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Physical Layer Authentication and Security Design
in the Machine Learning Era

Tiep M. Hoang, Alireza Vahid, Hoang Duong Tuan, and Lajos Hanzo

Abstract—Security at the physical layer (PHY) is a salient
research topic in wireless systems, and machine learning (ML)
is emerging as a powerful tool for providing new data-driven
security solutions. Therefore, the application of ML techniques
to the PHY security is of crucial importance in the landscape
of more and more data-driven wireless services. In this context,
we first summarize the family of bespoke ML algorithms that
are eminently suitable for wireless security. Then, we review
the recent progress in ML-aided PHY security, where the term
“PHY security” is classified into two different types: i) PHY
authentication and ii) secure PHY transmission. Moreover, we
treat NNs as special types of ML and present how to deal
with PHY security optimization problems using NNs. Finally,
we identify some major challenges and opportunities in tackling
PHY security challenges by applying carefully tailored ML tools.

Index terms—Physical Layer Security, Authentication, Se-
cure Transmission, Machine Learning, Neural Network, Opti-
mization.

I. INTRODUCTION

A. Physical Layer Security

Physical layer (PHY) security has become a new line of
research independent of the security at higher layers [1]–[3].
While higher-layer security methods rely on cryptography,
PHY security methods exploit the randomness of the prop-
agation environment to enhance the security level of wireless
systems. The theoretical foundation of PHY security were laid
by Shannon in 1949 [4] and Wyner in 1975 [5]. These two
pioneering contributions provide us with the understanding of
wireless security from the information-theoretic perspective.
Furthermore, they also allow us to quantify the security level
of the system in terms of the maximum secret information
rate. On this basis, a variety of conceptual and mathematical
definitions of PHY security have been developed for a wide
range of wireless systems over the years [6]. Accordingly,

T. M. Hoang and A. Vahid were with the Department of Electrical
Engineering, University of Colorado Denver, USA. They are now with the
Department of Electrical and Microelectronic Engineering, Rochester Institute
of Technology, NY 14623, USA (e-mails: tmheme@rit.edu; arveme@rit.edu).

H. D. Tuan is with the School of Electrical and Data Engineer-
ing, University of Technology Sydney, Broadway, NSW 2007, Australia
(email:Tuan.Hoang@uts.edu.au).

L. Hanzo is with the School of Electronics and Computer Science, Univer-
sity of Southampton, Southampton SO17 1BJ, U.K. (email: lh@soton.ac.uk).

The work of T. M. Hoang and A. Vahid was in part supported by NSF
grants ECCS-2030285, CNS-2343959, CNS-2343964, and AST-2232482.

H. D. Tuan would like to acknowledge the financial support of the
Australian Research Council’s Discovery Projects under Grant DP190102501.

L. Hanzo would like to acknowledge the financial support of the Engi-
neering and Physical Sciences Research Council projects EP/W016605/1,
EP/X01228X/1 and EP/Y026721/1 as well as of the European Research
Council’s Advanced Fellow Grant QuantCom (Grant No. 789028).

TABLE I
LIST OF ABBREVIATIONS

Abbreviations Meanings
AE Auto-encoder
Complex-NN Complex-valued neural network
Complex-OPT Complex-valued optimization
CSI Channel state information
DOA Direction of arrival
GAN Generative adversarial network
GD Gradient descent
GMM Gaussian mixture model
iForest Isolation forest
IoT Internet-of-Things
k-means k-means clustering
k-NN k-nearest neighbour
LDA Linear discriminant analysis
LED Light-emitting diode
LiFi Light fidelity
MIMO Multiple-input multiple-output
ML Machine learning
MLP Multiple layer perceptron
mmWave Millimeter wave
MOO Multiple-objective optimization
MUSIC Multi-signal classification
NLOS Non-line-of-sight
NN Neural network
OC-SVM One-class support vector machine
PGD Projected gradient descent
PHY Physical layer
PNN Projection neural network
Real-NN Real-valued neural network
Real-OPT Real-valued optimization
RIS Reconfigurable intelligent surface
RL Reinforcement learning
RRN Recurrent neural network
RSS Received Signal Strength
RSSI Received signal strength indicator
SGD Stochastic gradient descent
SSL Self-supervised learning
SVM Support vector machine
TOA Time of arrival
VB Variational Bayes
VLC Visible light communication
VAE Variational auto-encoder
XAI Explainable AI
MOEs Mixture of experts
BST Binary search tree

PHY security techniques have also been suggested for supple-
menting existing security solutions. In parallel to the evolution
of wireless communications, PHY security has been inves-
tigated in a wide variety of communication systems. Many
types of PHY security threats, as well as the corresponding
security methods, have been studied over years. In the sequel,
we respectively summarize common PHY security threats and
methods.

1) PHY Security Threats: Wireless systems tend to en-
counter many different types of PHY security threats. The



2

categorization of threats usually depends on the methodology
of the adversaries harnessed for degrading the security level
of a specific wireless system. For example, Lee et al. [7] clas-
sified the PHY attacks inflicted upon the wireless smart grid
into four types including eavesdropping, jamming, restricting
access and injecting. Another example is the categorization
of PHY attacks in [8], where Shu et al. also classified
eavesdropping and jamming as common PHY attacks applied
to cognitive radio networks (CRNs), but additionally suggested
other types of threats including primary user emulation and
spectrum sensing data falsification. In these examples, the
main difference in categorizing PHY attacks between [7] and
[8] lies in wireless system modelling. As for CRNs, both
primary and secondary channels co-exist, thus the associated
aspects like primary users and spectrum sensing are also
considered in the context of PHY security. In general, based
on the actions of adversaries, the PHY threats on a generic
wireless system can be categorized as follows [9]:

• Passive eavesdroppers: An adversary is considered as an
eavesdropper if it simply listens to channels and collects
the information leaked from transmitters to it.

• Active attackers: An adversary is considered to be active,
when it actively transmits something to gain some bene-
fits. This type of attack includes jamming and spoofing.
As for jamming attacks, a jammer can send jamming
signals to interfere with a legitimate system and hence
imposes a degradation in security performance. By con-
trast, spoofing attacks tend to deceive a wireless system
by impersonating a legitimate user in that system.

The detection of passive eavesdroppers seems to be at first
sight impossible due to the fact that they do not transmit
any signal. For this reason, passive eavesdroppers are rarely
considered in PHY authentication. By contrast, both passive
eavesdroppers and active attackers are considered in secure
PHY transmissions, because the security-level of the trans-
mission strategy/policy will directly affect on the likelihood
of successfully extracting confidential information by the
eavesdroppers.

2) PHY Security Methodologies: In PHY security, many
different notions of security have been defined, such as
ideal security, strong security, weak security and so on (see
[6, Table I]). There is also a wide range of PHY security
techniques and metrics. The most common ones rely on the
channel characteristics and on the transceiver architectures.
For example, channel characteristics like channel fading and
noise are commonly used for the calculation of the secrecy
rate and secrecy outage probability that are channel-based
metrics. By contrast, transceiver architectures like hardware
impairments can be used for authenticating devices. In general,
PHY security solutions can be categorized into the following
pair of areas.

• PHY authentication: The main objective of PHY au-
thentication is to exploit the physical-layer datasets avail-
able at the receivers for authenticating the origin of the
received signals [10]. Upon receiving a signal, authen-
tication is needed to ascertain whether it comes from a
trusted source or not. Through authentication, the origin

of a signal can be tracked and the presence of an illegal
user can be identified. In PHY authentication, channel
uniqueness between a pair of devices can be exploited as
a means of characterizing their identities and positions
[2]. A pair of common attacks in PHY authentication are
jamming and spoofing attacks. The purpose of jamming
attacks is to contaminate the legitimate transmission. By
contrast, the purpose of spoofing is to deceive the receiver
into believing they come from a legitimate source. In con-
trast to passive eavesdropping, the jamming and spoofing
attacks are generated by active attackers, who take action
to proactively degrade the security of a communication
system.

• Secure PHY transmission: This refers to the way
we deal with security vulnerabilities through designing
secure transmission strategies as well as systems at
the physical layer. From a secure transmission design
perspective, securing PHY transmission may incorpo-
rate quite different techniques to guard against eaves-
dropping, such as directional beamforming techniques
[11], artificial noise [12], multiple antennas [13], and
transmit antenna selection [14]. From a network design
perspective, securing PHY transmission also refers to the
inclusion, selection, and cooperation of network entities
for enhancing the security, such as the cooperation of
relay nodes to form cooperative beamforming [15] or the
employment of an intermediate node as a friendly jammer
[16]. Optimizing the performance of a secure system is
another aspect of the secure PHY transmission [17]. The
security can be optimized in a number of ways subject
to a given set of optimization constraints. For example,
a communication system can be designed for ensuring
that the probability of information leakage is minimized
within a fixed power budget or vice versa, and/or the
power consumption is minimized while still guaranteeing
the target security level.

To clarify the two above concepts a little further, let us
consider a system consisting of an access point and a user
in the presence of an adversary. If the access point wants to
authenticate the user before transmitting anything, the user
has to send something to the access point in the uplink
for authentication. The adversary may be active during this
authentication period and initiate a jamming attack for pre-
venting the user from successful authentication. PHY security
solutions conceived for dealing with this jamming attack
belong to the family of PHY authentication techniques. After
completing the authentication process, the access point may
transmit confidential messages to the users in the downlink.
At this stage, the adversary may decide to be passive as an
eavesdropper to intercept the transmitted signals or continue
to remain active by sending jamming to the user. PHY security
solutions designed for dealing with the adversary during this
downlink session may be classed as secure PHY transmis-
sion solutions, as exemplified by secure beamforming, which
directs the beams of the access point towards the desired user
(see [11] and [17]).
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B. ML-aided PHY Security

The development of machine learning (ML) has spanned
several decades and as a recent benefit, it has led to successful
applications in different fields. Hence, the introduction of ML
into wireless networks is expected to lead to advanced network
architectures, which are capable of learning from wireless
data to make data-driven decisions/predictions and perform
adaptive network optimization [18]. As part of wireless com-
munications, PHY security is also expected to beneficially
exploit ML for further enhancing the security. Since security
threats are likely to increase with the number of mobile users,
new PHY security solutions should be able to harness a huge
amount of data collected from the propagation environments
to guarantee the safety and privacy for legitimate users.
However, these challenging scenarios tend to result in large
parameter spaces for exploration. Hence efficient learning-
aided reduce-scope algorithms must be harnessed. In this
content, ML algorithms are the appropriate candidates for new
PHY security solutions in order to create dependable data-
driven security services. Additionally, many ML algorithms
are capable of carrying out complex tasks without requiring the
availability of closed-form solutions; thus, ML-based security
solutions can be supported by well-trained ML algorithms
rather than calculating complex mathematical expressions.
Although the exploitation of ML in PHY security has been
studied (e.g., in [19]–[21]), it is still in its infancy compared
to the extensive body of investigations of PHY security
methods dispensing with ML. In fact, there are numerous
knowledge gaps, which together form a new area of research,
namely machine-learning-aided physical-layer security (ML-
aided PHY security). As a dual pair of the two main branches
of PHY security, ML-aided PHY security also encompasses
two branches of research: i) ML-aided PHY authentication,
and ii) ML-aided secure PHY transmission.

As for ML-aided PHY authentication, the goal is to
build ML-based authenticators that learn from physical-layer
datasets to distinguish between legitimate transmitters and
illegitimate ones. Herein, illegitimate transmitters may imply
jammers, spoofers or other types of attackers. Regardless of
the attack types and their objectives (e.g., jamming attacks to
confuse systems or spoofing attacks to intrude into systems),
the authentication mechanism focuses on distinguishing nor-
mal signals from the abnormal ones; thus, both supervised
and unsupervised classification algorithms (inclusive of neural-
network-based classification algorithms) are appropriate can-
didates for performing the authentication task [20], [22]–[29].
Indeed, many of the ML-assisted techniques do not even
have to set up a fixed threshold for distinguishing the related
data, while traditional PHY authentication solutions critically
rely on a threshold and appear to be sensitive to the change
in its value upon making compromised/uncompromised de-
cision [22], [26]. This suggests that the traditional methods,
which typically rely on hypothesis testing, are vulnerable to
non-stationary data. Thus, reinforcement learning–which is a
salient branch of ML–may also be used for detecting active
spoofers in dynamically fluctuating environments [19].

As for ML-aided secure PHY transmission, many studies

show the applications of ML in enhancing the security of
wireless systems. Among the most popular approaches are
neural networks (NNs) and reinforcement learning [21], [30]–
[34]. However, there are still some contributions considering
other ML types to perform secure PHY transmission, for
example, support vector machine (SVM) and Bayesian solu-
tions [35]. Noticeably, wireless transmission is often geared
towards optimal transmission designs, formulated as optimiza-
tion problems. Accordingly, the process of designing secure
communication systems lend themselves to ML-aided secure
PHY transmission [21], [30]–[35].

In general, the aforementioned treatises on ML-aided PHY
security demonstrate the applicability of ML to securing
communication systems. However, compared to the mature
conventional PHY security methods, the ML-based PHY se-
curity is still an immature area of research. Nowadays, in
the context of data explosion, the ability to learn from data
may allow ML to provide new PHY security solutions that
adapt to the unpredictability in the environment. Indeed, along
with the development of next-generation wireless systems, the
field of ML itself also has its own advances in terms of new
algorithms, which will create hitherto unexplored ML-aided
PHY security solutions in the near future. Hence, there is an
urgent need to critically appraise all to guide and inspire future
research.

C. Prior Art
There is already substantial literature on the application of

ML in general communication problems, e.g., [18], [36]–[39];
however, they do not focus on the topic of wireless PHY secu-
rity. On the other hand, the recent surveys on PHY security do
not delve into the application of ML, although they do allude
to ML in the context of PHY security [40]–[42]. For example,
Ruzomberka et al. [40], as well as Solaija et al. [42], present
emerging wireless architectures and their associated security
threats, while briefly touching upon the role of ML. In [41],
Khalid et al. narrow down the PHY security to reconfigurable
intelligent surface (RIS)-aided wireless designs and suggest
ML as potential tools for RIS-aided secure systems. Only the
authors of [37], [38] and [39] consider anomaly detection,
but with no particular attention dedicated to PHY security.
However, there is a paucity of literature on ML-aided PHY
security, with the exception of [43]–[45].

