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A data-driven study of variability in X-ray binaries using machine learning

by Jakub Kacper Orwat-Kapola

The field of time series data mining has become increasingly important in light of the impending
era of “Big Data”. With new astronomical sky surveys set to generate data at an unprecedented
rate, the need for automated methods of data analysis is becoming increasingly urgent.

This thesis makes a contribution to the toolbox of automated characterisation methods for
astronomical time series, specifically light curves. Two end-to-end pipelines drawing on concepts
from the fields of signal processing, data science, machine learning, and deep learning are
presented, with examples showing how they can streamline the process of light curve analysis.

The first pipeline is designed to extract and aggregate features from light curve segments,
using a neural network and clustering algorithms to combine them into feature vectors of fixed
length. These “light curve fingerprints” can be used as input for downstream machine learning
algorithms, providing a way to tackle the problem of constructing a standard representation
for light curves of variable length. I demonstrate the proposed method on the X-ray data of
the Galactic low-mass black hole X-ray binary system GRS 1915+105, showcasing how it can
be used to study the variability of the source on time scales ranging from seconds to hours,
and to quantify the similarity of different light curves. The outcomes highlight the problem of
the popular classification system of GRS 1915+105 observations, which does not account for
intermediate class behaviour. I also explore the extension to another source, and outline the
direction of further development.

The fourth chapter of the thesis presents a periodicity detection and characterisation pipeline,
which utilises the wavelet transform for timing-frequency analysis. The pipeline is applied to a
sample of photometric light curves of Small Magellanic Cloud Be X-ray binaries, demonstrating
its ability to facilitate analysis of the sources’ behaviour over time scales ranging from days to
decades. Using this methodology, I detect several periodic signals for the first time, and provide
the interpretation of their physical origin. The pipeline is a useful tool in the analysis of the
binary orbital behaviour of the sources, the evolution of Be star non-radial pulsations, and their
possible link with the formation mechanism of the circumstellar decretion discs.
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Chapter 1

Introduction

This work focuses on the exploration of data-driven analysis methods of variability in X-ray binary
systems. Specifically, the application of machine learning (ML) methods to the characterisation
of X-ray light curves. The application of non-ML based, signal processing methods to the analysis
of X-ray binary photometry is also discussed. This chapter explains why the development of
data-driven methodologies is particularly important now, it introduces the physics and variability
of X-ray binaries, as well as the methodologies used in later chapters.

Automated approaches to data analysis are becoming increasingly relevant as we are entering the
era of big data in and outside of astronomy. For example, the healthcare services generate large
amounts of data in the form of electronic medical records, clinical trials, lab results, genomic data
etc. (Huser and Cimino, 2016), providing healthcare professionals with an opportunity to gain
insights into patient outcomes, treatment effectiveness, and disease patterns. New capabilities
for data acquisition and processing with ML are leading to initiatives which aim to develop
personalised medicine that mitigates drug resistance issues (Nussinov et al., 2021). Time series
data analysis and modelling methods have a wide array of potential uses, including the prediction
of cardiac arrest risk (Kennedy and Turley, 2011), intensive care unit readmission risk (Lin et al.,
2019), the prediction of patient medication expenditures (Kaushik et al., 2020) or the prediction
of hospital-onset COVID-19 infections (Myall et al., 2022). Other potential applications of
ML include predictive policing (Shah et al., 2021) and police response analysis (Rotaru et al.,
2022), fraud detection (Varmedja et al., 2019) etc. Some specific industrial applications include,
for example, analysis of smart utility meter data and city traffic data. The ability to identify
appliance energy usage patterns can provide actionable insights to utility providers (Singh and
Yassine, 2018), as smart meters are being installed in millions of houses. Prediction of the rate
of traffic flow and smart route planning can aid in the management of congestion in intelligent
transportation systems (Zhu et al., 2019).

The need for study of large data sets across multiple scientific disciplines propelled develop-
ment in the areas of bioinformatics (with example applications in genomics, Bayat, 2002),
geoinformatics (e.g. navigation, land surveying, Praveen et al., 2016), cheminformatics (e.g.
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pharmacology Xia, 2017) and astroinformatics. All of these disciplines combine information
technology, data science and domain-specific knowledge to extract useful information from the
data. This often involves the application of statistical and ML methods to identify patterns in
the data. Various methods of modelling of time series data have been employed in numerous
fields of research (e.g. Längkvist et al., 2014; Hyndman et al., 2015; Benkabou et al., 2018;
Ismail Fawaz et al., 2019).

Within the field of astronomy, future and ongoing surveys, like those conducted by Vera C. Rubin
Observatory (also known as the Large Synoptic Survey Telescope, LSST, Ivezic et al., 2019) and
Zwicky Transient Facility (ZTF, Bellm, 2014), will produce petabytes of data at unprecedented
rates. LSST is a new synoptic survey currently under construction, with the completion expected
in 2024. It will operate for 10 years, imaging the entire visible sky every 3–4 nights, using six
optical filters (𝑢𝑔𝑟𝑖𝑧𝑦). Its highly sensitive camera is expected to discover 20 billion galaxies
and a similar number of stars. The ZTF survey covers the observable northern sky every two
nights, using 𝑔 and 𝑟 filters. The most recent, sixteenth data release contained 4.64 billion light
curves. Given that manual analysis of this volume of data by human experts is impossible, we
need to develop systems capable of interpreting the data for us.

1.1 Data science for astronomical time series

Light curves are a type of time series data describing the intensity of electromagnetic emission
from an astronomical source. They can show regular, semiregular and irregular behaviour,
depending on the periodicity of the signal, or lack thereof, which is dictated by the nature and
state of the observed object. Figure 1.1 shows the vast range of possible object classifications,
arranged according to the causes of their variability (see Eyer et al., 2019, for an overview of
variability in the second data release of the Gaia survey). The two main branches of this diagram
differentiate objects depending on whether the variability is intrinsic or extrinsic to the object
itself. The branches are further divided according to the stellar or non-stellar nature of the source,
and then further, according to the specific variability class. Sources showing intrinsic causes of
variability include active galactic nuclei, eruptive variables, cataclysmic variables and pulsating
variables. Examples of extrinsic causes include rotation, eclipsing and microlensing.

Variability of the sources gives us a lot of information about the physical processes taking place
within the source. Solar flares are a type of eruptive phenomena associated with a sudden energy
release caused by magnetic reconnection, which for example is observed in the Sun, as well as
others stars and young stellar objects (see Benz and Güdel, 2010, for a review). Cataclysmic
variables are binary systems consisting of a white dwarf and a low mass, main sequence star,
where the white dwarf accretes through Roche lobe overflow. Variability of these sources can
be affected by the strength of the white dwarf’s magnetic field, and thanks to their relatively
short evolution timescales they can serve as laboratories for the study of the accretion physics
(Scaringi et al., 2022). Radial and non-radial pulsations are observed in a wide variety of stars



1.1. Data science for astronomical time series 3

LBV

Stars

AGN

Stars

Asteroids

Rotation
Eclipse

Microlensing CataclysmicEruptive Pulsation
Secular

Novae

(DAV) H-WDs 

Variability 
Tree

Extrinsic Intrinsic

NSupernovae
SN

Symbiotic

ZAND

Dwarf novae
UG

Eclipse

Asteroid 
occultation

Eclipsing 
binary

Planetary 
transits

EA

EB

EW

Rotation

ZZ Ceti
PG 1159

Solar-like

(PG1716+426 / Betsy)
long period sdB

V1093 Her

(W Vir / BL Her)
Type II Ceph.δ Cepheids

RR Lyrae
Credit:  Eyer et al. (2018)
Adapted from:  Eyer & Mowlavi (2008)

δ Scuti

γ Doradus

Slowly
pulsating B stars

α Cygni

β Cephei

λ Eri

SX Phoenicis
SXPHE

Hot OB Supergiants

ACYG

BCEP
SPB

SPBe

GDOR

DST

PMS
δ Scuti

roAp

MirasIrregulars

Semi-
regulars

M

SR

L

Small ampl.
red var.

