo-EM protocols [6]. Amorphous ice does 
not have the long-range order present in crystalline ice but instead re-
tains some of the structural characteristics of liquid water, although 
there is some indication that structural differences exist between 
amorphous ice and structurally arrested liquid water [1]. Amorphous ice 
is found in two main forms, low-density amorphous (LDA) ice, the form 
present in cryo-EM samples, with a density around 0.94 g/cm3 [5,6, 
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8–11], a value lower than the density of liquid water but higher than 
that of hexagonal crystalline ice, and high-density amorphous (HDA) ice 
with a density greater than 1.00 g/cm3 that can only be formed under 
high pressures [5]. 

To avoid ice crystallisation, specimens must be cooled rapidly, with 
typical cooling rates higher than 105 Ks− 1 [12]. This cannot be achieved 
using liquid nitrogen due to the Leidenfrost effect [13,14]; instead, to 
obtain amorphous ice, thin samples (typically less than < 10 µm) are 
prepared by rapidly plunging the sample into a reservoir of liquid ethane 
[6]. For specimens such as cells, tissue sections, or entire organisms that 
are too thick to be plunge frozen without crystalline ice formation, 
high-pressure freezing has been shown to be effective up to specimen 
thicknesses of around 200 µm [7,12,15]. 

Consequently, simulation of any cryo-EM experiment, especially 
cryo electron tomography (cryo-ET) data from thick samples of cells, 
must account for substantial volumes of amorphous ice [6]. The density 
and thickness of the ice plays a significant role in the simulated image 
contrast [16]. The multislice algorithm [2,17] starts from an atomic 
model which is then divided into thin slices along the direction of the 
incident electron beam such that each slice can be considered as a weak 
phase object. The atomic potential in each slice is typically calculated as 
a sum of the contributions from the individual atoms in the sample; the 
electron wave is transmitted through each slice and Fresnel propagated 
to the next slice to produce a complex sample exit plane wave which is 
then multiplied by the microscope contrast transfer function (CTF) in 
Fourier space and squared in real space to produce a simulated phase 
contrast TEM image [16,18]. The gold standard method to produce a 
physically realistic ice model for the simulation of EM images is to place 
the required biomolecule(s) in a volume of water and then to perform a 
relaxation using molecular dynamics to produce a model that places the 
individual water molecules in physically realistic positions [16]. 

However, to produce useful phantom datasets for tomography, large 
sample volumes are required with a correspondingly large number of 
water molecules. For example, a biological sample embedded in a planar 
lamella of LDA ice with dimensions of 400 × 400 × 150 nm would 
contain more than 750 million water molecules. Performing molecular 
dynamics simulations of water molecules using a cubic sample volume 
of side length 645 Å containing 26.5 million atoms took over 18 h on the 
ARCHER supercomputer [19] using 24 high-memory nodes, each con-
taining 24 cores. Expanding the size of the simulation box even further 
to be consistent with a typical biological sample used in cryo-EM, and 
then performing molecular dynamics simulations would be impractical. 
Moreover, simulation of a single TEM image from a 400 × 400 × 150 nm 
lamella required more than a day on a Nvidia Quadro P4000 GPU. This 
demonstrates that the simulations required for a tomographic tilt series 
rapidly become computationally too expensive. Therefore, whilst a 
combination of physically realistic atom-based models and the mutli-
slice algorithm can be used for small volumes, computationally simpler 
methods are required for larger sample volumes that are the norm in 
cryo-ET. Naturally, these new methods must give results consistent with 
both the established gold standard and experimental data. 

We have used molecular dynamics software to produce atomic 
models of water with and without an embedded apoferritin particle as 
our ‘gold standard,’ under the assumption that, for the purpose of TEM 
image simulation, LDA ice can be modelled as structurally arrested 
water. We also evaluated a more computationally efficient Gaussian 
Random Field (GRF) continuum approach to model the atomic potential 
of the amorphous ice. We show that both methods produce equivalent 
simulated EM images, and we have further validated the simulations 
against an experimental dataset. The GRF model is implemented within 
the open-source Parakeet digital twin software package [4], which uses 
the MULTEM simulation library internally [18]. The atomic coordinates 
of the physical atom-based model are available for download from 
Zenodo [20] to enable other researchers to make use of them in future 
experiments. 

2. Methods and materials 

2.1. Atomic model of apoferritin 

The atomic coordinates of apoferritin, entry 6Z6U [21] available 
from the Protein Data Bank (PDB) [22] were used. The structure is 
resolved to 1.25 Å and was determined by single particle cryo-EM. The 
model has a total structural weight of 511.09 kDa, and 38,846 atoms in 
4152 residues; bound waters were removed from the model. Apoferritin 
is commonly used as a test sample for cryo-EM applications [23] since it 
has a high degree of symmetry which aids reconstructions along 
different axes. Alpha helices are also easily identified from low resolu-
tion maps which aids in a qualitative assessment of the reconstruction 
quality. A model of apoferritin in water is shown in Fig. 1. 