In particular, Chen et al. [43] characterize the capability
of deep learning to extract attack features in a cyber-physical
transportation system. By contrast, Fang et al. [44] portray
some challenges to be faced in ML-aided PHY authentication.
However, these short magazine papers are constrained to an
outline of the vast realm of PHY security. Similarly, Wang
et al. [45] limit their scope of ML-aided PHY security to
spectrum-sharing schemes. A more detailed PHY security
landscape was portrayed by Baldini et al. in [46] and by Islam
et al. in [47]. To elaborate, [46] focuses on exploiting the
unique hardware fingerprints of physical devices as features
and appraises the potential of some ML classification algo-
rithms for PHY authentication. By contrast, Islam et al. [47]
surveys PHY security vulnerabilities and countermeasures in
the context of smart energy systems.
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TABLE II
A COMPARISON BETWEEN THIS SURVEY AND OTHER PREVIOUS SURVEYS.

Tutorial-and-survey papers

[39] [46] [36] [47] [48] [49] [50] [51] [52] [40] This

2016 2017 2018 2019 2020 2021 2022 2022 2022 2023 survey

ML-aided PHY security X X X X X X X

ML-aided cyber security X X X X X

ML-aided PHY Authentication X X X X X X

ML-aided PHY Secure Transm. X X X

Neural Network-Aided
Security Optimization X

PHY-related
features

TOA X

DOA X

RSS X X X

Channel Gain X X

Fingerprints X X X X X

Discussion
of ML

algorithms

k-NN Detailed Detailed Detailed Limited Limited Detailed Detailed

SVM Detailed Detailed Limited Detailed Limited Detailed Detailed

LDA Limited Detailed

k-Means Limited Limited Limited Detailed Limited Limited Limited Detailed

OC-SVM Detailed Detailed

Random Forest Detailed Detailed Limited Detailed Detailed

iForest Detailed

Hierarchical
Limited Limited Detailed

Clustering

RL Detailed Detailed Limited Detailed Limited

NNs Detailed Detailed Detailed Limited Detailed Limited Limited Detailed Detailed

A few years ago, Al-Garadi et al. [48] surveyed security
of the Internet of Things and occasionally mentioned PHY
authentication, but the prevalent security issues at the physical
layer are not addressed. Nguyen et al. [49] outline the current
challenges to be faced in the PHY security and cover a wide
range of technical solutions. However, the ML techniques
as well as ML-aided security solutions are not emphasized.
Liu et al. [50] first focus on the PHY-layer and data-link-
layer features of IoT device types, such as the features
passively collected from radiometric fingerprints and network
flow patterns, then review the ML-aided methods of identi-
fying/authenticating IoT devices. However, since the topic of
secure PHY transmission is not covered by [50], beamforming-
aided security designs and PHY security optimization are
not discussed. On the other hand, the pair of recent survey
papers [51], [52] are inherently intended for ML-aided cyber-
security, rather than ML-aided PHY security, although the
authors briefly touch upon some of the PHY security risks.

Last but not least, PHY-security-related optimization prob-

lems are not presented in [18], [36]–[39], [43], [44], [46]–
[52]. Given that NNs can be exploited for efficiently solving
stochastic optimization problems, it is promising to use NNs
for optimizing PHY security. This is a challenge to be tackled,
but this opportunity was missed by the authors of [18],
[36]–[39], [43], [44], [46]–[52]. By contrast, the subject of
using NNs for handling PHY security optimization problems
constitutes an important part of this survey. Table II highlights
the major differences between this work and the related survey
papers.

D. Contributions

When it comes to the employment of ML in PHY security,
we consider the following pair of pivotal goals:

• GOAL 1: Harnessing ML algorithms for PHY authenti-
cation and for securing PHY transmission.

• GOAL 2: Invoking artificial NNs for PHY security with
a focus on design optimization.
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Section I
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PHY Security
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Section VII
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and Design
Guidelines

Summary

Design
Guidelines

Fig. 1. The structure of the paper.

The aforementioned goals are challenging, hence there are
gaps in the ML-aided PHY security literature, especially in
terms of survey and tutorial papers. Note that the second
goal has not been yet considered in any previous works as
highlighted at a glance in Table II. Thus, we aim for achieving
these two goals in this paper.

Our main contributions are summarized as follows:
• We commence by reviewing the typical primary data

sources routinely employed in wireless communication
systems for training ML algorithms.

• From the rich family of ML classification algorithms,
we review four typical supervised learning algorithms,
four typical unsupervised learning algorithms, and NNs
that may belong either to the family of supervised or
unsupervised learning. We dedicate particular attention
to anomaly detection methods that have been ignored in
previous surveys. Additionally, we discuss the application
potential of ML classification in meeting GOAL 1.

• Regarding GOAL 2, we bridge the gap between PHY
security optimization and the ability of NNs in dealing
with stochastic optimization. Although the employment
of NNs for solving optimization problems has found
favour in ML research, it has not been popularized in
secure communications. Hence, this is the first survey
critically appraising the application potential of NNs in
optimizing secure PHY transmission. Furthermore, we
also reveal the ability of NNs to optimize communica-
tion system designs. In this vast field, securing PHY
transmission constitutes a particularly important instance,
because they must operate in the face of uncertainty,
where conventional techniques fail.

E. Organization

The remainder of this survey is organized as follows. In
Section II, we present the typical types of data at the physical
layer that can be beneficially used by ML algorithms. Section

PHY-related
Features

TOA

DOA

RSS
Channel

gain

Fingerprints

Others

Fig. 2. Potential features for PHY security issues.

III presents typical ML algorithms that can support PHY
security. In Section IV, we present how NNs can deal with
PHY security optimization problems. The application of ML
in PHY security is reviewed in Section V. The potential of
ML in securing different future wireless systems is discussed
in Section VI. Finally, the summary of the paper and design
guidelines are presented in Section VII. Fig. 1 shows the
structure of this paper.

II. DATA AT THE PHYSICAL LAYER

In this section, we present the traditional types of data that
are routinely considered at the physical layer followed by
highlighting conversion of the traditional data into the input
data to be fed into ML algorithms for their training. Unlike
non-ML PHY security solutions, ML-aided ones are based
on data. Naturally, the understanding of data will play an
important role in analyzing data-driven security applications
and services.
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A. Traditional Data

This subsection presents several typical features of the
data handled by communication systems. Fig. 2 provides
an overview of the potential features evaluated for PHY
authentication, including five specific types of data that are
presented in this subsection.

1) Time of Arrival (TOA): The TOA is a common metric
used for characterizing the time dispersion of a signal. We can
express the ToA (in seconds) as follows:

t = t0 + d/c+ n+ eNLOS, (1)

where t0 (s) is the transmit time instant, d (m) is the distance
between the transmitter and receiver, c = 3 × 108(m/s)
is the speed of light, n is the noise, and eNLOS ≥ 0 is
the measurement error mainly caused by non-line-of-sight
(NLOS) propagation. In general, it is widely accepted that n is
Gaussian distributed. For the NLOS error, several distributions
have been used for characterizing the impact of NLOS condi-
tions on time dispersion. For example, eNLOS can be described
by an exponentially distributed random variable [53]–[55],
a Gaussian distributed random variable [56], or a uniformly
distributed random variable [57]. Note that eNLOS = 0, if there
is no NLOS propagation.

2) Direction of Arrival (DOA): Another type of data that
a receiver can attain is the DOA of a certain signal. The
DOA estimation can be performed using direction-finding
methods, such as the popular multi-signal classification (MU-
SIC) algorithm and Capon’s minimum variance method [58],
[59]. In general, the performance of the DOA estimation will
much depend on the receiver antenna configuration. Let a
be the array response in a direction θ and {y1, . . . ,yK}
be a set of received signals. Then, the sample covariance
matrix is calculated as Σsample = 1

K

∑K
k=1 yky

H
k , where (·)H

denotes the conjugate transpose operator. Using the singular
value decomposition (SVD), Σsample can be partitioned into
Σsample = UΣdiagU

H , where Σdiag is a rectangular diagonal
matrix. The estimated value of θ can be found using the
MUSIC algorithm as follows [60], [61]:

θ = arg max
1

|a(θ)HUnoise|2
, (2)

where Unoise is extracted from U (see [60], [61] for more
details).

The DOA estimation plays a pivotal role in many applica-
tions such as positioning and tracking systems. From the PLS
perspective, the DOA estimation techniques are also expected
to play an important role in localizing the adversaries’ posi-
tions, or at least the adversaries’ direction.

3) Received Signal Strength (RSS): The RSS can be readily
quantified through the measurement of the received power at a
certain receiver. More specifically, if Pr(d) is the empirically
received power at a point d meters away from the transmitter,
then Pr(d) can be viewed as a quantitative value for RSS at
distance d. In practice, RSS values are likely to be inferred
indirectly from the received signal strength indicator (RSSI)
values. It should be noted that RSSI values represent the
readings obtained directly from a receiver. Moreover, the dy-
namic range of RSSI depends on the quality of the electronics

manufacturers. Thus, if a simple receiver records the RSSI
readings, this has to be translated from these values to the
RSS values [62], [63]. For example, if TelosB motes1 are used
for measuring the RSSI values, then the corresponding RSS
values can be calculated by using the following relationship
[62]:

Pr(d) = RSSI(d) + RSSIoffset (3)

where Pr(d) is in dBm, RSSI(d) is the measured RSSI value
(in dBm) at the distance d, and RSSIoffset = −75 dB is an
offset value.

4) Channel State/Response: Communication channels are
random in nature and vary with the surrounding environment.
Let us denote the channel between a transmitter and a receiver
by hchannel. The role of the channel in a simple received
signal model can be formulated as

rRx = h†channelsTx + nRx, (4)

where sTx is the signal transmitted by multiple antennas,
rRx is the signal received by a single antenna, nRx is the
receiver noise, and † denotes the Hermitian operator. Normally,
hchannel is assumed to obey a certain complex Gaussian
distribution, but it depends on the type of channel fading. Com-
mon types of the channel fading are modelled by Rayleigh,
Rician, and Nakagami-m fading, just to name a few [64], [65].
The unique random nature of hchannel is actually helpful in
dealing with eavesdropping, because secure transmission can
be performed at the physical layer [1], [66].

5) Fingerprints: Hardware imperfections during the manu-
facturing process are unavoidable. However, that makes each
hardware device unique and thus, the uniqueness of hardware
is what can also be exploited for device identification [46],
[67]. The small differences in hardware are often termed
as hardware fingerprints. From a security point of view,
hardware fingerprints constitute unique characteristics that can
be exploited as the unique features of the input data for ML
algorithms. The typical fingerprints include local oscillator
frequency [67], local oscillator offset, carrier frequency offset
[68], and the mismatch between in-phase and quadrature-phase
components [69].

6) Central tendency and Dispersion: A lot of characteris-
tics in wireless communications are non-static, including but
not limited to channel fading, transmitted signal, and noise.
Hence, wireless studies often consider those characteristics as
random variables and resort to probability and statistics for
the sake of analysis. An example is channel fading that is
theoretically assumed to obey a distribution with some central
tendency and dispersion. The popular measures of central
tendency include mean, mode and median, while central
dispersion encompasses variance, deviation, and percentile. In
general, the mean and variance of a distribution are mostly
employed. When not having the actual mean and variance,
the practical measurements will provide the sample mean and
variance of a random variable for analysis.

1Each TelosB mote is integrated with an IEEE 802.15.4-compliant RF
transceiver.
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Let us denote the sample mean of the class (+1) and that
of the class (−1) by xT1 and xT2 , respectively. Then, we have

xTi =
1

|Ti|
∑

t∈Ti
x
[t]
input, (5)

where the subscript i is in the set {1, 2}, x
[t]
input is an input

vector of values measured at time slot t, T = T1 ∪ T2 =
{1, . . . , T} is a set of T time slots. Also, we can calculate the
sample covariance matrices as follows [70, Ch.5]:

Σsample,i =

∑
t∈Ti

(
x
[t]
input − xTi

)(
x
[t]
input − xTi

)>

(|Ti| − 1)
, (6)

7) Others: Apart from the aforementioned types of data,
ML-aided wireless systems can also employ other types,
including the direction of departure (DOD) and multipath
delays [71], the distances among transceivers [72], the sample
mean and variance of received signals [73], the Euclidean
distance and Pearson correlation of channel samples [22], just
to name a few. In general, on the basis of the information
collected/measured by a wireless system, we can define a
wide range of user-defined measures and use these measures
as potential input data for ML. Indeed, there is no limit for
combining the available information in the interest of creating
helpful datasets. Having said that, the datasets built on the
basis of channel measurements are commonly used as the input
data, e.g., see [22], [24], [25].

To employ ML algorithms for PHY security research, it is
not required to build separate datasets different from other
wireless communication topics. Indeed, there is no standard
or special requirement for building datasets for ML-aided
PHY security. Moreover, the importance of different features
affecting the PHY security performance has not been fully
understood at the time of writing.

B. Input Data for ML

Once the wireless data to be evaluated has been collected, it
is necessary to process the data to make them more useful. If
wireless data is viewed as the raw data before preprocessing,
then the processed data may be fed into ML models. The
process of transforming the raw data into the processed data
is termed as data preparation required for efficient ML-based
processing.

Example 1. Assume that we choose a certain channel vector
hchannel = [2 + 1j, 3− 2j]

T to be the raw data and want to
enter it into an ML model, but this model only accepts real-
valued vectors as its input. Then, we have to find a process that
can create a new representation of the data, namely xinput, from
the raw data hchannel. If we opt for a process that converts each
element of hchannel into its absolute square, then we will obtain
xinput =

[
|2 + 1j|2, |3− 2j|2

]T
. As a result, the processed data

now meets the requirement of the ML model for real-valued
input.

ML algorithms are expected to work well on the processed
data and produce good performance. In general, data prepara-
tion is the first stage before being able to apply ML algorithms

to practical tasks. In data preparation, the following steps
should be taken into account:
• Data cleaning: Datasets from practical problems are not

always readily available and properly formatted. Hence,
there is a need to consider data cleaning so as to cope
with missing data and transform categorized data into a
numerical representation, which may be understandable
by an ML model [74], [75].