(DO,V GW Vir)
He/C/O-WDs

PV Tel
He star 

Be stars

RCB

GCAS
FU

UV 
Ceti

Binary red giants

α2 Canum Venaticorum
MS (B8-A7) with
strong B fields

SX Arietis
MS (B0-A7) with
strong B fields

Red dwarfs
(K-M stars)

ACV

BY Dra

ELL

FKCOM
Single red giants

WR

SXA

β Per / α Vir

RS CVn

PMS

S Dor

Eclipse

(DBV) He-WDs 

V777 Her

(EC14026)
short period sdB

V361 Hya

RV Tau

Photom. Period
DY Per BLAP

LPV

OSARGSARV

CEP
RR

RV
CW

Figure 1.1: Variability tree diagram showing the multiplicity of different classes of variable
objects observed in astronomy. Credit: Eyer et al. (2019)

with different temperatures and luminosities, scattered across the Hertzsprung–Russell diagram,
and are triggered by the partial ionisation of hydrogen and helium. For a more detailed review
of different classes of stellar variability, see Catelan and Smith (2015).

In order to study these physical processes, we need to observe the relevant sources over timescales
which are adequate for their particular types of variability. The purpose of large astronomical
surveys is to provide such observational data, however in order to make sense of this large volume
of data and identify relevant observations, analysts need methods which can extract descriptive
variables from individual data observations (i.e. perform feature engineering) and use them in
ML pipelines to compare observations and perform tasks like classification, outlier detection or
clustering.

One example of a project that aims to identify observations of interest using ML is the Automatic
Learning for the Rapid Classification of Events (ALERCE). ALERCE is a data broker which
is currently processing the ZTF data, and is preparing to become a broker for LSST. ALERCE
(Sánchez-Sáez et al., 2021) have developed a light curve classification pipeline, which generates
variability features from ZTF light curves, and colours from AllWISE and ZTF photometry
(containing information about the relative intensity of different photometric bands), to perform
classification using a type of random forest algorithm. Their classifier uses 152 sophisticated
light curve features, which for example include values describing whether the periodogram of
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the light curve is dominated by one particular frequency, the intensity of peaks potentially caused
by aliasing, parameters of an irregularly sampled variant of an autoregressive model, light curve
variance estimates for short and long time scales, history of non-detections of the target, as well
as a set of other statistical features, generated by a library for time series feature extraction called
“feature analysis for time series” (FATS, Nun et al., 2015). This is an example of a classification
pipeline that uses a curated set of light curve descriptors developed by domain experts.

ML-based inference is most often preceded by this labour-intensive task of feature engineering,
which requires domain-specific knowledge. This approach also starts from the assumption that
we know what we are looking for in the data set, and such specific features might fail to capture
unexpected, anomalous behaviour. Automated feature extraction methods aim to remove this
requirement of interpretation of data using expert knowledge, and to reduce the biases associated
with it. Several methods of automated feature extraction for light curve data have been studied in
the past, for example Armstrong et al. (2015) used Kohonen self-organising maps to perform the
classification of variable star light curves, while Pieringer et al. (2019) used pattern dictionary
learning to encode information contained in photometric light curves, and highlight the most
salient light curve sections, like peaks and drops in magnitude. Mackenzie et al. (2016) extracted
light curve segments and clustered them to find common patterns of variability in variable star
candidates, creating a representation compatible with ML classifiers. Similarly, Valenzuela and
Pichara (2018) used a sliding window method to extract light curve segments and classified
the light curves based on the presence of characteristic patterns. Naul et al. (2018) extracted
features of phase-folded light curves using an autoencoding recurrent neural network and used
a random forest classifier on observations of variable sources from All Sky Automated Survey
Catalog, Lincoln Near-Earth Asteroid Research survey, and Massive Compact Halo Object
Project, achieving classification accuracy of well over 90%.

End-to-end architectures have also been used for a variety of tasks. Those approaches use a single
model which implicitly learns a low-dimensional representation of data to perform classification,
inference etc. For example, Charnock and Moss (2017) used a bidirectional recurrent neural
network (RNN) to process and classify light curves of the Supernovae Photometric Classification
Challenge data set and achieved impressive results. Mahabal et al. (2017) transformed the
light curves of Catalina Real-Time Transient Survey to two-dimensional images and used a
convolutional neural network (CNN) to classify them. Shallue and Vanderburg (2018) trained
a deep CNN to detect exoplanet transits in folded light curves of the Kepler mission, and were
able to discern plausible planet signals from false-positives 98.8% of the time. Becker et al.
(2020) trained an RNN to classify variable star light curves, achieving results which were
competitive with results of a random forest classifier trained on features generated by FATS.
They grouped observations of each light curve with a sliding window, reducing the sequence
length, which allowed the RNN to process long sequences. More recently, Zhang and Bloom
(2021) demonstrated state-of-the-art classification performance using novel Cyclic-Permutation
Invariant Neural Networks which are invariant to phase shifts of phase-folded light curves.
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Figure 1.2: An illustration of a low mass X-ray binary system. The colour scale is inverted,
with the darkest colours representing the brightest regions. Credit: Hynes (2012)

In this thesis, I focus on the application of ML-based methods and signal processing methods to
the analysis of variability in light curves of one subset of variable sources; X-ray binary systems.
Below, I introduce some fundamental information about these systems, about the physics causing
the variability we observe, and discuss the methods of variability analysis and ML in more detail.

1.2 X-ray binaries: causes of variability

X-ray binary systems (XRBs) are comprised of a compact object in the form of a black hole (BH)
or a neutron star (NS), and an optical companion star. XRBs are classified as either low-mass
(LMXB) or high-mass (HMXB), based on the spectral type of the companion star and the binary
mass function. In LMXBs the companions are optical counterparts with the spectral type of A
or later, and the mass of ≤1𝑀⊙, whilst in HMXBs the companion is an early-type, O or B star
with the mass of >10𝑀⊙. Systems with companion masses in the range of 1𝑀⊙≲𝑀≲10𝑀⊙ are
referred to as intermediate-mass X-ray binaries.

1.2.1 Low-mass X-ray binaries

Figure 1.2 illustrates an example LMXB, and shows the main types of electromagnetic radiation
emitted by the different components of the binary system. These systems have orbital periods
ranging from sub-hour to a few weeks. As of 2022, ∼200 confirmed and candidate Galactic
LMXBs have been identified, and among those, NS systems are twice as abundant as those
containing a BH (Bahramian and Degenaar, 2023). The phenomenology of NS LMXBs can
differ from that of a BH ones, due to the presence of a solid surface of the NS, and this can
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be the basis for identification of the nature of the compact object. These characteristic events
include Type I X-ray bursts and pulsations. Type I bursts are thermonuclear flashes caused by
rapid fusion of accreted material, which burns accumulated hydrogen into helium and then into
carbon, resulting in a flash that reaches maximal intensity in a duration ranging from a fraction
of a second to ∼10 s, and then decays over the time span of seconds to minutes (see Lewin et al.,
1993, for a review of X-ray bursts). Coherent pulsations are caused by a hot spot on the surface of
the spinning NS. Pulsations and Type I X-ray bursts are observed in both LMXBs and HMXBs.

LMXBs can be classified according to their long term X-ray variability, with persistent sources
showing stable luminosity levels due to consistent accretion, whilst transient sources can show
X-ray luminosity changes by a factor of ≳1000, switching between periods of active accretion and
quiescence. The majority of LMXBs are X-ray novae, which show significant changes in X-ray
luminosity. While transient outbursts typically last for a few weeks up to a ∼year, with recurrence
of 1–60 years, a few quasi-persistent sources showing extended outbursts have been observed as
well. The active, outburst state in those sources can last for multiple years. Examples of quasi-
persistent sources include the NS LMXB EXO 0748-676, which showed an outburst lasting
24 years (Degenaar et al., 2011), the BH LMXB GRS 1915+105, which has been in outburst
since 1992 and is still active in X-rays as of February 2023 (Miller and Homan, 2023), the NS
system IGR J17062-6143 which has been in the active state since 2006 (Hernández Santisteban
et al., 2019) etc. The cause of the outbursts has been modelled as an instability in the accretion
disc, caused by changing accretion rate (see Remillard and McClintock, 2006; Bahramian and
Degenaar, 2023, for reviews of the properties of LMXBs).

On the high-frequency end of the variability spectrum, many LMXBs exhibit quasi-periodic
oscillations (QPO), which have frequencies in the range of 0.01–450 Hz for BH systems, and
in NS systems reaching frequencies of up to ∼1200 Hz. These high frequency oscillations are
thought to originate from regions very close to the compact object, and are often associated with
the inner disc radius. Relativistic precession of the inner hot accretion flow has been proposed as
a possible explanation of QPOs in black hole XRBs (see Ingram and Motta, 2019, for a review
of QPOs).

