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Groups acting on Graphs: Their Automorphisms and their Length Functions

by Matthew Peter Collins

Actions on trees are powerful tools for understanding the structure of a group and its
automorphisms. In this thesis, we generalise several existing results in this field to
larger classes of groups.

This is a three paper thesis; the main body of the work is contained in the following
papers:

[1] Matthew Collins. Fixed points of irreducible, displacement one automorphisms of free
products. Preprint, May 2023, available at arXiv:2305.01451.

[2] Matthew Collins. Growth and displacement of free product automorphisms. Preprint, July
2023, available at arXiv:2307.13502.

[3] Matthew Collins and Armando Martino. Length functions on groups and actions on graphs.
Preprint, July 2023, available at arXiv:2307.10760.

In [1], we prove that an irreducible, growth rate 1 automorphism of a free product fixes
a single point in outer space. This can be thought of as a generalisation of Dicks &
Ventura’s classification of the irreducible, growth rate 1 automorphisms of free groups.

It is well known for an irreducible free group automorphism that its growth rate is
equal to the minimal Lipschitz displacement of its action on Culler-Vogtmann space.
This follows as a consequence of the existence of train track representatives for the
automorphism. In [2], we extend this result to the general - possibly reducible - case as
well as to the free product situation where growth is replaced by ‘relative growth’.

In [3], we study generalisations of Chiswell’s Theorem that 0-hyperbolic Lyndon length
functions on groups always arise as based length functions of the group acting isomet-
rically on a tree. We produce counter-examples to show that this Theorem fails if one
replaces 0-hyperbolicity with δ-hyperbolicity. We then propose a set of axioms for the
length function on a finitely generated group that ensures the function is bi-Lipschitz
equivalent to a (or any) length function of the group acting on its Cayley graph.
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1

Introduction

In this introduction we provide background material and context for the three papers
that form the main body of the thesis. Note that the ordering of the papers within the
thesis does not reflect publication or posting dates but rather the order I worked on
them during my PhD.

Papers 1 and 2 are single author papers; Paper 3 is a joint paper with Armando Martino
(my supervisor).

I wrote the majority of the first draft of Paper 3; the remaining statements and proofs
were formulated and improved together over the course of several meetings. (For ex-
ample, Armando wrote the final version of Proposition 3.7, whereas I wrote the final
version of Theorem 4.8)

All three papers are concerned with the action of groups on metric graphs, and the
main result of each paper is a generalisation of an existing result applied to a larger
class of groups. Papers 1 and 2 revolve around Bass–Serre theory, making use of the
duality between a G-tree and its quotient graph of groups. Paper 3 is more concerned
with the metric on these trees - specifically the conditions required for a group to admit
a “graph-like” length function.

Sections 1 to 7 of this introduction cover the required background material for this
thesis. Afterwards we have three sections devoted to explaining the original results of
each paper, and a small section where we discuss some open questions arising from
them. After the introduction, we give the three papers themselves.

1 Groups

Let X be a set. A group FpXq is said to be the free group on X if there exists a map
ι : X ÝÑ FpXq (the inclusion map) such that, for any group H and any function
f : X ÝÑ H there exists a unique homomorphism ϕ : FpXq ÝÑ H such that
f pxq � ϕ � ιpxq, @x P X. This behaviour can be represented by the following commuta-
tive diagram:
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X FpXq

H

ι

f
D!ϕ

This defining property of free groups is called the universal property.

Alternatively, and perhaps more usefully for our purposes, there is a common construc-
tion of free groups which can itself serve as a definition. We say that X is an alphabet,
and by a word in X we mean a string ξ1 . . . ξw for some ξ1, . . . , ξk P X. A word can be
reduced by removing a pair ξξ�1 or ξ�1ξ for some ξ P X, and a reduced word is a word
which contains no such pairs. We count the trivial word, denoted by 1, as a reduced
word. It can be shown that every word can be turned into a unique reduced word by
applying a series of reductions - thus we can think of FpXq as the group of reduced
words, where we take the operation to be concatenation followed by reduction.

It is a well-known theorem that two free groups FpXq, FpYq are isomorphic if and only
if |X| � |Y|. Thus, when |X| � r P Z, we write Fr to denote the free group of rank r.

The concept of free groups leads naturally into that of free products, which can also be
defined using a universal property:

Let tGαu be a family of groups. A group �Gα is said to be the free product of the family
tGαu if there exist (inclusion) maps ια : Gα ÝÑ F such that, for any group H and
any family of homomorphisms ϕα : Gα ÝÑ H there exists a unique homomorphism
ψ : FpXq ÝÑ H such that the following diagram commutes for all α.

Gα �Gα

H

ια

ϕα

D!ψ

Once again, there is a way to intuitively construct a free product. By a word in �Gα we
mean a string g1 . . . gk where each gi lies in some Gα. A word can be reduced by either

• removing an instance of the identity element of some Gα, or

• if two adjacent letters gi, gi�1 are from the same Gα, we replace the pair gigi�1

with its product in Gα.

Once again, it can be shown that every word can be turned into a unique reduced word
by applying a sequence of reductions. Thus we think of �Gα as the group of reduced
words, where we take the operation to be concatenation followed by reduction.

Papers 1 and 2 of this thesis are focused on taking existing results regarding free groups
- specifically in relation to their actions on trees - and generalizing them to free prod-
ucts.
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We will be focusing on free products of the form G1 � . . . � Gk � Fr, where k� r ¥ 1 and
where, if k ¥ 1, the Gi’s are non-trivial. If Fr is trivial, then we omit it from the notation.

Remark 1.1. We must acknowledge this free product’s similarity to the Grushko de-
composition:

Theorem 1.2. Any finitely generated group G can be decomposed as a free product
G � G1 � . . . � Gk � Fr, where the Gi are non-trivial, freely indecomposable and not infinite
cyclic, and Fr is a free group of rank r. Further, the Gi are unique up to conjugacy, and the rank
of Fr is unique.

This decomposition theorem is a well-known consequence of Grushko’s theorem on
the rank of free products [22, 24] and the Kurosh subgroup theorem; see for example
[27]. We, however, are not restricting ourselves to Grushko decompositions of groups.
The only condition we impose upon the Gi’s is non-triviality. This means that the valid
decompositions of a group are no longer unique.

In addition, if one of our Gi’s is itself a free group, then we can relabel it as the final
group Fr instead, and we consider this relabelled decomposition to be distinct from the
original because it gives rise to a different free factor system (See Example 5.13).

Example 1.3. Let G � xa, b, cy, a free group of rank 3. There are several possible decom-
positions of this group, including but not limited to:

• The trivial free product decomposition consisting of a single group G � xa, b, cy.
Since we adopt the convention that trivial free groups F0 are omitted from the
notation, this decomposition is actually two different decompositions in disguise:

– We can take k � 1 and r � 0 - so G1 � xa, b, cy is the entire group, and F0 � 1
is omitted.

– Alternatively, we can take k � 0 and r � 3 - so F3 � xa, b, cy is the entire
group, and there are no Gi’s.

• The free product decomposition G � xay � xby � xcy. Since every group in this
decomposition is free, there are several different ways of labelling this decompo-
sition, such as:

– G1 � xay, G2 � xby, G3 � xcy - so k � 3, r � 0.

– G1 � xay, G2 � xby, F1 � xcy - so k � 2, r � 1.

– G1 � xay, F1 � xby, G2 � xcy - so k � 2, r � 1 once again, but this time we
have take a different free factor to be Fr.
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2 Graphs and trees

Graphs

The focus of papers 1 and 2 is the study of the actions of free products on metric trees.
There exist several definitions of trees and graphs in the literature. We shall use the one
attributed to Serre.

Definition 2.1. [8, p.113] A (Serre) graph Y consists of the following:

• Two disjoint sets VpYq and EpYq, called the vertex and edge sets of Y respectively.

• A function : EpYq Ñ EpYq, called involution, such that for all e P EpYq, e � e and
e � e.

• A function ι : EpYq Ñ VpYq, and another function τ : EpYq Ñ VpYq defined by
τe :� ιe. We call ιe the initial vertex of e, and τe the terminal vertex of e.

We say Y is finite if VpYq and EpYq are both finite.

A Serre graph is a combinatorial object, but one usually thinks of it geometrically as
a CW-complex. The vertices are 0-cells, the edge pairs are 1-cells, and ι and τ are
the attaching maps. When visualising a graph in this way, each element of the edge
pair te, eu corresponds to travelling in different directions along the corresponding 1-
simplex. Note that these CW-complexes are not necessarily simplicial complexes, since
they can contain looping edges or multiple edges between a single pair of vertices.

One can also think of a graph as a metric space by identifying each 1-simplex e with a
closed, non-trivial, real interval r0, Les and then taking the path metric. We say that Le

is the length of e, and we impose the condition that Le � Le for all e.

Remark 2.2. The te, eu notation is only useful to us when we are specifying the orienta-
tion of an edge, which is mostly restricted to our work on Bass-Serre Theory. If we are
only concerned with the length of our edges (for example, in Paper 3), we will generally
avoid writing e.

Definition 2.3.

• We say that an edge e is incident to a vertex v if ιe � v or τe � v.

• The valence or degree of a vertex v is the number of edges e such that ιe � v.
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Trees

Much of this thesis works with the metric spaces known as metric simplicial trees. These
are a type of graph, but one can define them without using Serre’s combinatorial struc-
ture:

Definition 2.4. An R-tree is a non-empty metric space in which any two points are
joined by a unique arc, and in which every arc is isometric to a closed interval in the
real line.

Definition 2.5. Let p be a point in a non-trivial R-tree T.

• p is called a branch point if T � p has three or more components.

• p is called regular if T � p has exactly two components.

• p is called external otherwise

Points which are not regular are called non-regular.

Definition 2.6. A metric simplicial tree is an R-tree whose set of non-regular points is
discrete.

Remark 2.7. A subset of a metric space is discrete if the subspace topology is the discrete
topology. One might instead define a metric simplicial tree as an R-tree with a global
lower bound on the distance between non-regular points. This is a stronger condition
than discreteness, but it is equivalent in the presence of an isometric, cocompact group
action.

This approach to building metric simplicial trees is a purely metric approach, with no
combinatorial structure. However, the structure of a Serre graph is a useful tool, so we
give an additional, second construction:

Definition 2.8. Given a Serre graph Y, we say an edge path is a sequence of edges e1 . . . en

in VpYq such that τei � ιei�1 for all 1 ¤ i ¤ n� 1.

A cycle is an edge path where in addition τen � ιe1.

A edge path or cycle is called reduced if no pair eiei�1 is of the form ee.

Definition 2.9. We say a Serre graph Y is connected if for every pair of vertices v � w in
VpYq, there is an edge path with ιe1 � v and τen � w.

Definition 2.10. A (Serre) forest is a graph with no cycles; a (Serre) tree is a connected
forest.
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To what degree are these two constructions equivalent? It is not hard to see that metric
Serre trees built in this way are R-trees as described in Definition 2.4; the external points
are the vertices of degree 1 (or 0, in the case of the trivial tree), the branch points are the
vertices of degree 3 or more, and all other points are regular. Furthermore, if the vertex
set of a metric Serre tree is discrete, then it will be a metric simplicial tree.

Definition 2.11. Let Y, Y1 be Serre graphs. A graph morphism from Y to Y1 is a continuous
map Y Ñ Y1 which sends vertices to vertices and edges to edges. A graph isomorphism
is a bijective graph morphism.

(The word “continuous” here implies that we are visualising our graphs as CW-complexes.)

Definition 2.12. Let X, X1 be metric spaces. An isometry from X to X1 is a map
f : X Ñ X1 such that for all x1, x2 P X, dXpx1, x2q � dX1p f px1q, f px2qq. An isomorphism
of metric spaces is a bijective isometry. If such a map exists, we say the two spaces are
isometric.

A metric simplical tree can be thought of as the underlying space of a 1-dimensional
simplicial complex, hence the name. This is in turn a 1-dimensional CW-complex, and
hence it is a Serre tree.

There are some natural ways to construct a simplicial structure on a metric simplicial
tree which will be covered in the next chapter. Crucially, however, this structure/Serre
tree is not unique. Given any Serre tree T, one may create a new Serre tree by subdi-
viding any edge pair and introducing a new vertex. Conversely, one may remove a
degree 2 vertex by combining two edges. Assuming one adjusts the edge lengths cor-
rectly, these operations produce trees which are isometric (as metric spaces) but not, in
general, isomorphic as graphs.

To put it another way, a “metric simplical tree” is simply a name we use to describe
an entire isometry class of metric Serre trees. If we want to talk about the edges and
vertices of a simplicial tree, we must choose a representative Serre tree from this iso-
morphism class. As we will show in the next chapter, the representative we choose will
be motivated by the action of a group on our simplicial tree.

3 Groups Acting on Graphs

Definition 3.1. Let G be a group, and let X be a set. We say that G acts on X on the right
if there exists a map X � G Ñ X, px, gq ÞÑ x � g such that for all x P X,

(i) x � 1 � x, and

(ii) @g, h P G, px � gq � h � x � gh
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The definition of a left action on X is similar; the only difference being the order of
composition of the group elements in (ii). Our notation will represent this by writing,
for example, g � x instead of x � g.

For the sake of brevity, we may omit the symbol � from the notation. Unless stated
otherwise, all our actions are assumed to be right actions.

Definition 3.2. Suppose G acts on a metric space X. We say this action is isometric if
@x, y P X, @g P G, dXpx, yq � dXpx � g, y � gq.

Suppose a group G acts isometrically on a metric simplicial tree T. As stated in the
previous chapter, every metric simplicial tree is isomorphic to a whole family of metric
Serre trees. Our goal here is to find which of these Serre trees has the structure which
is most “useful” for studying the action. We start by giving some of the properties we
find desirable:

Definition 3.3. Let Y be a Serre graph. A subgraph of Y is a graph Y1 such that
VpY1q � VpYq, EpY1q � EpYq, and such that for all e P EpY1q, we have e P EpY1q and
ιe, τe P VpY1q.

A subgraph is called a subforest if it is a disjoint union of Serre trees.

Every subgraph of a Serre tree is a subforest. A connected subforest of a Serre tree is
called a subtree.

Definition 3.4. Suppose G acts on a metric simplicial tree T, and suppose we have
chosen an isomorphic metric Serre tree whose structure we can apply to T.

• The action is said to be simplicial if it maps vertices to vertices and edges to edges.
(Equivalently, we can say that G acts via graph automorphisms)

• If no edge of T is sent to its inverse by any element of G, we say that G acts without
inversions.

• We say that both T and the action are minimal if T contains no proper, G-invariant
subtree.

• – Let x P T. The stabiliser stabpxq of x is defined to be the subgroup
tg | x � g � xu of G. More generally, given any subset A of T, we have
stabpAq � tg P G | A � g � Au. Note that this definition is setwise, not
pointwise; for an edge e of T the stabiliser of e is the subgroup which fixes e
but does not necessarily preserve the orientation of e.

– If every edge in T has trivial stabiliser, we say that T is edge-free.

– Let p be a vertex in T. If stabppq � 1, we say that p is free. Otherwise, it is
non-free.
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We would like our actions to be simplicial, without inversions, minimal and edge-free.

Let T be a metric simplicial tree acted upon by G. Then the “simplest” structure on T -
that is, the structure containing the fewest vertices - is obtained by defining the vertex
set to be the set of non-regular points of T. One then takes the edge set to be the set of
simple arcs between elements of the vertex set which do not contain any other vertices.

Using the simplest structure, the action of G on T is simplicial. However, some edges
may be sent to their inverses by elements of G. Future calculations will be easier if
we have an action without inversions, therefore we shall instead use the following
structure:

• We define the vertex set to be the set of non-regular points of T, together with the
midpoints of all the edges of the simplest structure which were inverted by an
element of G. We denote this vertex set by VpTq.

• We then define the edge set to be the set of simple arcs between elements of the
vertex set which do not contain any other vertices. We denote this edge set by
EpTq.

Essentially, we divide each inverted edge into two edges by placing a new vertex at
its midpoint. With this new structure the action is still simplicial and, in addition, it is
without inversions.

As for edge freeness - this is not a condition we can guarantee from our choice of sim-
plicial structure. It is a condition we will have to impose ourselves.

Definition 3.5. A G-tree is a triple pT, dT, �q, where T is a metric simplicial tree, dT is the
metric on T, and � is an isometric group action T � G Ñ T, px, gq ÞÑ x � g.

If the metric and action are obvious from context, we may choose to omit one or both
of them from the notation.

We will always give G-trees the specific simplicial structure described above.

We list some of the properties of G-trees which arise from our choice of structure. These
results are stated without proof in Paper 1, but here we take the opportunity to provide
more detail.

Remark 3.6. Note that we have chosen to define G-trees with a right action. This en-
sures that

• @x P T, @g P G, stabpx � gq � stabpxqg

• @H ¤ G, @g P G, FixpHgq � FixpHq � g
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Had we chosen to act on the left, acting by g would have caused the stabilisers to be
conjugated by g�1, and similar for the fixed point sets.

Proposition 3.7. Minimal G-trees do not contain any degree 1 vertices (and hence the set of
non-regular points is exactly the set of branch points).

Proof. Let T be a G-tree. If T is trivial, the result immediately follows, so we can assume
there exists an edge e of T with incident vertices v and w. Suppose that v is degree 1.
Then, since our action is simplicial and isometric, every vertex in the orbit of v will also
be degree 1, and eG will be the set of edges incident to this orbit. Thus T� pvGY eGq is
connected.

Suppose that w P vG. Then w is also degree 1, and hence the element of G which
mapped v to w would also invert e. Since we chose our simplicial structure such that
this does not occur, this is a contradiction. Thus w P T � pvGY eGq, and hence
T � pvGY eGq is non-empty.

It is clear that vG and eG are G-invariant. Therefore T � pvG Y eGq is a proper G-
invariant subtree of T, contradicting the minimality of T. Hence T does not contain
any degree 1 vertices.

Proposition 3.8. G-trees do not contain any free vertices of degree 2.

Proof. By definition of a non-regular point, none of the vertices in the simplest structure
are degree 2. Therefore the only degree 2 vertices in VpTq must have been added as the
midpoints of inverted edges. The elements of G which inverted these edges will fix
these midpoints, thus making them non-free vertices.

4 Bass-Serre Theory

Bass-Serre theory is the study of the relationship between a G-tree and its quotient
graph of groups.

Definition 4.1 (Graph of Groups). [8, p.198] A graph of groups X consists of:

(i) A connected (Serre) graph Y.

(ii) A group Gv for each vertex v of Y, and a group Ge for each edge e of Y such that
Ge � Ge.

(iii) For each (oriented) edge e of Y, a monomorphism ρe : Ge Ñ Gτe.

If Y is a metric graph, then we say X is a metric graph of groups.
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Remark 4.2. We are using Serre’s notation for edge pairs here, so (iii) implies the exis-
tence of monomorphisms ρe : Ge Ñ Gιe.

As mentioned in the previous chapter, we will be working exclusively with edge-free
G-trees, which will correspond to graphs of groups with trivial edge groups (and hence
trivial monomorphisms). With this in mind, we will restrict our explanations of the
fundamentals of Bass-Serre Theory to this subset of G-trees and graphs of groups. Bass-
Serre Theory in the more general case has been covered extensively by the existing
literature, for example in [8] and [15].

Let X be a graph of groups with trivial edge groups on a graph Y. One can define the
fundamental group of X in a similar manner to that of a standard graph, by thinking
of elements of the group as reduced loops in the graph. However, some additional
structure is added by the edge and vertex groups.

By a path in X, we mean an alternating string g0e1g1 . . . gn�1engn where for all i,
gi�1 P Gιei and gi P Gτei . (If some gi � 1, then we usually omit it from the notation.)
The set of all paths X is a groupoid ΠpXq where the operation is concatenation; two
paths g0e1g1 . . . gn�1engn, g10e11g11 . . . g1n�1e1mg1m P ΠpXq can be concatenated if and only if
τen � ιe11.

We say a path g0e1g1 . . . gn�1engn P ΠpXq is a loop if ιe1 � τen.

We say a path in ΠpXq is reduced if it does not contain a subpath of the form ee (or
epgg�1eq).

Definition 4.3. Let X be a graph of groups on a graph Y. Then we define the fundamental
group π1pX, vq of X to be the group of reduced loops in X which start and end at a
particular vertex v of Y, called the base point. It can be shown that the isomorphism
class of this group does not depend on our choice of base point; therefore, unless v is
required, we shall simply denote the group by π1pXq.

We will be working with graphs of groups whose fundamental group is isomorphic to
a particular group G. Thus we consider pairs pX, ϕq, where X is a graph of groups and
ϕ : G Ñ π1pXq is an isomorphism. Such a pair is called a marked graph of groups, and ϕ

is called the marking.

The Quotient Graph of Groups

Given a G-tree T, we can construct from it a marked, metric graph of groups called the
quotient graph of groups. A method for constructing a quotient graph of groups from an
arbitrary connected graph acted upon by G can be found on pages 204-205 of [8]. We
shall restrict this construction to edge-free G-trees.
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Let T be a G-tree. Take the quotient graph T{G, let p : T Ñ T{G be the projection map,
and Y0 a maximal tree of T{G. Let j : Y0 Ñ T be a map such that p � j is the identity on
Y0 (i.e j is a lift of Y0 to T). We call jpY0q a representative tree for the action.

We then define a graph of groups X on T{G as follows: For any vertex x of T{G, we
define the vertex group Gx to be stabpjpxqq. We take all edge groups, and hence all edge
monomorphisms, to be trivial, and edges inherit their lengths from T. This completely
defines X.

Theorem 4.4. [8, p.210] Let T be a G-tree, and let X be a quotient graph of groups for T. Then
the fundamental group of X is isomorphic to G.

This isomorphism gives a marking on X, and hence we can think of the quotient graph
of groups as a marked graph of groups.

The Universal Cover

Conversely, let pX, ϕq be a marked metric graph of groups with trivial edge groups and

with G
ϕ� π1pX, vq. Then we can construct from X a G-tree called the Bass-Serre tree, or

universal cover of X, denoted by X̃.

We shall denote the universal cover by Xr , and we shall begin by defining it as a graph.
Recall the definition of the path groupoid ΠpXq. Within this groupoid we can take
‘cosets’ Gwγ of the vertex groups, where γ � g0e1g1 . . . gn�1engn is a path from w to
v (i.e. w � ιe1 and v � τen). Without loss of generality, we shall always choose the
representative γ of a coset such that g0 � 1. We take the vertex set VpXrq to be the set of
all these cosets.

To define the edge set EpXrq, we say two vertices Gw1 γ1 and Gw2 γ2 are joined by an edge
pair if:

• the vertices w1 and w2 are joined by an edge pair pe, eq in X, and

• γ1 � egw2 γ2 or γ2 � egw1 γ1.

We define the length of the edge pair in Xr to be the length of e.

It can be shown that Xr is a tree [8, p.206-207]. Thus we can think of this graph as a
simplicial structure.

We define a right action of π1pX, vq on Xr via the multiplication in ΠpXq. Since each
γ ends at v, and elements of π1pX, vq are loops at v, this action is well-defined and
respects adjacency. We can then induce an action of G on Xr via ϕ, making Xr a G-tree.
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Equivalence and the Fundamental Theorem

Definition 4.5. Let pT, dT, �q, pS, dS, �q be G-trees. We say a map of trees f : T Ñ S is
a G-equivariant map from pT, dT, �q to pS, dS, �q if f px � gq � f pxq � g for all x P T, for all
g P G.

Definition 4.6. Two G-trees pT, dT, �q, pS, dS, �q are said to be equivalent if there exists a
G-equivariant isometry between them. We write pT, dT, �q � pS, dS, �q to denote equiva-
lence.

Definition 4.7. We say that two marked metric graphs of groups are equivalent if their
universal covers are equivalent G-trees.

Theorem 4.8 (Fundamental Theorem of Bass-Serre Theory). The process of lifting to the
universal cover and the process of descending to a quotient graph of groups are mutually inverse,
up to equivalence of the structures involved.

This theorem allows us to think of a G-tree/graph of groups as a single object with two
different forms. We can move between these two forms as much as we want, depending
on which structure is most useful at the time.

Definition 4.9. We say a map of G-trees is simplicial if it maps vertices to vertices. Note
that it does not have to map edges to edges, and hence this definition differs from that
of a simplicial group action.

5 Free Factor Systems and Deformation Spaces

Let G be a group, and let T be a G-tree.

Definition 5.1. An element g P G is said to be elliptic (with respect to T) if it fixes a
point in T. If g is not elliptic, we say it is hyperbolic (with respect to T).

We shall say a subgroup H of G is elliptic (with respect to T) if there exists a point x P T
such that x � H � x.

Definition 5.2 (Free Factor System). Let T be a minimal, cocompact, edge-free G-tree,
and let GT denote the set of elliptic subgroups for T. We say GT is a free factor system for
G.

Note that this is not the usual definition of a free factor system. The usual definition
can be found in [4, p.530-531], and we shall refer to it as a traditional free factor system:

Definition 5.3 (Traditional Free Factor System). If G1 � . . . � Gk � Fr is a free product
decomposition for a group G, and each Gi is nontrivial, then we say that the collection
trG1s, . . . , rGksu of conjugacy classes is a traditional free factor system. The empty set H is
the trivial traditional free factor system.
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Corollory 5.11 will show that the Fundamental Theorem of Bass-Serre Theory provides
a natural way to construct a free factor system from a traditional free factor system,
and vice versa, and that these constructions are mutually inverse. In this sense, the two
definitions are equivalent.

We have chosen our definition for two reasons. Firstly, the trivial free factor system
must be defined separately when using the traditional definition. Secondly, our defini-
tion allows us to order our free factor systems by inclusion, which is equivalent to the
somewhat more complicated ordering used for the traditional free factor systems, as
defined in [4, p.532].

For now, we return to our definition of a free factor system and we observe the follow-
ing properties:

Lemma 5.4. Free factor systems are closed under conjugation and taking subgroups.

Lemma 5.5. Let pT, �q, pS, �q be equivalent minimal, cocompact, edge-free G-trees. Then
GT � GS.

Lemma 5.6. Let pT, �q be an edge-free G-tree. A nontrivial element of G cannot fix more than
one point in T, and the fixed point will always be a vertex.

The final lemma tells us that a subgroup of G is elliptic with respect to a minimal, co-
compact, edge-free G-tree, and hence is an element of the corresponding free factor
system, if and only if it is a vertex stabiliser or a subgroup of a vertex stabiliser.

Definition 5.7. Let G be a free factor system for G. The deformation space O � OpG,Gq
is the space of equivalence classes of minimal, cocompact, edge-free G-trees T such
GT � G.

