

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.Doi Number

Evaluation of Performance, Energy, and
Computation Costs of Quantum-Attack
Resilient Encryption Algorithms for Embedded
Devices
Basel Halak, Thomas Gibson, Millicent Henley, Cristin-Bianca Botea, Benjamin Heath, and
Sayedur Khan

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.
Corresponding author: Basel Halak (basel.halak@soton.ac.uk)

This work was supported in part in part by the Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/R007268/1.

ABSTRACT The accelerated development of quantum computers poses a direct threat to all current
standards of public key encryption, for example, the Shor algorithm exploits the superposition state of the
qubits to solve the problem of integer factorization in polynomial time, rendering all systems whose security
relies on this hard mathematical problem not secure. Public key encryption algorithms are used in a multitude
of applications that from the core of the digital world (e.g., emails, banking, digital currency, defense, and
communication.). The prospects of a quantum machine that can break such systems are too risky to ignore,
even if such a computer still needs thirty years to build. This is because adversaries can be storing data now
to decrypt later aka. SNLD attack, moreover, some systems have an operational lifetime that spans more than
thirty years (e.g., defense, aviation industry). Consequently, the work has already started to develop quantum-
attack resilient security schemes. The number of Internet of Things (IoT) devices is expected to be around 29
billion in 2030, forming a significant portion of all computing machines. Most of these will be implemented
as embedded systems with limited resources. Consequently, assessing the energy and computational
overheads of the quantum-attack resilient security schemes is vital. This work presents a comprehensive study
that evaluates the energy and performance costs of the proposed solutions in resource-constrained devices, in
comparison with the existing schemes. This was achieved through the development of a testbed that emulates
a client-server configuration, wherein both devices perform mutual authentication and then agree on a shared
key using the TLS protocol. A Raspberry Pi 3b+ was used as a server, and a client in the first set of
experiments. Raspberry Pi Pico W was the client in the second group of tests. The results of the evaluation
have shown that Kyber1-Dilithuim-2 is the most resource-efficient solution, it outperforms all other PQC
algorithms, including the current scheme that uses elliptic curve cryptography. Our study has also shown the
digital signature scheme Sphinx+ is associated with significant latency and energy costs so may not be
suitable for IoT-type devices.

INDEX TERMS: Security, Post Quantum Cryptography, Embedded Devices, Internet of Things.

I. INTRODUCTION

Asymmetric encryption algorithms are essential for many
digital systems for constructing key agreements and digital
signature schemes. These are used in many applications
including secure communication, banking, and digital

currencies. The most widely used public key algorithms(
i.e. RSA and Elliptic Curve) rely on the hidden subgroup
problem, albeit in different settings[1, 2]. These settings
include the use of one of the following three hard-to-solve
mathematical problems: integer factorization, the discrete
logarithm, and the elliptic-curve discrete logarithm

mailto:basel.halak@soton.ac.uk

VOLUME XX, 2017 3

problem. The security of the above-mentioned public key
cryptographic algorithms essentially relies on the difficulty
of solving these intractable problems using classic
computers. To factorize a large integer number (n) the best-
known algorithm is the general number field sieve with a
theoretical asymptotic running time proportional to an
exponential function of n[3]. The time required to solve the
other hard problems is similar.
 However, in 1994 Peter Shor proposed a more efficient
algorithm for integer factorization that runs in polynomial
time [4], but requires access to a quantum computer.
Therefore recent accelerated advances in quantum
computer technology [5] pose a direct security threat to all
digital infrastructure reliant on public key algorithms [6].
This has worldwide repercussions because of the increased
dependence on technology and the desire for security and
privacy. If quantum computers could easily break current
public encryption standards, everything from banking to
browsing the internet would leave end users at risk.
For now, quantum computers are still highly experimental
with limited power; however, there are currently significant
resources being invested around the world to further
develop this technology. A recent McKinsey report predicts
that some businesses with optimization problems may start
to significantly benefit from quantum computer technology
as early as 2026 [7].
From a cyber security threat perspective, there are two
major risks associated with the development of quantum
computers. The store-now-decrypt later (SNDL) attack,
wherein the adversary stores the encrypted data, which they
have maliciously obtained, to be decrypted in the future
when a quantum computer is available. The second risk is
more pressing and associated with certain type of systems
that are deployed now and has an operational lifetime of
over 30 years, which means there is a high probability that
they will be still operational when a sufficiently powerful
quantum computer is made, hence vulnerable to hacking.
The above risks made it necessary to find alternative
asymmetric key encryption algorithms that are resilient to
the quantum threat. This process was initiated in 2016 by
the National Institute of Standards and Technology (NIST)
by releasing a call for proposals for post-quantum
algorithms, following its report in April of the same year
that indicated that a possibility of quantum technology to
render the commonly used RSA algorithm insecure by 2030
[8]. The NIST post-quantum algorithm standardization
process is expected to conclude in 2024, however, this is
only the first step in a long transition journey to update all
systems. The history of cryptographic standards adoption
shows that getting the world to migrate from one set of
standards to the next can take decades.
Billions of digital systems need to be re-configured to use
quantum-resistant algorithms. This transition process is
particularly challenging for IoT (Internet-of-Things), edge
computing, and battery-operated devices, which do not

necessarily have the computation capacity nor the required
energy to run post-quantum public-key algorithms.
 The number of IoT devices worldwide is forecast to almost
triple from 9.7 billion in 2020 to 29 billion in 2030, which
will form a significant portion of all computing
machines[9]. A recent study in this area has shown that
selected NIST algorithms require significant additional
memory and computing resources, compared to current
public encryption methods [10]. What is more, such costs
significantly increase if protection against differential
attacks is required. For example, the work in[11] shows
that implementing a countermeasure to differential attacks
for the CRYSTAL-KYBER (i.e. the NIST chosen
algorithm for key exchange mechanisms) leads to a more
than fivefold increase in the implementation overheads.
One solution, in this context, is the use of optimized
dedicated hardware implementations of post-quantum
functions, which may have smaller area and energy
requirements [12-14], however, this approach may not
always apply to the lower end of the IoT device range,
which has architectural cost limitations.
With the expected large growth in resource-constraint IoT
devices and the pre-existing reliance on this technology in
applications such as industrial control systems and critical
national infrastructure, it is imperative to ensure viable
solutions to deploy quantum attack-resilient security
algorithms on such devices.
Previous work in this area was limited in scope in terms of
the algorithms being considered or the metrics of
comparison being assessed. The contributions of this work
are as follows:
• It performs a comparative analysis of the energy and

computational costs of all quantum-resilient
cryptographic methods, in a networked environment.

• It investigates the feasibility of implementing post-
quantum public key algorithms on a resource-
constrained device and explores the expected costs.

• It develops an experimental testbed to assess the
performance, energy, and computational overheads,
which emulate server-client key agreement scenario,
one of the most widely used applications for public key
cryptographic algorithms.

To the best of our knowledge, this is the first time such a
comprehensive study has been conducted, in terms of the
scope of the solutions being considered, the metrics being
evaluated, and the test environment that emulates a
practical use case of quantum-computer attack –resilient
encryption algorithms(i.e. a key agreement scheme.)
The structure of the remainder of this paper is as follows.
Section 2 reviews related work. Section 3 explains in detail
the analysis methodology. The design of the testbeds is
discussed in section 4 . Section 5 evaluates the performance
of quantum-resilient solutions. Finally, conclusions are
drawn in Section 6.

VOLUME XX, 2017 3

II. RELATED WORK

This section first introduces the main types of key agreement
schemes using public key cryptography, then outlines the
principles of TLS protocol used in this context. Next, an
overview of the quantum resilient scheme is provided. Finally,
a summary of previous studies related to this work.

A. Key Agreement using Public Key Algorithms
These methods primarily include.
1) A key Exchange Scheme such as Diffie Hellman
protocol[15], where two parties wanting to communicate
generate ephemeral key pairs sign their ephemeral public
key with their static private key and then send their signed
ephemeral public key to each other. Both parties receive the
other signed ephemeral public key and verify it using the
other static public key, stored by a certificate authority
(CA) or in a public key infrastructure (PKI). Now they
combine their ephemeral private key with the other's
ephemeral public key to create a shared secret.
2) A key encapsulation method (KEM)[16] is a scheme
with public and private keys, where a sender uses the public
key of an intended receiver to create a ciphertext
(encapsulation) containing a randomly chosen symmetric
key. The ciphertext can then be decrypted the ciphertext
using the receiver’s private key.
KEM is a unilateral protocol whereas key exchange is a
bilateral protocol, i.e. both parties take part in constructing the
shared key, however, in some cases, KEM is easier to design
and build, and they are being proposed for the new post-
quantum public key algorithms.