In this thesis, I focus on the X-ray variability of two BH LMXBs in the time scales of seconds to
hours. Those sources are GRS 1915+105 and IGR J17091−3624, discussed in Chapters 2 and 3
respectively.

1.2.2 High-mass X-ray binaries

HMXBs can be subdivided into two groups; systems containing B-type stars that show optical
emission lines (hence often referred to as a Be star), with a spectral type of III-V, and those
containing an OB supergiant. Another method of source classification for pulsating HMXB
is based on the NS spin and orbital periods, which define a given source’s position on the
Corbet diagram (Corbet, 1986), as shown in Figure 1.3. Three populations of sources can be
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Figure 1.3: (a) Orbital-spin period diagram (Corbet diagram) showing the population of
HMXBs. Peculiar, outlier systems are indicated by open markers; the open triangles correspond
to 2S0114+65 and OAO 1657−41, while the open circle to SAX J2103.5+4545. (b) Linear fit

to the BeXRB sources, given by Equation (1.1). Credit: Reig (2011); Igoshev et al. (2021)

distinguished in the Corbet diagram; Be X-ray Binaries (BeXRB) have relatively long orbital
periods of ≳15 days that show a correlation with the spin periods, whilst disc-fed supergiant
XRBs with a short spin period of ∼100 − 101 s show an anti-correlation, and wind-fed supergiant
XRBs with longer spin periods ∼102 − 103 s show no correlation.

In this work I focus on BeXRBs, HMXBs containing a Be star and a NS (see Reig, 2011, for a
review of BeXRBs). Figure 1.3b shows the Corbet diagram of the BeXRB sources found in the
Galaxy, as well as the Small and Large Magellanic Clouds. The dashed, red line shows a linear
fit to this data (Igoshev et al., 2021), and is given by the equation

log10

(︃
𝑃spin

s

)︃
= 1.12 × log10

(︃
𝑃orbital

d

)︃
− 0.298. (1.1)

Figure 1.4 shows a schematic of a BeXRB; a NS in a fairly close, moderately eccentric orbit
around a Be star, which feeds a semi-stable, circumstellar decretion disc. The NS disrupts the
disc during the periastron passage, causing an X-ray flare which can last for several days. The
NS spins asynchronously, causing regular X-ray pulsations at the spin period of the NS.

The exact mechanism of mass loss from the Be star is still not known. Be stars are rapidly
rotating, at ≳75% of the critical rate, and a possible mechanism which can eject material
from the equatorial region into a Keplerian orbit involves non-radial pulsations and small-scale
magnetic fields, such as localised loops (see Rivinius et al., 2013, for a review about Be stars).
An alternative mechanism involving magnetic reconnection and no non-radial pulsations has
also been proposed by Balona and Ozuyar (2021)

Optical emission from BeXRBs is dominated by the companion and its decretion disc, while
the accretion disc around the NS makes a contribution that is smaller by orders of magnitude.
Therefore, photometric variability mainly contains information about the Be star behaviour.
Optical light curves show long-term aperiodic variability caused by the evolving decretion disc,
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Figure 1.4: Be X-ray binary. The schematic depicts a system with eccentricity of 0.3 and
orbital period of 150 days. Credit: Helen Klus (http://www.soton.ac.uk/~mjcoe/smc/)

periodic flares with a fast rise and exponential decay profile caused by the NS disrupting the
decretion disc, as well as faster modulations with periods in the range of 0.1-2 days. Those fastest
periods are associated with the pulsation and rotation of the Be star (Rivinius et al., 2013).

Chapter 4 of this thesis focuses on the optical variability of a sample of Small Magellanic Cloud
BeXRBs in the timescales of days to years.

1.2.3 X-ray binaries: formation and evolution

XRBs form from binary star systems, when the more massive of the two stars undergoes a
supernova explosion, where the envelope of the star is expelled, and the core of the star collapses
to form a compact object. In cases where more than a half of the binary mass is expelled, the
eccentricity of the binary orbit increases 𝑒 > 1, the compact object becomes unbound. Since the
more massive star explodes first, the binary systems are most likely to become disrupted, unless
mass transfer between the stars takes place prior to the supernova. Formation scenarios differ
for LMXBs and HMXBs (Verbunt, 1993).

The companion stars in an LMXB has a low mass of ≤1𝑀⊙, and winds are not an effective
enough mechanism to bring the mass of the massive star below that value. It has been proposed
that this could happen through the spiral-in mechanism, and a correctly aimed kick velocity,
caused by the asymmetry of the collapse of the core of the star. Alternative scenarios include the
formation of a neutron star from a white dwarf, which can implode due to the accretion-induced
collapse (Whelan, 1973; Verbunt, 1993). The final scenario is the evolution of the binary from
a system of multiple stars (Verbunt, 1993).

http://www.soton.ac.uk/~mjcoe/smc/
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The spiral-in process involves the formation of a common envelope for the binary system. This
can happen when the massive star expands rapidly, or when the distance between the stars
decreases due to mass transfer. The smaller star then becomes engulfed by the massive star, and
spirals in, due to the drag force causing a dissipation of the orbital angular momentum into the
envelope. The envelope starts to rotate and heats up, and often gets ejected, when the orbital
energy released exceeds the binding energy of the envelope (Lewin and van den Heuvel, 1983;
Verbunt, 1993). After that, the close binary star will collapse and explode in a supernova, if it is
massive enough.

Similarly to the LMXBs, the formation of HMXBs also requires mass transfer in order to keep
the binary intact. However, the formation of HMXBs requires binary stars of high mass, so the
mass transfer does not need to be as extreme. In these systems, the mass is transferred from
the more massive star to the companion through Roche-lobe overflow. The more massive star is
stripped, leaving a naked helium star, which then undergoes the supernova explosion (Tauris and
Van Den Heuvel, 2003).

1.2.4 The origin of X-ray emission

This thesis focuses on the temporal variability of XRBs in particular energy bands, and as such
it contains little consideration of the energy spectral characteristics of discussed sources, but it
is worth reviewing the physical processes which produce the emissions that we observe.

Gas can escape the companion star and fall onto the compact object in the process of accretion.
There are two main mechanism of accretion, and they are usually associated with the type of the
system; massive companion stars in HMXBs can be more unstable and eject gas as stellar wind,
and some of this wind can be captured by the compact object. In case of LMXBs, the main
mechanism of accretion involves the Roche lobe overflow, where matter leaves the companion
star through the inner Lagrangian point, as a result of the star filling its Roche lobe, due to either
growing in size or the orbital radius shrinking.

This gas falls towards the compact object, following the steep gradient of the gravitational field,
and releasing gravitational potential energy, mainly in the form of electromagnetic radiation.
Energy released is given by

𝐸acc =
𝐺𝑀𝑚

𝑅
, (1.2)

where𝐺 is the gravitational constant, 𝑀 and 𝑅 are the mass and radius of the compact object, and
𝑚 is the mass of the accreted gas. Electromagnetic power (luminosity) generated by accretion
depends on the mass accretion rate, and hence is given by the time derivative of 𝐸acc. However,
not all the gravitational potential energy of accreted matter is released as radiation, and the
radiative efficiency of this process can be accounted for with the parameter 𝜂;

𝐿acc =
𝐺𝑀𝑀̇𝜂

𝑅
. (1.3)
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where 𝑀̇ = 𝑑𝑚/𝑑𝑡. The value of 𝜂 depends on the density of the compact object, and it is usually
assumed to be 𝜂 ≈ 0.1 for NSs and stellar mass BHs (Frank et al., 2002). Accretion rate is
modulated by the radiation pressure of emitted photons, leading to a hypothetical accretion rate
limit which is called the Eddington limit, in case of the assumed spherically symmetric accretion
of fully ionised hydrogen. Luminosity reached at the Eddington limit is given by

𝐿Edd =
4𝜋𝐺𝑀𝑚p𝑐

𝜎T
, (1.4)

where 𝑚p is proton mass, 𝑐 is the speed of light, and 𝜎T is the Thomson scattering cross-section
of free electrons.

However, accretion onto compact objects generally is not spherically symmetric. Due to the
conservation of angular momentum, matter ejected from the companion does not fall onto
the compact object directly, but rather follows a circular orbit with radius 𝑅𝑐 dictated by its
specific angular momentum.Viscous torques of gas particles cause them to transfer the angular
momentum and spiral inwards, while the gravitational potential energy is dissipated in the form
of heat and electromagnetic radiation.