2.2. Molecular dynamics simulations 

We chose to create a system that was sufficiently large to resemble 
the depth of amorphous ice typically present in cryo-EM samples. The 
system was constructed as a single large cube to minimise diffraction 
effects from the edges of the cube. The size of the “ocean” model re-
ported by Lagardère et al. [24] provides a water box of size 6153 Å3, 
which served as a benchmark for this work. Experimental datasets will 
have a higher density of protein molecules which will alter the positions 
of the water molecules, but such changes would not be discernible and 
thus unlikely to be relevant to the simulation. 

The simulations were run using the Iridis5 HPC cluster, the ARCHER 
supercomputer, and the ARCHER2 supercomputer. The Visual Molecu-
lar Dynamics program (VMD) [25] was used for system setup and the 
molecular dynamics (MD) simulations were performed using NAMD 
version 2.13 [26] with the CHARMM36 forcefield [27]. Details of the 
CPU resources required to run the simulations are provided in Table 1. It 
is important to note that in the case of the ARCHER2 simulations, the 
individual nodes were run at half-capacity to mitigate issues with 
overloading the RAM. 

The sizes of the systems studied here ranged from a box size of 813 Å3 

containing 50,892 atoms, to a 7353 Å3 box containing over 38 million 
atoms. The number of atoms in each system is shown in Table 1. The 
Langevin thermostat with a damping coefficient of 1 ps− 1 was used for 
NVT (constant number of particles, constant volume, and constant 
temperature) equilibration [28], and the Nose-Hoover Langevin-Piston 
barostat with reference pressure 1 atm was used for NPT equilibration 
(constant number of particles, constant pressure, constant temperature) 
and production [29,30]. Every system employed periodic boundary 
conditions and the Particle Mesh Ewald (PME) method [31] with default 
grid spacing of 1 Å was used to account for long range electrostatic 
forces. The CHARMM TIP3P water model [32] was used to add explicit 
solvent through the Solvate plugin, and bonds to hydrogen were kept 
rigid using the SHAKE algorithm [33]. For the initial simulations of bulk 
water, a 2 fs timestep was used. The default conjugate gradient algo-
rithm was used for energy minimization, and equilibration was per-
formed for 25,000 steps under NVT and then NPT conditions. 
Production MD was performed under NPT conditions for 1 million steps 
for the smaller systems (up to 2433 Å3). This was subsequently decreased 
to 100,000 steps as the size of the systems increased to limit computa-
tional expense. 

For the systems containing apoferritin, psfgen was used to add the 
appropriate hydrogens to the crystal structure to model physiological 
pH, and the Autoionize plugin was employed to model neutrality at 0.15 
M with Na+ and Cl− ions. The 6Z6U crystal structure contained 24 
cysteine residues which had oxidised to s-oxycysteine [21]. For the 
purposes of this work, the inclusion of these modified cysteines in the 
protein structure was deemed to be negligible, and the setup used reg-
ular cysteine residues in place of the s-oxycysteine. For construction of 
the large solvated apoferritin model, the MergeStructs plugin was used 
to assemble the input coordinates. The simulations of apoferritin were 
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run with an unconstrained protein to capture any protein dynamics. 
After the final simulation (Table S2), position restraints were applied to 
the protein to restrain to the crystal positions, and analysis was per-
formed using these coordinates. 

To fully equilibrate and run a system of this size required extensive 
simulation time and was not without complication. In addition to the 
protocol outlined here, further details about the simulations can be 
found in the Supplementary Information (Table S2). The thermostat and 
barostat used were the same as for the bulk water simulations. Firstly, a 
gradual heating protocol was employed, under NPT conditions, at 50 K, 
100 K, 150 K, 220 K, 250 K. Each of these simulations was run with 
20,000 minimisation steps and 80,000 production steps using a 2 fs 
timestep, equating to a total simulation time of 1 ns at this stage. After 
reaching 280 K, the system conditions were altered to NVT. After one 
simulation at 280 K, the timestep was lowered to 1 fs. The temperature 
was raised to 298 K, where the system was minimised for 50,000 steps 
and production was run for 100,000 steps (Table S2, simulation 7). To 
adjust for the density of liquid water, the dimensions of the box were 
gradually increased over a further 5 concurrent NVT simulations using 
this adjusted protocol, followed by a series of short simulations under 
NPT conditions to allow the pressure to equilibrate. The final co-
ordinates were obtained at 298 K, with the density of water being 1.009 
g cm− 3, with box dimensions of 723 × 723 × 723 Å. The total amount of 
simulation time was 2.11 ns. To our knowledge, this is the largest sol-
vated model of a biological macromolecule publicly available. 