By Lemma 5.6, a subgroup of G is in G if and only if it is a vertex stabiliser or subgroup
of a vertex stabiliser for some (and hence every) G-tree in O. Additionally, by general
properties of group actions, two vertices lie in the same orbit if and only if they have
conjugate stabilisers. Thus we can define a minimal generating set for G:

Definition 5.8. We say a subset of a free factor system G is a minimal generating set for
G if and only if it contains exactly one vertex stabiliser from every orbit of non-free
vertices in some (and hence every) T P O.

Remark 5.9. If G is non-trivial, then this definition is the conventional definition of a
minimal generating set under the operations of conjugation and taking subgroups.

If G � t1u - the trivial free factor system - then trees in OpG,Gq do not contain any
non-free vertices. Thus the minimal generating set for G � t1u is the empty set H.

G-trees in O are cocompact; in particular, they each have a finite number of vertex
orbits. Hence a minimal generating set for G will always be finite.
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G1

G2

Gk

x1

x2

xr

FIGURE 1: A graph of groups with fundamental group G1 � . . . � Gk � xx1, . . . , xry

Theorem 5.10. The following are equivalent:

(i) There exists a minimal, cocompact, edge-free G-tree T containing a representative tree T0

in T such that the non-trivial vertex stabilisers in T0 are exactly G1, . . . , Gk.

(ii) There exists a minimal, cocompact, edge-free G-tree T and a quotient graph of groups on
T{G whose non-trivial vertex groups are exactly G1, . . . , Gk.

(iii) G can be written as a free product G � G1 � . . . �Gk � Fr, where Fr is a free group of rank
r ¥ 0.

Proof. piq ô piiq Follows from the Fundamental Theorem of Bass-Serre Theory.

piiq ñ piiiq Follows immediately from the definition of the fundamental group of a
graph of groups and Theorem 4.4.

piiiq ñ piiq When k � 1 and r � 0 we take X to be the graph of groups consisting of a
single vertex with vertex group G. Otherwise we can take X to be the graph of groups
depicted in Figure 1.

We can now demonstrate the correspondence between free factor systems and tradi-
tional free factor systems.

Let G be a free factor system for a group G. This means that G is the set of elliptic
subgroups of some T P OpG,Gq. Take a representative tree in T, and let tG1, . . . , Gku
be the nontrivial vertex groups of this representative tree. Then by Theorem 5.10, G
can be written as a free product G � G1 � . . . � Gk � Fr. Thus the set trG1s, . . . , rGksu is
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a traditional free factor system. Since each rGis is a conjugacy class, this set does not
depend on the choice of representative tree.

Conversely, let trG1s, . . . , rGksu be a traditional free factor system. Then we have
G � G1 � . . . � Gk � Fr, so by Theorem 5.10, there exists a minimal, cocompact, edge-
free G-tree T containing a representative tree T0 in T such that the non-trivial vertex
stabilisers in T0 are exactly G1, . . . , Gk. These vertex groups give a minimal generating
set for a free factor system G � GT.

Corollary 5.11. The process of constructing a free factor system from a traditional free factor
system, and the process of constructing a traditional free factor system from a free factor system,
are mutually inverse. In this sense the two definitions are equivalent.

Proof. Follows from Theorem 5.10.

It follows from Corollary 5.11 that, given a free product G � G1 � . . . � Gk � Fr, we can
construct a free factor system G and hence a corresponding deformation space OpG,Gq.
This space can then be used to study the automorphisms of the free product.

Remark 5.12 (Culler-Vogtmann Space). It is a well known result that a group admits a
free action on a tree if and only if it is a free group. Of particular interest then is the case
when G is a free group of rank n and G is the trivial free factor system. The deformation
space which corresponds to this case is Culler-Vogtmann space CVn, the space of equiv-
alence classes of minimal, cocompact, Fn-trees acted upon freely by Fn. Much of the
original work in this thesis revolves around taking existing results in Culler-Vogtmann
space and generalising them to arbitrary OpG,Gq.
Example 5.13. In Example 1.3, we gave some examples of possible free product decom-
positions of the group G � xa, b, cy, a free group of rank 3. We also noted that several of
these decompositions may appear the same but would be treated differently depending
on which free factor was labelled as Fr. This is because they would give rise to different
free factor systems, which we can now demonstrate. Additionally, since each free fac-
tor system G corresponds to an outer space OpG,Gq, we can also give some examples
of points in these spaces. We shall use graphs of groups to represent these points, since
they are easier to represent visually than G-trees.

• We looked at the free product decomposition G � xa, b, cy consisting of only a
single group, and how it can be expressed in two ways: either by taking
G1 � xa, b, cy and r � 0, or by taking Fr � xa, b, cy and k � 0. We can now see that
these give distinct free factor systems:

– First consider the case where G1 � xa, b, cy and r � 0. The free factor system
G corresponding to this decomposition is the one generated by all the Gi’s
- therefore G is the set of all subgroups of G. The only possible graph of
groups is a single vertex with vertex group xa, b, cy.
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xay

xby xcy

xayb

xcyxby

FIGURE 2: Two possible graphs of groups in OpG,Gabcq

– Now consider the case where Fr � xa, b, cy and k � 0. There are no Gi’s, so
the corresponding free factor system is the trivial free factor system H. The
graphs of groups in OpG,Hq are those with trivial vertex groups and whose
underlying graph has fundamental group F3. Thus OpG,Hq is in fact the
Culler-Vogtmann space CV3.

• Take the decomposition G � xay � xby � xcy, and suppose we take
G1 � xay, G2 � xby, G3 � xcy - so k � 3, r � 0. This gives rise to the free factor
system Gabc generated by xay, xby and xcy. The system Gabc is distinct from the
system G from the first example - observe that the element ab does not appear in
any subgroup in Gabc.

We can use this example to demonstrate why we focus on free factor systems and
not just free product decompositions. The group G can also be decomposed as
G � xayb � xby � xcy, where G1

1 � xayb, G1
2 � xby, G1

3 � xcy. This corresponds to the
free factor system generated by xayb, xby and xcy, but it is not hard to see that this
is also Gabc. Thus the two decompositions produce the same space OpG,Gabcq.
Figure 2 depicts two graphs of groups in OpG,Gabcq. The fundamental group of
each of these can be written naturally as one of these free product decompositions,
but as points in OpG,Gabcq they would each come equipped with a marking - an
iso- morphism from the fundamental group to G - so the natural decomposition
may not always be used. In fact, when given the correct markings, the two graphs
of groups may actually represent the same point in OpG,Gabcq.

6 Automorphisms

For the duration of this section, let G denote a free factor system for a group G, and let
O � OpG,Gq.
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Acting on the Deformation Space

Notation. The outer automorphism group of G is defined as OutpGq :� AutpGqäInnpGq;
elements of OutpGq are equivalence classes of automorphisms, where two automor-
phisms are equivalent if they differ by an inner automorphism.

When we write α P OutpGq, we mean that α is an automorphism in AutpGq representing
an equivalence class in OutpGq.

In this paper, the automorphisms of G will act on G on the right.

Definition 6.1. Let α P AutpGq, and let Gα � tpHqα | H P Gu. We say that G is α-
invariant if Gα � G.

Free factor systems are closed under conjugation by elements of G, hence α-invariance
depends only on the outer automorphism class of α. Thus we can make a similar defi-
nition for OutpGq:

Definition 6.2. Let α P OutpGq, and let Gα � tpHqα | H P Gu. We say that G is α-
invariant if Gα � G.

The set of outer automorphisms of G leaving G invariant forms a group, which we shall
denote OutpG,Gq.

The group OutpG,Gq admits a left action on the deformation space O � OpG,Gq: Let
pT, dT, �q P O, let α P OutpG,Gq. Then αpT, dT, �q :� pT, dT, �αq, the G-tree with the same
underlying simplicial tree and metric, but with ‘twisted’ action given by x �α g � x � pgqα
for all x P T.

Observe the following:

Lemma 6.3. Let T P O be a G-tree, and let α P OutpG,Gq. Then the G-orbits of T are the
same as those of αT. That is, for all x P T, x � G � x �α G.

Proof. x � G � tx � g | g P Gu � tx � pgqα | g P Gu � x �α G

Thus we see that the ‘twists’ α applies to the action only occur within each orbit. This
means that if we are working with both pT, �q and pT, �αq, we are able to simply refer to
‘a G-orbit of T’ without having to state which action is being used.

Definition 6.4. We can partially order the set of all free factor systems of G by inclusion.
Let G be a proper, α-invariant free factor system. We say α P OutpG,Gq is G-irreducible,
or irreducible with respect to G, if G is a maximal, proper α-invariant free-factor system.

Otherwise, we say α is reducible with respect to G.
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Topological Representatives

Definition 6.5. [19, p.16] Let T, S P OpG,Gq. An O-map f : T Ñ S is a G-equivariant,
Lipschitz continuous function. The Lipschitz constant of f is denoted Lipp f q.

Note that an O-map does not have to send vertices to vertices, and hence does not need
to be a graph morphism.

Definition 6.6. [19, p.16] We say an O-map f : T Ñ S is straight if it has constant speed
on edges - that is, for each edge e in T, there exists a non-negative number lep f q such
that for any a, b P e we have dTp f paq, f pbqq � lep f qdSpa, bq.

Definition 6.7. Let α P OutpG,Gq, and let T P O be a G-tree. Then a map f : T Ñ αT is
said to topologically represent α if it is a straight O-map.

The authors of [19, p. 16] make the following remark:

Remark 6.8. Any two trees T, S P O have an O-map between them. Furthermore, any
O-map f : T Ñ S can be uniquely ’straightened’ - that is to say, there exists a unique
straight O-map Strp f q : T Ñ S, such that Str

�
f
�pvq � f pvq for every vertex v P T. We

have LippStrp f qq ¤ Lipp f q.

From this remark it follows that @α P OutpG,Gq, @T P O, there exists a topological
representative f : T Ñ αT.

Definition 6.9. Let F be a subforest of some T P O, and let A be a component of F. We
define the stabiliser of A to be the set stabpAq � tg P G | A � g � Au - that is, we are
taking the setwise stabiliser, not the pointwise stabiliser.

We say that F is G-elliptic if, for every component A of F, stabpAq P G. Otherwise we
say that F is G-hyperbolic.

Using topological representatives, we can construct a test for the reducibility of an au-
tomorphism:

Theorem 6.10. Let G be a proper free factor system for a group G, let α P OutpG,Gq, and let
T P O.

Suppose that α can be topologically represented by a G-equivariant simplicial map f : T Ñ αT,
and there exists a proper f -invariant, G-invariant, G-hyperbolic subforest of T. Then α is
reducible with respect to G.

Proof. We shall prove that α is reducible by constructing a new cocompact, minimal,
edge-free G-tree S, from which we shall retrieve another proper α-invariant free factor
system H such that G � H.
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Let F denote the subforest of T described above, together with all the remaining vertices
of T. This extended subforest is still proper, f -invariant, and G-invariant. (In addition,
recall that we defined subforests such that they respect the simplicial structures of our
G-trees; therefore the complement of F is a set of edges.)

We obtain S from T by collapsing each component A of F to a point pA. Edges which
were not collapsed inherit their lengths from T, giving us a metric on S. Since F is
G-invariant, this collapse induces a minimal, isometric action of G on S. Thus S is a
G-tree.

Furthermore, if we declare the vertex set to be the set of pA, we induce a new simplicial
structure on S. (This is a well-defined vertex set, and the simplicial structure given
by this vertex set is exactly the same as the usual simplicial structure we give to all
G-trees).

S inherits cocompactness and edge-freeness from T. Hence, by definition, the set H of
elliptic subgroups for S is a free factor system for G.

Let v P T be a vertex. Since F contains every vertex of T, v must lie in some component
A of F. Therefore, since F is G-invariant, all of A must be fixed (setwise, not necessarily
pointwise) by stabpvq. Hence stabpvq ¤ stabppAq. This holds for all v, which is enough
to tell us that G � H.

Some component of F has G-hyperbolic stabiliser. This means that stabppAq R G but
stabppAq P H. Thus G � H.

Suppose that G P H - that is to say, a vertex of S is stabilised by G. Then the compo-
nent of F corresponding to this vertex is a G-invariant subtree of T, contradicting the
minimality of T. Hence G R H, so H is a proper free factor system.

Finally, we must show that H is α-invariant:

Let pA be a vertex of S. We first want to show that pstabppAqqα lies in H - that is to say,
it fixes a point in pS, �q. F is f -invariant, therefore f pAq is a component of F and p f pAq

is a vertex of S. Furthermore, @pgqα P pstabpvAqqα,
p f pAq � pgqα � p f pAq�pgqα � p f pA�gq � p f pAq, and hence pstabppAqqα P H. This holds for
all pA P S. This tells us that Hα � H, which in turn is enough to show that H � Hα.

To summarize, H is a proper, α-invariant free-factor system for G, and G � H. Hence,
by Definition 6.4, α is reducible with respect to G.

Isometric topological representatives

Our main results will make use of isometric topological representatives, which allow us
to make some additional observations:
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Remark 6.11. Recall that O is a space of equivalence classes of G-trees, where two
trees are equivalent if there exists an equivariant isometry between them. Topological
representatives are equivariant; therefore, if an isometric topological representative
f : T Ñ αT exists, the two G-trees T and αT are representing the same point in O.

Proposition 6.12. Let f : T Ñ αT be a topological representative for some T P OpG,Gq, for
some α P OutpG,Gq. If f is an isometry, then it is also a graph automorphism.

Proof. It is sufficient to show that f pvq is a vertex if and only if v is a vertex. f is an
isometry - in particular it is bijective - therefore f pvq is a branch point if and only if v is a
branch point. The only vertices which remain are the degree 2 vertices. Recall that these
were introduced as the midpoints of inverted edges, hence they all have stabiliser of
order 2. f is equivariant, therefore stabpvq is order 2 if and only if stabp f pvqq is order 2.
Thus the set of degree 2 vertices is also preserved, and f is a graph automorphism.

Definition 6.13. Let Y be a metric graph. The volume of Y, denoted VolpYq is defined to
be the sum of the lengths of the edges of Y.

Let T P O. The covolume of T, denoted CovolpTq, is defined to be the volume of the
graph T{G.

Proposition 6.14. Let f : T Ñ αT be a topological representative for some T P OpG,Gq, for
some α P OutpG,Gq. Then Lipp f q � 1 if and only if f is an isometry.

Proof. If f is an isometry, then Lipp f q � 1 follows immediately. It remains to prove the
converse.

Let D be a subforest of T consisting of exactly one edge from each orbit. Then
CovolpTq � VolpDq. Without loss of generality, we may assume that CovolpTq � 1.
Since T and αT have the same metric, this means that CovolpαTq � 1

Since f is equivariant, f pDq contains a fundamental domain for f pTq. Since αT does not
contain any proper invariant subtrees, we must have f pTq � αT, hence f pDq contains a
fundamental domain for αT. It follows that Volp f pDqq ¥ 1. In addition,

Volp f pDqq ¤
¸

edges ePD

Lp f peqq (*)

¤
¸

edges ePD

Lpeq (as Lipp f q � 1)

� VolpDq
� CovolpTq
� 1.

We split into two cases:
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Case 1: f is not locally injective This is equivalent to saying that f ‘folds’ a pair of
edges - that is, there is a vertex v, neighbourhoods U1, U2 of v, and edges e1, e2 incident
to v such that f pe1 XU1q � f pe2 XU2q. (The neighbourhoods are required because f
may not fold the entirety of the edges, only the initial segments. Since f may stretch
these segments, the neighbourhoods are not the same size in general).

The two edges can only be folded if they lie in different orbits; observe that if e1 � g � e2,
then f pe1 XU1q must be fixed by αpgq, contradicting edge freeness. Therefore we are
free to choose D such that it contains a pair of folded edges.

If e1, e2 are a pair of folded edges in D, then the volume of their image under f will
be strictly less then the sum of their original lengths. This means that (*) is a strict
inequality, so Volp f pDqq   1. This contradicts Volp f pDqq ¥ 1, hence Case 1 cannot
occur.

Case 2: f is locally injective. Then (*) is an equality, so Volp f pDqq � 1. This is enough
to tell us that Lp f peqq � Lpeq for every edge e of D, and hence all the edges of T; thus f
is an isometry on every edge of T. This, combined with local injectivity, means that f is
an isometry on all of T.

7 Distance on O

Stretching Factors

Definition 7.1. Let g P G, and let T P OpG,Gq. The translation length of g in T, denoted
lTpgq, is defined as

lTpgq � inf
xPT
tdTpx, x � gqu.

Remark 7.2. This infimum is in fact a minimum, and is obtained for some x. If g is
elliptic then this is observed to be true from the definition of an elliptic element, and
we have lTpgq � 0.

If g is hyperbolic then the translation length will be non-zero, and the set of elements
realising this length will form a line through T called the hyperbolic axis of g. Points on
the axis will be translated along the axis by lTpgq.

Remark 7.3. An equivalence class of G-trees in O is uniquely determined by its trans-
lation length function [13] - thus one can think of O as being embedded in the space
RG.
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Definition 7.4. Let HyppGq denote the set of elements of G which do not lie in any
subgroup of G. (In other words, HyppGq is the set of elements which are hyperbolic
with respect to some, and hence all, G-trees in OpG,Gq).

Definition 7.5. [18, p.8] Let T, S P OpG,Gq. Then we define the left and right stretching
factor from T to S as

ΛLpT, Sq :� sup
gPHyppGq

lTpgq
lSpgq , ΛRpT, Sq :� sup

gPHyppGq

lSpgq
lTpgq � ΛLpS, Tq,

respectively. We also define the symmetric stretching factor from T to S to be

ΛpT, Sq :� ΛLpT, SqΛRpT, Sq.

The next Theorem follows from [18, Corollary 6.8, p.18 and Theorem 6.11, p.19].

Theorem 7.6. Let T, S P O. Then there exists a Lipschitz continuous map f : T Ñ S such
that Lipp f q � ΛRpT, Sq.

The Displacement of an Automorphism

Definition 7.7. Let α P OutpG,Gq. Then we define the displacement of α to be

lα :� inf
TPO

ΛRpT, αTq.

Theorem 7.8. [18, p. 25] For any G-irreducible α P OutpG,Gq, the displacement of α is a
minimum and obtained for some T P O.

Definition 7.9. For any α P OutpG,Gq, we define

Minpαq � tT P O | ΛRpT, αTq � λαu.

That is to say, Minpαq is the set of all T which realise the above infimum.

Theorem 7.10. Let α P OutpG,Gq be a G-irreducible, displacement 1 automorphism. Then for
all T P Minpαq, there exists an isometric topological representative for α on T.

Proof. Let T P Minpαq. Then by definition of the minimally displaced set,
ΛRpT, αTq � λα � 1, and hence by Theorem 7.6 there exists a Lipschitz continuous
map f : T Ñ αT with Lipp f q � 1. Therefore, by Proposition 6.14, f is an isometric
topological representative for α.

Corollary 7.11. Let α P OutpG,Gq be a G-irreducible, displacement 1 automorphism. Then
Minpαq � Fixpαq.
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Proof. Let T P Fixpαq. Then T and αT are equivalent G-trees, so ΛpT, αTq � 1 � λα.
Thus Fixpαq � Minpαq.

Conversely, let T P Minpαq. By Theorem 7.10, there exists an equivariant isometry from
T to αT. Points in O are equivalence classes of G-trees under equivariant isometry,
hence T and αT represent the same point in O. Thus Minpαq � Fixpαq.

8 Summary of paper 1

Background

The first paper in this thesis can be thought of as a generalisation of [15].

Definition 8.1. Let α be an automorphism of a finitely generated group G. Let E be
a finite generating set of G, and let lE denote the conjugacy length in the alphabet E.
Then for g P G we define the growth rate of α with respect to (the conjugacy class of) g as

GRpα, lE, gq � lim sup
kÑ8

k
b

lEpgαkq

The growth rate of α is then

GRpα, lEq � suptGRpα, lE, gq | g P Gu

Remark 8.2. It can be shown that any two finite generating sets of a finitely generated
group G give Lipschitz equivalent conjugacy length functions, and from this it can be
further shown that Definition 8.1 does not depend on the choice of E.

In [16], Dicks & Ventura classify the irreducible growth rate 1 automorphisms of free
groups. For prime numbers p   q, the free group of rank pp�1qpq�1q can be presented
as

xxi,jpi P Zp, j P Zqq | xi,0 � xj,0 � 1pi P Zp, j P Zqqy

Using this presentation, the authors show that the following automorphisms of free
groups are all irreducible and growth rate 1:

• αpq P AutpFpp�1qpq�1qq defined by xi,j ÞÑ x1,1xi�1,1xi�1,j�1x1,j�1,

• αq :� α2
2q P AutpFq�1q (so taking p � 2) for q an arbitrary odd prime,

• α0 and α1, denoting the identity automorphisms of the free groups of ranks 0 and
1 respectively,
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FIGURE 3: Y23 and Y2

• α2, denoting the inverting automorphism of the free group of rank 1.

They further prove that, up to outer automorphism class, these are the only irreducible,
growth rate 1 automorphisms of free groups. They prove this by topologically repre-
senting these automorphisms as the action of the free group F on a graph whose funda-
mental group is equal to F. They show that the properties of irreducibility and growth
rate limit the shape the graph can take and how the free group acts upon it [16, Prop
3.4] - thus they can find a graph and topological representative for every irreducible
growth rate 1 automorphism.

• For p   q P Z, let Ypq denote the complete bipartite graph on vertex sets Zp and
Zq. For pi, jq P Zp � Zq, let ei,j denote the corresponding edge. Let βpq be the
graph automorphism which sends each ei,j to ei�1,j�1.

Ypq has fundamental group Fpp�1qpq�1q, and when p   q are primes, βpq represents
the automorphism αpq.

• For q P Z, let Yq denote the graph with vertex set t0, 1u and with p edges from 0
to 1. Let βq be the graph automorphism which fixes both vertices and cyclically
permutes the edges.

Yq has fundamental group Fq�1, and βq represents the automorphism αq for
q � 0, 1, 2 and all odd primes.

Example 8.3. As an example, the free group F2 has two irreducible growth rate 1 au-
tomorphisms, α23 and α2 :� α2

23, which can be represented by cyclically permuting the
edges of the graphs depicted in Figure 3

However, there is more to explore when taking this topological approach. In particular,
we are interested in this corollary to Dicks’ & Ventura’s classification:

Corollary 8.4. An irreducible, growth rate 1 automorphism of a free group fixes exactly one
point in Culler-Vogtmann space.

This corollary is not stated in Dicks’ & Ventura’s paper, but it can be proved fairly
swiftly thanks to the existing library of work on Culler-Vogtmann space.
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Proof. The maps described by Dicks & Ventura in [16] are graph automorphisms - hence
they are also train track maps (more detail on train track maps is given in the chapter
on Paper 2).

The minimally displaced set in CVn of an irreducible automorphism coincides exactly
with the set of points which support train track maps [18, p.32, Thm 8.19]. Addition-
ally, it can be shown that the growth rate of an irreducible automorphism is equal to
its displacement, and if the automorphism has displacement 1, then the minimally dis-
placed set is actually a fixed point set. It follows that the graphs supporting the train
track maps found by Dicks & Ventura are fixed points in Culler-Vogtmann space.

The final step is to show the uniqueness of these points, which is done in the proof of
[21, p.10, Theorem 3.8].

The goal of paper 1 is to generalise this corollary to free products.

Dicks & Ventura classifies the fixed points of irreducible, growth rate 1 automorphisms
in Culler-Vogtmann space, so the natural generalisation would be a classification of the
fixed points of irreducible, growth rate 1 automorphisms of free products in outer space.
However, there is one minor issue which we should address. For our proofs in Culler-
Vogtmann space, we actually use the displacement of automorphisms, not their growth
rate. For irreducible automorphisms of free groups, these two values are equal, and this
can be proved fairly swiftly thanks to the existing body of work on Culler-Vogtmann
space. In the more general case though, the proof is not quite so simple, and we do not
give it in Paper 1. Thus what we actually do in Paper 1 is classify the fixed points of
irreducible, displacement 1 automorphisms of free products.

Ultimately, however, this distinction does not matter, because patching this hole in the
literature became my motive for Paper 2. In that second paper we do indeed prove
that the growth rate of irreducible automorphisms of free products is equal to their
displacement in Outer Space. Thus we reach a true generalisation of Corollary 8.4:

Theorem 8.5. An irreducible, displacement 1 (or equivalently growth rate 1) automorphism of
a free product fixes exactly one point in the corresponding outer space.

Remark 8.6. The converse is not necessarily true. See the final section of this introduc-
tion.

Method

As for how we generalise this result in Paper 1: Let G be a free product with cor-
responding free factor system G. One can think of O1 as a union of open simplices,
where a G-tree’s position in its simplex is determined by the lengths of its edges. We
show that the action of α on each T P Min1pαq can be topologically represented by an
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isometry of T, and that this isometry must cyclically permute the G-orbits of edges in
T. It follows that the edges of T must all have the same length, and hence T must lie at
the centre of its open simplex - thus the set of points in O1 fixed by α must consist solely
of simplex centres. However, it is shown in [20, p.19, Cor 5.4] that Min1pαq is connected
by so-called simplicial paths. Since a nontrivial simplicial path between the centres
of two simplices must pass through a point which is not at the centre of a simplex, it
follows that α cannot have more than one fixed point. It can also be shown that, for
an irreducible automorphism, Min1pαq is non-empty [18, Theorem 8.4]. Thus Min1pαq
must consist of exactly one point.

9 Summary of Paper 2

As mentioned in the previous chapter, Paper 1 can be thought of as a generalisation
of a paper by Dicks & Ventura [16], but where they used growth rate, we used the
displacement in outer space. This difference prompted the questions which eventually
formed Paper 2:

(1) In [16], the growth rate was defined for free groups. What is the “correct” gener-
alisation of this definition to free products?

(2) When we have found this generalisation, does the growth rate of an irreducible
free product automorphism equal its displacement in outer space?

(3) More generally, does the growth rate of any free product automorphism equal its
displacement in outer space?

(1)

First we address the definition of the growth rate. In the case of free groups, Dicks &
Ventura [16] attribute the following definition of the growth rate in arbitrary groups to
Thurston:

Definition 9.1. Let α be an automorphism of a finitely generated group G. Let E be
a finite generating set of G, and let lE denote the conjugacy length in the alphabet E.
Then for g P G we define the growth rate of α with respect to (the conjugacy class of) g as

GRpα, lE, gq � lim sup
kÑ8

k
b

lEpgαkq

The growth rate of α is then

GRpα, lEq � suptGRpα, lE, gq | g P Gu
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Remark 9.2. It can be shown that Lipschitz equivalent length functions will produce
the same growth rate. In particular, any two finite generating sets of a finitely generated
group G give Lipschitz equivalent conjugacy length functions - thus we may omit lE

from the notation, writing only GRpαq.

