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ABSTRACT
Recently, there has been an explosion of mobile applications that
perform computationally intensive tasks such as video streaming,
data mining, virtual reality, augmented reality, image processing,
video processing, face recognition, and online gaming. However,
user devices (UDs), such as tablets and smartphones, have a lim-
ited ability to perform the computation needs of the tasks. Mobile
edge computing (MEC) has emerged as a promising technology
to meet the increasing computing demands of UDs. Task offload-
ing in MEC is a strategy that achieves the demands of the UDs
by distributing the tasks between the UDs and the MEC servers.
Deep reinforcement learning (DRL) is gaining attention in task-
offloading problems because it can adapt to dynamic changes and
minimize online computational complexity. However, the various
types of continuous and discrete resource constraints on the UDs
and MEC servers pose challenges to the design of an efficient DRL-
based task-offloading strategy. Existing DRL-based task-offloading
algorithms focus on the constraints of the UDs, assuming the avail-
ability of enough storage resources on the server. Moreover, existing
multiagent DRL (MADRL)–based task-offloading algorithms are
homogeneous agents and consider homogeneous constraints as a
penalty in their reward function. We proposed a novel combinatorial
client-master MADRL (CCM_MADRL) algorithm for task offload-
ing in MEC (CCM_MADRL_MEC) that enables UDs to decide their
resource requirements and the server to make a combinatorial deci-
sion based on the requirements of the UDs. CCM_MADRL_MEC
is the first MADRL in task offloading to consider server storage ca-
pacity in addition to the constraints in the UDs. By taking advantage
of the combinatorial action selection, CCM_MADRL_MEC has
shown superior convergence over existing MADDPG and heuristic
algorithms.
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1 INTRODUCTION
Recently, there has been an explosion of mobile applications that
perform computation-intensive tasks, such as video streaming, vir-
tual reality, augmented reality, image processing, video processing,
face recognition, and online gaming [1, 2, 10, 24]. However, UDs,
such as tablets and smartphones, have a limited ability to perform the
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computation tasks of these applications. Mobile Cloud Computing
(MCC) has been considered the key technology to meet the com-
putation needs of UDs by offloading their computation tasks to the
cloud [14]. One of the challenges of MCC is latency caused by the
distance of the MCC server from the UDs [18]. MEC has emerged
as a promising technology to address the challenges of MCC and
the increasing computing demands of UDs by providing the MCC
service on the edge of the network.

Task offloading in MEC has become an attractive solution to
cater to the diverse computing needs of UDs [8] by distributing
computational tasks between the UDs and the MEC servers. Many
existing task-offloading algorithms use traditional convex optimiza-
tion methods for single-agent offloading scenarios [17]. DRL has
recently gained attention in task offloading due to its advantage
in reducing online computational complexity [16] and adapting to
dynamic changes [11]. However, the existence of various types of
resource constraints on UDs and MEC servers, and the combina-
tion of discrete, continuous, and combinatorial action spaces pose
challenges to the design of an efficient DRL-based task-offloading
strategy. UDs have limitations such as finite battery life and limited
computational capabilities [10, 22], as well as quality of service
(QoS) requirements such as latency. Similarly, the MEC servers
come with storage constraints. DRL techniques, such as deep Q
network (DQN), have yielded encouraging results by modeling the
task-offloading problem as MDP with deep neural network (DNN)
for function approximation [12]. However, due to the curse of di-
mensionality, DQN is insufficient for learning with large discrete
action spaces [3] and a combination of continuous and discrete
action spaces [23]. Although MADDPG-based task-offloading algo-
rithms can handle continuous action spaces, the representation of
discrete and continuous action spaces still poses a challenge [9, 23].
Despite the advances of MADRL in task offloading, such as cooper-
ative offloading decisions [15] and mixed continuous and discrete
action spaces [9, 23], most existing MADRL-based algorithms still
formulate the constraints as a penalty in their reward function.

A comprehensive survey on task offloading by [8] has presented
task offloading strategies in MEC from different perspectives, includ-
ing the computational model, the decision-making entity, and the
algorithm paradigm. Many algorithms have considered the wireless
communication resource and the computing resource of the server.
For example, the insufficient computing resource of the MEC server
can be alleviated by using MEC-MCC collaboration or collabora-
tion among multiple MEC servers [2]. Sub-channels are considered
in the state and action spaces by some DRL-based task offloading
algorithms [9, 15]. However, the storage constraint on the server is
overlooked in existing DRl-based task-offloading algorithms.

The main contributions of this work are fourfold:



• We proposed a novel CCM_MADRL algorithm for task of-
floading in MEC with various types of constraints at the UDs,
the wireless network, and the server. Client agents are de-
ployed at the UDs to decide their resource allocation and a
master agent is deployed at the server to make combinatorial
decisions based on the actions of the clients. The constraints
of the UDs are considered as a penalty in the reward of the
client agents whereas the channel and storage constraints are
considered in the combinatorial decision of the master agent.
• By avoiding the number of sub-channels from the state and

action spaces, and considering it as a constraint in the combi-
natorial action selection, we reduced the dimensionality
• This is the first DRL-based task offloading algorithm to con-

sider combinations of continuous and discrete resource con-
straints on the UDs, the communication channel, and the
storage capacity of the server.
• We develop different heuristic benchmarking methodologies

and perform numerical analysis to determine the efficacy of
the proposed algorithm.

