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Abstract: This paper presents both the techno-economic planning and a comprehensive sensitivity
analysis of an off-grid fully renewable energy-based microgrid (MG) intended to be used as an electric
vehicle (EV) charging station. Different possible plans are compared using technical, economic, and
techno-economic characteristics for different numbers of wind turbines and solar panels, and both
single and hybrid energy storage systems (ESSs) composed of new Li-ion, second-life Li-ion, and new
lead–acid batteries. A modified cost of energy (MCOE) index including EVs’ unmet energy penalties
and present values of ESSs is proposed, which can combine both important technical and economic
criteria together to enable a techno-economic decision to be made. Bi-objective and multi-objective
decision-making are provided using the MCOE, total met load, and total costs in which different
plans are introduced as the best plans from different aspects. The number of wind turbines and
solar panels required for the case study is obtained with respect to the ESS capacity using weather
data and assuming EV demand according to the EV population data, which can be generalized to
other case studies according to the presented modelling. Through studies on hybrid-ESS-supported
MGs, the impact of two different global energy management systems (EMSs) on techno-economic
characteristics is investigated, including a power-sharing-based and a priority-based EMS. Single
Li-ion battery ESSs in both forms, new and second-life, show the best plans according to the MCOE
and total met load; however, the second-life Li-ion shows lower total costs. The hybrid ESSs of both
the new and second-life Li-ion battery ESSs show the advantages of both the new and second-life
types, i.e., deeper depths of discharge and cheaper plans.

Keywords: cost of energy; electric vehicles; energy storage system; microgrid planning; renewable
energy

1. Introduction

The number of electric vehicles (EVs) is expected to increase significantly in developed
countries to both decrease fossil fuel usage and achieve healthier and less polluted air in
urban areas. This is supported by government policies on different scales. As an example,
the United Kingdom (UK) government announced that all new passenger cars will be
zero-emissions vehicles (ZEVs) at the tailpipe from 2035 to reduce the transport sector
emissions [1], which is now the highest emitting sector in the UK, having overtaken the
energy sector [2]. Additionally, the UK’s introduction of the ZEV mandate in 2024 requires

Energies 2024, 17, 788. https://doi.org/10.3390/en17040788 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17040788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0006-7139
https://orcid.org/0000-0003-4665-0941
https://orcid.org/0000-0002-8565-0541
https://orcid.org/0000-0001-7195-5435
https://orcid.org/0000-0003-3236-2535
https://orcid.org/0000-0001-9592-9071
https://doi.org/10.3390/en17040788
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17040788?type=check_update&version=2


Energies 2024, 17, 788 2 of 31

car manufacturers to increase their percentage of ZEV’s sold as new vehicles per year [3].
However, to maximise the impact of the decarbonisation of road transport, EVs alone
are not enough, particularly whilst they are supplied by an electricity grid that still relies
heavily on fossil fuel-based power plants. The second necessity to completely achieve the
above-mentioned goal of decarbonisation is to ensure that EVs are supplied electricity from
renewable energy resources (RESs). However, connecting a large number of EVs to the
electricity grid causes a considerable increase in the load demand, overloading various
components of the power grid, changing load profile patterns, distorting the voltage or
frequency of the grid, and generating power system imbalances [4]. Therefore, RES-oriented
off-grid EV charging stations, which form autonomous microgrids (MGs), provide a good
solution to address these current EV/grid challenges.

The Future Electric Vehicle Energy networks supporting Renewables (FEVER) project [5]
is investigating solutions to develop autonomous EV charging MGs, where energy storage
systems (ESSs) are necessary to compensate for renewable energy source (RES) uncertainties.
A combination of RESs and ESSs is needed to provide a level of reliability, availability,
and flexibility to the issue of charging EVs. However, it is crucial to properly size various
components of these systems to avoid excessive costs for the system and to minimize
the amount of load not being met by generation sources such as PV systems and wind
turbines [6].

The sizing/planning of the main MG modules is the first step to designing and
implementing EV charging MGs to be sure to achieve the best plans, considering both
technical and economic aspects. Different approaches and software packages have been
used for MG planning in the literature. HOMER is a software package specially designed
for MG planning studies [7], which can model different types of RESs, ESSs, and loads [8].
In [9], a scheme is presented for EV charging station planning for a remote microgrid.
However, fossil fuel-based generation systems are involved in the planning, and the
amount of greenhouse gas emission is considered as an objective function in addition to the
planning costs. Optimal battery planning is presented in [10] for a microgrid, assessing the
state of health (SOH) of the batteries. The authors used two types of technologies, including
lithium-ion (Li-ion) and lead–acid (LA) batteries, for the proposed solution. A two-stage
planning scheme is presented in [11] for sizing batteries in a microgrid, where, in the first
stage, the size and maximum depth of discharge are extracted, and in the second stage, an
appropriate battery technology is chosen. In addition to planning costs, system reliability
is also investigated in [12]. Nonetheless, once again, the authors assumed diesel generation
systems that lead to greenhouse gas emissions.

Hybridizing ESSs is a solution to obtain a more reliable and flexible off-grid MG,
particularly since a hybrid ESS (HESS) can achieve a higher SOH than that of an individual
ESS unit [13,14]. Various types of energy storage systems have different advantages in
terms of cost, longevity, capacity, and response time. Another FEVER case study has been
investigated for an MG, including a Li-ion battery ESS and a supercapacitor ESS, in terms
of technical modelling and planning [15]. The utilisation and the economics of renewable
energy have been enhanced by considering a HESS, as shown in [16]. Planning costs are
illustrated to decrease in [17] by utilising a HESS, when compared to the case that merely
relies on Li-ion batteries. The utilisation of both Li-ion and lead–acid batteries is reported
in [18] for stationary applications, and the relative benefits of each of these technologies
are discussed. Also, the concurrent use of Li-ion and lead–acid batteries is also reported
in [19] for microgrid applications. Another FEVER case study has covered the DC coupling
of Lithium-ion and lead–acid batteries in a HESS, which showed that in a fully optimised
generation and battery storage scenario, the hybrid system alone could further reduce the
overall system cost by 10% [20].

In recent years, second-life batteries have also been studied as an option to be deployed
in a HESS. These are typically EV batteries that have lost almost 20% of their original
capacity and can be used for stationary applications in stand-alone energy systems based on
renewable generation due to their lower costs and capabilities for harnessing volatility and



Energies 2024, 17, 788 3 of 31

interrupted performance for these generation sources [21]. In [22], the authors investigate
the possibility of reusing battery cells after vehicle use for an energy grid and show the
environmental advantages of this utilisation. Batteries retired from EVs are proposed for
a large stand-alone MG composed of EV charging stations, PV generation systems, and
second-life batteries [23]. The results of this research illustrate a decreased operational cost
for the system by using second-life batteries of EVs alongside new batteries in a twenty-
year planning period. However, using only second-life batteries in such a large MG is not
reasonable due to the high replacement costs and sharp increases in power losses during
charging/discharging. The application of second-life batteries has also been investigated
for ancillary services for grids [24]. The results in this reference illustrate how their usage
can lead to the reduction in EV prices and an increase in the advantages of electrifying
the transportation sector. Centralized charging stations were planned in [25] based on
second-life batteries, where the researchers used an optimized charge/discharge approach
to increase the lifetime of these batteries.

This paper presents a sensitivity analysis-based techno-economic planning of off-grid
renewable-supplied MGs employed for electrifying EV charging stations using the MCOE
and considering both single and hybrid ESSs. The major contributions of this paper are as
stated below:

• A general power-in-power-out model of ESSs is extended for long-term studies, e.g.,
the sizing and planning of ESSs, which is also improved in terms of the local energy
management system (EMS) against the original model [26].

• A modified COE (MCOE) is proposed as the main characteristic to compare different
plans including the main terms of COE, i.e., total costs and total provided energy for
the EV demand, and two added terms including the present value of ESSs and the EV
unmet energy, i.e., the EV energy demand that could not be supplied by either RESs or
ESSs. The first additional term helps to make the economic analysis free from the ESS
lifetime, and the second increases the weighting coefficient of the technical aspect in
the techno-economic sizing and decision-making.

• Sensitivity analysis is used for both single and hybrid ESSs to compare different
combinations of participants in the techno-economic planning studies. In the single-
ESS studies, the feasible search space is composed of the number of wind turbines, the
number of solar panels, and the single-ESS nominal capacity, and in the HESS studies,
it includes the nominal capacity of different ESS battery technologies. The sensitivity
analysis-based planning provides several suitable plans with reasonable conditions.

• The impact of the global EMS strategy of the HESS on the techno-economic character-
istics is studied, where a power-sharing-based EMS is developed to be compared with
a simpler logic-based EMS.

The rest of this paper is organized as follows. Section 2 presents the technical and
economic modelling methods of the studied autonomous MG. Section 3 represents the
sensitivity analysis-based planning method of the MG. Section 4 addresses the simulation
results and the corresponding discussions. In Section 5, the key findings and results of the
study are summarized.

