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We relate physical time with the topology of magnetic field vortices. We base ourselves on a
formulation of unimodular gravity where the cosmological constant Λ appears as the canonical dual
to a variable which on-shell becomes four-volume time. If the theory is restricted to a topological
axionic form (viz. a parity-odd product of an electric and a magnetic field), such a time variable
becomes the spatial integral of the Chern-Simons density. The latter equates to helicity, so that
unimodular time is transmuted into the linking number of the vortices of the topological magnetic
field. The flow of time can thus be interpreted as the progressive weaving of further links between
magnetic field vortices, each link providing a quantum of time. Non-abelian extensions, and tar-
getting parameters other than Λ are briefly examined, exposing different types of vortices and a
possible role for inter-linking leading to new phenomenology.

I. INTRODUCTION

The unimodular theory of gravity originates from an
issue first raised by Einstein [1]: should the coordinate
invariance of a theory be restricted to volume-preserving
coordinate transformations? It was later realized that
unimodular gravity is essentially equivalent to General
Relativity, with the difference that it demotes the cos-
mological constant from a pre-given fixed parameter to a
constant of motion [2–9]. Whether this resolves, merely
softens, or is irrelevant to the cosmological constant prob-
lem remains a disputed matter [10, 11], outside the scope
of this paper. Instead, here we aim to uncover an intrigu-
ing connection that has the potential to fundamentally
reshape our understanding of time.

As Henneaux and Teitelboim (HT) showed in [4], uni-
modular gravity is equivalent to a theory with full dif-
feomorphism invariance, where one adds to the action a
term containing a Lagrange multiplier density T µ enforc-
ing the on-shell constancy of Λ. This density can be used
to build a gauge-invariant physical definition of time,
which on-shell becomes “four-volume time” [8, 9, 12, 13].
It was noted in [14] that the term HT added to the ac-
tion, by virtue of being something that would be a bound-
ary term were Λ to be pre-fixed, can be restricted to an
axion-like form. This makes unimodular time take the
form of the Chern-Simons (CS) functional of the under-
lying gauge theory. But the CS functional is nothing
but the integral of the helicity density of this underlying
topological version of electromagnetism. Hence, it mea-
sures the linking number of the magnetic vortices [15–17].
Time may thus be identified with a topological feature in
quantum field theory, and so be discretized.
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In this picture, the cosmological constant is coupled
to a topological cousin of electromagnetism, based on an
action containing only the parity-odd term E · B. The
fact that time is the canonical dual to Λ, then relates time
to these fields. With the assumption that the magnetic
field vortices carry constant flux, time is equated to how
the vortices link with each other. The flow of time is
therefore the process of weaving in new links between
the magnetic vortices and changing their topology. Since
the linking number is discrete, each link is a quantum of
time.
We exemplify these points with unimodular theory and

abelian topological field theory, but the procedure can be
generalized to non-abelian theories, with interesting new
features (the vortices appear “colored”). The HT proce-
dure can also be used as a blueprint for converting into
constants of motion parameters other than Λ (such as
the Planck mass), with alternative conjugate time vari-
ables (such as the Ricci time) [18, 19]. In theories where
different types of vortices exist (whether due to more
generators or more target constants) and their interlink-
ing number becomes relevant, one may expect interesting
phenomenology.

II. DECONSTANTIZING NATURE’S
CONSTANTS

“Deconstantization” is a term introduced in [18, 19],
to generalize the HT-unimodular framework pioneered in
the seminal work [4], whereby constants of Nature that
usually appear as fixed parameters in the action are con-
verted into integration constants. Thus, such parame-
ters become constant on-shell only. In this Section, we
review this procedure. The prototype is the HT gravity
action [4]:

S = S0 + SU =
1

2

∫
d4x

√−g (R− 2Λ) +

∫
d4x Λ∂µT µ.