B. Transport Layer Security (TLS)
Transport Layer Security (TLS) is a network protocol that
allows secure data communication across the internet. The
objectives of the TLS protocol are threefold, providing data
privacy, which is typically achieved using symmetric
encryption algorithms, authentication of communicating
parties using public key cryptography, and providing data
integrity using message authentication codes. TLS comprises
two protocols referred to as Handshake and Record,
respectively. The Handshake protocol employs public-key
cryptography to establish a shared secret key between the
client and the server, it is also used to provide mutual
authentication. The Record protocol uses the secret key
established in the handshake protocol to protect
communication between the client and the server. The TLS
protocol is the standard approach for public key-based key
exchange schemes [10, 17-20], hence its adoption in this study
for comparison.

C. Overview of Quantum-Computer-based Attack
Resilient Methods
1) Post-Quantum Public Key Algorithms
There are several different families of post-quantum
algorithms which differ by the type of mathematical problem

they are based on. These include hash-based, lattice-based,
code-based, and supersingular elliptic curve isogeny [21], as
explained below.

a) Code-Based
Code-based cryptography encompasses cryptosystems that are
based on an error-correcting code. Wherein errors are used
intentionally to obscure messages, in such a way that the errors
can only be corrected if the recipient of such messages has
access to a private key. The security of this scheme comes
from the hard problem of decoding an erroneous codeword
from a random-looking codeword without the use of the
private key. This type of cryptography is well established with
McEliece being introduced in [22].

b) Hash-Based
Hash-based cryptography encompasses cryptosystems based
on the security of hash functions. The latter is a non-reversible
function with an input of a string of any length, producing a
fixed-length output[23]. These schemes use a tree data
structure to combine a collection of One-Time-Signature
schemes (OTS). The cryptosystem signs a message using an
OTS, which should never be used twice to retain security.
Implementations of such a scheme can be either stateful or
stateless. The former must remember which OTSs have been
used, hence requiring a state management procedure. The
latter uses a very large tree, where OTSs are chosen at random.
With a sufficiently large tree, the probability of a repeated
OTS is low. The strongest candidate for a post-quantum hash-
based scheme is SPHINCS+, which is stateless.

c) Lattice-Based
Lattice-based cryptography encompasses cryptosystems that
are based on the conjectured intractability of lattice problems.
There are two types of lattice problems used by the finalists.
These are the NTRU problem [24] and the Learning-With-
Errors problem (LWE)[25]. The security of LWE comes from
the hard problem of solving an errored simple linear algebraic
problem, not too dissimilar to code-based cryptography. LWE
requires large public keys, therefore all remaining candidates
that make use of LWE use variants that allow for reduced key
size. NTRU-based encryption uses a mixing system based on
polynomial algebra and reduction modulo to encrypt data.
Decryption uses an un-mixing system with validity depending
on elementary probability theory.

d) Super Singular Elliptic Curve Isogeny
Isogeny-based cryptography encompasses public key
cryptosystems that use maps between elliptic curves.
Although traditional public key cryptosystems using elliptic
curves are vulnerable to attack by a quantum computer,
isogeny-based schemes do not rely on the hidden subgroup
problem. These were discovered in [26] and use the
mathematics of elliptic curves with certain specific properties,
called Supersingular elliptic curves. These are different from

VOLUME XX, 2017 3

the widely used elliptic curves from classical cryptography
because they are non-commutative. However, recently a
vulnerability was exposed in the more prominent proposed
algorithm of this type, SIKE [27], and was subsequently
dropped from the NIST standardization process.

2) NIST-Post Quantum Algorithms for Key
Agreement

a) CRYSTALS-KYBER
Kyber is chosen for standardization for key encapsulation. It
is a lattice-based algorithm that gets its security from the
hardness of solving the learning-with-errors problem on
module lattices (Module-LWE). This algorithm is fast, has
efficient factorization and constant-time implementation, and
is designed for low memory consumption so it can be
implemented on embedded devices. To construct a key
encapsulation mechanism (KEM), it first encrypts messages
using IND-CPA (indistinguishability under chosen plaintext
attack)secure public-key encryption [28], then it transforms
this using a modified Fujisaki-Okamoton transform[29].
Saber was one of the three NIST finalists, it is also a structured
lattice scheme and has a very similar performance to Kyber.
NIST determined that there was no compelling reason to
standardize multiple different structured lattice KEMs and
chose KYBER instead of Saber. One factor that led to this
decision was NIST’s assessment that the MLWE problem,
which accounts for most of the security of KYBER, is better
studied than the MLWR problem on which the security of
Saber is entirely based. Saber was included in this for
comparison.

b) Classic McEliece
This cryptosystem is an evolution upon the first code-based
cryptosystem introduced in 1978 by McEliece [22], with few
differences. Firstly, it is a Key Encapsulation Mechanism
(KEM)[30] that is IND-CCA2 secure against all Random
Oracle Model (ROM) attacks, which means high security,
most importantly against quantum computers. Secondly, the
KEM is constructed from a PKE designed for OW-CPA
security (One-Wayness against Chosen-Plaintext Attack).
This means that attacks cannot efficiently find the codeword
from a ciphertext and public key when the codeword is chosen
randomly. Whilst McEliece’s system is OW-CPA secure, the
base PKE used in the construction of the KEM isn’t the
original McEliece PKE, but rather a dual variation created by
Niederreiter[31]. The Niederreiter PKE is on par with the
original scheme regarding security, both providing quantum
resistance, however, encryption in the Niederreiter PKE is
roughly ten times faster than the McEliece PKE, hence why it
is the basis for the Classic McEliece cryptosystem.
Classic McEliece, along with its predecessors, has the
advantage of high performance and security strength [32]. It is
the most researched candidate, so it has the highest level of
assurance. There are no known classical or quantum attacks

on a McEliece cryptosystem with a sub-exponential running
time [33]. It also has the smallest ciphertexts compared to
other KEM candidates. However, a drawback regarding the
potential adoption of these cryptosystems lies in the use of the
Goppa codes to determine the public key, which results in a
large public key matrix[34]. Consequently, key generation is
the slowest and most resource-intensive aspect of the system,
which makes it less feasible for embedded devices, therefore
it was not included in this study, although it is still part of the
NIST selection process.

c) Alternate Candidates
There are two additional alternate candidates submitted for
evaluation as part of the fourth round in the PQC
standardization process, namely, BIKE (Bit Flipping Key
Encapsulation) and HQC (Hamming Quasi-Cyclic) are two
code-based cryptosystems. The submitters of BIKE were not
confident enough at the end of PQC round two to claim it
provided CCA(Chosen Ciphertext Attack) security. There are
also questions from NIST regarding BIKE’s side-channel
protections. Whilst HQC provides strong security assurances,
it lacks in performance and has an unfavorable width when
compared to BIKE. HQC’s key generation and decapsulation
are comparatively much faster than BIKE’s. These two
algorithms are still being considered so they have not been
included in this study, however, previous studies have
indicated their implementation costs are expected to be higher
than schemes based on the lattice problem, hence less relevant
to embedded and IoT systems. A comparison of the
parameters of the different NIST algorithms is shown in Table
1 below.