Importantly, the size of the simulation box means that it can be usefully 
applied to the analysis of simulated cryo-EM images. Analyses were 
performed using the MDAnalysis Python package [34,35]. These co-
ordinates are supplied via Zenodo [20] with associated scripts provided 
on GitHub [36]. 

2.3. Simulation of EM images 

To simulate TEM images, Parakeet [4], a simulation package based 
on the MULTEM library [18] was used. MULTEM provides a GPU 
accelerated implementation of the multislice algorithm [2,17] and a 
model of the microscope optics. These algorithms were extended and 
wrapped using the Pybind11 C++/Python binding package [37] to 
create a simple Python API. The software is open source and can be 
obtained from the Rosalind Franklin Institute GitHub repository. 

The multislice algorithm is used to analytically solve the Schrödinger 
equation for the elastic interaction between matter and electrons, 
incorporating multiple scattering of electrons through the sample [2, 
17]. The implementation used here takes an atomic model of the sample 
and then calculates the total atomic potential as the sum of the inde-
pendent atomic potentials of the constituent atoms in the model. The 
atomic potential is then divided into slices of a given thickness along the 
direction of the electron beam [16,18]. The thickness of each slice is 
typically such that each slice can be considered as a weak phase object; 
in the simulations used here, the slice thickness is 5 Å. The atomic po-
tential in each slice is then projected onto an infinitesimally thin plane 
and the atomic potential between the planes is considered to be zero. 
The wave function, ψn(x, y), is transmitted through the slice by multi-

plying by the transmission function, tn(x, y) = exp(iσ
∫zn+Δz

zn

V(x, y, z)dz), 

where zn is the depth of the slice, Δz is the slice thickness, V(x,y,z) is the 
three-dimensional atomic potential and σ is the interaction parameter 
[38]. The wave function is then propagated to the next slice by 
convolving with the Fourier transform of the Fresnel propagator, Pn(k,
Δz) = exp( − iπλk2Δz), where λ is the electron wavelength. The wave 
function at slice n + 1 is then given by 
ψn+1(x, y) = F

− 1
{Pn(k,Δz)×F[tn(x, y)×ψn(x, y)]} [38]. This process is 

continued for each slice in the sample until the electron wave is prop-
agated through the whole sample resulting in a complex wave function 

Fig. 1. Apoferritin model embedded in water. Note that to illustrate the size of the simulation volume relative to the protein environment, water molecules are 
excluded from the visualisation and only the free ions in the model (e.g., sodium) are shown. The apoferritin molecule (shown zoomed in the inset image) is at the 
centre of the simulation volume. 

Table 1 
System dimensions of the models used in the molecular dynamics simulations 
with the corresponding number of atoms contained in each system, the number 
of cores used in each case, and the computing cluster used to run the simulations. 
*The 7233 Å3 system includes the apoferritin molecule and counter ions. All 
other systems contain TIP3P water only.  

Dimensions (Å3) No. atoms Compute 
Cluster 

Resources (equiv. no. 
cores) 

81 × 81 × 81 50,892 Iridis 5 40 
243 × 243 × 243 1,408,797 Iridis 5 120 
486 × 486 × 486 11,323,362 ARCHER 576 
567 × 567 × 567 18,004,077 ARCHER 576 
645 × 645 × 645 26,520,918 ARCHER 576 
723 × 723 × 723 * 38,844,502 ARCHER2 12,800 
735 × 735 × 735 38,997,612 ARCHER2 12,800  
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at the exit plane of the final slice of the sample. In this work the effects of 
the microscope optics were modelled by the application of a phase 
contrast transfer function (CTF). This is an oscillating phase shifting 
complex function applied in Fourier space and is determined by the 
microscope aberrations which apply a phase shift to the exit wave. The 
CTF is dampened at high resolution due to the effects of partial spatial 
and temporal coherence which were modelled here as simple multipli-
cative envelopes which is appropriate for the case of a weak phase object 
[38,39]. 

2.4. Statistical model for amorphous ice 

To calculate accurate EM image simulations of biological specimens 
embedded in amorphous ice, a physical model of the ice that has been 
relaxed using molecular dynamics is most accurate [16]. However, as 
the volume of the sample increases, this type of physical model for the 
amorphous ice becomes impractical to compute. Therefore, a much 
more computationally efficient approach is required for samples with 
large volumes of amorphous ice. 