Accreting matter forms a disc, and disc annuli at increasing radii emit thermal radiation of
decreasing energy, resulting in a superposition of black body spectral shapes which peaks at
∼1 keV. XRBs also emit non-thermal X-rays with higher energies of up to ∼150 keV, which
produce a power-law-shaped spectral component. Power-law X-rays are thought to be generated
by inverse Compton scattering of thermal disc photons by hot plasma electrons, which takes
place in the corona, a region close to the compact object. Photons scattered in the corona
illuminate the disc and produce the reflected X-ray component, whose most prominent features
are the K-alpha iron emission line at 6.4 keV, and the so-called Compton hump at 10-30 keV
produced by down-scattering of power-law photons (see Gilfanov, 2010, for a review of X-ray
emission from BH XRBs).

In general, the analysis of emission from XRBs can tell us about the geometry of the binary
system and the accretion flow, about the physics of matter in extreme gravitational fields, and
the dense matter of NSs, their equations of state. These questions can be probed with an array
of different methods from the realms of energy-spectral and timing analyses. In this thesis, I
focus on the latter component, and look at methodologies that can be applied to the study of
XRB emission variability in time. In the next section, I provide a brief summary of methods
commonly used in astronomic timing analysis.

1.3 Periodicity characterisation

The most fundamental tool used for the analysis of signals in frequency domain is the power
spectrum; the modulus of the Fourier transform of a time series. However, calculation of a
power spectrum requires sampling that is evenly spaced in time. In case of unevenly sampled
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time series, a common method for the identification of periodic signals is the Lomb-Scargle
periodogram (Lomb, 1976; Scargle, 1982).

1.3.1 Lomb-Scargle Periodogram

Lomb-Scargle periodogram is a particularly popular tool in the field of astronomy, where time se-
ries are virtually always sampled unevenly and have gaps in them due to observational constrains.
In this work, I use the Lomb-Scargle periodogram implementation from a community-developed
Python package Astropy (The Astropy Collaboration et al., 2022), which is based on the code
presented in Vanderplas et al. (2012); Vanderplas and Ivezić (2015). Specifically, I use the
implementation of the generalised Lomb-Scargle (also known as floating-mean) method intro-
duced by Zechmeister and Kürster (2009). When performing standard Lomb-Scargle analysis, it
is assumed that the data is centred around the mean of the signal present in that data, while fitting
of a generalised Lomb-Scargle periodogram does not make this assumption, so the generalised
variant is recommended to account for the fact that full phase coverage of the signal cannot be
guaranteed (VanderPlas, 2018).

For a mean-centred time series, comprised of pairs of time stamps and 𝑦-variable values (𝑡𝑛, 𝑦𝑛),
the standard Lomb-Scargle periodogram (Scargle, 1982), evaluated over frequencies 𝑓 , is defined
as:

𝑃𝐿𝑆 ( 𝑓 ) =
1∑︁
𝑛 𝑦

2
𝑛

(︃
[∑︁𝑛 𝑦𝑛 cos(2𝜋 𝑓 (𝑡𝑛 − 𝜏))]2∑︁

𝑛 𝑦𝑛 cos2(2𝜋 𝑓 (𝑡𝑛 − 𝜏))
+ [∑︁𝑛 𝑦𝑛 sin(2𝜋 𝑓 (𝑡𝑛 − 𝜏))]2∑︁

𝑛 𝑦𝑛 sin2(2𝜋 𝑓 (𝑡𝑛 − 𝜏))

)︃
, (1.5)

where the left-most normalisation term is derived from residuals between the data and a constant
model (𝜒0) (Lomb, 1976), and 𝜏 is defined as

𝜏 =
1

4𝜋 𝑓
tan−1

(︃ ∑︁
𝑛 sin(4𝜋 𝑓 𝑡𝑛)∑︁
𝑛 cos(4𝜋 𝑓 𝑡𝑛)

)︃
. (1.6)

𝜏 is calculated for each test frequency, so that 𝜏 becomes 𝜏 + 𝑇0 when 𝑡𝑛 becomes 𝑡𝑛 + 𝑇0,
to ensure time-translation invariance, which is a property equivalent to that of an ordinary
periodogram (i.e. the squared modulus of the discrete Fourier transform). Furthermore, in case
of even sampling 𝜏 = 0, the (unnormalised) Lomb-Scargle periodogram reduces to the ordinary
periodogram (Scargle, 1982).

The Lomb-Scargle periodogram can be equivalently expressed in terms of a least-squares fit of
a sine wave model

𝑦model(𝑡; 𝑓 ) = 𝐴 𝑓 sin
(︁
2𝜋 𝑓 (𝑡 − 𝜙 𝑓 )

)︁
, (1.7)

where the least-squares fit is computed with respect to amplitude 𝐴 𝑓 and phase 𝜙 𝑓 for every test
frequency, using the 𝜒2 statistic:

𝜒2( 𝑓 ) =
∑︁
𝑛

(︃
𝑦𝑛 − 𝑦model(𝑡𝑛; 𝑓 )

𝜎𝑛

)︃2
, (1.8)
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where 𝜎𝑛 is the measurement uncertainty on 𝑦𝑛. The normalised periodogram can be expressed
as:

𝑃𝐿𝑆 ( 𝑓 ) =
1
𝜒2

0

(︃
𝜒2

0 − min
𝐴 𝑓 ,𝜙 𝑓

𝜒2( 𝑓 )
)︃

. (1.9)

For the generalised Lomb-Scargle periodogram, an offset term is added to Equation 1.7:

𝑦model(𝑡; 𝑓 ) = 𝑦0( 𝑓 ) + 𝐴 𝑓 sin
(︁
2𝜋 𝑓 (𝑡 − 𝜙 𝑓 )

)︁
(1.10)

When calculating a Lomb-Scargle periodogram, it needs to be considered what set of model
frequencies is to be tested. In case of a discrete Fourier transform of an evenly sampled time
series, the set which produces the periodogram containing the maximal information about the
power distribution of the sampled signal is referred to as the set of natural frequencies. They are
defined as

𝑓𝑘 =
𝑘

𝑇
for {𝑘 = 1, . . . ,

𝑁0
2
}, (1.11)

where 𝑁0 is the number of observations, and 𝑇 is the time span covered by the data. In case of
even sampling, this set spans frequencies between the fundamental frequency 𝑓1 = 1/𝑇 , and the
Nyquist frequency, 𝑓N = 1

2𝑁0/𝑇 which is equal to half the sampling frequency.

In case of uneven sampling, the highest frequency limit is not well-defined, and in principle it
is possible to test for frequencies higher than the pseudo-Nyquist frequency (which in this case
could be generalised to some type of average of time gaps between consecutive observations), up
to the frequency given by the minimal time gap between observations 𝑓max = 1

2Δ𝑡min (Scargle,
1982), however it becomes difficult to interpret the result for those high frequencies due to the
effect of the convolution of the spectral window function with the spectrum of the signal, which
causes spurious peaks.

Another consideration is the resolution of the frequency grid; in a time series with a baseline of
𝑇 we would expect periodogram peaks of width ∼1/𝑇 , so a periodogram with frequency steps
of 1/𝑇 would not be enough to resolve them. Therefore, it is a common approach to oversample
the periodogram by increasing the number of frequency steps by some factor between 5-10
(VanderPlas, 2018). Increasing the oversampling rate helps to extract more information about
the power distribution, up to the limit dictated by the finite resolution of signal sampling, but it
also increases the computational cost. Additionally, increasing the number of tested frequencies
increases the chance of false detections due to the multiple comparisons problem.

Periodograms of poorly sampled and/or unevenly sampled, noisy time series, often show multiple
spurious peaks, so it is important to be able to assess the significance of any detection. This can be
done through the false-alarm probability (FAP) calculation, which is defined as the probability of
generating a peak of a given magnitude in a periodogram of a data set containing only noise and
no periodic signal. Analytic solutions for FAP exist, e.g. Baluev (2008) derived a formulation
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(a) Short time Fourier transform (b) Wavelet transform

Figure 1.5: Time-frequency planes illustrating the resolution dependence in (1.5a) short time
Fourier transform and (1.5b) wavelet transform.

for the upper limit of FAP which is valid for alias-free periodograms. In case of strong aliasing,
it is best to apply a computational method like bootstrapping, which takes into account the effect
of the sampling pattern.

The bootstrapping method for FAP calculation involves random re-sampling with replacement
of flux values from the set of observed values, while keeping the temporal structure of the light
curve the same. The distribution of maximum power produced by periodograms of many light
curves shuffled in this way approximates the distribution of power for a light curve with the same
observing window function but no periodic signal. Therefore, when estimating FAP with the
bootstrapping method, the null hypothesis that we are testing against is that the peak observed
in the periodogram was generated by Gaussian white noise. FAP can be used to judge the
probability of a spurious peak being created by random noise, and hence inform the confidence
of signal detections.