2. Techno-Economic Modelling

An off-grid EV charging station can be assumed as an autonomous MG since it includes
the main components of an MG, namely, generation units, storage units, load, and control
and protection infrastructure to operate the MG stably and securely. Figure 1 shows a
schematic of the studied MG, including solar energy and wind energy generation units,
HESS, some EV charging points, and required power conversion devices to connect all
modules to a common ac bus.
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Figure 1. A simple schematic of the studied MG topology (ac: alternative current, dc: direct current).

As an example, a general outdoor ground-level car park where there is sufficient area
to build the charging station is considered. However, space management is critical in a real
project, especially one constructed in an urban area, because the targeted car parks would
not be typically designed for an EV charging station from the outset. This limits the size of
potential renewable energy generation technologies as well as the types of ESS deployed.

Since wind and solar energies are available for most of the potential locations consid-
ered for an off-grid EV charging station MG in the UK, they are preferred as renewable
energy sources in the planning study. The weather data required for RES generation pre-
diction and modelling are obtained at the target location, which is a visitor attraction in
Southern England. Different combinations of various available ESS technologies can be
used to provide suitable power density and energy density for the studied MG. However,
in this paper, the HESS is assumed to consist of a combination of three battery ESS tech-
nologies consisting of a new Li-ion ESS, a second-life Li-ion ESS, and a new lead–acid
ESS to compare in different plans. Moreover, battery ESSs are easy to install and require
a ground level as close as possible to the car park, which is important in this study to
decrease cable losses.

Note that both the technical and economic models of the MG were required for the
techno-economic analysis performed in this study. The technical modelling of the system
addresses power flow modelling, where details of currents and voltages are not required.
Therefore, detailed models of power converters, which are usually used in dynamic studies,
are not taken into account here but are rather considered as efficiency blocks denoting a
loss contribution.

2.1. Technical Modelling

Figure 2 shows all MG modules that should be modelled and their interrelationships.
Three data sets are required to model the renewable energy generation units and EV
charging station demand: these are solar radiation, wind speed, and the number of visiting
vehicles along with their arrival times. Modules of the studied MG include an EV charging
station demand, a wind generation unit, a solar generation unit, the HESS EMS, and ESSs,
which are modelled in the next subsections, and then a comprehensive technical model of
the MG is obtained by connecting the individual module models.
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Figure 2. Power flow and EMS control signals in the studied MG.

2.1.1. EV Demand Power

To determine the normal EV loading on the system, it is possible to examine typical
travel profiles for car park users at the visitor attraction, which is assumed to be open
from 10.00 until 17.00 on working days. These opening times set a boundary for when
EVs can plug in and charge at the car park. The EV charging station is modelled assuming
10 ac chargers with a power rating of 7 kW and rated voltage of 240 V each. Therefore, the
charging station is classified as level II. The daily energy load demand for charging the
EVs is then calculated using the chargers’ usage profile based on data regarding the total
number of vehicles arriving at the car park each day in 2019, and the hourly vehicle arrival
profile. The model then calculates the number of EVs arriving at the car park, assuming 3%
of the total car arrivals are EVs according to recent EV statistics in the UK [27].

Cars are assumed to be parked for 4 h based on typical customer dwell times at the
visitor attraction; thus, 4 h is used in this model as the plug-in period for each EV if any
of the 10 chargers are unoccupied when arriving at the car park. The model assumes
the average efficiency of an EV is 4 miles per kWh, and each vehicle needs to charge to
cover a total distance of 30 miles, which is determined to be the average customer distance
travelled to the visitor attraction. Figure 3 shows typical EV behaviour at the car park and
EV charging demand for a single day. Hourly charging energy demand provides the EV
demand power, Pev, in hourly steps, which can easily be converted to a second-by-second
power signal.
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2.1.2. Wind Generation Power

Electrical yield is calculated from wind speed data [28] by first converting them from
the measurement height to the generator’s hub height. The log law is used here as it delivers
consistent results up to a height of 20 m above ground level, and a 20 m wind turbine is
chosen for the EV charging station as a small wind turbine suitable for MG applications:

Uz = Uz,re f × ln
(

z
z0

)
/ln

( zre f

z0

)
, (1)

where z and zre f are new height (m) and reference height (m), respectively, and Uz and
Uz,re f are mean wind speed at the new height (m/s) and mean wind speed at the reference
height (m/s), respectively. z0 is surface roughness length (m). Surface roughness is a value
based on the protrusion of land cover, e.g., grass, trees, buildings.

Next, wind yield (kWh) is calculated by the interpolation of the manufacturer’s power
curve (kW), which is based on verified measurements. In this study, the Aventa AV-7 WT
power curve is used, with a rated power of 6.2 kW, as follows [29]:

Pwt =


0, Uz < 2 or Uz > 14
0.36 × U2

z − 1.48 × Uz + 1.72. 2 ≤ Uz ≤ 6.17
6.2, 6.17 < Uz ≤ 14

(2)

2.1.3. Solar Generation Power

To model the solar generation power, a photovoltaic geographical information sys-
tem [28] is used to obtain hourly data of three main components of the solar irradiance
on the inclined plane in kW/m2, i.e., diffuse irradiance (Idi f ), direct irradiance (Idir), and
ground-reflected irradiance (Ire f ). It is assumed that the slope and azimuth have been
optimised to obtain the maximum solar irradiance at the target location. Therefore, the
total irradiance on the inclined plane (Itot) can be obtained as follows:

Itot = Idi f + Idir + Ire f . (3)

The hourly solar generation power (Ppv) can easily be calculated as below:

Ppv = Itot × ηi × ηp × pd × Npv, (4)

where ηi is the PV converter efficiency, ηp is the panel efficiency, pd is the panel dimension(
m2), Npv is the number of panels, and Ppv is obtained in kW.

2.1.4. ESS Power-in-Power-out Model

The ESS model is an extension of the power-in-power-out model presented in [26],
which provides long-term MG modelling and is required for planning and sizing studies.
Figure 4 shows a comprehensive schematic of this enhanced power-in-power-out ESS
model, including five main parts indicated by red dashed boxes, namely, input model of
converter losses, local EMS model, output model of converter losses, SOC model, and
degradation model.

Input model of converter losses: The scheduled power of the ESS, Psch, determined by
the HESS EMS is the main input of the ESS model, where it is the input of the converter
losses model block inside the ESS model. This block includes two different gains as power
converter loss coefficients for power import and power export situations, i.e., Cim,in and
Cex,in, where Cim,in = 1 − Kconv,loss/100, Cex,in = 1/(1 − Kconv,loss/100), and Kconv,loss is
the converter export/import power loss parameter, which is usually less than 10%. The
scheduled power after assuming input converter losses, Psch,conv, is obtained according to
the sign of the scheduled ESS power as follows:

Psch,conv =

{
Cex,in × Psch, Psch ≥ 0
Cim,in × Psch. Psch < 0

(5)
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Local EMS model: The Psch,conv is assumed as an input for the local EMS model to
calculate the allowable amount of power charged/discharged by the ESS, Pems, considering
the allowable band of the SOC determined by SOCmin and SOCmax, and maximum c-rate,
Crate,max. In fact, two conditions should be satisfied at every time step:

SOCmin ≪ SOC ≪ SOCmax,
Pems ≤ Prated,

(6)

where Prated is the allowable rated power usually assumed to be calculated as

Prated = Crate,max × Enom,deg, (7)

where Enom,deg is the degraded nominal capacity obtained from the degradation model (see
Figure 4). However, the allowable rated power is not only influenced by the maximum
c-rate but is also affected by the maximum allowable charging/discharging power based
on the difference in SOC from the SOCmin or SOCmax in each sample time of the model
simulation. This power can be calculated as follows:

Pch,max
soc,max =

∣∣∣ SOCmax−SOC
100

∣∣∣× Enom,deg ×
(

3600
Tsample

)
,

Pdch,max
soc,min =

∣∣∣ SOC−SOCmin
100

∣∣∣× Enom,deg ×
(

3600
Tsample

)
,

(8)

where Tsample is the sample time of the model simulations, and Enom,deg is the degraded
nominal capacity of the ESS in kWh, which is obtained as the output of the degradation
model. Pch,max

soc,max is the maximum allowable power change during charging limited by
maximum SOC at each sample time in kW/sample time, and Pdch,max

soc,min is the maximum
allowable power change during discharging limited by minimum SOC at each sample time
in kW/sample time. Therefore, one can represent the improved allowable rated powers,
Pch

rated,imp and Pdch
rated,imp, during charging and discharging, respectively, as follows:

Pch
rated,imp = min(Prated, Pch,max

soc,max),

Pdch
rated,imp = min(Prated, Pdisch,max

soc,min ),
(9)

where min(.) indicates finding the minimum of the input argument. Finally, Prated is
replaced by Pch

rated,imp or Pdch
rated,imp in (6), and conditions in (6) are applied in the local EMS

model using logic rules to assume the maximum allowable part of the Psch,conv as the output
power, i.e., Pems.