2 SYSTEM MODEL
This section considers MEC for task offloading, which mainly in-
cludes a base station (BS), UDs, tasks, energy harvesting, and wire-
less networks. We consider a multi-user MEC scenario shown in
Figure 1. In this scenario, there is a single wireless BS equipped with
an MEC server that provides a computing and storage service and an
SDN controller that controls communication between UDs and BS.
The BS serves a set of N = {1, 2, 3, . . . , N} UDs. A UD in the set
N is denoted by n. For local processing, we consider that each UD
n has a minimum and maximum computational resource allocation
budgets denoted by f min

n and f max
n , respectively, in Gigahertz (GHz)

cycles per second. Similarly, to offload its task to the server, we
consider that each UD has a minimum and maximum transmission
power allocation threshold denoted by pmin

n and pmax
n , respectively,

in dBm. Furthermore, we consider a UD to have a minimum battery
threshold of bmin

n and a maximum battery capacity of bmax
n in Mega-

joules (MJ). The BS has multiple constraints and characteristics,
such as the server storage constraint ze in bits and the number of
processing units on the server Ue each having an equal processing
capacity of fe in gigahertz cycles per second. Similar to [9, 15], we
consider a wireless network of bandwidth of W in megahertz that is
equally divided between K sub-channels. The list of notations and
terms used in this work are presented in Table 1.

We consider a task-offloading problem for T time steps of τmax
length each. It is assumed that each UD n generates one task at each
time step. If the processing of a task is not completed in τmax, it
is discarded before the next time step starts. The task model, the
processing model, and the energy harvesting are described in the
following sections.

The task offloading model is designed by combining the settings
of different existing works. Since [15] has used a data set from
Huawei Technologies, we adapted it disregarding the blockchain
part. We considered the energy harvesting process in [23], and took
advantage of the efficient estimation of the completion times of
tasks by [21], which computes the completion time of tasks on the
server based on the completion time of other tasks scheduled before
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Figure 1: Network model

them. Similarly, we assume that the server processes the tasks in the
order of their arrival on the server. The arrival times of the tasks are
determined by their offloading times. In the following, we present
the task and computing model for the task offloading problem.

2.1 Task Model
The task model is based on the setting by [15] on a data set from
Huawei Telecom. At each time step, each UD n generates a task
denoted by its notation as n1 that is represented by characteristics
such as the size of the task zn in bytes, the number of CPU cycles
per bit required to process the task cn, and the maximum deadline
τn to which task processing is expected to finish.

Before processing the task, there are three decision variables: a
binary decision of whether to process it locally or offload it to the
MEC server xn, a local resource allocation fn, and a transmission
power allocation pn, which are described in detail in Section 4.2. So,
we give a binary decision X = {xn|n ∈ N} to describe the processing
mode, as seen in Equation (1).

xn =

{
1, MEC processing
0, Local processing

(1)

Next, we present the local and MEC models.

2.2 Local Processing
A task is processed locally if one of the following two conditions
happens as presented in Section 4.2: if the UD decides to process
the task locally; if a UD proposes the task to the master agent but
the master agent did not select it to be offloaded in the combinatorial
action selection. Then, the UD processes the task using its local
computational resource assigned to its task, which is restricted within
its own resource allocation budget as fn| f min

n ≤ fn ≤ f max
n . The local

computing latency to process the task is computed as Tlocn =
zncn

fn
.

The energy consumption in the local processing mode is calculated

1Because a UD has one task at a time step, we use n to denote both the UD and its task
to reduce the number of notations



Notation Description
N Set of UDs
T Number of time steps

τmax Maximum length of a time step
n A UD or a task of the UD
Tn Total latency of processing task n
xn Binary indicator of local or offload for task n
En Energy consumption of task n

Elocn Energy consumption of task n in local processing
Eoffn Energy consumption of offloading task n
Tlocn Computation time for the local processing of task n
Toffn Offloading time of task n

λ1 & λ2 weight coefficients of Tn and En
bn Battery level of US n
pn Transmission power allocation of the UD n
zn Size of task n
ze Storage capacity of the server
Ue Number of processing units in the server
Ln Cost of processing task n
Rn Reward of processing task n
fn Resource allocation for local processing of task n

Cn Number of CPU cycles to process one bit of task n
αφ Learning rage of the master agent
αθ Learning rage of client agent
J Joules

Table 1: List of notations and terms

based on the size of the task and the allocation of resources for
processing the task, as shown in Equation (2).

Elocn = κzncn fn2 (2)

where κ is energy consumption coefficient [23].

2.3 MEC Processing
In this mode, the task is transferred to the MEC server to be pro-
cessed by one of the processing units Ue of the server. The deci-
sion happens when the UD proposes the task to be offloaded and
the master agent accepts it. To be processed on the server, the task
needs transmission resources, which is a function of the transmission
power pn. The transmission power pn is decided by the UD from
its transmission power budget pn|pmin

n ≤ pn ≤ pmax
n as discussed in

Section 4.2. Then, the data transmission rate dn in a single channel
of the wireless network is calculated using Shannon’s capacity as

dn =
W
K

log2
(
1 + pngn

)
(3)

where gn = hn/σ2 is the normalized channel gain of the uplink
channel between UD n and the BS, with channel gain hn and the
background noise variance σ2. The channel gain hn is impacted by
many factors, including distance. For simplicity, we assume that the
UDs are stationary and have a stationary normalized channel gain
depending on their distance from the BS. The variance of background
noise σ2 is also constant. We did not consider interference between
multiple UDs because we assume that a channel is used by one task
at a time.

Once the data transmission rate is determined, the transmission
time Toffn is computed as:

Toffn =
zn

dn
(4)

Then, the energy consumption of offloading task n to the server
is calculated as Eoffn = pnToffn . Like many works on task offload-
ing [15, 20, 23], we assume that the communication resource re-
quired to return the information about the processed task to the UD
is negligible.