Using this definition, it can be fairly swiftly proved that the growth rate of an irre-
ducible automorphism of a free group is equal to its displacement in Culler-Vogtmann
space. We will not give this proof just yet, since our later proof in the case of free prod-
ucts is essentially identical, only more general. When we say that we are searching for
the “correct” definition of growth rate in free products, it is this proof we have in mind.

The displacement of an automorphism is determined entirely by the hyperbolic ele-
ments of G. When G is free this poses no issue, as all non-trivial elements will be hy-
perbolic. In the case of free products, however, the subgroups in the induced free factor
system G are all elliptic. Our definition of the growth rate should somehow ignore any
growth contributed by the elliptic elements. Thus we elect to use relative generating sets.
(This method was inspired by Osin’s paper on relatively hyperbolic groups [25]).

Definition 9.3. We say that E � G is a relative generating set of G with respect to G if G is
generated by the set

� k¤
i�1

Gi



Y E,

where G � G1 � . . . � Gk � Fr is a free product decomposition corresponding to G.

From this we can essentially follow the definition of the growth rate in free groups
by defining relative conjugacy length, relative Lipschitz equivalence, and finally the relative
growth rate. We give a brief overview of these three:

The relative conjugacy length is the conjugacy length in the alphabet EY G1 Y . . . Y Gk.
This ensures that elliptic elements all have length 1.

In the free group case, Lipschitz equivalent length functions produce the same growth
rate. We need to generalise this to free products - thus we define relative Lipschitz
equivalence: Two length functions l1, l2 on the conjugacy classes of G are Lipschitz equiv-
alent relative to G if they are Lipschitz equivalent when restricted to HyppGq. We write
l1 �G l2.

Definition 9.4. Let α P OutpG,Gq, and let lE be a relative conjugacy length function.
Then for g P G we define the relative growth rate of α with respect to (the conjugacy class of)
g as

GRGpα, lE, gq � lim sup
kÑ8

k
b

lEpgαkq
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The relative growth rate of α is then

GRGpα, lEq � suptGRpα, lE, gq | g P Gu.

Remark 9.5. If we consider the case where G is a free group and G is the trivial free
factor system (that is to say, we take the free product decomposition of G consisting
of a single free factor - G itself), then all of these “relative” definitions restrict to their
original counterparts, as they should.

(2)

It turns out that (2) is true. We prove this using train track maps. These are maps
f : T Ñ αT which do not “fold” any edge back onto itself under any iterate f k. More
specifically...

Definition 9.6. Let T P O, and let v be a vertex in T. A turn at v is a pair of directed
edges pe1, e2q such that τpe1q � v � ιpe2q. We say the turn is degenerate if e2 � e1.

A simplicial topological representative f : T Ñ αT induces a map D f on the turns of T.
D f pe1, e2q is the turn consisting of the first edges in the edge paths f pe1q, f pe2q. A turn is
illegal with respect to f if its image under some iterate of D f is degenerate. Otherwise,
it is legal.

We say an edge path γ in T is legal if it does not contain any illegal turns.

Definition 9.7. Let α P OutpG,Gq, T P OpG,Gq. We say that a topological representative
f : T Ñ αT is a train track map if for every edge e P T the path f peq is legal with respect
to f .

Since the definition of a legal turn considers images under iterations of D f , the defining
property of train track maps extends naturally to the iterates f k:

Lemma 9.8. Let f : T Ñ αT be a train track map. Then for all edges e in T and for all k ¡ 0,
f kpeq is a legal path.

Proof. We prove this by induction on k. Recall that a path is legal if it does not contain
any illegal turns.

k � 0 : f 0peq � e is a single edge. It does not contain any turns - in particular illegal
turns - hence it is a legal path.

Now suppose that f n�1peq is legal for n ¥ 1. We want to show that every turn in f npeq
is legal. f n�1peq is an edge path, so we have edges ε1, . . . , εr such that f n�1peq � ε1 . . . εr.
Therefore we can write f npeq � f pε1q . . . f pεrq. The turns contained inside each f pε iq are
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legal by the definition of a train track map. The remaining turns are those where the
subpaths f pε iq and f pε i�1q meet for each i - that is to say, the turns D f pei, ei�1q. Each
turn pei, ei�1q appears in f n�1peq, so each turn D f pei, ei�1q is legal by induction.

Some further properties of train tracks can be seen by examining the corresponding
transition matrix:

Definition 9.9. Topological representatives (such as train tracks) are simplicial, so they
map edges to edge paths. Thus every topological representative f : T Ñ αT has an
associated transition matrix M � pmijq, where mij is the number of times the f -image of
the j-th edge-orbit crosses the i-th edge-orbit in any direction.

A transition matrix is a non-negative, integer-valued square matrix, and in the specific
case of irreducible automorphisms the transition matrix will also be irreducible; there-
fore, by the Perron-Frobenius theorem, one of its eigenvalues, called the PF-eigenvalue,
is a positive real number µ which is greater than or equal to the absolute value of all
other eigenvalues. There is a positive real eigenvector v corresponding to µ, which is
called the PF-eigenvector.

The metric on this particular tree T has not been specified, so we are free to choose
the edge lengths in the way that is most convenient for us. We do this using the PF-
eigenvector, declaring the length of any representative of the ith edge to be the ith entry
in this eigenvector. This ensures that f scales the length of every edge by exactly µ -
that is to say, @e P T, lp f peqq � µlpeq.

Furthermore, iterations f k of the map f correspond to iterations of the transition matrix
Mk: the transition matrix of f k is Mk, with PF-eingenvalue µk and PF-eigenvector v.
Thus @e P T, @k ¡ 0, we have lp f kpeqq � µklpeq.
Lemma 9.10. Let f : T Ñ αT be a train track map and take the metric on T to be the one
determined by the PF-eigenvector. Then Dg P HyppGq such that lTpgαkq � µklTpgq for all
k ¡ 0.

Proof. Take an edge e in T and consider the path f kpeq. We observe that T, being co-
compact, contains finitely many edge orbits, so f kpeq must cross the orbit of some edge
ε at least three times. Furthermore, at least two of these edges will point in the same
direction.

Let us label these edges ε and ε � g. Then the path f kpeq will pass through the vertices
ιε, τε, ιε � g and τε � g in this order. This can only occur when ε, and hence ε � g, lie on
the hyperbolic axis of g (see Figures 4 and 5). It follows that the path f kpeq contains a
subpath which is a fundamental domain of the axis of g. As a part of the main path,
this subpath will be rescaled by µ with each iteration of f , which concludes the proof.
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τε

ιε

τε � g

ιε � g

ε ε � g

g

FIGURE 4: If an edge ε does not lie on the axis of g (in red), the edges ε and ε � g will
have different orientations on a path passing through them

ιε τε ιε � g τε � g
ε ε � g

g

FIGURE 5: If an edge ε lies on the axis of g (in red), the edges ε and ε � g will have the
same orientation on a path passing through them

We can now prove our answer to Question (2):

Theorem 9.11. Let G be a free factor system for a group G, let E be any relative generating set
for G, and let α P OutpG,Gq be irreducible. Then GRGpα, lEq � λα.

Proof. Minpαq is equal to the train-track bundle TTpαq - the set of T P O admitting train
track representatives f : T Ñ αT with Lipp f q � ΛRpT, αTq [18, Thmm 8.19, Thm 6.11].
In addition, since α is irreducible, Minpαq is non-empty [18, Theorem 8.4].

Thus we can guarantee the existence of a train track map f : T Ñ αT on some T such
that:

µ
f is train track� Lipp f q fPTTpαq� ΛRpT, αTq by defn of Minpαq� λα

In addition, since lE �G lT, these length functions will produce the same growth rate.

Therefore in order to prove that GRGpα, lEq � λα it suffices to prove that GRGpα, lTq � µ.
The proof of this follows from the definition of the right stretching factor ΛR. Recall,

ΛRpT, αkTq :� sup
gPHyppGq

lTpgαkq
lTpgq

ñ For all g P G, lTpgαkq ¤ µklTpgq.

ñ For all g P G, GRGpα, g, lTq � lim supkÑ8
k
a

lTpgαkq ¤ lim supkÑ8
k
a

µklTpgq � µ.
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Additionally, by the train track property, there exists h P G such that µklTphq � lTphαkq

ñ GRGpα, h, lTq � lim supkÑ8
k
a

lTphαkq � lim supkÑ8
k
a

µklTphq � µ

Thus GRGpα, lTq :� supg GRGpα, g, lTq � µ, and we are done.

(3)

If we drop the irreducibility condition, a problem arises which prevent us from copy-
ing the previous proof outright: we cannot guarantee that Minpαq will be non-empty,
and hence we cannot guarantee the existence of an optimal train track map. Happily,
however, we can guarantee the existence of a weaker set of maps known as relative train
tracks.

Remark 9.12. Relative train track maps were introduced by Bestvina & Handel in the
case of free groups [5], and were generalised to free products by Collins & Turner
[9]. Collins and Turner defined their maps on graphs of complexes - graphs with 2-
complexes assigned to the vertices. However, this definition can be transferred to G-
trees by replacing each 2-complex with its fundamental group to give a graph of groups
and then lifting to the Bass-Serre tree.

Let f : T ÞÑ αT be any topological representative, and consider the associated transition
matrix M � pmijq. By relabelling edges appropriately, it is always possible to write the
transition matrix in block upper triangular form:

M �

������
M1 ? ? ?
0 M2 ? ?
...

...
. . .

...
0 0 � � � Mn

�����
,

where the matrices M1, . . . , Mn are either zero matrices or irreducible matrices.

Writing M in this form determines a partition of the edges of T: The rth stratum Hr of T
is the subgraph of T given by closure of the union of the edge orbits corresponding to
the rows/columns in Mr.

This also determines a filtration H � T0 � . . . � Tn � T of T, where Tr �
�

i¤r Hr.
Observe that each Ti is f -invariant, but the Hi are not, in general.

Definition 9.13. We say an edge path γ in Tr is r-legal if no component of γX Hr con-
tains an illegal turn.

Definition 9.14 (Relative train track). Let T P OpG,Gq, let α P OutpG,Gq, and let
f : T Ñ αT be a simplicial topological representative for α. Use this map to divide T
into strata as described above. We say that f is a relative train track map if the following
hold:
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(1) f preserves r-germs: For every edge e P Hr, the path f peq begins and ends with
edges in Hr.

(2) f is injective on r-connecting paths: For each nontrivial path γ P Tr�1 joining points
in Hr X Tr�1, the homotopy class r f pγqs is nontrivial.

(3) f is r-legal: If a path γ is r-legal, then f pγq is r-legal.

Theorem 9.15. For any automorphism α P OutpG,Gq, there exists a relative train track map
f : T Ñ αT on some T P O. [9, Thm 2.12]

We observe that Mr is the transition matrix of Hr, and each of these submatrices will
have its own PF-eigenvalue µr. It can be shown that, even though a relative train track
map will not, in general, satisfy Lemma 9.10, it will satisfy a similar property on each
stratum of T using these µr. This gives us the tools we require to prove that question
(3) is true:

Theorem 9.16. Let α P OutpG,Gq. Then the following are equal:

• The relative growth rate of α, GRGpαq.

• The largest PF-eigenvalue µR of any relative train track map f : T Ñ αT, on any
T P OpG,Gq.

• The displacement λα of α in O.

We prove this by proving three inequalites:

A: µR ¤ GRGpαq

B: GRGpαq ¤ λα

C: λα ¤ µR

A follows from existing properties of relative train tracks. B can be proved explicitly
using the definition of the right stretching factor. C requires more thought.

Recall the definition of the displacement: λα :� infSPO ΛRpS, αSq. Ideally we would
prove inequality C by finding a G-tree in O whose right stretching factor is exactly µR.
However, unless α is irreducible, this is not always possible. Thus we instead find a
sequence of G-trees whose right stretching factors tend towards µR.

The lengths of edges in T are determined by the PF-eigenvectors, but these are only
determined up to scalar multiplication, so we are free to rescale the edges in each stra-
tum by a constant of our choosing. We choose to rescale each Hr by Nr. As N tends
to infinity, we observe that the growth in the stratum with the largest PF-eigenvalue
becomes greater than that of all other strata. From this the result follows.
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10 Summary of Paper 3

One of the key insights of geometric group theory is that one can obtain information on
a group by viewing it as a metric space, via the word metric on its Cayley graph. More
generally if a group, G, acts isometrically on a metric space pX, dq one can elucidate
properties of the group from this action. For instance, the class of hyperbolic groups is
precisely the class of those groups admitting a proper, co-compact isometric action on
some locally compact, geodesic δ-hyperbolic space X.

Given a (right) isometric action of G on pX, dq, and a point p in X, one can define a
G-invariant pseudo-metric - which we denote by dp - on G via dppg, hq :� dppg, phq,
which is a metric precisely when the stabiliser of p is trivial. In fact, this metric on G
can be encoded via the based length function.

Definition 10.1. Let G act isometrically on the metric space pX, dq. Then the based length
function of G based at some point, p P X is the function, lp : G Ñ R, given by:

lppgq :� dpp, pgq

It is straightforward to see that one can recover the invariant (pseudo) metric from the
based length function via dppg, hq � lppgh�1q.

Of course, in order to obtain properties of the group it is helpful to impose conditions
on the space and the action, just as for hyperbolicity above. A key area where one can
recover a great deal of information about G is when X is a tree.

The source of inspiration for this paper is a striking result of Chiswell, that one can
axiomatise the based length functions arising from actions on trees - sometimes called
Lyndon length functions, following results from [23] - and, from the axioms, always
recover an isometric action. Specifically,

Theorem 10.2 ([6]). Suppose l : G Ñ R¥0 satisfies the following axioms:

A1’: lpgq � 0 if g � 1

A2 : lpg�1q � lpgq

A3 : cpg, hq ¯ 0

H0 : For all g1, g2, g3 P G,
cpg1, g2q ¥ m, cpg2, g3q ¥ m implies that cpg1, g3q ¥ m,

where
cpg, hq :� 1

2
plpgq � lphq � lpgh�1qq.
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Then there exists an R-tree, pX, dq, admitting an isometric G-action and a point, p P X, such
that lppgq � lpgq. Moreover, if the images of l and c lie in Z, then the tree will be simplicial.

Remark 10.3. As noted above a function d : G�G Ñ R can be defined from l and, from
this point of view, A1’ says that d vanishes on the diagonal, A2 says that it is symmetric
and A3 says that it satisfies the triangle inequality.

The function cpg, hq is then really the Gromov product and axiom H0 should be thought
of as a 0-hyperbolicity condition (see, for example, [1] for a discussion on hyperbolic
groups, spaces and the Gromov product). Chiswell’s Theorem can then be summarised
as saying that a 0-hyperbolic Lyndon length function (that is, one satisfying A1, A2, A3, H0)
is always a based length function on a 0-hyperbolic space.

With this in mind, we are motivated to ask the following:

Questions.

• Is there a generalisation of Chiswell’s Theorem for isometric group actions on metric
graphs?

• In particular, is there a generalisation of Chiswell’s Theorem for isometric actions on δ-
hyperbolic graphs?

Remark 10.4. In the spirit of Chiswell’s result, we will consider graphs whose edge
lengths may not be integers. For instance, one could take the Cayley graph of a group
with respect to some generating set, and then equivariantly assign positive real lengths
to edges.

It turns out that these questions are somehow too broad in their scope. Given a (strictly
positive) length function on G there is always a metric graph and a point p whose based
length function is equal to this function: take the complete graph on G where the edge
between g and h has length lphg�1q. The based length function on this graph, with
respect to the basepoint 1, is equal to l. However, this action is not particularly useful.

In order to rule out this kind of example we will add some restrictions.

Questions. Let us suppose that G is finitely generated and let us restrict ourselves to isometric,
co-compact actions on locally compact graphs, X.

• Given a (strictly positive) length function, l, does G admit an isometric, co-compact action
on a locally compact metric graph, X, such that l � lp for some p P X?

• What if we add the hypothesis that l is δ-hyperbolic
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It turns out that the answer to both of these questions is no; there exists a δ-hyperbolic
length function which cannot arise as the based length function associated to any iso-
metric, co-compact action on a locally compact graph at any base point p.

However, that example is bi-Lipschitz equivalent to a length function on a Cayley
graph. (Note that, for finitely generated groups, all based length functions on Cayley
graphs with respect to finite generating sets are bi-Lipschitz equivalent). But we also
produce examples of δ-hyperbolic length functions which are not bi-Lipschitz equiva-
lent to any based length function on a Cayley graph. In fact, every finitely generated
group admits a hyperbolic length function.

Theorem 10.5. There exists a finitely generated group, G, with a hyperbolic length function,
l : G Ñ R¥0 such that l � lp for any co-compact, metric G-graph and any point p P T.

Moreover, any finitely generated group admits a (free) hyperbolic length function. In particular,
we can find an example of a group G with a hyperbolic length function, l, which is not quasi-
isometric to any based length function arising from an isometric action of G on a geodesic and
proper δ-hyperbolic metric space.

This leads us to the following.

Questions. Suppose that G is finitely generated.

• Can one axiomatise those length functions which are bi-Lipschitz equivalent to some (and
hence all) based length functions on a Cayley graph for G (with respect to a finite gener-
ating set)?

• Can we make these axioms apply to - for instance - any free Fn action on a simplicial tree
as well as Cayley graphs?

• Does this axiomatisation define a connected/contractible/finite dimensional subspace of
RG on which AutpGq acts?

Remark 10.6. We do come up with an axiom scheme, below, and we observe that these
axioms hold for all sufficiently well behaved actions - and in particular to all points of
Culler-Vogtmann space.

The third question here arises from the fact that one key use of Chiswell’s Theorem is
in the study of group actions on trees, and the definition of the space of such actions
which are then encoded via functions (usually the translation length function, which
is related to the Lyndon length function). See [14] for the seminal paper on the ‘Outer
Space’ of free actions on trees, encoded by length functions (amongst other things).

It is clear that the space of all length functions which are bi-Lipschitz to one arising from
a Cayley graph is a contractible space (because a linear combination of such functions is
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another such function). Therefore, this provides a contractible space on which AutpGq
acts. However, it is far too large and so one might hope that an axiomatisation could
provide a more reasonable subspace.

With these questions in mind, we propose the following axioms for our length func-
tions:

Definition 10.7. Let G be a group. We say that l : G Ñ R¥0 is a graph-like length function
if it satisfies the following axioms:

A1: lpgq � 0 if and only if g � 1

A2: lpg�1q � lpgq

A3: cpg, hq ¯ 0

A4: For all R ¥ 0, the closed ball BR :� tg P G | lpgq ¤ Ru is finite

A5: There exists 0 ¤ ϵ   1 and K ¡ 0 such that, for any g P G, if lpgq ¡ K then there
exists an x P G with:

(i) 0   lpxq ¤ K, and

(ii) cpgx�1, x�1q ¤ ϵlpxq
2 .

Remark 10.8. We have added two additional axioms, A4 and A5, to the definition of a
length function. The purpose of these new axioms is to describe the action of a group
on a “sensible” graph purely in terms of its based length function.

A4 is really a statement about the action being properly discontinuous. Furthermore,
in the presence of A5, A4 is equivalent to the statement that BK is finite.

One should view A5 as a co-compactness condition. Specifically, if one has a reason-
able action on a graph, then one can approximate geodesics in the graph with uniform
quasi-geodesics built from the translates of finitely many paths. The following example
illustrates this behaviour. In Paper 3 itself, we prove that A5 holds for the based length
function of every isometric, co-bounded action on a based geodesic metric space.

We also note that if G acts on its Cayley graph then one easily gets that the based length
function satisfies these axioms with K � 1 and ϵ � 0. However, if once considers
actions on graphs with more than one orbit of vertices, then one quickly discovers that
the correct condition is A5(ii) with ϵ � 0. Moreover, scaling the graph by a constant
clearly changes the value of K. For these reasons, to allow these kinds of deformations,
we consider these axioms for more general K and ϵ.

Example 10.9. We will use the free group F2 �  a, b ¡ as an example. Consider first
the Cayley graph on this generating set. This is a tree acted on by F2 - specifically, it is
the universal cover X̃ of a graph X with one vertex v and two edges a, b:
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v
ba

Let every edge have length 1, and let the base point p be the vertex corresponding to
the identity. Then for all g P F2 the based length function lppgq is equal to the word
length ||g||. We can easily prove that ||g|| satisfies A4 and A5 with K � 1 and ϵ � 0: A4
holds because F2 is finitely generated, and A5 holds when we take x to be the last letter
in the reduced word representing g.

Our focus, however, is on the behaviour of the graph X̃. Consider the word ab2 P F2.
This word corresponds to a geodesic path rp, p � ab2s in the Cayley graph X̃, depicted
below.

p p � b p � b2 p � ab2

lppbq � 1 ¤ K

lppab2q � 3 ¡ K

We are taking ε � 0, so axiom A5 is essentially stating that, given a based length longer
than K � 1, there exists a group element whose based length is no greater than K � 1
and which corresponds to a point on the geodesic. The final part holds in this graph (and
indeed in all Cayley graphs) because there is only one orbit of vertices; every vertex on
the geodesic corresponds to a group element.

If we consider more general graphs with more than one orbit of vertices, it becomes
necessary to take ε ¡ 0. Consider a second graph Y with two vertices u, v and three
edges: an edge-loop Eu at u, an edge loop Ev at v, and an edge Euv from u to v. Just like
X, Y has fundamental group F2 �  a, b ¡: we will assign the generators a and b to the
loops Eu and EuvEvE�1

uv respectively. To ensure that each generator has length 1, we set
the length of Eu to be 1, and the lengths of Ev and Euv to be 1

3 .

u v
Eu Ev

Euv
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The universal cover Ỹ is a tree acted upon by F2 with two orbits of vertices. Take the
base point q of Y to be a lift of u, and consider the word b3 P F2. In Ỹ the geodesic
rq, q � b3s in Ỹ (highlighted in red) only meets the orbit of the base point at its endpoints:

q q � b q � b2 q � b3

lqpb3q � 1 2
3

lqpbq � 1
1
3

Thus, unlike the previous example, when K � 1 there are no 1 � g P F2 with lqpgq ¤ K
which correspond to points on the geodesic. If we take a larger value of K, then we can
have the endpoint of the geodesic satsifying lqpb3q ¤ K, but upon taking an arbitrarily
large product bn the problem will repeat.

However, there is a sequence of points, starting with q � b, which lies uniformly close to
the geodesic. Every word in F2 must start with either an a or a b, so from here it is not
hard to see that the function lq will satisfy axiom A5 for K � 1 and ε � 1

3 .

It turns out that axioms A1 to A5 are indeed sufficient to prove the following:

Theorem 10.10. Let l : G Ñ R¥0 be a graph-like length function on a group G. Then l is
bi-Lipschitz equivalent to some (and hence to all) based length function lp arising from a locally
compact, co-compact, metric G-graph and with Stabppq � 1.

Note that in view of Theorem 10.5, since any finitely generated group admits a hyper-
bolic length function, the extra axioms are clearly necessary.

Remark 10.11. We should note that another length function one can extract from an
action is the translation length function, which has the advantage of not relying on a
basepoint. This is the point of view of [14]. An important result here, building on the
work of [14], is that of [26] which states that a translation length function (which is 0-
hyperbolic) always arises from an action on a tree. However, this builds crucially on
Chiswell’s Theorem 10.2 so it seems reasonable to start with Lyndon length functions.

11 Open problems

To conclude the introduction, we remark upon some open problems arising from these
papers which could be avenues for future research.
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Paper 1

As mentioned above, Paper 1 is a partial generalization of a paper by Dicks & Ventura
[15]. In Paper 1 we prove that if α is an irreducible, displacement 1 automorphism of
a free product, then any topological representative f : T Ñ αT on a tree T in O must
cyclically permute the edge orbits of T. We then use this to prove that there is only one
fixed point in O, but we do not give any additional descriptions of T or α. Dicks &
Ventura, on the other hand, do.

Dicks & Ventura work with irreducible, growth rate 1 automorphisms of free groups.
They are not explicitly working in outer space or Culler-Vogtmann space, and they
prefer to work at the level of graphs instead of trees, but like us they prove that their
group automorphisms must be represented by some graph automorphism β : X Ñ X,
and that this graph automorphism must cyclically permute the edges of X. However,
unlike us, they also prove some additional properties which are required of β and X
[15, Prop 3.6]. This allows them to give an exhaustive list of all β and X which satisfy
their conditions and from there prove the converse: prove that every β : X Ñ X on
this list is indeed representing an irreducible growth rate 1 automorphism. Thus they
arrive at a true classification of irreducible growth rate 1 automorphisms of free groups.

We have not generalized all of Dicks & Ventura’s conditions to outer space: just the one
concerning cyclically permuted edge orbits, which was enough to tell us that our fixed
points lie at the centre of simplices in O. That converse statement - that every auto-
morphism which fixes a simplex centre is irreducible, growth rate 1 - is not necessarily
true. To rectify this and truly classify our irreducible, displacement 1 automorphisms,
we would need to prove additional properties of the fixed points in O, but there are a
few obstacles.

Firstly, we are working with free products of the form G � G1 � . . . Gk � Fr. The only
conditions we have imposed on these free factors is their number, k, and how they are
permuted (used in the definition of irreducibility). Therefore any reasonable classifica-
tion we performed would ultimately have to be done in terms of k and r, ignoring the
effect the automorphisms had inside each factor.

Secondly, when generalized to free products, the conditions Dicks & Ventura used may
not be restrictive enough. For example, they are able to discount all graphs with a
degree 1 vertex, but we cannot discount all graphs of groups with this property, since
we must consider the possibility that the vertex has a non-trivial vertex group.

Paper 3

In Paper 3 we propose the axioms for a graph-like length function. These are elements of
RG, the space of functions from G to R, and we prove that they hold for a reasonable
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collection of based length functions of metric spaces: A4 is a cocompactness condition,
and A5 holds for the based length function of every isometric, co-bounded action on a
based geodesic metric space. Taking this further, we can think of the space of graph-
like length functions as a subspace of RG. This raises questions which we asked in the
introduction to Paper 3, but which we ultimately did not answer:

What are the properties of this subspace? For example, is it a connected/contractible/fi-
nite dimensional subspace of RG on which AutpGq acts?
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Paper 1: Fixed points of irreducible, displacement
one automorphisms of free products

Matthew Collins

ABSTRACT. We consider the action of outer automorphisms on the deformation space
O of G-trees given by a free product decomposition of a group G. We show that an
irreducible, displacement 1 automorphism fixes exactly one point in O1 (the covolume
1 slice of O).