• Feature selection: When a dataset contains irrelevant and
redundant features, a process of selecting suitable features
should be harnessed as part of a feature selection method
in order to eliminate the irrelevant and redundant features
[76], [77]. These feature selection methods are also often
referred to as search methods. A range of popular search
algorithms can be used for performing feature selection,
such as the exhaustive search and the branch-and-bound
algorithm [78].

• Feature extraction: An optional step to take is the
process of extracting (or creating) new features from the
original features. Depending on what type of data and
problem we are handling, a suitable method of feature
extraction can be employed for reducing the number of
features. In general, the new features created by feature
extraction may result in reduced complexity. For example,
principal component analysis [79] can transform the data
from a high-dimensional space into a lower-dimensional
space, while retaining as much valuable information as
possible [76], [80].

When it comes to the features of a dataset in a secure
wireless system, it is still an open question, because there are
no standards for defining the features. In general, the features
can be extracted from information, such as the location,
channel gain, or hardware [81]. It is also possible to employ
the metrics mentioned in Subsection II-A in order to create
relevant features.

To illustrate what has been discussed above, let us consider
a wireless system whose transmission relies on time slots. A
receiver of the system considered might rely on the DOA and
RSS to create a dataset. Let us denote the realization of DOA
and that of RSS at the t-th time slot by DOA[t] and RSS[t].
By arranging DOA[t] and RSS[t] in a column of two elements,
the receiver can form a data point as follows:

x[t]input =
[

DOA[t]︸ ︷︷ ︸
feature 1

, RSS[t]︸ ︷︷ ︸
feature 2

]T

in the two-dimensional space. In practice, DOA[t] and RSS[t]
can take negative values, e.g., DOA[t] = −45◦ and RSS[t] =

−20 dB. If an ML model requires every element of x[t]input to
be positive, then we have to define x[t]input in another way. For
example, we can define it either as:

x[t]input =
[
|DOA[t]|︸ ︷︷ ︸

feature 1

, |RSS[t]|︸ ︷︷ ︸
feature 2

]T

or as:

x[t]
input =

[
|DOA[t]|︸ ︷︷ ︸

feature 1

, 10RSS[t]/10
︸ ︷︷ ︸

feature 2

]T
.
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In doing so, x[t]input can now be fed into that ML model.
For the sake of generalization, let us define M as the num-
ber of features. Furthermore, let us denote by Φm (with
m ∈ {1, 2, . . . ,M}) the m-th feature of the data, where φ[t]m
represents the observed value of Φm at the t-th time slot. After
T time slots, the receiver will have T data points that form
the data input formulated as

Xinput =


 x[1]input x[2]input . . . x[T ]

input




=







φ
[1]
1 φ

[2]
1 . . . φ

[T ]
1 feature Φ1

φ
[1]
2 φ

[2]
2 . . . φ

[T ]
2 feature Φ2

...
...

. . .
...

...

φ
[1]
M φ

[2]
M . . . φ

[T ]
M feature ΦM

slot 1 slot 2 . . . slot T

. (7)

To generalize what will be discussed in the rest of the paper,
we will not restrict the number of features. This means that
the number of elements in the column vector x[t]

input can be
an arbitrary positive integer. Moreover, it is not necessary
to employ the DOA and RSS to create features. Instead, the
feature selection and extraction will depend on the particular
problems considered.

A data point can be associated with a label or not. Hence,
the input data can be classified into labelled data or unlabelled
data or in fact a mixture of both. Moreover, based on the ratio
of labelled data points and unlabelled ones, the input data can
also be considered to be balanced or unbalanced. In the sequel,
we will describe these types of input data in more details.

1) Labelled and Unlabelled Data: In authentication prob-
lems, it is important to recognize the presence and intrusion of
adversaries that can be passive as eavesdroppers or active as
attackers. Once an adversary has been detected, we can stick a
label on the specific data input that is related to that adversary.
If we stick the label y[t]label = (−1) on the input data x[t]input in
order to mark a wireless system pertubed by adversaries, then
we may stick another label, e.g., y[t]label = (+1) on a secure
wireless system free any adversary. Based on the availability
of x[t]input and y[t]label, three types of data can be formed:
• Labelled data: From the statistical knowledge of pre-

vious transmissions, a wireless system can learn about
adversaries (such as jammers and spoofing attackers). To
be more specific, if the system suspects the presence of
adversaries at a certain time slot t (with t ∈ {1, . . . , T}),
then it will be able to form a labelled dataset: There are

Time Labelled data
slot Input Output
1 x[1]

input y
[1]
label

...
...

...
T x[T ]

input y
[T ]
label

two possibilities:

1) If y
[t]
label is the same for ∀t ∈ {1, . . . , T}, then

the labelled dataset has only a single class (or one
label).

2) However, if we have y[t]label 6= y
[t′]
label, with t 6= t′ and

t′, t ∈ {1, . . . , T}, then the labelled dataset has two
classes (or two labels).

• Unlabelled data: When there is no information about any
adversary and we cannot ascertain whether the wireless
system is secure, then the value of y[t]label at the t-th time
slot is simply unknown to the system. Explicitly, we must
not put the secure label (+1) on the output y[t]label, if we
cannot be sure whether or not the corresponding input
x[t]input is related to adversaries. As a result, unlabelled data
will not produce any data output.

In practice, it is difficult to attain any knowledge about the
covert adversaries. For example, a legitimate link between a
legitimate user and a receiver may be perfectly known to the
receiver. However,the illegitimate link between an eavesdrop-
per and the receiver considered may be completely unknown
since a so-called passive eavesdropper never transmits and
hence, its channel cannot be estimated. Thus, it is reasonable to
consider a practical wireless network to have no channel state
information (CSI) for any of the eavesdroppers. This means
that real-world datasets are likely to contain only a single class,
i.e., (+1). The lack of any knowledge about the eavesdroppers’
CSI hampers the associated security analysis and design.
Hence, typically, the assumption of having imperfect CSI for
the eavesdroppers is used [73]. Moreover, further research
is conducted to develop sophisticated methods of detecting
passive eavesdroppers [82].

2) Balanced and Imbalanced Data: Let us now return to
the labelled data and partition it into two groups: one of
them includes all outputs (+1), while the other includes all
outputs (−1). Let us now denote by T(+1) and T(−1) the
number of data points in the first group and in the second
group, respectively. Naturally, T(+1) + T(−1) = T is the total
number of data points that have been collected and labelled
so far. Depending on the ratio rfreq =

T(−1)

T , the data can be
considered as balanced or imbalanced. If this ratio is nearly
0.5, the data is considered as balanced, since the number of
data points in each class is nearly the same. By contrast, if the
ratio rfreq tends to 0 (or 1), the data becomes imbalanced. The
value of rfreq informs us of how frequently active attackers
attempt to perturb the system [73].

Let us define

T1 =
{
t|y[t]label = (+1)

}
, (8)

T2 =
{
t|y[t]label = (−1)

}
= {1, . . . , T} \ T1. (9)

As such, the number of elements in T1 is |T1| = T(+1), while
that number in T1 is |T2| = T(−1). Fig. 3 presents an example
in which adversaries are present in a wireless system |T2| times
during T transmissions. Let us assume for example that |T2| =
10 and T = 1000. Then the ratio of T(−1) to T is rfreq =

10/1000. In Fig. 3, the data point x[τ ]input, which corresponds to

the τ -th time slot, is classified as (+1). Furthermore, x[τ ′]
input is

classified as (−1), where τ ′ 6= τ .
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Counting elements Labelled data
in each class Input Output

1
... (+1) N

o
attack

... x[τ ]
input

...

|T1| = 990
... (+1)

1
... (−1) A

ttack

... x[τ ′]
input

...

|T2| = 10
... (−1)

Fig. 3. An example of imbalanced data table.

As such, if adversaries are present frequently in the case of
passive eavesdropping (or they attack frequently in the case of
active attacker) and we are aware of them, then we may build
balanced data in which the cardinality of the two groups of
data points is nearly equal. However, if the adversaries are not
present frequently, we may have imbalanced data. It should be
noted that if we do not know anything about adversaries, then
the datasets only have a single label associated with normal
data points. On the other hand, the datasets having more
than one label imply that the existence of adversaries (i.e.,
passive eavesdroppers or active attackers) has been previously
recorded by wireless systems.

Both balanced and unbalanced training datasets can be
trained by supervised learning, as long as the datasets have
more than a single label (i.e., a single class). The existence
of multiple classes in the training dataset allows supervised
learning to distinguish one class from the other during the
training process. For example, we can use a wide range of
ML algorithms to distinguish the two classes, which is a basic
binary classification problem. Widely-used ML models include
logistic regression, SVM, NNs, random forests, and decision
trees, just to name a few.

In the case of unbalanced data, if there is only a single label
(+1), then unsupervised learning can be employed because it
does not require the data to have multiple classes. On the other
hand, if an unbalance dataset has a few (−1) data points,
then several types of unsupervised ML algorithms can also
be used to distinguish the group with fewer data points from
the group with more data points. Among those algorithms are
the isolation forest [83] and one-class support vector machine
(OC-SVM) [84].

C. Insights and Further Discussions

Since there is no standard for selecting PHY data fea-
tures, the input data formulation of an ML algorithm may
depend on the availability of raw data. For instance, theory-
oriented studies can generate channel realizations based on
the assumption of certain channel distribution and then use
the channels as the input data. In these studies, however,
the fingerprinting data is unlikely to be available, because
the unique characteristics of hardware imperfections (e.g.,
local oscillator offset and carrier frequency offset) should be
obtained by experiments in measurement-oriented works. For

this reason, there is no complete comparison of the influence of
features on the attainable PHY security performance. Instead,
the importance of different features should be appraised for
specific systems and use cases.

It should also be noted that the availability of data comes
with the data labelling. Labelled data is normally employed
for training supervised ML algorithms. However, if some
data points in the training datasets are incorrectly labelled,
then the performance evaluation during the testing phase
on new data may result in wrong label assignments. This
means that supervised learning relies heavily on the labelling
process that may be time-consuming and error-prone. On the
other hand, unlabelled data can be used in unsupervised ML
algorithms and does not require human intervention. However,
the outcomes of unsupervised learning are likely to be less
accurate than those of supervised learning.

The label assignment to the input data mainly depends on
the prior knowledge of legitimate and illegitimate network
entities. For example, if a wireless system has ever success-
fully detected jamming attacks based on the analysis of RSS,
it holds a record of previous jamming attacks and assigns
(−1) to the RSS values related to the previous jamming
attacks. By contrast, (+1) is assigned to other RSS values
that are not related to jamming. However, if the system has
never experienced a jamming attack, it may only have input
data purely associated with all data points labelled as (+1).
Generally, the datasets having two classes are utilized by
supervised learning, while the datasets having a single class
can be used in anomaly detection algorithms (i.e., OC-SVM
classifiers) that belong to the family of unsupervised learning
(see [73] and [84]).

III. A BRIEF SUMMARY OF ML ALGORITHMS

In this section, we review the basic principles of ML algo-
rithms, including four typical supervised learning algorithms,
four typical unsupervised learning algorithms, reinforcement
learning, and NNs. Fig. 4 depicts the family-tree of ML
algorithms.

A. Supervised Learning

In this subsection, four typical supervised learning al-
gorithms are summarized, namely, the k-nearest neighbour,
support vector machine, random forest, and linear discriminant
analysis.

a) K-Nearest Neighbour (k-NN): The k-nearest neigh-
bour (k-NN) clustering belongs to the group of lazy learning
algorithms because it does not require any training process.
Instead, it only uses its training data to classify new data points
when those new data points are entered. Due to the lack of
training, k-NN has to store all training data points for use,
which makes it a computationally inefficient algorithm.

In principle, when classifying a testing data point xtest, the
k-NN algorithm considers the k nearest neighbours of xtest
and then assigns xtest to the class based on majority voting
[85]–[88]. As illustrated in Fig. 5, three out of four nearest
neighbours of a testing instance belong to the class (+1), hence
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ML models for PHY security

Supervised
Learning

Supervised
Neural Networks

k-NN

SVM

Decision Tree

Random Forest

Discriminant
Analysis

Others

Unsupervised
Learning

Unsupervised
Neural Networks

k-means

OC-SVM

Hierarchical
Clustering

Isolation Forest

Others

Reinforcement
Learning

Deep Q-Networks

Q-learning

SARSA

Others

Fig. 4. The scope of this survey: Using ML models for detecting eavesdrop-
ping attacks and designing security strategies. A simplified anatomy of several
ML models is also presented.

feature 1

feature 2

a testing data point

Fig. 5. An illustration of how k-NN classifies a new data point.

the testing instance will be classified as (+1). Since the k-
NN algorithm processes all data points in the training data, it
will become particularly inefficient when dealing with large
datasets.

b) Support Vector Machine: The SVM is a powerful type
of ML, which can efficiently perform both linear and non-
linear classification tasks when the size of the data set is small
or medium. The goal of SVM is to find the optimal boundary
that separates 2 different classes in a dataset. Soft-margin SVM
offers more versatility than hard-margin SVM, because the
soft-margin SVM accepts some misclassified data points, thus
avoiding over-fitting. Given that the equation of a hyperplane
has the form }(x) = xTa + b = 0, the goal of SVM is find
the optimal values of a and b through solving the following
optimization problem:

min
a,b,ξt

1

2
‖a‖2
︸ ︷︷ ︸
regularizer

+C

T∑

t=1

ξκt

︸ ︷︷ ︸
error

(10a)

s.t. y
[t]
label

(
a>x

[t]
input + b

)
≥ 1− ξt (10b)

Kernel
trick

a hy
perp

lane

Fig. 6. The use of the kernel trick in SVM classifiers can bring the data to
a higher-dimensional space, thereby making the data more separable.

where C is the margin parameter in (10a). κ = 1 implies
the 1-norm (L1) soft-margin SVM, while κ = 2 implies the
2-norm (L2) soft-margin SVM.