1.3.2 Weighted wavelet Z-transform

The periodogram is a useful tool for the characterisation of signals present in the data. However,
in order to calculate it, we transform the data to frequency space and hence lose all the information
about the location of those signals in time. For non-stationary signals, we have no way of knowing
whether a signal is persistent throughout the time series or appears in certain intervals, what
the order of appearance of signals might be, or in case of frequency shifts, whether the rate of
frequency change was positive or negative. In order to address such questions, we need to retain
some time and frequency information about the data at the same time.

A classic method that can be applied to evenly sampled data is the short time Fourier transform
(STFT, Gabor, 1946), which breaks down the time series into segments and Fourier transforms
them individually. This way, we can narrow down the location of the signal to a particular
segment. However, this approach forces us to make a compromise between the time resolution
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and the low frequency limit; shorter segments give a better time resolution but impose a more
restrictive high-pass frequency filter (and also restrict the frequency resolution according to the
Uncertainty Principle).

The wavelet transform uses a series of briefly oscillating functions which become shorter as their
frequency increases. Figure 1.5a shows the time-frequency plane of a STFT, and a qualitative
representation of the resolution grid, which is constant for all frequencies and time windows.
In contrast to STFT, both time and frequency resolutions of the wavelet transform are variable;
low frequency wavelets produce a high frequency resolution and a coarse time resolution, and
conversely, high frequency wavelets give low frequency resolution and a high time resolution.
The wavelet transform is more suitable for the time-frequency analysis of data which can contain
a wide range of signal frequencies.

The STFT and wavelet transform are both performed on evenly sampled time series. The Lomb-
Scargle periodogram can be used to create a dynamic periodogram as an alternative to STFT for
unevenly sampled data (for examples of use, see Clarkson et al., 2003; Parkinson et al., 2003).
The weighted wavelet Z-transform (WWZ) is a wavelet transform alternative developed by Foster
(1996) for unevenly sampled data. To describe the WWZ of a time series 𝑥(𝑡), Foster (1996)
frames the wavelet transform as a weighted projection onto a set of three trial functions:

𝜙1(𝑡) = 1(𝑡), (1.12)

𝜙2(𝑡) = cos (𝜔(𝑡 − 𝜏)), (1.13)

𝜙3(𝑡) = sin (𝜔(𝑡 − 𝜏)), (1.14)

which is performed for every combination of frequency 𝜔 and wavelet time shift 𝜏 (which, for
example, can be evaluated at evenly spaced locations across the time series or at every data point),
and where 1(𝑡) = 1 for all 𝑡. Projecting the data onto the trial functions involves constructing a
model function 𝑦(𝑡) from the sum of products of the trial functions and model coefficients, such
that

𝑦(𝑡) =
3∑︁
𝑎=1

𝑦𝑎𝜙𝑎 (𝑡), (1.15)

where the model coefficients are found by an ordinary least-squares fit to the data

𝑦𝑎 =

3∑︁
𝑏=1

𝑆−1
𝑎𝑏 ⟨𝜙𝑏 |𝑥⟩ , (1.16)

where 𝑆−1 is the inverse of the 𝑆 matrix, which is the inner product of the trial functions

𝑆𝑎𝑏 = ⟨𝜙𝑎 |𝜙𝑏⟩ , (1.17)
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and the bra-ket notation ⟨ 𝑓 |𝑔⟩ represents the weighted inner product of two arbitrary functions
𝑓 (𝑡) and 𝑔(𝑡) as defined by Foster (1996):

⟨ 𝑓 |𝑔⟩ =
∑︁𝑁
𝛼=1 𝑤𝛼 𝑓 (𝑡𝛼)𝑔(𝑡𝛼)∑︁𝑁

𝛽=1 𝑤𝛽
, (1.18)

where statistical weights are assigned to data according to

𝑤𝛼 = exp
(︂
−𝑐𝜔2(𝑡𝛼 − 𝜏)2

)︂
, (1.19)

where 𝑐 is the decay rate of the wavelet, which can be treated as a parameter or as a constant;
a conventional value for 𝑐 when dealing with light curves of variable stars is 1/8𝜋2 ≈ 0.0125
(Foster, 1996). The statistical weights reflect the amplitude of the abbreviated Morlet wavelet
at a time 𝑡. The abbreviated Morlet wavelet is the analysing wavelet used in the WWZ, and
following the notation convention from Foster (1996), it is defined as

𝑓 (𝑧) = exp
(︂
𝑖𝑧 − 𝑐𝑧2

)︂
= exp

(︂
𝑖𝜔(𝑡 − 𝜏) − 𝑐𝜔2(𝑡 − 𝜏)2

)︂
. (1.20)

The wavelet peaks at 𝑧 = 0, and therefore is the most sensitive to the behaviour of data close to
𝑡 = 𝜏, and decays with a Gaussian profile as we move away from 𝜏.

The WWZ power is then defined as

𝑍 =
(𝑁eff − 3)𝑉𝑦
2(𝑉𝑥 −𝑉𝑦)

, (1.21)

where 𝑁eff is the effective number of data points, which accounts for the changing number of
sampled data points as the position and frequency of the wavelet changes, and is defined as

𝑁eff =
(∑︁𝛼 𝑤𝛼)2∑︁

𝛼 𝑤
2
𝛼

, (1.22)

𝑉𝑥 is the weighted variation of the data

𝑉𝑥 =

∑︁
𝛼 𝑤𝛼𝑥

2(𝑡𝛼)∑︁
𝜆 𝑤𝜆

−
(︃∑︁

𝛼 𝑤𝛼𝑥(𝑡𝛼)∑︁
𝜆 𝑤𝜆

)︃2
= ⟨𝑥 |𝑥⟩ − ⟨1|𝑥⟩2 , (1.23)

and 𝑉𝑦 is weighted variation of the model function

𝑉𝑦 =

∑︁
𝛼 𝑤𝛼𝑦

2(𝑡𝛼)∑︁
𝜆 𝑤𝜆

−
(︃∑︁

𝛼 𝑤𝛼𝑦(𝑡𝛼)∑︁
𝜆 𝑤𝜆

)︃2
= ⟨𝑦 |𝑦⟩ − ⟨1|𝑦⟩2 . (1.24)

Foster (1996) points out that WWZ gives a good measure of signal frequency and a poor measure
of amplitude, and so provides an additional metric of the weighted wavelet amplitude (WWA),
the square root of the fitted sine and cosine coefficients:

𝑊𝑊𝐴 =

√︃
(𝑦2)2 + (𝑦3)2, (1.25)
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Figure 1.6: A generalised lifecycle of an ML solution. The major components include; the
Monitor-Analyse-Plan-Execute loop (bottom-left), the Machine Learning Workflow (top), and

the Model Deployment phase (bottom-right). Credit: Ashmore et al. (2021)

which can be used to find the amplitude of a signal after applying WWZ to find the frequency of
that signal.

1.4 Machine learning methods

Chapters 2 and 3 of this thesis focus on the development and application of ML tools for the
automated feature extraction and classification of light curves. In this section, I introduce the
fundamental ML concepts and algorithms which constitute parts of the pipeline which can extract
insights from astronomical time series data.

1.4.1 General machine learning workflow

As discussed at the beginning of this chapter, ML solutions are often deployed to tackle problems
within complex, dynamic systems, and aim to replace traditional data analysis and decision-
making with autonomic elements, capable of producing actionable knowledge without human
supervision.

In general, the development process of an ML model consists of a few fundamental phases,
including the data acquisition and preprocessing phase, model training and selection phase,
followed by the model testing phase. The flowchart in Figure 1.6 shows this process within
the Machine Learning Workflow (top block). However, the lifecycle of an ML solution does
not end there; the fourth stage of the lifecycle is the Model Deployment (bottom-right block of
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Figure 1.6), where the solution is implemented to tackle the problem that it was designed for. The
deployed ML solutions can replace the human in multiple stages of the Monitor-Analyse-Plan-
Execute (MAPE) loop In a MAPE loop monitoring systems (i.e. sensors) are used to gather data
from a system of interest. Data then needs to be encoded into a machine-readable representation,
comprehended and analysed. Once actionable information is extracted from the data, it can be
used by autonomous systems for decision-making and execution of adequate actions. Operation
of the MAPE loop by traditional operators or autonomous agents leads to the production of data
and the formulation of requirements for a new or improved autonomous agent, which can be
leveraged in the next iteration of development, in the Machine Learning Workflow (for more
details about the MAPE loop, for example see Kephart and Chess, 2003). An example system
that could use ML to perform autonomous actions is an automatic source classification system
for an astronomical survey, which alerts the users when an interesting type of source is detected.