TABLE I
PUBLIC KEY, SECRET KEY, CIPHERTEXT, AND SHARED SECRET

SIZES IN BYTES OF NIST KEY ENCAPSULATION MECHANISM
SCHEMES

Algorithm Public

Key
Secret
Key

Ciphertext Shared
Secret

KYBER 1 800 1632 768 32
KYBER 3 1184 2400 1568 32
KYBER 5 1568 3168 1568 32
Saber 1 672 1568 736 32
Saber 2 996 2304 1088 32
Saber 3 1312 3040 1472 32
Classic
McEliece
1

261120 6492 96 32

Classic
McEliece
3

1044992 13932 208 32

VOLUME XX, 2017 3

3) NIST-Post Quantum Algorithms for
Digital Signatures

a) CRYSTALS-Dilithium

Dilithium is a compact lattice-based quantum-resistant
signature algorithm[35]. The security of this algorithm is
given by the hardness of finding the shortest vector in lattices.
Within its implementation, Dilithium uses the SHAKE128
and SHAKE256 hash functions and Number-Theoretic
Transform (NTT) for polynomial multiplication. Instead of
using a discreet Gaussian distribution which was shown to be
insecure against side-channel attacks[36], Dilithium uses
uniform sampling to generate random numbers. This was
selected by NIST for standardization in round 3 and was
recommended to be the first algorithm to be standardized
based on its security properties and compact implementation.

b) FALCON
FALCON is the second lattice-based signature chosen for
standardization. This signature uses the ‘fast Fourier
sampling’ trapdoor over NTRU lattices. The signatures of this
scheme are shorter than Dilithium’s while the public keys are
of similar size. Falcon is also scalable and fast because of the
use of Fourier sampling. In addition, it can be used on
embedded devices with memory constraints, due to the key
generation algorithm used. This scheme gets its security from
the hardness of solving the short integer problem (SIS) over
NTRU lattices. The issue with FALCON is that it requires a
53-bit floating point unit1 which may not be supported by all
IoT devices. Alternatively, this can be achieved with the
software but at a significant drop in performance. This also
makes the key generation slower than the other algorithms2 as
most constrained devices are 32-bit or smaller and will need
multiple clock cycles per instruction when calculating the key.
It was decided to not include Falcon in this evaluation because
of all the above-mentioned downsides.

c) SPHINCS+
SPHINCS+ is a stateless hash-based signature framework that
was chosen for standardization. In comparison to its
predecessor SPHINCS, this method is faster and has a smaller
signature as well as using a signature framework instead of a
signature scheme. SPHINCS+ was selected for benchmarking
in this work because of its flexibility, which is particularly
advantageous on embedded devices. In our tests, we have used
a robust tweakable hash function with an estimated security
level of 1, which means that the high-level construction of
SHPINCS+ is done using Construction 6 presented in [37].
Table 2 compares the algorithm parameters for the selected
NIST digital signature schemes.

1https://csrc.nist.gov/csrc/media/Presentations/2022/benchmarking-and-analysing-nist-pqc-lattice-

based/images-media/session4-howe-benchmarking-analysing-pqc2022.pdf

TABLE II

 PUBLIC KEY, SECRET KEY, AND SIGNATURE SIZES IN BYTES OF
THE NIST DIGITAL SIGNATURE SCHEME FINALISTS FOR

DIFFERENT NIST LEVELS OF SECURITY.

Digital signature Public Key Secret Key Signature
Dilithium 2 1312 2528 2420
Dilithium 3 1952 4000 3293
Dilithium 5 2592 4864 4595

Falcon 1 897 1281 690
Falcon 5 1793 2305 1330

SPHINCS+ 1 32 64 17088
SPHINCS+ 3 48 96 35664
SPHINCS+ 5 64 128 49856

D. Related studies on post-quantum algorithms
Implementation Costs.

1) NIST Security Level Definitions
Previous work in this area mainly focused on the comparison
between public key algorithms that are part of the NIST
selection process[20, 38-40]. Such comparison needed to be
made between algorithms that provide the same level of
security, therefore, NIST has provided a collection of broad
security strength categories as outlined in Table 3. A given
cryptosystem may be instantiated using different parameter
sets to fit into different categories. Any attack that breaks the
relevant security level must require computational resources
comparable to or greater than those required for the specified
type of search on a block cipher key or hash function of a
certain size.

TABLE III
 NIST SECURITY LEVEL DEFINITIONS

Security Level Search
Type

Search Performed On

1 Key Search Block cipher with a 128-
bit key

2 Collision
Search

256-bit hash function

3 Key Search Block cipher with a 192-
bit key

4 Collision
Search

384-bit hash function

5 Key Search Block cipher with a 256-
bit key

2 https://csrc.nist.gov/csrc/media/Presentations/2022/falcon-update/images-media/session-1-
prest-falcon-pqc2022.pdf

https://csrc.nist.gov/csrc/media/Presentations/2022/benchmarking-and-analysing-nist-pqc-lattice-based/images-media/session4-howe-benchmarking-analysing-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/benchmarking-and-analysing-nist-pqc-lattice-based/images-media/session4-howe-benchmarking-analysing-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/falcon-update/images-media/session-1-prest-falcon-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/falcon-update/images-media/session-1-prest-falcon-pqc2022.pdf

VOLUME XX, 2017 3

NIST has declared Level 1 to be the benchmark entry-level
quantum resistance strength which new public key
cryptography must be able to meet. Table 4 lists the NIST
security levels for which each candidate has provided a
parameter set.

TABLE IV
PARAMETER SETS PROVIDED BY PQC FINALISTS

PQC Candidate NIST Security Level

1 2 3 4 5
Classic McEliece
CRYSTALS-KYBER
NTRU
SABER
CRYSTALS-
DILITHIUM

FALCON

2) Performance Comparison
There have been several studies in the literature aimed at
evaluating the performance of proposed PQC algorithms. For
example, the work in [40] used the toolkit SUPERCOP3 to test
the performance of key generation, signing, and verifying
procedures of various digital signature schemes including two
of the NIST finalists Dilithium and Falcon. A 16-core Intel
Core i7-10700 clocked at 2.9GHz was used to run this toolkit.
It was found that Falcon took longer to sign while Dilithium
was slower at verifying.
The Open Quantum Safe project[41] has also profiled various
properties of post-quantum algorithms such as performance
and memory usage using three different architectures, x86 64,
Apple M1, and aarch64 (ARM64). In terms of key
encapsulation mechanisms (KEM) speed, Kyber was found to
have done more operations per second for each of the
categories of key generation, encapsulation, and
decapsulation, than any other NIST algorithms considered.
The same study also assessed the performance of digital
signatures, where Dilithium was found to have faster keypair
generation and signing speed than the rest. While SPHINCS+
trails Dilithium regardless, it outperforms Falcon when using
its fast variant for keypair generation. The verifying speed
between Dilithium and Falcon was comparable, with Falcon
taking the edge over its counterpart at NIST level 5 security.
3) Energy Consumption Comparison
This is an important metric to evaluate when considering the
application for which these cryptosystems may be used such
as mobiles and other battery-operated devices. Energy
consumption is also important in high-performance

3 https://bench.cr.yp.to/supercop.html
4 https://www.trustedfirmware.org/projects/mbed-tls/

computing environments where energy consumption directly
relates to maintenance and cooling. The work in [38] has done
an estimation of the energy consumption of NIST algorithms
for both signature schemes and Key encapsulation
mechanisms when the cryptosystems were run on an Intel
Core i7-6700 CPU. Their analysis of KEM showed that
KYBER and SABER consume a fraction of energy compared
to Classic MCEleiece and NATRU schemes. For digital
signatures, FALCON consumed less energy compared to
CRYSTALS-DILITHIUM.
Other researchers targeted more constrained devices[19, 42].
For example, the work in [19] implements NIST first-round
reference algorithms in the open-source embedded TLS
library mbedTLS4 and measures the performance of the post-
quantum primitives on four different embedded platforms
with three different ARM processors(including M0) and an
Xtensa LX6 processor. This was subsequently compared to a
classical TLS variant using elliptic curve cryptography (ECC).
While exploratory research has been completed on post-
quantum algorithms’ implementation into TLS on resource-
constrained embedded devices, there is a significant gap in
research on more constrained platforms. A wealth of papers
has been devoted to implementing post-quantum TLS on the
Raspberry Pi 3b+ and 4b and their respective powerful Cortex-
A53 and A72 processors; a smaller proportion devoted to
ARM Cortex M4 across various development boards which
NIST noted as a constrained platform target for algorithm
developers, and even less research has been performed on
heavily constrained embedded devices at the lowest end of the
spectrum including processors such as the ARM Cortex M0+
or Xtensa LX6. While these devices are low in computational
power and resources, they are widely used in embedded
devices in the exponentially growing IoT space. This is
evidenced by the success of the new Cortex M0+-based
RP2040 processor with over 10 million fabricated in their first
year of production (2021). The RP2040 has only 264KB of
SRAM and supports up to 16MB of flash and yet is highly in
demand. What is more, none of the previous studies performed
a comparative analysis with quantum resilient cryptographic
schemes that are based on symmetric ciphers. Investigating
the performance of all quantum-resilient cryptographic
methods and resourced-constrained devices is crucial to
safeguarding networking-enabled embedded devices’ security
over the decades to come.