When using SVM, a “magic” technique called kernel trick
may be exploited to transform the data from the original input
space into a higher-dimensional space. The reason behind the
use of the kernel trick is that the data in a higher-dimensional
space may be linearly separable, which was not separable in
the original space [89]–[91]. Fig. 6 illustrates how the kernel
trick works, where a dataset with two features becomes more
separable, when being transformed into a new space with three
features. Let φ(·) be a nonlinear mapping that stretches the
original input space Xinput to some higher-dimensional space
H. For the t-th data point x

[t]
input, we have the corresponding

value of φt = φ
(
x
[t]
input

)
. Then the inner product K(t, t′) =

φtφ
>
t′ is a kernel function. When using the kernel trick, we

will encounter the calculation of K(t, t′) instead of φ(x
[t]
input)

and φ(x
[t′]
input). This alleviates the computational cost because it

is not necessary to calculate explicit expressions for φ(x
[t]
input)

and φ(x
[t′]
input). Normally, kernel functions are predefined and

there are many types of kernels to choose from, such as linear,
radial basis function, polynomial, and sigmoid kernels.

c) Random Forest: A “random forest” is basically a
collection of decision trees. A decision tree is built top-
down from a root node. The leaf nodes (i.e., the terminal
nodes) of the tree represent decisions (i.e., labels). A decision
node of the tree represents the test of a specific feature.
Note that the topmost decision node is the root node. Each
decision node has at least two branches each representing an
outcome of the corresponding test. Fig. 7 depicts a decision
tree having basic elements. To construct decision trees, we can
use different algorithms. Among widely-used algorithms are
ID3 (i.e., iterative dichotomiser 3), CART, CHAID, MARS
and so on [92], [93]. Let us consider the ID3 algorithm that
uses entropy and information gain to construct a decision tree
based on measuring/scoring the features of data. Based on the
features that have been scored, a decision tree will be built
top-down as follows:

• Step 1: At a decision node, select the highest-score
feature for a test.

• Step 2: From that decision node, create branches and
split the training data into subsets so that each subset
corresponds to a branch.

• Step 3: Find leaf nodes and repeat the steps recursively
on each subset.

To build a random forest from decision trees, we first need to
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Fig. 7. An example of building a decision tree from a dataset.

create bootstrapped datasets from the training data. By using
a statistical technique called bootstrapping, some data points
in the training set will be randomly picked in order to create a
bootstrapped dataset. Thus, a bootstrapped dataset is a subset
of the training data. Note that the number of bootstrapped
datasets is equal to the number of decision trees in a random
forest. Moreover, a certain data point may belong to many
bootstrapped datasets because the sampling allows a data point
to be picked many times. This sampling method is known as
sampling with replacement. Once the bootstrapped datasets
have been prepared, we can build the decision trees each
corresponding to a bootstrapped dataset. Then using majority
voting [94], a new data point will be predicted.

d) Linear Discriminant Analysis (LDA): Linear discrim-
inant analysis (LDA) falls into the family of discrimination
techniques. The purpose of discrimination is to make the data
as separable as possible [95, Ch. 11]. Let us assume that a
pair of two samples belonging to labels (+1) and (−1) obeys
two different statistical distributions with covariance matrices
Σtheory,1 and Σtheory,2. In order to use linear discriminant
analysis, it is required that Σtheory,1 is equal to Σtheory,2.
In practice, Σtheory,1 and Σtheory,2 are normally unknown,
thus we replace them with the sample covariance matrices
Σsample,1 and Σsample,2, which are formed by the available
samples in our training data (see Subsection II-B2). The
formulation of a sample covariance is presented in (6) in
Subsection II-A6. Accordingly, Σsample,1 and Σsample,1 are
expected to be equal in order to use linear discriminant analy-
sis. At this point, a problem arises from the fact that Σsample,1

and Σsample,2 may not be equal, i.e., Σsample,1 6= Σsample,2.
To overcome this problem, we use a weighted average of
Σsample,1 and Σsample,2, which is called the pooled sample
covariance matrix. This matrix can be expressed as follows
[70, Ch.5], [95]:

Σpooled =
(|T1| − 1) Σsample,1 + (|T2| − 1) Σsample,2

|T1|+ |T2| − 2
,

(11)

where |T1| and |T2|, defined in eqs.(8)–(9), are the number
of samples in the class (+1) and that in the class (−1),

feature 1

feature 2

th
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e

z

a
b
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e

z
xT1 xT2

x ∈ R2

Projection
z = wT

LDAx

Fig. 8. An illustration of how linear discriminant analysis can help with
separating a sample from the other. In this figure, we assume that the training
data has two features. A new feature will be created to replace the old ones by
using a projection onto a certain line. Using linear discriminant analysis allows
us to find the best line z = wT

LDAx. Each ellipse represents the confidence
region of a distribution [96], [97].

respectively. Then, we use Σpooled as the single common
covariance matrix for the two populations of interest.

In theory, LDA seeks some transformation vector wLDA,
which is used to project a data point x in the input space onto
a line z = wT

LDAx, so that the function

λLDA =
wT

LDASbetweenwLDA

wT
LDASwithinwLDA

(12)

is maximized. In (12), Swithin is the within-class (scatter)
matrix, while Sbetween is the between-class (scatter) matrix.2

These matrices can be expressed as [70], [98]

Swithin = (|T1|+ |T2| − 2) Σpooled, (13)

Sbetween =

2∑

j=1

|Tj |
(
xTj − x

) (
xTj − x

)T
, (14)

where xT1 and xT2 are the sample mean of the class (+1)
and that of the class (−1), respectively. The expressions for
xT1 and xT2 are are defined in (5), while x is the sample
mean of the whole training data and it is defined as x =
1
T (|T1|xT1 + |T2|xT2).

Finding the maximal value of λLDA leads to wLDA =
S−1within (xT1 − xT2). Observe from (12) that λLDA is also an

eigenvector of the matrix SLDA
def
= S−1withinSbetween. Accordingly,

LDA can be intuitively interpreted as a method in which the
data points in the input data will be projected onto the largest
eigenvector of SLDA. Fig. 8 illustrates how LDA projects the
two samples in the original 2-dimensional space onto the
largest eigenvector of SLDA.

By using LDA, a new data point xnew in the test data will
be classified as the first class if the inequality

(xT1 − xT2)
T

Σ−1pooledxnew

≥ 1

2
(xT1 − xT2)

T
Σ−1pooled (xT1 + xT2) + ln

(
c(1|2)p2
c(2|1)p1

)

(15)

holds. Herein, c(1|2) and c(2|1) represent the costs of mis-
classification, while p1 and p2 are the prior probabilities of the

2The between-class matrix is different from the between-class covariance
matrix. To obtain the latter, we can divide the former by |T1|+ |T2| − 1.
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first class and the second class, respectively. The left hand side
of (15) is a point on the line, which the largest eigenvector
passes through. Meanwhile, the right hand side of (15) is a
given threshold that is used for binary classification. Note
that the principle of LDA can also be extended to multi-class
classification [99], [98, Ch.6].

B. Unsupervised Classification Algorithms

In this subsection, four typical unsupervised learning al-
gorithms are summarized, namely K-means clustering, one-
class support vector machine, isolation forest, and hierarchical
clustering.

a) K-Means Clustering (K-means): K-means clustering
acts directly on the testing data without requiring a training
process [85, Ch. 9]. The benefit of K-means clustering is
that it can cluster the data into K clusters. Using K-means
clustering for detecting eavesdropping attacks, we may only
have to classify the data into two clusters by setting K = 2,
where one cluster corresponds to eavesdropping attacks, and
the other to no attack.

In general, K-means clustering yields K clusters each
having a centroid. At the beginning, K-means may generate
its centroids randomly and then updates the positions of the
centroids iteratively. At each iteration, each data point will be
assigned to the closest centroid. Once all data points have been
assigned to one of the centroids, the newly-created clusters
may or may not be different from the earlier clusters. If the
new clusters are not the same as the old clusters, it is necessary
to update the centroids. The update rule of a centroid is based
on calculating the average value of all the data points in the
corresponding cluster. After the centroids have been updated,
the iterative algorithm moves on to the next iteration. The
algorithm will continue its iterations until there is no change to
the centroids or the maximum number of iterations is reached.

The accuracy of K-means clustering relies heavily on the
initialization of centroids. Thus, different initializations result
in different accuracy levels. Instead of randomly generating
the initial centroids, advanced techniques suggest selecting the
positions of initial centroids more carefully. For example, K-
means++ exhibits its superiority over the standard K-means
clustering in terms of both speed and accuracy [100]. In
essence, the only difference between K-means++ and K-
means clustering lies in the initialization. To be more precise,
K-means++ starts with choosing a centroid randomly before
calculating the distances of points in the dataset from the
selected centroid. Then the next centroids are found based on
considering a functional relationship of those distances.

b) One-class Support Vector Machine (OC-SVM): As a
variant of SVM, the one-class support vector machine (OC-
SVM) has been developed to deal with outliers or imbalanced
data. According to [84], [101], [102], the goal of OC-SVM is
to evaluate the decision function

}(x) = sign
(
wTφ(x)− ρ

)
(16)

where sign(·) is the sign function, φ(·) is a mapping that
stretches the input space Xinput to a higher-dimensional space,
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Fig. 9. An illustration of the OC-SVM algorithm.
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Fig. 10. An illustration of a binary search tree with nint = 8 internal
nodes (a < b < c < d < e < f < g < h). While a successful search
terminates at an internal node (e.g., searching for b), an unsuccessful search
terminates at an external node (e.g., searching for x given that e < x < f ).
IPL = 1L0 +2L1 +3L2 +2L3 +0L4 = 14 and EPL = IPL+2nint = 30.

while w and ρ are found by solving the optimization problem:

minimize
w,ρ,ξi

1

2
‖w‖2
︸ ︷︷ ︸
regularizer

+
1

νTtot

Ttot∑

w=1

ξw − ρ
︸ ︷︷ ︸

error

(17a)

subject to 〈w, φ(xw)〉 ≥ ρ− ξw. (17b)

Herein, ξw ≥ 0 is a slack variable, and ν ∈ (0, 1] is a
parameter balancing the maximal distance from the origin
and the number of data points in the region created by the
hyperplane [84].

In OC-SVM, any data points that cannot form a dense
cluster will be treated as outliers/anomalies [102]. In other
words, the outliers reside within the regions of low density. In
the meantime, regular data points will be treated as the inliers
because they form the regions of high density. Fig. 9 depicts
the idea behind the use of OC-SVM.

c) Isolation Forest: An isolation forest (iForest) is an
ensemble method, whose anomaly scores are averaged over
multiple isolation trees. The structure of an isolation tree
is very similar to that of a binary search tree (BST). To
understand the concept of an isolation tree, we first recall the
BST structure.

Remark 1. The BST structure: A BST is a binary tree having
the following properties:
• Each node in a BST has at most 2 child nodes. Each node

in a BST has a unique value (or key); denote the value
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Fig. 11. Given four instances {x[t]
input}

4
t=1, the iForest algorithm can isolate

them in four external nodes (or leaf nodes) of an isolation tree. Multiple
isolation trees will then be averaged to become a single tree called iForest.
The depth of iForest determines whether an instance is considered as abnormal
or normal.

of node X by ValX .
• Let Y be a child node of X . If ValY < ValX (or ValY >
ValX ), then Y is the left (or right) sub-tree of X .

Let us denote the number of internal nodes in a BST by
nint, the internal path length by IPL, and the external path
length by EPL. According to [103], we have EPL = IPL +
2nint. By averaging over many BSTs, the average external
path length of a binary search tree is calculated as EPL =
IPL+ 2nint, where IPL is the average internal path length of
a binary search tree. For nint internal nodes, a BST will have
next = nint + 1 external nodes. Thus, the average external
path length of an external node can be calculated as

EPL0 =
EPL

next
=

IPL

next
+

2nint
next

= 2

nint∑

k=1

1

k
+

2nint
nint + 1

. (18)

Herein, EPL0 is a function of nint (or equivalently, next).
Furthermore, EPL0 can be viewed as the depth per an external
node and the depth is averaged over all binary search trees.

Using the above idea of BSTs, the authors of [83] suggest
building isolation trees. Yet another aspect is that the iForest
algorithm exploits the idea of the unsuccessful search events
in a binary search tree to define the path length h(x) of a
data point x. By definition, an unsuccessful search traverses
a path from the root node to an external node (see Fig. 10
for illustration). Similarly, in the context of an isolation tree,
the path length h(x) is defined as the number of edges that x
“traverses from the root node until the traversal is terminated”.
Using sub-sampling without replacement, the original dataset
is divided into NoT sub-datasets, each being associated with
an isolation tree. Thus there are NoT isolation trees in total. To
find abnormal data points, [83] defines the so-called anomaly
score as follows:

score(x, ψ) = 2−E{h(x)}
/
c(ψ), (19)

where ψ is the sub-sampling size, c(ψ) = EPL0
∣∣
nint=ψ

is a
constant, E {h(x)} is the average path length of h(x) and it
is averaged over all NoT isolation trees. After calculating the
score of each data point, we sort all the scores in descending
order. Given the sorted array of scores, we can show that the
first top scores correspond to anomalies.

d) Hierarchical Clustering: In contrast to K-means clus-
tering, which has to predetermine the number of clusters/-
groups, hierarchical clustering does not require that number
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Fig. 12. A 4-step illustration of the agglomerative hierarchical clustering. (t)
represents x

[t]
input for t ∈ {1, 2, 3, 4, 5}. In each step, we find the minimum

off-diagonal element in the proximity matrix and group related examples.

in advance. Instead, the number of clusters can be determined
after a hierarchical dendrogram has been formed [104], [105].
There are two common types of hierarchical clustering, namely
agglomerative and divisive hierarchical clustering:

• In principle, the agglomerative approach is a bottom-up
approach, which considers each data point as a separate
cluster and then merges two clusters at each step until all
clusters are unified as a single one.

• By contrast, the divisive approach is performed in a top-
down manner, where the whole data is considered as
a single cluster at the beginning, and then divides the
data into smaller clusters until each data point becomes
a cluster of its own.