1 Introduction

This paper can be thought of as a generalisation of a paper by Dicks & Ventura [6], in
which the authors classify the irreducible, growth rate 1 automorphisms of free groups
Fn. In the process of doing so, they show that each of these automorphisms can be
represented by a graph automorphism of a graph with fundamental group Fn. When
combined with the results of [2] and [8], this means that an irreducible, growth rate 1
automorphism of a free group Fn fixes a single point in Culler-Voghtmann space CVn.
The main result of this paper is a generalisation of this result: we prove that an irre-
ducible, growth rate 1 automorphism of a free product G � G1 � . . . � Gk � Fr fixes a
single point in the deformation space O1.

The free group version of this result is stated explicitly in [11, p.10, Thm 3.8], and it
follows from Dicks & Ventura’s classification like so: Every irreducible outer auto-
morphsim of Fn is topogically represented by an irreducible train track map f on a
graph in Culler-Vogtmann space CVn [2, p.9, Thm 1.7]. If the automorphism is growth
rate 1, then f is a finite order homeomorphism - in this case, a graph automorphism.
Thus the graph automorphisms found by Dicks & Ventura in [6] are in fact train track
maps.

The minimally displaced set in CVn of an irreducible automorphism coincides exactly
with the set of points which support train track maps [8, p.32, Thm 8.19]. Additionally,
it can be shown that the growth rate of an irreducible automorphism is equal to its dis-
placement, and if the automorphism has displacement 1, then the minimally displaced
set is actually a fixed point set. It follows that the graphs supporting the train track
maps found by Dicks & Ventura are fixed points in Culler-Voghtmann space.

The final step is to show the uniqueness of these points, which is done in the proof of
[11, p.10, Theorem 3.8].

Our generalisation to free products follows a similar outline - however, we instead use
the deformation space O, otherwise known as outer space, which is a generalisation of
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Culler-Vogtmann space to free products G � G1 � . . . � Gk � Fr. The notion of a defor-
mation space was first introduced by Forester [7], and they have since been studied in
[5] and [4]. Given a group G, one considers minimal, cocompact, isometric actions of
G on metric simplicial trees. These trees, together with their actions, are called G-trees.
Two G-trees are said to be equivalent if there exists an equivariant isometry between
them, and one defines O to be the space of equivalence classes of G-trees which share
the same set of elliptic subgroups - that is, subgroups which fix a point in the tree.

The group of outer automorphisms which preserve the set of conjugacy classes
trG1s, . . . , rGksu acts on O by “twisting” the actions of the G-trees. This group is denoted
OutpG,Gq, and we study its action on the covolume one slice of O (denoted O1) by us-
ing the asymmetric Lipschitz metric: For any two G-trees T, S P O1, we write ΛRpT, Sq
to denote the asymmetric Lipschitz distance, or stretching factor, between them.

For an automorphism α P OutpG,Gq, one can define the displacement of α as
λα � inftΛpT, αTq | T P O1u. The minimally displaced set of α, Min1pαq, is the set of G-
trees T in O1 which realise this infimum. It can shown that if α is irreducible, then the
displacement λα is not just an infimum, but it is a minimum, and hence the set Min1pαq
is non-empty. In addition, it can be shown that ΛRpT, Sq � 1 if and only if T and S
represent the same equivalence class in O1 - hence λα � 1 implies that Min1pαq is the
fixed-point set of α.

One can think of O1 as a union of open simplices, where a G-tree’s position in its sim-
plex is determined by the lengths of its edges. In Theorem 7.6, we show that the action
of α on each T P Min1pαq can be toplogically represented by an isometry of T, and that
this isometry must cyclically permute the G-orbits of edges in T. It follows that the
edges of T must all have the same length, and hence T must lie at the centre of its open
simplex - thus Min1pαq must consist solely of simplex centres. However, it is shown in
[10, p.19, Cor 5.4] that Min1pαq is connected by so-called simplicial paths. Since a non-
trivial simplicial path between the centres of two simplices must pass through a point
which is not at the centre of a simplex, our main result follows:

Theorem 8.7. Let α P OutpG,Gq be irreducible and displacement 1. Then Min1pαq � Fix1pαq
is a single point.

2 Groups acting on trees

For the duration of this chapter, let G be a group.
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2.1 Metric simplicial trees

Definition 2.1. An R-tree is a non-empty metric space in which any two points are
joined by a unique arc, and in which every arc is isometric to a closed interval in the
real line.

Definition 2.2. Let p be a point in a non-trivial R-tree T.

• p is called a branch point if T � p has three or more components.

• p is called regular if T � p has exactly two components.

• p is called external otherwise

Points which are not regular are called non-regular.

Definition 2.3. A metric simplicial tree is an R-tree whose set of non-regular points is
discrete.

It will be useful to give these metric simplicial trees a combinatorial structure. Let
C be a 1-dimensional simplicial complex. The 1-simplices will be called edges, and
the 0-simplices will be called vertices. One can construct metric simplicial trees from
simplicial complexes as follows:

Definition 2.4. Let C be a 1-dimensional simplicial complex. The geometric realisation of
C is the metric space obtained from C by assigning the length of every edge in C to be
1. We give the geometric realisation the path metric topology.

Theorem 2.5. An R-tree T is metric simplicial if and only if it is homeomorphic to the geo-
metric realisation of a connected 1-dimensional simplicial complex C with trivial fundamental
group.

Remark 2.6. There exists an alternative way to view this construction. Let T and C be
as in Theorem 2.5. Then one can think of T as being obtained from C by assigning a
length Lpeq (not necessarily 1) to every edge e in C, and to ensure discreteness of the
non-regular points we impose the condition that for every vertex v P C,
inftLpeq | e is incident to vu ¡ 0.

It is important to note that if T is a metric simplicial tree, then the geometric realisa-
tion to which T is homeomorphic to is not unique: Dividing any edge of C into two by
adding a new vertex will result in a new simplicial complex whose geometric realisa-
tion is also homeomorphic to T. Thus we have a degree of choice over the structure of
our trees. Once a choice of C has been made, we shall simply say “e is an edge of T” to
mean that e is an edge of C, and similar for vertices.

When T is acted upon by a group G, the action can be used to determine our structure,
as described in the next section. The conventional way of doing this, which we shall
also be using, is described in the next section.
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2.2 G-trees

Definition 2.7. Let T be a metric simplicial tree with an underlying simplicial complex.
We define a subforest of T to be a subspace given by a set E1 of edges and a set V1 of
vertices, such that the incident vertices of every edge in E1 lie in V1.

A subtree of T is a connected subforest.

What this definition means is that we are defining subforests and subtrees so that they
respect the underlying simplicial complex. In general this is not required, but it suits
our purposes for this paper.

Definition 2.8. Suppose G acts on a metric simplicial tree T with an underlying simpli-
cial complex.

• The action is said to be simplicial if it maps vertices to vertices and edges to edges.

• If no edge of T is sent to its inverse by any element of G, we say that G acts without
inversions.

• We say that both T and the action are minimal if T contains no proper, G-invariant
subtree.

• Let x P T. The stabiliser stabpxq of x is defined to be the subgroup tg | x � g � xu of
G.

Let e be an edge of T. Then we define the stabiliser stabpeq of e to be the subgroup
of G which fixes e but does not necessarily preserve the orientation of e.

If every edge in T has trivial stabiliser, we say that T is edge-free.

Let p be a vertex in T. If stabppq � 1, we say that p is free. Otherwise, it is non-free.

Definition 2.9. A G-tree is a triple pT, dT, �q, where T is a metric simplicial tree, dT is the
metric on T, and � is an isometric group action T � G Ñ T, px, gq ÞÑ x � g.

If the metric and action are obvious from context, we may choose to omit one or both
of them from the notation.

Remark 2.10. We have chosen to define G-trees with a right action so that @x P T,
@g P G, and @H ¤ G, stabpx � gq � stabpxqg and FixpHgq � FixpHq � g.

Had we chosen to act on the left, acting by g would have caused the stabilisers to be
conjugated by g�1, and similar for the fixed point sets.

We are now ready to choose a simplicial structure for our G-trees. Let T be a G-tree.
Then the simplest structure on T - that is, the structure containing the fewest vertices -
is obtained by defining the vertex set to be the set of non-regular points of T. One then
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takes the edge set to be the set of simple arcs between elements of the vertex set which
do not contain any other vertices.

Using the simplest structure, the action of G on T is simplicial. However, some edges
may be sent to their inverses by elements of G. Future calculations will be easier if
we have an action without inversions, therefore we shall instead use the following
structure:

• We define the vertex set to be the set of non-regular points of T, together with the
midpoints of all the edges of the simplest structure which were inverted by an
element of G. We denote this vertex set by VpTq.

• We then define the edge set to be the set of simple arcs between elements of the
vertex set which do not contain any other vertices. We denote this edge set by
EpTq.

Essentially, we divide each inverted edge into two edges by placing a new vertex at
its midpoint. With this new structure the action is still simplicial and, in addition, it
is without inversions. This is the simplicial structure we shall be giving to all G-trees
throughout this paper.

Remark 2.11. VpTq as defined above is a discrete set, and hence is a well defined vertex
set.

The following two propositions follow immediately from this choice of simplicial struc-
ture.

Proposition 2.12. Minimal G-trees do not contain any degree 1 vertices (and hence the set of
non-regular points is exactly the set of branch points).

Proposition 2.13. G-trees do not contain any free vertices of degree 2.

2.3 Equivalence

Definition 2.14. Let pT, dT, �q, pS, dS, �q be G-trees. We say a map of trees f : T Ñ S is
a G-equivariant map from pT, dT, �q to pS, dS, �q if f px � gq � f pxq � g for all x P T, for all
g P G.

Definition 2.15. Two G-trees pT, dT, �q, pS, dS, �q are said to be equivalent if there exists a
G-equivariant isometry between them. We write pT, dT, �q � pS, dS, �q to denote equiva-
lence.

Definition 2.16. We say a map of G-trees is simplicial if it maps vertices to vertices. Note
that it does not have to map edges to edges, and hence this definition differs from that
of a simplicial group action.
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3 Bass-Serre Theory

3.1 Graphs of Groups

Definition 3.1. [3, p.113] A graph Y consists of the following:

• Two disjoint sets VpYq and EpYq, called the vertex and edge sets of Y respectively.

• A function : EpYq Ñ EpYq such that, for all e P EpYq, e � e and e � e.

• A function ι : EpYq Ñ VpYq, and another function τ : EpYq Ñ VpYq defined by
τe :� ιe. We call ιe the initial vertex of e, and τe the terminal vertex of e.

We say Y is finite if VpYq and EpYq are both finite.

Graphs defined in this way - by considering each unoriented edge as a pair of oriented
edges pe, eq - are often referred to as Serre graphs.

Definition 3.2. A metric graph is a graph Y together with a length function L : EpYq Ñ R

such that, for all edges e of Y, Lpeq � Lpeq. This length function induces a metric dY on
Y.

Diverting briefly back to the previous chapter, we remark that a 1-dimensional simpli-
cial complex can be thought of as a Serre graph by considering each 1-simplex to be an
edge pair. Thus G-trees (and their quotients) can be thought of as metric graphs, and
depending on context we may treat them as such. This allows us to make the following
observations:

Proposition 3.3. G acts on G-trees via graph automorphisms (without inversions).

Proposition 3.4. Let T be a metric simplicial tree. Then T{G is finite if and only if it is compact
(under the path metric topology).

We now return to defining graphs of groups.

Definition 3.5. [3, p.198] A graph of groups X consists of:

(i) An connected graph Y

(ii) A group Gv for each vertex v of Y, and a group Ge for each edge e of Y such that
Ge � Ge.

(iii) For each edge e of Y, a monomorphism ρe : Ge Ñ Gτe, where ιe and τe are the
endpoints of e.
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If Y is a metric graph, then we say X is a metric graph of groups.

Let X be a graph of groups on a graph Y. One can define the fundamental group of X
in a similar manner to that of a standard graph, by thinking of elements of the group as
reduced loops in the graph. However, some additional structure is added by the edge
and vertex groups. We shall use a definition adapted from [3, p.198], restricted to the
case where X has trivial edge groups (and hence trivial monomorphisms ρe).

Let Y0 be a spanning tree in Y. Then one can define the fundamental group of X to be

π1pXq �
�
�vPVpYq Gv

� � FpEpYqq
N

where N is the normal closure of the set tee | e P EpYqu Y te P Y0u. This can be simpli-
fied into the form π1pXq � G1 � . . . � Gk � Fr, where G1, . . . , Gk are the nontrivial vertex
groups, and Fr � π1pYq is a free group of rank r ¥ 0. This definition does not depend
upon the choice of Y0.

We will be working with graphs of groups whose fundamental group is isomorphic to
a particular group G. Thus we consider pairs pX, ϕq, where X is a graph of groups and
ϕ : G Ñ π1pXq is an isomorphism. Such a pair is called a marked graph of groups, and ϕ

is called the marking.

3.2 The Quotient Graph of Groups

Given a G-tree T, we can construct from it a metric graph of groups called the quotient
graph of groups. A comprehensive method for constructing a quotient graph of groups
from an arbitrary connected graph acted upon by G can be found on pages 204-205 of
[3]. For this paper, we shall restrict his construction to edge-free G-trees.

Let T be a G-tree. Take the quotient graph T{G, and let p : T Ñ T{G be the projection
map, and Y0 a maximal tree of T{G. Let j : Y0 Ñ T be a map such that p � j is the
identity on Y0 (i.e j is a lift of Y0 to T). We call jpY0q a representative tree for the action.

We then define a graph of groups X on T{G as follows: For any vertex x of T{G, we
define the vertex group Gx to be stabpjpxqq. We take all edge groups, and hence all edge
monomorphisms, to be trivial, and edges inherit their lengths from T. This completely
defines X.

The metric on X is given by assigning the length of each edge e of X to be the length of
its corresponding edge orbit in T.
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Theorem 3.6. [3, p.210, Thm 26 (iii)] Let T be a G-tree, and let X be a quotient graph of groups
for T. Then the fundamental group of X is isomorphic to G.

This isomorphism gives a marking on X, and hence we can think of the quotient graph
of groups as a marked graph of groups.

3.3 The Universal Cover

Conversely, let pX, ϕq be a marked metric graph of groups with

G
ϕ� π1pX, vq. Then we can construct from X a G-tree called the Bass-Serre tree, or

universal cover of X, denoted by X̃. The process of constructing the universal cover is
well-documented in the literature (e.g. [3, p.205]), so we shall not cover it here.

Definition 3.7. We say that two marked metric graphs of groups are equivalent if their
universal covers are equivalent G-trees.

Theorem 3.8 (Fundamental Theorem of Bass-Serre Theory). The process of lifting to the
universal cover and the process of descending to a quotient graph of groups are mutually inverse,
up to equivalence of the structures involved.

Let T P O. We observe that a quotient graph of groups pX, ϕq of T is not unique: while
the underlying graph is always T{G, the vertex groups depend on our choice of j, and
hence X is not unique. Additionally, given a choice of X, the marking ϕ : G Ñ π1pXq is
not unique.

However, it follows from the fundamental theorem of Bass-Serre Theory that all pos-
sible choices of j and ϕ give equivalent marked graphs of groups. Thus, for brevity of
notation, we shall simply denote a marked graph of groups pX, ϕq by X.

4 Free Factor Systems and the Deformation Space

Let G be a group, and let T be a G-tree.

Definition 4.1. An element g P G is said to be elliptic (with respect to T) if it fixes a
point in T. If g is not elliptic, we say it is hyperbolic (with respect to T).

We shall say a subgroup H of G is elliptic (with respect to T) if there exists a point x P T
such that x � H � x.

Definition 4.2 (Free Factor System). Let T be a minimal, cocompact, edge-free G-tree,
and let GT denote the set of elliptic subgroups for T. We say GT is a free factor system for
G.
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Note that this is not the usual definition of a free factor system. The usual definition
can be found in [1, p.530-531], and we shall refer to it as a traditional free factor system:

Definition 4.3 (Traditional Free Factor System). If G1 � . . . � Gk � Fr is a free product
decomposition for a group G, and each Gi is nontrivial, then we say that the collection
trG1s, . . . , rGksu of conjugacy classes is a traditional free factor system. The empty set H is
the trivial traditional free factor system of a free group Fr.

Corollory 4.11 will show that the Fundamental Theorem of Bass-Serre Theory provides
a natural way to construct a free factor system from a traditional free factor system,
and vice versa, and that these constructions are mutually inverse. In this sense, the two
definitions are equivalent.

We have chosen our definition for two reasons. Firstly, the trivial free factor system
must be defined separately when using the traditional definition. Secondly, our defi-
nition allows us to order our free factor systems by inclusion, and this corresponds to
the somewhat more complicated ordering used for the traditional free factor systems,
as defined in [1, p.532].

For now, we return to our definition of a free factor system and we observe the follow-
ing properties:

Lemma 4.4. Free factor systems are closed under conjugation and taking subgroups.

Lemma 4.5. Let pT, �q, pS, �q be equivalent minimal, cocompact, edge-free G-trees. Then
GT � GS.

Lemma 4.6. Let pT, �q be an edge-free G-tree. A nontrivial element of G cannot fix more than
one point in T, and the fixed point will always be a vertex.

The final lemma tells us that a subgroup of G is elliptic with respect to a minimal, co-
compact, edge-free G-tree, and hence is an element of the corresponding free factor
system, if and only if it is a vertex stabiliser or a subgroup of a vertex stabiliser.

Definition 4.7. Let G be a free factor system for G. The deformation space O � OpG,Gq
is the space of equivalence classes of minimal, cocompact, edge-free G-trees T such
GT � G.

By Lemma 4.6, a subgroup of G is in G if and only if it is a vertex stabiliser or subgroup
of a vertex stabiliser for some (and hence every) G-tree in O. Additionally, by general
properties of group actions, two vertices lie in the same orbit if and only if they have
conjugate stabilisers. Thus we can define a minimal generating set for G:

Definition 4.8. We say a subset of a free factor system G is a minimal generating set for
G if and only if it contains exactly one vertex stabiliser from every orbit of non-free
vertices in some (and hence every) T P O.
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Remark 4.9. If G is non-trivial, then this definition is the conventional definition of a
minimal generating set under the operations of conjugation and taking subgroups.

If G � t1u - the trivial free factor system - then trees in OpG,Gq do not contain any
non-free vertices. Thus the minimal generating set for G � t1u is the empty set H.

G-trees in O are cocompact, so by Proposition 3.4, T will have a finite number of vertex
orbits. Hence a minimal generating set for G will always be finite.

Theorem 4.10. The following are equivalent:

(i) There exists a minimal, cocompact, edge-free G-tree T containing a representative tree T0

in T such that the non-trivial vertex stabilisers in T0 are exactly G1, . . . , Gk.

(ii) There exists a minimal, cocompact, edge-free G-tree T and a quotient graph of groups on
T{G whose non-trivial vertex groups are exactly G1, . . . , Gk.

(iii) G can be written as a free product G � G1 � . . . �Gk � Fr, where Fr is a free group of rank
r ¥ 0.

Proof. piq ô piiq Follows from the Fundamental Theorem of Bass-Serre Theory.

piiq ñ piiiq Follows immediately from the definition of the fundamental group of a
graph of groups and Theorem 3.6.

piiiq ñ piiq We must first consider the case where k � 1 and r � 0 - that is to say, the
trivial free product decomposition. In this case, we take X to be the graph of groups
consisting of a single vertex with vertex group G.

Otherwise, we take X to be the graph of groups which consists of:

• a rose with central vertex v8 (with trivial vertex group) and r petals.

• for each i P t1, . . . , ku:

– a vertex vi with associated vertex group Gi

– an edge ei between vi and v8

• trivial edge groups for every edge

Then π1pXq � G1 � . . . � Gk � Fr � G. Upon lifting to the universal cover, it can be seen
that this is a quotient graph of groups for a minimal, cocompact, edge-free G-tree.

We can now demonstrate the correspondence between free factor systems and tradi-
tional free factor systems.
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Let G be a free factor system for a group G. This means that G is the set of elliptic
subgroups of some T P OpG,Gq. Take a representative tree in T, and let tG1, . . . , Gku
be the nontrivial vertex groups of this representative tree. Then by Theorem 4.10, G
can be written as a free product G � G1 � . . . � Gk � Fr. Thus the set trG1s, . . . , rGksu is
a traditional free factor system. Since each rGis is a conjugacy class, this set does not
depend on the choice of representative tree.

Conversely, let trG1s, . . . , rGksu be a traditional free factor system. Then we have
G � G1 � . . . � Gk � Fr, so by Theorem 4.10, there exists a minimal, cocompact, edge-
free G-tree T containing a representative tree T0 in T such that the non-trivial vertex
stabilisers in T0 are exactly G1, . . . , Gk. These vertex groups give a minimal generating
set for a free factor system G � GT.

Corollary 4.11. The process of constructing a free factor system from a traditional free factor
system, and the process of constructing a traditional free factor system from a free factor system,
are mutually inverse. In this sense, the two definitions are equivalent.

Proof. Follows from Theorem 4.10.

It follows from Corollary 4.11 that, given a free product G � G1 � . . . � Gk � Fr, we can
construct a free factor system G, and hence a corresponding deformation space OpG,Gq.
This space can then be used to study the automorphisms of the free product.

5 Automorphisms

For the duration of this section, let G denote a free factor system for a group G, and let
O � OpG,Gq.

5.1 Acting on the Deformation Space

Notation. The outer automorphism group of G is defined as OutpGq :� AutpGqäInnpGq;
elements of OutpGq are equivalence classes of automorphisms, where two automor-
phisms are equivalent if they differ by an inner automorphism.

When we write α P OutpGq, we mean that α is an automorphism in AutpGq representing
an equivalence class in OutpGq.

In this paper, the automorphisms of G will act on G on the right.

Definition 5.1. Let α P AutpGq, and let Gα � tpHqα | H P Gu. We say that G is α-
invariant if Gα � G.
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Free factor systems are closed under conjugation by elements of G, hence α-invariance
depends only on the outer automorphism class of α. Thus we can make a similar defi-
nition for OutpGq:

Definition 5.2. Let α P OutpGq, and let Gα � tpHqα | H P Gu. We say that G is α-
invariant if Gα � G.

The set of α P OutpGq leaving G invariant forms a group, which we shall denote
OutpG,Gq.

The group OutpG,Gq admits a left action on the deformation space O � OpG,Gq: Let
pT, dT, �q P O, let α P OutpG,Gq. Then αpT, dT, �q :� pT, dT, �αq, the G-tree with the same
underlying simplicial tree and metric, but with ‘twisted’ action given by x �α g � x � pgqα
for all x P T.

Observe the following:

Lemma 5.3. Let T P O be a G-tree, and let α P OutpG,Gq. Then the G-orbits of T are the
same as those of αT. That is, for all x P T, x � G � x �α G.

Proof. x � G � tx � g | g P Gu � tx � pgqα | g P Gu � x �α G.

Thus we see that the ‘twists’ α applies to the action only occur within each orbit. This
means that if we are working with both pT, �q and pT, �αq, we are able to simply refer to
‘a G-orbit of T’ without having to state which action is being used.

Definition 5.4. We can partially order the set of all free factor systems of G by inclusion.
Let G be a proper, α-invariant free factor system. We say α P OutpG,Gq is G-irreducible,
or irreducible with respect to G, if G is a maximal, proper α-invariant free-factor system.

Otherwise, we say α is reducible with respect to G.

5.2 Topological Representatives

Definition 5.5. [9, p.16] Let T, S P OpG,Gq. An O-map f : T Ñ S is a G-equivariant,
Lipschitz continuous function. The Lipschitz constant of f is denoted Lipp f q.

Note that an O-map does not have to send vertices to vertices, and hence does not need
to be a graph morphism.

Definition 5.6. [9, p.16] We say an O-map f : T Ñ S is straight if it has constant speed
on edges - that is, for each edge e in T, there exists a non-negative number lep f q such
that for any a, b P e we have dTp f paq, f pbqq � lep f qdSpa, bq.
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Definition 5.7. Let α P OutpG,Gq, and let T P O be a G-tree. Then a map f : T Ñ αT is
said to topologically represent α if it is a straight O-map.

The authors of [9, p. 16] make the following remark:

Remark 5.8. Any two trees T, S P O have an O-map between them. Furthermore, any
O-map f : T Ñ S can be uniquely ’straightened’ - that is to say, there exists a unique
straight O-map Strp f q : T Ñ S, such that Str

�
f
�pvq � f pvq for every vertex v P T. We

have LippStrp f qq ¤ Lipp f q.

From this remark it follows that @α P OutpG,Gq, @T P O, there exists a topological
representative f : T Ñ αT.

Definition 5.9. Let F be a subforest of some T P O, and let A be a component of F. We
define the stabiliser of A to be the set stabpAq � tg P G | A � g � Au - that is, we are
taking the setwise stabiliser, not the pointwise stabiliser.

We say that F is G-elliptic if, for every component A of F, stabpAq P G. Otherwise we
say that F is G-hyperbolic.

Using topological representatives, we can construct a test for the reducibility of an au-
tomorphism:

Theorem 5.10. Let G be a proper free factor system for a group G, let α P OutpG,Gq, and let
T P O.

Suppose that α can be topologically represented by a G-equivariant simplicial map f : T Ñ αT,
and there exists a proper f -invariant, G-invariant, G-hyperbolic subforest of T. Then α is
reducible with respect to G.

Proof. We shall prove that α is reducible by constructing a new cocompact, minimal,
edge-free G-tree S, from which we shall retrieve another proper α-invariant free factor
system H such that G � H.

Let F denote the subforest of T described above, together with all the remaining vertices
of T. This extended subforest is still proper, f -invariant, and G-invariant. (In addition,
recall that we defined subforests such that they respect the simplicial structures of our
G-trees; therefore the complement of F is a set of edges.)

We obtain S from T by collapsing each component A of F to a point pA. Edges which
were not collapsed inherit their lengths from T, giving us a metric on S. Since F is
G-invariant, this collapse induces a minimal, isometric action of G on S. Thus S is a
G-tree.

Furthermore, if we declare the vertex set to be the set of pA, we induce a new simplicial
structure on S. (This is a well-defined vertex set, and the simplicial structure given by
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this vertex set is exactly the same as the usual simplicial structure we give to all G-trees,
as defined in Section 2.2).

S inherits cocompactness and edge-freeness from T. Hence, by definition, the set H of
elliptic subgroups for S is a free factor system for G.