Note that the energy consumption in task offloading is computed
only for the UDs as they are battery-powered. However, the latency
of processing the tasks on the server matters because the tasks have
deadline constraints. Therefore, the total latency of processing a task
on the server is determined by the transmission time, the earliest
availability of the processing unit on the server, and the time required
to process the task on the server. The processing time of task n in
one of the processing units in the server is computed as Tsern =

zncn
fe

.
However, the processing of the task on the server does not start
as soon as the task has arrived at the server. The processing units
on the server process one task at a time. Tasks offloaded to the
server are processed in the order of their arrival at the server, which
is determined by Toffn . The tasks are assigned to the earliest free
processing unit. Therefore, the start of processing task n depends on
the earliest availability of a processing unit, which is determined by
the number of processing units on the server Ue, and Tsern and Toffn

of other tasks that have shorter Toffn than that of task n. Accordingly,
the total latency of the offloading task n to the MEC server TMECn

is computed as TMECn = Tsern + max
(
Toffn ,Tearn

)
where Tearn is the

estimated availability time of the first available processing unit Ue
of the server after the arrival of task n and Max. ensures that the
processing of the task starts when a free processing unit is found
after the offloading of the task is finished. The Tearn is calculated
based on the completion time of other accepted tasks on the server
with the earliest offloading time than that of task n. This estimate is
adapted from the work of [21].

2.4 Energy Harvesting
The energy harvesting process is adapted from the work in [23].
For simplicity, we assume that the UDs harvest en energy at the
beginning of each time interval. Initially, each UD is full with its
maximum battery capacity of bmax

n . The level of the battery in the
next time interval depends on both energy consumption and harvest-
ing, which evolves according to the following equation in the T time
steps.

bn(t+1) = min
(
max

(
bn(t)−En(t) + en(t),0

)
,bmax

n
)

(5)

where En is the energy consumption calculated based on Elocn

and Eoffn as described in Section 3 and min
(
.
)

and max
(
.
)

ensure
that the level of the battery cannot be negative and does not exceed
the maximum capacity.

3 PROBLEM FORMULATION
The total processing latency is Tn =

(
1− xn

)
Tlocn + xnTMECn and the

energy consumption is equal to En =
(
1− xn

)
Elocn + xnEoffn . Con-

sidering that the cost of processing a task is collectively determined



by its processing latency and energy consumption, the cost func-
tion for processing a task is specified as Ln = λ1Tn + λ2En where λ1
and λ2 are weight coefficients. The CCM_MADRL_MEC is aimed
to solve the optimization problem that can be formulated as the
cost minimization for all UDs and T time steps while meeting the
different constraints at the UDs and the server as follows:

minimize
T

Σ
t
Σ

n∈N
Ln(t) (6a)

subject to xn ∈ {0,1}, ∀n ∈ N (6b)

pmin
n ≤ pn ≤ pmax

n , ∀n ∈ N (6c)

Tn ≤ τn, ∀n ∈ N (6d)

bn ≥ bmin
n , ∀n ∈ N (6e)

f min
n ≤ fn ≤ f max

n , ∀n ∈ N (6f)

Σ
n∈N

xn ≤ K, ∀n ∈ N (6g)

Σ
n∈N

xnzn ≤ ze, ∀n ∈ N (6h)

where Equation (6b) implies that a task is processed locally or up-
loaded to the MEC server, Equation (6c) indicates that the transmis-
sion power should be between the power allocation budget, Equa-
tion (6d) ensures that the processing time of each task cannot exceed
its processing deadline, Equation (6e) guarantees that the battery
level should not exceed the low battery level, Equation (6f) ensures
that the local computational resource allocated to each task should
be in the preset minimum and maximum values, Equation (6g) and
ensures that the number of offloaded tasks does not exceed the num-
ber of sub-channels by ensuring that only one task uses a channel. It
is used if and only if it is necessary to use only one channel for one
user as used by [10]. Equation (6h) guarantees that the sum of the
sizes of the off-loaded tasks does not exceed the storage capacity of
the server.

4 COMBINATORIAL CLIENT-MASTER
MADRL ALGORITHM FOR TASK
OFFLOADING IN MEC

To solve the optimization problem of the cost minimization in Equa-
tion (6a), we convert the optimization problem into a reward max-
imization problem and apply CCM_MADRL_MEC. The states,
client and master actions, and the formulation of the reward function
are presented as follows.

4.1 State
The state S

(
t
)

of the MEC environment at time t, which includes the
set of states of the UDs, is described as S

(
t
)
= {Sn

(
t
)
}, ∀n ∈ N.

Constant values such as the number of sub-channels K, the number
of processing units on the server Ue, the processing capacity fe, and
the storage capacity ze of the server are excluded from the state

information. The state of a UD, Sn
(
t
)
, is characterized by five com-

ponents: task state Stask
n

(
t
)
, normalized channel gain state Sgain

n
(
t
)
,

power transmission budget Spow
n

(
t
)
, local resource allocation budget

Sres
n

(
t
)
, and battery state Sbattery

n
(
t
)

as defined in Equation (7):

Sn
(
t
)
= {Stask

n
(
t
)
,Sgain

n
(
t
)
,Spow

n
(
t
)
,Sres

n
(
t
)
,Sbattery

n
(
t
)
} (7)

where Stask
n

(
t
)
= [zn

(
t
)
,cn

(
t
)
,τn

(
t
)

], Sgain
n

(
t
)

is gn = hn/σ2 as de-
scribed in Section 3, Spow

n
(
t
)

= f max
n , Sres

n
(
t
)
= f max

n , and Sbattery
n

(
t
)

is as described in Equation (5).

4.2 Action
At the beginning of each time step, the UDs make decisions about
their resource allocations using client agents. Then, the SDN con-
troller collects information about the state and action of the UDs
and performs one of the following three procedures using a master
agent: 1) for the UDs that decide to make a local processing, the
server does not interfere. 2) if the number of UDs that are proposed
to offload is greater than the number of sub-channels or if the sum of
their sizes is greater than the capacity of the storage capacity of the
server, the server makes a combinatorial decision on which of the
requests of the UDs to approve and which of them to reject. 3) If the
proposed requests are less than the constraints, the server accepts all
of them. Finally, sub-channels are assigned to accepted UDs, and
then the task offloading and processing process starts.