Fig. 12 presents four steps in the process of constructing
a simple dendrogram on the basis of the agglomerative hier-
achical clustering. At each step, we update a proximity matrix
and use this new matrix to decide, which two clusters will
be merged. A proximity matrix is also known as a distance
matrix that is symmetric. Each off-diagonal element in a prox-
imity matrix represents the dissimilarity between two distinct
clusters. In short, the agglomerative approach uses distance
measures to quantify to what degree a group/cluster/example
is dissimilar to another. Note that distance measures are also
applied to the divisive approach.

Given a proximity matrix at each step, it is necessary
to have a criterion for deciding which two clusters will be
merged. There are many different criteria, which are also
known as linkage criteria. In so-called single linkage (or
nearest neighbour) clustering, we aim to find two clusters that
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Updating all the weights
and biases of the neural
network to minimize L

Fig. 13. A neural network with two hidden layers.

are closest to each other and merge them into a new cluster.
Fig. 12 is an example of single linkage in which we find the
minimum off-diagonal element in a proximity matrix at each
step, then the corresponding row and column of that element
will identify a pair of two clusters needed to be merged.
In contrast to single linkage, complete linkage considers the
maximum distance, which is determined by the most distant
nodes in two clusters. Furthermore, there are other linkage
criteria, such as the average linkage [106] and Ward linkage
[107].

C. Neural Networks

Fig. 13 describes the basic architecture of a multiple layer
perceptron (MLP) having three layers (including an input
layer, a hidden layer and an output layer). Each layer has
at least one neuron, which can connect all the neurons of
the previous layer to all the neurons of the next layer. A
detailed investigation of the related mathematical expressions
that describe the relationship between the input and output of
a neuron and the relationships among neurons can be found
for example in [108]. The relationship between the input and
output of the whole NN can be described by a function of
the form ŷn = fn(x1, . . . , xM |W,B), where x1, . . . , xM are
variables that constitute the input of an NN, W is the set of
link weights, and B is the set of biases at the neurons. The goal
of the network is to find W and B ensuring that the functions
{fn(x1, . . . , xM |W,B)}Nn=1 can approximate and generalize
the relationship between {x1, . . . , xM} and {y1, . . . , yN},
as long as the difference between the network output (i.e.,
{ŷ1, . . . , ŷN}) and the actual data (i.e., {y1, . . . , yN}) is within
some tolerance. This tolerance difference is quantified by some
loss function (known as error/cost/objective function).

Since the loss function quantifies how well an NN works,
it will be calculated at the output of the network. There are
various types of cost functions each resulting in a different per-
formance [109]–[111]. Depending on the assessment criteria,
different types of cost functions may be preferred over others.
In general, the goal of an NN is to minimize the loss function

by appropriately adjusting the network parameters. This often
leads to solving a minimization problem (whose objective
function is the loss function) with respect to the network
parameters (note that these parameters are in the setsW and B
as mentioned above). Since the network parameters stick with
the operation of neurons, the choice of activation functions for
each and every neuron deserves special consideration.

In general, an MLP relies on neurons each being activated
by a certain activation function σ(·). In fact, the activation
functions used in a neural-network-based classifier have direct
effects on the classification performance [112], [113]. In an
NN, it is theoretically possible to combine different types of
activation functions, including but not limited to a binary step,
linear, sigmoid, tanh and ReLU functions. Furthermore, there
is also a huge range of other activation functions, such as
the maxout [114], softmax [115], piecewise linear [116], and
distance-based activation functions [117], just to name a few.

As for the input layer, the number of neurons should
be equal to the number of features in the data input. For
example, we may wish to create an MLP, which allows a
column vector x[t]

input to pass through. Then, the number of
input neurons should be equal to the length of x[t]input. Recall
that x[t]input = [x

[t]
1 , . . . , x

[t]
M ]T is the t-th data point, and each

element in x[t]input represents a feature (see Section II for more
details). Regarding the output layer, a single neuron may be
capable performing a binary classification task. In the case of
more complex multi-class classification, using a single neuron
at the output layer may not be sufficient for a confident
decision. Indeed, it is plausible that multiple output neurons
are necessary for making multi-class decision.

D. Reinforcement Learning

Reinforcement learning enables a system to interact with
the environment and learn from these interactions. Normally,
reinforcement learning problems can be formalized by the
framework of a Markov decision process [18], [118].3 Intu-

3Markov decision processes are used for decision making.
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itively, reinforcement learning considers a certain agent that
learns a policy. The agent first observes its current state and
then it takes an action. Based on the action to be taken, the
environment gives the agent some feedback based on the new
state and the reward. Using the feedback obtained, the agent
will take its next action. This process is iteratively executed
many times to find the optimal policy that maximizes the
expected total reward in the long run.

Some of the popular reinforcement learning algorithms are
Q-learning [119], SARSA [120] and deep Q-learning [121].
While Q-learning operates in an offline fashion that attains the
optimal policy after the whole algorithm converges, SARSA is
an online learning-based algorithm that can find the optimal
action at each individual iteration [118]. Hence, Q-learning
may be more suitable for a small space of states and actions.
On the other hand, deep Q-learning, which relies on the
combination of reinforcement learning and NNs, relies on a
deep Q-network for solving high-dimensional problems [122].

E. Other Advanced ML Algorithms Learning

a) Variational Bayesian Learning: Let x represent a data
sample and z a vector of parameters. Using Bayes’ theorem,
we have the following aposteriori probability:

p(z|x)︸ ︷︷ ︸
posterior

= p(x|z)︸ ︷︷ ︸
likelihood

× p(z)︸︷︷︸
prior

/ p(x)︸︷︷︸
evidence

. (20)

If z is continuous, then the denominator p(x) can be calculated
as p(x) =

∫
z
p(x, z)dz. According to Jensen’s inequality,

we have log
(
Ep(x) {f(x)}

)
≥ Ep(x) {log (f(x))}. On the

other hand, log (p(x)) can be written as the logarithm of an
expectation, i.e.

log (p(x)) = log

(∫

z

p(x, z)dz

)
= log

(∫

z

Q(z)
p(x, z)

Q(z)
dz

)

= log

(
EQ(z)

{
p(x, z)

Q(z)

})
. (21)

Thus, applying Jensen’s inequality to log (p(x)), we arrive at:

log (p(x))︸ ︷︷ ︸
evidence

≥ EQ(z)

{
log

(
p(x, z)

Q(z)

)}

︸ ︷︷ ︸
evidence lower bound (ELBO)

, L(z). (22)

More importantly, the difference between the log marginal
probability of x and the ELBO turns out to be the Kullback-
Leibler (KL) divergence [123] of

log (p(x))− L(z) = KL [Q(z)||p(z|x)] . (23)

The KL divergence is widely used for quantifying how much
a probability distribution differs from another one. Hence
KL [Q(z)||p(z|x)] quantifies the difference/dissimilarity, be-
tween the variational probability distribution Q(z) and the
true aposteriori probability p(z|x). In this context maximizing
the ELBO is equivalent to minimizing the KL divergence.
The core idea here is to find some tractable distribution Q(z)
that approximates the aposteriori distribution p(z|x). Based
on this, sophisticated variational Bayes (VB) ML algorithms
have been proposed, which can be categorized into mean-field
VB and fixed-form VB [124].

Some of the most popular VB ML algorithms are constituted
by the family of variational auto-encoders (VAEs) proposed
in the pioneering contribution [125]. A typical VAE includes
an encoder that yields an approximate aposteriori distribution
pθ(z|x), and a decoder that yields a likelihood distribution
pφ(x|z). Herein, θ denotes all the weights of the encoder,
while φ represents all the weights of the decoder. By training
the VAE, the parameters θ and φ are optimized so that the
approximate aposteriori distribution pθ(z|x) becomes similar
to the true aposteriori distribution.

b) Mixture of Experts: When the data volume becomes
large, it is necessary for an AI-aided system to be able to
scale up its training models. One of the popular methods
of scaling up AI models is the so-called mixture of experts
(MOEs) technique [126], [127]. Briefly, the MOE method is
a neural-network-based ensemble learning technique. Similar
to other ensemble methods, the MOE is based on the ’divide-
and-conquer’ principle. Herein, the underlying idea behind the
MOE is that the global input space is divided into smaller
sub-spaces each being assigned to a specific local model for
training. Then all the outputs of the local models will be
combined. Note that each local model is termed as an expert.
Furthermore, the MOE consists of an NN, referred to as
the gating network, that supervises the ’divide-and-conquer’
process.

Fig. 14 illustrates the partitioning of a dataset into two
smaller datasets that will then be trained by a pair of local
experts in support of the classification task. This results in
beneficial specialization, because each local model (i.e., each
expert) will specialize in different small tasks by training and
learning based on different small input spaces. Based on the
outputs of the experts, a gating network will be trained based
on the global input data. Herein, the role of each expert is to
learn from a local input space, while the role of the gating
network is to learn from the outputs of experts. Indeed, the
MOE functions in a ’divide-and-conqure’ manner so that the
input space may be beneficially divided into subsets - each
being assigned to a suitably specialized expert for training.

c) Meta-learning: When it comes to learning from prior
experience in the context of ML, meta-learning emerges as
a compelling candidate, since it represents the concept of
“learning to learn” [128], [129]. Naturally, we do not always
have to learn new skills from scratch once we have suceeded
in learning some other skills. In other words, after learning or
inferring a specific skill from a task, it becomes easier to learn
another skill based on a new task, because we “learn how to
learn” by relying on skills transferred across tasks [129].

To elaborate a little further by describing the concept
of meta-learning mathematically, let us consider a set of
previous tasks {t1, t2, . . . , tM}, a set of parameter vectors
{θ1,θ2, . . . ,θN}, and a set of system performance evalu-
ations Eprevious = {e11, e12, . . . , emn, . . . , eMN} with m ∈
{1, . . . ,M}, n ∈ {1, . . . , N}. Herein, a task tm can be
also be viewed as a learning algorithm, e.g., an NN based
learning processed harnessed for optimizing some function.
In this context each parameter vector θn represents a specific
configuration of an ML model, e.g., it represents all the
weights of an NN. Finally, each value emn is a value of the
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Fig. 14. An illustration of using MOE for classification.

function e(t,θ) evaluated at t = tm and θ = θn, e.g., emn
can be the accuracy of an ML system. Let us assume now that
we want to predict a new parameter vector θnext for the new
task tnext, given that the new set of performance evaluations
- namely Enext = {eiter,1, eiter,2, . . .} - can be obtained in an
iterative manner during the training. Based on the concept
of meta learning, we will train a new ML model based on
the meta data Eprevious ∪Enext. For further details, please refer
to [128], [129], for example.

d) Self-supervised learning (SSL): In contrast to super-
vised learning that relies on labelled data, self-supervised
learning (SSL) does not require the data to be labelled and
thus it is normally referred to as a branch of unsupervised
learning. However, while most of the popular unsupervised
learning algorithms aim for detecting the pattern of data and
clustering datasets, SSL is centered on recovering and self-
generating the data [130]. It may also be observed that SSL
algorithms tend to be constructed based on the architecture of
NNs.

The architecture of SSL may be divided into two main
categories: i) Generative SSLs and ii) Contrastive SSLs. As
for generative SSLs, an encoder is used for encoding an
input sample x iinto z, and then a decoder will process z
to reconstruct x. A typical model using generative SSLs is
constituted by the auto-encoder (AE) [131]. On the other
hand, as for contrastive SSLs, after decoding x into z, the
similarity/dissimilarity will be quantified for differentiating the
input sample from others [132]. According to [130], there are
also hybrids of generative and contrastive solutions, including
the family of generative adversarial networks (GANs). Fol-
lowing their introduction in 2014 [133], GANs have received
substantial attention as a benefit of their applicability in
numerous fields. In the architecture of a GAN, a generator
and a discriminator are simultaneously trained in a competing
manner [134]. While the generator is trained for generating
new samples, the discriminator is trained for differentiating the
actual sample and the generated (fake) samples. Herein, the
goal of a GAN is to confuse the discriminator in distinguishing

the actual samples from fake ones and to allow the generator
to create fake-but-plausible data that even humans find hard
to realize.

e) Explainable AI: Despite the success of recent ML
algorithms, there are still concerns about applying ML in
a variety tasks, such as decision-making and recommender
systems. Sometimes it is hard to interpret the results returned
by an ML algorithm due to the lack of transparency and
reasoning mechanisms. Indeed, ML models like NNs are
commonly viewed as “black box” models, mainly because
their results are not always explainable by humans [135]. Thus,
explainable AI (XAI) is expected to be one of the next steps
in the realms of AI development, where human users can
understand more about the results returned by ML models.

There are diverse criteria for declaring an AI solution to
be explainable, including transparency, causality and trust.
Herein, transparency implies the capability of explaining the
ML models and their results to both technical and non-
technical users. Increasing the transparency of an ML model
will help even non-technical users to interpret how the model
works and what to expect upon using it. By contrast, causality
implies that causal inferences may be drawn from the be-
haviour of ML models. Finally, trust quantifies to what degree
human users can believe in ML models. In general, explainable
AI aims for improving the explainability in order to provide
users with an improved understanding and to lend the users
confidence when applying ML models [135], [136].

IV. PHY SECURITY OPTIMIZATION
BY NEURAL NETWORKS

This section emphasizes the potential benefits of NNs in
optimizing PHY security. More specifically, we bridge the gap
between
• complex-variable optimization problems to be faced in

PHY security (see Sub-section IV-A)
• and real-variable optimization problems to be solved by

real-valued NNs (see Sub-section IV-B).
Then we discuss the ML-oriented research issues of complex-
variable based NNs, thereby showing the potential benefits of
complex-valued NNs in handling PHY security optimization
(see Sub-section V-C). Finally, multiple-objective optimization
is also discussed as a promising future research issue (see Sub-
section V-C).