SOC model: As shown in Figure 4, the SOC model block uses Pems from the local EMS
model and Enom,deg from the degradation model to calculate the SOC as follows:

SOC =
CkW−to−kWh ×

∫
Pems,lossdt

Enom,deg
× 100, (10)

where CkW−to−kWh is 1/3600 to convert the available ESS energy in kWs to the available ESS
energy in kWh, and Pems,loss is obtained from the Pems after applying charging/discharging
losses as follows:

Pems,loss =

{
Cdch × Pems, Pems ≥ 0
Cch × Pems, Pems < 0

(11)

where Cdch = −1−Kch,loss/100, Cch = −1+Kch,loss/100, and Kch,loss is the charging/discharging
loss parameter, which can yield different percentage values according to the ESS technology
(see Table 1).
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Table 1. ESS parameters and their values used in the studies.

ESS Parameters (Unit) Parameter Name New Li-Ion ESS Second-Life
Li-Ion ESS New Lead–Acid ESS

Charging/discharging loss (%) Kch,loss 3 7 15
Converter import/export loss (%) Kconv,loss 3 3 3

Maximum C-rate Crate,max 1 1 0.6
SOC low limit (%) SOCmin 20 20 50
SOC high limit (%) SOCmax 100 80 100

Initial SOC (%) SOCinit 60 60 60
SOH loss per 1000 cycles (%) Ccy,loss 4.5 4.5 61.5

SOH calendar loss per month (%) Cca,loss 0.125 0.125 0.125
End of life (%) EOL 40 40 60

Degradation model: In the degradation model shown in Figure 4, cycle ageing and
calendar ageing are modelled through their equivalent degradation terms, namely, Dcy and
Dca, as follows:

Dcy = −CkW−to−kWh × |Pems|
2Enom

×CkW−to−kWh × |Pems| × (Ccy,loss/1000), (12)

Dca = −Cca,loss × Cca,mo−to−sec × Enom, Pems ≈ 0 (13)
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where the first term of (12) calculates the equivalent cycles of charging/discharging ac-
cording to micro-cycling, and Ccy,loss is the SOH loss parameter per 1000 cycles. The terms
in (13) are as follows: Cca,loss is the SOH calendar loss per month, and Cca,mo−to−sec is a
coefficient to convert the calendar loss per month to the calendar loss per second. Note
that the calendar losses are assumed to only occur during storing times, when Pems ≈ 0,
i.e., when ESS is not in use. Therefore, the degraded nominal capacity of the ESS can be
calculated as follows:

Enom,deg =
∫

(D cy + Dca

)
dt. (14)

Note that the ESS end-of-life can be modelled as a percentage of the nominal ESS
capacity, where it is compared with the degraded capacity. When the degraded capacity
decreases to the end-of-life value (see Table 1), a logic signal resets the integrator used in
the degradation model.

Output model of converter losses: The last part of the ESS model is the output model
of the converter losses, which has the same structure as the input model of the converter
losses. Therefore, the output ESS power, Pess, can be obtained as follows:

Pess =

{
Cex,out × Pems, Pems ≥ 0 (discharge)
Cim,out × Pems, Pems < 0 (charge)

(15)

However, the converter loss coefficients for power import and power export situations
in the output model, i.e., Cim,out and Cex,out, have different relationships as follows:

Cim,out = 1/(1 − Kconv,loss/100),
Cex,out = 1 − Kconv,loss/100.

(16)

The enhanced ESS model can be utilised for different types of electrical and electro-
chemical ESSs without any structural changes and by only assuming suitable parameters,
which are obtained here using some experimental tests and validated models in the lit-
erature [30–32]. Table 1 shows the parameters for the studied hybrid ESS, including the
new and second-life Li-ion battery ESSs and the new lead–acid battery ESS. The second-life
Li-ion battery ESS is made up of second-life modules, which are tested to select healthy,
reduced-capacity modules to prevent possible variability and nonlinearity in their perfor-
mance and, thus, provide a reliable ESS.

2.1.5. HESS Energy Management Model

Here, a two-level energy management system is used, i.e., local and global EMSs.
The first level, i.e., the local EMS, is performed separately for each ESS as explained in
Section 2.1.4. The second level, i.e., the global EMS, determines the share of the HESS
scheduled power, Phess,sch, for each ESS, i.e., Psch,1,. . ., Psch,i (see Figure 2). To this end, it
requires some information of each ESS whose type depends on the EMS strategy. Here, two
different strategies are considered for the global EMS to show the impact of the global EMS
on the MG planning results, including a HESS. A priority-based EMS and a power-sharing-
based EMS are studied.

Priority-based EMS: In this type of global HESS EMS, a very simple logic rule is
considered to apply a priority between different ESSs for charging and discharging. Due to
the features of the studied ESSs such as depth of discharge (DOD), SOH, and the end of life,
the new Li-ion battery ESS is considered the first priority, and the second-life Li-ion battery
ESS and the new lead–acid battery ESS are assumed to be the second and third priorities for
charging/discharging, respectively. Although this global EMS has a very simple structure
and does not need input signals, e.g., SOC and SOH, it may be very far from optimised
management due to its inability to consider details of the ESSs to charge or discharge them.
To implement the priority-based EMS, the difference between the ESS scheduled power
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and the ESS real power of the higher priority at each sample time, i.e., Psch,i(t)− Pems,i(t),
is assumed as the scheduled power of the lower priority as follows:

Psch,2(t) = Psch,1(t)− Pems,1(t), (17)

Psch,3(t) = Psch,2(t)− Pems,2(t), (18)

where 1, 2, and 3 in subscripts are used for the first, second, and third priorities of ESSs,
respectively.

Power-sharing-based EMS: In this strategy, more details of the ESSs’ information are
used in the global EMS to improve their SOH. Moreover, different charging and discharging
rules are used to satisfy these situations with their required input data. The main idea is
to compare the DOD and maximum c-rate of the ESSs during charging and to compare
the SOC and maximum c-rate of the ESSs during discharging to share the HESS scheduled
power among the ESSs.

The charging rule is to consider the empty ESS capacity according to DOD and the
maximum c-rate of participating ESSs during charging, which is converted to the equivalent
power. To this end, the charging parameters are determined as follows:

Kch,i = Ci
rate,max × Enom,deg,i ×

(
DODi(%)

100

)
, (19)

where Kch,i is the charging parameter of the i-th ESS. Hence, the charging power share of
the i-th ESS can be calculated using a sharing rule as follows:

P−
sch,i =

Kch,i

∑i Kch,i
× P−

hess,sch, (20)

where P−
hess,sch and P−

sch,i are the negative values of the HESS scheduled power and the i-th
ESS scheduled power. Therefore, ESSs, which have greater charging parameters, participate
in charging with greater shares. This helps to improve SOH by increasing small SOCs of
the ESSs, which results in smaller cycle ageing.

The discharging rule is to consider the available ESS power according to the SOC
and the maximum c-rate of participating ESSs in discharging. This available power for
discharging is calculated using a discharging parameter, which can be obtained as follows:

Kdch,i = Ci
rate,max × Enom,deg,i ×

(
SOCi(%)

100

)
, (21)

where Kdch,i is the discharging parameter of the i-th ESS. The discharging power share of
the i-th ESS can be calculated as follows:

P+
sch,i =

Kdch,i

∑i Kdch,i
× P+

hess,sch, (22)

where P+
hess,sch and P+

sch,i are the positive values of the HESS scheduled power and the i-th
ESS scheduled power. Therefore, the ESSs with greater discharging parameters participate
in discharging with greater shares. This improves SOH by decreasing the high SOCs of the
ESSs during discharge, which causes more calendar ageing if they are maintained.

After determining the scheduled power of each ESS according to (17) and (18) for the
priority-based EMS or (20) and (22) for the power-sharing-based EMS, it is considered as
the input of the ESS model indicated by Psch in Figure 4. Finally, as shown in Figure 2, the
actual HESS output is obtained by summing the actual output of all ESSs as follows:

Phess =
N

∑
i=1

Pess,i. (23)
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2.1.6. Autonomous Microgrid Model

As the MG modules were modelled separately, they may be configured into the entire
MG model. Figure 2 shows the connections between different modules of the studied MG.
The total renewable generation power, Pren, is the sum of the WT generation power, Pwt,
and the solar generation power, Ppv. From this, it is possible to calculate the difference
between the renewable generation power and the EV demand power, Pev, as follows:

Per,gen(t) = Pev(t)− Pren(t). (24)

where Per,gen is the generation error power. When its value is positive, it means the
generation is not enough, and its negative value implies more generation power than the
EV demand power. Assuming the charging/discharging power of the HESS, Phess, one can
write the instantaneous power balance of the MG as follows:

Per,load(t) = Per,gen(t) + Phess(t), (25)

where Per,load is the load error power. A positive value of the Per,load means the EV demand
power is not met, and a negative value of the Per,load means excess RES power is neither
consumed by the EV load nor stored in the HESS. Note that Phess in (25) has positive values
during discharging the HESS and negative values during charging the HESS. The HESS
power, Phess, is the sum of the ESSs’ real powers obtained according to the global EMS
calculations and the ESS models.