Existing DRL-based task offloading algorithms, such as [15] and
[9], included the number of sub-channels in their state and action
space. However, the sub-channels have equal transmission capacity
from the perspective of a UD as seen in Equation (3). If we restrict
that a channel is used by only one UD at a time, it does not matter
which channel a UD uses. Therefore, the inclusion of sub-channels
in the state and action space incurs a dimensionality problem without
playing any significant role. We excluded channel information from
the state and action space and considered them as a constraint in the
combinatorial action selection. Note that a channel can be reused by
multiple UDs one after the other, by lifting the constraint that one
channel must be used by one channel. In such a case, only the storage
capacity of the server becomes the constraint in the combinatorial
action selection.

The actions of the client agents and master agent are as follows.

Client Actions. At each time step, each client agent produces
three actions, which are all continuous value actions between [0, 1]
inclusive. The action space can be expressed as:

Ac
(
t
)
= xc,n

(
t
)
, pc,n

(
t
)
, fc,n

(
t
)
← θn

(
Sn

(
t
))

, ∀n ∈ N (8)

where Sn
(
t
)

is the state of UD n as described in Equation (7), and
θn is the parametrized policy function of the client, xc,n

(
t
)

is the
task offloading decision by client n (if xc,n

(
t
)
< 0.5 then xn in Equa-

tion (1) becomes 0 otherwise the task is proposed to be considered
for the combinatorial decision), pc,n

(
t
)

is the client action that de-
cides the transmission power using Equation (9), and fc,n

(
t
)

is the
action that decides the local computational resources allocation using
Equation (10).



The actions of the client agents determine pn and fn are follows:

pn = max
(

pmin
n , pc,n

(
t
)

pmax
n

)
(9)

fn = max
(

f min
n , fc,n

(
t
)

f max
n

)
(10)

Master Action. For the client actions with xc,n
(
t
)
≥ 0.5, the mas-

ter takes the combinations of states and actions of the clients and
provides a binary output for the combinatorial decision on which
of them should be allocated locally and which of them should be
accepted for processing by the MEC server.

Am
(
t
)
= xm,n

(
t
)
← φ

(
S,A,Sc,Ac

)
(11)

where S and A are the set of states and actions of all client agents,
and Sc and Ac are the set of states and actions of the client agents
whose Ac,n ≥ 0.5 and φ is the policy of the master.

The combinatorial action selection in the master agent is built by
modifying the critic in the classical multiagent deep deterministic
policy gradient (MADDPG) algorithm [13] and incorporating the
per-action DQN [7].

Figure 2 shows the interaction diagram of the CCM_MADRL
algorithm and the MEC system. Client agents represent the policies
of the UDs. The master agent represents the policy on the MEC
server. The environment represents the allocation of resources in the
UDs and on the server. After a client produces its output, it does
the following as mentioned in Section 4.2: if xc,n < 0 assigns xn = 0
and starts the local allocation. Otherwise, it forwards xc,n, pn, fn to
the master for the combinatorial decision. Then, the master agent
produces the binary decision and applies it to the UDs and the server.
Finally, a shared reward is computed and provided to the master
agent to train its value function. The client agents are also trained
using a TD error computed by the master agent as feedback.

4.3 System Reward Function
To compute the reward, we use the negative of the objective function
and we compute a penalty function for the constraints of the tasks
and UDs. The constraints of the server are already considered in the
combinatorial action selection and do not need to be incorporated as
a penalty. In [23], they included a dropoff penalty in their reward for
running out of batteries. In ours, we start the penalty from a preset
minimum battery threshold.

L′n = λ1 min
((

τn−Tn
)
,0
)

+ λ2 min
((

bn−bmin
n

)
,0
)

(12)

Since the design of our cooperative learning formulation is based
on the cost minimization problem in Equation (6a), our system
reward function is equal to the negative of the system cost function
and the penalty function. Thus, we can formulate the system reward
function as follows:

r̄
(
S
(
t
)
,A

(
t
))

=− 1
|N| Σn∈N

Ln
(
t
)
−L′n

(
t
)

(13)

The power and resource allocation decisions made in the current
step by the UDs affect their operational life in the next time steps by
affecting energy consumption. Therefore, the DRL must consider

Client agent 1

Policy 1 (θ1)

Client agent 2

Policy 2 (θ2)

...

Client agent N

Policy N (θN )

Master agent

Value Function (φ )

MEC
Environment

(UDs & Server)client-actions{xc,n ,p
n ,fn }

client-actions{xn, pn, fn}

Master-action {xm,n, pn, fn}

S

S1

S2

SN

reward

TD error

Figure 2: The interaction diagram of the agents and the MEC en-
vironment. Client agents output their actions {xn, pn, fn}. Clients
with {xc,n < 0.5} start local processing; and the others propose
their tasks to the master agent, who makes the combinatorial
decision on which of the proposed tasks should be offloaded and
which of them should be designated for local processing

immediate reward and long-term return using the Bellman equation
as shown in Equation (14)

Q
(
S,A,Sn,An|φ

)
=
(
1−αφ

)
Q
(
S,A

)
+ αφ

(
R
(
S,A

)
+ γ

n
P
(
S′|S,A

)
max
S′n,A′n

Q
(
S′,A′,S′n,A

′
n|φ ′

) )
(14)

where αφ is the learning rate, γ is the discount factor, φ is the
policy of the critic, φ ′ is the policy of the target critic, S = {S1, ...,SN}
and S′ = {S′1, ...,S

′
N} are combined current and next states, A =

{A1, ...,AN} and A′ = {A1, ...,A′N} are combined current and next
actions of the client agents, and S′n and A′n are the corresponding
states and actions of the agents. The role of the four parameters in
Q′ is presented in the following section.