Observations of thin films of amorphous carbon have shown that, for 
amorphous materials above a certain thickness of around 10 nm [40], 
EM images of different samples are qualitatively indistinguishable, and 
high-resolution structural details within the specimen cannot be inter-
preted [41]. Therefore, we reason that using a continuum approach to 
model amorphous ice rather than an atomistic model may not result in 
any loss of distinguishable information in the simulated EM images. A 
typical continuum model where the amorphous ice potential is modelled 
at every position in space by a mean potential is simple but gives a single 
value for the potential resulting in a featureless image of the ice. The 
amorphous ice itself contributes to some features in the simulated EM 
images which can be suitably modelled by Fourier filtered noise [42]. 
Therefore, a reasonable approach is to model the atomic potential of the 
amorphous ice as a GRF with a given mean, variance, and power spec-
trum such that the GRF potential has the same statistical characteristics 
as the atomic potential from a physical model in each slice of the mul-
tislice calculation. In this model, the correlation length, ξ - defined as the 
distance at which the autocorrelation function drops to a value of 1/e of 
its zero-lag value - is assumed to be much smaller than the slice thickness 
such that, whereas correlations orthogonal to the beam are preserved, 
those parallel to the electron beam are lost [43]. As shown in Fig. 2b, the 
value of ξ is ~0.5 Å so this approximation is appropriate for typical slice 
thicknesses of 3–5 Å. 

The expected value of the distribution of the atomic potential can be 
calculated from the electron scattering factors, fZ

e , in Fourier space, 
where Z is the atomic number. There are various parameterisations for 
these scattering factors; however, in this paper we use a parameter-
isation in terms of hydrogenic wavefunctions described by [44]. The 
mean potential for a single atom is given by V0 = 1

κf
Z
e (0), where κ =

2πℏ2/meqe with me the electron rest mass and qe the elementary charge 
constant. The expected potential per pixel with N water molecules per 
unit area, which is approximately 145.59 N (eV Å− 2), can then be given 
in terms of the electron scattering factors for oxygen, f8

e (0), and 
hydrogen, f1

e (0), as follows: 

V0 =
N
κ
(
f 8

e(0)+ 2f 1
e(0)

)
. (1) 

The shape of the power spectrum is modelled as a sum of two 
Gaussian functions: the first is centred at the origin in Fourier space to 
represent the contribution of the single atom atomic potential function 
to the power spectrum and has a variance s2

1 and a scale factor a1; the 

second is centred at a spatial frequency, m = 1
2.88Å

− 1
, which corresponds 

to the average distance between the oxygen atoms in LDA ice [16]. The 
power spectrum at a given spatial frequency, q, is thus: 

P = a1e− q2/(2s2
1) + a2e− (q− m)2/(2s2

2). (2) 

The relative weightings of these Gaussians and their scale parameters 
were determined by fitting the power spectrum model to the observed 
power spectrum simulated from the physical ice model as shown in 
Fig. 2a, giving parameters, a1 = 0.199, s1 = 0.731, a2 = 0.801, s2 =

0.081. Finally, the variance scales linearly with the number of water 

molecules per unit area such that σ2
N = σ2

0N = 10,195.82N(Å
− 2
). 

In practice, in the MULTEM software, the atomic potential for each 
atom is calculated once for each element in a finite grid; as the pixel size 
increases, the sampling of the atomic potential of the atoms decreases. 
Furthermore, the potential function is interpolated and truncated at 
small distances from the atom position to avoid an infinite potential at 
zero distance. These two implementation details result in the overall 
sum of the atomic potential values on the potential grid tending to be 
smaller than the expected sum, with the difference increasing as the size 
of the pixel increases; likewise, the variance will also tend to decrease. 
Therefore, a correction factor needs to be applied to both the mean and 
the variance based on the size of the pixels. Fig. 2c shows these 
correction factors; the ratio of the observed to expected mean and 
variance as a function of pixel area. For the GRF model, for a given pixel 
area, the correction factor was determined by using a lookup table to 
interpolate from the pre-computed values. The elements in these lookup 
tables are given in Table S1 in the supplementary material. 

Given a mean, variance, and power spectrum, the GRF model is 
generated in Fourier space by using the power spectrum to compute the 
amplitudes of the amorphous potential and then assigning uniformly 
distributed random phases. Taking the inverse Fourier transform then 
gives the GRF which can be normalised to the desired mean and vari-
ance. The GRF is masked to only include pixels where amorphous ice 
potential is expected, and the amorphous ice potential is then added at 
every voxel with a protein potential below a given threshold. Increasing 

Fig. 2. Power spectra and fitted Gaussian functions (a); autocorrelation function with the effective correlation length, ξ, given by the vertical dashed line (b); the 
mean and variance correction factors given by the ratio of the observed to expected mean potential and variance of the potential respectively (c). 
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the threshold allows the amorphous ice potential to overlap with the 
atomic potential of the protein, whilst reducing the threshold to zero 
eliminates overlap. Allowing the amorphous ice potential to overlap 
with the protein potential increases the phase shift at these positions, 
increasing the contrast. A threshold value of V0 / 3 was chosen to give 
good agreement between the image contrast produced by the physical 
and random models. A beneficial side effect of this method is that each 
calculation produces two GRFs with the same characteristics, one in the 
real and one in the imaginary component of the transformed image. 
Therefore, this procedure only needs to be performed once for every two 
slices in the multislice calculation. 