(1)
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The first term is the standard Einstein-Hilbert action
with the cosmological constant promoted to a variable to
begin with; the second term is the unimodular term, in-
cluding a Lagrange multiplier density, T α, intended to fix
Λ as a constant, as an equation of motion, and to produce
a foliation-dependent time variable. Since T α is a den-
sity, the action is invariant under the full diffeomorphisms
group of spacetime coordinate transformations (so that
the term “unimodular” becomes a misnomer). The ac-
tion is also invariant under the gauge transformation

T µ 7−→ T µ + ϵµ, (2)

subject to ∂µϵ
µ = 0 (so that the gauge transformations

have three degrees of freedom). Thus, Λ is promoted
to a phase space variable, canonically conjugate to the
gauge-invariant zero-mode of T 0, known as the unimod-
ular time:

TΛ(t) :=

∫
Σt

d3x T 0. (3)

The equations of motions are derived by varying (1) with
respect to gµν , Λ and T µ:

δS

δgµν
= 0 ⇐⇒ Rµν =

1

2
gµν

(
R− 2Λ(x)

)
, (4)

δS

δT µ
= 0 ⇐⇒ ∂µΛ = 0, (5)

δS

δΛ
= 0 ⇐⇒ √−g = ∂µT µ. (6)

The on-shell dynamics are thus governed by general rela-
tivity with Λ behaving as the standard cosmological con-
stant. Eq. (6) gives us an on-shell expression for TΛ, iden-
tifying it with spacetime volume to the past of Σt, down
to a conventional time-zero Σ0 hypersurface [4, 5, 12]:

TΛ(Σt) =

∫ Σt

Σ0

d4x
√−g ≡ V4(Σt). (7)

Simple counting of constraints shows [4, 20] that the the-
ory has no new local degrees of freedom.

This deconstantization procedure can be generalized
to a set of parameters α, introducing a corresponding
set of densities T µ

α , and an action mimicking the HT-
prescription:

S = S0 +

∫
d4x α · ∂µT µ

α . (8)

Thus we define canonical phase space pairs (α, Tα) with
the times Tα given by

Tα(t) :=

∫
Σt

d3x T 0
α . (9)

In this paper, we will consider the basis:

α = (α1, α2) =

(
Λ

8πG
,

1

8πG

)
, (10)

where α1 is the Λ-vacuum energy density ρΛ, and α2

is the reduced Planck mass squared (or Planck energy)
M2

P. Beside T1 ≡ TΛ defined above, we have the Ricci
time T2 ≡ TR which on-shell reads

T2(Σt) = −1

2

∫ Σt

Σ0

d4x
√−gR ≡ VR(Σt), (11)

i.e. the Ricci weighted four-volume (see [21, 22] in ad-
dition to [3, 5–9, 12]). TΛ and TR are nothing but the
“fluxes” used in the sequester model [18, 19, 23, 24].

III. ABELIAN AXION REDUCTION

We consider now the interesting reduction of HT grav-
ity pioneered in [14] (see also [25, 26]), with α2 = 1 and
variable parameter Λ. It amounts to replacing the to-
tal divergence appearing in the HT-term (cf. (1)) with
the the total divergence appearing in the θ-term found
in axion models. We first consider U(1) as the internal
symmetry group (with gauge field Aµ and field strength
Fµν = 2∂[µAν]), but the extension to non-abelian gauge
groups will be discussed later. We thus identify:∫

d4x Λ∂µT µ
Λ =

∫
d4x

Λ

2
FαβFαβ , (12)

where Fαβ := 1
2e

µναβFµν is the densitized dual to Fµν

(with density eαβµν defined from e0123 = 1), and since
the topological term FαβFαβ can be written as the di-
vergence of the Chern-Simons current (the dual of the
Chern-Simons three-form), we have the identification:

T α
Λ = AβFαβ = 2eαβµνAβ∂µAν . (13)

The U(1) theory is a reduction of HT gravity in that
its gauge symmetries (Aµ → Aµ + ∂µχ) have a single
degree of freedom instead of the three, evident from (2).
Specifically, we restrict:

ϵαΛ = ∂β
(
χFαβ

)
. (14)

Using the parametrization suggested in [4], where one
introduces a general three-vector density αi and sets
ϵ0Λ = −∂iα

i and ϵiΛ = α̇i, this would be equivalent to
having αi = χBi, where F0i = −Bi := −eijk∂jAk is
the densitized magnetic field and e123 = 1. These points
were made with Λ but apply to any other target constant.
For example, for the basis given by (10), the symmetry
group of the reduced action (1) becomes U(1)× U(1).
The field equation (6) therefore morphs into:

√−g =
1

2
FµνFµν ≡ 2EiBi. (15)

Also, (5) gets replaced with:

Fµν∂µΛ = 0, (16)
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entailing exceptions to ∂µΛ = 0 (a point we return to in
Section VI). Finally, as with any other gauge theory, we
have Bianchi identities:

∂µFµν = 0 (17)

as self-consistency conditions. Unlike with standard
electromagnetism (EM), there are no non-homogeneous
Maxwell equations, so the analogy with standard EM
stops there. This will be important later.

