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ABSTRACT
Deep reinforcement learning (DRL) is gaining popularity in task-
offloading problems because it can adapt to dynamic changes and
minimize online computational complexity. However, the various
types of continuous and discrete resource constraints on user devices
(UDs) and mobile edge computing (MEC) servers pose challenges to
the design of an efficient DRL-based task-offloading strategy. Exist-
ing DRL-based task-offloading algorithms focus on the constraints
of the UDs, assuming the availability of enough storage resources
on the server. Moreover, existing multiagent DRL (MADRL)–based
task-offloading algorithms are homogeneous agents and consider
homogeneous constraints as a penalty in their reward function. In
this work, we propose a novel combinatorial client-master MADRL
(CCM_MADRL) algorithm for task offloading in mobile edge com-
puting (CCM_MADRL_MEC) that allows UDs to decide their re-
source requirements and the server to make a combinatorial decision
based on the UDs’ requirements. CCM_MADRL_MEC is the first
MADRL approach in task offloading to consider server storage ca-
pacity in addition to the constraints of the UDs. By taking advantage
of the combinatorial action selection, CCM_MADRL_MEC has
shown superior convergence over existing benchmark and heuristic
algorithms.

KEYWORDS
Multiagent Deep Reinforcement Learning; Combinatorial Action
Selection; Mixed Constraints; Client-Master Multiagent Deep Rein-
forcement Learning; Distributed Solution

ACM Reference Format:
Tesfay Zemuy Gebrekidan, Sebastian Stein, and Timothy J.Norman. 2024.
Combinatorial Client-Master Multiagent Deep Reinforcement Learning for
Task Offloading in Mobile Edge Computing: Extended Abstract. In Proc.
of the 23rd International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 3 pages.

1 INTRODUCTION
Task offloading in MEC has become an attractive solution to meet
the diverse computing needs of UDs [4] by distributing compu-
tational tasks between UDs and MEC servers. DRL has recently
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gained popularity in task offloading due to its advantage in reduc-
ing online computational complexity [11] and adapting to dynamic
changes [7]. However, the existence of various types of resource
constraints on UDs and MEC servers and the combination of dis-
crete, continuous, and combinatorial action spaces pose challenges
to the design of an efficient DRL-based task-offloading strategy.
UDs have limitations such as finite battery life and limited com-
putational capabilities [6, 12], as well as quality of service (QoS)
requirements such as latency. Similarly, MEC servers come with
storage constraints. DRL techniques, such as the deep Q network
(DQN), have yielded encouraging results by modeling the task of-
floading problem as a Markov Decision Process (MDP) with a deep
neural network (DNN) for the function approximation [8]. However,
due to the curse of dimensionality, DQN is insufficient for learning
with large discrete action spaces [1] and a combination of continuous
and discrete action spaces [13]. Although multiagent deep determin-
istic policy gradient (MADDPG)-based task-offloading algorithms
can handle continuous action spaces, the representation of discrete
and continuous action spaces still poses a challenge [5, 13]. Despite
the advances of MADRL in task offloading, such as cooperative
offloading decisions [10] and mixed continuous and discrete ac-
tion spaces [5, 13], most existing MADRL-based algorithms still
formulate the constraints as a penalty in their reward function.

The main contributions of this work are fourfold.

• We propose a novel CCM_MADRL algorithm for task of-
floading in MEC with various types of constraints at the UDs,
the wireless network, and the server. Client agents are de-
ployed at the UDs to decide their resource allocation, and a
master agent is deployed at the server to make combinatorial
decisions based on the actions of the clients. The constraints
of the UDs are considered as a penalty in the reward of the
client agents whereas the channel and storage constraints are
considered in the combinatorial decision of the master agent.

• We contribute to dimensionality reduction by avoiding the
number of sub-channels from the state and action spaces
and considering it as a constraint in the combinatorial action
selection.

• This is the first DRL-based task offloading algorithm to con-
sider combinations of continuous and discrete resource con-
straints on UDs, the communication channel, and the storage
capacity of the server.

