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A B S T R A C T

Functional electrical stimulation (FES) is a popular assistive technology that uses electrical impulses to
artificially stimulate muscles to help paralysed or impaired subjects regain their lost movement after stroke. A
large number of FES elements can be combined to form FES arrays which are capable of activating the multiple
muscles needed to perform functional arm movements. However, the control of FES arrays is challenging since
high precision is required but there is little time available in a clinical or home setting to identify a model.
To date, by far the highest accuracy has been achieved using iterative learning control (ILC), a technique
that mirrors the repeated nature of rehabilitation task practice. In particular, high accuracy has been achieved
using a well-known ILC law for a general class of nonlinear systems which computes the updated control input
using a linearised plant model. Since a global system model is unavailable, this is identified on every ILC trial
by running an identification test. This adds many time-consuming identification tests, making it infeasible for
clinical deployment.

To solve this problem, an approach is developed that can deliver high accuracy with minimal identification
overhead. It introduces a parameterised plant model that is updated in parallel with the ILC using all available
data, and then applied to replace identification tests. Rigorous conditions are derived to ensure convergence
is preserved while minimising identification time. Numerical results show that four references can be tracked
using only 10.8% of the experimental tests required by standard ILC algorithms. The approach is then applied
experimentally to six unimpaired subjects using a realistic rehabilitation scenario. In particular, a novel stereo
camera system is used to measure hand joint angles in a manner that can transfer to home use. Results
show mean joint angle tracking accuracy within 5◦, while requiring only between 25% and 64.9% of the
experimental tests of standard ILC.
1. Introduction

Every year 13.7 million people worldwide suffer from stroke (Feigin
et al., 2022). Approximately 40% of stroke survivors are left perma-
nently disabled or paralysed, making stroke the leading cause of adult
disability (Hankey, 2017). Conventional therapy is increasingly expen-
sive and difficult to obtain. It also provides only limited recovery and
there is increasing pressure to find low cost technologies that support
sensorimotor recovery. FES artificially activates muscles by applying
electrical impulses via implanted or surface electrodes, and is the most
frequently used rehabilitative and assistive technology (Hughes et al.,
2014). FES can either replace lost function or facilitate rehabilitation
over repeated task practice, and in both cases the aim is to deliver
precise functional movements that support the activities needed for
daily living.

FES is strongly recommended by the recent UK National Clinical
Guidelines for stroke (The Stroke Association, 2023) which have con-
firmed its potential to provide effective therapy for people with wrist
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and finger weakness following a stroke. The guidelines also highlight
the fact that current systems tested in clinics and hospitals employ
open-loop control that is neither personalised to user needs, nor geared
towards achieving a functional task.

Another limitation of the commercial systems employed clinically
is their use of large single pad electrodes. These are difficult to po-
sition and it takes significant time and practice to find the optimal
electrode location (Bijelić, Popović-Bijelić, Jorgovanović, Bojanić, &
Popović, 2004), even by experienced users. A more fundamental lim-
itation is their selectivity. Sites for different muscles overlap, making
selective stimulation with single electrodes impossible. To address both
issues, electrode arrays have been developed and consist of multiple
pads integrated on a flexible printed circuit board or within a textile.
Prominent examples are Shefstim (Heller et al., 2013), INTFES (Velik,
Malesevic, Maneski, Hoffmann, & Keller, 2011), RehaMovePro (Valtin
et al., 2016), SMARTmove (Ward et al., 2020; Yang et al., 2018). These
use grid layouts, while Crema et al. (2018), Molteni et al. (2018),
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Pedrocchi et al. (2013) locate the electrodes over specific forearm
muscles. Although FES arrays can provide high resolution stimulation,
the number of elements and the sensitivity in their positioning makes
their control extremely challenging. This is amplified by the complexity
of the musculoskeletal system to which they are attached. This issue
has resulted in most FES controllers mimicking the way a therapist
moves an electrode to find an optimum location for stimulation. A full
review is given in Salchow-Hömmen, Pedrocchi, and Keller (2020) and
is summarised next.

The first controllers for FES arrays involved manually selecting
array elements based on visual assessment of the resulting move-
ments (Bijelić et al., 2004). These then progressed to using sensor data
to assess the joint angle deviation (O’Dwyer, O’Keeffe, Coote, & Lyons,
2006). Automatic procedures followed in which each array element
was stimulated in turn to find the one producing most force (Keller,
Hackl, Lawrence, & Kuhn, 2006; Popović & Popović, 2009; Schill,
Rupp, Pylatiuk, Schulz, & Reischl, 2009), taking up to ten minutes.
Later modifications used combinations of electrodes (Hoffmann, Dein-
hofer, & Keller, 2012), the muscle twitch response (Malešević et al.,
2012), points specified by therapists (Popović-Maneski et al., 2013),
and electromyography (Marchis, Monteiro, Simon-Martinez, Conforto,
& Gharabaghi, 2016; Popović-Maneski et al., 2016) to reduce the search
time. However, all these approaches are based on extensively testing
the response of each array element, followed by open-loop control.
They are therefore inaccurate and highly time-consuming.

No model-based controllers have yet been used, due to the difficulty
in identifying the system which is nonlinear, has many inputs/outputs,
and is highly sensitive to changes in placement. The exception is
ILC, which exploits the repeated nature of rehabilitation training. ILC
uses experimental input and output data from previous attempts at a
tracking task, often with a plant model, to update the control input
signal. Each attempt is termed a ‘trial’, and the aim is to sequentially
reduce the tracking error as the number of trials increases. This exactly
coincides with the repeated nature of rehabilitation in which patients
practice the same movement in order to retrain their neural pathways.
ILC has outperformed alternative approaches and is the only model-
based upper limb approach to have been used in clinical trials for
upper limb rehabilitation (Freeman, 2016). ILC was applied in Freeman
(2014), Ward et al. (2020), Yang et al. (2018) to control wrist and
hand gestures (24 element array, 12 joint angles), achieving a mean
absolute joint angle error of less than 5◦. The approach required three
ILC trials, with each involving an identification procedure taking three
minutes to find a local model of the dynamics needed to compute the
next update. The overall set-up time was more than ten minutes, and
had to be repeated for each new gesture. This is far too long for clinical
or home use.

One other alternative has been proposed, in the form of a re-
current fuzzy artificial neural network. This was applied in Imatz.-
Ojanguren, Irigoyen, and Keller (2016), Imatz.-Ojanguren, Irigoyen,
Valencia-Blanco, and Keller (2016) to map the relationship between
sixteen array elements and the resulting wrist/finger angles. The train-
ing data were randomised which is uncomfortable to patients, and
only used one electrode at a time, so could not capture the nonlinear
effects of multi-element stimulation. Data were also collected by an
instrumented glove which is unsuitable for patients. Despite these lim-
itations, experimental results with six able-bodied and neurologically
impaired subjects showed accuracy over 60%. However, the need for
training meant that the approach suffered from the previous limitation,
requiring forty-five minutes to set up.

This paper addresses the problem that there are no model-based FES
array controllers that are suitable for clinical deployment. It develops
a new ILC approach that can deliver high accuracy with significantly
fewer additional tests than existing standard ILC or data-driven ILC
approaches, see Huo, Freeman, and Liu (2020) for a review. It can be
used for a general class of nonlinear systems, which includes the FES
2

array based motion control problem. The approach builds on the proven
ILC methodology of Freeman (2014), but introduces a ‘parameterised
function’ model that replaces inter-trial identification test by harnessing
all previous system input–output data while maintaining accuracy.
Convergence conditions are derived to minimise the identification time
while guaranteeing convergence to minimal error. A numerical example
shows that standard ILC requires 129 experimental tests, while the
proposed approach only needs 30 experimental tests. The approach is
then applied experimentally to six unimpaired subjects, using FES hard-
ware that is suitable for clinical deployment. Initial results appeared
in Sun and Freeman (2022) but did not include hardware develop-
ment, implementation, or practical validation results. To summarise,
the contributions of this paper are:

• Developing a framework that enables a common class of nonlinear
ILC update to remove identification tests, thereby significantly
improving deployment speed and practical utility,

• Deriving new convergence properties for the well-known gradient
ILC update, and using them to provide a quantitative comparison
with the new framework,

• Translating the convergence conditions into a practical design
framework that enables the designer to transparently balance
tracking accuracy with overall test time,

• Matching the highest accuracy to have been demonstrated in the
literature in upper limb motion tests, while using only 10.8% of
the experimental tests required by previous ILC schemes, and

• Demonstrating the first use of a stereo camera system to record
upper limb wrist and hard gestures during real-time FES control.