1.4.2 Representation learning

It is rarely the case for data to be used successfully in ML applications while in the form
that it was originally recorded in. One aspect which is crucial for the successful application
of ML is the construction of data representations which meet few important criteria; they
must be compatible with the algorithm to be used, and informative enough so that the ML
task could provide accurate results based on the available data sample. This is why the “ML
Understanding” stage is an integral part of the lifecycle of an ML solution, shown in Figure 1.6.
Aligning the data representation with these requirements is usually achieved in the process of
feature engineering. In this process, the analyst aims to construct standard feature vectors, where
each observation in the data set is represented by a constant number of values; only then it
becomes possible to compare observations with each other and make inferences using ML. The
number of components of the feature vector effectively defines the dimensionality of the feature
space occupied by the data observations. The arrangement of data in this space reflects how
informative the representation is; random arrangement of data in the feature space offers no
information and does not allow for any inference to be made about any particular observation.
In the case of an informative feature space, data is organised in a way that allows the analyst to
discriminate observations of different categories and/or quantify the similarity of observations
based on the distance between them. This organisation of data in the feature space can manifest
in the formation of clusters or manifolds.

A manifold is a topological space that is locally Euclidean. Manifold hypothesis poses that high-
dimensional data tend to lie along low-dimensional manifolds embedded in the high-dimensional
space (Fefferman et al., 2016), implying that it is possible to represent the high dimensional data
with a lower-dimensional feature vector. Figure 1.7 shows how three-dimensional data of a two-
dimensional manifold can be reduced to two variables, which capture all the relevant variability
in that data. This visualisation also illustrates how Euclidean distance in the original feature space
of the data might not be an adequate metric for describing dissimilarity between observations
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(a) Original data (b) Isomap Embedding

Figure 1.7: Two-dimensional data manifold embedded in a three-dimensional feature space.
Figure 1.7a shows the original S-shaped data cloud in three dimensions, while Figure 1.7b
shows the output of a manifold learning algorithm Isomap. Axes of all panels use arbitrary
units. Dashed red lines show the Euclidean distance between two arbitrary data points in the 3D
space, and the cyan lines show the distance between the same pair of points along the manifold
surface. The embedding is generated using scikit-learn implementations of the algorithm

(Pedregosa et al., 2011).

over long distances; the Euclidean distance between two arbitrary data points at the right edge of
the data cloud is indicated by the dashed red line, and due to the curvature of the manifold, it is not
a good metric of similarity between those data points. A more adequate distance metric would
be the geodesic distance indicated by the dashed cyan curve, which reflects the true geometry of
the low-dimensional manifold.

An appropriate dimensionality reduction algorithm can help to approximate the distance along
the manifold surface. Figure 1.7b shows the data from Figure 1.7a embedded in two-dimensional
space using the Isometric Mapping embedding (Isomap, Tenenbaum et al., 2000). Isomap em-
bedding shows the Euclidean and geodesic paths joining the same two data points as Figure 1.7a.
The Isomap embedding is effective at flattening continuous manifolds, and thanks to the embed-
ding in the low-dimensional space, Euclidean distance becomes a much better approximation of
the true geodesic distance. The geodesic distance across the Isomap projection is represented
as a series of lines instead of a smooth curve because it traces the edges of the graph generated
by the algorithm, which connects neighbouring data points. However, Isomap might not be
as efficient at separating multiple manifolds into individual clusters, and such behaviour might
be observed in embeddings created with algorithms like the t-distributed Stochastic Neighbour
Embedding (t-SNE, Van Der Maaten and Hinton, 2008).

The goal of dimensionality reduction is to identify the minimal number of parameters which
describe the position on this true low-dimensional manifold, and capture the intrinsic degrees of
freedom of the data, effectively removing the random, uninformative variability from the feature
set. This approach assumes that the high-dimensional data is generated by a process controlled
by a small number of parameters, referred to as latent variables. In this work, I focus on the
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development of an autoencoder; a method which extracts the latent variables using a neural
network. More details about neural networks, and their application to dimensionality reduction,
can be found in Section 1.4.3.1 and chapters 2 and 3.

1.4.2.1 Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP, McInnes et al., 2018) is a manifold
learning and dimensionality reduction algorithm used extensively in this thesis for the visu-
alisation of high-dimensional data, so it requires a brief introduction. UMAP constructs the
low-dimensional embedding in two steps; in step (1) it builds a fuzzy topological representation
of the input data set, and then in step (2) it finds a low dimensional embedding which min-
imises the differences between the low-dimensional fuzzy topological representation and the
high-dimensional counterpart.

Step (1): As McInnes et al. (2018) frame this, the topological representation can be constructed
using a simplicial complex, i.e. a combination of simplexes. Individual data points are 0-
simplexes, pairs of connected points trace out 1-simplexes, three connected points trace out
2-simplexes and so on (𝑘-simplex is the convex hull of 𝑘 + 1 points). In order to construct higher
dimensional simplexes, we need to set a distance limit below which data points are allowed to
connect.

However, UMAP assumes that the input data sample is distributed uniformly across the manifold,
which is rarely the case in practical applications. Therefore, the algorithm equivalently assumes
that the space between neighbouring data points expands or shrinks, depending on the distance
between those data points. This makes the connectivity problem equivalent to building a nearest
neighbour graph. The graph is constructed using the K-nearest neighbour graph algorithm by
Dong et al. (2011). The hyperparameter n_neighbors controls the number of neighbours found
for each data point, whereas the hyperparameter local_connectivity sets the minimal number
of neighbours which are required to be connected to each point. The edges of the graph are
weighted according to the probability of a connection between two data points existing, and
the value ranges between 0 and 1, where the number of nearest neighbours dictated by the
local_connectivity hyperparameter always has the value of 1, and the data points further than
the number set by the n_neighbors hyperparameter always have the value of 0, whilst the rate of
decay between those two extremes depends on the distance function of a given data point. Since
the distance function of a data point depends on the distance to the k-th nearest neighbour, the
distance from point 𝑎 to point 𝑏 can be different from the distance from 𝑏 to 𝑎, resulting in two
edge weights, 𝑤𝑎𝑏 and 𝑤𝑏𝑎. Therefore, weights are combined using the following formula;

𝑤 = 𝑤𝑎𝑏 + 𝑤𝑏𝑎 − 𝑤𝑎𝑏 · 𝑤𝑏𝑎. (1.26)

This probabilistic approach to graph construction results in the fuzzy logic in the topological
representation of the data.
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Step (2) of the UMAP is to embed this fuzzy topological structure in a low-dimensional, (usually)
Euclidean space, find the fuzzy topological structure in the embedded space, and minimise the
difference between the two. This is done through minimisation of the cross-entropy cost function
𝐶UMAP, which compares the weights of graph edges of the high and low dimensional topological
representations;

𝐶UMAP =
∑︁
𝑒∈𝐸

𝑤ℎ (𝑒) log
(︃
𝑤ℎ (𝑒)
𝑤𝑙 (𝑒)

)︃
+ (1 − 𝑤ℎ (𝑒)) log

(︃
1 − 𝑤ℎ (𝑒)
1 − 𝑤𝑙 (𝑒)

)︃
, (1.27)

where 𝑤ℎ (𝑒) and 𝑤𝑙 (𝑒) are the weights of edge 𝑒 in high and low dimensional representations
respectively, where 𝑒 is one from the set of all edges 𝐸 . The cross-entropy cost function is
chosen because the sets of edge weights describe the probabilities of 1-simplexes existing, and
as such they follow the Bernoulli distribution. This choice of the cost function also frames
the algorithm for the construction of the low-dimensional fuzzy topological structure as a force
directed graph layout algorithm. The first term of Equation (1.27) is an attractive force, because
it is minimised when the value of 𝑤𝑙 (𝑒) is maximised, which happens when data points which
constitute the 1-simplex 𝑒 are positioned close together in the low-dimensional representation.
The second term of Equation (1.27) is a repulsive force, minimised when the value of 𝑤𝑙 (𝑒)
is minimised, which happens when the data points are set far apart. The balance of these two
forces rearranges the low-dimensional representation, which should settle in a state that is a
relatively accurate representation of the topology of the original data. The cost function 𝐶UMAP

is minimised using the stochastic gradient descent (for more details about stochastic gradient
descent, see for example sec. 5.9 of Goodfellow et al., 2016)

This switch from relative to absolute distance metric in step (2) of UMAP requires the adoption of
another hyperparameter min_dist, which controls the minimal distance between data points and
hence regulates the density of data in the projection. The dimensionality of the final embedding
is controlled by the n_components hyperparameter.