IV. UNIMODULAR TIME AND VORTICES

We now come to the core remark of this paper. Since
(13) implies T 0

Λ = −AiBi, we find that, within the axion
reduced HT gravity, the unimodular time expressed in
(3) takes the particular expression:

TΛ(t) =

∫
Σt

d3x T 0
Λ = −

∫
Σt

d3x AiBi. (18)

This is nothing but (minus) the helicity found in fluid
dynamics [15]:

H :=

∫
V

d3xuiω
i =

∫
V

d3x eijkui∂juk, (19)

(where V is a comoving spatial volume) with the poten-
tial Ai replaced with the velocity field ui and the mag-
netic field Bi replaced with the vorticity field ωi. As Mof-
fatt proved in his classic paper [15], the helicity measures
the linking number of vortices, that is loops of ωi-lines.
Perfect analogues exist in EM and MHD [16, 17, 27–29],
where vortices refer to loops formed by magnetic flux
tubes, and it is in terms of these EM quantities that our
helicity may be interpreted, modulo the caveats men-
tioned at the end of Section III.

The relation between helicity and vortex linking num-
ber is well illustrated in the opening example of [15]
(which we illustrate in Fig.1 for clarity). Let us start
with a single unknotted closed filament C1 of vorticity
ωi or of magnetic field Bi. The helicity volume-integral
over the region V occupied by the vortex is then the con-
stant flux Φ (of ωi or of Bi) along the filament multiplied
by the line-integral (circulation) I of the velocity field ui

or of the vector potential Ai along the filament:∫
V1

d3x AiBi = Φ

∫
C1

dli Ai ≡ ΦI1. (20)

This is visually shown in the zoomed inset in Fig.1). The
latter is nothing but the “holonomy” I1, to use the lan-
guage of gauge theory. Applying Stokes’s theorem to
this line-integral, we get the magnetic flux due to other
filaments going through any surface bounded by the orig-
inal filament. Such filaments only intersect this surface
if they are topologically linked to the original one. In
Fig.1 we illustrate this with filament C2 going around

Bi

C2

dli

S1

Σi

C1

Ai

FIG. 1. The degree of linkage of two unknotted vortex fila-
ments C1 and C2 illustrated for the case of Bi-lines (but an
equivalent argument applies to ωi-lines). The zoomed inset
shows how the helicity volume integral is actually the flux
Φ =

∫
dΣiBi times the circulation of the vector potential Ai.

C1 once. If the other filaments go around i ∈ Z times,
their flux is counted i-times. Extending this result for
n-unknotted magnetic vortex lines C1, ..., Cn with fluxes
Φ1, ...,Φn, and Gauss linking number Lk(CI , CJ) ∈ Z,
we thus have:

H =

n∑
I=1

ΦIII =

n∑
I,J=1

Lk(CI , CJ)ΦIΦJ . (21)

This can then be generalized to any other loop configu-
ration [28, 29]. Similar concepts (with different formula-
tions) have appeared all the way from Gauss (1833) to
topological field theory pioneered by Witten [30].

In the standard fluid theory of vortices and in MHD
the vortex linkage is conserved, i.e. Ḣ = 0. An early
relativistic proof was given by Carter in [31], thereby
foreshadowing Chern-Simons theory. Carter introduced
a conserved vorticity four-vector current:

H0 := AiB
i,

Hi := ϕBi + eijkEjAk, (22)

(with ∂µHµ = 0 in the relevant cases). Up to a sign
(depending on conventions), this current is precisely our
T µ
Λ = −Hµ, i.e. the dual of the Chern-Simons three-

form, as stressed just after Eq. (13). A simple calculation
reproduces Carter’s argument in our language:

∂µT µ
Λ =

1

2
FαβFαβ = 2EiBi. (23)

In the ideal cases considered in the MHD and fluids litera-
ture, the RHS vanishes [15, 16]. For example, Ohm’s law
in the absence of resistivity σ, implies Ei+eijku

jBk = 0,
and so EiB

i = 0.
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In our case, unless time does not flow, the helicity and
linking number cannot be conserved. Indeed, the passage
of time is precisely to be interpreted as the creation (or
annihilation) of links between vortices. This is illustrated
in Fig. 2. For unimodular time, we have

∂µT µ = 2EiBi =
√−g, (24)

so that

Ṫ = −Ḣ = 2

∫
Σ(t)

d3x EiBi =

∫
Σ(t)

d3x N
√
h. (25)

Similar expressions apply to other time measures, such
as Ricci time. Obviously there is helicity conservation if
time stops (e.g. for degenerate metrics or with vanishing
Ricci for the two clocks we have examined), but not if
the clocks are ticking.