These contributions are a critical step towards translating FES upper
limb rehabilitation into patients’ homes.

The paper is arranged as follows: the standard ILC problem is
defined in Section 2, with detailed convergence conditions derived in
Section 3. Section 4 introduces parameterised function ILC using an
updated parameterised model to replace system identification tests.
To verify effectiveness of the algorithm, simulation results follow in
Section 5. Experimental results follow in Section 6, with conclusions
set out in Section 7.

2. Problem description

Consider the standard nonlinear discrete ILC problem in which the
system dynamics are given by

𝑥𝑘(𝑡 + 1) = 𝑓
(

𝑥𝑘(𝑡), 𝑢𝑘(𝑡)
)

, 𝑥𝑘(0) = 𝑥0,

𝑦𝑘(𝑡) = ℎ
(

𝑥𝑘(𝑡)
)

, 𝑡 = 0, 1,… , 𝑁 (1)

with the state vector 𝑥𝑘(𝑡) ∈ R𝑞 . Here 𝑓 (⋅) and ℎ(⋅) are continuously
differentiable with respect to their arguments. This system has 𝑚 inputs
and 𝑝 outputs, and at time instant 𝑡 the input is denoted 𝑢𝑘(𝑡) ∈ R𝑚 and
the output is denoted 𝑦𝑘(𝑡) ∈ R𝑝. The objective is for 𝑦𝑘(𝑡) to track a
reference 𝑟(𝑡) ∈ R𝑝 over the time instants 𝑡 = 1, 2,… , 𝑁 where 𝑁 < ∞
is the number of samples in each ILC trial. The system is assumed to
undertake the same tracking task over repeated trials, denoted using
subscript 𝑘, where 𝑘 = 0, 1, 2,…. The system is reset to identical initial
conditions between each trial.

To match the needs of patients undergoing rehabilitation, it is
assumed that a set of 𝑛 references, R = {𝑟1, 𝑟2,… , 𝑟𝑛} must be tracked.
In common with the standard ILC problem description, see for exam-
ple Freeman (2014, 2016), Freeman, Rogers, Hughes, Burridge, and
Meadmore (2012), Lin, Owens, and Hatonen (2006), Rogers, Chu, Free-
man, and Lewin (2023), noise is not included in subsequent analysis but
its effect will be examined experimentally.

To compactly represent the system, the next step is to introduce the
super-vectors

𝒖𝑘 =
[

𝑢𝑘(0)⊤, 𝑢𝑘(1)⊤, … 𝑢𝑘(𝑁 − 1)⊤
]⊤ ∈ R𝑚𝑁 , (2)

[ ⊤ ⊤ ⊤ ]⊤ 𝑝𝑁
𝒚𝒌 = 𝑦𝑘(1) , 𝑦𝑘(2) , … 𝑦𝑘(𝑁) ∈ R , (3)
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𝒓 =
[

𝑟(1)⊤, 𝑟(2)⊤, … 𝑟(𝑁)⊤
]⊤ ∈ R𝑝𝑁 (4)

This enables the system (1) to be expressed as the vector mapping
𝒚𝑘 = 𝒈(𝒖𝑘) ∶ R𝑚𝑁 → R𝑝𝑁 where 𝒈(𝒖𝑘) = [𝑔1(𝒖𝑘)⊤, … 𝑔𝑁 (𝒖𝑘)⊤]⊤ with
the 𝑡 = 1,…𝑁 elements

𝑔𝑡(𝑥𝑘(0), 𝑢𝑘(0),… 𝑢𝑘(𝑡 − 1)) = ℎ(𝑥𝑘(𝑡))

= ℎ(𝑓 (𝑥𝑘(𝑡 − 1), 𝑢𝑘(𝑡 − 1))),

= ℎ(𝑓 (𝑓 (𝑥𝑘(𝑡 − 2), 𝑢𝑘(𝑡 − 2)), 𝑢𝑘(𝑡 − 1))),

⋮

= ℎ(𝑓 (𝑓 (⋯ 𝑓 (𝑥𝑘(0), 𝑢𝑘(0)),… , 𝑢𝑘(𝑡 − 2)), 𝑢𝑘(𝑡 − 1))).

The aim of the standard ILC problem is to track a single reference
perfectly. The control objective considered in this paper extends the
standard ILC aim of tracking only one reference, and also introduces
an additional design goal of reducing the number of trials. Further-
more, it relaxes the assumption that perfect tracking is possible. It is
summarised as:

Definition 1 (ILC Multi-Reference Problem). ∀𝒓𝑖 ∈ R generate a se-
quence of inputs, {𝒖𝑘}𝑘=0,1,… such that

lim
𝑘→∞

‖

‖

𝒖∗𝑖 − 𝒖𝑘‖‖
2 = 0, 𝒖∗𝑖 ∶= argmin

𝒖
𝐽𝑖(𝒖),

𝐽𝑖(𝒖) = ‖

‖

𝒓𝑖 − 𝒈(𝒖)‖
‖

2 (5)

without knowledge of system dynamics (1) and using the minimum
identification tests.

Denote 𝑘𝑖,𝛿 as the minimum number of trials required to achieve the
closest possible tracking of 𝒓𝑖, i.e.

𝑘𝑖,𝛿 ∶= min{𝑘 ∶ |

|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| < 𝛿}. (6)

where 𝛿 is a positive scalar. Then an additional aim is minimise the
total number of trials, i.e.

min 𝑘𝛿 , 𝑘𝛿 ∶=
𝑛
∑

𝑖=1
𝑘𝑖,𝛿 (7)

needed to track all 𝑛 references.

3. ILC application

Having defined the problem, this section introduces the ILC update
form used in FES based rehabilitation (Freeman, 2014; Ward et al.,
2020; Yang et al., 2018) and analyses its performance.

For one reference 𝒓𝑖, the ILC objective can be solved using the
standard update form

𝒖𝑘+1 = 𝒖𝑘 + 𝐿(𝒓𝑖 − 𝒚𝑘) (8)

where 𝒚𝑘 = 𝒈(𝒖𝑘) is generated experimentally, and 𝐿 ∈ R𝑝𝑁×𝑚𝑁 is a
learning operator that is designed based on the system dynamics. The
choice

𝐿 = 𝛾(𝒈′(𝒖𝑘))−1 (9)

where 𝛾 is a positive scalar, corresponds to applying the Newton
method to iteratively minimise the cost 𝐽𝑖(𝒖) = ‖𝒓𝑖 − 𝒈(𝒖)‖2. It was first
introduced in the context of ILC by Lin et al. (2006) which demon-
strated desirable properties including zero convergence error and a
quadratic convergence rate. Alternatives were proposed in Freeman
(2014) comprising

𝐿 = 𝛾(𝒈′(𝒖𝑘))⊤, (10)

𝐿 =
(

𝐼 + (𝒈′(𝒖𝑘))⊤𝛾𝒈′(𝒖𝑘)
)−1(𝒈′(𝒖𝑘))⊤𝛾. (11)

The first is the result of applying gradient descent to the minimisation
of 𝐽𝑖(𝑢), and the second ‘norm optimal’ form combines both Newton
and gradient approaches. Further properties were derived in Huo et al.
3

(2020). All three have been used in FES based stroke rehabilitation,
with the gradient based update proving most robust to model uncer-
tainty and most comfortable for patients (Freeman, 2016; Freeman
et al., 2012) (see Table 1).