The hyperparameters of UMAP visualisations presented in this thesis follow the default values
recommended by McInnes et al. (2018); n_neighbors= 15, local_connectivity= 1, n_components
= 2, min_dist = 0.1.

1.4.3 Artificial neural networks

In this thesis, UMAP algorithm is only used as a dimensionality reduction tool for visualisation
purposes. Chapters 2 and 3 focus on the application of a specific type of dimensionality reduction
algorithm for the purpose of feature extraction for quantitative data analysis. The algorithm is
called Long-Short Term Memory Variational Autoencoder (LSTM-VAE), and it combines a
couple of type of artificial neural networks. In this section, I introduce concepts required to
understand how the LSTM-VAE algorithm works.
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Figure 1.8: An example of a fully connected feedforward neural network architecture. N is the
batch size of the input. Credit: Baron (2019)

Artificial neural networks (ANNs) are a family of machine learning algorithms inspired by the
structure of biological neurons (see McCulloch and Pitts, 1943, for one of the first works on the
topic). ANN can be represented as directed, weighted graphs, with the nodes arranged in layers.
Nodes represent neurons, which perform computation and feed their outputs to the nodes in
the following layers, whilst the weights on edges represent the strength of connections between
the neurons. ANNs are very flexible in terms of structure and can be applied to a variety of
tasks, including classification, regression, dimensionality reduction and clustering. Figure 1.8
shows an exampled of a basic ANN architecture, which, in the order of data flow, consists of an
input layer, two hidden layers and an output layer. Every neuron beyond the input layer sums the
weighted output of the neurons from the previous layer, adds a bias term, and applies a non-linear
activation function. Therefore, if 𝑥 is the input vector, then the output of the first hidden layer
(i.e. the hidden state) is given by

ℎ1⃗ = 𝑓1(𝑊1𝑥 + 𝑏1⃗), (1.28)

where 𝑓1 is a non-linear activation function of the first hidden layer,𝑊1 is the weight matrix for
connections between the input and first hidden layers, and 𝑏1⃗ is the vector of bias values of the
first hidden layer. Analogically, the output of the second hidden layer is computed from the ℎ1⃗

vector, and corresponding weights and biases. Some popular activation functions include the
sigmoid function

𝜎(𝑎) = 1
1 + 𝑒−𝑎 , (1.29)

hyperbolic tangent function

tanh(𝑎) = 𝑒2𝑎 − 1
𝑒2𝑎 + 1

, (1.30)

and rectified linear unit function

ReLU(𝑎) = max (𝑎, 0). (1.31)
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In spite of this simple structure of the ANNs, their flexibility and non-linearity allows them to
approximate extremely complex mappings between the input and output. In fact, they are general
function approximators, capable of approximating any functional mapping to arbitrary precision,
given a large enough number of hidden neurons, even when arranged into a single hidden layer,
a so-called “shallow” neural network (Cybenko, 1989; Hornik, 1991). However, deep networks
with multiple layers tend to be more efficient at function approximation, in terms of the number
of parameters required (Eldan and Shamir, 2016).

Weights and biases are free parameters of the ANN, whilst the number and arrangement of
neurons as well as the choice of the activation functions and the cost function are hyperparameters
selected prior to model fitting. The process of finding the parameter values which result in the
best function approximation is usually referred to as model training, and this is commonly
achieved using the backpropagation and stochastic gradient descent (SGD) algorithms.

Training of a neural network is an iterative process, where the training data set is propagated
through the network in batches. The output of the network is compared to the target output
using a cost function (e.g. mean square error), and the backpropagation algorithm is used to
calculate the gradient of the loss function with respect to the ANN parameters, working its
way backwards through the network. SGD is then used to adjust the parameters in accordance
with the calculated gradients. SGD is an extension of the gradient descent algorithm, which
adjusts parameter values following the minimal first order derivative of the cost function with
respect to the parameters. A stochastic variant of the algorithm is used because of the prohibitive
computational cost of calculating the gradient for every observation in the training data set.
Training of ANNs, especially deep ANNs, requires large amounts of data, and SGD capitalises
on the fact that the calculated gradient is an expectation value that can be estimated from a small
sample of the data. Therefore, parameter updates happen only once per training batch, using
mean gradients estimated from a batch, where the batch is randomly sampled from the training
data set without replacement. A training epoch finishes once all the training data is passed
through this process, and multiple epochs are usually required to minimise the loss function. For
more details about ANNs, see Goodfellow et al. (2016).

1.4.3.1 Autoencoders

As we have established earlier, the ultimate goal of feature engineering is to construct the
minimal set of features which capture the variability of data. It often requires domain specific
expertise from the analyst, who needs to identify descriptors containing relevant information
about the observations in the data set (for example see Richards et al., 2011). Automated
feature extraction is an alternative to manual feature engineering, and requires less specific
domain knowledge. Automated feature extraction often involves methods which encode data
into a more abstract, low-dimensional, latent representation. The resulting latent representation
contains compressed information about the input data, and reflects the similarities and differences
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Figure 1.9: An example of an autoencoder architecture. Credit: Baron (2019)

between observations. ML algorithms can leverage this information to perform a variety of tasks,
like classification, outlier detection or clustering.

In order to represent the light curve data using a small number of variables, and hence allow me
to analyse that data space in a relatively small number of dimensions, I perform dimensionality
reduction using a neural network. This process aims to extract a small set of latent or “hidden”
variables, which encode information about the structured variability of the light curves. Figure 1.9
shows the basic structure of an autoencoder ANN; it consists of two blocks, an encoder and a
decoder. The encoder’s task is to learn a low-dimensional representation of an input data, and
encode it efficiently in the latent space. The decoder uses the latent representation to reconstruct
the original input of the encoder. Therefore, the cost function of an autoencoder is a function
of the input and the output of the network, and as such it does not require any additional target
variable for its evaluation, which means that autoencoders can be used for unsupervised learning
from unlabelled data. Due to the number of neurons decreasing between the input layer and the
latent space layer, the encoder must push the maximal amount of relevant information through
the bottleneck of the latent space. This forces the encoder to learn a mapping that preserves the
most information about the data, and ignores any noise which is not useful for the reconstruction
of the input data. This behaviour makes autoencoders a natural choice for the task of compression
and dimensionality reduction. Resulting latent variables are the compressed representation of
data and can be leveraged in the data analysis process. For more details about autoencoders, see
Goodfellow et al. (2016).

The variational autoencoder (VAE) is a type of probabilistic neural network model first proposed
by Kingma and Welling (2014). Just like the non-variational type, it uses two blocks of neurons;
an encoder, which maps input data onto a small set of latent variables, and a decoder, which
maps them back to the input data space, hence reconstructing observations of input data. In case
of the VAE however, the latent variables are distributions (continuous latent variables), so the
encoder maps input data to normal distributions instead of infinitesimal points. Latent variables
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are parameterised by mean and variance values, and the decoder uses random samples from
those distributions to produce input reconstructions.

VAEs use an additional term in their cost functions, the Kullback-Leibler divergence. It is a
regularisation term, which prevents the distribution of the latent variables from substantially
deviating from the standard normal distribution. This term is used to ensure that the latent space
is continuous and meaningful. The generic Kullback-Leibler divergence between two discrete
distributions 𝑃(𝑥) and 𝐺 (𝑥) defined over sample space 𝑋 is given by:

𝐷KL(𝑃 ∥ 𝐺) = −
∑︁
𝑥∈𝑋

𝑃(𝑥) log
𝑃(𝑥)
𝐺 (𝑥) , (1.32)

which in the case of two 𝑍-dimensional Gaussian distributions can be expressed as (Kingma and
Welling, 2014);

𝐷KL = −1
2

𝑍∑︁
𝑗=1

(︂
log

(︂
𝜎𝑗ˆ 2

)︂
− 𝜇 𝑗ˆ 2 − 𝜎𝑗ˆ 2 + 1

)︂
, (1.33)

for every 𝑥, where 𝑍 is the number of latent variables, 𝜎𝑗ˆ 2 is the variance of the latent variable
𝑗 , and 𝜇 𝑗ˆ is the mean of latent variable 𝑗 .