Σt

Σ0

t

FIG. 2. Spacetime volume forms between two hypersurfaces
at different times, driven by changing magnetic flux tube con-
figurations.

It would be tempting to interpret this non-conservation
by appealing to the MHD analogy: to see the passage of
time as the result of resistivity, σ = 0. However, this does
not make sense. As pointed out at the end of the previous
section, the analogy with EM does not extend to non-
homogeneous Maxwell’s equations and electric currents.
Thus, the concept of resistivity has no role to play in this
theory, at least in its present form.

Another connection that does not necessarily work is
topological field theory [30]. There, one is interested
in non-simply connected leaves Σt, so that large gauge
transformations identify the Chern-Simons functional (or
the helicity with an appropriate normalization) modulo
2π, reducing the gauge invariant configurations to [0, 2π).
This point has been recognized in the MHD commu-
nity [16], but often such situations are dismissed as ar-
tificial and spaces and boundary conditions are chosen
so that the helicity is gauge-invariant (the matter war-
rants a single line in [27]). Here we will assume spatially
simply connected cosmological models, except for a brief
discussion of exceptions in the last Section.

V. TOPOLOGICAL DISCRETIZATION OF
TIME

We thus arrive at a picture where time is a helicity,
which in turn implies a configuration of Bi-vortices so
that the value of time is related to the linkage of these
vortices and their fluxes. In principle, a large number of
configurations of vortices with different fluxes and linking
numbers can correspond to the same helicity. We postu-
late that all vortices have the same magnetic flux, which
can be on the Planck scale. In addition, the coordinate
spatial density of vortices is assumed constant. The lat-
ter assumption is essential to make sure time is intensive,
that is, we replace the definition used above by

TΛ(t) =
1

Vc

∫
Σt

d3x T 0
Λ , (26)

i.e. we divide by Vc, the spatial coordinate three-volume.
In the case of unimodular time, TΛ, this is thus four-
volume per unit of coordinate (comoving, in the case of
FRW) three-volume.
In combination, we are therefore postulating that the

flux per unit of coordinate volume is a fixed quantity,
Φ0. With this additional postulate, time is identified
with the linking number of vortices of magnetic fields Bi:
the passage of time becomes the creation (or annihilation,
depending on a sign convention) of new links. As a result,
time is discretized, that is, it can only vary by an integer
number of times of the fundamental flux Φ0:

TΛ(N) = −NΦ2
0, N ∈ Z. (27)

In turn, one has a discretization of spacetime volume on-
shell:

V4(Σt) = −N(Σt)Φ
2
0V3, (28)

for the case of unimodular time. This is true if the spatial
leaves have finite volume.
Notice that within the sequester model [18, 19, 21, 23,

24], with basis given in (10), one can identify the ob-
served value of the cosmological constant with the ratio
of integers times the square of the fundamental fluxes
associated with each constant of Nature:

Λobs ∼ −1

4

NΛ(Σt)

NR(Σt)

(
Φ0,Λ

Φ0,R

)2

. (29)

The importance of this result comes from the quantum
nature of the fluxes and might explain the smallness of
the observed value of the cosmological constant by taking
Φ0,Λ to be of the order of the Planck scale, i.e. Φ2

0,Λ ≈
3.16× 10−33 Wb2.

VI. VARIABLE CONSTANTS AND
DEGENERATE METRICS

A more subtle point appears when solving (16). It was
shown in [32] that its most general solution, assuming
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∂µΛ ̸= 0, is

Aµ = ∂µa+ b∂µΛ, a, b ∈ C∞(M). (30)

An important consequence of this solution involves hav-
ing a good choice of global coordinate Λ: the level sur-
faces of constant Λ provide a globally nondegenerate foli-
ation of R4, with each slice having topology R3. However,
we can also have solutions to (16) using the invertibility
of the dual-field strength, which makes Λ = const. triv-
ially true. Thus, there is a class of solutions with constant
Λ, but is this the most general solution?