Computing 𝐿 requires knowledge of the local system model about
each operating point 𝒖𝑘. This is given by

𝒈′(𝒖𝑘) ∶=
𝛿𝒈(𝒖)
𝛿𝒖

|

|

|

|𝒖=𝒖𝑘
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑔1(𝒖)
𝛿𝑢1

|

|

|

|𝒖=𝒖𝑘
⋯ 𝛿𝑔1(𝒖)

𝛿𝑢𝑚

|

|

|

|𝒖=𝒖𝑘
⋮ ⋱ ⋮

𝛿𝑔𝑝(𝒖)
𝛿𝑢1

|

|

|

|𝒖=𝒖𝑘
⋯

𝛿𝑔𝑝(𝒖)
𝛿𝑢𝑚

|

|

|

|𝒖=𝒖𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(12)

R𝑚𝑁×𝑝𝑁 . In Lin et al. (2006), it was assumed that 𝒈(𝒖𝑘) was known,
o 𝒈′(𝒖𝑘) was computed via simple linearisation. However, Freeman
2014), Ward et al. (2020), Yang et al. (2018) assumed 𝒈(𝒖𝑘) was
nknown and must be identified through experiments. They proposed
inding 𝒈′(𝒖𝑘) by solving identification problem

′(𝒖𝑘) ∶= argmin
𝑋

𝐽 (𝑋), 𝐽 (𝑋) = ‖𝛥𝒚 −𝑋𝛥𝒖‖2 (13)

here 𝑋 ∈ R𝑝𝑁×𝑚𝑁 with (𝛥𝒖, 𝛥𝒚) chosen to sufficiently excite the
ystem dynamics about (𝒖𝑘, 𝒚𝑘). To perform the identification, first 𝛥𝒖

is chosen as a sufficiently exciting signal that is added to the operating
point 𝒖𝑘. The resulting input signal 𝒖 = 𝒖𝑘 + 𝛥𝒖 is then applied
experimentally and the generated output 𝒚 is recorded. The component
caused by 𝛥𝒖 is determined as 𝛥𝒚 = 𝒚 − 𝒚𝑘. Using (13), 𝒈′(𝒖𝑘) is then
identified by fitting a linear model to {𝛥𝒖, 𝛥𝒚}. The overall procedure
is summarised in Algorithm 1. Here an outside loop has been added to
track each reference from set R, with the inner learning process starting
from the same initial input 𝒖0 for each 𝒓𝑖 ∈ R.
Algorithm 1 Standard ILC for multiple references
Require: Reference 𝒓𝑖 ∈ R, accuracy margin 𝛿
for 𝑖 = 1 ∶ 𝑛 do

Set 𝑘 = 0. Select starting input, 𝒖0, for reference 𝒓𝑖
while |

|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| < 𝛿 do
Apply 𝒖𝑘 experimentally, record 𝒚𝑘 = 𝒈(𝒖𝑘).
Identify 𝒈′(𝒖𝑘) by applying input 𝒖 = 𝒖𝑘+𝛥𝒖 (where 𝛥𝒖 is a small
excitation signal), recording output 𝒚 = 𝒚𝑘 + 𝛥𝒚, and fitting a
linear model to {𝛥𝒖, 𝛥𝒚} by solving (13).
Compute new ILC update using (8)
𝑘 = 𝑘 + 1

end while
end for

The above procedure was applied to FES arrays in Freeman
(2014), Ward et al. (2020), Yang et al. (2018). Here 𝑢(𝑡)
was the FES signal applied to 𝑚 = 24 electrodes, and 𝑦(𝑡)
was the 𝑝 = 12 joint angles. The authors selected a value
of 𝑁 = 1 which corresponded to moving the hand from a
resting position (at 𝑡 = 0) to a functional gesture (at 𝑡 = 1).
This choice reduced the dimension of 𝒈′(𝒖𝑘) in (Eq. (12)) to
an 𝑚 × 𝑝 matrix. To avoid patient discomfort, the excitation
signal 𝛥𝒖 was chosen as a slow ramp (of duration 8 s) applied
to each electrode array element in turn. The identification
procedure therefore required 𝑚 experiments and lasted 8𝑚 =
192 s. This approach was applied to track 𝑛 = 3 gestures,
and so a total of 3𝑛(𝑚 + 1) experiments were needed. Fig. 1
shows these gestures which comprise open hand and point-
ing moments for switching lights and pushing buttons, and
pinching movements for grasping and releasing objects. This
was tested on two unimpaired subjects 𝑃1 and 𝑃 2 who were
instructed to provide no voluntary effort. Table 1 shows the
percentage error calculated across all joints for each posture
using 100 × ‖𝒆1‖

‖𝒆0‖
, where 𝒆𝟎 = 𝒓𝑖 − 𝒚0, with 𝒚0 the initial

posture prior to stimulation. Each ILC trial reduced the error
to approximately 30%, yielding results with a mean joint
angle error of typically less than 5◦.
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Fig. 1. Hand gestures and identified array elements (left hand view): (a) Starting, (b)
Open hand, (c) Pointing, and (d) Pinch gestures (Freeman, 2014).

Table 1
Results for 3 iterations of each task in Freeman (2014), Ward et al. (2020), Yang
et al. (2018).

Pointing Pinching Open

100 ×
‖𝑒1‖
‖𝑒0‖

P1
P2

29.72
28.66

24.48
35.31

19.08
22.16

100 ×
‖𝑒2‖
‖𝑒0‖

P1
P2

11.18
13.61

12.62
14.98

14.36
13.01

100 ×
‖𝑒3‖
‖𝑒0‖

P1
P2

3.58
1.45

4.37
3.89

4.67
3.45

3.1. Convergence results

Clearly, standard ILC methods incur substantial test data and time.
To better quantify these requirements, this section will derive the
relationship between the number of tests and the resulting accuracy
(i.e. the parameters in (6)). Due to its suitability for rehabilitation, focus
will be on update (10). However, currently no convergence conditions
exist in ILC for (10), so they are derived next.

Theorem 1. Suppose function 𝒈(𝒖) is differentiable and that error norm
𝐽𝑖(𝒖) ∶= ‖𝒓𝑖 − 𝒈(𝒖)‖2 has a Lipschitz continuous gradient with constant
𝑀 > 0. Then Algorithm 1 using ILC update law (8) with (10) yields an error
norm sequence {‖𝒆𝑘‖2}𝑘=0,1,… that converges to a local minimum provided
the learning gain is chosen to satisfy

0 < 𝛾 < 4∕𝑀. (14)

If 𝐽𝑖(𝒖) is also convex, this is a global minimum.