The HESS scheduled power and the generation error power, i.e., Phess,sch and Per,gen, are
the same values (See Figure 2). Nevertheless, the generation error power and its equivalent
energy are the actual power and energy signals, but the HESS scheduled power and its
equivalent energy are control signals which are used in the EMS. Note that the HESS
scheduled energy and the generation error energy can be easily calculated by integrating
Phess,sch and Per,gen with respect to time. Some more details about the MG model signalling
shown in Figure 2 can be found in [15].

2.2. Economic Modelling

Alongside the technical analysis and modelling of the charging station, this study
also modelled the economic aspects of the system. There are several reasons for this
approach. Firstly, as the objective of this work was to provide a design framework for
an off-grid charging station that can be applied to a wide range of possible scenarios,
for any proposed design of a system to be considered valid, it must be viable from both
technical and economic perspectives. That is, the system must not only meet the technical
requirements of the specified site, but it must also do so in a way that makes economic sense
at the same site. Clearly, given the wide range of potential site ownership and operational
configurations possible, it is not practical to give a single measure of economic viability.
However, by considering the economic aspects of any proposed design it is possible to
provide various metrics for that design, such as COE, payback period, etc., which can be
used by the stakeholders of any given site to assess the economic viability of a proposed
design, given their specific requirements.

A second key aspect of economic modelling is that of producing designs that are
practical to construct in the real world. Whilst the technical models can produce designs
which best meet the objectives of the site, they often result in systems that cannot be
practically constructed due to the specification of equipment sizes or ratings that are not
available commercially from suppliers. Using real-world data for equipment and other
costings allows for the economic model to produce, as accurate as possible, an assessment
of the cost of constructing and operating a given system. It is also used to feedback into the
techno-economic model to ensure that any design produced is based on real components
which are available for use in the system.

To this end, the economic analysis of the system is divided into categories covering
each of the major components of the system. In this way, the economics of any one
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individual aspect can be isolated, and the methodology is also flexible enough to allow for
the addition or removal of system components as required by the technical analysis. Note
that the economic analysis does not cover any aspects relating to the land on which the
site is located, as there is simply too much variation in land costs and acquisition options
to present a meaningful analysis. The technical modelling does, however, give an overall
area specification for the site, so this can be used along with local costings to arrive at an
estimate of the land costs for the system at a given location.

2.2.1. Wind Generation Costs

Wind generation is modelled using the system topology as given in Section 2 and
assumes that the turbines themselves include all the converter equipment to give a standard
ac supply output. In this way, the economic model of each turbine is assumed as follows:

Ctot,wt = Cp,wt + Cins,wt + Crep,wt + Com,wt + Cbr,wt. (26)

Turbine costs are then further broken down into the initial capital costs of purchasing
and installation (CAPEX costs), and operational and maintenance costs (OPEX). CAPEX
costings cover the initial purchase, Cp,wt, and installation, Cins,wt, of the turbine equipment,
together with forecasted replacement costs at the end of the turbine’s operational life,
Crep,wt. OPEX costings cover a yearly operation and maintenance budget, Com,wt, along
with blade replacement costs, Cbr,wt, at intervals as specified by the manufacturer, e.g.,
seven years for a 6 kW wind turbine [33].

2.2.2. Solar Generation Costs

The economic modelling of the solar generation system is performed in a similar way
to that of the wind generation by identifying the CAPEX and OPEX costs associated with
the generation. In the case of solar, however, the analysis is somewhat more complex due to
the more modular nature of the generation. Unlike the wind generation unit which consists
of a single element containing all the generation equipment, the solar system is a collection
of panels and inverters which, together, form the generation source. For this analysis, the
modelling is based on basic units of 405 W (= Prated,panel) PV panels and 15 kW (= Prated,inv)
solar inverters, and their purchasing costs can be calculated as follows:

Cpanels,pv = Npv × Prpanel , (27)

Cinv,pv = ([
Npv × Prated,panel(kW)

Prated,inv(kW)
] + 1)× Prinv,pv, (28)

where Prpanel and Prinv,pv are the unit price (GBP) of the PV panel and the inverter, respec-
tively. An additional complication arises from the fact that the panels themselves require
additional infrastructure for their operation. As multiple panels supply one inverter, and
the inverters are generally physically distant from the panels, there is a wiring cost asso-
ciated with connecting each panel to the system. The panels also need to be supported
mechanically to ensure they are appropriately oriented to achieve maximum generation;
again, this adds a structural cost to each panel. The economic model accounts for these
balance of system (BOS) costs and considers the electrical, Cebos,pv, and structural, Csbos,pv,
costings separately. Another term is also assumed as overhead costs, Coh,pv, to cover any
other initial costs not categorized in previous terms. All these costs are modeled as follows:

Cebos,pv = Npv × Prebos,panel , (29)

Csbos,pv = Npv × Prsbos,panel , (30)

Coh,pv = Npv × Prated,panel × Proh,pv, (31)

where Prebos,panel , Prsbos,panel , and Prated,panel are unit prices of electrical BOS in GBP/panel,
structural BOS in GBP/panel, and overhead costs in GBP/kW, respectively. The final term
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of the CAPEX costs is replacement costs, Crep,pv, assumed as 1.2 times the purchasing costs
as a total replacement cost prediction after the PV lifetime. On the other hand, the OPEX
costs are considered as follows:

Com,pv = Npv × Ytot × Prom,panel , (32)

where Ytot is the total years under study in the planning, and Prom,panel is the operation
and maintenance costs of each panel in GBP/year. Therefore, the total solar generation unit
costs can be calculated as follows:

Ctot,pv = Cpanels,pv + Cinv,pv + Cebos,pv + Csbos,pv + Coh,pv + Crep,pv + Com,pv (33)

2.2.3. EV Charging Station Costs

For this analysis, 7 kW ac chargers are assumed for the EV charging station. As self-
contained units, the costings associated with this are taken to be simply the purchase costs
of the chargers themselves, indicated by Ccharger,ev.

2.2.4. ESS Costs

As described in the previous section, the design chosen for the ESS is of a hybrid type
comprising three separate storage systems. For the economic model, costs are obtained
for purchasing each of the three storage elements, Cpur,ess, together with the associated
electrical component costs, i.e., the electrical BOS, Cebos,ess, and installation costs, Cins,ess.
Costings are also sourced for the bidirectional inverters required for each storage type,
Cinv,ess, together with the associated electrical cabinet and switchgear costs, Ccab,ess. Given
the relatively complex nature of the ESS, with the need to manage the power flow through
the separate types of storage, a cost is included for control equipment and IT infrastructure
associated with the ESS energy management system in Cebos,ess. The costs are calculated for
each ESS as follows:

Cpur,ess = Enom,ess × PrkWh,ess, (34)

Cins,ess = Enom,ess × PrkWh,ins, (35)

Cinv,ess = ([
Crate,max×Enom,ess

Prated,inv
] + 1)× Prinv,ess, (36)

Ccab,ess = [
Enom,ess

Enom,cab
]× Prcab,ess, (37)

where PrkWh,ess, PrkWh,ins, Prinv,ess, and Prcab,ess are the unit prices for purchasing the
energy storage per kWh (GBP/kWh), its installation per kWh (GBP/kWh), purchasing
each inverter, and purchasing each cabinet, respectively. Prated,inv is the rated power of the
inverter, and Enom,cab is the nominal capacity of the cabinet. Note that Cebos,ess is assumed
as a constant cost for each ESS. The replacement cost of the ESS, Crep,ess, is considered to be
the same as the purchasing cost, i.e., Cpur,ess. The costs of the container, Ccon,hess, in which
to house all the ESSs, is also considered for the HESS according to required volume of the
ESS and enough room for operation and maintenance.

The estimated costs for energy storage systems vary quite widely depending on the
source, and, often, the quoted price per kWh for battery technologies is based on the price
of the cells alone without any of the additional hardware required to make those cells
into a practical ESS. For this study, quotes were obtained for plug-and-play ESSs of the
types required, which include not only the storage elements but also the associated battery
management systems (BMSs), enclosures, contactors, etc., required for a working system.
As with the previous elements, costings for each storage technology are modelled separately,
allowing for the model to easily handle the number or types of storage being changed.
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Therefore, the total costs of a HESS including N number of ESSs, Chess, is calculated
as follows:

Chess =
N

∑
i=1

(
Ci

pur,ess + Ci
ins,ess + Ci

inv,ess + Ci
cab,ess + Ci

ebos,ess + Ci
rep,ess

)
+ Ccon,hess. (38)

2.2.5. Construction Costs

Aside from the costs associated with the physical equipment required, establishing the
charging station will also incur additional costs associated with preparing the site. These
construction, design, and management (CDM) costs cover a wide range of activities in-
cluding planning and permit approval from the local authorities, site access, groundworks,
contractor accommodation, health and safety compliance, etc.

Given the broad area covered, the specific CDM costing for any given site is highly
variable and extremely difficult to predict in advance. It is, however, likely to be a significant
proportion of the total costs and, therefore, should be accounted for in the economic
modelling. To this end, the estimated CDM cost, Ccdm, (GBP) is included in the model, with
the value being taken from the authors’ recent experiences with projects similar in scope to
that investigated here [34].