• We develop different heuristic benchmarking methodologies
and perform a numerical analysis to determine the efficacy of
the proposed algorithm.
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The details of the system model and the formulation of the prob-
lem are provided in the supplementary material 1

2 COMBINATORIAL CLIENT-MASTER
MADRL ALGORITHM FOR TASK
OFFLOADING IN MEC

Task offloading is a cost-minimization problem that includes time
and energy consumption. We convert the cost minimization problem
into a reward maximization problem and apply CCM_MADRL_MEC.
The formulations of cost minimization and reward maximization are
presented in the supplementary material. The states and actions of
the client and the master agents are presented below.

2.1 State
The state S

(
t
)

of the MEC environment at time t, which includes the
set of the states of the UDs, is described as S

(
t
)
= {Sn

(
t
)
}, ∀n∈N

where n is a UD and N is the set of UDs. The state of a UD, Sn
(
t
)
,

is characterized by five components: task state Stask
n

(
t
)
, normalized

channel gain state Sgain
n

(
t
)
, power transmission budget Spow

n
(
t
)
,

local resource allocation budget Sres
n

(
t
)
, and battery state Sbattery

n
(
t
)
.

At the beginning of each time step, the UDs make decisions
about their resource allocations using client agents. Then, the SDN
controller collects information about the state and action of the UDs
and performs one of the following three procedures using a master
agent: 1) for the UDs that decide to process a task locally, the server
does not interfere. 2) if the number of UDs that propose to offload
their tasks is greater than the number of sub-channels or if the sum
of the sizes of their tasks is greater than the capacity of the storage
capacity of the server, the server makes a combinatorial decision
on which of the requests of the UDs to approve and which of them
to reject. The rejected tasks are processed by their UDs. 3) If the
proposed requests are less than the constraints, the server accepts all
of them. Finally, sub-channels are assigned to accepted UDs, and
then the task offloading and processing process starts.

Existing DRL-based task offloading algorithms, such as [10] and
[5], included the number of sub-channels in their state and action
space. However, the sub-channels have equal transmission capacity
from the perspective of a UD. By restricting the use of a channel
to only one UD at a time, we excluded channel information from
the state and action space and considered them as a constraint in the
combinatorial action selection. Note that a channel can be reused
by multiple UDs one after the other. The actions of the client agents
and the master agents are described below.

Client actions: At each time step, each client agent produces three
actions, which are continuous valued between [0, 1] inclusive, that
decide the task offloading decision by the client n (if xc,n

(
t
)
< 0.5

then processes locally; otherwise the decision is proposed to be
decided by the master agent) xc,n

(
t
)
, the transmission power pc,n

(
t
)
,

and the resources allocation of local computation fc,n
(
t
)
.

Master action: The master agent makes a combinatorial decision
on the client agents whose xc,n

(
t
)
≥ 0.5, about which of them should

be accepted for processing by the MEC server and which of them
should be processed locally.
1https://eprints.soton.ac.uk/486925

Figure 1: Comparison of the CCM_MADRL with the heuristic
and MADDPG algorithms

In the classical MADDPG [9], the critic has a single Q-value for
the combined state and action pair of all actors. The master agent in
the CCM_MADRL_MEC applies the coalition action selection ap-
proach in [2] by modifying the critic part of the MADDPG algorithm
to compute the relative Q value of each client, but uses per-action
DQN [3] instead of a transformer neural network.

3 RESULTS
We compare our algorithm with MADDPG and heuristic algorithms.
The heuristic algorithms differ from CCM_MADRL_MEC in that,
instead of training a master agent to make combinatorial decisions
about the decisions of the clients, they make decisions based on
the order of shortest offloading time and deadline/size. A detailed
description of the experimental setting and exhaustive experimental
results are available in the extended supplementary material. As seen
in Figure 1, the CCM_MADRL algorithm has performed better than
the benchmarks, because once the client agents choose their action,
the master agent makes a combinatorial decision on the action of the
clients.

4 CONCLUSION
We propose a CCM_MADRL_MEC, that considers various con-
straints at the UDs, sub-channels, and server. By combining the
advantages of both the policy gradient and value functions to out-
put continuous and combinatorial actions, CCM_MADRL provides
better convergence than existing homogeneous MADRL algorithms.