Proof. Since ∇𝐽𝑖 = 𝐽 ′
𝑖 (𝒖𝑘) is Lipschitz continuous, it follows that ∇2𝐽𝑖 =

𝐽 ′′
𝑖 (𝒖𝑘) ⪯ 𝑀𝐼 or equivalently 𝐽 ′′

𝑖 (𝒖𝑘) − 𝑀𝐼 is a negative semidefinite
matrix. Using this fact, a quadratic expansion of 𝐽𝑖 around 𝐽𝑖(𝒖𝑘) is

𝐽𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖𝑘) + (𝐽 ′
𝑖 (𝒖𝑘))

⊤(𝒖𝑘+1 − 𝒖𝑘)

+ 1
2
∇2𝐽𝑖(𝒖𝑘)‖𝒖𝑘+1 − 𝒖𝑘‖2 (15)

≤ 𝐽𝑖(𝒖𝑘) + (𝐽 ′
𝑖 (𝒖𝑘))

⊤(𝒖𝑘+1 − 𝒖𝑘)

+ ‖𝒖𝑘+1 − 𝒖𝑘‖2𝑀∕2 (16)

Then substitute 𝐽 ′
𝑖 (𝒖𝑘) = −2(𝒈′(𝑢𝑘))(𝒓𝑖 − 𝒈(𝒖𝑘)) = −2(𝒖𝑘+1 − 𝒖𝑘)∕𝛾 into

(16) to give

𝐽𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖𝑘) − (2(𝒖𝑘+1 − 𝒖𝑘)∕𝛾)⊤(𝒖𝑘+1 − 𝒖𝑘)

+ ‖𝒖𝑘+1 − 𝒖𝑘‖2𝑀∕2

= 𝐽𝑖(𝒖𝑘) − (2∕𝛾 −𝑀∕2)‖𝒖𝑘+1 − 𝒖𝑘‖2 (17)

Since (14) holds, (2∕𝛾 −𝑀∕2) > 0. It follows that the sequence {𝐽𝑖(𝒖𝑘)}
is non-increasing and converges since 𝐽 (𝒖 ) ≥ 0, 𝐽 (𝒖 ) ≤ 𝐽 (𝒖 ).
4

𝑖 𝑘 𝑖 𝑘+1 𝑖 𝑘
Denote 𝐽∞
𝑖 ∶= lim𝑘→∞ 𝐽𝑖(𝒖𝑘) and taking the limit of both sides of

(17) gives

𝐽∞
𝑖 = lim

𝑘→∞
𝐽𝑖(𝒖𝑘+1)

≤ lim
𝑘→∞

(𝐽𝑖(𝒖𝑘) − (2∕𝛾 −𝑀∕2) ‖𝒖𝑘+1 − 𝒖𝑘‖2)

= 𝐽∞
𝑖 − (2∕𝛾 −𝑀∕2) lim

𝑘→∞
‖𝒖𝑘+1 − 𝒖𝑘‖2, (18)

which implies lim𝑘→∞ ‖𝒖𝑘+1−𝒖𝑘‖2 = 0. This combines with (10) to yield

lim
𝑘→∞

−𝛾𝐽 ′
𝑖 (𝒖𝑘) = 2 lim

𝑘→∞
𝛾(𝑔′(𝒖𝑘))⊤(𝒓𝑖 − 𝑔(𝒖𝑘))

= lim
𝑘→∞

(𝒖𝑘+1 − 𝒖𝑘) = 0. (19)

If 𝐽𝑖 is also convex, then for any 𝒖,

𝐽𝑖(𝒖) ≥ 𝐽𝑖(𝒖𝑘) + (𝐽 ′
𝑖 (𝒖𝑘))

⊤(𝒖 − 𝒖𝑘).

Taking the limit of the both sides gives

𝐽𝑖(𝒖) ≥ 𝐽∞
𝑖 + lim

𝑘→∞
0⊤(𝒖 − 𝒖𝑘) = 𝐽∞

𝑖

so that 𝐽∞
𝑖 = min𝒖 𝐽𝑖(𝒖). □

Theorem 1 confirms that update (10) satisfies the ILC requirements
of Definition 1, under mild assumptions which match those in Lin
et al. (2006) and hold for numerous practical systems (e.g. those
expressed by differentiable functions with a bounded derivative). It is
now possible to bound the number of ILC trials required to track the
entire set of 𝑛 references, R, as follows.

Theorem 2. Suppose 𝐽𝑖(𝒖) is convex and ILC update law (8) with (10)
is applied to track all references in the set R under the conditions of
Theorem 1. An upper bound on the total number of iterations required to
meet the accuracy conditions (6), (7) is

𝑘𝛿 ≤
𝑛
∑

𝑖=1

‖𝒖0 − 𝒖∗𝑖 ‖
2

2𝛾𝛿
. (20)

Proof. If 𝐽𝑖 is convex, it follows that

𝐽𝑖(𝒖∗) ≥ 𝐽𝑖(𝒖) + 𝐽 ′
𝑖 (𝒖)

⊤(𝒖∗ − 𝒖) (21)

𝐽𝑖(𝒖) ≤ 𝐽𝑖(𝒖∗) + 𝐽 ′
𝑖 (𝒖)

⊤(𝒖 − 𝒖∗) (22)

Substituting this into (17) and setting 𝛾 = 2
𝑀 yields

𝐽𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖∗) + 𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘− 𝒖∗)− 1
𝛾
‖𝒖𝑘+1 − 𝒖𝑘‖2

𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤ 𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘− 𝒖∗)− 1
𝛾
‖𝒖𝑘+1 − 𝒖𝑘‖2

≤ 1
2𝛾

(

2𝛾𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘− 𝒖∗)− 2‖𝒖𝑘+1 − 𝒖𝑘‖2

− ‖𝒖𝑘 − 𝒖∗‖2 + ‖𝒖𝑘 − 𝒖∗‖2
)

(23)

Now note that

(𝒖𝑘 − 𝒖∗ − 𝛾𝐽 ′
𝑖 (𝒖𝑘))

⊤(𝒖𝑘 − 𝒖∗ − 𝛾𝐽 ′
𝑖 (𝒖𝑘))

= ‖𝒖𝑘+1 − 𝒖∗‖2

= ‖𝒖𝑘 − 𝒖∗‖2 − 2𝛾𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘 − 𝒖∗)

+ 𝛾2𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘) (24)

so

𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤
1
2𝛾

(

‖𝒖𝑘 − 𝒖∗‖2 − ‖𝒖𝑘+1 − 𝒖∗‖2

− 2‖𝒖𝑘+1 − 𝒖𝑘‖2 + 𝛾2𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘)

)

= 1
2𝛾

(

‖𝒖𝑘 − 𝒖∗‖2 − ‖𝒖𝑘+1 − 𝒖∗‖2
)

(25)

Summing over iterations yields
𝑘
∑

(

𝐽𝑖(𝒖𝑗+1) − 𝐽𝑖(𝒖∗)
)

𝑗=0
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= 𝐽

= 𝐽
≤
𝑘
∑

𝑗=0

1
2𝛾

(

‖𝒖𝑗 − 𝒖∗‖2 − ‖𝒖𝑗+1 − 𝒖∗‖2
)

= 1
2𝛾

‖𝒖∗ − 𝒖0‖2 − 𝛾−1‖𝒖𝑘+1 − 𝒖∗‖2

≤ 1
2𝛾

‖𝒖∗ − 𝒖0‖2 (26)

Since 𝐽𝑖(𝑢0) ≥ 𝐽𝑖(𝑢1) ≥ ⋯ ≥ 𝐽𝑖(𝑢𝑘+1) by (17), then
𝑛
∑

𝑖=1
𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤

𝑛
∑

𝑖=1

1
2𝛾(𝑘 + 1)

‖𝒖0 − 𝒖∗𝒊 ‖
2

≤
𝑛
∑

𝑖=1

‖𝒖0 − 𝒖∗𝒊 ‖
2

2𝛾𝛿
□ (27)

Theorem 2 confirms the prohibitive time duration of current ILC
approaches for FES arrays, since Algorithm 1 may take ∑𝑛

𝑖=1
‖𝒖0−𝒖∗𝑖 ‖

2

2𝛾𝛿
iterations to track all references and 𝛿 is likely to be small.