2.2.6. Total Costs

The total costs for the proposed system are given in (38) by taking the sum of the
costings for each individual element, accounting for the projected lifetime of the system.
The total cost is used to inform the overall economic viability of the proposed design, and
it feeds into the overall present-value analysis of the system.

CT,mg = Ctot,wt + Ctot,pv + Ccharger,ev + Chess + Ccdm. (39)

3. Microgrid Planning

Firstly, a planning characteristic is developed according to COE. Then, the sensitivity
analysis method is explained, which is used to compare feasible plans according to the
planning characteristics. Two sensitivity analysis algorithms are used to investigate two
different combinations of changeable parameters, for example, one studies a simple single
ESS in the system, and the second one investigates a HESS.

3.1. Proposed MCOE as a Planning Characteristic

There are a lot of economic, technical, and techno-economic characteristics to be
considered as MG planning indices, such as total cost, net present cost, EV unmet energy
(UME), and COE. Although all these characteristics are important in a sizing/planning
study to consider different aspects of the MG design and implementation, a comprehensive
characteristic or a smaller group of these characteristics is required to make a decision
about the best plans for the MG. Here, a modified COE is proposed, namely, the MCOE,
in which the original COE is strengthened for techno-economic planning by adding two
important technical features. The first feature is the HESS present value, which calculates
the total value of all ESSs used in the HESS after the nominal operating period of the MG.
The present value of i-th ESS is given as follows:

ESSi present value = ((SOHi − EOLi)/100)× Enom × Press,i, (40)

where SOHi = (E nom,deg/Enom

)
× 100. The second feature is the UME penalty, which can

be assumed as a virtual cost as:

UME penalty = Wume(kWh)× Ctari f f (£/kWh), (41)
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where Wume is the EV unmet energy calculated by integrating the positive values of the load
error with respect to time, i.e., Wume =

∫
P+

er,load(t)dt. Therefore, the MCOE (GBP/kWh) is
proposed as follows:

MCOE =
CT,mg − ∑i ESSipresent value + UME penalty

EV met energy(kWh)
. (42)

where the EV met energy is the total energy provided either directly by renewable energies
or by discharging the HESS, which can be calculated from the corresponding EV met power,
Pev,met(t), as follows:

Pev,met(t) =
{
(P ren(t) + P+

hess(t)), Per,gen(t) > 0
Pev(t), Per,gen(t) ≤ 0

(43)

EV met energy =
∫

Pev,met(t)dt. (44)

Note that assuming the present value of the ESSs in the MCOE results in a degree
of freedom in selecting the study years, which is especially less than the ESS lifetime. It
makes the planning studies flexible because the input data for renewable generations and
the EV demand may not always be available with good precision for any number of years.
On the other hand, although the EV met energy is presented in the original COE to reflect
this technical aspect, with the economic feature of total cost in decision-making, the UME
penalty increases the share of technical features to consider a greater safety margin in the
planning process.

In addition to the MCOE, the original economic and technical characteristics are used
in the planning studies, e.g., total costs, EV met energy percentage, and COE. The COE can
be easily calculated using (42) without considering the two added terms, and the EV met
energy percentage can be calculated using (44) as follows:

EV met energy percentage =
EV met energy(kWh)

EV energy demand(kWh)
× 100, (45)

where EV energy demand(kWh) =
∫

Pev(t)dt.

3.2. Sensitivity Analysis-Based Planning

To find the RES and ESS sizes according to techno-economic characteristics introduced
in Section 3.1, two sensitivity analysis-based planning (SAP) scenarios are investigated. In
the first one, namely, SAP1, the techno-economic sizes of the wind generation unit, solar
generation unit, and a single ESS are obtained while the single ESS can be each one of the
studied technologies. In the second planning scenario, namely, SAP2, the techno-economic
sizes are obtained simultaneously for all ESS technologies of the HESS while the wind and
solar generation units’ sizes are assumed fixed based on the SAP1 results.

3.2.1. Wind Generation, Solar Generation, and Single ESS Planning (SAP1)

Figure 5 shows a flowchart of SAP1 for the simultaneous sizing of wind generation,
solar generation, and a single ESS. The number of wind turbines, the number of solar panels,
and the ESS nominal capacity are the changeable parameters of SAP1, and their possible
values are represented in Table 2. The ranges were selected based on some preliminary
studies to ensure that the combination of the RESs and the ESS could provide reasonable
energy values for the EV charging station demand, on the one hand, as well as to satisfy
the feasibility of the targeted location, on the other hand. These preliminary studies cannot
be presented here due to the limited space of the paper. Each wind turbine had a 6 kW
rated power with a 20 m hub height, which is a suitably small wind turbine for installation
near a car park, which is a busy place. The solar panels had ratings of 405 W, 1.95 m2, and
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20% efficiency, and their maximum number is also limited by the available area for the
installation of the EV charging station.
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Figure 5. Flowchart of the sensitivity analysis-based planning for simultaneous sizing of wind
generation, solar generation, and single ESS (SAP1).

Table 2. Values of the changeable parameters in SAP1.

Number of Wind Turbines Number of Solar Panels ESS Nominal Capacity (kWh)

0, 1, 2 20, 30, 40, 50, 60, 70 50, 100, 150, 200, 250, 300, 350

The wind speed and solar radiation data were obtained for 2013–2022. Each one of the
ESS technologies presented in Table 1 is assumed as a single ESS. The EV demand was pre-
dicted for 10 years using the predicted total and electric car populations for 2022–2031 [35].
After calculating the parameters and variables affected by changeable parameters for each
combination of the number of wind turbines, number of solar panels, and ESS nominal
capacity, the MG model was simulated second-by-second for the studied 10 years. It is
noteworthy to mention that the steps in the number of solar panels and the ESS nominal
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capacity should neither be very small, which causes numerous simulations and very long
simulation times, nor very large, which leads to being away from the ideal optimal plan.

The simulation results include some analysable outputs, e.g., the EV met load, and
the MCOE, which can be compared for different plans, i.e., the MG model for different
combinations of the changeable parameters.

3.2.2. Hybrid ESS Planning (SAP2)

Figure 6 shows a flowchart of SAP2 for the simultaneous sizing of different ESS
technologies in the HESS. The nominal capacities of the new Li-ion, the second-life Li-ion,
and the new lead–acid battery ESSs are considered the changeable parameters of SAP2, and
their feasible values are shown in Table 3. A zero value means removing the relevant ESS
from the HESS. One wind turbine and 60 solar panels of the types presented in SAP1 are
assumed as fixed numbers here. This decision is according to the SAP1 results, which are
explained in Sections 4.2 and 4.3.1. The EV demand is the same as SAP1. The characteristics
of the ESS technologies are found in Table 1. After calculating the parameters and variables
affected by changeable parameters for each combination of the nominal capacities of the
three ESS technologies, the MG model was simulated second-by-second for the studied
years. The simulation outputs are compared for different plans to find the best HESSs.

Energies 2024, 17, x FOR PEER REVIEW  18  of  32 
 

 

explained in Sections 4.2 and 4.3.1. The EV demand is the same as SAP1. The characteris-

tics of  the ESS  technologies are  found  in Table 1. After calculating  the parameters and 

variables affected by changeable parameters for each combination of the nominal capaci-

ties of the three ESS technologies, the MG model was simulated second-by-second for the 

studied years. The simulation outputs are compared for different plans to find the best 

HESSs. 

 

Figure 6. Flowchart of the sensitivity analysis-based planning for simultaneous sizing of different 

ESS technologies in the HESS (SAP2). 

Table 3. Values of the changeable parameters in SAP2. 

New Li-Ion ESS Nominal 

Capacity (kWh) 

Second-Life Li-Ion ESS 

Nominal Capacity (kWh) 

New Lead–Acid ESS 

Nominal Capacity (kWh) 

0, 25, 50, 75, 100  0, 25, 50, 75, 100  0, 40, 80, 120, 150 

4. Simulation Results and Discussions 

4.1. Studied System 

The main  structure of  the  studied  system  is  shown  in Figure 1,  including  the EV 

charging station, a wind generation unit, a solar generation unit, and the HESS (a single 

ESS in some studies), which is modelled in Figure 2 and Section 2 through technical and 

economic  modelling.  The  technical  parameters  and  inputs  are  already  presented  in 

1. Calculate parameters and variables affected 
by changeable parameters. 

2. Simulate second-by-second the MG model 
for the studied long-term period.
 

3. Calculate analysable outputs, e.g. MCOE 

Assume next 
value of ESS2 

nominal 
capacity

Yes

NoESS2 nominal capacity =
last value in Table 3

Start

End

ESS1 nominal capacity =
first value in Table 3

ESS2 nominal capacity =
first value in Table 3

ESS3 nominal capacity =
first value in Table 3

ESS1 nominal capacity =
last value in Table 3

ESS3 nominal capacity =
last value in Table 3

Assume next 
value of ESS3 

nominal 
capacity

Assume next 
value of ESS1 

nominal 
capacity

No

No

Yes

Yes

Legend:
ESS1: New Li-ion ESS
ESS2: Second-life Li-ion ESS
ESS3: New Lead-acid ESS 

Figure 6. Flowchart of the sensitivity analysis-based planning for simultaneous sizing of different
ESS technologies in the HESS (SAP2).