We plan to extend this work to multi-server CCM_MADRL_MEC
where multiple servers cooperate to make combinatorial decisions.

ACKNOWLEDGMENTS
This research was sponsored by the U.S. Army Research Labora-
tory and the U.K. Ministry of Defence under Agreement Number
W911NF-16-3-0001. This work was also supported by an EPSRC
Turing AI Acceleration Fellowship (EP/V022067/1).

https://eprints.soton.ac.uk/486925


REFERENCES
[1] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy

Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and
Ben Coppin. 2015. Deep reinforcement learning in large discrete action spaces.
arXiv preprint arXiv:1512.07679 (2015).

[2] Tesfay Zemuy Gebrekidan, Sebastian Stein, and Timothy J.Norman. 2024. Deep
Reinforcement Learning with Coalition Action Selection for Online Combinatorial
Resource Allocation with Arbitrary Action Space. In Proc. of the 23rd Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024).
(In press).

[3] Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari
Ostendorf. 2015. Deep reinforcement learning with a natural language action
space. arXiv preprint arXiv:1511.04636 (2015).

[4] Akhirul Islam, Arindam Debnath, Manojit Ghose, and Suchetana Chakraborty.
2021. A survey on task offloading in multi-access edge computing. Journal of
Systems Architecture 118 (2021), 102225.

[5] Wei Jiang, Daquan Feng, Yao Sun, Gang Feng, Zhenzhong Wang, and Xiang-Gen
Xia. 2023. Joint Computation Offloading and Resource Allocation for D2D-
Assisted Mobile Edge Computing. IEEE Transactions on Services Computing 16,
3 (2023), 1949–1963.

[6] Te-Yi Kan, Yao Chiang, and Hung-Yu Wei. 2018. Task offloading and resource
allocation in mobile-edge computing system. In 2018 27th Wireless and Optical
Communication Conference (WOCC). 1–4.

[7] Xiaowei Liu, Shuwen Jiang, and Yi Wu. 2022. A novel deep reinforcement
learning approach for task offloading in MEC systems. Applied Sciences 12, 21

(2022), 11260.
[8] Xiaowei Liu, Shuwen Jiang, and Yi Wu. 2022. A Novel Deep Reinforcement

Learning Approach for Task Offloading in MEC Systems. Applied Sciences 12,
21 (2022).

[9] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
2017. Multi-agent actor-critic for mixed cooperative-competitive environments.
In Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems. 6382–6393.

[10] Dinh C. Nguyen, Ming Ding, Pubudu N. Pathirana, Aruna Seneviratne, Jun Li,
and H. Vincent Poor. 2023. Cooperative Task Offloading and Block Mining
in Blockchain-Based Edge Computing With Multi-Agent Deep Reinforcement
Learning. IEEE Transactions on Mobile Computing 22, 4 (2023), 2021–2037.
https://doi.org/10.1109/TMC.2021.3120050

[11] Lili Nie, Huiqiang Wang, Guangsheng Feng, Jiayu Sun, Hongwu Lv, and Hang
Cui. 2023. A deep reinforcement learning assisted task offloading and resource
allocation approach towards self-driving object detection. Journal of Cloud
Computing 12, 1 (2023), 131.

[12] Jia Yan, Suzhi Bi, and Ying-Jun Angela Zhang. 2018. Optimal Offloading and
Resource Allocation in Mobile-Edge Computing with Inter-User Task Dependency.
In 2018 IEEE Global Communications Conference (GLOBECOM). 1–8.

[13] Jing Zhang, Jun Du, Yuan Shen, and Jian Wang. 2020. Dynamic Computation
Offloading With Energy Harvesting Devices: A Hybrid-Decision-Based Deep
Reinforcement Learning Approach. IEEE Internet of Things Journal 7, 10 (2020),
9303–9317.

https://doi.org/10.1109/TMC.2021.3120050

	Abstract
	1 Introduction
	2 Combinatorial Client-Master MADRL Algorithm for Task Offloading in MEC
	2.1 State

	3 Results
	4 Conclusion
	Acknowledgments
	References