4. Parameterised function ILC

The last section showed that standard ILC (Algorithm 1) requires
many trials, each including a lengthy identification experiment to
generate 𝒈′(𝒖𝑘). Since Algorithm 1 generates substantial data as it is
applied to 𝑛 references, a natural idea is to use these data to reduce
the number of identification tests needed. This can be done by in-
troducing a parameterised functional form of 𝒈(𝒖) which replaces the
identification of 𝒈(𝒖𝑘) within each update. Using parameter 𝜽 ∈ R𝑣, this
approximation is defined as

�̄�(𝒖,𝜽) ∶ (R𝑚𝑁 × R𝑣) → R𝑝𝑁 . (28)

Suppose a set of experimental input–output data is available, de-
noted {𝒖𝑖, 𝒚𝑖}𝑖=1,2,…. This set may have been generated by applying ILC
to track previous references and it may also include data produced by
applying ILC to track the current reference. Then 𝜽 can be found by
solving the standard identification problem of minimising the fitting
error, i.e.

�̂� = min
𝜽

∑

𝑖
‖𝒚𝑖 − �̄�(𝒖𝑖,𝜽)‖2. (29)

This approach is most effective if the parameter space is min-
imised. Hence the set up used in Freeman (2014) could be
adopted in which 𝑁 = 1 is taken, together with a sufficiently
large sample time. This corresponds to moving the hand from a
fixed starting position (at 𝑡 = 0) to a desired reference position
(at 𝑡 = 1). The resulting 𝒈(𝒖) ∶ R𝑚 → R𝑝 then has a relatively
small dimension. An example with 𝑚 = 2, 𝑝 = 1 is shown in
Fig. 2. This shows a two input, one output system 𝒚 = 𝒈(𝒖),
which data points {𝒖𝑘, 𝒚𝑘} generated by applying Algorithm 1.
Selecting �̄�(𝒖,𝜽) as a piecewise linear mapping and computing
�̂� using (Eq. (29)) gives the fitted forms shown in Fig. 2.

If the form �̄�(𝒖,𝜽) is sufficiently accurate, it can be used in (8) to
eliminate the identification step in Algorithm 1. The next result quan-
tifies the necessary accuracy for convergence to minimal error occur.
Although any of the learning operator choices (9)–(11) can be used,
analysis will focus on the gradient form (10) since it has proven most
suitable for rehabilitation. Note that the notation 𝒈′(𝒖,𝜽) ∶= 𝜕�̄�(𝒖,𝜽)

𝜕𝒖 is
used to denote differentiation with respect to the first argument. Sim-
ilarly the derivative of 𝐽𝑖(𝒖,𝜽) ∶= ‖𝒓𝑖 − �̄�(𝒖,𝜽)‖2 is denoted 𝐽 ′

𝑖 (𝒖,𝜽) ∶=
𝜕𝐽𝑖(𝒖,𝜽)

𝜕𝒖 (see Figs. 2 and 3).

Theorem 3. Let function 𝒈(𝒖) be differentiable, and its parameterised
approximation be denoted �̄�(𝒖,𝜽). Let 𝐽𝑖(𝒖) satisfy the conditions of Theo-
rem 1. Suppose the parameterised model satisfies

𝒈′(𝒖)⊤�̄�′(𝒖,𝜽) ≻ 0 (30)
5

Fig. 2. Top left: mapping 𝒚 = 𝒈(𝒖) with 2 inputs showing sequence of ILC points
{𝒖𝑘 , 𝒚𝑘}. Other plots: Functions �̄�(𝒖,𝜽) that are fitted to these data points using three
different resolutions.

Fig. 3. FES array stimulation of wrist extensors using 2 FES input channels.

then the parameterised ILC gradient update

𝒖𝑘+1 = 𝒖𝑘 + 𝛾𝑘(�̄�′(𝒖𝑘,𝜽))⊤(𝒓𝑖 − 𝒚𝑘) (31)

with scalar gain

0 < 𝛾𝑘 <
2𝒆⊤𝑘 𝒈

′(𝒖𝑘)(�̄�′(𝒖𝑘,𝜽))⊤𝒆𝑘
𝐿‖𝐽 ′

𝑖 (𝒖𝑘,𝜽)‖2
. (32)

guarantees convergence to the minimum error norm. If 𝐽𝑖(𝒖) is convex, this
is the global minimum error norm.

Proof. Lipschitz continuity guarantees that

𝐽𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖𝑘) + 𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘+1 − 𝒖𝑘) + ‖𝒖𝑘+1 − 𝒖𝑘‖2
𝐿
2

Substitute 𝐽 ′
𝑖 (𝒖𝑘,𝜽) ∶= −2�̄�′(𝒖𝑘,𝜽)⊤(𝒓𝑖 − 𝒈(𝒖𝑘)) in the parameterised

function ILC method to give

𝒖𝑘+1 = 𝒖𝑘 + 2𝛾(�̄�′(𝒖𝑘,𝜽))⊤(𝒓𝑖 − 𝒈(𝒖𝑘)) (33)

so that

𝐽𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖𝑘) + 𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘 − 𝛾𝐽 ′
𝑖 (𝒖𝑘,𝜽) − 𝒖𝑘)

+ ‖𝒖𝑘 − 𝛾𝐽 ′
𝑖 (𝒖𝑘,𝜽) − 𝒖𝑘‖2𝐿∕2

𝑖(𝒖𝑘) − 𝐽 ′
𝑖 (𝒖𝑘)

⊤𝛾𝐽 ′
𝑖 (𝒖𝑘,𝜽) + ‖𝛾𝐽 ′

𝑖 (𝒖𝑘,𝜽)‖
2𝐿∕2

𝑖(𝒖𝑘) − 𝛾𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽) + 𝛾2‖𝐽 ′

𝑖 (𝒖𝑘,𝜽)‖
2𝐿∕2.

The term 𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽)

= 4(𝒓 − 𝒈(𝒖 ))⊤𝒈′(𝒖 )(�̄�′(𝒖 ,𝜽))⊤(𝒓 − 𝒈(𝒖 )) (34)
𝑖 𝑘 𝑘 𝑘 𝑖 𝑘
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is positive if assumption (30) holds, i.e.

𝒈′(𝒖𝑘)�̄�′(𝒖𝑘,𝜽)⊤ ≻ 0, ∀𝒖𝑘 ≠ 𝒖∗. (35)

ext denote 𝑎𝑘 ∶= 𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽) and select

< 𝛾 <
2𝑎𝑘

𝐿‖𝐽 ′
𝑖 (𝒖𝑘,𝜽)‖2

(36)

o that the previous inequality becomes

𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖𝑘) − 𝛾
(

𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽) − 𝛾‖𝐽 ′

𝑖 (𝒖𝑘,𝜽)‖
2 𝐿
2

)

< 𝐽𝑖(𝒖𝑘) (37)

Suppose the selection 𝛾 =
𝑎𝑘

𝐿‖𝐽 ′
𝑖 (𝒖𝑘,𝜽)‖2

, is made, then

𝐽𝑖(𝒖𝑘+1) < 𝐽𝑖(𝒖𝑘) − 𝛾
(

𝑎𝑘 − 𝑎𝑘∕2
)

= 𝐽𝑖(𝒖𝑘) − 𝛾
𝑎𝑘
2
. (38)

Since 𝑎𝑘 will always be positive unless 𝒓𝑖 − 𝒈(𝒖𝑘) = 0, this inequality
mplies that the objective function value strictly decreases with each
rial of gradient ILC until it reaches the optimal value 𝐽𝑖(𝒖𝑘) = 𝐽𝑖(𝒖∗) =
. □

Theorem 3 provides a simple condition on the parameterised form
̄ (𝒖𝑘,𝜽) which allows it to replace the true system 𝒈(𝒖𝑘), thus completely
removing the need for any identification tests on trial 𝑘. Using Theo-
rem 3, Algorithm 1 is replaced with Algorithm 2 to reduce the need for
identification tests. This includes a test to establish whether sufficient
condition (35) holds.
Algorithm 2 Parameterised function ILC
Require: Reference set R, accuracy margin 𝛿
for 𝑖 = 1 ∶ 𝑛 do