4.4 The master Agent with per-client DQN
In MADDPG, there is only a single Q-value for the combined state
and action pair of all actors, which is calculated as:

Q
(
S,A

)
=
(
1−αφ

)
Q
(
S,A|φ

)
+ αφ

(
R
(
S,A

)
+ γQ

(
S′,A′|φ ′

))
(15)

To customize the critic to select combinatorial actions, it should
be able to provide a Q-value per each actor (or client in the case of
CCM_MADRL). Therefore, the master agent with per-client DQN
in the CCM_MADRL adapts the concept of per-action DQN where
the state Sn and the action An of each client agent are appended to
the combined state and the action of the client agents to calculate the
relative Q value in the combination of the state and the action as seen
in Equation (14). The combined rewards are given only to selected
clients in the task offloading problem, as seen in Algorithm 3 so
that they will have different Q values to distinguish them in action
selection. The reward is used by the master agent to train a value



function for the selected clients using per-client DQN. Client agents
are also trained using a TD error computed by the master agent as
feedback.

The master agent applies the coalition action selection approach
in [5]. However, for ease of benchmark comparison with MADDPG,
it uses per-action DQN instead of a transformer neural network.

4.5 Algorithms
Since the master agent in the CCM_MADRL_MEC algorithm has
two roles: providing feedback for training the clients, similar to the
MADDPG, and participating in the combinatorial action selection
of the clients, it follows different procedures for both. Therefore, the
algorithm is presented below in three parts: a main algorithm, an
action selection algorithm, and a training algorithm in the following
sections.

Main Algorithm. The main algorithm runs the action selection
algorithm, the training environment, and the evaluation environment.
At each episode, it runs for T time steps as seen in lines 7 to 12 of
Algorithm 1. At each step, the action selection algorithm is called,
and the rewards are computed, and then the experience is recorded
to replay memory. When the iteration over the steps is complete,
the training algorithm is called and the trained policies of the client
agents and the master agent are evaluated.

Action Selection Algorithm. Because the action selection algo-
rithm has to use exploration in the training environment, we present
the computation of ε , which is used for ε-greedy to determine
whether to explore a new action or to exploit the learned knowledge
in the master agent and to scale the noise in the client agents as seen
in Algorithm 2. At each episode, ε is updated using Equation (16).

ε = Min_E psilon +
(
Max_E psilon−Min_E psilon

)
· e−

episode
Max_E pisodes

(16)
where Min_E psilon and Max_E psilon are the minimum and maxi-
mum values of the decaying epsilon, episode, is the current episode,
and Max_E pisodes is the maximum number of episodes.

The action selection algorithm applies the exploration of actions
for the client agents and the master agent as follows. Note that the
evaluation flag is used to indicate whether the actions are running
for the training environment or for the evaluation environment. In
the evaluation, exploration is not needed. For client agents, the
exploration is performed by adding noise to the actual output of
the client agents, as seen in lines 5 to 8 of the Algorithm 2. After
adding noise to the actual action, the values are clipped to [-1,1]
so that they are within the activation function of the client agents,
Tanh in this case. All actions, explored or exploited, are scaled to be
between [0,1] before applying to compute the resource allocation in
Section 4.2.

The master agent follows ε-greedy for exploration and exploita-
tion as seen in lines 41 to 47. First, a random number is generated as
seen in line 11 to decide whether to explore or exploit. If the number
is less than ε , the master agent shuffles the proposed actions as seen
in line 45 and follows the combinatorial action selection procedure
described below. Otherwise, the master agent computes the Q value
based on the states and actions of the proposed actions and appends

Algorithm 1 CCM_MADRL main Algorithm

1: Initialize Max_E pisodes = 2000, Min_E psilon = 0.01,
Max_E psilon = 1, γ = 0.99

2: Initialize client agents θn ∀n ∈ N and the master agent φ with
random weights

3: Initialize target client agents θ ′n← θn and the target master agent
φ ′← φ , ∀n ∈ N

4: Initialize replay memory RM
5: for episode = 1 to Max_E pisodes do
6: Reset environment and get initial state Sn

(
t = 1

)
, ∀n ∈ N

7: for t = 1 to T do
8: Go to Algorithm 2 using evaluation = False flag to select

client and master actions
9: Execute actions and observe total reward r̄

(
t
)

and next
state Sn

(
t + 1

)
, ∀n ∈ N

10: Store transition
(
Sn

(
t
)
,An

(
t
)
, r̄
(
t
)
,Sn

(
t + 1

))
, ∀n∈N

in to RM
11: Update the state Sn

(
t
)
← Sn

(
t + 1

)
, ∀n ∈ N

12: end for
13: Go to Algorithm 3 for training
14: for EvalEpisode in EvalEpisodes do
15: Reset and seed episode to EvalEpisode and find state

S
(
t = 1

)
16: for t = 1 to T do
17: Go to Algorithm 2 using evaluation = True flag to select

client and master actions
18: Execute actions and observe total reward r̄

(
t
)

and next
state Sn

(
t + 1

)
, ∀n ∈ N

19: Update the state Sn
(
t
)
← Sn

(
t + 1

)
, ∀n ∈ N

20: end for
21: end for
22: end for

the Q value along with the identifiers of the tasks n to Qs and Index
and follows the combinatorial action selection procedure.

After the actions of the client agents are provided, the master agent
follows one of the following three procedures in the exploitation
mode as described in Section 4.2. If all client agents decide to
process their tasks locally, as in line 18, the master agent does not
intervene. Line 20 computes the Q values of the proposed tasks
using per-client DQN, and appends them to Qs and Index along with
their identifiers n, to be considered in the combinatorial decision.
If the number of proposed tasks or the sum of their sizes is less
than the number of sub-channels and the storage constraint on the
server, the server accepts all of them as seen in lines 24 to 26. If the
number of proposed tasks is greater than the number of sub-channels
or if the sum of their size is greater than the storage capacity of
the server, the master agent uses the Q-values computed using the
states and actions of the client agents that proposed to offload their
tasks to make decisions. It starts to approve the proposed actions
of the clients with the highest Q-values until the number of sub-
channels or the storage constraint is met. The remaining agents are
designated to process their tasks locally. The algorithm is provided in
Algorithm 2. The procedure of the exploitation is provided similarly



to the procedure of exploitation except that the proposed actions are
shuffled randomly rather than getting sorted by their Q-values.