2.5. Tomographic reconstruction and analysis 

The oscillation of the CTF results in contrast inversions at spatial 
frequencies where the CTF is negative. The location of the first zero 
crossing in the CTF defines the Scherzer point resolution [45]; which is 
the maximum directly interpretable resolution obtainable without any 
additional correction. To obtain higher resolution reconstructions, CTF 
correction, which corrects the real valued image intensities [46,47], or 
exit wave reconstruction, which yields the complex valued exit wave 
[48], must be performed. Additionally, for thick samples, different 
voxels within a sample will have different defocus values. In this case, 
CTF correction using a single defocus value will not be sufficient and a 
3D CTF correction is required [49]. Therefore, in this analysis, in order 
to reconstruct the tomographic tilt series data, 3D CTF correction [50] 
with the weighted back projection (WBP) algorithm [51–53] is per-
formed using a GPU accelerated filtered back projection (FBP) algorithm 
from the Astra toolbox [54] through the Tomopy python package [55, 
56] as implemented in the Parakeet digital twin software package [4]. 

Since the images are simulated from a known atomic model in this 
analysis, it is straight forward to fit the original atomic model back into 
the reconstructed map. To do this, Chimera [57] was used to dock the 
atomic model into the reconstructions and the fit was further refined 
with the use of REFMAC5 [58] with rigid body restraints. REFMAC5 
produces statistics describing the quality of the fit of the model to the 
reconstructed map and provides a convenient method for obtaining 
objective measures of the quality of reconstruction with different pa-
rameters. The metric used in this analysis to assess the quality of the 
reconstruction with the known model is the Fourier shell correlation 
(FSC) average defined as [59,60]: 

FSCaverage =

∑Nshell
i=1 NiFSCi
∑Nshell

i=1 Ni
(3) 

Where Ni is the number of elements in a shell and FSCi is the FSC 
within that shell. 

2.6. Experimentally acquired apoferritin dataset 

Simulated images should be realistic representations of experimental 
data collected. Accordingly, simulated images of apoferritin were vali-
dated against an experimentally collected apoferritin dataset. The 
experimental dataset was collected on a Krios 2 microscope at eBIC 
using a K3 detector with correlated double sampling at 300 keV using 
apoferritin mounted on Carbon grids. The thickness of the amorphous 
ice covering the sample was estimated by cryo-ET to be approximately 
20 nm. The tilt range used was ± 60◦ with a tilt angle of 3◦ between each 
tilt position. At each tilt position a movie with 10 frames was acquired 
and summed to produce an image. The effective pixel size at the sample 
was 1.34 Å and the total electron dose over the whole dataset was 100 
e-/Å2 giving a dose of 2.5 e-/Å2 per image or 4.49 e-/pixel. A defocus of 
− 2.5 µm was used. 

3. Results 

3.1. Ice models 

The TIP3P water model [61] is one of the most well-recognised water 
models employed in molecular dynamics simulations of biological 
macromolecules. Typically, these systems contain thousands of explicit 
water molecules; several orders of magnitude smaller than the number 
of water molecules reported here (Table 1). To assess the robustness of 
the physical model, the trajectories of the MD simulations were 
inspected for energy and density drift. The density of the water was 
calculated as: 

ρwater =
m
V

=
MrwaterNwater

NA V
(4) 

Where m is the mass of the system in grams, V is the volume in cm3, 
Mrwater is the molar mass of water (18.015 g mol − 1), Nwater is the number 
of explicit water molecules in the system and NA is Avogadro’s number. 
All systems showed consistent energy and density drift at 298 K. TIP3P 
water properties give a density of 0.982 g cm− 3, compared to the 
experimental density of liquid water reported by the same authors as 
0.997 [61]. For simulation systems on the order of thousands rather than 
millions of water molecules, this density is consistent under NPT con-
ditions, as demonstrated by Samways [62]. The densities in this work 
are consistently reported as close to 1 g cm− 3. 

The O–O radial distribution function (RDF) for the 6453 Å3 system 
was calculated to assess the structure of the liquid water model at 298 K. 
To reduce the computational expense, the radial distribution was 
calculated for the final frame of the 6453 Å3 water system, as this was the 
smallest box that was representative of a homogenous fluid and 
assessing the radial distribution for this box was assumed to be repre-
sentative of bigger systems. The fluid structure confirmed that the TIP3P 
water model produces a physically realistic model of the water for a box 
of this size. The appropriate RDF is included in the Supplementary In-
formation (Fig. S2). 