Set 𝑘 = 0. Select an optimal starting input, 𝒖0, for reference 𝒓𝑖 as

𝒖0 ∶= min
𝒖

‖𝒓𝑖 − �̄�(𝒖, �̂�)‖2 (39)

while |

|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| < 𝛿 do
Apply 𝒖𝑘 experimentally, record 𝒚𝑘 = 𝒈(𝒖𝑘).
Fit �̂� to all previous experimental data {𝒖𝑖, 𝒚𝑖} (e.g. generated
from applying ILC to previous references, as well as previous ILC
trials of the current reference) by solving

�̂� ∶= min
𝜽

∑

𝑖
‖𝒚𝑖 − �̄�(𝒖𝑖,𝜽)‖2 (40)

if 𝒈′(𝒖𝑘)⊤�̄�′(𝒖𝑘, �̂�) ≻ 0 holds then
Use the model to compute new ILC update using (31)

else
Identify 𝒈′(𝒖𝑘) by applying sufficiently exciting input 𝒖 and
solving (13).
Compute new ILC update using (8)

end if
𝑘 = 𝑘 + 1

end while
end for

Note that selecting a sufficiently small fixed 𝛾 can always satisfy
(32) without needing any knowledge of 𝐽𝑖. The term 𝒈′(𝒖)⊤�̄�′(𝒖,𝜽) ≻ 0 is
only required to hold for a convex set containing 𝒖𝑘 and 𝒖𝑘+1. Although
𝒈(𝒖) is not known, the condition still has practical use since it instructs
the designer to add more granularity to the model in locations where its
gradient may deviate from that of the true system. The likely deviation
can be assessed from previous data points, and the condition can always
be guaranteed by adding more data points to the model in regions
where 𝒈′(𝒖)⊤ is uncertain. The next Lemmas illustrate this, and also
demonstrate advantages in using piece-wise linear forms for the model
̄

6

𝒈(𝒖,𝜽).
Lemma 1. If �̄�(𝒖,𝜽) has the common linear-in-parameter form 𝐺(𝒖)𝜽, then
Eq. 40 becomes

�̂� ∶= min
𝜽

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎣

𝒚1
⋮

𝒚𝑛

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

𝐺(𝒖1)
⋮

𝐺(𝒖𝑛)

⎤

⎥

⎥

⎥

⎦

𝜽

‖

‖

‖

‖

‖

‖

‖

‖

2

(41)

with solution

�̂� =

⎡

⎢

⎢

⎢

⎣

𝐺(𝒖1)
⋮

𝐺(𝒖𝑛)

⎤

⎥

⎥

⎥

⎦

†
⎡

⎢

⎢

⎢

⎣

𝒚1
⋮

𝒚𝑛

⎤

⎥

⎥

⎥

⎦

(42)

where (⋅)† denotes the generalised inverse. It can also be efficiently computed
by the lower dimensional recursive form (see, e.g. Dahleh, Dahleh, and
Verghese (2004))

�̂�𝑗+1 = �̂�𝑗 + 𝑃𝑗+1𝐺(𝒖𝑗+1)⊤
(

𝒚𝑗+1 − 𝐺(𝒖𝑗+1)�̂�𝑗
)

,

𝑃𝑗+1 = 𝑃𝑗 − 𝑃𝑗𝐺(𝒖𝑗+1)⊤
(

𝐼 + 𝐺(𝒖𝑗+1)𝑃𝑗𝐺(𝒖𝑗+1)⊤
)−1

⋅

𝐺(𝒖𝑗+1)𝑃𝑗

ith initial condition 𝑃0 = 𝐼 , 𝑗 = 0, 1,… , 𝑛 − 1, �̂�0 = 0 and the solution
̂ = �̂�𝑛.

After finishing any experiment, the current solution �̂� = �̂�𝑗 is then
pdated, using the new input and output data {𝒖𝑗+1, 𝒚𝑗+1} to give the
ew solution �̂� = �̂�𝑗+1.

emma 2. Let �̄�(𝒖,𝜽) take a piecewise linear form. Then (30) always
olds providing the piecewise resolution is sufficiently fine and is fitted using
ufficient data points. More pragmatically, if data points exist in all the
egments neighbouring the one containing 𝒖𝑘, then (35) holds, and Algorithm
will ultimately converge to a vertex of the segment containing solution 𝒖∗.

roof. Given piecewise resolution 𝛥𝒖, for any set {𝒖𝑖}

lim
𝒖→0

min
𝜽

∑

𝑖
‖𝒚𝑖 − �̄�(𝒖𝑖,𝜽)‖2 = 0 (43)

here 𝒚𝑖 = 𝒈(𝒖𝑖). Let ∪𝒖𝑖 = dom(𝒈), then define

∗ ∶= min
𝜽

∑

𝑖
‖𝒚𝑖 − �̄�(𝒖𝑖,𝜽)‖2 (44)

it follows that lim𝛥𝒖→0 𝒈(𝒖𝑖) = �̄�(𝒖𝑖,𝜽∗) ∀ 𝑖, and

lim
𝛥𝒖→0

𝒈′(𝒖)⊤�̄�′(𝒖,𝜽∗) = 𝒈′(𝒖)⊤𝒈′(𝒖) ≻ 0. (45)

The second statement of Lemma 2 follows since monotonicity is pre-
served by linear interpolation. Therefore, if there exists a data point
𝒖𝑖 in each segment neighbouring the segment containing 𝒖𝑘 then
′(𝒖𝑘)�̄�′(𝒖𝑘,𝜽)⊤ ≻ 0 holds provided the segment is locally monotonic

(i.e. it does not contain a minimum 𝒖∗). Convergence to a vertex
adjoining 𝒖∗ is therefore guaranteed by the proof of Theorem 3. □

Lemma 2 makes it possible to precisely evaluate the ‘if’ statement
within Algorithm 2 to determine whether an experimental identifica-
tion step is needed. The reduction in ILC trials provided by the new
approach can now be established.

Theorem 4. Suppose 𝐽𝑖(𝒖) is convex and parameterised function ILC
is applied to track all references in the set R under the conditions of
Theorem 3. Then an upper bound on the total number of iterations required
to meet the accuracy metrics (𝑘𝛿 , 𝛿) in (6), (7) is

𝑘𝛿 ≤
𝑛
∑

𝑖=1

{

‖𝒖0 − 𝒖∗𝑖 ‖
2

2𝛾𝛿
+

𝛾
2𝑘

𝑘
∑

𝑖=0

(

𝐽 ′
𝑖 (𝒖𝑖,𝜽)

− 𝐽 ′(𝒖 )
)⊤𝐽 ′(𝒖 ,𝜽)

}

(46)
𝑖 𝑖 𝑖 𝑖
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Proof. Since 𝐽𝑖 is convex, it is possible to write

𝐽𝑖(𝒖∗) ≥ 𝐽𝑖(𝒖) + 𝐽 ′
𝑖 (𝒖)

⊤(𝒖∗ − 𝒖) (47)

𝐽𝑖(𝒖) ≤ 𝐽𝑖(𝒖∗) + 𝐽 ′
𝑖 (𝒖)

⊤(𝒖 − 𝒖∗). (48)

ubstituting this into (38) yields

𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖∗) + 𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘 − 𝒖∗) − 𝛾𝑎𝑘∕2

𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤ 𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘 − 𝒖∗) − 𝛾𝑎𝑘∕2

𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤
1
2𝛾

(

2𝛾𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘 − 𝒖∗) − 𝛾2𝑎𝑘

− ‖𝒖𝑘 − 𝒖∗‖2 + ‖𝒖𝑘 − 𝒖∗‖2
)

(49)

ow note that

𝒖𝑘 − 𝒖∗ − 𝛾𝐽 ′
𝑖 (𝒖𝑘,𝜽))

⊤(𝒖𝑘 − 𝒖∗ − 𝛾𝐽 ′
𝑖 (𝒖𝑘,𝜽))