A. Optimization in PHY Security Design

Let us consider a simple security system in which a base
station (A) broadcasts its signals to a legitimate user (B),
which is overheard by an adversary (E). Let us denote the A-
B channel and the A-E channel by hB and hE , respectively.
Upon denoting the instantaneous capacity of the A-B channel
and that of the A-E channel by CB and CE , respectively, the
instantaneous secrecy rate can be expressed as

Cs = max(0, CB − CE) =

{
0, if CB ≤ CE

CB − CE, if CB > CE.
. (24)

Secure system designs typically deal with the quantity ∆ =
CB−CE, which is the difference between the capacity of Bob’s
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TABLE III
TYPES OF OPTIMIZATION PROBLEMS IN PHY SECURITY

MAXIMIZATION

(P1) max
s

∆(s,hB ,hE)

s.t. E
{
‖s‖2

}
≤ Pmax

(P2) max
s

CB(s,hB)

s.t. CE(s,hE) ≤ a threshold

E
{
‖s‖2

}
≤ Pmax

MINIMIZATION

(P3) min
s

E
{
‖s‖2

}
s.t. ∆(s,hB ,hE) ≥ a threshold

(P4) min
s

CE(s,hE)

s.t. CB(s,hB) ≥ a threshold

E
{
‖s‖2

}
≤ Pmax

channel and that of Eve’s channel. Based on the definitions
of ∆, CB and CE, we will formulate optimization problems
with the associated power constraints in mind. Upon denoting
the transmit vector of Alice by s and bearing in mind the
transmit power limitation, each and every signal should satisfy
the following constraint:

E
{
‖s‖2

}
≤ Pmax, (25)

where Pmax is the power budget of Alice.
It is plausible that CB is a function of s and hB . At the

same time, CE is a function of s and hE . Consequently, ∆ is
a function of s, hB and hE . As such, we can either write CB ,
CE and ∆ for short in the way we have presented them above,
or write CB(s,hB), CE(s,hE) and ∆(s,hB ,hE) to indicate
their dependence on both the transmit signal and the channels.
Since we are unable to control the channels, the overall goal
of optimization becomes that of appropriately designing the
transmit signal s. Table III illustrates four different optimiza-
tion problems that are widely considered in the literature. The
problems in Table III are not necessarily convex. It should
also be noted that (P2) and (P4) may be viewed as security vs.
reliability trade-off problems, because CB and CE constitute
a pair of conflicting functions. Roughly speaking, CB reflects
the reliability of transmission, and CE characterizes the ability
of an adversary to decode the source signal. While increasing
the transmit power improves the reliability by reducing the bit
error rate, the adversary also gets a better chance of detection,
which degrades the security level [137], [138].

Due to the random nature of channels, the instantaneous
quantities CB(s,hB), CE(s,hE) and ∆(s,hB ,hE) will al-
ways fluctuate with hB and hE . As such, it is practically
more promising to deal with their expectations. Let CB,avr(s),
CE,avr(s) and ∆avr(s) represent the expected value functions
of CB(s,hB), CE(s,hE) and ∆(s,hB ,hE) over hB and hE ,
we have

CB,avr(s) = EhB
{CB(s,hB)} , (26)

CE,avr(s) = EhE
{CE(s,hE)} , (27)

∆avr(s) = EhB ,hE
{∆(s,hB ,hE)} , (28)

TABLE IV
TYPES OF STOCHASTIC OPTIMIZATION PROBLEMS IN PHY SECURITY

MAXIMIZATION

(Q1) max
s

∆avr(s)

s.t. E
{
‖s‖2

}
≤ Pmax

(Q2) max
s

CB,avr(s)

s.t. CE,avr(s) ≤ a threshold

E
{
‖s‖2

}
≤ Pmax

MINIMIZATION

(Q3) min
s

E
{
‖s‖2

}
s.t. ∆avr(s) ≥ a threshold

(Q4) min
s

CE,avr(s)

s.t. CB,avr(s) ≥ a threshold

E
{
‖s‖2

}
≤ Pmax

where Ez {func(z)} denotes the expectation operator that cal-
culates the expected value of a certain function func(z) over
a certain random vector z. Note that CB,avr(s), CE,avr(s) and
∆avr(s) are still functions of s.

If the distributions of hB and hE are known, then the
expected values CB,avr(s), CE,avr(s) and ∆avr(s) may be
derived by integrating - i.e. averaging - the instantaneous
quantities CB(s,hB), CE(s,hE) over the domains of hB
and hE . However, in practice, the three distributions of the
channels hB and hE may not be known. Instead of using
integration, the expected values may be estimated based on
measurement. Let h

[t]
B and h

[t]
E be the measured value of hB

and that of hE at the t-th time slot. Note that h
[t]
B and h

[t]
E are

empirical observations, and hence they are given. After T time
slots, ∆avr(s), CB,avr(s) and CE,avr(s) can be approximated
by the sample means (or sample averages) as follows:

CB,avr(s) =
1

T

T∑

t=1

CB(s,h
[t]
B ), (29)

CE,avr(s) =
1

T

T∑

t=1

CE(s,h
[t]
E ), (30)

∆avr(s) =
1

T

T∑

t=1

∆(s,h
[t]
B ,h

[t]
E ). (31)

From a practical point of view, the objective functions, as well
as constraints, in the optimization problems (P1)-(P4) of Table
III should be modified. For example, they can be reformulated
into new optimization problems (Q1)-(Q4), which are shown
in Table IV.

In general, the problems (Q1)-(Q4) of Table IV are non-
convex and computationally challenging to solve. The formu-
lation of (Q1)-(Q4) can be generalized and expressed in the
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TABLE V
IN-DEPTH RESEARCH ON USING NEURAL NETWORKS FOR SOLVING OPTIMIZATION PROBLEMS

Stochastic
Optimization

Constrained
Optimization

Gradient Descent
(GD) Methods Subject Emphasized Papers

X Projection A review of PNNs and their applications [139]

X Projection Analyzing the stability and convergence of PNNs [140]

X Projection Solving convex programming by PNNs and examples [141]

X Projection RNN based on Projection Method [142]

X Projection Proposing PNNs with a single-layer structure for real-time solvers [143]

X Projection Solving quadratic min-max optimization problems by PNNs [144]

X Not to be mentioned Modified RNN based on Karush–Kuhn–Tucker Conditions [145]

X Projection Complex-valued Projection neural network [146]

X SGD Showing the computational efficiency in large-scale ML problems [147]

X ADAM Proposing ADAM and showing its computational efficiency [148]

X YOGI Proposing YOGI and proving it superior to ADAM [149]

X Online, Batch Presenting online learning algorithms and analyzing their convergence [150]

X X AdaGrad Proposing a family of update methods that use the geometry of data [151]

X X SGD + Projection Proposing an algorithm for stochastic multiple objective optimization [152]

X X SGD + Projection The effect of stochastic errors on distributed subgradient algorithms [153]

X X SGD + Projection Analyzing the optimality of SGD and improving its convergence rate [154]

X X SGD + Projection Proposing a variant of mini-batch SGD to enhance the convergence rate [155]

form of a minimization problem as follows:4

min
z
F(z) =

1

T

T∑

t=1

ft(z) (32a)

s.t. z ∈ S, (32b)

where z is a complex-valued random vector, S is some
constraint domain in the complex field, F(z) is the overall
objective function, ft(z) is a certain function of z, and T is
still the number of training examples. Note that the non-convex
problem (32) is routinely encountered in many technological
fields.

B. NN-aided Optimization Solutions

To handle non-convex problems, a wide range of methods
has been proposed. If a non-convex problem can be innerly
approximated by a convex problem, the solution of the latter
is also a feasible point/sub-optimal solution of the former.
However, if a non-convex problem is relaxed into a convex
problem, the solution of the latter may not even be a feasible
point for the former. In fact, there is no single universal method
for efficiently solving all types of non-convex problems. This
statement is true, when using NNs for solving any optimization
problem. Explicitly, specific network designs may be used for
specific optimization problems. Table V lists several papers,
which use NNs for solving optimization problems.

4Since maximizing f(x) is equivalent to minimizing (−1)f(x), the
maximization problems (Q1)-(Q2) can also be transformed into minimization
problems.

In order to be able to harness NNs to solve our security
problems, we may desire to transform (32) into the following
equivalent (or approximate) optimization problem:

min
w

L(w) =
1

T

T∑

t=1

`t(w) (33a)

s.t. w ∈ W, (33b)

where w is a real-valued vector containing the weights and
biases of an NN, W is a closed convex set in the real field,
L(w) is the overall loss function, `t(w) is the loss function
corresponding the t-th example, and T is the training data
size, i.e., the number of examples in the training data. The
desire for w to be a real-valued vector arises from the fact
that most of the existing NNs have been developed for solving
optimization problems associated with real variables. Hence,
there is a paucity of studies using NNs for solving optimization
problems having complex variables, except for the work of
Zhang et al. [146].

As such, instead of directly dealing with an optimization
problem w.r.t. the complex-valued vector z, we might prefer
using an NN to solve another optimization problem w.r.t. the
real-valued parameter vector w. Once the optimal (or near-
optimal) solution of w has been found, z in the original
problem will also be updated accordingly. However, there may
or may not be a functional relationship between w and z.

It is also a matter of utmost importance that network de-
signers establish the relationship between the complex-valued
vector z and the real-valued vector w, because this relationship
will also show the relationship between the constraint z ∈ S
in (32b) and the constraint w ∈ W in (33b). Similarly,
it is challenging, but important to establish the relationship
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between the objective function F(z) in (32a) and the loss
function L(w) in (33a). For example, z can be chosen to be
a real-valued output vector that is dependent on w [30] or
independent of w [156].

Last but not least, (33) represents a type of stochastic
optimization that has been studied both in machine learning
research as well as in applied mathematics for at least a decade
[148], [155], [157]–[159]. As seen in Table V, stochastic
optimization problems may be solved with the help of NNs
and gradient descent methods (see [147]–[150], [152]–[155]
for more details). Given the importance of gradient (descent)
methods, the following discussions will unveil the the role
of them in dealing with both: i) stochastic unconstrained opti-
mization and ii) stochastic constrained optimization problems.

1) Stochastic Optimization without Constraints: For ease
of exposition, in this sub-section, we temporarily remove the
constraint z ∈ S from the stochastic optimization problem
(33). With this in mind, we will discuss how NNs can deal
with stochastic optimization problems of the form

min
w

L(w) =
1

T

T∑

t=1

`t(w). (34a)

According to [150], [152], [160], we can find the optimal (or
near-optimal) solution of the parameter vector w by relying on
the classical gradient descent. In connection with each gradient
descent method, the update of w at the (i + 1)-st iteration,
denoted by wi+1, follows a different rule, as shown below:
• Gradient descent (GD) [150], [160]:

wi+1 = wi − γi
1

T

T∑

t=1

∇w`t(wi), (35)

where γi > 0 is the learning rate.
• Stochastic gradient descent (SGD) [149], [150], [152],

[160]:

wi+1 = wi − γi∇w`i(wi). (36)

• Mini-batch gradient descent [161]:

wi+1 = wi − γi
1

τ

τ∑

t=1

∇w`t(wi), (37)

where τ ≤ T is the number of training examples in a
small subset of the full training dataset. In the case of
the mini-batch GD, the training dataset of T samples is
divided into many subsets, and each update corresponds
to a subset. Setting τ = 1 leads to the case of SGD, while
setting τ = T leads to the gradient descent scenario.

Apart from the aforementioned gradient descent methods,
there are also other gradient-based methods, such as the
second-order gradient descent [147, eq. (3)], the second-order
SGD [147, eq. (5)], ADAM [148], and YOGI [149], just to
name a few.

2) Stochastic Optimization under Constraints: A specific
type of feedback/recurrent neural networks (RRNs), termed
as projection neural networks(PNNs), have been popularly
used for solving constrained optimization over many years
[139], [143], [162]. As for stochastic constrained optimization

W

wi

zi+1 = wi − γi∇w`i(wi)

wi+1 = ProjW {zi+1}
= argmin

w∈W ‖w − zi+1‖

C
on
straint

dom
ain

︷ ︸︸ ︷

Using SGD

Fig. 15. An illustration of projection gradient descent. The projection-based
update rule includes two steps as follows: Starting at a point wi ∈ W , we use
a gradient method (e.g., SGD) to find some intermediate point zi+1. Then,
we project zi+1 onto the domain W to find the updated point wi+1 that
satisfies the constraint wi+1 ∈ W .

problems (e.g., (33)), PNNs can also be used for finding
optimal (or near-optimal) solutions. In principle, the constraint
w ∈ W in (33) can be handled by the projection method of
[152]–[155].

Fig. 15 illustrates the update rule of a PNN. To be more
particular, the update rule includes two steps:
• Let us assume that we commence from a point wi at the
i-th iteration. In the first step, a gradient descent method
is used for finding an intermediate point, namely zi+1.
Note that the point zi+1 does not necessarily fall within
the domain W (i.e., it is possible to have zi+1 /∈ W).

• In the second step, the projection method is used for
projecting the intermediate point zi+1 onto the domain
W . Let wi+1 be the projected point. It is plausible that
wi+1 is also the updated point at the (i+ 1)-st iteration,
because the constraint wi+1 ∈ W is satisfied.

This 2-step update process is also known as the projected
gradient descent (PGD) technique [163], [164]. As an example,
let us assume that in the first step, we use the SGD for updating
the intermediate point, i.e,

zi+1 = wi − γi∇w`i(wi). (38)

Then we use the projection method for updating the parameter
vector as follows:

wi+1 = ProjW {zi+1}
= arg min

w∈W
‖w − zi+1‖ (39)

where ProjW{·} denotes the operator carrying out the pro-
jection onto W .