Let v P T be a vertex. Since F contains every vertex of T, v must lie in some component
A of F. Therefore, since F is G-invariant, all of A must be fixed (setwise, not necessarily
pointwise) by stabpvq. Hence stabpvq ¤ stabppAq. This holds for all v, which is enough
to tell us that G � H.

Some component of F has G-hyperbolic stabiliser. This means that stabppAq R G but
stabppAq P H. Thus G � H.

Suppose that G P H - that is to say, a vertex of S is stabilised by G. Then the compo-
nent of F corresponding to this vertex is a G-invariant subtree of T, contradicting the
minimality of T. Hence G R H, so H is a proper free factor system.

Finally, we must show that H is α-invariant:

Let pA be a vertex of S. We first want to show that pstabppAqqα lies in H - that is to say,
it fixes a point in pS, �q. F is f -invariant, therefore f pAq is a component of F and p f pAq

is a vertex of S. Furthermore, @pgqα P pstabpvAqqα,
p f pAq � pgqα � p f pAq�pgqα � p f pA�gq � p f pAq, and hence pstabppAqqα P H. This holds for
all pA P S. This tells us that Hα � H, which in turn is enough to show that H � Hα.

To summarize, H is a proper, α-invariant free-factor system for G, and G � H. Hence,
by Definition 5.4, α is reducible with respect to G.

5.3 Isometric topological representatives

Our main results will make use of isometric topological representatives, which allow us
to make some additional observations:

Remark 5.11. Recall that O is a space of equivalence classes of G-trees, where two
trees are equivalent if there exists an equivariant isometry between them. Topological
representatives are equivariant; therefore, if an isometric topological representative
f : T Ñ αT exists, the two G-trees T and αT are representing the same point in O.

Proposition 5.12. Let f : T Ñ αT be a topological representative for some T P OpG,Gq, for
some α P OutpG,Gq. If f is an isometry, then it is also a graph automorphism.

Proof. It is sufficient to show that f pvq is a vertex if and only if v is a vertex. f is an
isometry - in particular it is bijective - therefore f pvq is a branch point if and only if v is a
branch point. The only vertices which remain are the degree 2 vertices. Recall that these
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were introduced as the midpoints of inverted edges, hence they all have stabiliser of
order 2. f is equivariant, therefore stabpvq is order 2 if and only if stabp f pvqq is order 2.
Thus the set of degree 2 vertices is also preserved, and f is a graph automorphism.

Definition 5.13. Let Y be a metric graph. The volume of Y, denoted VolpYq is defined to
be the sum of the lengths of the edges of Y.

Let T P O. The covolume of T, denoted CovolpTq, is defined to be the volume of the
graph T{G.

Proposition 5.14. Let f : T Ñ αT be a topological representative for some T P OpG,Gq, for
some α P OutpG,Gq. Then Lipp f q � 1 if and only if f is an isometry.

Proof. If f is an isometry, then Lipp f q � 1 follows immediately. It remains to prove the
converse.

Let D be a subforest of T consisting of exactly one edge from each orbit. Then
CovolpTq � VolpDq. Without loss of generality, we may assume that CovolpTq � 1.
Since T and αT have the same metric, this means that CovolpαTq � 1.

Since f is equivariant, f pDq contains a fundamental domain for f pTq. Since αT does not
contain any proper invariant subtrees, we must have f pTq � αT, hence f pDq contains a
fundamental domain for αT. It follows that Volp f pDqq ¥ 1. In addition,

Volp f pDqq ¤
¸

edges ePD

Lp f peqq (*)

¤
¸

edges ePD

Lpeq (as Lipp f q � 1)

� VolpDq
� CovolpTq
� 1

.

We split into two cases:

Case 1: f is not locally injective This is equivalent to saying that f ‘folds’ a pair of
edges - that is, there is a vertex v, neighbourhoods U1, U2 of v, and edges e1, e2 incident
to v such that f pe1 XU1q � f pe2 XU2q. (The neighbourhoods are required because f
may not fold the entirety of the edges, only the initial segments. Since f may stretch
these segments, the neighbourhoods are not the same size in general).

The two edges can only be folded if they lie in different orbits; observe that if e1 � g � e2,
then f pe1 XU1q must be fixed by αpgq, contradicting edge freeness. Therefore we are
free to choose D such that it contains a pair of folded edges.



58 Paper 1.

If e1, e2 are a pair of folded edges in D, then the volume of their image under f will
be strictly less then the sum of their original lengths. This means that (*) is a strict
inequality, so Volp f pDqq   1. This contradicts Volp f pDqq ¥ 1, hence Case 1 cannot
occur.

Case 2: f is locally injective. Then (*) is an equality, so Volp f pDqq � 1. This is enough
to tell us that Lp f peqq � Lpeq for every edge e of D, and hence all the edges of T; thus f
is an isometry on every edge of T. This, combined with local injectivity, means that f is
an isometry on all of T.

6 Distance on O

6.1 Stretching Factors

Definition 6.1. Let g P G, and let T P OpG,Gq. The translation length of g in T, denoted
lTpgq, is defined as

lTpgq � inf
xPT
tdTpx, x � gqu.

Remark 6.2. This infimum is in fact a minimum, and is obtained for some x. If g is
elliptic then this is observed to be true from the definition of an elliptic element, and
we have lTpgq � 0.

If g is hyperbolic then the translation length will be non-zero, and the set of elements
realising this length will form a line through T called the hyperbolic axis of g. Points on
the axis will be translated along the axis by lTpgq.
Remark 6.3. An equivalence class of G-trees in O is uniquely determined by its trans-
lation length function [4] - thus one can think of O as being embedded in the space
RG.

Definition 6.4. Let HyppGq denote the set of elements of G which do not lie in any
subgroup of G. (In other words, HyppGq is the set of elements which are hyperbolic
with respect to some, and hence all, G-trees in OpG,Gq).
Definition 6.5. [8, p.8] Let T, S P OpG,Gq. Then we define the left and right stretching
factor from T to S as

ΛLpT, Sq :� sup
gPHyppGq

lTpgq
lSpgq , ΛRpT, Sq :� sup

gPHyppGq

lSpgq
lTpgq � ΛLpS, Tq,

respectively. We also define the symmetric stretching factor from T to S to be

ΛpT, Sq :� ΛLpT, SqΛRpT, Sq.
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The next Theorem follows from [8, Corollary 6.8, p.18 and Theorem 6.11, p.19].

Theorem 6.6. Let T, S P O. Then there exists a Lipschitz continuous map f : T Ñ S such
that Lipp f q � ΛRpT, Sq.

6.2 The Displacement of an Automorphism

Definition 6.7. Let α P OutpG,Gq. Then we define the displacement of α to be

lα :� inf
TPO

ΛRpT, αTq,

Theorem 6.8. [8, p. 25] For any G-irreducible α P OutpG,Gq, the displacement of α is a
minimum and obtained for some T P O.

Definition 6.9. For any α P OutpG,Gq, we define

Minpαq � tT P O | ΛRpT, αTq � λαu,

That is to say, Minpαq is the set of all T which realise the above infimum.

Theorem 6.10. Let α P OutpG,Gq be a G-irreducible, displacement 1 automorphism. Then for
all T P Minpαq, there exists an isometric topological representative for α on T.

Proof. Let T P Minpαq. Then by definition of the minimally displaced set,
ΛRpT, αTq � λα � 1, and hence by Theorem 6.6 there exists a Lipschitz continuous
map f : T Ñ αT with Lipp f q � 1. Therefore, by Proposition 5.14, f is an isometric
topological representative for α.

Corollary 6.11. Let α P OutpG,Gq be a G-irreducible, displacement 1 automorphism. Then
Minpαq � Fixpαq.

Proof. Let T P Fixpαq. Then T and αT are equivalent G-trees, so ΛpT, αTq � 1 � λα.
Thus Fixpαq � Minpαq.

Conversely, let T P Minpαq. By Theorem 6.10, there exists an equivariant isometry from
T to αT. Points in O are equivalence classes of G-trees under equivariant isometry,
hence T and αT represent the same point in O. Thus Minpαq � Fixpαq.

7 Secondary Theorem

We extend some of our terminology for G-trees to graphs of groups:
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Definition 7.1. Let T P OpG,Gq, and let X be a quotient graph of groups on T{G. We
shall say that a vertex of T{G is free if it has trivial vertex group in X. Otherwise, it is
non-free. Note that this definition does not depend on our choice of X.

Definition 7.2. Let T P OpG,Gq, and let X be a quotient graph of groups on T{G. We
say that a subgraph-of-groups of X is G-elliptic if and only if the fundamental group of
all its components lies in G. Otherwise, we say it is G-hyperbolic.

Similarly, we say that a subgraph of T{G is G-elliptic/hyperbolic if the corresponding
subgraph-of-groups of X is G-elliptic/hyperbolic. Observe that this definition does not
depend on the choice of marking on X.

It follows from the Fundamental Theorem of Bass-Serre Theory that a G-invariant sub-
forest of T is G-elliptic if and only if it collapses to a G-elliptic subgraph of T{G.

We also observe that, by the definition of the fundamental group, a subgraph of T{G
will be G-elliptic if and only if each component is a tree containing at most one non-free
vertex.

Let f : T Ñ αT be a topological representative. Topological representatives are equiv-
ariant, hence f induces a well-defined map φ : T{G ÞÑ T{G. (Observe that since orbits
in T and αT are the same, T{G � αT{G).

Suppose that f is an isometry. Then by Proposition 5.12, f is a graph automorphism. It
follows that φ is also an isometric graph automorphism - in particular, it is invertible.
Thus we can think of the cyclic group xφy as acting on T{G.

φ can be used in an equivalent form of the reducibility test (Theorem 5.10), this time
using the quotient graph:

Theorem 7.3. Let G be a proper free factor system for a group G, let α P OutpG,Gq, and let
T P O.

Suppose that α can be topologically represented by a G-equivariant simplicial map f : T Ñ αT,
and there exists a proper φ-invariant, G-hyperbolic subgraph of T{G. Then α is reducible with
respect to G.

This form of the reducibility test eliminates the need to check for G-invariance. Note
that a subgraph of T{G is φ-invariant if and only if it is invariant under the action of
xφy.

Definition 7.4. We say a graph Y is a star if it is a tree and there exists a vertex w which
is incident to every edge of Y.

Lemma 7.5. Let T P O, and let X be a quotient graph of groups for T. Then all the vertices of
degree 1 or 2 in X will have non-trivial vertex groups.
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The proof of this lemma follows directly from Propositions 2.12 and 2.13.

Theorem 7.6. Let G be a free factor system for a group G, and let α P OutpG,Gq be an
irreducible automorphism with lα � 1. Let T P Minpαq, and let f : T Ñ αT be an equivariant
isometry ( f exists by Theorem 6.10).

Then f cyclically permutes the G-orbits of edges in T.

Proof. f induces a map φ on T{G, and the cyclic group xφy acts on T{G. The theorem
statement is equivalent to saying that φ cyclically permutes the edges of T{G.

Let e be an edge in T{G. We define two subgraphs of T{G:

• Let A be the subgraph of T with EpAq � e � xφy and with VpAq equal to the set of
vertices incident to EpAq.

• Let B be the subgraph of T with edge set EpBq � EpTq � e � xφy and with VpBq
equal to the set of vertices incident to EpBq.

Observe that these are both xφy-invariant.

Suppose that φ does not cyclically permute the edges of T{G. This means that A and
B are both proper subgraphs of T{G. We shall show that at least one of the two sub-
graphs is G-hyperbolic. This will mean that α is reducible by Theorem 7.3, giving us a
contradiction.

In more detail, we assume that A is G-elliptic. Then A is a forest such that every com-
ponent contains at most one non-free vertex. If B is not a forest, then B is immediately
G-hyperbolic, so assume that it is a forest. We shall show that some component of B
contains at least 2 non-free vertices, and hence B is G-hyperbolic.

To begin we note that by Lemma 7.5, X does not contain any free vertices of degree 1
or 2. Thus we make the following claim:

Claim (i): Let v be a free vertex of T{G. Then degT{Gpvq � degApvq � degBpvq ¥ 3. It
follows that, if degApvq � 1 or 2 or degBpvq � 1 or 2, then v P AX B. Additionally, if

degApvq � 1, then degBpvq ¥ 2, and if degBpvq � 1, then degApvq ¥ 2.

Now, xφy acts via isometries, and since A is the xφy-orbit of a single edge, xφy acts
transitively on the components of A. Hence the components of A are all isometric to
each other, and we can divide A into two cases:

Case 1: Each component of A is a single edge

B is a finite forest, therefore each component of B has at least two vertices of B-degree
1. By Claim (i), if any of these vertices are free, then they must lie in AX B and have
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A-degree of at least 2. However, all vertices in A have A-degree 1. Hence the B-degree
1 vertices are all non-free, and B is G-hyperbolic.

Case 2: Each component of A contains more than one edge

By definition, A contains at most two xφy-orbits of vertices. Since A is a finite forest,
some vertices in VpAq will have A-degree 1, and since each component of A contains
more than one edge, some vertices in VpAq will have A-degree strictly greater than
1. xφy acts via graph automorphisms (by Proposition 5.12), and A is xφy-invariant,
therefore vertices in the same xφy-orbit will have the same A-degree. Thus A contains
exactly two xφy-orbits of vertices.

Furthermore, EpAq is the xφy-orbit of a single edge, so the incident vertices of this edge
are representatives for our two vertex orbits. Thus every edge in A must have exactly
one incident vertex with A-degree 1, and hence A is in fact a disjoint union of stars. We
shall refer to the A-degree 1 vertices as the spoke vertices. The remaining vertices, at the
centre of each star, shall be called the hub vertices.

By the equivariance of f , xφy sends free vertices to free vertices, and non-free vertices to
non-free vertices. The spoke vertices all lie in the same xφy-orbit, and each component
of A contains at least 2 spoke vertices. Therefore, since A is G-elliptic, the spoke vertices
must all be free. Thus, by Claim (i), they must lie in B, and have B-degree at least 2.

xφy acts transitively on the spoke vertices. Therefore xφy acts transitively on the com-
ponents of B which contain the spoke vertices, and hence these components are all
isometric to each other. We shall write B1 to denote the subforest of B consisting of
these components. (Observe that, for any vertex v P B1, degBpvq � degB1pvq).

We divide into two cases once again:

Subcase 1: Each component of B1 contains exactly one spoke vertex

Let s be the number of spoke vertices, and let l be the number of components of A.
Then s ¥ 2l.

B1 has exactly s components. These components are finite trees, so they will each
contain at least 2 vertices of B1-degree 1. Thus B1 has at least 2s vertices with B1-
degree 1. By Claim (i), any of these vertices which are free must lie in A and have
A-degree at least 2. However, the only vertices with A-degree at least 2 are the l hub
vertices. This leaves at least 2s � l vertices in B1 which must therefore be non-free.
2s� l ¡ s � number of components of B1, therefore some component of B1 must con-
tain two or more of these non-free vertices. Therefore B1, and hence B, is G-hyperbolic.

Subcase 2: Each component of B1 contains more than one spoke vertex

We divide B1 into two subforests, C and D:
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• Let B11, . . . , B1n be the components of B1. For each i � 1, . . . , n, let Ci be the unique
minimal subtree of B1i which contains all the spoke vertices in B1i . Let C :� �n

i�1 Ci.
Since B1 and the set of spoke vertices are xφy-invariant, C is also xφy-invariant.

• Define D to be the subforest of B1 consisting of the edge set EpB1q� EpCq, together
with all vertices incident to this edge set. Since B1 and C are xφy-invariant, D is
also xφy-invariant.

By minimality of the Ci’s, at least one spoke vertex has C-degree 1. Since C is xφy-
invariant and the spoke vertices lie in the same xφy-orbit, this implies that all the spoke
vertices have C-degree 1. However, recalling that the spoke vertices have B-degree at
least 2, this tells us that the spoke vertices are all incident to an edge in D (and hence
the spoke vertices themselves are all in D).

Claim (ii): A component of D cannot contain more than one point in CXD.

Proof of Claim (ii). Let v, w P CXD, and suppose that v and w lie in the same component
of D. Then they lie in the same component of B1, and hence the same component of C.
Therefore there exists a unique reduced path γD from v to w in D , and a unique reduced
path γC from v to w in C.

However, B1 is a forest, therefore γD � γC. By definition of D, there are no edges in
CXD. Hence both paths are trivial, and v � w. This ends the proof of Claim (ii).

In particular, Claim (ii) implies that each spoke vertex lies in a unique component of
D. Let D1 be defined as the subforest of D consisting only of the components which
contain spoke vertices. Then, if we let s be the number of spoke vertices, D1 will have s
components. (Additionally, for any v P D1, degDpvq � degD1pvq).

Each component of D1 will contain at least two vertices of D1-degree 1. By Claim (ii),
at least one of these will not lie in CX D, and hence it will also have B1-degree 1. Fur-
thermore, since xφy acts transitively on the spoke vertices, it will act transitively on the
components of D1. Thus there exists a xφy-orbit of at least s vertices with B1-degree 1;
at least one in each component of D1.

By Claim (i), if this orbit of vertices is free, then it must lie in A and have A-degree at
least 2. However, the only xφy-orbit of vertices with A-degree at least 2 are the l hub
vertices. s ¥ 2l, therefore these cannot be the same orbit. Hence our orbit of B1-degree
1 vertices must be non-free.

Each component of B1 contains more than one spoke vertex. Therefore each component
of B1 contains more than one component of D1, and hence more than one of our non-free
vertices. Thus B1 is G-hyperbolic.
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8 Main Theorem

For the duration of this section, let G be a free factor system for a group G, and let
O � OpG,Gq.
Definition 8.1. The covolume 1 slice of O, denoted O1, is defined to be the subspace of
covolume 1 trees in O.

Definition 8.2. Let α P OutpG,Gq. In a similar manner to O, we define the minimally
displaced set in O1 to be Min1pαq � tT P O1 | ΛRpT, αTq � λαu and we define
Fix1pαq � tT P O1 | T � αTu.
Remark 8.3. For T P O and µ ¡ 0, let us write µT to denote the G-tree pT, µdT, �q. One
can show that for all T, S P O, ΛRpT, Sq � ΛRpµT, µSq - that is to say, stretching factors
are invariant under rescaling the volume of both G-trees. Additionally, T and αT have
the same volume for all T P O, so by rescaling one, we rescale the other. Thus we
observe the following:

Minpαq � tµT P O | T P Min1pαq, µ ¡ 0u,
Fixpαq � tµT P O | T P Min1pαq, µ ¡ 0u,

It then follows from Corollary 6.11 that Min1pαq � Fix1pαq.

Let T P O1. The metric on T can be completely described by the length of one edge
from each G-orbit - or equivalently, the lengths of the edges of T{G. Hence, if there are
n edge orbits with lengths x1, . . . , xn, then the open simplex
tpx1, . . . , xnq | x1 � . . . xn � 1, xi ¡ 0 @iu describes the set of all possible metrics on T.
Repeating this for every tree in O1 allows us to think of O1 as a union of open simplices.

(Equivalently, the same structure can be thought of a simplicial complex with some
missing faces. These missing faces are a result of edges of T which, were their lengths
reduced to zero, would create new vertices whose stabilisers were not in G, and hence
the resulting tree could not lie in O.)

Let ∆ be an open simplex in O1. We write ∆ to denote the closure of ∆ in O1. Note that
this is not, in general, a closed simplex.

Definition 8.4. (Adapted from [10, p.19, Def. 5.1])

Let T, S P O1. A simplicial path between T and S is given by:

(i) A finite sequence of points T � T0, T1, . . . , Tk � S P O1 such that @i � 1 . . . k there
is a simplex ∆i such that Xi�1 and Xi both lie in ∆i.

(ii) Euclidean segments Xi�iXi � ∆i. (Here Euclidean segment refers to the coordi-
nates px1, . . . , xnq on ∆i).
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Definition 8.5. We say that a set χ � O1 is connected by simplicial paths if for any x, y P χ,
there is a simplicial path between x and y which is contained entirely in χ.

Lemma 8.6. A simplicial path in O1 which only passes through the centres of simplices is a
single point.

Proof. Any such simplicial path must begin at the centre of an open simplex in O1.
Observe that any nontrivial Euclidean segment which begins at the centre of a simplex
must pass through a point which does not lie at the centre of a simplex. Thus the entire
simplicial path is trivial.

We can now state the main theorem of this paper.

Theorem 8.7. Let α P OutpG,Gq be irreducible and displacement 1. Then Min1pαq � Fix1pαq
is a single point.

Proof. By Theorem 6.8, Minpαq, and hence Min1pαq, is non-empty.

Let T P Min1pαq. Then by Theorem 6.10 there exists an equivariant isometry
f : T Ñ αT. By Theorem 7.6, f cyclically permutes the edges of T, which means that
all the edges in T must have the same length, and hence T must lie at the centre of an
open simplex in O1. Thus Min1pαq is a subset of the set of simplex centres.

It is shown in [10, p.19, Cor 5.4] that Min1pαq is connected by simplicial paths. How-
ever, by Lemma 8.6, a simplicial path in O1 which only passes through the centres of
simplices is a single point. It follows that Min1pαq is a single point.

Corollary 8.8. Let α P OutpG,Gq be irreducible and displacement 1. Then Minpαq � Fixpαq
is a single line.

Proof. Follows directly from Theorem 8.7 and the fact that
Minpαq � tµT P O | T P Min1pαq, µ ¡ 0u.

There exists a space similar to O1 called the projectivized space PO, where instead of
taking the covolume one subspace of O, one takes a quotient space of O by identifying
all G-trees in the sets tpT, λdT, �q | λ P Ru for each T P O.

When choosing a G-tree to represent a point in PO, one usually takes the unique co-
volume one G-tree. In this way, we can construct a natural bijection between O1 and
PO.

The displacement λα of an automorphism is invariant under rescaling of the metrics
dT, hence we can define the minimally displaced set MinP pαq in PO. The set Min1pαq
is a set of representatives for MinP pαq, thus Theorem 8.7 shows that MinP pαq is also a
single point.
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Paper 2: Growth and displacement of free product
automorphisms

Matthew Collins

ABSTRACT.
It is well known for an irreducible free group automorphism that its growth rate is
equal to the minimal Lipschitz displacement of its action on Culler-Vogtmann space.
This follows as a consequence of the existence of train track representatives for the
automorphism.
We extend this result to the general - possibly reducible - case as well as to the free
product situation where growth is replaced by ‘relative growth’.

1 Introduction

This paper was prompted by a question which arose during one of the author’s previ-
ous papers [6]. That work was a generalisation of the results of [7] from free groups to
free products, and focused on the deformation space OpG,Gq - a space of G-trees which
can be thought of as a generalisation of Culler-Vogtmann space. In [7], the authors fo-
cused on irreducible, growth rate 1 automorphisms of free groups, where the growth
rate was defined with respect to word length. However, when generalising their re-
sults, we ultimately ended up using irreducible, displacement 1 automorphisms of free
products - the displacement being a value used to describe the action of an automor-
phism on OpG,Gq (described below).

Our new results held regardless of this distinction, and the link between the growth
rate and the displacement of an irreducible free group automorphism is reasonably
intuitive given a solid understanding of Culler-Vogtmann space and train track maps.
The goal of this paper is to turn that intuition into solid proof, and to extend that proof
to a larger class of automorphisms by answering the following:

Questions.

(1) In [7], the growth rate was defined for free groups. What is the “correct” generalisation
of this definition to free products?

(2) When we have found this generalisation, does the growth rate of an irreducible free
product automorphism equal its displacement in outer space?

(3) More generally, does the growth rate of any free product automorphism equal its dis-
placement in outer space?
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(1)

First we address the definition of the growth rate. In the case of free groups, Dicks &
Ventura [7] attribute the following definition of the growth rate in arbitrary groups to
Thurston:

Definition 3.7. Let α be an automorphism of a finitely generated group G. Let E be
a finite generating set of G, and let lE denote the conjugacy length in the alphabet E.
Then for g P G we define the growth rate of α with respect to (the conjugacy class of) g as

GRpα, lE, gq � lim sup
kÑ8

k
b

lEpgαkq

The growth rate of α is then

GRpα, lEq � suptGRpα, lE, gq | g P Gu

Using this definition, it can be fairly swiftly proved that the growth rate of an irre-
ducible automorphism of a free group is equal to its displacement in Culler-Vogtmann
space. We will say more about this proof when we talk about Question (2), but when
we say that we are searching for the “correct” definition of growth rate in free products,
it is the generalisation of this proof we have in mind.

We elect to use relative generating sets, which was inspired by Osin’s paper on relatively
hyperbolic groups [10].

Definition 3.9. We say that E � G is a relative generating set of G with respect to G if G is
generated by the set

� k¤
i�1

Gi



Y E,

where G � G1 � . . . � Gk � Fr is a free product decomposition corresponding to G.

From this we can essentially follow the definition of the growth rate in free groups
by defining relative conjugacy length, relative Lipschitz equivalence, and finally the relative
growth rate.

Definition 3.17. Let α P OutpG,Gq, and let lE be a relative conjugacy length function.
Then for g P G we define the relative growth rate of α with respect to (the conjugacy class of)
g as

GRGpα, lE, gq � lim sup
kÑ8

k
b

lpgαkq
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The relative growth rate of α is then

GRGpα, lEq � suptGRpα, lE, gq | g P Gu

Remark 1.1. If we consider the case where G is a free group and G is the trivial free
factor system (that is to say, we take the free product decomposition of G consisting
of a single free factor - G itself), then all of these “relative” definitions restrict to their
original counterparts, as they should.

(2)

Questions (2) and (3) are both true. In fact, (3) immediately implies (2), but the case of
irreducible automorphisms is different enough to deserve separate consideration.

A free product decomposition of a group G determines a set of subgroups G called a
free-factor system. We write O � OpG,Gq to denote the space of equivalence classes
of minimal, cocompact, edge-free G-trees whose set of elliptic subgroups is G. Such a
space is referred to as outer space. OutpG,Gq - the group of outer automorphisms which
preserve G - acts on outer space by “twisting” the action, and studying the effect of this
twist gives us information about the original automorphisms.

For any two G-trees T, S P O, we write ΛRpT, Sq to denote the asymmetric Lipschitz
distance, or stretching factor, between them. For an automorphism α P OutpG,Gq, one
can define the displacement of α as λα � inftΛpT, αTq | T P Ou. The minimally displaced
set of α, Minpαq, is the set of G-trees T in outer space which realise this infimum.

It is well known for an irreducible free group automorphism that its growth rate is equal
to the minimal Lipschitz displacement of its action on Culler-Vogtmann space. This
follows as a consequence of the existence of train track representatives for the auto-
morphism. It can be shown that the required properties of train track representatives
in free groups also hold in free products, so the same method can be used.