Training Algorithm. The algorithm for training the client agents
and the master agent is provided in Algorithm 3. Because the struc-
ture of the master agent is different from the critic of MADDPG
as seen in Section 4.4, Algorithm 3 is significantly different from
existing MADDPG training algorithms in that: It generates multiple
Q-values rather than one combined Q-value, because the master
agent has to make a combinatorial decision using the relative Q-
values of the clients as seen in lines 7,17, and 33; The client agents
are trained by computing the highest Q value from the tasks of-
floaded to the server as seen in lines 13 and 38; If all tasks are
allocated locally by the clients the master agent uses all_zeros as a
placeholder to hold the combined Q-value as seen in lines 11, 22,
and 35. Note that after the master agent decides which of the tasks
should be processed in the server as described in Section 4.2, the
reward is applied only to the selected tasks when training. I.e. the
reward is computed at a system level using Equation (13) but it is
used only by the tasks offloaded to the server when training the
algorithm so that the tasks are distinguished by their Q-values in
the action selection algorithm. This technique is adapted from the
coalition action selection in [5].

The notations of the client and master actions are changed in
the training algorithm because of the subscript i for the minibatch
which is used to iterate over the entries of the minibatch of size M.
Unlike MADDPG, which computes the Q-values of the minibatch
as a batch, the Q-values of the minibatch in the CCM_MADRL are
computed individually because they are processed conditionally as
seen with many if clauses in the algorithm. The training algorithm
starts by selecting a minibatch of size M from the replay memory.
Each entry of the minibatch includes the combined state S and action
A of all client agents S, the set of binary actions of the tasks by the
master agentAmas, the total reward of the tasks r̄, the combined next
state S′, and a flag that indicates whether the episode was terminated
or not done.

The master agent is trained by lines 2 up to 28. Line 2 computes
the target action for every client and every entry of the minibatch
using their next state. The target action is to be used to compute
the target Q-value using the master agent. Then, lines 3 and 4 con-
catenate the target actions of the client agents because the master
agent accepts a combined state and action of all clients as input as
seen in line 7. Lines 5 and 6 check if the client agents have decided
to process the tasks locally or propose them to the master agent.
For each task that was proposed to the master, a relative Q-value is
computed in line 7 and the maximum Q-value will be computed in
line 13. Line 9 concatinates the Q-values of the offloaded tasks in
the same entry of a minibatch. If no task was offloaded, a Q-value
will be computed using a placeholder to train the master agent so
that it is used to give feedback like classical MADDPG. Then, the
combined reward is provided to the actions selected to offload their
tasks as seen in lines 16 to 20. The current and target Q-values in
lines 17 and 17 are used to compute the TD error in line 26. As
seen in lines 21 to 25, if all of the client agents, at any entry of the
minibatch, decide to process their tasks locally, the master agent
concatenates the state and action of all agents and appends all_zeros
as a placeholder to learn the Q value when all tasks are processed

Algorithm 2 The action selection algorithm for the client agents and
the master agent

1: Input: state Sn for each client agent n, {K,ze}, and Evaluation
flag

2: Output: client actions An for each n with xn decided by collabo-
ration with the master agent

3: Get action An← πn
(
Sn,θn

)
, ∀n ∈ N

4: if Evaluation == False then
5: Compute ε using Equation (16)
6: noise = random(|N| by |An|)*ε

7: An = An + noisen, ∀n ∈ N
8: Clip An to [-1, 1]
9: end if

10: Scale An to [0, 1] using An
2 + 0.5, ∀n ∈ N

11: Generate a random number
12: Qs = [], Index = []
13: if random < ε or Evaluation == True then
14: S = {Sn}, A = {An}, ∀n ∈ N
15: for n ∈ N do
16: Get xc,n from An as described in Section 4.2
17: if xc,n < 0.5 then
18: xn = 0
19: else
20: Append

(
Qs,Q

(
S,A,Sn,An,φ

))
, Append

(
Index,n

)
21: end if
22: end for
23: if Length

(
Index

)
≤ K and Sum

(
zn ∀n ∈ N and xc,n ≥ 0.5

)
≤ ze then

24: for ∀n ∈ N and xc,n ≥ 0.5 do
25: xn = 1
26: end for
27: else
28: Sort Qs, and adjust Index accordingly
29: TotalSizeO f Accepted = 0
30: while Length

(
Index

)
> K do

31: n = Pop
(
Index

)
32: xn = 1
33: if TotalSizeO f Accepted + zn ≤ ze then
34: TotalSizeO f Accepted = TotalSizeO f Accepted + zn
35: else
36: xn = 0
37: end if
38: end while
39: end if
40: else
41: Collect the index n of the tasks with xc,n ≥ 0.5 ∀n ∈ N to

Index
42: if Length

(
Index

)
≤ K and Sum

(
zn ∀n ∈ N and xc,n ≥ 0.5

)
≤ ze then

43: Execute lines 24 to 26
44: else
45: shuffle Index in to random order
46: Execute lines 29 to 38
47: end if
48: end if



Algorithm 3 The training algorithm for the client agents and the
master agent

1: Sample a random minibatch of transitions(
S,A,Amas, r̄,S′,done

)
of size M from RM

2: Set target actions A′i,n← πn

(
S′i,n,θ

′
n

)
, ∀n ∈ N, and for i = 1

to M
3: S′i = {S′i,n}, ∀n ∈ N, and for i = 1 to M
4: A′i = {A′i,n}, ∀n ∈ N, and for i = 1 to M
5: Get xi,n from A′i,n as described in Section 4.2, ∀n ∈ N, and for

i = 1 to M
6: if x′i,n ≥ 0.5, ∀x′i,n ∈ a′i,n, ∀n ∈ N, and for i = 1 to M then

7: Append
(

Q′N ,Q
(

S′i,A
′
i,S
′
i,n,A

′
i,n,φ

′
))

8: end if
9: Q′i = Q′N , for i = 1 to M

10: if Length
(
Q′i
)

is 0 for any i then
11: nextQi = Q

(
S′i,A

′
i,all_zeros,all_zeros,φ ′

)
12: else
13: nextQi = Max

(
Q′i
)