V. THE APPLICATION OF ML IN PHY SECURITY

In this section, the application of ML in PHY security
is presented. We divide the section into three sub-sections:
i) ML-aided PHY authentication, ii) ML-aided secure PHY
transmission, and iii) NN-aided security optimization. The first
sub-section presents the employment of ML for creating classi-
fiers to categorize, detect and authenticate devices. Meanwhile,
the second sub-section presents the employment of ML for
designing secure PHY transmission. By contrast, the last sub-
section delves into how to deal with PHY security optimization
problems using NNs.
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TABLE VI
THE APPLICATION OF ML ALGORITHMS IN PHY AUTHENTICATION

Papers Algorithms
At the heart of

Main contributions
input data

[23] Decision tree, k-NN, SVM Channels
Extracting input features from channel measurements and comparing the authentication
performance of decision tree, k-NN and SVM

[20] SVM, LDA TOA, RSS
Using TOA and RSS as input features of SVM and LDA classifiers and creating two
authentication schemes based on SVM and LDA

[29] k-means, k-NN RSS
Respectively using k-means and k-NN for extracting the features of signals and for
detecting spoofing attacks in wireless sensor networks

[73] k-means, OC-SVM Means & variance
Detecting PHY attacks by OC-SVM and k-means classifiers, where OC-SVM is trained
on one-label data and k-means works directly on testing data

[25] One-class nearest neighbour Channels
Evaluating the detection performance of one-class nearest neighbour classifiers in
realizing the presence of an active attacker

[27] Logistic regression RSSI
Using the RSSI of signals as the input data and building a logistic regression model for
detecting spoofing attacks

[24] GMM Channels A GMM-based authentication experiment in machine type communication

[26] GMM Channels
Extracting channel-gain-based features and detecting spoofing attacks by a GMM
classifier, where GMM parameters are estimated by the expectation maximization
algorithm

[28] GMM Channels Using the Karhunen-Loeve transform for feature extraction and GMM for authentication

[22] NN Channels
Proposing an extreme-learning-based authentication model without requiring a detection
threshold

[165] NN Channels
Exploiting data augmentation methods for accelerating the training speed and improving
the accuracy of neural-network-based authentication models in IoT systems

[67] NN Fingerprints
Considering mobile hardware security and authenticating IoT nodes by using a neural-
network-based fingerprinting method

[19] RL Channels
Proposing a hypothesis test for detecting spoofing attacks, where the detection threshold
in the hypothesis test is determined by reinforcement learning

[166] Kernel-based method Channels
Proposing an adaptive authentication model based on the idea of the kernel machine,
which is similar to classical SVM classifiers in terms of reducing the dimension of
feature space

A. ML-aided PHY Authentication

1) Recent Applications: A range of ML-aided classification
algorithms may also be applied for enhancing security at the
physical layer. For example, Table VI lists the popular ML
algorithms used and the related papers. In the following, we
review these papers in more detail.

In [29], a beneficial combination of both k-NN and K-
means techniques is suggested for detecting spoofing attacks
in wireless sensor networks. K-means clustering is used for
extracting features from RSS samples, while k-NN plays the
role of a classifier [167]. The authors of [73] compare the
performance of K-means and OC-SVM, and show that OC-
SVM results in a more stable detection performance than
K-means, when the power of a spoofing signal fluctuates.
However, the performance of OC-SVM is worse than that
of K-means, when the spoofing signal is transmitted at high
power. The idea of using OC-SVM for training the data is also
seen in [168], where Abdrabou et al. first build datasets based
on the received signals and then evaluate the authentication
performance of majority voting schemes. In [20], both SVM
and LDA are harnessed for processing the RSS, TOA and
another correlation-based feature.

As a further development, the authors of [23] suggest using
estimated channel matrices for generating features and then

compare four different ML algorithms, i.e., the k-NN, SVM,
decision tree and bagged tree, in terms of their accuracy and
prediction time. Similar to [73], the training data considered
in [25] contains only a single class under the assumption
that there is no knowledge concerning any of the potential
adversary. Also assuming that the prior knowledge of the CSI
of illegitimate devices is unavailable, Du et al. [169] utilize
a CART decision tree for designing an authenticator that is
trained on CSI-based datasets for differentiating legitimate
devices from illegitimate ones. The authenticator in [169] was
shown to reduce the dimension of the original datasets into
lower-dimensional data for employment in industrial environ-
ments. In [25], single-class nearest neighbour classification is
performed on the single-class data for finding both high- and
low-density regions, thereby creating a predictive model for
authentication. The authors of [27] propose a logistic regres-
sion model for authentication and estimate the coefficients of
the model by using the popular Frank–Wolfe algorithm.

Furthermore, the Gaussian mixture model (GMM) is pro-
posed in [24], [26], [28]. To elaborate, Weinand et al. [24]
build a simple authentication framework for machine type
communication by using the magnitude of channels as the
input data. Qiu et al. [26] build the training data associated
with two features that are based on the Euclidean distance and
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Pearson correlation, respectively. Qiu et al. [28] exploit the
Karhunen-Loeve transform for extracting the most significant
features and for reducing the dimension of the data. The low-
dimensional representation created by the Karhunen-Loeve
transform in [28] allows ML algorithms to deal with high-
dimensional datasets, while the lack of a dimensionality reduc-
tion technique in [24] requires a large amount of memory for
data storage and incurs increased computation. The spoofing
detection performance comparison between [28] and [24] once
again confirms that bespoke feature selection is always crucial
in the data preprocessing used for authentication.

The family of NNs is considered in [22], [67], [165]. Specif-
ically, in [22], the data is formulated in a similar way to [26],
apart from the difference that Wang et al. [22] use extreme
machine learning based on NNs, while Qiu et al. [26] use a
Gaussian mixture model. Liao et al. [165] focus their attention
on data augmentation methods that harness an extra amount
of data in addition to the existing data. The data augmentation
is eminently suitable for improving the robustness of the data,
especially when dealing with high-volume data. Chatterjee et
al. [67] consider the identification of nodes in an Internet-of-
Things system by developing a detection framework based on
NNs and physical unclonable functions. On the other hand,
Wang et al. [170] design a DNN relying on the softmax
function at the output to distinguish between legitimate and
illegitimate CSI samples. However, the detection mechanism
of the authenticator in [170] is sensitive to the choice of
a predetermined detection threshold. A special type of NN,
namely VAE, is also employed for PHY authentication in
[171], which does not require the CSI of attackers for training.
However, the sophisticated authenticator of [171] is based on
a hierarchical VAE architecture that consists of an AE module
designed for feature extraction and a VAE module conceived
for detecting spoofing attacks.

Regarding reinforcement learning, Xiao et al. [19] model
the interaction between a legitimate user and an eavesdropper
as a zero-sum authentication game in a dynamic environment,
and employ reinforcement learning for finding the optimal
threshold of hypothesis testing. Finally, Fang et al. [166]
develop an adaptive learning model based on the kernel least
mean square method in which the authentication problem is
modelled as a linear system for reducing the dimension of the
feature space and complexity. Zhang et al. [172] proposes a
collaborative PHY authentication scheme, where edge devices
cooperate to build an authenticator. In [172], RL is utilized
for finding the most reliable devices that yield the highest
authentication performance and for identifying less reliable
devices that are potentially harmful.

2) Future Directions: In general, there is no consensus in
the literature concerning the best criteria for creating the input
data in previous works. For instance, the authors of [22] and
[26] create the data based on the Euclidean distance and the
Pearson correlation, respectively. By contrast, the data for the
PHY authentication in [27] relies on the RSSI. The features of
the data used for PHY authentication in [67] include the local
oscillator frequency, Doppler shift, as well as the in-phase and
quadrature components of transmitted signals. By contrast,
the carrier frequency offset, channel impulse response, and

RSSI are used as features for ML-aided PHY authentication
in [166]. Given that the selection (or extraction) of features
for the data directly affects on the detection performance of
an ML-aided PHY authentication model as shown in [28] and
[165], future works should pay more attention to the topic of
feature selection.

However, at the time of writing there are no authorita-
tive comparison of the security performance of ML-aided
classification algorithms. Thus future research has to carry
out extensive studies to find suitable input data types for
PHY authentication, and to find suitable ML classification
algorithms for each type of data. On a similar note, anomaly
detection methods require similar attention to that concerning
PHY security. As part of the ML family, anomaly detection
(also known as outlier detection) includes many methods that
are developed for identifying rare events/observations and thus
they are normally used for intrusion detection upper ISO layers
[39]. However, anomaly detection methods remain underused
in maintaining security at the physical layer. Additionally,
given the ongoing development of NNs, it is shown that
NNs can be readily exploited for discovering hidden-but-useful
features from available data for authentication purposes [36],
[43]. Finally, it is also worth considering the class of cross-
layer authentication harnessing the data both at the physical
and upper layers.

B. ML-aided Secure PHY Transmission
1) Recent Applications: When it comes to the integration of

ML into ML-aided secure PHY transmission, a representative
range of contributions are listed in Table VII, which are
detailed below.

He et al. [30] exploit both beamforming and artificial noise
to deal with an eavesdropper and formulate an optimization
problem that maximizes the effective secrecy throughput by
harnessing an NN. Xing et al. [31] also use NNs for secure
transmission by relying on cooperative beamforming in a
relay-aided system. Besser et al. [21] strike a trade-off between
reliability and security by formulating a multiple-objective
optimization problem. To resolve the associated trade-off,
wiretap codes are designed based on NN-aided autoencoders.
As another development, Li et al. [32] design a Q-learning-
based power control strategy for secure transmission by con-
sidering a powerful attacker having a high number of antennas.
Upon using reinforcement learning, Xiao et al. [33] propose an
optimal beamforming scheme for visible light communication
In [34], reinforcement learning is used by Miao and Wang
to handle the frequency allocation problem without requiring
any information exchange among base stations. In contrast to
the above-mentioned papers, He et al. [35] do not use NNs
or reinforcement learning in designing secure transmissions.
Instead, an SVM and a naive Bayes algorithm are used for
transmit antenna selection. By selecting the most suitable
antenna for transmission, the security level is shown to be
improved. By contrast, Wen et al. [173] assume that intelligent
attackers can use supervised learning to decode even artificial-
noise-contaminated signals.

More recently, Liu et al. [174] consider an RIS-based
sensing and communication system and propose an optimal
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Fig. 16. Two examples of using classification algorithms (i.e., ML classifiers) for selecting the best system components. In the sub-figure (a), the result of
ML-based classification shows that the 3-rd antenna can lead to the best secure transmission. In the sub-figure (b), the result of ML-based classification shows
that the 2-nd UAV can be the best relay for retransmitting signals to the intended user.

TABLE VII
THE APPLICATION OF ML ALGORITHMS IN SECURE PHY TRANSMISSION

Papers Algorithms Main contributions

[21] NN
Employing a pair of neural networks for designing wiretap codes that can minimize both the block error rate and the
amount of information leakage

[30] NN
Considering an energy-harvesting system in the presence of an eavesdropper and using a neural network for learning
system parameters that maximizes the security throughput

[31] NN
Using a neural network for finding power allocation coefficients that enhance the secrecy rate of a relaying system,
under the impractical assumption of having the eavesdropper’s CSI

[32] RL
Considering the Nash equilibrium in a zero-sum game between a transmitter and an attacker, and finding the Q-
learning-based power control strategy for achieving the equilibrium

[33] RL
Using reinforcement learning for finding the optimal beamforming policy that improves the secrecy rate of a visible
light communication system

[34] RL
Considering a two-layer ultra-dense network with the focus of securing the macro layer and proposing a reinforcement-
learning-aided game-theoretic model for enhancing the security and delay performance

[35] SVM, naive Bayes Using SVM and naive Bayes for selecting the optimal transmit antenna that maximizes the secrecy performance

[173] not to be named
Proposing learning-based attacks in favour of an attacker, where the self-defined supervised learning method utilizes
the packet preamble and header as training data

secure PHY transmission scheme by jointly optimizing the
transmit beamforming and RIS coefficients. To deal with the
proposed security optimization problem, [174] employs an RL
algorithm that is built on the basis of an actor NN and a critic
NN. In [175], Lin et al. consider an energy-harvesting-assisted
cognitive radio network in the presence of eavesdroppers and
proposes a security solution based on optimizing the energy
harvesting time and power allocation. The security optimiza-
tion problems in [175] are addressed by an RL algorithm that
contains a NN-based generator for producing the distribution
of data and a NN-based discriminator for distinguishing real
and fake output values.

2) Future Directions: In terms of secure PHY transmission,
ML classification algorithms are capable of going beyond
realizing eavesdroppers. More particularly, ML classifiers can

be used for any classification tasks rather than being limited
to eavesdropping detection. For example, based on the system
component classification, we can decide to use the most
suitable components for attaining an increased security level.
To argument this further, let us consider the work of He et
al. [35]. The idea of [35] is to use SVM and naive Bayes
algorithms to classify the transmit antennas of a transmitter
in order to find the best antenna for secure transmission. This
idea may also be readily generalized to other system com-
ponent selection, because there are many ways of enhancing
the security performance through the selection of the most
appropriate system components, such as antenna selection
[176], transmitter selection [177], relay selection [137], [178],
and so on [66]. Note that the authors of [176]–[178] do not
consider the employment of ML algorithms for component
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selection. To visualize the generalized idea of using ML for
selecting system components, let us consider Fig. 16, where
a pair of secure PHY transmission designs are considered: (a)
using ML classifiers for selecting the best transmit antenna,
and (b) using ML classifiers for selecting the best relay. In
short, the use of ML classifiers can point out which system
components are the best for secure and reliable transmission.
However, at the time of writing, there is paucity of literature
in this research direction.

C. NN-aided Security Optimization

1) Security Optimization by NNs: The variables encoun-
tered in optimization problems may be real-valued or complex-
valued. Hence, we will classify the optimization problems
considered into these two types:
• Real-variable optimization (real-OPT) problems, whose

variables belong to the real field;
• Complex-variable optimization (complex-OPT) problems,

whose variables belong to the complex field.
Indeed, the employment of NNs for solving optimization
problems has been an active field for years. However, most
of the optimization problems solved have been real-valued
problems [179], [180]. Only a few authors consider the use of
NNs for solving complex-valued optimization problems [146],
[181].

Similarly to the optimization problems, we can also divide
the family of NNs into a pair of categories:
• Real-valued neural networks (namely, real-NNs);
• Complex-valued neural networks (namely, complex-

NNs).
Naturally, the first category relates to all NNs designed for
solving real-OPT problems. By contrast, the second category
encompasses the NNs designed for solving complex-OPT
problems. As a matter of fact, in many fields of application,
real-OPT problems are more likely to be encountered, but
in the field of communications, typically the opposite is
true. Hence, there is a pressing need for further research on
solving the unsolved open optimization problems (including
real-OPT and complex-OPT problems) of the communications
comminity. To elaborate a little further, some authors have
applied real-NNs for solving real-OPT problems to improve
the performance of communication systems [30], [182], but
there is a paucity of literature on the employment of complex-
NNs for solving complex-OPT problems in communication
systems.
• Using real-NNs for solving complex-OPT problems re-

quires further research for transforming complex-OPT
problems into real-valued ones, so that real-NN may be
harnessed for solving them. The upper part of Fig. 17
illustrates this issue.