More specifically, [8] proves that:

• The minimally displaced set Minpαq is equal to the set of trees in O which support
optimal train track maps f : T Ñ αT.

• When α is irreducible, Minpαq is non-empty.

From here the proof of (2) follows. We give a complete proof of this irreducible case in
Appendix 2.
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(3)

If we drop the irreducibility condition, a problem arises which prevents us from copy-
ing the train track proof outright: we cannot guarantee that Minpαq will be non-empty,
and hence we cannot guarantee the existence of an optimal train track map. Happily,
however, we can guarantee the existence of a weaker set of maps known as relative train
tracks.

A topological representative f : T ÞÑ αT has an associated transition matrix M � pmijq,
where mij is the number of times the f -image of the j-th edge-orbit crosses the i-th
edge-orbit in either direction. By relabelling edges appropriately, it is always possible
to write M in block upper triangular form:

M �

������
M1 ? ? ?
0 M2 ? ?
...

...
. . .

...
0 0 � � � Mn

�����
,

where the matrices M1, . . . , Mn are either zero matrices or irreducible matrices.

Writing M in this form determines a partition of the edges of T: The rth stratum Hr of T
is the subgraph of T given by closure of the union of the edge orbits corresponding to
the rows/columns in Mr. This also determines a filtration H � T0 � . . . � Tn � T of T,
where Tr �

�
i¤r Hr. Observe that each Ti is f -invariant, but the Hi are not, in general.

We say an edge path γ in Tr is r-legal if no component of γXHr contains an illegal turn.

Definition 4.8. [Relative train track] Let T P OpG,Gq, let α P OutpG,Gq, and let
f : T Ñ αT be a simplicial topological representative for α. Use this map to divide T
into strata as described above. We say that f is a relative train track map if the following
conditions hold:

(1) f preserves r-germs: For every edge e P Hr, the path f peq begins and ends with
edges in Hr.

(2) f is injective on r-connecting paths: For each nontrivial path γ P Tr�1 joining points
in Hr X Tr�1, the homotopy class r f pγqs is nontrivial.

(3) f is r-legal: If a path γ is r-legal, then f pγq is r-legal.

Theorem 4.9. [5, Thm 2.12] For any automorphism α P OutpG,Gq, there exists a relative
train track map f : T Ñ αT on some T P O.

We observe that Mr is the transition matrix of Hr, and each of these submatrices will
have its own PF-eigenvalue µr. It can be shown that, even though a relative train track
map will not, in general, satisfy the property of train track maps used in Question (2),
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it will satisfy a similar property on each stratum of T using these µr. This gives us the
tools we require to prove that question (3) is true:

Theorem 5.1. Let α P OutpG,Gq. Then the following are equal:

• The relative growth rate of α, GRGpαq.

• The largest PF-eigenvalue µR of any relative train track map f : T Ñ αT, T P OpG,Gq.

• The displacement λα of α in O.

We prove this by proving three inequalites:

A: µR ¤ GRGpαq,

B: GRGpαq ¤ λα,

C: λα ¤ µR.

A follows from existing properties of relative train tracks. B can be proved explicitly
using the definition of the right stretching factor. C requires more thought.

Recall the definition of the displacement: λα :� infSPO ΛRpS, αSq. Ideally we would
prove inequality C by emulating the proof of question (2) and finding a G-tree in O
whose right stretching factor is exactly µR. However, unless α is irreducible, this is
not always possible. Thus we instead find a sequence of G-trees whose right stretching
factors tend towards µR.

The lengths of edges in T are determined by the PF-eigenvectors, but these are only
determined up to scalar multiplication, so we are free to rescale the edges in each stra-
tum by a constant of our choosing. We choose to rescale each Hr by Nr. As N tends
to infinity, we observe that the growth in the stratum with the largest PF-eigenvalue
becomes greater than that of all other strata. From this the result follows.

2 Bass-Serre Theory

2.1 G-trees

Definition 2.1. A simplicial tree is a non-empty, 1-dimensional simplicial complex in
which every two points are joined by a unique arc. We call the 1-simplices edges, and
the 0-simplices vertices.

A metric simplicial tree is a simplicial tree T together with a metric dT such that the set of
vertices is discrete in the topology induced by dT.
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Remark 2.2. The discreteness condition above is equivalent to saying that the lengths
of the edges incident to a given vertex are bounded below - that is to say, @v P V, DC ¡ 0
such that for all vertices w adjacent to v, dTpv, wq ¥ C.

Let G be a group.

Definition 2.3. A G-tree is a triple pT, dT, �q, where T is a metric simplicial tree, dT is the
metric on T, and � is an isometric group action T � G Ñ T, px, gq ÞÑ x � g. For the sake
of brevity of notation, if the specific metric and action are not required, we shall simply
denote the triple pT, dT, �q by T.

We say that two G-trees are equivalent if there exists an equivariant isometry between
them.

We say that T is minimal if it does not contain a G-invariant subtree.

We say that T is edge-free if every edge has trivial stabiliser.

Remark 2.4. We say that an action on a G-tree T is without inversions if no edge is sent to
its inverse by an element of G. If T does contain an inverted edge, then placing a new
vertex at the midpoint will essentially remove this inversion. Furthemore, since the
two trees before and after this operation are equivalent in the above sense, adding this
vertex does not affect any relevant properties of T. Thus, to simplify our calculations,
we shall assume that all our G-trees are without inversions.

Definition 2.5. Let pT, dT, �q be a G-tree.

We say that an element g P G is elliptic with respect to T if x � g � x for some point
x P G. If g is not elliptic, we say it is hyperbolic.

We say that a subgroup H ¤ G is elliptic with respect to T if x � H � x for some point
x P G. If H is not elliptic, we say it is hyperbolic.

An elliptic subgroup will consist entirely of elliptic elements, but the converse is not
necessarily true.

Definition 2.6. We write O � OpG,Gq to denote the space of equivalence classes of
minimal, cocompact, edge-free G-trees whose set of elliptic subgroups is G. Such a
space is referred to as outer space.

2.2 Graphs of groups

Definition 2.7. A (Serre) graph X consists of the following:

• a vertex set V � VpXq,



2. Bass-Serre Theory 73

• an edge set E � EpXq,

• an initial vertex map ı : E Ñ V,

• an edge reversal map E Ñ E, e ÞÑ e such that e � e and e � e.

We call ıpeq the terminal vertex of e, and denote it τpeq.

Definition 2.8. [4, p.198] A graph of groups Γ consists of the following:

(i) a connected graph X,

(ii) a group Gv for each vertex v of X, and a group Ge for each edge e of X such that
Ge � Ge,

(iii) for each edge e of X, a monomorphism ρe : Ge Ñ Gτe.

If X has a metric, we say that Γ is a metric graph of groups.

Notation. We may write VpΓq and EpΓq to denote the sets VpXq and EpXq respectively.

Remark 2.9. All of the graphs of groups we shall be using in this paper will have trivial
edge groups (and hence trivial monomorphisms ρe). Thus, for the sake of simplicity,
we shall restrict our exposition on Bass-Serre Theory to graphs of groups with this
property.

Let Γ be a graph of groups with trivial edge groups. Then the path group πpΓq is defined
by

πpΓq �
�
�vPVpΓq Gv

� � FpEpΓqq
N

,

where N is the normal closure of the set tee | e P EpΓqu.

A path in Γ is a sequence g0e1g1 . . . gn�1engn where gi�1 P Gιei and gi P Gτei for all i (so
e1 . . . en is an edge path in the graph). If any gi � 1, then we omit it from the notation.

We say a path is reduced if it does not contain any subpaths of the form ee. We can think
of πpΓq as the group of reduced paths.

Definition 2.10. Choose a base point x P VpΓq. The fundamental group π1pΓ, xq of Γ at x
is the subgroup of πpΓq consisting of the reduced paths which start and end at x.

The isomorphism class of π1pΓ, xq does not depend on our choice of x. Thus we shall
usually omit it from the notation, and simply write π1pΓq.
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If X denotes the underlying graph of Γ, then it can be shown that

π1pΓq �
�
�vPVpΓq Gv

� � Fr,

where Fr � π1pXq is a free group of rank r.

Definition 2.11. Let G be a group, and let Γ be a metric graph of groups. A marking on
Γ is an isomorphism ϕ : G Ñ π1pΓq. The pair pΓ, ϕq is called a marked graph of groups.

2.3 The Fundamental Theorem

Bass-Serre theory describes a process by which one may construct a marked graph of
groups from a G-tree and, conversely, a G-tree from a marked graph of groups. The
Fundamental Theorem of Bass-Serre Theory states that these two constructions are mu-
tually inverse, up to isomorphism of the structures involved.

The details of Bass-Serre Theory have been thoroughly explored in the literature ([2]
[4]), so we shall simply give a brief description of the two constructions.

Definition 2.12 (Bass-Serre Tree). [1, p.7]

Let pΓ, ϕq be a marked graph of groups with trivial edge groups and with marking
ϕ : G Ñ π1pΓ, xq. We then define a graph T called the universal cover, or Bass-Serre tree,
of Γ as follows:

• The vertex set VpTq is the set of ‘cosets’ Gvγ, where γ P πpΓq is a path from the
vertex v to our base point x.

• Two vertices Gv1 γ1, Gv2 γ2 P VpTq are joined by an edge(-pair) in T if the vertices
v1 and v2 are joined by an edge pair pe, eq in X, and γ1 � egv2 γ2 or γ2 � egv1 γ1.

It can be shown that this graph T is always a tree.

If g P G, then ϕpgq P π1pΓ, xq is a loop in Γ - that is to say, a path from x to x. Thus we
can define a right action � of G on T as follows:

@Gvγ P VpTq, Gvγ � ϕpgq :� Gvpγϕpgqq

This action respects adjacency, sending edges to edges. Together with this action, the
Bass-Serre tree is an edge-free G-tree.

We say two marked graphs of groups are equivalent if their universal covers are equiv-
alent as G-trees.
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Remark 2.13. Observe that the Bass-Serre tree as we have defined it here is a Serre
graph, whereas the definition of G-trees we have given views them as simplicial struc-
tures. This distinction ultimately matters little - we can reconcile the two viewpoints
by thinking of each pair pe, eq as denoting two orientations of a 1-simplex, rather than
being individual edges.

Definition 2.14 (Quotient Graph of Groups). Let T be an edge-free G-tree. Then we
define the quotient graph of groups of T as follows:

• the underlying Serre graph is the quotient graph T{G,

• all edge groups are trivial,

• consider a connected fundamental domain in T. This will contain exactly one
vertex from each orbit. We assign the stabilizers of these vertices to be the vertex
groups of the corresponding vertices in T{G.

It is given by the Fundamental Theorem of Bass-Serre Theory that the fundamental
group of this graph of groups is isomorphic to G. The action of G on T determines this
isomorphism, giving us a marking.

2.4 Free factor systems

There exists a relation between G-trees and free product decompositions of G, which
can be phrased as follows:

Consider the outer space O � OpG,Gq, and recall that trees in this space are cocompact.
A G-tree is cocompact if and only if it has a finite number of edge orbits and vertex
orbits. It follows that the quotient graph of groups Γ has a finite number of vertex
groups, and hence we can write G � π1pΓq � G1 � . . . �Gk � Fr, where G1, . . . , Gk are the
vertex groups. (Since we have a choice of vertex groups when constructing Γ, this free
product decomposition is only unique up to conjugates of the free factors).

Conversely, suppose we are given a free product G � G1 � . . . � Gk � Fr. Then one
can easily construct graphs of groups with vertex groups G1, . . . , Gk and fundamen-
tal group G (for example, see Figure 2.1). Taking the Bass-Serre trees will give us an
outer space O � OpG,Gq of G-trees, where the elliptic subgroups are
G � xH ¤ Gg

i | g P G, i � 1, . . . , ky - the subgroups of the conjugates of the free factors.

To summarize, a space OpG,Gq determines a family of free product decompositions of
G, and a free product decomposition of G determines a space OpG,Gq. It follows from
the Fundamental Theorem of Bass-Serre Theory that these two processes are mutually
inverse (up to conjugacy of the free factors). Thus we shall refer to the set G as a free
factor system.
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G1

G2

Gk

x1

x2

xr

FIGURE 2.1: A graph of groups with fundamental group G1 � . . . � Gk � xx1, . . . , xry

Definition 2.15. Let G be a free factor system for a group G, and let g P G. We say that
g is G-elliptic if it lies in a subgroup in G. Otherwise, we say it is G-hyperbolic. We shall
write HyppGq to denote the set of all G-hyperbolic elements.

Remark 2.16. The notions of elliptic and hyperbolic given here align with those in
Definition 2.5.

3 Length functions and growth

Definition 3.1. By a length function on a set X, we mean a map l : X Ñ R taking
non-negative values.

3.1 Displacement in Outer Space

Definition 3.2. Let g P G, and let T P OpG,Gq. Then we write lTpgq to denote the
translation length of g in T, given by

lTpgq � inf
xPT
tdTpx, x � gqu

Remark 3.3. lTpghq � lTpgq for all g, h P G. Thus we shall think of lT as a length function
on the conjugacy classes of single elements of G.

It can be shown that this infimum is achieved by some x P T. If g is elliptic, then
lTpgq � 0 by definition.

If g is hyperbolic, then lTpgq ¡ 0. The set of points x P T which realise lTpgq will form
a line in T called the hyperbolic axis of g. Points on the axis will be translated along the
axis a distance of lTpgq by g.
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Definition 3.4. [8, p.8] Let T, S P OpG,Gq. We define the right stretching factor from T to
S as

ΛRpT, Sq :� sup
gPHyppGq

lSpgq
lTpgq ,

Remark 3.5. The right stretching factor is bounded above. In fact, it is realised by some
g P HyppGq. This follows from Corollary 6.8 and Theorem 6.11 of [8].

Definition 3.6. Let α P OutpG,Gq. Then we define the displacement of α to be

lα :� inf
TPO

ΛRpT, αTq.

3.2 Growth rate

Notation. In this paper, the automophisms of a group G will act on G on the right.

Dicks & Ventura [7] attribute the following definition to Thurston.

Definition 3.7. Let α be an automorphism of a finitely generated group G. Let E be
a finite generating set of G, and let lE denote the conjugacy length in the alphabet E.
Then for g P G we define the growth rate of α with respect to (the conjugacy class of) g as

GRpα, lE, gq � lim sup
kÑ8

k
b

lEpgαkq

The growth rate of α is then

GRpα, lEq � suptGRpα, lE, gq | g P Gu

Remark 3.8. It can be shown that any two finite generating sets of a finitely generated
group G give Lipschitz equivalent conjugacy length functions, and from this it can be
further shown that Definition 3.7 does not depend on the choice of E.

We shall now generalise this definition from finitely generated groups to finite free
products - that is to say, free products of the form G � G1 � . . . � Gk � Fr, where k and r
are finite, and Fr denotes a free group of rank r.

3.3 Relative length functions

Definition 3.9. We say that E � G is a relative generating set of G with respect to G if G is
generated by the set

� k¤
i�1

Gi



Y E,
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where G � G1 � . . . � Gk � Fr is a free product decomposition corresponding to G.

Let Ĝ :� �k
i�1pGizt1uq. Then we observe that G is generated by the set EY Ĝ.

Definition 3.10. Let E be a relative generating set of G with respect to G. To each
element g P G, we assign its relative length with respect to G, |g|EYĜ, to be the length of a
shortest word in the alphabet EY Ĝ which represents g in G.

To each element g P G, we assign the relative conjugacy length with respect to G, lEpgq,
given by

lEpgq � mint|h|EYĜ | h P G is conjugate to gu,

It is clear that this length depends upon the choice of E. However, when E is finite, the
effect this choice has on the length is bounded in the following sense:

Definition 3.11. We say that two length functions l1, l2 on the same set X are Lipschitz
equivalent if there exist constants C, D ¡ 0 such that, for all x P X,
Cl2pxq ¤ l1pxq ¤ Dl2pxq. We write l1 � l2.

Let G � G1 � . . . �Gk � Fr. We say that two length functions l1, l2 on the conjugacy classes
of G are relatively Lipschitz equivalent if they are Lipschitz equivalent when restricted to
HyppGq. We write l1 �G l2.

Proposition 3.12. (Adapted from [10, p.13]) Let G � G1 � . . . � Gk � Fr be a free product.
Suppose that E1 and E2 are two finite relative generating sets of G with respect to tG1, . . . , Gku.
Then the corresponding length functions lE1 and lE2 are Lipschitz equivalent (and hence rela-
tively Lipschitz equivalent).

Theorem 3.13. Let α P OutpG,Gq, let E be a finite relative generating set for G, and let T P O.
Then lE �G lT.

Proof. There exists a free product decomposition G � G1 � . . . � Gk � Fr corresponding
to E. Let E1 � tx1, . . . , xru be a basis for Fr. Then E1 is also a finite G-relative generating
set for G. Let Γ1 denote the graph of groups depicted in Figure 2.1. The universal cover
T1 of Γ1 lies in O.

To define a metric on Γ1 (and hence T1), we assign the loops on the left length 1, and the
remaining edges on the right length 1

2 . By assigning these edge lengths, we ensure that
lE1pgq � lT1pgq for all hyperbolic g P G, hence lE1 �G lT1 .

There exist Lipschitz continuous maps between any two G-trees in O [8, Lem 4.2]. This
is sufficient to prove that lT1 �G lT. Thus

lE
Prop 3.12�G lE1 �G lT1 �G lT
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3.4 Outer Automorphisms

Definition 3.14. Let G be a group. The outer automorphism group of G is the quotient
OutpGq :� AutpGq{InnpGq, where AutpGq and InnpGq denote the automorphism group
and inner automorphism group respectively.

A free factor system G of a group G is a set of subgroups which is closed under conjuga-
tion. It follows that G � Gϕ � tHϕ | H P Gu for all inner automorphisms ϕ. Therefore,
when considering the effect of an automorphism on G, it suffices to consider its outer
automorphism class.

Notation. Since we need only consider outer automorphism classes, we use some
slightly non-standard notation for the sake of brevity: We will not write out the usual
square brackets rαs to denote the outer automorphism class of α P AutpGq. We will
simply write α P OutpGq.

Definition 3.15. Let G be a free factor system for a group G, and let α P OutpGq. We say
that G is α-invariant if G � Gα. We write OutpG,Gq to denote the subgroup of OutpGq
consisting of the elements α such that G is α-invariant.

3.5 The relative growth rate

Definition 3.16. Let G be a free factor system for a group G. We say a G-bounded length
function is a length function l on the conjugacy classes of single elements of G which
satisfies the following:

• DC ¡ 0 such that @g R HyppGq, lpgq ¤ C,

• Dε ¡ 0 such that @g P HyppGq, ε ¤ lpgq,

• @g P HyppGq, for all non-zero integers n, lpgnq � |n|lpgq.

Definition 3.17. Let α P OutpG,Gq, and let lE be a relative conjugacy length function.
Then for g P G we define the relative growth rate of α with respect to (the conjugacy class of)
g as

GRGpα, lE, gq � lim sup
kÑ8

k
b

lpgαkq

The relative growth rate of α is then

GRGpα, lEq � suptGRpα, lE, gq | g P Gu
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Lemma 3.18. Let G,G, α and l be as in Definition 3.17. Then the relative growth rate of α is
determined by the hyperbolic elements of G - that is to say,

GRGpα, lEq � suptGRpα, lE, gq | g P HyppGqu.

Proof. To prove this, it suffices to show there exists a hyperbolic element of G whose
relative growth rate is greater than or equal to the relative growth rate of every elliptic
element.

Let g P G be an elliptic element. G is α-invariant, hence gαk is also elliptic. Furthermore,
since l is G-bounded, DC ¡ 0 such that lpgq ¤ C, so

GRGpα, l, gq � lim sup
kÑ8

k
b

lpgαkq

¤ lim sup
kÑ8

k
?

C (by properties of lim sup)

� 1

Thus we wish to find a hyperbolic element whose relative growth rate is at least 1.
Since l is G-bounded, Dε ¡ 0 such that @h P HyppGq, ε ¤ lpgq. Let h P HyppGq, and take
N ¥ 1

ε . Then

lphNαkq � lpphαkqNq � |N| � lpgαkq ¥ 1
ε
� ε � 1.

hN is also hyperbolic, hence this completes the proof.

Note that we have only defined the growth rate for G-bounded length functions. We
can show that both of the length functions we have seen in this paper are G-bounded:

Lemma 3.19. Let G � G1 � . . . �Gk � Fr be a free product with corresponding free factor system
G. Let E be a relative generating set with respect to G, and let lE be the corresponding relative
conjugacy length. Then lE is a G-bounded length function.

Proof. Let g P G. If g is elliptic, then lEpgq � 1, so take C � 1.

The only element of G with relative conjugacy length 0 is the identity element, which
is elliptic. Thus we may take ϵ � 1.

Let g be hyperbolic, and let x1 . . . xk be a shortest word in E representing a conjugate
of g. If x1 � x�1

k , then conjugating by x�1
1 would shorten the word, resulting in a

contradiction. Thus we may assume that this is not the case, and hence

lEpgnq � lEppx1 . . . xkqnq � |n|k � |n|lEpgq.
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Lemma 3.20. Let T P OpG,Gq. Then lT is a G-bounded length function.

Proof. Elliptic elements are by definition elements which fix a point in T. Thus the
translation length of elliptic elements is bounded above.

Hyperbolic elements g translate points along a hyperbolic axis - in particular, since
the action is isometric, the points are translated by a whole number of edges. T is
cocompact, hence it contains finitely many edge orbits - thus we may take ϵ to be the
length of the shortest edge.

Additionally, points on the axis of g are translated along it by a distance of lTpgq. gn has
the same hyperbolic axis, and it translates points on the axis a distance of
lTpgnq � |n|lTpgq.

We will now show that these two length functions give us the same relative growth
rate:

Proposition 3.21. Let l1, l2 be G-bounded length functions, and suppose that l1 �G l2. Then
GRGpα, l1q � GRGpα, l2q.

Proof. By Lemma 3.18, it is sufficient to restrict our attention to the hyperbolic elements
of G. Let h P HyppGq. l1 �G l2, hence DD ¡ 0 such that l1phq ¤ Dl2phq. Thus

GRpα, l1, hq � lim sup
nÑ8

n
a

l1phαnq

¤ lim sup
nÑ8

n
?

D n
a

l2phαnq

¤
�

lim sup
nÑ8

n
?

D
	�

lim sup
nÑ8

n
a

l2phαnq
	

(by properties of limsup)

� lim sup
nÑ8

n
a

l2phαnq (lim sup
nÑ8

n
?

D � lim
nÑ8

n
?

D � 1)

� GRpα, l2, hq.

The reverse inequality can be obtained in the analogous way, and hence
GRpα, l1, hq � GRpα, l2, hq. This holds for all h P HyppGq, hence GRpα, l1q � GRpα, l2q.

Notation. In a similar manner to the free group case, Proposition 3.21 shows that, up to
relative Lipschitz equivalence, the relative growth rate does not depend on our choice
of l. Thus, unless the particular length function is required, we shall omit l from the
notation, and simply write GRGpα, gq and GRGpαq.
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4 Relative Train Tracks and Perron-Frobenius

Definition 4.1. Let T, S P O. A map f : T Ñ S is called an O-map if it is Lipschitz
continuous and G-equivariant. We write Lipp f q to denote the Lipschitz constant of f .

An O-map f : T Ñ S is straight if it has constant speed on edges - that is to say, the
restriction of f to each edge is a linear map.

Remark 4.2. [9, Remark 3.4] O-maps exist between any pair of G-trees in O. Any O-
map f can be uniquely straightened - that is to say, there exists a unique O-map Strp f q
which is homotopic relative to vertices to f . We have LippStrp f qq ¤ Lipp f q.

Definition 4.3. Let α P OutpG,Gq, and let T P OpG,Gq. We call a straight O-map
f : T Ñ αT a topological representative for α. If f maps vertices to vertices, we say it is
simplicial.

4.1 Stratification of G-trees for topological representatives

Let f : T Ñ αT be a simplicial topological representative for α P OutpG,Gq. Being sim-
plicial, f will map edges in T to edge paths. This behaviour determines the associated
transition matrix M � pmijq of f , where mij is the number of times the f -image of the
j-th edge-orbit crosses the i-th edge-orbit in either direction.

Relabelling the edges (which equates to reordering the rows and columns of the matrix)
allows us to write M in block upper triangular form

M �

������
M1 ? ? ?
0 M2 ? ?
...

...
. . .

...
0 0 � � � Mn

�����
,

where the matrices M1, . . . , Mn are either zero matrices or irreducible matrices.

Writing M in this form determines a partition of the edges of T: The rth stratum Hr of T
is the closure of the union of the edge orbits in T corresponding to the rows/columns
in Mr. We observe that Mr is the transition matrix of Hr.

Remark 4.4. Dividing T into strata in this way also gives us a filtration
H � T0 � . . . � Tn � T of T, where Tr �

�
i¤r Hr.

Examining M tells us that this filtration is f -invariant. The strata themselves are not;
the f -image of an edge in one stratum may intersect the lower strata.

Theorem 4.5. [Perron-Frobenius] Let A be a non-negative, irreducible, integer-valued square
matrix. Then one of its eigenvalues, called the PF-eigenvalue, is a positive real number µ
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which is greater than or equal to the absolute value of all other eigenvalues. There is a positive
real eigenvector corresponding to µ, unique up to scalar multiplication.

Definition 4.6. Let f and M be as above. We shall write µr to denote the PF-eigenvalue
of Mr. We say that Hr is a growing stratum if Mr is not a zero matrix.

Observe that, since f is non-trivial, there will always exist at least one growing stratum.

4.2 Relative train tracks

Relative train track maps are a particular type of simplicial topological representative
which were introduced by Bestvina & Handel in the case of free groups [3], and were
generalised to free products by Collins & Turner [5]. Collins and Turner defined their
maps on graphs of complexes - graphs with 2-complexes assigned to the vertices. How-
ever, this definition can be transferred to G-trees by replacing each 2-complex with its
fundamental group to give a graph of groups and then lifting to the Bass-Serre tree.

Definition 4.7. Let T P O, and let v be a vertex in T. A turn at v is a pair of directed
edges pe1, e2q such that τpe1q � v � ιpe2q. We say the turn is degenerate if e2 � e1.

A simplicial topological representative f : T Ñ αT induces a map D f on the turns of T:
D f pe1, e2q is the turn consisting of the first edges in the edge paths f pe1q, f pe2q. A turn is
illegal with respect to f if its image under some iterate of D f is degenerate. Otherwise,
it is legal.