III. METHODOLOGY

The essence of the proposed testbed design is to emulate
realistic use cases of the quantum attack resilient algorithms.
The work in [43] has shown that public key-based TLS
protocol used for establishing secure connections on the web

https://bench.cr.yp.to/supercop.html
http://www.trustedfirmware.org/projects/mbed-tls/
http://www.trustedfirmware.org/projects/mbed-tls/
http://www.trustedfirmware.org/projects/mbed-tls/

VOLUME XX, 2017 3

consumes more than 92% of the global energy incurred by all
public-key cryptography applications. Therefore, the testbed
was constructed to emulate a secure link setting and allow the
measurements of performance and energy overheads for all
key agreement and digital signature schemes being
considered.
The overall testbed architecture shown in Figure 1 consists of
a client-server configuration, connected through a networking
environment, wherein the two devices need to perform mutual
authentication and agree on a shared Key.

FIGURE 1. The testbed architecture

A. Hardware Architecture Development

The server is assumed to be an unconstrained device, therefore
Raspberry Pi 3b+ was employed as it has high computational
power and RAM size; it is also suitable for editing, compiling,
and debugging software to run using its operating system
Raspberry Pi OS5.
Two types of clients are considered in this study. A high-end
embedded device (e.g. Raspberry Pi 3b+), and a low-end IoT-
constrained device. The latter should be representative of a
modern resource-constrained embedded device and its
corresponding limitations. Table 5 lists several examples of
such devices.

The ARM Cortex M0+ is a constrained processor with basic
arithmetic features including a 32-bit multiplier and is claimed
to be the most energy-efficient ARM processor available for
constrained embedded applications, hence it is a popular
choice for the lower end of spectrum IoT devices.
Therefore, it makes more sense to use a device incorporating
this type of processor in the proposed testbed as opposed to
platforms that use more powerful processors such as ((Cortex-
M4 & Cortex-M7).

The Raspberry Pi Pico W and Arduino Nano RP2040 Connect
both use the MCU on a development board with networking
capability and significant flash memory. The Pico W has
support for external Serial Wire Debugging (SWD) using
OpenOCD and GDB on a host device and has exposed pin
headers for this, however, the Arduino device does not have
accessible pin headers (using pads instead) and depends on
Arduino Framework libraries making integration of new code
an additional challenge.

5 https://www.raspberrypi.com/software/

Consequently, the Raspberry Pi Pico W was selected as the
constrained device based on its representative constrained
MCU and Processor, low cost, documentation, and ease of
programming and debugging.

TABLE V
EXAMPLES OF RESOURCES-CONSTRAINED IOT DEVICES

Development
Board

MCU
(Processor)

Freq.
(MHz)

SRAM
(KB)

Flash
(KB)

Arduino Nano
33 IoT

SAMD21 48 32 256

 (ARM
Cortex-M0)

Arduino Nano
RP2040

RP2040 125 264 16000

Connect (2 ARM
Cortex-
M0+)

Arduino Nano
33 BLE

nRF52840 64 256 1000

Sense (ARM
Cortex-M4)

Raspberry Pi
Pico W

RP2040 125 264 16000

 (2 ARM
Cortex-
M0+)

ESP32-S2-
DevKit

ESP32-S2 240 512 384

 (Xtensa LX7)
STM32-F4
Series

STM32F4 180 384 512-2056

 (ARM
Cortex-M4)

STM32-F7
Series

STM32F7 216 64-
248

256-512

 (ARM
Cortex-M7)

B. Software Implementation

list There are several open-source software solutions capable
of connecting two devices using TLS and quantum-safe
algorithms however the majority focus on supporting devices
less constrained than the Pico W. This work initially
considered using WolfSSL because it supports embedded
devices and is an active member of the PQC research
community, however, support for the Pico W was found to be
unsatisfactory, as a result, an alternative software called Mbed
TLS was adopted. The latter is an open-source C library that
implements the TLS protocol and associated cryptographic

http://www.raspberrypi.com/software/

VOLUME XX, 2017 3

primitives. It is part of the Trusted Firmware project6 and is
designed for embedded devices. While well established, it has
a smaller user base than WolfSSL and support for PQC is
experimental. A prototype implementation of TLS 1.3
alongside support for PQC via labors can be found on a branch
of the project on GitHub7. While Mbed TLS can be added to
the Pico-SDK8 as well as run on a Raspberry Pi 3b+ the
quantum-safe algorithms are not directly located in the library
itself and therefore, an alternative approach was needed. The
authors of [19] show an approach to integrate quantum-safe
algorithms into Mbed TLS, this was used as a starting point.
Next, the latest NIST round three versions of the Saber KEM
and Dilithium DS were integrated. In addition, the proprietary
version of Mbed TLS was installed on a Raspberry Pi 3b+ and
added to the Pico-SDK-ready development of client and server
applications.
The cipher suites supported by the Mbed TLS PQC branch
from [19] are as follows (additional schemes implemented in
this work are denoted by *): Sphincs+ (1), Dilithium (2, 3,
5)*, Kyber (1, 3, 5), Saber (1, 3, 5)*, ECDSA, and ECDHE.
The curve used for both ECDHE and ECDSA is the secp256r1
curve as recommended by NIST
Another issue that motivated the use of Mbed TLS is the
networking of the embedded device. The Pico W lacks an
operating system, resulting lack of needed library support for
aspects such as sockets. A solution to this is using a TCP/IP
stack. The most likely choice for this would be lwIP
(lightweight IP)9, which is open-source and made for
embedded systems. Given our choice of Mbed TLS, lwIP
support was guaranteed by the fact that the Pico SDK contains
an implementation of it, with wrapper libraries for Mbed
TLS10.

C. Benchmarking
In addition to the development and integration of the software
needed to complete a TLS handshake on the chosen hardware,
further software is needed to collect data on compute resource
usage and power consumption. This section explains the
metrics used for evaluation, the measurement methods, and
the data collection process.

1) Metrics
To compare the overheads of each solution, three main metrics
are going to be used as follows:

a) Latency refers to the time it takes to complete a
specific operation. The latter is either a complete
handshake protocol required to establish a secure
connection, or one of its steps (e.g., verification of
a digital signature, key encapsulation). This was

6 https://www.trustedfirmware.org/projects/mbed-tls/
7 https://github.com/hannestschofenig/mbedtls

8
https://github.com/peterharperu
k/pico-sdk/tree/add mbedtls

measured using the standard timer functions
available in C and the Pico-SDK respectively by
repeating a set number of handshakes and finding
the mean and standard deviation for each test.

a. Random Access Memory Usage refers to the RAM
resources required by a specific operation. A
significant portion of this is used for heap memory (a
part of RAM where the programmer manages
memory allocation) and stack memory (the
remaining part of RAM where function variables are
stored inside stack frames). The metric is an
important indicator of computational resource
requirements, hence its selection for evaluation.

On the Raspberry Pi device, the memory used was evaluated
using an external profiling application called Massif from the
Valgrind suite of applications. This takes a C program and its
arguments as input and runs it while capturing information on
certain metrics or about certain aspects of the program. In the
case of Massif, it measures heap usage and has an option for
stack usage. To enable the use of Massif and efficient data
collection bash scripts were developed to automate the
benchmarking process on the client and the server. As part of
this, the client and server applications were modified to only
run a single handshake with the KEM, and DS specified by
program arguments.

b. Energy dissipation: This is the energy required by a
device to complete a specific operation (e.g. a TLS
handshake). This was evaluated by measuring the
instantaneous power of each device using the R&S
HMC8012 unit, a digital multi-meter device, and
calculating the energy figures based on the time
required for the execution of each of the tasks. To
accurately measure the energy associated with each
task, the base power consumption was also
estimated, so that only the additional power related
to the task in question is taken into consideration.

2) Data Collection Process
To enable the collection of a large amount of data, a
benchmarking program was designed that runs TLS
handshakes repeatedly. To run a single handshake requires a
server to be waiting to accept a connection and a client to
initiate the handshake. During the handshake data is collected
where appropriate and then the connection is closed. The
benchmarking programs repeat this process a given number of
times and handle processing statistics and outputting the data
to a file.