= ‖𝒖𝑘+1 − 𝒖∗‖2

= ‖𝒖𝑘 − 𝒖∗‖2 − 2𝛾𝐽 ′
𝑖 (𝒖𝑘,𝜽)

⊤(𝒖𝑘 − 𝒖∗)

+ 𝛾2𝐽 ′
𝑖 (𝒖𝑘,𝜽)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽)

so that

𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤
1
2𝛾

(

‖𝒖𝑘 − 𝒖∗‖2 − ‖𝒖𝑘+1 − 𝒖∗‖2

− 𝛾2
(

𝐽 ′
𝑖 (𝒖𝑘) − 𝐽 ′

𝑖 (𝒖𝑘,𝜽)
)⊤𝐽 ′

𝑖 (𝒖𝑘,𝜽)
)

. (50)

Summing over iterations produces
𝑘
∑

𝑖=0

(

𝐽𝑖(𝒖𝑗+1) − 𝐽𝑖(𝒖∗)
)

≤
𝑘
∑

𝑖=0

1
2𝛾

(

‖𝒖𝑘 − 𝒖∗‖2 − ‖𝒖𝑘+1 − 𝒖∗‖2 − 𝛾2
(

𝐽 ′
𝑖 (𝒖𝑘)

− 𝐽 ′
𝑖 (𝒖𝑘,𝜽)

)⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽)

)

≤ 1
2𝛾

‖𝒖0 − 𝒖∗‖2 + 𝛾
2

𝑘
∑

𝑖=0

(

𝐽 ′
𝑖 (𝒖𝑗 ,𝜽) − 𝐽 ′

𝑖 (𝒖𝑗 )
)⊤𝐽 ′

𝑖 (𝒖𝑖,𝜽)

since 𝐽𝑖 decreases on every iteration, it can be concluded

𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤
1
𝑘

𝑘
∑

𝑖=0

(

𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗)
)

(51)

≤
‖𝒖0 − 𝒖∗‖2

2𝛾𝑘
+

𝛾
2𝑘

𝑘
∑

𝑖=0

(

𝐽 ′
𝑖 (𝒖𝑖,𝜽) − 𝐽 ′

𝑖 (𝒖𝑖)
)⊤𝐽 ′

𝑖 (𝒖𝑖,𝜽). □

The last term in (46) reduces as �̄�(𝒖,𝜽) more closely approximates
the true system 𝒈(𝒖). Theorem 4 therefore quantifies how the number of
trials required for convergence depends on the accuracy of the model.
Since model fitting improves as more experimental data are generated,
it follows that new references are tracked progressively faster.

5. Numerical results

The approach is now evaluated on an FES array based motion
control problem. The model is based on Theodorou, Todorov, and
Valero-Cuevas (2011) and comprises a 3-link representation of the wrist
and hand, including radius, metacarpal and phalangeal bones. The FES
array elements are chosen to stimulate Flexor Digitorum Profundus and
Extensor Communis muscles (𝑢1, 𝑢2 respectively). The resultant force is
transmitted via a longitudinally symmetric tendon rhombus network
(including 5 active and 3 passive tendons) which actuates the wrist
and metacarpal–phalangeal joints (𝑦1, 𝑦2 respectively, in degrees). This
𝑚 = 2, 𝑝 = 2 system accurately models the response to FES, and
the clinical aim is to achieve functional gestures such as ‘open hand’,
‘pointing’ or ‘pinching’ (Freeman, 2014). A set of 𝑛 = 4 references is
chosen to provide the variety required during an FES training session,
given by 𝒓 = [10, 50]⊤, 𝒓 = [70, 70]⊤, 𝒓 = [20, 10]⊤ and 𝒓 = [30, 50]⊤.
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1 2 3 4 t
Fig. 4. Convergence of tracking error norm using standard ILC.

Fig. 5. Convergence of tracking error norm using parameterised function ILC with
�̄�(𝒖𝑘 ,𝜽) a medium resolution piecewise linear form.

5.1. Standard gradient ILC

First standard gradient ILC is applied using Algorithm 1 and a
stopping criterion of 𝛿 = 0.05 and initial input 𝒖0 = [0, 0]⊤. The error
norm results are shown in Fig. 4. In total 43 ILC trials are required,
each requiring 3 separate tests to perform. If applied experimentally,
this equates to 129 tests in total. This is clearly too many for a typical
clinical therapy session.

5.2. Parameterised function gradient ILC

Parameterised function ILC is next applied using Algorithm 2 and
the same stopping criterion. Here �̄�(𝒖,𝜽) is chosen as a piecewise linear
unctional form. Three choices of resolution are used in order inves-
igate the compromise between accuracy and extrapolation potential
termed fine, medium and coarse).

The error norm results are shown in Fig. 5 for the medium reso-
ution. Here a total of 29 ILC trials are required, however, only 9 of
hese require identification of a new model, with the remainder using
arameterised model update (31) to generate the next update step.
his means only 47 experimental tests would be needed in practice
o track all references. To illustrate how this is achieved, �̄�(𝒖, �̂�) is
hown in Fig. 6 immediately after completing 𝒓2 tracking. For the
ine resolution case 12 ILC trials are required to track all references,
owever, only 9 of these require identification of a new model. This
eans 30 experimental tests would be needed in practice. For the

oarse resolution, 32 ILC trials are required to track all references,
owever, again only 9 of these require identification of a new model.
his means only 50 experimental tests would be needed in practice.

Overall, parameterised function ILC reduces the total number of ILC
rials required for convergence from 43 to 12. In addition, the total
umber of experimental tests is reduced from 129 to 30, now making

hem clinically feasible.
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Fig. 6. Plots of 𝒚1 = �̄�1(𝒖, �̂�) and 𝒚2 = �̄�2(𝒖, �̂�) with all ILC points {𝒖𝑘 , 𝒚𝑘} after
completing 𝒓2. .

Fig. 7. Upper limb stroke rehabilitation hardware.

6. Experimental results

The hardware used consists of a tracking sensor, user interface
software running on a laptop, a control unit, a 24 channel FES electrode
array sleeve and FES electronics. The components are shown in Fig. 7.
The sensor (Stereo IR 170 camera, UltraLeap) is a next-generation
optical hand tracking module with a 170 × 170◦ field of view, which
collects the positional data of the hand and wrist, and is then processed
by the user interface to generate angle data. This is sent to the control
unit (Raspberry Pi 4) via wireless transmission, which runs the real-
time controller (at 40 Hz). The controller computes the voltage pulse
train applied to each element of the 24 channel electrode array. Here,
the frequency and amplitude of each pulse train are fixed, and the
pulse width of each pulse train is the controlled variable (0–100 𝜇𝑠).
The sensor provides 12 joint angles, however only those corresponding
to wrist flexion/extension and the index finger metacarpal–phalangeal
joint flexion/extension are used. This matches the set-up of Section 5.

The simulation tests are now repeated experimentally in a study
with six unimpaired participants (University of Southampton Ethics No.
72,855). These participants will be denoted P1, P2, P3, P4, P5, P6 and
their details are shown in Table 2.

The experimental setup is shown in Fig. 8. The electrode array
was first positioned on the forearm of the participant’s dominant arm.
Two stimulation sites were selected from the array, to correspond with
activating the Flexor Digitorum Profundus and Extensor Communis
muscles. Then a 100𝜇𝑠 FES signal was applied to each of the two
channels in turn. While stimulated, the voltage amplitude was slowly
increased until a comfortable limit was reached. The pulsewidth was
then reset to 0𝜇𝑠 and the amplitude was then fixed for each channel in
all remaining tests.
8

Table 2
Participant demographic information.

No. Age Gender Test arm

P1 45 M right
P2 42 F right
P3 44 F right
P4 38 M left
P5 32 M right
P6 31 F right

Fig. 8. Electrode array, stimulator and Stereo IR 170 camera.