We say an edge path γ in T is legal if it does not contain any illegal turns.

We say an edge path γ in Tr is r-legal if γX Hr does not contain any illegal turns.

Definition 4.8. [Relative train track] Let T P OpG,Gq, let α P OutpG,Gq, and let
f : T Ñ αT be a simplicial topological representative for α. Use this map to divide T
into strata as described above. We say that f is a relative train track map if the following
conditions hold:

(1) f preserves r-germs: For every edge e P Hr, the path f peq begins and ends with
edges in Hr.

(2) f is injective on r-connecting paths: For each nontrivial path γ P Tr�1 joining points
in Hr X Tr�1, the homotopy class r f pγqs is nontrivial.

(3) f is r-legal: If a path γ is r-legal, then f pγq is r-legal.

Theorem 4.9. [5, Thm 2.12] For any automorphism α P OutpG,Gq, there exists a relative
train track map f : T Ñ αT on some T P O.
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Let f : T Ñ αT be a relative train track map. Then, by definition, f is a simplicial
topological representative for α, so we may stratify T as described above. Let M be the
transition matrix for f , with submatrices M1, . . . , Mn. Let H � T0 � . . . � Tn � T be
the corresponding filtration, and let H1, . . . , Hn denote the strata.

For each r we shall write µr to denote the Perron-Frobenius eigenvalue for Mr. By
Theorem 4.5, this corresponds to a positive real row eigenvector - the PF-eigenvector -
which we shall denote vr. This eigenvector is unique up to scalar multiplication, but
we will be taking vr to be the normalised eigenvector. This choice determines r-lengths
Lrpeq which we can assign to the edges of Hr: we declare the r-length of the ith edge of
Hr to b the ith entry in vr.

If γ is an edge path, then we define its r-length to be

Lrpγq �
¸

ePγXHr

Lrpeq

Notation. We will adapt this notation slightly when considering elements of the group
G:

Recall that a hyperbolic element g P HyppGq corresponds to a hyperbolic axis in T, and
that lTpgq is the distance points on the axis are translated by g. However, we can also
think of lTpgq as the length of a path - specifically the length of a fundamental domian
of the axis. We can always choose this fundamental domain such that it consists of
whole edges (i.e. it is an edge path).

Let γg denote such a fundamental domain. We say that g is r-legal if γg is r-legal. This
is independant of our choice of γg. We will write Lrpgq to denote the r-length of γg.

Now, let us give the properties we shall require.

Lemma 4.10. Let f : T Ñ αT be a relative train track map on some T P OpG,Gq, and let Hr

be a growing stratum in T. Then the following hold:

(i) Every edge in Hr is r-legal.

(ii) If an edge path γ is r-legal, then f pγq is r-legal.

(iii) There exists an r-legal group element g P HyppGq.

(iv) If an edge path γ is r-legal, then Lrp f pγqq � µrLrpγq.

(v) If g is r-legal, then Lrpgαkq � µk
r Lrpgq.

Proof.
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(i) Edges do not contain any turns - in particular, they do not contain any illegal
turns. Thus they are r-legal.

(ii) This is one of the defining properties of a relative train track map (Definition 4.8
(iii)).

(iii) By (i), edges in Hr are r-legal. Therefore, by (ii), iterating f will give us longer
and longer r-legal paths. Since T is cocompact, it contains finitely many edge
orbits. Thus we will eventually reach an r-legal path f kpeq which crosses some
edge orbit at least three times. A least two of these edges, which we can denote
by ε and ε � g, must point in the same direction - but this can only occur on the
axis of g. It follows that f kpeq must contain some fundamental domain γg of this
axis. Hence g is r-legal.

(iv) Follows from the definition of a relative train track map [5, p454].

(v) Since f is a topological representative for α, we have that f kpgq � gαk for all k ¥ 1.
Thus, by property (iv), Lrpgαq � µrLrpgq, and property (ii) allows us to iterate f ,
giving us Lrpgαkq � µk

r Lrpgq.

5 Main Theorem

Theorem 5.1. Let α P OutpG,Gq. Then the following are equal:

• The relative growth rate of α, GRGpαq.

• The largest PF-eigenvalue µR of any relative train track map f : T Ñ αT, T P OpG,Gq.

• The displacement λα of α in O.

Proof. The existence of f is assured by Theorem 4.9. We observe that multiple strata in
T may have PF-eigenvalue equal to µR. Therefore, when we write HR, we are referring
to the highest of these strata - that is to say, we are maximizing the size of TR. HR will
always be a growing stratum.

We prove this theorem by proving the following three inequalities:

A: µR ¤ GRGpαq,

B: GRGpαq ¤ λα,

C: λα ¤ µR.
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A: By Lemma 4.10 (v), there exists an R-legal g P HyppGq such that
LRpgαkq � µk

RLRpgq for all k ¥ 1. Hence,

GRGpα, gq � lim sup
kÑ8

k
b

lTpgαkq

¥ lim sup
kÑ8

k
b

LRpgαkq

� lim sup
kÑ8

k
b

µk
RLRpgq (by Lemma 4.10 (v))

� µR

B: Let S P O, and for brevity of notation let Λ denote the right stretching factor
ΛRpS, αSq. Then

ΛRpS, αkSq ¤ ΛRpS, αSqΛRpαS, α2Sq . . . ΛRpαk�1S, αkSq
� ΛRpS, αSqk (by triangle inequality)

� Λk

ñ lSpgαkq
lSpgq ¤ Λk @g P G (by definition of ΛR)

ñ lSpgαkq ¤ ΛklSpgq @g P G

ñGRGpα, gq � lim sup
kÑ8

k
b

lSpgαkq ¤ lim sup
kÑ8

k
b

ΛklSpgq � Λ @g P G

ñGRGpαq ¤ λS

This holds for all S P O. Thus GRGpαq ¤ infSPO ΛpS, αSq � λα.

C: Recall the definition of the displacement: λα :� infSPO ΛRpS, αSq. Ideally we
would prove inequality C by finding a G-tree in O whose right stretching fac-
tor is exactly µR. However, unless α is irreducible, this is not always possible.
Thus we shall instead find a sequence of G-trees whose right stretching factors
tend towards µR.

Our proof will apply [8, Lemma 4.3], which states that the Lipschitz constant of
an O-map is equal to the right stretching factor between its endpoints. Recall that
relative train tracks are straight O-maps - that is to say, they have constant speed
on edges. Since we only have finitely many edge orbits in T, it follows that Lipp f q
is realised by some edge - i.e. Lipp f q � maxePT

lTp f peqq
lTpeq

.

Let Hr be a stratum in T. Recall that the lengths of the edges in T were determined
by the Perron-Frobenius eigenvector corresponding to µr - or rather, by the one
dimensional eigenspace containing this eigenvector. Since eigenvectors are only
determined up to scalar multiplication, we are free to rescale the edge lengths in
Hr by a positive constant without affecting any of the relevant properties.
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For a positive number N ¡ 0, let TN P O denote the G-tree acquired from G by
rescaling the stratum Hr in T by Nr for every r. f induces a relative train track
map on TN , which we shall denote by fN .

Since we are now working with multiple trees, we should make some adjust-
ments to our r-length notation for this portion of the proof. Lr shall be used to
denote the r-lengths of the original tree T. We introduce the notation Lr,N for the
r-lengths of the tree TN .

Let e be an edge in the rth stratum of TN . Then lTNpeq � Lr,Npeq � NrLrpeq.

ñ lTNp fNpeqq �
ŗ

i�1

Li,Np fNpeqq �
ŗ

i�1

NiLip fNpeqq

ñ lTNp f peqq
lTNpeq

�
°r

i�1 NiLip f peqq
NrLrpeq

�
°r

i�1 Ni�rLip f peqq
Lrpeq

ÝÑ Lrp f peqq
Lrpeq as N Ñ8

By Lemma 4.10 (i) & (iv),
Lrp f peqq

Lrpeq � µrLrpeq
Lrpeq � µr

ñ lim
NÑ8

pLipp fNqq � lim
NÑ8

�
max
ePTN

lTNp f peqq
lTNpeq



� µR

Finally,

λα � inf
SPO

ΛRpS, αSq ¤ lim
NÑ8

ΛRpTN , αTNq
by [8, Lem 4.3]

¤ lim
NÑ8

pLipp fNqq � µR

6 Appendix 1: A Bounding Function

Let α P OutpG,Gq. As in the previous chapter, we consider a relative train track map
f : T Ñ αT on a G-tree T P O. The purpose of this appendix is to find a function of k
which acts as an upper bound on lTpgαkq. If g is elliptic, then lTpgαkq � 0, so we shall
restrict our attention to hyperbolic elements.

As before, f gives a stratification of T. We begin by considering the effect α has on a
single stratum:
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Lemma 6.1. Let g P HyppGq. Then for each stratum Hr,

Lrpgαq ¤
¸
i¥r

Apr, iqLipgq, where Apr, iq � max
ePHi

Lrp f peqq
lpeq

Proof. Recall the notation we introduced earlier in the paper: When we write Lrpgαq,
we actually mean Lrp f pγgqq, where γg is an edge path serving as a fundamental domain
of the axis of g.

The filtration H � T0 � . . . � Tn � T determined by f is f -invariant - therefore a point
on the path f pγgq can only lie in Hr if it was mapped from Hr itself or from a higher
stratum. Thus we shall split γg into pieces γg X Hi for i ¥ r and consider the effect f
has on each piece.

(Note that γg X Hi may not be connected. When we write Lrpγg X Hiq, we mean the
sum of the r-lengths of its component paths.)

Lrpgαq � Lrp f pγgqq �
¸
i¥r

Lrp f pγg X Hiqq

Let i ¥ r. Then

LRp f pγg X Hiqq �
¸

edge orbits ePHi

neLRp f peqq where ne � num. times γg crosses e

�
¸

edge orbits ePHi

ne
LRp f peqq

lpeq lpeq

¤ Apr, iq
¸

edge orbits ePHi

nelpeq

� Apr, iqLipγgq
� Apr, iqLipgq

Thus

Lrpgαq ¤
¸
i¥r

Apr, iqLipgq

We now iterate and consider the effect αk has on a single stratum.
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Lemma 6.2. Let g P G. Let m be the total number of strata in T. Then for each stratum Hr,
and for all k ¥ 1,

Lrpgαkq ¤
¸

pi1,...,ikqPIkrr,ms

Apr, i1qApi1, i2q . . . Apik�1, ikqLikpgq, where

Ikrr, ms � tpi1, . . . , ikq P Zk | r ¤ i1 ¤ . . . ¤ ik ¤ mu and

Api, jq � max
ePHj

Lip f peqq
lpeq

Proof. We prove this by induction on k. The case of k � 1 is given by Lemma 6.1.

Assume that the statement holds for k � n. Then

Lrpgαn�1q ¤
¸
j¥r

Apr, jqLjpgαnq (by Lemma 6.1)

¤
¸
j¥r

Apr, jq
� ¸

pi1,...,inqPInrj,ms

Apj, i1qApi1, i2q . . . Apin�1, inqLinpgq
�

(by inductive hypothesis)

�
¸
j¥r

� ¸
pi1,...,inqPInrj,ms

Apr, jqApj, i1qApi1, i2q . . . Apin�1, inqLinpgq
�

�
¸

pj,i1,...,inqPIn�1rr,ms

Apr, jqApj, i1qApi1, i2q . . . Apin�1, inqLinpgq

�
¸

pi1,...,in�1qPIn�1rr,ms

Apr, i1qApi1, i2q . . . Apin, in�1qLin�1pgq (after relabelling indices)

Thus the statement holds for all k ¥ 1.

Theorem 6.3. Let α P OutpG,Gq. Let f : T Ñ αT be a relative train track map on some
T P OpG,Gq. Let µR be the largest Perron-Frobenius eigenvalue of a stratum in T, and let m
be the total number of strata in T. Then there exists a polynomial Ppkq of degree at most m� 1
such that

lTpgαkq ¤ Ppkqµk
RlTpgq

for all g P G.

Proof. It follows from Lemma 6.2 that for all k,

lTpgαkq �
m̧

r�1

Lrpgαkq

¤
m̧

r�1

� ¸
pi1,...,ikqPIkrr,ms

Apr, i1qApi1, i2q . . . Apik�1, ikqLikpgq
�
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Thus we have an upper bound for lTpgαkq. All that remains is to simplify it.

First we will find the size of the set Ikrr, ms, which will tell us how quickly the number
of terms in our sum grows as k Ñ 8. We can think of Ikrr, ms as a set of combinations
with repetition, where we choose k elements from the set tr, . . . , mu (which has size
m� r� 1). Therefore

|Ikrr, ms| � Cpm� r� 1, kq

� pk�m� rq!
k!pm� rq!

� pk�m� rqpk�m� r� 1q . . . pk� 1q
pm� rq!

This is a polynomial of degree m� r in k.

Secondly, consider the coefficients of the sum: Apr, i1qApi1, i2q . . . Apik�1, ikqLikpgq. If
i � j, then Api, jq � µi ¤ µR; if i � j, then Api, jq can appear in each coefficient at most
once. It follows that

Apr, i1qApi1, i2q . . . Apik�1, ikq ¤ Aµk
R,

where

A �
¹
i�j

Api, jq.

Thirdly, we observe that lT,ipgq ¤ lTpgq for all i. Thus, combining all of the above:

lTpgαkq ¤
m̧

r�1

� ¸
pi1,...,ikqPIkrr,ms

Apr, i1qApi1, i2q . . . Apik�1, ikqLikpgq
�

¤
m̧

r�1

�
|Ikrr, ms|Aµk

RlTpgq
	

� Ppkqµk
RlTpgq

where Ppkq � A
°m

r�1 |Ikrr, ms| is a polynomial of degree at most m� 1.

7 Appendix 2: Irreducible Automorphisms

In the case when α P OutpG,Gq is irreducible, the proof that the relative growth rate
and displacement are equal is simpler. This is because we can guarantee the existence
of train track maps, not just relative train track maps. Furthermore, we can guarantee



7. Appendix 2: Irreducible Automorphisms 91

the existence of a point in O which realises the displacement, not just a sequence which
tends towards it.

Definition 7.1. Let α P OutpG,Gq, T P OpG,Gq. We say that a topological representative
f : T Ñ αT is a train track map if every edge e P T is legal with respect to f .

When α is an irreducible automorphism, the transition matrix of any topological repre-
sentative f : T Ñ αT will be an irreducible matrix - thus there is only one stratum of
T (the whole tree), and only one PF-eigenvalue µ. As with the more general case, the
positive row eigenvector corresponding to µ decides the metric on T. This ensures that
the length of every edge is scaled exactly by µ, so @e P T, lp f peqq � µlpeq.

Lemma 7.2. Let f : T Ñ αT be a train track map representing an irreducible automorphism α.
Take the metric on T to be the one determined by the PF-eigenvector. Then Dg P HyppGq such
that lTpgαkq � µklTpgq for all k ¡ 0.

Proof. This is a well-known property of train track maps, but it also follows from
Lemma 4.10(v) since we can think of a train track map as a relative train track map with
only a single stratum. In this specific case, legal and r-legal are equivalent conditions,
and the r-length of a path is equal to its length. Thus the result follows.

Theorem 7.3. Let G be a free factor system for a group G, let E be any relative generating set
for G, and let α P OutpG,Gq be irreducible. Then GRGpα, lEq � λα.

Proof. Minpαq is equal to the train-track bundle TTpαq - the set of T P O admitting train
track representatives f : T Ñ αT with Lipp f q � ΛRpT, αTq [8, Thmm 8.19, Thm 6.11].
In addition, since α is irreducible, Minpαq is non-empty [8, Theorem 8.4].

Thus we can guarantee the existence of a train track map f : T Ñ αT on some T such
that:

µ
f is train track� Lipp f q fPTTpαq� ΛRpT, αTq by defn of Minpαq� λα.

In addition, since lE �G lT, these length functions will produce the same growth rate.

Therefore in order to prove that GRGpα, lEq � λα it suffices to prove that GRGpα, lTq � µ.
The proof of this follows from the definition of the right stretching factor ΛR. Recall,

ΛRpT, αkTq :� sup
gPHyppGq

lTpgαkq
lTpgq
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ñ For all g P G, lTpgαkq ¤ µklTpgq.

ñ For all g P G, GRGpα, g, lTq � lim supkÑ8
k
a

lTpgαkq ¤ lim supkÑ8
k
a

µklTpgq � µ.

Additionally, by Lemma 7.2, there exists h P G such that µklTphq � lTphαkq

ñ GRGpα, h, lTq � lim supkÑ8
k
a

lTphαkq � lim supkÑ8
k
a

µklTphq � µ.

Thus GRGpα, lTq :� supg GRGpα, g, lTq � µ, and we are done.
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Paper 3: Length functions on groups and actions on
graphs

Matthew Collins and Armando Martino

ABSTRACT. We study generalisations of Chiswell’s Theorem that 0-hyperbolic Lyn-
don length functions on groups always arise as based length functions of the the group
acting isometrically on a tree. We produce counter-examples to show that this Theo-
rem fails if one replaces 0-hyperbolicity with δ-hyperbolicity.
We then propose a set of axioms for the length function on a finitely generated group
that ensures the function is bi-Lipschitz equivalent to a (or any) length function of the
group acting on its Cayley graph.

1 Introduction

One of the key insights of geometric group theory is that one can obtain information on
a group by viewing it as a metric space, via the word metric on its Cayley graph. More
generally if a group, G, acts isometrically on a metric space pX, dq one can elucidate
properties of the group from this action. For instance, the class of hyperbolic groups is
precisely the class of those groups admitting a proper, co-compact isometric action on
some locally compact, geodesic δ-hyperbolic space X.

Given a (right) isometric action of G on pX, dq, and a point p in X, one can define a
G-invariant pseudo-metric - which we denote by dp - on G via dppg, hq :� dppg, phq,
which is a metric precisely when the stabiliser of p is trivial. In fact, this metric on G
can be encoded via the based length function.

Definition 1.1. Let G act isometrically on the metric space pX, dq. Then the based length
function of G based at some point p P X is the function lp : G Ñ R, given by:

lppgq :� dpp, pgq

It is straightforward to see that one can recover the invariant (pseudo) metric from the
based length function via dppg, hq � lppgh�1q.

Of course, in order to obtain properties of the group it is helpful to impose conditions
on the space and the action, just as for hyperbolicity above. A key area where one can
recover a great deal of information about G is when X is a tree.

The source of inspiration for this paper is a striking result of Chiswell, that one can
axiomatise the based length functions arising from actions on trees - sometimes called
Lyndon length functions, following results from [6] - and, from the axioms, always
recover an isometric action. Specifically,
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Theorem 1.2 ([3]). Suppose l : G Ñ R¥0 satisfies the following axioms:

A1’: lpgq � 0 if g � 1,

A2 : lpg�1q � lpgq,

A3 : cpg, hq ¯ 0,

H0 : For all g1, g2, g3 P G,
cpg1, g2q ¥ m, cpg2, g3q ¥ m implies that cpg1, g3q ¥ m,

where
cpg, hq :� 1

2
plpgq � lphq � lpgh�1qq.

Then there exists an R-tree, pX, dq, admitting an isometric G-action and a point, p P X, such
that lppgq � lpgq. Moreover, if the images of l and c lie in Z, then the tree will be simplicial.

Remark 1.3. As noted above a function d : G�G Ñ R can be defined from l and, from
this point of view, A1’ says that d vanishes on the diagonal, A2 says that it is symmetric
and A3 says that it satisfies the triangle inequality.

The function cpg, hq is then really the Gromov product and axiom H0 should be thought
of as a 0-hyperbolicity condition (see, for example, [1] for a discussion on hyperbolic
groups, spaces and the Gromov product). Chiswell’s Theorem can then be summarised
as saying that a 0-hyperbolic Lyndon length function is always a based length function
on a 0-hyperbolic space.

With this in mind, we are motivated to ask the following questions.

Questions.

• Is there a generalisation of Chiswell’s Theorem for isometric group actions on metric
graphs?

• In particular, is there a generalisation of Chiswell’s Theorem for isometric actions on δ-
hyperbolic graphs?

Remark 1.4. In the spirit of Chiswell’s result, we will consider graphs whose edge
lengths may not be integers. For instance, one could take the Cayley graph of a group
with respect to some generating set, and then equivariantly assign positive real lengths
to edges.

It turns out that these questions are somehow too broad in their scope. Given a (strictly
positive) length function on G (see Definition 2.2 for the definition of a length function)
there is always a metric graph whose based length function is equal to this function:
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take the complete graph on G where the edge between g and h has length lphg�1q -
Lemma 3.1. The based length function on this graph, with respect to the basepoint 1, is
equal to l. However, this action is not particularly useful.

In order to rule out this kind of example we will add some restrictions.

Questions. Let us suppose that G is finitely generated and let us restrict ourselves to isometric,
co-compact actions on locally compact graphs, X.

• Given a (strictly positive) length function, l, does G admit an isometric, co-compact action
on a locally compact metric graph, X, such that l � lp for some p P X?

• What if we add the hypothesis that l is δ-hyperbolic (see Definition 2.2 for the definition
of hyperbolicity)?

It turns out that the answer to both of these questions is no. By Proposition 3.4, there
exists a δ-hyperbolic length function which cannot arise as the based length function
associated to any isometric, co-compact action on a locally compact graph.

However, that example is bi-Lipschitz equivalent to a length function on a Cayley
graph. (Note that, for a finitely generated groups, all based length functions on Cay-
ley graphs with respect to finite generating sets are bi-Lipschitz equivalent). But one
can also produce examples of δ-hyperbolic length functions which are not bi-Lipschitz
equivalent to any based length function on a Cayley graph, as in Proposition 3.8. In
fact, every finitely generated group admits a hyperbolic length function.

Theorem 3.9. There exists a finitely generated group, G, with a hyperbolic length function,
l : G Ñ R¥0 such that l � lp for any co-compact, metric G-graph.

Moreover, any finitely generated group admits a (free) hyperbolic length function. In particular,
we can find an example of a group G with a hyperbolic length function, l, which is not quasi-
isometric to any based length function arising from an isometric action of G on a geodesic and
proper δ-hyperbolic metric space.

This leads us to the following.

Questions. Suppose that G is finitely generated.

• Can one axiomatise those length functions which are bi-Lipschitz equivalent to some (and
hence all) based length functions on a Cayley graph for G (with respect to a finite gener-
ating set)?

• Can we make these axioms apply to - for instance - any free Fn action on a simplicial tree
as well as Cayley graphs?
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• Does this axiomatisation define a connected/contractible/finite dimensional subspace of
RG on which AutpGq acts?

Remark 1.5. We do come up with an axiom scheme, below, and we observe that these
axioms hold for all sufficiently well behaved actions - see Proposition 4.1 and Corol-
lary 4.2 - and in particular to all points of Culler-Vogtmann space.

The third question here arises from the fact that one key use of Chiswell’s Theorem is
in the study of group actions on trees, and the definition of the space of such actions
which are then encoded via functions (usually the translation length function, which
is related to the Lyndon length function). See [5] for the seminal paper on the ‘Outer
Space’ of free actions on trees, encoded by length functions (amongst other things).

It is clear that the space of all length functions which are bi-Lipscitiz equivalent to one
arising from a Cayley graph is a contractible space (because a linear combination of
such functions is another such function). Therefore, this provides a contractible space
on which AutpGq acts. However, it is far too large and so one might hope that an
axiomatisation could provide a more reasonable subspace.

With these questions in mind, we propose the following axioms for our length func-
tions:

Definition 4.3. Let G be a group. We say that l : G Ñ R¥0 is a graph-like length function
if it satisfies the following axioms:

A1: lpgq � 0 if and only if g � 1,

A2: lpg�1q � lpgq,

A3: cpg, hq ¯ 0,

A4: for all R ¥ 0, the closed ball BR :� tg P G | lpgq ¤ Ru is finite,

A5: there exists 0 ¤ ϵ   1 and K ¡ 0 such that, for any g P G, if lpgq ¡ K then there
exists an x P G with:

(i) 0   lpxq ¤ K, and

(ii) cpgx�1, x�1q ¤ ϵlpxq
2 .

Remark 1.6. Here, the mysterious looking axiom A5 is encoding the fact that if one had
a reasonable action on a graph, then one could approximate geodesics in the graph with
uniform quasi-geodesics built from the translates of finitely many paths; it is morally
a co-compactness condition expressed solely in terms of the length function. In fact,
we prove that this axiom holds for a fairly wide class of actions in Proposition 4.1 and
Corollary 4.2.
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We also note that if G acts on its Cayley graph then one easily gets that the based length
function satisfies these axioms with K � 1 and ϵ � 0. However, if once considers
actions on graphs with more than one orbit of vertices, then one quickly discovers that
the correct condition is A5(ii) with ϵ � 0. Moreover, scaling the graph by a constant
clearly changes the value of K. For these reasons, to allow these kinds of deformations,
we consider these axioms for more general K and ϵ.

It turns out that this is indeed sufficient to prove the following:

Theorem 4.9. Let l : G Ñ R¥0 be a graph-like length function on a group G. Then l is
bi-Lipschitz equivalent to some (and hence to all) based length function lp arising from a locally
compact, co-compact, metric G-graph and with Stabppq � 1.

Note that in view of Theorem 3.9, since any finitely generated group admits a hyper-
bolic length function, the extra axioms are clearly necessary.

Remark 1.7. We should note that another length function one can extract from an action
is the translation length function, which has the advantage of not relying on a basepoint.
This is the point of view of [4]. An important result here, building on the work of
[4], is that of [7] which states that a translation length function (which is 0-hyperbolic)
always arises from an action on a tree. However, this builds crucially on Chiswell’s
Theorem 1.2 so it seems reasonable to start with Lyndon length functions.

2 Preliminaries

We begin with some preliminary definitions and notation. Let G be a group.

Definition 2.1. Given a metric, d : G � G Ñ R¥0, on a group G we say that d is right-
invariant if dpg1h, g2hq � dpg1, g2q for all g1, g2, h P G.

Definition 2.2. A map l : G Ñ R¥0 which satisfies the following axioms is called a
length function:

A1: lpgq � 0 if and only if g � 1,

A2: lpg�1q � lpgq,

A3: cpg, hq ¯ 0 where

cpg, hq :� 1
2
plpgq � lphq � lpgh�1qq

is the Gromov product of g, h P G.

If, in addition, l satisfies
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Hδ: cpg1, g2q ¥ m, cpg2, g3q ¥ m implies that cpg1, g3q ¥ m� δ

for some δ ¥ 0, we say it is a δ-hyperbolic length function. The condition H

isre f erredtoasδ-hyperbolicity.