9 https://www.nongnu.org/lwip/2 1 x/index.html
10 https://raspberrypi.github.io/pico-sdk-doxygen/group pico
lwip.html

http://www.trustedfirmware.org/projects/mbed-tls/
http://www.trustedfirmware.org/projects/mbed-tls/
http://www.trustedfirmware.org/projects/mbed-tls/
http://www.nongnu.org/lwip/2

VOLUME XX, 2017 3

D. Implementation
The implementation process included the construction of the
testbeds, installing and configuring Mbed TLS, and
integrating PQC algorithms, where necessary. The Dilithium
signature scheme was integrated using the process set out in
[44]. This was also followed to implement the Saber KEM
whilst using the Kyber KEM implementation in [19]for
reference. The source code was taken from the open-source
GitHub repository11. Furthermore, the SPHINCS+
implementation from [19] was used as a reference.
This work has used self-signed certificates a. The X.509
standard, specified in [45] defines the format of public key
certificates. For certificate files, the Privacy-Enhanced Mail
(PEM) format, formalized in[46] is used. The implementation
process also included the development of benchmarking
applications and libraries. The rest of this section briefly
explains the architecture of the testbeds and the experimental
techniques used.

1) Raspberry Pi Client Testbed
This testbed uses two Raspberry Pi 3b+ devices linked directly
with a Cat5e Ethernet Cable. One device is configured to act
as a server, while the other acts as a client. Each Raspberry Pi
has the 64-bit version of Raspberry Pi OS installed and for
software development may connect to the internet using the

device’s built-in Wi-Fi. As the Pi has an operating system that
includes features for networking, text editing, compiling
software, and a terminal for executing programs, all
benchmarking is internal to the Raspberry Pi for both server
and client. For power measurements, additional setups were
required to allow the use of the multi-meter, which can only
be controlled by a device with a supported operating system
(Windows or Ubuntu). Therefore, an x86 Linux machine
running Ubuntu was used for data collection and control flow
management throughout, the machine triggered the start and
stop of a handshake cycle, and the collection of power
measurement, using a Python script written for this purpose.
A diagram of the power measurement experimental setup is
shown in Figure 2. The device on the test is connected to the
multi-meter via the front measurement inputs. We have
spliced into a power supply for a pi 3b+ to do this.
The Linux machine connects to a USB port on the back of the
multi-meter to control it. It sends SCPI commands to the
multi-meter to start or stop the logging function. The multi-
meter outputs its recordings to a USB drive using another USB
port on the front.

FIGURE 2. Power Measurements Testbed Experimental Setups for a Raspberry Pi 3b+ Client

11 https://github.com/KULeuven-COSIC/SABER

VOLUME XX, 2017 3

2) Constrained IoT Device Testbed
The constrained hardware testbed has a more complex setup.
The Raspberry Pi Pico W has no on-chip debugger and must
use an external device and the Serial Wire Debug (SWD)12
port for hardware debugging. The external device also acts as
a slave UART RX/TX signal between the host serial debugs
terminal and Pico W’s outputs. The Picoprobe setup uses an
additional Raspberry Pi Pico device which has been flashed
with binary programming to act as a hardware debugger. The
picoprobe binary13 is written as a branch of OpenOCD14, the
Open-source On-Chip Debugger that acts as an intermediary
between embedded device and host debugging software.
OpenOCD provides the control signals for the Picoprobe to
interface with the Pico W’s SWD Port for flashing the Pico W
with a binary, setting breakpoints, communicating debug
symbols, and interfacing with device memory. The
Picoprobe’s USB output is connected to a host device that is
executing an instance of the GNU Debugger (GDB)15
initialized to interface with the Picoprobe device through
USB. The host device may also interface with the Pico W

through the Picoprobe’s UART port using a serial terminal on
the host device. This serial terminal is used to receive terminal
and statistical output from the Pico W when benchmarking is
taking place. The picoprobe wiring diagram is shown in
Figure 3.

FIGURE 3. Pico-probe Wiring Diagram

For power measurement using the constrained testbed, a
similar setup to what was depicted in Figure 2 was used, as
shown in Figure 4.

FIGURE 4. Power Measurements Testbed Experimental Setups for a Raspberry Pi Pico W Client

12 https://developer.arm.com/documentation/101761/0100/Debug-
and-trace-interface/Serial-Wire-

13 https://github.com/raspberrypi/picoprobe

14 https://openocd.org/

8 VOLUME XX, 2017

IV. EVALUATION

For This section explains the rationale of the experiments
conducted in this study and outlines the results from the two
testbeds discussed in section 4.

A. Design of Experiments
Two sets of experiments were carried out. The goal of the first
group of tests is to compare the performance, energy, and
memory usage of the newly developed public key algorithms
with existing solutions based on Elliptic curves systems, as
well as, with alternative schemes based on the use of quantum
secure symmetric ciphers such as AES 256. These
experiments were performed using the testbed with Raspberry
Pi client, as all the studied algorithms have implementation
support for this platform. The server and client were
connected using an Ethernet cable to avoid WiFi-related
latency fluctuations. The same configuration was used for the
symmetric scheme.
The goal of the second set of tests is to investigate the
feasibility of implementing the new public key algorithms on
the resource-constrained device. This was performed using the
constrained IoT device testbed as outlined above, wherein the
devices were connected using the local WIFI network, as the
Pico W has no Ethernet capabilities.

B. Results for the Raspberry Pi Client Testbed
To perform a comprehensive comparison between available
solutions for quantum-resilient cryptographic algorithms, all
possible combinations of newly developed key encapsulation
mechanisms and digital signature schemes were implemented
and evaluated. In each case, latency, memory usage, and
energy dissipation were calculated as explained in section 4.

1) Latency
Figures 5 and 6 show the overall latency of a complete TLS
handshake on the client and server, respectively. This was
estimated by measuring the time required to complete the
TLS-related operation on each node. The sum of latencies on
the client and server sides is the total time needed for a
complete handshake cycle.
The y-axis is grouped according to KEMs, showing Saber,
Kyber, and ECDHE. Each bar represents a DS, including
Dilithium, Sphincs+, and ECDSA. The number next to each
algorithm name represents the security level of the
implementation used according to Table 2. For readability, the
scale in these two graphs is logarithmic, and units are in
milliseconds.
The latency estimations include all communication and
computational tasks. The latency figures use the mean value
of all performed measurements. The standard deviation results
for all schemes ranged between 8-10%.

FIGURE 5. TLS Handshake Latency on the Raspberry Pi 3b+ (Client)

FIGURE 6. TLS Handshake Latency on the Raspberry Pi 3b+ (Server)

The first significant insight from the above figures is that most
schemes constructed using newly developed post-quantum
public key algorithms cause significantly less latency
compared to conventional systems based on the use of elliptic
key cryptography. This is partly because key agreement using
ECDHE uses Diffie-Hellman key exchange, while the other
algorithm uses a key encapsulation mechanism instead, which
has less delay. The only exception is the schemes that use
Sphinx algorithms for digital signature due to the complexity
of its computation. The results also show that the Kyber1-
Dilithium2 scheme yields the best performance on both the
client and server sides.
Table 6 below gives more insights into the performance
overheads associated with key encapsulation algorithms being
considered, it includes the latency associated with the TLS
computation tasks of these schemes, at the client and server
sides. These figures show that Kyber 1 has the best
performance among the newly proposed public key
algorithms, while Saber5 incurs the largest delay. In the same
Table, we can also see that the increase in security levels for
the PQ KEM leads to more latency, which is consistent with
the fact that computational overheads are typically higher for
schemes with a higher level of security. When comparing

1

10

100

1000

10000

Dilithium2 Dilithium3 Dilithium5 Sphincs1 ECDSA

La
en

cy
 (m

s)

Kyber1 Kyber3 Kyber5 Saber1

1.00

10.00

100.00

1000.00

10000.00

Dilithium2 Dilithium3 Dilithium5 Sphincs1 ECDSA

La
en

cy
 (m

s)

Kyber1 Kyber3 Kyber5 Saber1 Saber3 Saber5 ECDHE

8 VOLUME XX, 2017

Kyber and Saber together it is shown that Kyber takes on
average a shorter amount of time to run its algorithm
Note, that the ECDHE has not been included in Table 5
because it doesn't apply here.

TABLE VI
 COMPARATIVE ANALYSIS OF LATENCY OF KEY

ENCAPSULATION SCHEMES IN TLS

Algorith
m

 Latency (milliseconds)

Key
Encapsulatio
n (Client)

Key
Decapsulatio
n
(Server)

Key
Generatio
n (Server)

Kyber1 2.68 2.4 1.57
Kyber3 4.52 3.93 2.78
Kyber5 6.88 5.44 4.15
Saber1 6.62 6.12 3.34
Saber3 11.99 10.45 6.52
Saber5 14.99 15.97 10.98

Table 7 compares the performance overhead associated with
the digital signature schemes being considered. it includes the
latency associated with the TLS signature verification step on
the client and server sides. The results demonstrate that
Sphinics1-based verification consumes significantly more
time than all other schemes combined, this is because of
computational complexity.