3.2. Validation of the statistical properties of the ice models 

Images were simulated from the 7233 Å3 MD water model containing 
38,844,502 water molecules with a slice thickness of 5 Å and with a 
range of grid sampling sizes from 0.1 Å to 1.0 Å. Equivalent images were 
then also simulated using the GRF model. Table S3 in the supplementary 
material shows the full list of simulation parameters used. Simulations 
with the amorphous ice potential using the GRF model require much less 
computational time than with the physical model; TEM images from the 
physical model and GRF model were simulated in 693 s and 63 s 
respectively on a Nvidia Quadro P4000 GPU. The simulated exit waves 
were then evaluated to determine whether simulations from the two 
models were distinguishable from one another. Fig. 3 shows the squared 
amplitude of the simulated exit waves from the physical and GRF 
models, highlighting a corner of the cubic sample. The noise structure in 
the images and the edge effects seen at the interface between the ice and 
the vacuum are qualitatively similar. However, since the GRF model 
uses a sharp-edged mask to define regions containing amorphous ice 
potential, whereas in the physical model there is some variation in the 
positions of the atoms along the boundaries of the model, the edge in the 
physical model image is slightly more diffuse. 

To perform a quantitative comparison of the simulated exit waves 
obtained from the atom based and GRF water models, distributions of 
the real and imaginary components of the pixel values in the exit waves 
from the interior of the two simulated images were analysed. Fig. 4a 
shows the mean and standard deviation of the exit wave pixel values for 
the real and imaginary components for both models plotted as a function 
of grid sampling pixel size with the standard deviation and the contin-
uous error bars shown in the figure. The distributions of pixel values in 
both the real and imaginary components are consistent across all grid 
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sampling sizes with exactly the same mean and standard deviation as a 
function of pixel size. This is further demonstrated in Fig. 4b which 
shows the difference between the real and imaginary components of the 
exit wave means from the physical and random models. 

Finally, the power spectra calculated from exit waves for the physical 
atom-based model and the GRF model are shown in Fig. 4c. The power 
spectrum is the Fourier transform of the auto correlation of the image 
and determines the correlation length of the noise in the exit wave. In 
each case the power spectrum shows a peak at approximately the same 
spatial frequency and drops off at the same rate for both high and low 
spatial frequency limits indicating that the noise structure in the two 
simulated images is broadly consistent. Since the simulated exit waves 
from the physical atom-based model and the GRF based model show the 
same statistical behaviour in terms of their moments and power spec-
trum, we conclude that the GRF model can be used in place of the 
physical atom-based model in simulations. 

3.3. Validation of simulated images with experimental data 

To compare experimental and simulated images, a region containing 
several apoferritin particles was extracted from an experimental image 
as shown in Fig. 5. A set of images were then simulated for the same 
estimated ice thickness, defocus, and number of electrons per pixel. 
Images were simulated using the two different models to represent the 
amorphous ice component. In the simulations using the physical (MD) 
model, the sample was modelled by an atomic model of apoferritin 
embedded in water which was relaxed using molecular dynamics. Spe-
cifically, the model used in this analysis is the 7233 Å3 water box con-
taining apoferritin described in Table 1. In this model, the amorphous 
structure of the water and the distances between the water molecules 
and the atoms of the apoferritin are physically realistic for a particle 
embedded in water at room temperature. It is assumed that for the 
purposes of simulating EM images, amorphous ice can be considered as 

Fig. 3. Squared amplitude of the simulated exit waves from the physical atom-based model (a-d) and the GRF model (e-h) showing an edge of the cubic sample for 
different pixel sizes. The noise structure and the edge effects seen in the ice image using the physical model are qualitatively preserved in the GRF model. 

Fig. 4. (a) Mean real and imaginary components of the complex exit wave for the physical atom-based model and the GRF model as a function of pixel size. In each 
case, the distributions of pixel values are comparable for the two models and the continuous errors bars (the shaded areas in the plot) show the standard deviation. It 
should be noted that, in the plot, the blue and green lines, corresponding to the real components for the physical and random models respectively, overlap 
considerably as the difference in the values is small. The same is true for the orange and red lines, corresponding to the imaginary components for the physical and 
random models, respectively. (b) The difference between the real and imaginary components of the exit wave means from the physical and random models as a 
function of pixel size. (c) Power spectra of the exit waves for the physical atom-based model and the GRF model. The power spectra have peaks at the same spatial 
frequency and drop off at high and low spatial frequencies at the same rate. The power spectra are plotted for a range of pixel sizes between 0.1 Å and 1.0 Å and can 
be seen to be comparable. 
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equivalent to structurally arrested water. In this model, the apoferritin 
particle is in the centre of the ice volume. To obtain a sample 20 nm 
thick, all atoms outside the central 20 nm z-slice were deleted from the 
model. In the simulations using the random GRF model, the GRF based 
ice model was used with the amorphous ice potential simulated as 
Fourier filtered random noise with a specific power spectrum as 
described previously. Fig. 6 shows these simulated images with an 
enlarged apoferritin particle, the power spectrum of the image and the 

histogram of pixel values. The simulated images from the physical (MD) 
and random (GRF) models appear qualitatively similar, and their power 
spectra and histograms also match. 