Remark 2.3. Given a length function, it is easy to verify that dpg, hq :� lpgh�1q is a
right-invariant metric on G. In particular, A3 is equivalent to the triangle inequality,
which can be written as

lpgh�1q ® lpgq � lphq.

Also note that here we write axiom A1: lpgq � 0 if and only if g � 1 rather than A1’:
lpgq � 0 if g � 1. This is largely because we end up wanting to characterise those length
functions which are bi-Lipschitz equivalent (or quasi-isometric) to those arising from
Cayley graphs. We will sometimes emphasise this by saying that the length function is
free.

Definition 2.4. A metric graph is a 1-dimensional CW-complex with a metric structure.
A metric tree is a metric graph in which any two vertices are connected by exactly one
simple path. We always equip metric graphs with the path metric.

Definition 2.5. By a metric G-graph, we mean a metric graph Γ together with an isomet-
ric right action of G on Γ, sending vertices to vertices and edges to edges.

Since we think of our graphs as metric spaces, given a point p in Γ, we may invoke
Definition 1.1; lppgq � dΓpp, p.gq is the based length function on Γ, based at p.

3 Hyperbolicity, Length Functions and Counter-Examples

Given a length function, l, as in Definition 2.2 - that is to say, given a metric on G - one
can always construct some metric graph on which G acts isometrically and such that
l � lp:

Lemma 3.1. Let l be a length function on the group, G, as in Definition 2.2.

Let Γ be the complete graph on vertex set G, where the length of the edge between g and h is
set to lpgh�1q � lphg�1q. Then G acts isometrically on Γ and l is equal to the based length
function on Γ - Definition 1.1 - based at the vertex 1.

However, this is not a very useful object and we will want to insist on some finiteness
conditions; namely, co-compactness and (usually) local compactness.
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Since this work arose as an attempt to generalise the celebrated result of Chiswell, The-
orem 1.2, it is a natural way to try to generalise that result by weakening 0-hyperbolicity
to δ-hyperbolicity and instead only expecting the action to be on a (hyperbolic) graph.
It turns out that this doesn’t work and we present two counter-examples, in Proposi-
tion 3.4 and Proposition 3.8.

Before presenting the first example, it is worthwhile observing some examples of hy-
perbolic length functions which do arise as the length function of a co-compact action
on a graph. In these examples, we can take an existing length function and deform it
slightly, but the following examples show that in doing so one might still end up with
a length function arising from an action on a graph.

Examples 3.2. For both of these examples, our group is the infinite cyclic group, Z.

(i) Given 0 ¤ ϵ   1, define:

lpnq �
#

1� ϵ if n � �1
|n| otherwise

One can verify that this is the length function of the Cayley Graph of Z, with
respect to the generating set t1, 2, 3u where 1 is given length 1 � ϵ, 2 is given
length 2 and 3 is given length 3.

(ii) Again, given 0 ¤ ϵ   1, define:

lpnq �
#

0 if n � 0
|n| � ϵ otherwise

This is actually 0-hyperbolic, and arises from a non-minimal action on a tree.
More precisely, take a graph with two vertices, u and v, and two edges, one of
which is a loop of length 1 at v and the other is an edge of length ϵ{2 joining u
to v. The fundamental group of that graph is Z and the action on the universal
cover gives our length function (with respect to any lift of u).

Next we show how to deform the standard length function on Z so as to end up with
something that does not arise from an action.

In order to proceed, we need the following observation:

Lemma 3.3. Let Γ be a co-compact, metric G-graph and p P Γ. Let lppgq � dΓpp, p.gq denote
the based length function. Then there exist finitely many positive real numbers, α1, . . . , αk such
that, for any g P G, lppgq belongs to the submonoid of the (additive) real numbers generated by
the αi.

That is, for every g, there exist non-negative integers ni such that lppgq �
°

niαi.
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Proof. We simply let the αi be the lengths of the edges in Γ. Since the action is isometric
and there are finitely many edge-orbits, it suffices to take only finitely many of them.

Now we are ready to show that a δ-hyperbolic length function need not come from an
action on a graph.

Proposition 3.4. For any 0 ¤ ϵ   1, the function lϵ : Z Ñ R¥0 defined by lϵpnq � |n| � ϵ|n|,
for n � 0 and lp0q � 0 is a hyperbolic length function.

For ϵ � 1{2, this cannot be equal to any based length function arising from a co-compact,
isometric action of Z on a metric graph.

Proof. First we verify axioms A1 to A3 and Hδ from Definition 2.2. Note that for ϵ � 0,
this is just the standard length function of Z acting on the line (which is 0-hyperbolic).
For each lϵ we define cϵ to be the corresponding Gromov product. Note that both l0
and c0 take values in Z.

Observe that A1 and A2 are clear for all ϵ directly from the definition. To verify A3,
notice that

l0pnq ¤ lϵpnq ¤ l0pnq � ϵ,

and hence that for any n, m P Z,

cϵpn, mq ¥ c0pn, mq � ϵ{2.

Therefore, since c0 takes values in Z, and ϵ   1, the only values for which cϵpn, mq
could be negative would be those where c0pn, mq � 0. Since, for positive integers n, k
we have that c0pn, n� kq � c0p�n,�n� kq � n, we see that c0pn, mq can only be zero
if one of n, m is zero or if one is positive and one is negative. We calculate: if n, m are
positive then

cϵp0, nq � cϵp0,�nq � 0

and,
cϵpn,�mq � ϵn � ϵm � ϵn�m ¡ 0.

This verifies A3. To verify Hδ, note that the inequality l0pnq ¤ lϵpnq ¤ l0pnq � ϵ also
gives us that ϵ� c0pn, mq ¥ cϵpn, mq. Hence we get, for all n, m,

ϵ� c0pn, mq ¥ cϵpn, mq ¥ c0pn, mq � ϵ{2.

But since l0 is 0-hyperbolic, this implies that lϵ is 3ε
2 -hyperbolic.
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To see that l1{2 cannot arise as the length function coming from a co-compact metric
Z-graph, we invoke Lemma 3.3 and argue by contradiction. That is, suppose that l1{2
arises from the action of Z on a co-compact metric graph, Γ. Then, by Lemma 3.3, we
have α1, . . . , αk such that for any g P G, there exist positive integers, n1, . . . , nk with
l1{2pgq �

°k
i�1 niαi. We now show that this is not possible.

Without loss of generality, by enlarging the set, we may assume that α1 � 1. Further,
again without loss of generality, we may assume that α1, . . . , αr is a maximal, Q-linearly
independent subset of the αi. Thus for any j ¡ r, αj is a Q-linear sum of α1, . . . , αr.
Fix such an expression for each j (in fact, it is unique) and notice that the denomina-
tors in the coefficients of these expressions are bounded. In particular, this means that
any expression

°k
i�1 niαi, where the ni are integers can be re-written as an expression°r

i�1 qiαi, where the qi are now rational, but with bounded denominator. In particular,
this means that there exists an integer, M, such that for any g P Z, there exists integers
mi such that,

l1{2pgq �
1
M

ŗ

i�1

miαi.

However, notice that l1{2pgq are rational for every g, and the set α1, . . . , αr are Q-linearly
independent. Hence the Q-linear independence forces mi � 0 for i ¥ 2, and therefore,

l1{2pgq �
1
M

m1α1 � 1
M

m1.

This is clearly impossible, since the values of l1{2 do not belong to the additive cyclic
subgroup generated by a rational number.

Remark 3.5. Note that the same proof shows that lϵ cannot be equal to any length
function arising from a co-compact, isometric action of Z on a metric graph for any
rational ϵ.

The idea of Proposition 3.4 is that we started with a 0-hyperbolic length function (which
is the standard length function of Z acting on its Cayley graph) and deformed it slightly
to obtain a length function that is δ-hyperbolic but is not equal to any based length func-
tion coming from a co-compact graph. Naturally, since this is a small deformation we
obtain a length function which is bi-Lipschitz equivalent to the original length function.
We could also consider quasi-isometry.

Definition 3.6. We say that two length functions l1, l2 on a group G are quasi-isometric
if there exists A ¥ 1, B ¥ 0 such that, @g P G,

1
A

l1pgq � B ¤ l2pgq ¤ Al1pgq � B.

If, in addition, we can take B � 0, we say that l1, l2 are bi-Lipschitz equivalent.
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We record a standard consequence of the Svarc-Milnor Lemma (see, for example, [2],
I.8.19):

Lemma 3.7. Let X, Y be co-compact, locally compact metric G-graphs. Then for all points
p P X, q P Y such that Stabppq � Stabpqq � 1, the based length functions lp and lq are
bi-Lipschitz equivalent.

Instead of seeking length functions on G which are equal to the based length function
of a suitable G-graph, we can instead seek l : G Ñ R¥0 which lies in the quasi-isometry
class of a suitable G-graph, ideally a Cayley graph for G. Our aim is then to produce
axioms for a length function that make it quasi-isometric, or bi-Lipschitz equivalent to
a based length function on a Cayley graph.

Even here it turns out that hyperbolicity is not sufficient.

Proposition 3.8. Let G be a finitely generated group and let |.| : G Ñ R be the word metric
with respect to some finite generating set. Define a function, l : G Ñ R by lpgq :� logp|g|� 1q.
Then this is a δ-hyperbolic length function, for a uniform δ � 1

2 log 32.

When G � Z then l is not quasi-isometric (and hence not bi-Lipschitz equivalent) to any based
length function on a geodesic and proper hyperbolic space - for an isometric action of Z.

Proof. First we verify the axioms from Definition 2.2. We immediately see that l satisfies
axioms A1 and A2. To see that A3 holds we observe that for all g, h P G,
|g| � |h| ¥ |gh�1|. Thus,

logp|g| � 1q � logp|h| � 1q � logpp|g| � 1qp|h| � 1qq
� logp|g||h| � |g| � |h| � 1q
¥ logp|g| � |h| � 1q
¥ logp|gh�1| � 1q

ñ cpg, hq � 1
2
plpgq � lphq � lpgh�1qq ¥ 0.

Thus l is a length function.

To see that the length function is δ-hyperbolic, consider the function,

dpg, hq :� e2cpg,hq � p|g| � 1qp|h| � 1q
|gh�1| � 1

, g, h P G.

It will be sufficient to show that there exists a δ ¥ 0 such that for any three group
elements, g, h, k, and any R ¥ 0,

dpg, hq ¥ e2R and dph, kq ¥ e2R ùñ dpg, kq ¥ e2pR�δq.
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To do this, first observe the following two inequalities:

|g| ¥ 2|h| ùñ 2p|h| � 1q ¥ dpg, hq (1)

dpg, hq ¥ mint |g| � 1
2

,
|h| � 1

2
u. (2)

To see that (1) is true, simply observe that if |g| ¥ 2|h| then,

|gh�1| � 1 ¥ |g| � |h| � 1 ¥ |g|
2
� 1 ¥ |g| � 1

2
,

from which it follows that 2p|h| � 1q ¥ dpg, hq.

To see that (2) is true, observe that if |g| ¥ |h| then, |gh�1| � 1 ¤ |g| � |h| � 1 ¤ 2p|g| � 1q,
from which the desired inequality follows.

To verify that our length function is hyperbolic, let us suppose that we have a triple of
group elements, g, h, k, and a real number, R ¥ 0 such that dpg, hq ¥ e2R and dph, kq ¥
e2R.

Our aim is to find a (uniform) δ ¡ 0 such that dpg, kq ¥ e2pR�δq.

We set Λ � maxt|g|, |h|, |k|u and λ � mint|g|, |h|, |k|u the argument breaks into two
cases now, depending on whether Λ ¥ 4λ, or Λ   4λ.

case(i): Λ ¥ 4λ:

Without loss of generality, we will assume that |g| ¥ |k|. In particular this implies, from
Equation (2), that dpg, kq ¥ |k|�1

2 .

Suppose first that |h| ¥ 2|k|. Then from Equation (1), 2p|k| � 1q ¥ dph, kq. Therefore,

dpg, kq ¥ |k| � 1
2

¥ dph, kq
4

¥ e2R

4
,

as required (with δ � logp2q). (We haven’t used the fact that Λ ¥ 4λ yet).

If instead we have that, |h|   2|k| then we must get that |g| ¡ 2|h|, since Λ ¥ 4λ.

Hence equations (1), (2) give us that

dpg, kq ¥ |k| � 1
2

¡ |h| � 1
4

¥ dpg, hq
8

¥ e2R

8
,

as required (here with δ � 1
2 logp8q).

case(ii): Λ   4λ.
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Here, we invoke the triangle inequality to get that:

|gk�1| � 1 ¤ 2 maxt|gh�1| � 1, |hk�1| � 1u.

Without loss of generality, we assume that |gh�1| ¥ |hk�1|. Then,

dpg, kq ¥ pλ� 1q2
2p|gh�1| � 1q ¡

pΛ� 1q2
32p|gh�1| � 1q ¥

dpg, hq
32

¥ e2R

32
.

This completes the proof that our length function is δ-hyperbolic (with δ � 1
2 logp32q as

the final and maximal estimate).

To finish, note that if Z were to act isometrically on a locally compact hyperbolic space,
X, with based length function lp, then either lp would have to be bounded, or quasi-
isometric to a linear function. Since logp|n| � 1q is neither, it is not quasi-isometric to
such an lp.

Theorem 3.9. There exists a finitely generated group, G, with a hyperbolic length function,
l : G Ñ R¥0 such that l � lp for any co-compact, metric G-graph.

Moreover, any finitely generated group admits a (free) hyperbolic length function. In particular,
we can find an example of a group G with a hyperbolic length function, l, which is not quasi-
isometric to any based length function arising from an isometric action of G on a geodesic and
proper δ-hyperbolic metric space.

Proof. This is simply the content of Propositions 3.4 and 3.8.

4 Axioms for graph-like length functions

We finally turn to positive results and produce a set of axioms that do result in length
functions which are bi-Lipschitz equivalent to the based length function on a (or any)
Cayley graph.

Before introducing our axioms, we would like to demonstrate that they are reasonable,
to the extent that they arise naturally from group actions on fairly general yet well
behaved spaces. So we consider the following, noting that the hypotheses on X are sat-
isfied by a locally finite metric graph equipped with the path metric and a co-compact
group action.

Proposition 4.1. Let X be a geodesic metric space with a given basepoint, p. Suppose a group,
G, acts on X isometrically, and co-boundedly. Then there exist constants, K ¡ 0 and 0   ϵ0 ¤ 1
such that for any g P G with dpp, pgq ¥ K, there exists an x P G such that:
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• 0   dpp, pxq ¤ K and,

• ϵ0dpp, pxq � dppx, pgq ¤ dpp, pgq

Proof. Recall that,

• X geodesic means that for any two points in X there exists an isometry from a
closed real interval to X where the images of the endpoints are our given two
points of X.

• The action is co-bounded means there is a closed ball whose G translates cover X.

Since the action is co-bounded, there exists a closed ball centered at p, of radius K{3,
say, whose G translates cover X. Set B � BK{3ppq to be this ball.

Given g P G with dpp, pgq ¥ K, let q P X be the point on a geodesic from p to pg such
that dpp, qq � K{2. Since q is on a geodesic we also have dpp, pgq � dpp, qq � dpq, pgq.

Now, since the translates of B cover X, there exists some x P G such that q P Bx. This
implies that dpq, pxq ¤ K{3.

First note that dpp, pxq ¡ 0 since

dpp, pxq ¥ dpp, qq � dppx, qq ¥ K{2� K{3 � K{6 ¡ 0.

Next note that,

dpp, pxq ¤ dpp, qq � dpq, pxq ¤ K{2� K{3 � 5K{6.

and also,

dppx, pgq ¤ dppx, qq � dpq, pgq ¤ K{3� pdpp, pgq � K{2q � dpp, pgq � K{6.

Putting these together we get that,

1
5

dpp, pxq � dppx, pgq ¤ K{6� pdpp, pgq � K{6q � dpp, pgq.

Hence we are done, with ϵ0 � 1{5.

Corollary 4.2. With the same hypotheses as above, set:

• lppgq � dpp, pgq and

• cppg, hq � 1
2plppgq � lpphq � lppgh�1qq.
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Then there exists 0 ¤ ϵ   1 and K ¡ 0 such that, for any g P G, if lppgq ¡ K then there exists
an x P G with:

(i) 0   lppxq ¤ K, and

(ii) cppgx�1, x�1q ¤ ϵlppxq
2 .

Proof. Just set ϵ � 1� ϵ0 from Proposition 4.1 since

cppgx�1, x�1q ¤ ϵlppxq
2 ðñ

lppgx�1q � lppxq � lppgq ¤ ϵlppxq ðñ

p1� ϵqlppxq � lppgx�1q ¤ lppgq

and the last line is equivalent to the conclusion of Proposition 4.1 (where we have also
used the fact that lppwq � lppw�1q for all w which is just a consequence of the symmetry
of the metric).

The idea is that a fairly general class of spaces and actions satisfy the equation given by
Corollary 4.2 and hence we will add this as an axiom for our length functions. There-
fore, we propose the following.

Definition 4.3. Let G be a group. We say that l : G Ñ R¥0 is a graph-like length function
if it satisfies the following axioms:

A1: lpgq � 0 if and only if g � 1,

A2: lpg�1q � lpgq,

A3: cpg, hq ¯ 0,

A4: for all R ¥ 0, the closed ball BR :� tg P G | lpgq ¤ Ru is finite,

A5: there exists 0 ¤ ϵ   1 and K ¡ 0 such that, for any g P G, if lpgq ¡ K then there
exists an x P G with:

(i) 0   lpxq ¤ K, and

(ii) cpgx�1, x�1q ¤ ϵlpxq
2 .

Remark 4.4. We note that A4 is really a statement about the action being properly
discontinuous, especially in view of Proposition 4.8, which says that in the presence of
A5, A4 is equivalent to the statement that BK is finite.

In view of Proposition 4.1 and Corollary 4.2 one should view A5 as a co-compactness
condition; the challenge here was writing an axiom down which could be stated purely
in terms of the length function.
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As noted in the introduction, for a standard Cayley graph, its based length function will
satisfy these axioms with K � 1 and ϵ � 0. The A5 condition with ϵ � 0 is effectively
saying that for every g P G, there is an x of length at most K, such that xp lies on a
geodesic from p to pg.

For an example of a group acting on a graph where ϵ � 0, consider the free group of
rank 2, F2, realised as the fundamental group of a graph with two vertices, u, v, and
three edges: an edge-loop at u, Eu, an edge-loop at v, Ev, and an edge from u to v, Euv.
The action of F2 on the universal cover, T, of this graph will induced a based length
function which is graph-like, but not with ϵ � 0.

Namely, take a lift u of u, as the basepoint of T and consider the orbit of u under the
group elements corresponding to elements of the fundamental group of the form
gn � EuvEn

v Euv
�1, for n P Z. Then the geodesic from u to ugn only meets the orbit of u

at its endpoints. Hence this cannot satisfy the A5 condition with ϵ � 0 for any K.

In fact, it is straightforward to see that any free Fn action on a metric tree - that is,
any point in Culler Vogtmann space - satisfies the axioms above, with K � 1 but not
necessarily with ϵ � 0.

Let us start with the following preparatory results:

Lemma 4.5. A length function satisfying A4 is discrete.

Proof. Recall that we say a length function l : G Ñ R¥0 is discrete if there exists µ ¡ 0
such that, for all non-trivial g P G, lpgq ¥ µ.

If G � 1, then l is immediately discrete. Otherwise, take µ � mintR ¡ 0 | BR � 1u.
Since A4 holds, this minimum will be realised by some R ¡ 0.

Lemma 4.6. Given l satisfying A5, set λ � 1
1�ϵ . Then for the g, x listed in A5, we have that:

lpgx�1q ¤ lpgq � 1
λ

lpxq.

Proof. By A5,

cpgx�1, x�1q ¤ ϵlpxq
2

ñ 1
2
plpgx�1q � lpxq � lpgqq ¤ ϵlpxq

2
ñ lpgx�1q � lpxq � lpgq ¤ ϵlpxq

ñ lpgx�1q ¤ lpgq � p1� ϵqlpxq

ñ lpgx�1q ¤ lpgq � 1
λ

lpxq



108 Paper 3.

Lemma 4.7. The ball BK � tg P G | lpgq ¤ Ku is a generating set for G. In particular, by A4,
G is finitely generated.

Proof. We will show, by induction on n, that xBKy contains all group elements g with

lpgq ¤ K� nµ

λ

(taking λ from Lemma 4.6 and µ from Lemma 4.5) and hence contains all of G.

Firstly, take g P G such that lpgq ¤ K. Then g P BK P xBKy, and we are done.

Now assume that, for all g P G satisfying lpgq ¤ K� pn�1qµ
λ , g lies in xBKy.

Take g such that lpgq ¤ K� nµ
λ . Then, by Lemma 4.6, there exists x P Bk such that

lpgx�1q ¤ lpgq � 1
λ

lpxq

¤ K� nµ

λ
� µ

λ
(by properties of g and Lemma 4.5)

� K� pn� 1qµ
λ

Thus gx�1 P xBKy, and since x P BK, this means that g � gx�1x P xBKy.

Proposition 4.8. Let l : G Ñ R¥0 satisfy A1, A2, A3 and A5. Let K, ϵ be as in A5, let
λ � 1

1�ϵ , and suppose that the ball BK � tg P G | lpgq ¤ Ku is finite. Then,

(a) For any nontrivial g P G, there exists a finite sequence, x0, . . . , xk such that:

(i) each 0   lpxiq ¤ K (i.e. each xi P BKzt1u),
(ii) lpgx0

�1x1
�1 . . . xk

�1q � 0, and

(iii) 1
λ

°k
i�0 lpxiq ¤ lpgq ¤ °k

i�0 lpxiq.

(b) Axiom A4 holds - that is to say, the ball BR is finite for all R ¥ 0.

Proof. Part (a) is clearly true if lpgq ¤ K, since we can just take x0 � g. To prove it in
general, we use the discreteness of the length function to argue by induction. More
precisely, we let Pn be the statement that (a) holds for all g with lpgq ¤ K� nµ

λ . Thus our
initial observation is that P0 holds. We also observe that, since BK is finite, there exists
a minimum length, µ ¡ 0, for elements in BK.

Suppose then that Pn�1 holds and consider a g P G with lpgq ¤ K� nµ
λ . If lpgq ¤ K then

we are done, as above. Otherwise, by Lemma 4.6 and the existence of µ, there exists an
x P G with 0   lpxq ¤ K and

lpgx�1q ¤ lpgq � 1
λ

lpxq ¤ K� pn� 1qµ
λ

. (3)
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Now by the induction hypothesis applied to g0 � gx�1 we can find x1, . . . , xk P G such
that

(i) each 0   lpxiq ¤ K

(ii) lpg0x1
�1x2

�1 . . . xk
�1q � 0, and

(iii) 1
λ

°k
i�1 lpxiq ¤ lpg0q ¤

°k
i�1 lpxiq.

Now set x � x0. Then, by Equation 3, we have that

1
λ

ķ

i�0

lpxiq � 1
λ

lpxq � 1
λ

ķ

i�1

lpxiq ¤ 1
λ

lpxq � lpg0q ¤ lpgq.

Moreover, by A3,

lpgq ¤ lpxq � lpg0q ¤
ķ

i�0

lpxiq.

Hence, by induction, (a) result holds for all g.

We now prove (b). Let M ¥ 0, and let SM denote the following set of finite sequences:

SM �
"

x0, . . . xk P BKzt1u |
ķ

i�1

lpxiq ¤ M
*

Let R ¥ 0, and let g P BR. By (a), there exists a sequence x0, . . . , xk P SRλ such that
g � xk . . . x0. Therefore, if we can prove that SRλ is finite, we will prove that BR is finite.

Recall that, for all x P BK, lpxq ¥ µ. Therefore, for all sequences in SRλ,

Rλ ¥
ķ

i�1

lpxiq ¥ kµ ñ k ¤ Rλ

µ
.

Thus SRλ is a set of sequences of elements from the finite set BK, and the length k of
these sequences has an upper bound. Thus SRλ is finite, and we are done.

Theorem 4.9. Let l : G Ñ R¥0 be a graph-like length function on a group G. Then l is
bi-Lipschitz equivalent to some (and hence to all) based length function lp arising from a locally
compact, co-compact, metric G-graph and with Stabppq � 1.

Proof. We take Γ to be the Cayley graph on the set BK � tg P G | lpgq ¤ Ku, but
instead of assigning every edge length 1, we assign it the length of the corresponding
generating element under l. That is, the vertex set of Γ is G, and we join two vertices,
g, h by an edge if and only if gh�1 � y P BK; in that case we assign that edge a length of
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lpyq. (Note that hg�1 � y�1 will also be in BK in that case and have the same length). Γ
is then equipped with the path metric.

We then take the base point p to be the vertex corresponding to the identity. By Lemma 4.7,
BK is a finite generating set for G; hence Γ is well-defined and the action of G is co-
compact.

We can immediately see that 0 � lp1q � lpp1q, so we shall restrict our attention to
nontrivial g P G. For g P G we write, as always, lppgq � dΓpp, p � gq to denote the based
length induced by Γ. The metric on Γ is the path metric, and so the distance from p to
pg is the infimum of the lengths of all edge paths from p to p � g. Thus for all g � 1,

lppgq � inf
 ķ

i�0

lppyiq | y0, . . . , yk P BK, yk . . . y0 � g
(

� inf
 ķ

i�0

lpyiq | y0, . . . , yk P BK, yk . . . y0 � g
(

,

where the second equality arises from the fact that lppyq � lpyq for all y P BK, as these
are the edges of Γ.

By Proposition 4.8 (a), there exists a sequence x0, . . . , xk P BK such that xk . . . x0 � g and
1
λ

°k
i�0 lpxiq ¤ lpgq, where λ � 1

1�ϵ . Thus 1
λ lppgq ¤ lpgq.

Conversely, by inductively applying A3, the triangle inequality,
lpgq ¤ °k

i�0 lpyiq �
°k

i�0 lppyiq for all sequences y0, . . . , yk P BK with yk . . . y0 � g. Thus
lpgq ¤ lppgq.

We have 1
λ lppgq ¤ lpgq ¤ lppgq, hence lp is bi-Lipschitz equivalent to l with bi-Lipschitz

constant λ � 1
1�ϵ .

Therefore, by Corollary 3.7, l lies in the bi-Lipschitz equivalence class of all based length
functions arising from free, locally compact, co-compact metric G-graphs.

Remark 4.10. A hyperbolic graph-like length function is a length function that satisfies
the axioms from Definition 4.3 as well as the Hδ axiom from Definition 2.2 for some
δ ¡ 0.
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