Energies 2024, 17, 788 18 of 31

Table 3. Values of the changeable parameters in SAP2.

New Li-Ion ESS Nominal
Capacity (kWh)

Second-Life Li-Ion ESS
Nominal Capacity (kWh)

New Lead–Acid ESS
Nominal Capacity (kWh)

0, 25, 50, 75, 100 0, 25, 50, 75, 100 0, 40, 80, 120, 150

4. Simulation Results and Discussions
4.1. Studied System

The main structure of the studied system is shown in Figure 1, including the EV charg-
ing station, a wind generation unit, a solar generation unit, and the HESS (a single ESS in
some studies), which is modelled in Figure 2 and Section 2 through technical and economic
modelling. The technical parameters and inputs are already presented in Sections 2 and 3.
Unit prices and costs used in the simulations are presented in Table 4. All the results were
obtained for the sensitivity analysis-based planning scenarios known as SAP1 and SAP2.
The simulations were executed in a combined environment of Editor and Simulink in MAT-
LAB 2022b (https://www.mathworks.com/, accessed on 15 January 2024). The iterative
process of the sensitivity analysis-based planning algorithms shown in Figures 5 and 6 was
implemented in Editor using three cascaded for loops. The pre-simulation calculation of
the parameters and variables affected by the changeable parameters and post-simulation
calculation of the analysable outputs, respectively, shown in items 1 and 3 in the flowcharts,
were also performed in Editor using appropriate coding of the input parameters and corre-
sponding formulas. The MG simulation, shown in item 2 in the flowcharts, was performed
in Simulink using only Simulink library tools. Appropriate codes/blocks were used to
connect these two environments of MATLAB, e.g., sim to simulate a Simulink model in
Editor and the To Workspace block to make Simulink outputs available in Editor.

Table 4. Items of unit prices and costs used in the simulations.

Item Cost Item Cost

Wind turbine (each) [33] Energy storage system
Purchasing GBP 33,000 Purchasing a new modular Li-ion battery [36] GBP 335/kWh
Installation GBP 5000 Purchasing a second-life modular Li-ion battery GBP 150/kWh

Operation and maintenance GBP 500/year Purchasing a new modular lead–acid battery [37] GBP 83/kWh
Replacement GBP 30,000/25 years Inverter (50 kW) [38] GBP 3000/inverter
Blade repl. GBP 3000/7 years Installation GBP 80/kWh

Solar energy generation system Cabinet GBP 600/42 kWh
Panel (405 W) [39] GBP 122.5/panel Container 20 ft (40 ft) GBP2500 (4000)

Inverter (15 kW) [40] GBP 2400/inverter Electrical BOS (in total) GBP 3000
Structural BOS GBP 30/panel EV charger
Electrical BOS GBP 80/panel Charger (7 kW) GBP 1500/charger

Overhead GBP 0.22/W CDM costs GBP 20,000
Operation and maintenance GBP 20/panel/year

Replacement GBP 150/panel

A discrete solver with a fixed-step sample time of 10 min was used in Simulink to
simulate the studied MG for each ten-year plan. The simulations were performed on a PC
with a 3.0 GHz Intel(R) Core (TM) i5-8500 CPU and 8 GB RAM.

4.2. Comparing All Feasible Plans in SAP1

The impact of changing the number of wind turbines and solar panels as well as
the nominal capacity of the single ESS on the decision-making characteristics was worth
investigating in SAP1, where the techno-economic sizes of the renewable energy resources
and an ESS should be obtained. This was performed for when the single ESS is the second-
life Li-ion battery ESS and the proposed MCOE were considered as the decision-making
characteristic. The results are shown in Figure 7, where each circle shows a plan, e.g., in
plan number 14, no wind turbine and only 30 PV panels are used, and the ESS nominal

https://www.mathworks.com/
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capacity is 350 kWh. The dashed line is used to follow the changes on the MCOE more
easily. The results show the area of the best plans, including one wind turbine, any number
of solar panels, and the lower values of the second-life Li-ion battery ESS capacity. To select
the best plans, more details are required; therefore, other technical/economic characteristics
are added into the analysis, as presented in the next scenarios.
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Figure 7. Impact of changing the number of wind turbines and solar panels, and the nominal capacity
of the single second-life Li-ion ESS on the MCOE.

4.3. Techno-Economic Comparison of Best Plans in SAP1
4.3.1. Ten Best Plans in SAP1

The ten best plans from Figure 7, discussed in the previous section, are selected
according to their MCOE, which are shown in Figure 8a. The horizontal axis shows the
number of wind turbines, the number of solar panels, and the ESS nominal capacity of
the plans in the form of the number of wind turbine, WT, number of solar panels, PV, and
nominal ESS capacity, kWh. Therefore, all ten best plans based on MCOE require only one
wind turbine, and the best plan needs one wind turbine (6.2 kW), 60 solar panels (each one
being 405 W, 20%), and 100 kWh as the nominal capacity of the second-life Li-ion battery
ESS. Figure 8b shows the total cost of the ten best plans based on the MCOE, where there
are some other plans with a lower total cost than the best plan based on the MCOE. One can
select 1WT-30PV-100kWh as the best plan based on the MCOE and total costs. As shown in
Figure 8c, this plan is also the best plan based on the COE after sorting the best plans based
on the MCOE. However, this plan has about 85% EV met energy as shown in Figure 8d,
which is a low value in comparison with the best plan based on the MCOE, which has 93%
met energy. Nevertheless, there is another best plan based on the criteria of the MCOE
and the EV met energy with the highest met energy. It includes one wind turbine, 70 solar
panels, and the ESS with a 150 kWh nominal capacity, which yields about 97% EV met
energy. Therefore, there are different options to selected as the best plan, which should be
constrained by real limitations in different aspects.
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4.3.2. Comparing Different Single ESS Technologies in SAP1

The same studies in Sections 4.2 and 4.3.1 are performed for the other two ESS tech-
nologies, i.e., the new Li-ion and the new lead–acid battery ESSs, with all other conditions
of the wind turbines, the solar panels, and the EV energy demand being kept without any
changes. The area of best plans based on the MCOE is the same for all three ESS tech-
nologies, which implies using one wind turbine. Therefore, this area is shown in Figure 9,
where all three ESSs can be compared for a different number of solar panels and different
values of ESS capacities. The best plans based on the MCOE are shown in Figure 9, which
are also represented in Table 5 for all single ESS technologies under the study. By selecting
the new Li-ion battery ESS, a nominal capacity of 100 kWh, one wind turbine, and 50 solar
panels are required to provide 94.6% EV met energy and 86.4% SOH. Although selecting
the second-life Li-ion battery needs 10 more solar panels and results in 93% met energy and
68.9% SOH, the corresponding plan is cheaper by about GBP14,000, and it has a lower COE.
Note that the SOH decrease of both the new and second-life batteries is approximately
in the same range. The total costs of the new Li-ion and the new lead–acid battery ESS
technologies are nearly the same. However, the MCOE, the COE, and the met energy of
the new Li-ion battery ESSs are better than the equivalent amounts of the new lead–acid
battery ESS. Moreover, the new lead–acid battery ESS requires a replacement. Therefore,
both the new and second-life battery ESSs are more suitable choices than the new lead–acid
battery ESS. Furthermore, the second-life battery ESS is the most cost-effective choice and
can satisfy the technical requirements well.
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Figure 9. The MCOE comparison of all three ESS technologies in the area of best plans, i.e., including
one wind turbine.

Table 5. Comparison of the best plans of single ESS technologies in SAP1.

ESS
Technology Best Plan MCOE

(GBP/kWh)
Total Cost

(GBP)
COE

(GBP/kWh) Met Energy (%) SOH (%)

New Li-ion 1WT-50PV-100kWh 0.436 169,100 0.467 94.6 86.4

Second-life
Li-ion 1WT-60PV-100kWh 0.445 155,800 0.438 93.0 68.9

New lead–acid 1WT-60PV-150kWh 0.507 167,900 0.478 91.6 67.1 *

* SOH of the second pack after one replacement.

4.4. Techno-Economic Comparison of Best Plans in SAP2

In SAP2, the HESS can be managed by both the priority-based EMS and the power-
sharing-based EMS. Here, these EMSs are studied separately to compare their perfor-
mance in the MG planning studies as well as to compare their technical performance, e.g.,
their SOH.

4.4.1. Best Plans Using the Priority-Based EMS

Figure 10 shows fifteen best plans obtained in SAP2, including HESS plans and using
the priority-based EMS based on the MCOE. The horizontal axis shows the plans by their
HESS capacity, where the first value is the nominal capacity of the new Li-ion battery ESS,
where LFP is an abbreviated equivalent for Lithium Iron Phosphate as the type of the
Li-ion battery ESS used in the studies; the second value shows the nominal capacity of the
second-life battery ESS, where SL is an acronym for the second-life Li-ion battery ESS; the
third value indicates the nominal capacity of the new lead–acid battery ESS, and LA is an
acronym for this ESS.