TABLE VII
 COMPARATIVE ANALYSIS OF LATENCY OF SIGNATURE

VERIFICATION IN TLS

Algorithm Latency (milliseconds)

Signatures
Verification
(Client)

Signatures
Verification
(Server)

Dilithium2

4.78
14.46

Dilithium3

8.37
24.35

Dilithium5

9.63
28.49

Sphincs1

241.21
1749.3

ECDSA

81.1
42.63

The last consideration for latency is between the computation
time and the overall handshake latency. This allows for a
comparison between the sources of latency for specific
algorithms. The communication overhead is determined by the
difference between the values for the sum of all computational
tasks and overall handshake latency.

For all cipher suites except the ones containing a conventional
ECC algorithm, the sum of computation latency is a fraction
of the total latency. This observation indicates that overall
latency post-quantum KEMs in a TLS handshake is mostly
determined by bandwidth requirements as opposed to
computation.
2) Memory Usage
Figures 7 and 8 show the memory heap usages for the TLS-
based handshake on the client and server, respectively. The y-
axis is grouped according to KEMs, showing Saber, Kyber,
and ECDHE. Each bar represents a DS, including Dilithium,
Sphincs+, and ECDSA
A clear pattern for the heap usage can be deduced from these
results, where the schemes that employ Dilithium level 1 have
the lowest usage, and those using SPHINCS+ have the highest
usage, with the only exception being ECDHE where the
lowest value is for ECDSA. ECDHE in combination with
Dilithium uses about twice as much heap compared with all
the other KEM, using between 23K and 28K, while the highest
recorded values between the other algorithm are 11K and 16K
as can be seen in Figure 7. In the same graph, we can also see
that the increase in security levels for the PQ KEM is directly
related to a slight rise in heap usage. The results from the
server side in Figure 8 have similar trends.

FIGURE 7. Memory Heap Usage for a TLS Handshake (Client)

FIGURE 8. Memory Heap Usage for a TLS Handshake (Server)

0

10

20

30

40

Dilithium2 Dilithium3 Dilithium5 Sphincs1 ECDSA

M
em

or
y

U
sa

ge
 (K

ilo
 B

yt
es

)

Kyber1 Kyber3 Kyber5 Saber1

Saber3 Saber5 ECDHE

0
20
40
60
80

100
120

Dilithium2 Dilithium3 Dilithium5 Sphincs1 ECDSA

M
em

or
y

U
sa

ge
 (K

ilo
 B

yt
es

)

Kyber1 Kyber3 Kyber5
Saber1 Saber3 Saber5
ECDHE

8 VOLUME XX, 2017

Figures 9 and 10 show the memory stack usages for the TLS-
based handshake on the client and server, respectively. The
amount of stack used is closely related to the digital signature
scheme, as there is little to no change between the different
KEMs. The only exception to this rule is the classic ECDSA,
where the stack increases with the security level of the
encapsulation methods. Overall, there is a clear trend where
ECDSA has the lowest stack usage followed by SPHINCS+,
Dilithium levels 1, 3, and 5. This pattern can also be noticed
in the Open Quantum Safe PQC profiling results in 16

FIGURE 9. Memory Stack Usage for a TLS Handshake (Client)

FIGURE 10. Memory Stack Usage for a TLS Handshake (Server)

3) Energy Dissipation
This was estimated by measuring the power consumption for
consecutive TLS handshakes and computing the average
energy over the measurement time. The results shown in
Figures 11 and 12 confirm the previous trend, with kyber1-
Dilithium 2 being the most energy efficient, while the use of
the Sphinics1 digital signatures scheme consistently leads to
more energy dissipation for all KEMs being considered. There
are slight variations between the client and the server sides,
but the overall trend is the same. An algorithmic scale is also
used in these two figures for better readability.

16 https://openquantumsafe.org/benchmarking/visualization/memsig.html

FIGURE 11. Energy Dissipation for a TLS Handshake (Client)

FIGURE 12. Energy Dissipation for a TLS Handshake (Server)

C. Results for the Constrained IoT Client Testbed

To evaluate the feasibility of implementing newly developed
public key algorithms on constrained IoT devices. All possible
combinations of key encapsulation mechanisms and digital
signature schemes were implemented on this testbed. The
focus, in this case, is to assess the latency and energy
dissipation on the client side, as this is likely to be battery-
operated with limited computational resources. The device
used as a server was the same as the first testbed, so its
corresponding results were not included as they did not
provide any additional insights into what was already
discussed previously.

1) Latency
Figure 13 shows the overall latency of a complete TLS
handshake. These include all communication and
computational tasks. The latency figures use the mean value
of all performed measurements. The standard deviations were
larger (up to 30%) in this experiment due to WiFi fluctuations.

0
20
40
60
80

100
120

Dilithium2 Dilithium3 Dilithium5 Sphincs1 ECDSA

M
em

or
y

U
sa

ge
 (K

ilo
 B

yt
es

)

Kyber1 Kyber3 Kyber5 Saber1

Saber3 Saber5 ECDHE

0

50

100

150

Dilithium2 Dilithium3 Dilithium5 Sphincs1 ECDSA

M
em

or
y

U
sa

ge
 (K

ilo
 B

yt
es

)

Kyber1 Kyber3 Kyber5 Saber1

Saber3 Saber5 ECDHE

0.01

0.10

1.00

10.00

Dilithium2 Dilithium3 Dilithium5 Sphincs1 ECDSA

En
er

gy
 (J

)

Kyber1 Kyber3 Kyber5 Saber1

Saber3 Saber5 ECDHE

0.0100

0.1000

1.0000

10.0000

Dilithium2Dilithium3Dilithium5 Sphincs1 ECDSA

En
er

gy
 (J

)

Kyber1 Kyber3 Kyber5 Saber1

Saber3 Saber5 ECDHE

8 VOLUME XX, 2017

FIGURE 13. TLS Handshake Latency on the Raspberry Pico W (Client)

The above results show that the TLS handshake takes
significantly longer to complete compared to the time required
by an un-constrained client.
The trend observed previously still holds here with schemes
that use Sphinics1 as a digital signature algorithm having the
largest latency, and the kyber1-Dilithuim 2 scheme being the
most performant.
Table 8 below gives more insight into the performance
overhead associated with key encapsulation algorithms being
considered. These figures show that Kyber 1 has the best
performance among the newly proposed public key
algorithms, while Saber5 incurs the largest delay. These
findings are consistent with the results from the Raspberry Pi
3b client testbed.

TABLE VIII
 COMPARATIVE ANALYSIS OF LATENCY OF KEY

ENCAPSULATION SCHEMES IN TLS FOR THE RASPBERRY PI PICO
W CLIENT

Algorithm Latency (milliseconds) of

Key Encapsulation at the
Client

Kyber1 19.43
Kyber3 33.19
Kyber5 51.54
Saber1 23.23
Saber3 42.14
Saber5 66.23

Table 11 compares the performance overhead associated with
the TLS signature verification step on the client side. Again,
on the Pi 3b+, it takes Sphincs1 longer to run. The large
magnitude of the latencies for these DSs takes up a large
proportion of the overall latency time, hence being the more
important of the two algorithms when timings are considered.
Dilithium consistently provides a faster signature verification,

likely due to its smaller signature size. This is reflected both
on the Pico W and the Pi 3b+.

TABLE IX

COMPARATIVE ANALYSIS OF LATENCY OF SIGNATURE
VERIFICATION IN TLS KEY ENCAPSULATION SCHEMES IN TLS

FOR THE RASPBERRY PI PICO W CLIENT

Algorithm Signatures Verification
(Client)

Dilithium2

42.4

Dilithium3

68.9

Dilithium5

113.7

Sphincs1

2908.8

ECDSA

2454.2

2) Energy Dissipation
This was estimated by measuring the power consumption for
consecutive TLS handshakes and computing the average
energy over the measurement time. The results shown in
figures 11 and 12 confirm the previous trend, with kyber1-
Dilithium 2 being the most energy efficient, while the use of
Sphinics1 digital signatures schemes consistently leads to
more energy dissipation for all KEMs being considered.