In fact, (16) can be solved. First, the determinant of
the field strength satisfies the standard identities:

det(Fµν) = det(Fµν) = (EiBi)2 ≡ 1

16
(FµνFµν)

2. (31)

Hence (15) implies:

√−g = 2
√
det(Fµν) = 2

√
det(Fµν). (32)

Wherever the metric is non-degenerate (g ̸= 0), we there-
fore have det(Fµν) ̸= 0, so that Fµν is invertible, and
Eq. (16) implies ∂µΛ = 0. Hence we need regions with
degenerate metric (and consequent degenerate Fµ

ν) for
Λ to be allowed to vary. This implies that EiBi = 0,
i.e. that the electric and magnetic fields are orthogonal,
but closer inspection shows that the condition is more
restrictive. What follows lifts results to be found in [33],
where the eigenvalue problem

Fµ
νk

ν = λkµ, (33)

was examined. The fact that Fµ
ν is anti-symmetric im-

plies that the eigenvectors are null kµkµ = 0. The char-
acteristic polynomial leads to:

λ4 − (BiBi − EiE
i)λ2 − (EiBi)2 = 0. (34)

There are four solutions to this equation: λ = ±i
√
EiEi

or λ = ±
√
BiBi. Hence, for there to be a null eigenvalue

we need for either the magnetic or the electric field to
vanish (or both). In the first case, there would be no
vortices at all in our space, in contradiction with the
postulate of the last Section. In the second, there are
vortices but no electric field is present over a leaf (or set
of leaves). This is equivalent to the MHD situation, even
though it is not justified by zero resistivity (a concept
that does not make sense in this context, as explained

before). The Bianchi identities imply that Ḃi = 0, so
the vortices are actually frozen-in. As a corollary, the
linking number is trivially conserved and time does not
flow. Concomitantly, Λ is allowed to change.

The above applies to α = α1 = ρΛ (using the ba-
sis (10)), but similar conclusions can be drawn for other
target constants and their respective times (and types of
vortices). For instance, taking the α2 variable, we have:

−1

2
R
√−g = ±2

√
det

(
Fα2
µν

)
. (35)

The Planck mass can now change in Ricci flat leaves, or
in leaves where the integrated Ricci scalar vanishes (for
example in a pure radiation dominated Universe, under
strict conformal invariance). Again conservation of link-
ing number (as well as zero electric field, and no time
variation in the magnetic fields) is restored for the corre-
sponding vortices in this regime.
Finally, how can the parameters α vary in such cases?

We have to reconcile the Bianchi identities with (16):

Bi∂iα = 0

Biα̇+ eijk(∂jα)Ek = 0, (36)

(which would suggest looking at α as an electric per-
mittivity and magnetic permeability, except that we are
looking for constraints on α). As we know we must
choose which field to set to zero to allow variability. If
we set Ei = 0 in accordance to our postulate, we get that
the variation must be purely spatial, and orthogonal to
the magnetic flux tubes.

VII. NON-ABELIAN EXTENSION

We now aim to extend the reduced theory by re-
placing the divergence in (1) with a non-abelian Chern-
Pontryagin term. This results in the following identifica-
tion, where the action exhibits a symmetry group G:∫

d4x Λ∂µT µ
Λ =

∫
d4x

Λ

2
FaµνF a

µν , (37)

As with the abelian case in (13), we relate:

T α = eαβµν
(
Aa

β∂µA
a
ν +

1

3
fabcAa

βA
b
µA

c
ν

)
, (38)

which is the one-form dual to the non-abelian Chern-
Simons three-form, i.e. the Chern-Simons current.
With (38) implying

T 0 = −eijk
(
Aa

i ∂jA
a
k +

1

3
fabcAa

iA
b
jA

c
k

)
, (39)

we obtain the unimodular time from (3):

TΛ(t) =

∫
Σt

d3x T 0

= −
∫
Σt

d3x eijk
(
Aa

i ∂jA
a
k +

1

3
fabcAa

iA
b
jA

c
k

)
.

(40)

This is nothing but the Chern-Simons number defined
over a three-volume V (up to a sign):

CS3(Ai) :=

∫
V

d3x eijk
(
Aa

i ∂jA
a
k +

1

3
fabcAa

iA
b
jA

c
k

)
.