14: end if
15: y = [], Qs = []
16: if Amas

i,n = 1 ∃n ∈ N ∃i ∈M then
17: Append

(
Qs,Q

(
Si,Ai,Si,n,Ai,n,φ

))
18: targetQ = r̄i + γnextQi ∗

(
1−donei

)
19: append(y, targetQ)
20: end if
21: if Amas

i,n = 0 , ∀n ∈ N ∃i ∈M then
22: Append

(
Qs,Q

(
Si,Ai,all_zeros,all_zeros,φ

))
23: targetQ = r̄i + γnextQi ∗

(
1−donei

)
24: append

(
y, targetQ

)
25: end if
26: Compute the TD error: δ = 1

Length
(
y
)ΣLength

(
y
)

j=1
(
y j−Qs j

)2

27: Update parameters of master agent φ : φ ← φ + αφ ·∇φ δ

28: Update target master network φ ′← φ

29: for each client n do
30: QN

i = [] for i = 1 to M, tarQ = []
31: Set new actions Anew

i,n ← πn
(
Si,n,θn

)
, ∀n ∈ N, and for i = 1

to M
32: Anew

i = {Anew
i,n }, ∀n ∈ N, and for i = 1 to M

33: Append
(

QN
i ,Q

(
Si,Anew

i ,Si,n,Anew
i,n ,φ

))
, ∀n ∈ N with

Amas
i,n = 1, and for i = 1 to M

34: if Length
(
QN

i
)

is 0 for any i then
35: Qloc = Q

(
Si,Anew

i ,all_zeros,all_zeros,φ
)

36: Append
(
tarQ,Qloc

)
37: else
38: Append

(
tarQ,Max

(
QN

i
))

)
39: end if
40: Compute the gradient for the client: ∇φn Jφn ←

− 1
LengthtarQΣ

Length
(
tarQ

)
j=1 ∇φn tarQi

41: Update the client parameters θn:
42: θn← θn−αθ ∇θn J

(
θn
)

43: Update target client networks θ ′n← θn
44: end for

locally, and it is only used to provide feedback in training the client
agents as seen in line 35.

The training of client agents is seen from lines 29 to 44. They
are trained similarly to the training of actors in classical MADDPG
except that the feedback is computed differently as seen in lines
33 to 39, because the Q value is provided for the client agents that
offloaded their task to the server. Therefore, if one or more clients
were offloaded their task, the feedback for training the clients is
computed from the Q value of one of the offloaded tasks as they
are trained with the same rewards. The maximum Q value of the
offloaded tasks is considered for consistency. The computation of the
maximum Q-value is the same as that of the training for the master
agent.

We used prioritized experience replay [19] in the CCM_MADRL
algorithms for better efficiency in the training.

5 EXPERIMENTAL EVALUATION
To evaluate the merits of the combinatorial action selection by intro-
ducing a master agent to MADDPG, in task offloading problem with
various constraints, we compare our algorithm with other bench-
marks and heuristic algorithms as follows.

5.1 Benchmark Comparison
The main benchmark for our algorithm is MADDPG for two reasons.
First, most existing task-offloading algorithms use DDPG and MAD-
DPG. Second, our algorithm is an extension of MADDPG. However,
we also developed different heuristic benchmarks. The heuristics
differ from the proposed CCM_MADRL_MEC in that, instead of
training a master agent to make combinatorial decisions about the
clients, a stationary algorithm is used to make a decision on which
of the clients to approve for the MEC server based on some ordering
mechanism. The benchmark algorithms are discussed below.

• MADDPG: This benchmark uses actor agents to make de-
cisions. Its difference from CCM_MADRL_MEC is in the
procedure 2) of the action selection in Section 4.2, where the
SDN allocates the tasks to the sub-channels according to their
order of offloading rather than making combinatorial deci-
sions. Tasks that are not assigned to any channel are dropped.
The actor agent in the UD will assign τmax to its TMECn for
the dropped tasks as a penalty. Because the penalty can be
unfair for benchmark comparison, the following heuristics are
developed to have equivalent combinatorial decisions with
the CCM_MADRL_MEC for the tasks that are not accepted.
• MADDPG with the shortest offloading time first heuristic:

This is similar to MADDPG, with the distinction that tasks
not assigned to sub-channels or storage are designated for
local processing.
• MADDPG with deadline/size first heuristic: This differs from

the MADDPG with the shortest offloading time first heuristic
in that it uses the increasing order of deadline/size as a priority
rather than offloading time.

Even if the way tasks are accepted by the MEC server differs
between the benchmarks and the CCM_MADRL_MEC, the order
of processing of the accepted tasks is always in the order of arrival
at the MEC using Equation (4)



5.2 Experimental Settings
The experimental setting is provided in Table 2. Note that all UDs
have the same minimum battery, power, and resource allocation
threshold but their maximum budget is generated from uniform
distribution. As described in Section 2, the experimental setting is
customized from the settings in [15] and in [23]. The typical storage
capacity of modern servers is GBs and TBs. However, because we
chose a small experimental setting due to computational resources,
we considered a storage constraint of 400 MB so that the task of-
floading problem is combinatorial to the server. We used a seed of
37 for the reproducibility of the simulation environment. Evaluation
episodes are seeded with their index. A discount factor of 0.99 is
used in this experiment.

Table 2: Experimental parameters of CCM_MADRL_MEC

Param Value Param Value
|N| 50 Pmax 24 dBm
K 10 Pmin 1 dBm
τn [0.1-0.9] s pmax

n [Pmin - Pmax] dBm
W 40 MHz pmin

n Pmin dBm
fmax 1.5 GHz fmin 0.4 GHz
f max
n [ f min- f max] GHz bmax 3.2 MJ

f min
n f min GHz bmin 0.5 MJ

gn [5-14] dB fe 4 GHz
zn [1-50] MB ze 400 MB
cn [300 - 737.5] cycles Ue 8
κ 5×10−27 λ1,λ2 0.5, 0.5
en 0.001 J bmax

n [bmin- bmax] MJ
bmin

n bmin MJ

5.3 Generalizability
Because convergence is affected by the initialization of the weights
of the DNNs and the exploration and exploration sequence, we
evaluate the algorithms in a different evaluation environment. At
every episode of the training environment, the DRL is evaluated with
50 evaluation episodes.