FIGURE 14. Energy Dissipation for a TLS Handshake of a Raspberry Pi Pico
W Client

V. CONCLUSIONS

The fast-paced development of quantum computing
technology has driven the need for new public key
cryptographic algorithms that are resilient to quantum-
computer-based attacks. This is essential to maintain the
security of key establishment and digital signature schemes,
which are core elements of all digital infrastructure. The

0.00
5000.00

10000.00
15000.00
20000.00
25000.00

La
en

cy
 (m

s)

Kyber1 Kyber3 Kyber5 Saber1

Saber3 Saber5 ECDHE

0.01

0.1

1

Dilithium2 Dilithium3 Dilithium5 Sphincs1 ECDSA

En
er

gy
 (J

)

Kyber1 Kyber3 Kyber5 Saber1

Saber3 Saber5 ECDHE

8 VOLUME XX, 2017

National Institute of Standards and Technology (NIST) is
leading the process of developing new post-quantum public
key algorithm standards. This work has developed two
testbeds to investigate the energy and computational costs of
all proposed quantum computer attack-resilient schemes. The
first testbed aimed to perform a comparative analysis between
available solutions, including the classical elliptic curve-based
scheme. To achieve this, a server-client configuration was
used to measure and calculate the latency, memory usage, and
energy dissipation for a key agreement cycle. The results have
shown that a TLS handshake based on post-quantum public
key algorithms can be faster and consume less memory and
computation resources, compared to an existing TLS scheme
that uses elliptic key cryptography (ECDHE-ECDSA). This is
because conventional schemes adopt a Diffie-Helman key
exchange that incurs more latency than the key encapsulation
mechanism adopted by the post-quantum algorithms.
 Kyber level 1 and Dilithium level 2 were found to be the most
efficient key encapsulation mechanism and digital signature
scheme respectively.
The goal of the second testbed was to investigate the feasibility
of implementing post-quantum public key algorithms on a
resource-constrained device. A Raspberry Pi Pico W was
chosen as its hardware architecture is typical of such devices.
The work has demonstrated these new schemes can run on
highly resource-constrained embedded networked devices.
Extensive measurements and analysis on the constrained
client for many different benchmarks as well as relative
performances between the Raspberry Pi Pico W and the
Raspberry Pi 3b+ were also presented. The results have shown
that the constrained device has significantly larger latency,
however, their relative performance was very similar to the
Raspberry Pi 3b+ client. Overall, The results of the evaluation
have shown that Kyber1-Dilithuim-2 is the most resource-
efficient solution, it outperforms all other PQC algorithms,
including the current scheme that uses elliptic curve
cryptography. Our study has also shown the digital signature
scheme Sphinx+ is associated with significant latency and
energy costs so may not be suitable for IoT-type devices.
Future work will consider research challenges associated with
the adoption of these new algorithms and its integration with
existing Internet standards and other applications of public key
cryptography such as cryptocurrencies, digital certificates, and
virtual private networks.

REFERENCES

[1] U. S. D. o. Commerce, "Recommendation for Pair-Wise Key

Establishment Schemes Using Integer Factorization
Cryptography: NIST SP 800-56B Rev. 2," National Institute of
Standards and Technology, Gaithersburg, 2019.

[2] U. S. D. o. Commerce, "Recommendation for Pair-Wise Key-
Establishment Schemes Using Discrete Logarithm
Cryptography," National Institute of Standards and Technology,
Gaithersburg, 2018.

[3] M. Mumtaz and L. Ping, "Forty years of attacks on the RSA
cryptosystem: A brief survey," Journal of Discrete

Mathematical Sciences and Cryptography, vol. 22, no. 1, pp. 9-
29, 2019.

[4] P. W. Shor, "Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer," SIAM Review,
vol. 41, no. 2, pp. 303-332, 1999.

[5] V. Hassija et al., "Present landscape of quantum computing,"
IET Quantum Communication, vol. 1, no. 2, pp. 42-48, 2020,
doi: https://doi.org/10.1049/iet-qtc.2020.0027.

[6] D. Stebila and M. Mosca, "Post-quantum key exchange for the
Internet and the open quantum-safe project," in Selected Areas
in Cryptography–SAC 2016: 23rd International Conference, St.
John's, NL, Canada, August 10-12, 2016, Revised Selected
Papers, 2017: Springer, pp. 14-37.

[7] A. O. Ménard, I.; Patel, M.; Volz, D., "A game plan for quantum
computing. ," McKinsey Q. 2020, 7–9. . [Online]. Available:
https://www.mckinsey.com/business-functions/mckinsey-
digital/our-insights/a-game-plan-for-quantum-computing
(accessed on 8 August 2023).

[8] "NIST Released NISTIR 8105, Report on Post-Quantum
Cryptography," National Institute of Standards and Technology
United States, 2016. [Online]. Available:
https://csrc.nist.gov/News/2016/NIST-Released-NISTIR-8105,-
Report-on-Post-Quantum

[9] L. S. Vailshery, "Number of Internet of Things (IoT) connected
devices worldwide from 2019 to 2021, with forecasts from 2022
to 2030," Transforma Insights, 2020. [Online]. Available:
https://www.statista.com/statistics/1183457/iot-connected-
devices-worldwide/

[10] J. Barton, N. Pitropakis, W. Buchanan, S. Sayeed, and W.
Abramson, "Post-quantum cryptography analysis of TLS
tunneling on a constrained device," 2022.

[11] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu,
"Practical CCA2-secure and masked ring-LWE
implementation," Cryptology ePrint Archive, 2016.

[12] S. Ebrahimi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani,
"Post-quantum cryptoprocessors optimized for edge and
resource-constrained devices in IoT," IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 5500-5507, 2019.

[13] J. Hu, M. Baldi, P. Santini, N. Zeng, S. Ling, and H. Wang,
"Lightweight key encapsulation using LDPC codes on FPGAs,"
IEEE Transactions on Computers, vol. 69, no. 3, pp. 327-341,
2019.

[14] Y. Kim, J. Song, and S. C. Seo, "Accelerating Falcon on
ARMv8," IEEE Access, vol. 10, pp. 44446-44460, 2022.

[15] E. Rescorla, "Diffie-hellman key agreement method," 2070-
1721, 1999.

[16] T. Saito, K. Xagawa, and T. Yamakawa, "Tightly-secure key-
encapsulation mechanism in the quantum random oracle model,"
in Advances in Cryptology–EUROCRYPT 2018: 37th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3,
2018 Proceedings, Part III 37, 2018: Springer, pp. 520-551.

[17] M. Schöffel, F. Lauer, C. C. Rheinländer, and N. Wehn, "On the
energy costs of post-quantum KEMs in TLS-based low-power
secure IoT," in Proceedings of the International Conference on
Internet-of-Things Design and Implementation, 2021, pp. 158-
168.

[18] S. Sarıbaş and S. Tonyalı, "Performance Evaluation of TLS 1.3
Handshake on Resource-Constrained Devices Using NIST's
Third Round Post-Quantum Key Encapsulation Mechanisms and
Digital Signatures," in 2022 7th International Conference on
Computer Science and Engineering (UBMK), 2022: IEEE, pp.
294-299.

[19] K. Bürstinghaus-Steinbach, C. Krauß, R. Niederhagen, and M.
Schneider, "Post-quantum tls on embedded systems: Integrating
and evaluating kyber and sphincs+ with mbed tls," in
Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security, 2020, pp. 841-852.

[20] P. Schwabe, D. Stebila, and T. Wiggers, "Post-quantum TLS
without handshake signatures," in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1461-1480.

https://doi.org/10.1049/iet-qtc.2020.0027
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/a-game-plan-for-quantum-computing
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/a-game-plan-for-quantum-computing
https://csrc.nist.gov/News/2016/NIST-Released-NISTIR-8105,-Report-on-Post-Quantum
https://csrc.nist.gov/News/2016/NIST-Released-NISTIR-8105,-Report-on-Post-Quantum
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

8 VOLUME XX, 2017

[21] F. Borges, P. R. Reis, and D. Pereira, "A Comparison of Security
and its Performance for Key Agreements in Post-Quantum
Cryptography," IEEE Access, vol. 8, pp. 142413-142422, 2020,
doi: 10.1109/ACCESS.2020.3013250.

[22] R. J. McEliece, "A public-key cryptosystem based on algebraic,"
Coding Thv, vol. 4244, pp. 114-116, 1978.