The MCOE shown in Figure 10a changes in a low range, from GBP 0.44/kWh to about
GBP 0.47/kWh, for all fifteen plans. The best plan based on the MCOE includes only the
new Li-ion battery ESS with a 75 kWh nominal capacity. Figure 10b,c show the total cost
and the COE of the best plans, where the best plan based on these two features is another
single ESS including only the second-life Li-ion battery ESS with a 75 kWh nominal capacity.
The MCOE, COE, and total costs, as the techno-economic and pure economic characteristics,
show the suitability of single-ESS plans, e.g., 75LFP-0SL-0LA and 0LFP-75SL-0LA, with
respect to the HESS-included plans. The five best HESS plans are indicated by numbers in
circles, where they are generally more expensive than the best single-ESS plans. However,
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they have higher EV met energy percentages. After sorting plans based on the MCOE, the
best plan based on the EV met energy is a HESS including both the new and second-life
Li-ion battery ESSs with the same nominal capacities of 75 kWh (see Figure 10d). This plan
provides an EV met energy of about 97%, which shows a high availability of the RESs and
ESSs. Nevertheless, the new law of the UK government about charging points require the
provision of 99% reliability/availability during each calendar year [41], which will be a
challenge for a future work.
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Figure 10. Fifteen best plans obtained in SAP2 including HESS plans and using the priority-based
EMS based on the MCOE: (a) MCOE, (b) Total cost, (c) COE, and (d) EV met energy.

4.4.2. Best Plans Using the Power Sharing-Based EMS

Figure 11 shows fifteen best plans obtained in SAP2 including HESS plans and using
the power-sharing-based EMS, based on the MCOE. The techno-economic results are
similar to those of the priority-based EMS shown in Figure 10. The best plans based on the
MCOE, total costs, and the COE are single-ESS plans as shown in Figure 11a–c. However,
similar to the results of priority-based EMS, the best plan based on the EV met energy,
after sorting plans according to the MCOE, is a HESS including a 75 kWh of each new
and second-life battery ESS (see Figures 10d and 11d). The five best HESSs based on the
MCOE are also the same as those obtained using the priority-based EMS. Therefore, the
studied EMS strategies do not have a considerable impact on the techno-economic planning
results. Nevertheless, the next subsection compares these two EMS strategies in more detail,
emphasizing their SOH.
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Figure 11. Fifteen best plans obtained in SAP2 including HESS plans and using the power-sharing-
based EMS based on the MCOE: (a) MCOE, (b) Total cost, (c) COE, and (d) EV met energy.

Note that the plans including the new lead–acid battery EMS are not favourable,
either from technical aspects, or in terms of being cost-effective. Their faster ageing when
compared to the Li-ion battery ESS, and, consequently, their replacement, at least once for a
ten-year lifetime, are the main reasons. Furthermore, the majority of the best plans include
only two types of ESS technologies, which is due to adding the required infrastructure for
each ESS, e.g., an independent inverter for each ESS.

4.4.3. Comparing EMS Strategies for Best HESS Plans

Figure 12 shows a comparison of the priority-based and power-sharing-based EMSs
for a HESS including a 50 kWh new Li-ion, a 50 kWh second-life Li-ion, and a 50 kWh
new lead–acid ESS. Other simulation requirements, i.e., MG structure and information, are
those used in SAP2 studies. Figure 12a–c show the SOH of the ESS technologies, where
the power-sharing-based EMS leads to higher SOHs for both new and second-life ESSs
than the priority-based EMS after ten years. However, the new lead–acid ESS needs one
replacement in the ninth year when using the power-sharing-based EMS, while this is not
required when using the priority-based EMS due to the very low usage of the third priority,
i.e., the lead–acid ESS. According to Figure 12d, the EV met energy provided by the HESS
is approximately the same for both EMS strategies. Therefore, to complete a comparison of
the EMSs, some other characteristics need to be investigated.
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Figure 12. Comparison of the priority-based and power-sharing-based EMSs for a HESS including a
50 kWh new Li-ion, a 50 kWh second-life Li-ion, and a 50 kWh new lead–acid ESSs: (a) the SOH of
new Li-ion ESS, (b) the SOH of second-life Li-ion ESS, (c) the SOH of new lead–acid ESS, and (d) the
EV met energy by the HESS.

Table 6 shows a comparison of the best plans of HESS in SAP2 for both EMS strategies
including the MCOE, the COE, the EV met energy, and the SOH of the ESSs. As discussed
generally in Section 4.4.2, and as illustrated in Table 6, the most important MG planning
features like the MCOE, the COE, and the EV met energy are not affected considerably
by changing the EMS strategy for each plan. In fact, the difference in MCOE and COE
values is <GBP 0.01/kWh, and the EV met energy difference is around 0.1%. Moreover,
total costs, which are not shown in Table 6, are the same for both EMSs due to the absence
of replacements. Nevertheless, by focusing on the HESS SOH column, a remarkable
improvement in the ESS SOHs can be seen for all plans when the power-sharing-based EMS
is used. Therefore, the power-sharing-based EMS can improve the HESS SOH, but it does
not have a considerable impact on the techno-economic characteristics of the MG planning.

4.4.4. Multi-Objective Decision-Making Constrained by Total Costs

Single and multi-objective decision-making are presented for single/hybrid ESSs in
Sections 4.4.1 and 4.4.2 by sorting SAP2 plans based on the MCOE and then searching
for the best plans according to total costs, the COE, and the EV met energy. On the one
hand, the MCOE is a powerful techno-economic characteristic including the COE benefits
in MG planning studies and more benefits due to its added terms. On the other hand, pure
economic and technical characteristics such as the total costs and the met energy are still
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important for MG designers due to their straightforward and easily analysable information
for decision-making. Therefore, multi-objective decision-making assuming all these three
characteristics, i.e., the MCOE, total costs, and the EV met energy, can be of high interest.
Figure 13 shows the MCOE (blue circles) and EV met energy (red stars) of all plans in
SAP2 employing the power sharing-based EMS, while total costs are restricted in a range
of values by designers. This range is also selected to include the minimum values of the
MCOE, which results in holding the EV met energy higher than 90%. Table 7 shows the best
single/hybrid ESS plans when assuming that the total costs range between GBP160,000
and GBP180,000 and that the MCOE is less than GBP 0.5/kWh. Therefore, a wide range of
plans are provided, including suitable values of the MCOE and the EV met energy as well
as reasonable amounts of total costs based on the designers’ decision. Moreover, since the
power-sharing-based EMS is used, the SOHs of ESS technologies show high values without
any replacements during the 10-year study period.

Table 6. Comparison of the best plans of HESS in SAP2 including both priority-based and power
sharing-based EMS strategies.

Best HESS Plans EMS MCOE
(GBP/kWh) COE (GBP/kWh) EV Met Energy (%) HESS SOH (%)

75LFP-25SL-0LA
Priority-based 0.465 0.483 95.2 83.7-67.1-NA

Power sharing 0.461 0.482 95.3 88-68.8-NA

25LFP-75SL-0LA
Priority-based 0.466 0.465 93.6 77.3-66.5-NA

Power sharing 0.461 0.464 93.7 89.4-68.9-NA

25LFP-100SL-0LA
Priority-based 0.470 0.480 95.4 77.3-67.5-NA

Power sharing 0.466 0.480 95.3 91.4-70-NA

50LFP-50SL-0LA
Priority-based 0.471 0.479 94.5 80.8-66.6-NA

Power sharing 0.466 0.479 94.6 89.1-68.9-NA

50LFP-75SL-0LA
Priority-based 0.472 0.458 95.8 80.8-67.4-NA

Power sharing 0.467 0.453 95.8 91.4-69.9-NA

NA—not applicable.
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Figure 13. The MCOE and EV met energy of all plans in SAP2 using the power-sharing-based EMS
while being constrained by total costs.
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Table 7. Best single/hybrid ESS plans of all SAP2 plans shown in Figure 13, assuming GBP160, 000 <

CT,mg < GBP180, 000 and MCOE < GBP0.5 /kWh.

Nominal Capacity
(kWh) Total Cost

(GBP)
EV Met

Energy (%)
MCOE

(GBP/kWh)
New Li-Ion

SOH (%)

Second-
Life Li-Ion
SOH (%)

New
Lead–Acid
SOH (%)New Li-Ion Second-

Life Li-Ion
New

Lead–Acid

75 0 0 160,900 93.3 0.44 83.9 - -

50 25 0 164,800 91.8 0.47 85.8 67.4 -

0 75 40 166,000 92.1 0.48 - 68.7 76.8 *

25 75 0 166,500 93.7 0.46 89.4 68.9 -

50 0 40 168,900 91.7 0.49 83.6 - 61.1 *

50 50 0 173,500 94.6 0.46 89.1 68.9 -

100 0 0 174,300 95.8 0.45 86.1 - -

0 100 40 174,700 94.3 0.48 - 69.9 87.3 *

25 100 0 175,300 95.3 0.46 91.4 70 -

75 25 0 175,800 95.3 0.46 88 68.8 -

0 75 80 176,400 94 0.49 - 69.6 86.5 *

50 0 80 179,300 94.3 0.49 86 - 72 *

75 0 40 179,800 95.1 0.48 86 - 73.1 *

50 75 0 179,900 95.8 0.46 91.4 70 -

* SOH after one replacement.