Apoferritin particles within a selected region of the experimental 
image were then identified and a mask delineating the signal and 
background pixels was generated. Fig. 7 shows the extracted region of 
the image containing the apoferritin particles, together with the simu-
lated images containing an apoferritin particle in a region with the same 
field of view. The particles in the simulated images appear to be quali-
tatively similar to the particles in the experimentally collected image. 
One difference between the experimental image and the simulated im-
ages is that experimental image contains a large number of apoferritin 
particles closely packed together whereas the apoferritin particles in the 
simulated images have a large amount of empty space around them 
containing only density due to the amorphous ice. In terms of the exact 
position of the atoms in the physical atom-based water model, the 
presence of additional apoferritin molecules in close proximity will have 
an effect; however, it is unlikely that these high-resolution structural 
differences would be visible either experimentally or in the simulated 
EM images. 

To perform a quantitative comparison of the images, the contrast-to- 
noise ratios of the experimental and simulated images were calculated 
as: 

CNR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=0(si − μB)

2
√

σB
(5) 

Here, N is the number of signal pixels, si, µB is the mean value of the 
background pixels and σB is the standard deviation of the intensity in the 
background pixels. As shown in Fig. 8, the simulated images from both 
the MD and GRF models have similar contrast, although the simulated 
images tend to show somewhat higher contrast than the experimental 

Fig. 5. Image from a tomographic data collection containing a large number of 
apoferritin particles embedded in amorphous ice, which was estimated, using 
cryo-ET, to have a thickness of approximately 20 nm. The enlarged section 
shows an image patch, containing a small number of apoferritin particles, used 
to validate the simulated data. 

Fig. 6. Simulated images using the physical model with MD simulation (a) and GRF model (d). Power spectra calculated from the physical model with MD simulation 
(b) and GRF model (e). Histograms for the physical model with MD simulation (c) and GRF model (f). 
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image which may be due to the fact that the true thickness of the ice in 
the experimental data is not known exactly but estimated from the 
tomograms. 

3.4. Validation of reconstructed tomograms from simulated images 

The models used for the amorphous ice described in this paper were 
further evaluated by tomographic reconstruction using simulated im-
ages. To perform this analysis, the physical atom-based MD model was 
first “shaped” into a cylindrical geometry and a series of projections 
were calculated over a ± 90◦ tilt range. Equivalent images were then 
simulated using the GRF model. In a typical cryo-ET experiment, a full 
180◦ rotation is not available due to instrument and sample limitations; 
however, the purpose of this analysis is solely to ensure that the choice 
of model for the amorphous ice does not have a significant effect on the 
quality of the tomographic reconstruction. Although, in general an 
experimentally collected dataset will have many particles in close 
proximity and the simulations performed here have a single particle 
embedded in the volume, the positions of the water molecules around 
the particles will not be discernible in either the images or the recon-
structed tomograms. The central slices and the 3D reconstructions from 
these two models are shown in Fig. 9 where the reconstructions appear 
to be qualitatively similar. The distributions of the voxel values in the 
reconstructed volumes are shown in Fig. 10b and are seen to be quan-
titatively similar. 

For each tilt series, the reconstruction quality was assessed using the 
FSC average to a resolution of 3 Å between the reconstructed map and 
the known model. Fig. 10a shows the FSC vs. resolution for the two ice 

models. The FSC vs. resolution is broadly consistent between the two ice 
models over the resolution range, although the values for the GRF model 
appear to be slightly higher at low resolution. Fig. 10b shows the his-
togram of voxel values in the reconstructed volume. The distributions 
appear similar and comparison of the two distributions using the Kol-
mogorov Smirnoff test determined that the null hypothesis where the 
samples were drawn from the same distribution could not be rejected at 
the 5 % significance level. The value of the test statistic was 0.009 with a 
p-value of 0.07. This minor difference may be because in the atomic 
model, the water atoms are placed at physically realistic distances from 
the apoferritin atoms whereas in the GRF model the amorphous ice 
potential is added at every voxel with a potential below a given 
threshold. Our primary motivation is to enable the meaningful simula-
tion of large volume cryo-ET test datasets to support the development of 
new data processing and analysis software and to determine optimal 
data acquisition and processing strategies. For this the ability to produce 
realistic datasets in a time and computationally efficient manner is 
crucial, particularly if unsupervised machine learning is to be employed. 
The reconstruction quality between the atom-based ice model and the 
GRF model is similar, but the latter is over two orders of magnitude less 
computationally expensive demonstrating that the GRF model repre-
sents a valid tool for such large volume simulations. 