5.4 Results
First, we run an experiment with 10 steps per episode for 2000 train-
ing episodes. We ran 10 experiments using different initialization of
DNN weights and different sequences of exploration and exploitation
for each run and plotted the result with a 95% confidence interval as
seen in Figure 3 (A). The CCM_MADRL algorithm has performed
better than the others because once the clients choose their action,
the master agent also makes a combinatorial decision on the action
of the clients. On the other hand, MADDPG-based heuristic and
benchmark algorithms use only actors to provide actions. The critic
is only used to provide feedback to the actors. Similarly, Figure 3
(B) shows CCM_MADRL has a smaller percentage of tasks has
tasks whose deadline has expired before finishing processing of the
tasks compared to the other algorithms. Note that Figure 3 (A) is the
performance based on the combined reward and combined penalty
for the time and energy consumption in Equation (13) but Figure 3

Figure 3: Comparison of the CCM_MADRL in the evaluation
environment with the heuristic and MADDPG algorithms with
a learning rate of 0.0001 and 0.001 for the clients and master
respectively

(B) is a percentage of tasks whose deadline expired before finishing
to the total number of tasks generated in the episode. Figure 3 (C)
shows that none of the UDs exceed the minimum battery threshold
in an episode. This is because the experiments are run for 10 steps
per episode.

Next, to see the impact on the battery level, we repeat the above
experiment by changing the number of steps per episode to 100 and
the bmax to bmin 1J. Figure 4 (C) shows that CCM_MADRL_MEC
has more UDs running below the minimum battery threshold than the
benchmark and heuristic algorithms. However, as explained above
for Figure 3, the algorithm is by computing a scalar reward, which
is a sum of energy and time consumption, as seen in Equation (13)
but the percentage of UDs exceeding their battery threshold is from
the ration of UDs that exceed battery threshold to the total number
of UDs. Therefore, it is affected by the scales given to the deadline
penalty and energy penalty. We used lambda1 = lambda2 = 0.5 as
weight coefficients of processing time and energy consumption. We



Figure 4: Comparison of the CCM_MADRL with the heuristic
and MADDPG algorithms on the evaluation environment with
learning rates of 0.0001 and 0.001 and bmax = bmin 1J for the
clients and master respectively

repeated the algorithm for lambda1 = 1 and lambda2 = 5 as seen in
Figure 5.

We ran the experiment further with lambda1 = 1 and lambda2 =
5 because Figure 4 (B) looks like it is the exact inverse of Figure 4
(B) means lambda1 = lambda2 = 0.5 has not given enough balance
for the energy consumption, which is a very low number, and the
time consumption, which is relatively larger. The result is plotted in
Figure 5 with a 95% confidence interval of 40 runs, unlike the above
two experiments which are plotted with a 95% confidence interval of
10 runs. However, the plots do not show a significant difference with
10 runs and 40 runs. Subplot (B) and subplot (A) are now varied but
subplot (C) shows that CCM_MADRL_MEC has still more UDs
running below the minimum battery threshold than the benchmark
and heuristic algorithms. Nonetheless, CCM_MADRL_MEC has
performed better than the other algorithms in the combined perfor-
mance and shows more advantage in the number of tasks whose

Figure 5: Comparison of the CCM_MADRL with the heuristic
and MADDPG algorithms on the evaluation environment with
learning rates of 0.0001 and 0.001 and bmax = bmin 1J for the
clients and master respectively

deadlines exceeded. Using scalar reward for multi-objective func-
tions does not represent the underlying problem but it is not the
scope of this work. The work in [6] has studied the essence and
techniques of multi-objective reinforcement learning.

It can be seen that the benchmark and heuristic algorithms demon-
strated a closer performance to the CCM_MADRL_MEC on 100
steps per episode than on 10 steps per episode. This is because
the training is performed at the end of each episode. This caused
the training after 10 steps to overfit to the early episodes, whereas
the training after every 100 episodes to generalize. The bench-
mark and heuristic algorithms are impacted by overfitting more
than CCM_MADRL_MEC because they use only their actors to
select action while the CCM_MADRL_MEC uses the advantage of
both clients and master to mitigate overfitting and sticking to local
optimal.

Note that the CCM_MADRL_MEC in Figure 4 and Figure 5
are not plotted until the last episode. The experiment is run on



Iridis 2, an HPC cluster at the University of Southampton. The
experiments for 60 hours each. All of the experiments for heuristic
and benchmark algorithms were finished earlier, but some of the runs
for the CCM_MADRL_MEC ran out of time before reaching the
last episode. For convenience in plotting with the 95% confidence
interval, all runs of the CCM_MADRL_MEC are clipped after the
run with the least number of episodes. Note that the benchmark
and heuristic algorithms have only one Q value in the critic for a
combination of state and actions of the actors. On the other hand, the
number of Q values to train in the CCM_MADRL_MEC is equal to
the number of offloaded tasks or 1 if all of them are allocated locally.

6 CONCLUSION
In this paper, we propose a combinatorial client-master MADRL
algorithm for task offloading in MEC, that considers various con-
straints at the UDs, sub-channels, and server. By combining the
advantages of both policy gradient and value functions to output
continuous and combinatorial actions, CCM_MADRL provides bet-
ter convergence than existing homogeneous MADRL algorithms
because the master agent applies combinatorial decisions on the
actions proposed by the clients.

In the future, we plan to extend CCM_MADRL_MEC to multi-
server MEC where multiple servers cooperate to make combinatorial
decisions.
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