4.5. Limitations and Future Work Potentials

Due to both the project and paper limitations, some valuable studies and analyses
could not be performed, and they are listed below for future works.

• Uncertainty analysis for the inputs of the model like renewable energies and EV
charging station parameters can be performed to study the impact of uncertainties on
the planning results.

• Standard requirements for EV charging station availability can be considered as a
necessary minimum EV met energy percentage, which is now 99% in the UK [41].
Therefore, the best plans can be found according to the MCOE and other introduced
features assuming this constraint.

• Different combinations of existing ESS technologies can be considered to improve the
technical features of the HESS and overall MG, e.g., less overall HESS capacity fade,
less EV unmet energy demand, and higher energy density. Soluble lead flow batteries
can be hybridized with lead–acid and Li-ion batteries.

• Global energy management for HESS plays an important role in ESSs’ SOH and an
indirect role in planning features like total costs and cost of energy. Different methods
of global energy management can be compared to study their impact on both HESS
and MG features and select the best ones.

• Due to the intermittency of renewable energies as the only sources of energy for
off-grid EV charging station MGs, it would be valuable to study seasonal long-term
storages, e.g., hydrogen storage systems.

• Since ESS technologies and EV charging station infrastructures develop very fast
nowadays, considering potential technological advancements in modelling, it would
be a good idea to investigate, especially, their impact on economic modelling.
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5. Conclusions

In this paper, the techno-economic planning of a fully renewable energy-based electric
vehicle charging station as an isolated microgrid (MG) is presented. Technical and economic
modelling of all MG components are provided, where an enhanced power-in-power-out
model of energy storage systems (ESSs) is presented, which is suitable for long-term studies,
e.g., the planning and sizing of hybrid ESSs and MGs. This model can be generalized for a
considerable number of electrical and electro-chemical energy storage technologies without
any structural modification. A modified cost of energy (MCOE) is proposed as a new techno-
economic characteristic for MG planning, which reflects the ESS values and the unmet
energy penalty to the normal cost of energy in long-term studies. The MCOE provides a
more comprehensive characteristic than other technical, economic, and techno-economic
characteristics for decision-making alone. Using it for evaluating the plans in a sensitivity
analysis-based planning resulted in a wide range of sorted plans for comparison. As the
second criterion in double-objective decision-making, the total costs of the MG construction,
cost of energy, and total met energy were used to provide more understandable values to
compare plans. In the single ESS sensitivity analysis studies, the required number of wind
turbines and solar panels, and the required capacity of a single ESS, were changed to find
the best plans satisfying the demand for the electric vehicle charging station constrained by
economic limitations. In the hybrid ESS studies, the best nominal capacities of different
ESS technologies were obtained through multi-objective decision-making according to the
MCOE, total costs, and met energy. Although the proposed power-sharing-based energy
management system does not have a considerable impact on the techno-economic features
of the best plans, it improves the state of health of some ESS technologies. However, future
work will fully focus on the impact of more types of global energy management systems in
hybrid ESSs on the sizing and planning characteristics.
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Nomenclature

Abbreviations
BMS Battery management system
BOS Balance of system
CAPEX Capital costs (GBP)
CDM Construction, design, and management
COE Cost of energy (GBP/kWh)
DOD Depth of discharge
EMS Energy management system
ESS Energy storage system
EV Electric vehicle
FEVER Future electric vehicle energy networks supporting renewables
HESS Hybrid energy storage system
IT Information technology
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LA Lead acid
Li-ion Lithium-ion
MCOE Modified cost of energy (GBP/kWh)
MG Microgrid
OPEX Operational and maintenance costs
PV Photovoltaic
RES Renewable energy resource
SAP Sensitivity analysis-based planning
SOH State of health (%)
SOC State of health (%)
UME Unmet energy (kWh)
WT Wind turbine
ZEV Zero emissions vehicle
Variables:
Pev The EV demand power (kW)
Pwt Wind turbine power (kW)
Ppv Solar generation power (kW)
Pren Total renewable power (kW)
Per,gen The generation error power (kW)
Per,load The load error power (kW)
Psch (P hess,sch) The ESS (HESS) scheduled power (kW)
Pess (Phess) The ESS (HESS) output power (kW)
Uz Mean wind speed at the new height (m/s)
Uz,re f Mean wind speed at the reference height (m/s)
Idi f Diffuse irradiance (kW/m2)
Idir Direct irradiance (kW/m2)
Ire f Ground-reflected irradiance (kW/m2)
Itot The total irradiance on the inclined plane (kW/m2)
Npv The number of PV panels
Psch,conv The ESS scheduled power after assuming input converter losses (kW)
Pems The allowable power charged/discharged by the ESS (kW)
Pess, rated The allowable rated power of the ESS (kW)
Enom,deg The degraded nominal capacity of the ESS (kWh)
Pch

rated,imp (Pdch
rated,imp) Improved allowable rated power during charging (discharging) (kW)

Dcy (Dca) The cycle (calendar) ageing of the ESS (kWh)

Kch,i (Kdch,i)
The charging (discharging) parameter of i-th ESS in power-sharing-based
EMS

P−
sch,i (P+

sch,i) The negative (positive) values of the i-th ESS scheduled power (kW)
Ctot,wt The total costs of a wind turbine (GBP)
Cp,wt (Cins,wt) The initial purchase (installation) costs of a wind turbine (GBP)
Crep,wt The replacement cost of a wind turbine (GBP/25 year)
Com,wt The OPEX cost of a wind turbine (GBP/year)
Cbr,wt The blade replacement cost of a wind turbine (GBP/7 year)
Ctot,pv The total costs of the solar generation system (GBP)
Cpanels,pv (Cinv,pv) The initial purchase of the PV panels (inverters) (GBP)
Cebos,pv (Csbos,pv) The electrical (structural) PV BOS costs (GBP)
Coh,pv The total overhead costs of the PV system (GBP)
Crep,pv The replacement cost of the PV panels (GBP/25 year)
Com,pv The OPEX cost of the PV panels (GBP/year)
Ccharger,ev The purchase costs of the EV chargers (GBP)
Cpur,ess (Crep,ess) The initial purchase (replacement) costs of each ESS (GBP)
Cins,ess The installation costs of each ESS (GBP)
Cinv,ess (Ccab,ess) The inverter (cabinet) purchase costs for each ESS (GBP)
Cebos,ess The electrical BOS costs of each ESS (GBP)
Ccon,hess The costs of the container for the HESS (GBP)
Chess The total costs of the HESS (GBP)
Ccdm The estimated CDM costs (GBP)
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CT,mg The total costs of the MG (GBP)
Ness The number of ESSs used in the HESS
Wume The EV unmet energy (kWh)
Constants:
zre f The new height, i.e., hub height of the wind turbine (m)
z The reference (measurement) height of the wind speed (m)
z0 Surface roughness length (m)
ηi Converter efficiency (%)
ηp Panel efficiency (%)
pd Panel dimension

(
m2)

SOCmin (SOCmin) The minimum (maximum) allowable SOC of the ESS (%)
Enom The nominal capacity of the ESS (kWh)
Crate,max The maximum c-rate of the ESS (kW/kWh)
Cim,in (Cex,in) Power converter import (export) loss coefficient in the converter input model

Cim,out (Cex,out)
Power converter import (export) loss coefficient in the converter output
model

Kconv,loss Converter export/import power loss parameter
Cch (Cdch) The charging (discharging) loss coefficient of the ESS
Kch,loss The charging/discharging loss parameter
Ccy,loss The SOH loss parameter of the ESS (%/1000 cycles)
Cca,loss The SOH calendar loss parameter of the ESS (%/month)
Prated,panel The PV panel rated power (kW)
Prated,inv The PV inverter rated power (kW)
Prpanel (Prinv,pv) The unit price of the PV panel (inverter) (GBP)
Prebos,panel
(Prsbos,panel)

The unit price of electrical (structural) PV BOS (GBP/panel)

Proh,pv The unit overhead costs of the PV system (GBP/kW)
Prom,panel The OPEX costs of each panel (GBP/year)
PrkWh,ess (PrkWh,ins) The unit price for purchasing (installation) the ESS (GBP/kWh)
Prinv,ess (Prcab,ess) The unit price for purchasing each inverter (cabinet) (GBP)
Enom,cab The nominal capacity of the cabinet (kWh)
Ctari f f The energy purchase tariff (GBP/kWh)
Tsample The sample time of model simulations (s)
Ytot The total years under the planning study
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