[23] L. Lamport, "Constructing digital signatures from a one way
function," 1979.

[24] J. Hoffstein, J. Pipher, and J. H. Silverman, "NTRU: A ring-
based public key cryptosystem," in Algorithmic Number Theory:
Third International Symposium, ANTS-III Portland, Oregon,
USA, June 21–25, 1998 Proceedings: Springer, 2006, pp. 267-
288.

[25] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren,
"Saber: Module-LWR based key exchange, CPA-secure
encryption and CCA-secure KEM," in Progress in Cryptology–
AFRICACRYPT 2018: 10th International Conference on
Cryptology in Africa, Marrakesh, Morocco, May 7–9, 2018,
Proceedings 10, 2018: Springer, pp. 282-305.

[26] H. Hasse, "Zur Theorie der abstrakten elliptischen
Funktionenkörper III. Die Struktur des Meromorphismenrings.
Die Riemannsche Vermutung," 1936.

[27] W. Castryck and T. Decru, "An efficient key recovery attack on
SIDH (preliminary version)," Cryptology ePrint Archive, 2022.

[28] A. Langlois and D. Stehlé, "Worst-case to average-case
reductions for module lattices," Designs, Codes and
Cryptography, vol. 75, no. 3, pp. 565-599, 2015.

[29] R. Avanzi et al., "CRYSTALS-Kyber: Algorithm specifications
and supporting documentation (2020)," URL: https://web.
archive. org/web/20211007045636/https://pqcrystals.
org/kyber/data/kyber-specification-round3. pdf. Citations in this
document, vol. 1, no. 1.1, p. 1.1.

[30] X. S. W. G. F2F, "Key Encapsulation: A New Scheme for
Public-Key Encryption," 2009. [Online]. Available:
http://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-
0032/Key_Encapsulation.pdf

[31] H. Niederreiter, "Knapsack-type cryptosystems and algebraic
coding theory," Prob. Contr. Inform. Theory, vol. 15, no. 2, pp.
157-166, 1986.

[32] A. Vambol, V. Kharchenko, O. Potii, and N. Bardis, "Post-
Quantum Network Security: McEliece and Niederreiter
Cryptosystems Analysis and Education Issues," WSEAS
Transactions on Systems and Control, vol. 15, pp. 627-634,
2020.

[33] D. Engelbert, R. Overbeck, and A. Schmidt, "A summary of
McEliece-type cryptosystems and their security," Journal of
Mathematical Cryptology, vol. 1, no. 2, pp. 151-199, 2007.

[34] A. Kuznetsov, M. Lutsenko, M. Bagmut, and V. Zhora,
"Performance Evaluation of the Classic McEliece Key

Encapsulation Algorithm," in 2021 11th IEEE International
Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS),
2021, vol. 2: IEEE, pp. 755-760.

[35] V. Lyubashevsky et al., "Crystals-dilithium," Algorithm
Specifications and Supporting Documentation, 2020.

[36] T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi, "Side-
channel attacks on BLISS lattice-based signatures: Exploiting
branch tracing against strongswan and electromagnetic
emanations in microcontrollers," in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1857-1874.

[37] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J.
Rijneveld, and P. Schwabe, "The SPHINCS+ signature
framework," in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, 2019, pp.
2129-2146.

[38] C. A. Roma, C.-E. A. Tai, and M. A. Hasan, "Energy Efficiency
Analysis of Post-Quantum Cryptographic Algorithms," IEEE
Access, vol. 9, pp. 71295-71317, 2021.

[39] K. Hines et al., "Post-Quantum Cipher Power Analysis in
Lightweight Devices," in Proceedings of the 15th ACM
Conference on Security and Privacy in Wireless and Mobile
Networks, 2022, pp. 282-284.

[40] R. Kuang, M. Perepechaenko, R. Toth, and M. Barbeau,
"Benchmark Performance of a New Quantum-Safe Multivariate
Polynomial Digital Signature Algorithm," in 2022 IEEE
International Conference on Quantum Computing and
Engineering (QCE), 2022: IEEE, pp. 454-464.

[41] D. S. a. M. Mosca., " Post-Quantum Key Exchange for the
Internet and

the Open Quantum Safe Project," 2017.
[42] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,

"pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-
M4," 2019.

[43] B. Halak, Y. Yilmaz, and D. Shiu, "Comparative analysis of
energy costs of asymmetric vs symmetric encryption-based
security applications," IEEE Access, vol. 10, pp. 76707-76719,
2022.

[44] A. B. Ventosa, "Secure IoT for the Future," Universitat
Politècnica de Catalunya. Escola Tècnica Superior
d'Enginyeria …, 2020.

[45] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, "Internet X. 509 public key infrastructure certificate
and certificate revocation list (CRL) profile," 2070-1721, 2008.

[46] S. Josefsson and S. Leonard, "Textual encodings of PKIX,
PKCS, and CMS structures," 2070-1721, 2015.

BASEL HALAK is an Associate Professor of
secure electronics and the Director of the Cyber
Security Academy at the University of
Southampton. He is a Visiting Scholar with the
Technical University of Kaiserslautern, an
Industrial Fellow of the Royal Academy of
Engineering, a Senior Fellow of the Higher
Education Academy, and a National Teaching
Fellow of Advance HE U.K. He has published
more than 100 refereed conference and journal
papers and authored five books on the security and

reliability of electronic devices and systems. His research interests include
hardware security, digital design, and embedded systems. He is with several
technical program committees, such as HOST, IEEE DATE, DAC, IVSW,
ICCCA, ICCCS, MTV, and EWME. He is a member of the Hardware
Security Working Group of the World Wide Web Consortium (W3C). He is
an Associate Editor of IEEE ACCESS and the Editor of the IET Circuits,
Devices, and Systems.

THOMAS GIBSON received a B.Sc. degree in electronics and computer
engineering from the University of Southampton, U.K., in 2021, where he
is currently pursuing a postgraduate degree in computer engineering. His
research interests include embedded system security and cryptography.

MILLICENT HENLEY received a B.Sc. degree in electronics and
computers from the University of Southampton, U.K., in 2021, where she is
currently pursuing a postgraduate degree in computer engineering. her
research interests include embedded systems and security.

CRISTIN-BIANCA BOTEA received a B.Sc. degree in electronics and
computers from the University of Southampton, U.K., in 2021, where she is
currently pursuing a postgraduate degree in computer engineering. Her
research interests include embedded system security and cryptography.

BENJAMIN HEATH received a B.Sc. degree in electronics and computers
from the University of Southampton, U.K., in 2021, where he is currently
pursuing a postgraduate degree in computer engineering. His research
interests include embedded systems and Internet of Things technologies.

https://web/
https://pqcrystals/
http://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf
http://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf

8 VOLUME XX, 2017

Sayedur Khan received a B.Sc. degree in electronics and computers from
the University of Southampton, U.K., in 2021, where he is currently
pursuing a postgraduate degree in computer engineering. His research
interests include embedded systems and Internet of Things technologies.

	1) A key Exchange Scheme such as Diffie Hellman protocol[15], where two parties wanting to communicate generate ephemeral key pairs sign their ephemeral public key with their static private key and then send their signed ephemeral public key to each o...
	2) A key encapsulation method (KEM)[16] is a scheme with public and private keys, where a sender uses the public key of an intended receiver to create a ciphertext (encapsulation) containing a randomly chosen symmetric key. The ciphertext can then be ...
	1) Post-Quantum Public Key Algorithms
	a) Code-Based
	b) Hash-Based
	c) Lattice-Based
	d) Super Singular Elliptic Curve Isogeny

	2) NIST-Post Quantum Algorithms for Key Agreement
	a) CRYSTALS-KYBER
	b) Classic McEliece
	c) Alternate Candidates

	3) NIST-Post Quantum Algorithms for Digital Signatures
	a) CRYSTALS-Dilithium
	b) FALCON
	c) SPHINCS+

	1) NIST Security Level Definitions
	2) Performance Comparison
	3) Energy Consumption Comparison
	1) Metrics
	a) Latency refers to the time it takes to complete a specific operation. The latter is either a complete handshake protocol required to establish a secure connection, or one of its steps (e.g., verification of a digital signature, key encapsulation). ...

	2) Data Collection Process
	1) Raspberry Pi Client Testbed
	2) Constrained IoT Device Testbed
	1) Latency
	2) Memory Usage
	3) Energy Dissipation
	1) Latency
	2) Energy Dissipation