(41)
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This coincides with a non-abelian helicity as follows. By
introducing a “densitized chromomagnetic field” Bai:

Bai := eijk
(
∂jA

a
k +

1

3
fabcAb

jA
c
k

)
≡ Bai

A +
1

3
Gai, (42)

where Bai
A := eijk∂jA

a
k represents a-independent abelian

magnetic fields, and Gai := fabceijkAb
jA

c
k expressing the

interaction among the different colors of the gauge group,
one can rewrite (41) as

CS3(Ai) =

∫
V

d3x Aa
i Bai ≡ HCS (43)

with the non-abelian extension of helicity:

HCS :=

dim(G)∑
a=1

Ha +
1

3

∫
V

d3xAa
i Gai. (44)

What does this extended helicity correspond to in
terms of unimodular time? As for the abelian case,
we have Bai-vortex lines, with the additional complica-
tion of different gauge-colored vortices interacting among
themselves. For example, in the context of the gauge
symmetry SU(2), we anticipate the existence of three
distinct types of vortices, which encompass both free
and interacting chromomagnetic field vortices (refer to
Figure 3). Specifically, in (42), the interaction term

B3,iB1,i
B2,i

(b)

B1,i B1,i

(a)

FIG. 3. Non-abelian vortices in SU(2): In (a), a Hopf link
formed from the same color vortices, with abelian helicity
measuring their linkage. In (b), a complex link of different
color vortices interlinks, requiring a generalized cross-helicity
to calculate a third-order linking number.

G1i := 2eijkA2
jA

3
k (along with its cyclic permutations in

the color indices) gives rise to a third-order topological in-
variant, akin to cross-helicity, explored in previous works
[34, 35]. This can be expressed as:

H(3)(B1i
A ,B2i

A ,B3i
A ) :=

∫
V

d3x A1
iG1i ≡ H123. (45)

This invariant satisfies H123 = H312 = H231. Similar
third-order link integrals, describing vortex linkage, have
been studied in previous research [36–38].

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we studied the Henneaux-Teitelboim ver-
sion of unimodular gravity and its axion reduction. This
amounted to replacing the total divergence (the 4-form)
that appears in the unimodular action with the θ-term
found in axion models [14]. This axionic theory has fewer
gauge degrees of freedom than HT gravity: we go from
three to one. We stress that this abelian reduced theory
does not correspond to standard electromagnetism, be-
cause there is no non-topological term in the action, and
no non-homogeneous Maxwell equations present.
The core result of this paper hinges on the identifica-

tion of unimodular time with the helicity in our reduced
theory, mirroring the abelian Chern-Simons term. Using
standard results, time is thus identified with the link-
ing number of the magnetic field vortices multiplied by
their fluxes. In principle, numerous vortex configurations
with different fluxes and linking numbers can yield the
same helicity. We postulated that all vortices carry the
same Planck-scale magnetic flux. Consequently, time is
identified with the linking number, introducing a discrete
nature, whereby it can vary only in integer multiples of
the fundamental flux.
We close this paper by discussing potential future di-

rections. Foremost the blatant connection with the se-
quester model [18, 19, 21, 23, 24] should be followed up,
since it relates our considerations with the observed cos-
mological constant’s value. In this context, cross-helicity,
a consequence of the U(1) × U(1) symmetry in the ac-
tion, could have a role to play, relating the finite 4-volume
and Ricci fluxes, and so providing an explanation for the
value of the stabilized cosmological constant. More gen-
erlly, we have assumed in this paper that the leaves Σt are
simply connected, but what if they are not? The gauge-
invariant helicities would then be naturally bounded, pro-
viding justification for one of the assumptions of seques-
tration. Could the topology of space fix the topology of
time? A if time is cyclic, what would be the implication
for thermal states in the early Universe?
Another avenue for exploration involves incorporating

gravitational effects into the electric and magnetic fields,
either through gravitational deformations of BF theory
or alternative topological approaches to gravity. Rela-
tion with topological field theory, and how the usual 2+1
set up translates into 3+1, should also be explored. Ad-
ditionally, the reduction aspect of the theory should be
thoroughly examined using the Stuckelberg procedure in
future work. Notably, the emergence and physical inter-
pretation of helicity depends significantly on the under-
lying base theory. Thus, it is essential to analyze these
aspects in the context of other base actions, including
Brans-Dicke theory, modified gravity theories, higher-
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derivative theories, massive gravity, and even supergrav-
ity. Lastly, we should also consider the potential impli-
cations of this model on gravitational solutions, such as
black holes and cosmology.
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