Three reference gestures (see Fig. 1) were used: open hand (with
wrist and index finger extended), pinch (with wrist extended and index
finger flexed), and horizontal pointing (with wrist partially extended
and index finger fully extended). These are denoted 𝒓1, 𝒓2 and 𝒓3
respectively. The values for participant P1 are 𝒓1 = [−31.8, 20.9]⊤,
𝒓2 = [−33.6, 39.6]⊤ and 𝒓3 = [−22.0, 14.1]⊤ with unit in degrees, and
a positive value corresponding to flexion for each angle.

Following this, the standard ILC and parameterised function ILC
algorithms introduced in Sections 3 and 4 were applied. During each
test, the participant was instructed to apply no voluntary effort, and
they were not shown the reference movement. Note that omitting
voluntary effort in the controller design has been assumed in all clinical
trials using ILC (Freeman, Exell, Meadmore, Hallewell, & Hughes,
2015). This is because patients are typically highly impaired with
significant weakness and so their voluntary input is minimal starting
rehabilitation. Instead, their voluntary effort is treated as an external
disturbance. At the end of each trial, the participant’s hand naturally
moved back to the start position under the influence of gravity.

As in the previous ILC applications of Freeman (2014), Yang et al.
(2018), 𝑁 = 1 was selected and the stimulation inputs were smoothly
applied to each array element using a ramp signal of three seconds
duration. The resulting hand gesture was measured.

In the previous section, the stopping criteria |

|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| < 𝛿
was used. During experiments, the value 𝐽𝑖(𝒖∗) is not known, and so it
is assumed that perfect tracking is possible, 𝐽𝑖(𝒖∗) = 0. This corresponds
to the stopping criteria |

|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| = ‖𝒆𝑘‖ < 𝛿. A value of 𝛿 = 5 was
selected as it corresponds to accurate tracking (i.e. joint angle error less
than 5 degrees) that is considered practically achievable. The minimum
number of trials to achieve this criteria will be termed the ‘total trials’,
however the experiments will still be continued for ten trials in order
to determine whether the level of error is maintained.

6.1. Standard ILC

First, standard ILC was applied as described in Algorithm 1 of
Section 3. Two system gains were used for all participants: 𝛾 = 10 and
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Fig. 9. Convergence of tracking error norm using standard ILC with 𝛾 = 2 for P1,
(experimental results).

Fig. 10. Convergence of tracking error norm using standard ILC with 𝛾 = 10 for P1,
(experimental results).

𝛾 = 2. Results for participant P1 are shown in Fig. 9 for 𝛾 = 2. These
confirm convergence to a low level of error for all three references.

Further convergence results for participant P1 are shown in Fig. 10
for 𝛾 = 10. These demonstrate faster convergence with high accuracy
maintained over the ten trials.

For each reference, the number of trials required to meet the
stopping criteria is listed in Table 3 for all participants. The total trial
number is also shown. In all cases the increased ILC gain increases the
convergence speed, however a large number of experiments is always
required.

6.2. Parameterised function ILC

As in Section 4, Algorithm 2 was next applied with the same
parameters as the standard ILC method. A vertex resolution of 25𝜇𝑠
was used in the parameterised model form for all participants.

The error norm results for participant P1 using parameterised func-
tion ILC with 𝛾 = 2 are shown in Fig. 11. The convergence speed of
parameterised function ILC is faster than standard ILC, since the later
references start from a smaller initial error norm due to the use of the
fitted model �̄�(𝒖, �̂�). A total of 19 ILC trials are required, however, only
6 of these require the identification of a new model, with the remainder
using parameterised model update (31) to generate the next update
9

Fig. 11. Convergence of tracking error norm using parameterised function ILC with
𝛾 = 2 for P1, (experimental results).

Fig. 12. Participant P1 results with 𝛾 = 2. Plots of 𝒚1 = �̄�1(𝒖, �̂�) and 𝒚2 = �̄�2(𝒖, �̂�) with
all ILC points {𝒖𝑘 , 𝒚𝑘} after completing 𝒓1, (experimental results).

Fig. 13. Participant P1 results with 𝛾 = 2. Plots of 𝒚1 = �̄�1(𝒖, �̂�) and 𝒚2 = �̄�2(𝒖, �̂�) with
all ILC points {𝒖𝑘 , 𝒚𝑘} after completing 𝒓2, (experimental results).

step. This led to only 31 experimental tests being needed to track all
three references. This equates to 31∕57 = 54.4% of the experiments
required by Standard ILC. To show how this was achieved, the fitted
model �̄�(𝒖, �̂�) is shown in Fig. 12 immediately after completing tracking
of 𝒓1.

Fig. 13 shows the mapping immediately after completing tracking
of 𝒓2. Information from the model in Fig. 12 has enabled the second
reference to be tracked more quickly than with standard ILC.

Results using 𝛾 = 10 are shown in Fig. 14 for participant P1. These
show even faster convergence.

For each reference, the overall total trial number is listed in Table 4
for all participants. In all cases there is significant improvement in
terms of a reduced number of experiments required to achieve the three
gestures.
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Table 3
Total trials required by Standard ILC for all participants.

Participant

Trials Test
𝛾 𝑟1 𝑟2 𝑟3 Overall Trials Overall Experiments

P1 2 5 5 9 19 57
10 4 4 8 16 48

P2 2 5 6 9 20 60
10 6 7 6 19 57

P3 2 5 5 9 19 57
10 4 4 6 14 42

P4 2 10 4 10 24 72
10 7 3 5 15 45

P5 2 9 4 10 23 69
10 4 4 10 18 54

P6 2 9 10 10 29 87
10 7 4 10 21 63
Table 4
Total trials required by parameterised function ILC for all participants. Improvement denotes the fraction
of experiments compared with standard ILC.

Participant

Trials Test
𝛾 𝑟1 𝑟2 𝑟3

Overall
Trials

Overall
Experiments Improvement

P1 2 6 7 6 19 31 54.40%
10 4 3 3 10 18 37.50%

P2 2 4 2 8 14 22 36.66%
10 4 2 5 11 19 33.33%

P3 2 10 5 2 17 37 64.91%
10 4 3 4 11 19 45.23%

P4 2 4 5 1 10 18 25.00%
10 7 3 5 15 29 64.40%

P5 2 10 7 7 24 44 63.76%
10 8 2 9 19 35 64.81 %

P6 2 7 1 9 17 31 35.63%
10 3 3 4 10 16 25.39%
C

Fig. 14. Convergence of tracking error norm using parameterised function ILC with
𝛾 = 10 for P1, (experimental results).

7. Conclusions

A novel ILC approach is developed to reduce the experimental
overhead required by existing model-free/data-driven approaches. It
can be used for a general class of nonlinear systems, which includes
the FES array based motion control problem. A parameterised model
is fitted to all prior data and used to construct the next ILC update.
10
Convergence conditions are derived to inform model design, minimis-
ing identification tests while preserving convergence. The framework
is demonstrated on a key biomedical control problem, where the 129
experimental tests required using standard ILC are reduced to only
30. Experimental results with six participants confirm that accurate
tracking is possible, both with standard ILC and parameterised function
ILC. However, the latter reduces the number of experiments required
to between 25% and 64.9% of those needed by the former.

Future work will focus on extending the convergence condition
of Theorem 3 to hold for the Newton (9) and norm optimal (11)
operators. Further work will also expand the system to include time-
varying affects such as fatigue. Here, the application of parameterised
function ILC will be unchanged, however, an additional parameter will
be required to represent the level of fatigue together with an expanded
model to embed the associated dynamics (e.g. ‘low’, ‘medium’ and
‘high’ fatigue).

The results and test procedures reported in this paper will also feed
into an ethics application to gain the necessary authorisation prior to
running clinical testing with stroke participants.
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