3.5. Large volume simulation 

To demonstrate the usefulness of the GRF model for the simulation of 
EM images of large sample volumes, some example datasets were 
simulated and are shown in Fig. 11. Fig. 11a shows a simulated image of 
a planar lamella with dimensions 400 × 400 × 150 nm containing 1500 
apoferritin molecules and 48,927,000 atoms. The image has 4 K × 4 K 
pixels of size 1 Å. The time taken to produce the exit wave simulation 
scales with the number of atoms in the model and took ~130 s to 
simulate using the GRF model and a full tilt series containing 90 images 
can be simulated in less than 2 h. Assuming a density of 0.94 g/cm3 this 
sample would contain more than 750 M water molecules; simulating a 
single image using a full atomic model for the ice would take more than 
a day and simulating a tilt series would be impractical. This serves to 
illustrate the convenience of being able to simulate the effect of the 
amorphous ice for large samples using the more computationally effi-
cient GRF model. 

Using the GRF model, the shape of the sample is produced by 
generating the random potential for each slice in the multislice calcu-
lation and then applying a mask such that the random potential is only 
applied to pixels which are expected to be amorphous ice. To perform 
this calculation efficiently, each voxel needs to be tested to determine 
whether it lies within the envelope defining the shape of the sample as it 

Fig. 7. Experimental data containing a large number of apoferritin particles (a) and simulated images using the physical model with MD simulation (b) and GRF 
model (c) each containing a single apoferritin particle. 

Fig. 8. Contrast to noise ratio (CNR) for experimental data (blue), physical 
(MD) model (orange) and random (GRF) model (green) as a function of low pass 
filter width. 
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is rotated. For simple shapes, such as cuboids and cylinders, this can be 
calculated easily; however, samples with idealized shapes may not be 
appropriate for producing phantom datasets for testing data processing 
algorithms. Fig. 11b shows a simulated image of a non-ideal cylindrical 
sample containing 800 apoferritin molecules. This was produced by 
defining the deviation of the natural cylinder from the ideal cylinder 
using cubic splines to vary the offset from the cylinder axis and the 

radius as a function of distance along the cylinder axis. In this way, the 
GRF model can be used to produce complex sample geometries that 
mimic the properties of experimental cryo-EM samples. 

4. Conclusions 

The simulation of EM images of biological samples requires the use of 

Fig. 9. Central slice of a tomographic reconstruction (top) and the 3D reconstruction (bottom) from the physical model with MD simulation (left) and GRF 
model (right). 

Fig. 10. FSC vs resolution between the true model and the reconstructions using 180 images for each of the ice models (a). The histogram of voxel values in the 
reconstructions from the MD and GRF models (b). 
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accurate models of the amorphous ice in the sample. For small sample 
volumes, a physically realistic atom-based ice model can be utilised 
where individual atomic coordinates are used. However, for large 
sample volumes, the number of atoms in the physical model makes any 
form of molecular dynamics simulation computationally impractical. In 
these scenarios, computationally efficient models such as the GRF 
approach described here can be used with no measurable effect on the 
accuracy of the image simulations. As an example, a 400 × 400 × 150 
nm planar lamella sample took ~130 s to simulate on a Nvidia Quadro 
P4000 GPU, representing a > 400x speed up for large sample volumes 
compared to a physical model. Even for a smaller ice sample (6453 Å3), 
the speed up was 10x. 

When simulating a tomographic tilt series, the positions of the water 
molecules remain fixed relative to one another as the sample is rotated 
in the atom-based model. In contrast, since the GRF model is generated 
on-the-fly for each image, the atomic potential of the amorphous ice will 
not correspond to water molecules with a fixed relative position as the 
sample is rotated. This could be seen as a limitation of the GRF model. 
However, in reality, the high-resolution structure of the amorphous ice 
changes as a result of exposure to the electron beam, with individual 
water molecules showing a movement of approximately 5 Å for every 25 
e/Å2 [9,63]. For this reason, comparison of the statistical properties of 
the two ice models demonstrates that modelling the atomic potential of 
the amorphous ice as a GRF results in simulated images that are indis-
tinguishable from those simulated from a physical atom-based model. In 
addition, tomographic reconstructions from the GRF model show com-
parable quality, as assessed by the FSC average, to reconstructions from 
the physical atom-based model. The GRF model has been implemented 
using the MULTEM simulation software for use in the Parakeet digital 
twin software [4], and the physical atom-based models can be obtained 
online from Zenodo [20]. 
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