• However, it is more natural to use complex-NNs for di-
rectly solving complex-OPT problems [146]. Having said
that, substantial future research is required on complex-
NNs [146], [181] before they can be harnessed for solving
complex-OPT problems routinely encountered by the
communications community. The lower part of Fig. 17
illustrates this issue.

Since communication system designs include PHY security,
it is anticipated that real-NNs, as well as complex-NNs will
help enhance their security in the face of uncertainty, when
the ability to learn from and adapt to the environment is of
crucial importance.

2) Security Optimization for satisfying Multiple Objectives:
When it comes to the formulation of optimization for a sys-
tem, it may be desirable to simultaneously optimize multiple
objectives even when they are conflicting. Multiple-objective
optimization can be formulated as follows:

min
z

[
fobj1 (z), fobj2 (z), . . . , fobjMobj

(z)
]

(40a)

s.t. z ∈ S, (40b)

where fobjm (·) (with m ∈ {1, 2, . . . ,Mobj}) is an objective
function in the set of all objectives, while S is some constraint
domain in the complex field. To elaborate, multiple-objective
optimization (MOO) is different from the single-objective
optimization problems presented in Tables III–IV of Section
IV. Explicitly, the single-objective optimization problems of
Section IV simplify the complex multi-objective real-life prob-
lems by simply using the conflicting objectives as constraints.
By contrast, the goal of multiple-objective optimization is to
jointly optimize several objectives at the same time, where
each objective fobjm (·), m ∈ {1, 2, . . . ,Mobj} represents a
different performance metric. Naturally, the solution-space
or search-space of this problem continues to grow upon
including more metrics, which eventually renders the problem
intractable.

Hence, multiple-objective optimization problems are chal-
lenging to deal with and the optimal solution may not even ex-
ist. Having said that, it is possible to circumvent the challenges
of multiple-objective optimization using the Pareto optimality
concept [183] relying on a set of solutions which constitute
the Pareto front of all optimal solutions. For example, we
can improve a performance metric (e.g., the capacity of a
legitimate channel), but another performance metric will be
degraded (e.g., the capacity of a wiretap channel will increase).
Broadly speaking, the Pareto front is the collection of all
optimal solutions, where none of the metrics may be improved
without degrading at least one of the others.

To find the Pareto front, typically bio-inspired metaheuristic
algorithms are employed [183]–[185]. Acording to [183],
common bio-inspired metaheuristic algorithms include the
following main categories: evolutionary algorithms, swarm
intelligence algorithms, NNs, reinforcement learning, fuzzy
logic, just to name a few. For example, the combination of
NNs and the Pareto approach is studied in [186], while the
combination of reinforcement learning and the Pareto approach
is presented in [187]. Since machine learning itself may be
viewed as a multiple-objective optimization tool, its pairing
with the Pareto approach is a natural marriage [188].

Multiple-objective optimization is eminently suitable for
network design [189], but it is rarely used in PHY security de-
signs. Naturally, in PHY security, at least one of the objectives
in the optimization problem (40) must be related to a security
metric [190]. Indeed, wireless networks pose many challenges
related to the maximization of the data rate, the minimization
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Fig. 17. In communications, we are most likely to deal with complex variables rather than real variables in optimization problems. Thus, future works are
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of consumed power, the maximization of security level, the
minimization of latency and so on. These goals are hard to
achieve at the same time, because they are often conflicting.
For example, the bit error rate of a wireless system may be
reduced by increasing the transmit power, but this increases
the eavesdropping probability, which results in a security vs.
information trade-off [137]. The trade-off between security and
delay was considered in [191].

D. Insights and Further Discussions

PHY authentication problems can be handled by a wide
range of ML models. For supervised ML classification models,
the capability to distinguish between normal and abnormal
data samples lays the foundation for building authenticators
that can detect it, whether a new sample is associated with
an attack or not. However, the PHY authentication based on
supervised ML requires abnormal data samples to be available,
which implies that there is prior knowledge of previous
attacks. By contrast, in unsupervised learning, especially in
anomaly detection models, the learning capability is often
applied to normal data samples, thus making the models
familiar with both normal occurrences and anomalies that
statistically deviate from the norm. This ability to identify
anomalies is the basic for building authenticators that detect
attacks without requiring any information about attackers.
Noticeably, to speed up the processing of PHY authenticators
by reducing the computational burden, authors have resorted
to some dimensionality reduction techniques.

In contrast to PHY authentication problems, secure PHY
transmission does not focus on authenticating devices or
detecting malicious attacks, it rather aims for the transmission
among legitimate network entities securely. The security of
PHY transmission can also be improved by applying ML

models. The ML-aided secure PHY transmission solutions
often rely on transmit beamforming designs, power allocation
and other network parameters, depending on what specific
network types are considered. NNs are eminently suitable for
solving stochastic optimization problems (including security
optimization). However, this area of research is still largely
open, hence requiring future research.

VI. ML-AIDED PHY SECURITY FOR FUTURE
COMMUNICATION SYSTEMS

When new wireless networks are rolled out, their security
level has to be improved. Given that ML techniques are
gradually finding their way into the new generation of wireless
networks, the investigation of ML-aided PHY security in those
networks continues to be important part of future research.
Below we critically appraise a number of emerging solutions
in wireless networks:
• Reconfigurable intelligent surfaces (RISs): It is ex-

pected that RISs will be deployed at locations near the
base stations for mitigating the LoS blockages [192].
They are capable of creating additional reflected propaga-
tion paths and beneficially controlling the phase shifts of
reflected signals, thus making robust connections between
a transmitter and a receiver. In terms of security, it is still
an open question how to orchestrate the coordination of
RISs and ML techniques for improving the security level
of wireless systems, although some insights have been
provided in [193]–[195]. However, there is a pressing
need to perform more extensive investigations on the
security performance of ML-aided RISs.

• Millimeter wave (mmWave): While most existing com-
munication systems use carrier frequencies below 6 GHz,
mmWave systems employ a wide range of frequency
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spectrum spanning from 30 GHz to 300 GHz [196],
[197]. Their PHY security has been characterized in
[198], [199], which ML has been harnessed in [200],
[201]. However, there is a paucity of literature on ML-
aided PHY security in mmWave systems, apart from
[202], [203]. Briefly, logistic regression is proposed in
[202] to detect eavesdropping attacks in the uplink, while
reinforcement learning is used in [203] to deal with
jamming.

• Visible light communication (VLC): VLC technology
modulates visible light emanating from light-emitting
diodes (LEDs) [204] used for illumination at low cost.
Since the light from LEDs does not propagate through
walls, VLC is robust to interference. Thus, VLC is a
potential candidate for future indoor systems. However,
due to the broadcast nature of VLC in the downlink, it
is vulnerable to adversaries. Hence, PHY security has
also been investigated in the context of VLC [205]–[207].
Having said that, a full investigation of ML-aided PHY
security in VLC is still largely open.

• Light fidelity (LiFi): While VLC only uses the visible
light spectrum, LiFi additionally exploits the infrared and
the ultraviolet bands [208], [209]. However, the ML-aided
PHY security of LiFi is an open area.

• Cell-free massive multiple-input multiple-output
(MIMO): As a variant of distributed massive MIMO
systems, cell-free massive MIMO has numerous benefits,
especially in terms of throughput fairness [210], despite
its low complexity. Its PHY security is investigated
in [211]. As a further advance, federated learning is
proposed for cell-free massive MIMO in [212], but the
investigation of ML-aided PHY security is still in its
infancy.

• Body area networks: A wireless body area network is
typically comprised of medical sensors that are placed on
the body to measure physiological signals. A practical
wireless body area network is expected to collect data
from a large pool of patients and use ML algorithms
for analyzing the health and needs of patients. Indeed,
personalized healthcare through mobile wearable devices
is expected to revolutionize the future of healthcare.
Furthermore, the authors of [213] rely on the RSSI as
the feature of data and compare different ML algorithms
(i.e., decision tree, SVM, k-NN and neural network) in
the context of gait authentication. However, the large-
scale deployment of wireless body area networks must
meet stringent security policies and requirements. Once a
wireless body area network is entitled to use confidential
data for health surveillance relying on statutory medical
services, PHY security becomes a pivotal issue [214],
[215]. Thus, the design of body area networks has to
ensure that the user database is not leaked to illegitimate
users or organizations. Hence, ML-aided PHY security
constitutes an exciting domain of research.

• Space-air-ground communication: This is a topical
research area [216], [217], but there is limited literature
on simultaneously considering all three network segments
[218], [219].

• Quantum communications: Quantum-aided communi-
cation systems have rapidly evolved in recent years
[220]–[223]. In terms of security, quantum cryptography
relies on a range of secure protocols such as, quantum
key distribution [221], quantum secret sharing, quantum
secure direct communication [224], and controlled bidi-
rectional quantum secure direct communication [222].
These quantum cryptography protocols have also found
practical applications [224], [225]. In terms of ML, a
number of quantum-based learning algorithms have been
developed to deal with critical problems in learning from
data [226], [227]. The family of popular quantum ma-
chine learning algorithms includes quantum k-NN [228],
quantum SVMs [229], quantum NNs [230], quantum
decision tree [231], just to name a few. Although quantum
machine learning is still in the early stage of develop-
ment, quantum machine learning algorithms are capable
of speeding up computational processes, especially in
learning from quantum-domain data [232]–[234].

Other future systems include machine-type communications
[235], free space optical communication [236], and non-
orthogonal multiple access systems [237], but ML-aided PHY
security still remains a largely open domain of research. This
is because the benefit of ML in PHY security has not been
fully documented and the emergence of new communication
systems will continue to widen the avenue for the investigation
of ML-aided PHY security.

VII. SUMMARY AND DESIGN GUIDELINES

A. Summary

In this work, we have summarized a variety of ML algo-
rithms that can be employed in the context of PHY security.
These range from typical supervised learning algorithms (i.e.,
k-NN, SVM, Random Forest, LDA) to typical unsupervised
learning algorithms (i.e., k-means, OC-SVM, iForest, Hierar-
chical clustering). Neural networks, which can be classified
as either supervised or unsupervised learning, has been also
summarized. In parallel, we have discussed the state of the
art in ML-aided PHY security by separately considering two
aspects: ML-aided PHY authenticating and ML-aided PHY
security design. Throughout the paper, we have shown that
an ML classification algorithm can play two roles: i) it can
classify the data for the authentication purpose, and ii) it can
also take part in the process of selecting system components
for secure transmission design. When it comes to security op-
timization, we have paid our special attention to the potential
use of NNs for solving optimization problems that are likely
to be faced in designing PHY security strategies. Accordingly,
we have shown and bridged the gap between complex-variable
optimization in PHY security design and real-valued/complex-
valued NNs. Finally, we have presented the role of ML-aided
PHY security in future communication systems.

B. Design Guidelines

Regardless, whether we embark on the design of an authen-
tication solution or a secure transmission strategy, the input
data should be considered as the first step. More explicitly,
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the wireless data should be transformed into the input data
for ML to interpret them. For example, an ML algorithm may
be unable to directly use the modulated signals, because they
are complex-valued; instead, it is necessary to decompose the
complex-valued modulated signals into their amplitude and
phase based representation in order for the ML algorithm to
interpret and process them.

Given the input data, we will now briefly touch upon three
representative authentication/security designs:
• Authentication: ML-based classification algorithms con-

stitute prominent candidates for detecting security attacks,
as well as for employment in authenticating devices.
However, some ML algorithms work well on single-
label data, while others only work on double-label data.
Thus, it is necessary to determine the specific type
of ML algorithm based on the nature of the available
training datasets. A training dataset might contain attack-
related samples if an attacker launched jamming/spoofing
attacks in the past. Those attack-related samples may
be labelled as “attack” if we have some information
about the attacker, such as the CSI. On the other hand,
without the CSI of the attacker, the attack-related samples
in the dataset of interest might be treated as normal
samples, which result in the wrong training dataset.
Thus, based on the knowledge of the attacker, choosing
carefully selected suitable data samples will allow us
to choose a suitable ML algorithm for training. In this
sense, given the attacker’s CSI, binary/multi-label ML
classification techniques may be used. On the other hand,
without the attacker’s CSI knowledge, both single-label
ML classification techniques as well as anomaly detection
techniques are more suitable candidates.

• Component Selection: The family of ML-aided clas-
sification algorithms is also eminently suitable for op-
timizing antenna selection, relay selection and RIS se-
lection. Let us consider an RIS-aided system as our

example. When RISs are deployed in the field, they create
additional propagation paths spanning from the source
to the desired user for mitigating the effects of lin-of-
sight blocking. However, in the presence of an adversary,
there will also be additional paths from the source to
the adversary, thus making the system vulnerable to
malicious eavesdropping. Increasing the transmit power
improves the transmission integrity between the source
and the desired user, but also increases the eavesdropping
probability. It is desirable to design the reflection coeffi-
cients of the RIS for ensuring that the benefits obtained
by the legitimate user are higher than those obtained by
the adversary. By formulating an objective function based
on the secrecy rate, bespoke ML classification algorithms
can be trained to find the best set of RIS coefficients for
maximizing the security rate.

• Security Optimization: While a real-valued neural net-
work is routinely trained for minimizing its loss function
L, in wireless security design problems we often have
to maximize the objective function, say ∆. By assigning
L = −∆, a real-NN can be employed for dealing with
security optimization. However, it is of vital importance
to define the relationship between the outputs of the
real-NN and the variables of the proposed security op-
timization problem. For example, if z = z1 + j × z2
is a complex-valued variable to be optimized, then z1
and z2 may be represented by two outputs of the NN,
since a real-NN can only process real-valued variables.
Following the training process, the loss function L is
minimized (or the objective function ∆ is maximized),
and the outputs z1 and z2 of the real-NN can be arranged
into z = z1 + j × z2 to find a near-optimal solution of
the security optimization problem considered.
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