The use of the regularisation term has several implications; deviations from the Gaussian prior
are penalised, which encourages the VAE to construct less complex latent spaces. Regularisation
should therefore prevent overfitting to data as the number of latent variables is increased (since
sparse encoding is encouraged) (Kingma and Welling, 2014). Additionally, since the mapping to
the latent space is continuous, the space tends to be smooth, and does not show abrupt changes
between neighbouring locations. The VAE can generalise to previously unseen data points and
interpolate across the latent space, generating new, plausible observations of data. For more
details about VAEs, see Doersch (2016).

1.4.3.2 Recurrent neural networks

Recurrent neural networks (RNNs) have directed cyclic graph structure, as they build on the
feedforward ANNs by adding feedback connections, which feed the output of a neuron back
into itself as an additional input. This structure makes RNNs suitable for the processing of
sequential input data, which is processed iteratively, one data point at a time. At every iteration,
the state of the cell is fed as input of the next iteration, which allows the network to learn from
consecutive points of the sequence and extract temporal patterns. The use of RNNs has been
researched extensively for the processing of text, handwriting, speech and sound (Yu et al., 2019,
and references therein).

Figure 1.10 shows an illustration of a basic multivariate RNN architecture. It consists of the input
layer of size N (bottom), one hidden recurrent layer with M recurrent cells/neurons (middle),
and an output layer of size P (top). For an input vector 𝑥𝑡⃗ = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ), where 𝑥𝑡⃗ is one of
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Figure 1.10: An example of a recurrent neural network architecture, unfolded in time. Credit:
Salehinejad et al. (2017)

the series of T vectors from the input data matrix 𝑋 = (𝑥1, . . . , 𝑥𝑡⃗ , . . . , 𝑥𝑇 ), so 𝑋 ∈ IRN×T, the
output of the hidden layer is given by

ℎ⃗𝑡 = 𝑓H(WIH𝑥𝑡 +WHH ℎ⃗𝑡−1 + 𝑏⃗H), (1.34)

where 𝑓H is the activation function of the hidden layer, WIH is the weight matrix for connections
between the input and first hidden layers, WHH is the weight matrix for the feedback connections
between the first hidden layer and itself from the previous time step, ℎ⃗𝑡−1 is the output of the
hidden layer from the previous time step, and 𝑏⃗H is the vector of bias values of the hidden layer.
Hidden layer state is initialised with small non-zero values at the first iteration.

RNNs build on ANN’s representation of the hidden state (Equation (1.28)) by adding the self-
feedback term, WHH ℎ⃗𝑡−1, which allows the hidden state of the neuron from the previous iteration
to affect the output of the current iteration. Due to the cyclic nature of the RNNs, they require
and alternative training algorithm, and one possibility is to apply back-propagation through time
(Werbos, 1990), which unfolds the RNN and effectively treats it like an equivalent feed-forward
ANN, storing all the states of intermediate iterations for the backpropagation pass.

This simple structure of RNNs allows them to model and make predictions based on the immediate
context of the processed data point, but they tend to quickly forget information that is not
frequently reinforced, which means that they struggle to capture long term patterns. Long-Short
Term Memory (LSTM) cells, first proposed by Hochreiter and Schmidhuber (1997), address this
issue through the introduction of so-called “gates” which consist of non-linear functions that
control the state of the LSTM cell and protect the relevant information over long time scales.

Figure 1.11 shows a diagram of the LSTM cell, and it depicts the cell input-output flow in the
vertical direction, while gates modulating the cell activity are depicted as horizontal connections.
The most important component is the cell state (𝑐𝑡 ), depicted as the black dot in the centre. It
has a linear self-feedback loop, which is controlled by the forget gate. The forget gate uses
the sigmoid function to set weights of the self-feedback loop to values between 0 and 1. This
controls the rate at which the value stored in the cell state unit can decay. The forget gate can be
defined as

𝑔
𝑓
𝑡 = 𝜎(W𝑔 𝑓 𝑥𝑡 +U𝑔 𝑓 ℎ⃗𝑡−1 + 𝑏⃗𝑔 𝑓 ), (1.35)
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Figure 1.11: An illustration of a Long-Short Term Memory cell used in recurrent neural
networks. Dashed lines indicate delayed (peephole) connections. Credit: Salehinejad et al.

(2017)

where 𝜎(.) is the sigmoid function (Equation (1.29)), W𝑔 𝑓 is the weight matrix from the input
layer to the forget gate, U𝑔 𝑓 is the recurrent weight matrix from hidden state to the forget gate,
and 𝑏⃗𝑔 𝑓 is the bias vector of the forget gate. The updates to the cell state are also controlled by
the input gate, which is computed similarly to the forget gate

𝑔𝑖𝑡 = 𝜎(W𝑔𝑖𝑥𝑡 +U𝑔𝑖 ℎ⃗𝑡−1 + 𝑏⃗𝑔𝑖 ), (1.36)

with analogical indexing of weights and biases. The cell state 𝑐𝑡 is then updated by the forget
and input gates, following the equation

𝑐𝑡 = 𝑔
𝑓
𝑡 𝑐𝑡−1 + 𝑔𝑖𝑡𝜎(W𝑐𝑥𝑡 +U𝑐 ℎ⃗𝑡−1 + 𝑏⃗𝑐), (1.37)

where W𝑐 is the weight matrix from the input layer to the cell, U𝑐 is the recurrent weight matrix
from the hidden state to the cell, and 𝑏⃗𝑐 is the bias vector of the cell state. The output of the cell
is controlled by the output gate, similar to the other two gates;

𝑔𝑜𝑡 = 𝜎(W𝑔𝑜𝑥𝑡 +U𝑔𝑜 ℎ⃗𝑡−1 + 𝑏⃗𝑔𝑜 ), (1.38)

with analogical indexing of weights and biases. Finally, the output of the cell is given by

ℎ⃗𝑡 = 𝑔
𝑜
𝑡 tanh(𝑐𝑡 ), (1.39)

where tanh(.) is the hyperbolic tangent function (Equation (1.30)).

Thanks to the use of the forget gate, LSTMs have the potential to store information over an
arbitrary time lag. The improvement of LSTMs over simple RNNs comes at the cost of increased
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complexity; LSTM cells use four times as many parameters as the RNN equivalent. For more
details about RNNs, see Goodfellow et al. (2016) or Salehinejad et al. (2017).

1.4.4 Other machine learning algorithms

The application of several other machine learning algorithms is discussed in following chapters
of this thesis. Clustering algorithms are applied in the process of light curve feature extraction,
while classification is performed on light curves based on the extracted features using the Random
Forest Classifier. A brief introduction to those algorithms is provided in this section.

1.4.4.1 Gaussian mixture model

Gaussian Mixture Models (GMMs) approximate the probability distribution of the data using a
weighted sum of multidimensional Gaussian components. The likelihood function of a GMM
with 𝐾 components is given by

𝑝(𝑥 |𝜃) =
𝐾∑︁
𝑖=1

𝑤𝑖𝑔(𝑥 | 𝜇⃗𝑖 ,𝚺𝑖), (1.40)

where 𝑥 is an 𝐷-dimensional data vector, 𝑤𝑖 is the mixture weight of the 𝑖th component, and
𝑔(𝑥 | 𝜇⃗𝑖 ,𝚺𝑖) is the 𝐷-dimensional Gaussian density function;

𝑔(𝑥 | 𝜇⃗𝑖 ,𝚺𝑖) =
1√︁

(2𝜋)𝐷 |Σ𝑖 |
exp

{︁
−0.5(𝑥 − 𝜇⃗𝑖)Σ−1

𝑖 (𝑥 − 𝜇⃗𝑖)
}︁
, (1.41)

where 𝜇⃗𝑖 and 𝚺𝑖 are the mean (position) vector and the co-variance matrix of the 𝑖-th Gaussian
component, and 𝜃 represents all the weights and parameters of the 𝐾 Gaussian components.

The number of components is a hyperparameter set by the user, and the mean position of
each component is initiated randomly. The position and co-variance matrix of each component
are then iteratively optimised to maximise the likelihood of the data under the model using
the Expectation-Maximisation algorithm (Dempster et al., 1977). GMM is a “soft” clustering
method; the likelihood value of each data point is calculated for every Gaussian component, and
the data points are assigned to components which give the largest likelihood. The co-variance
matrices of each component can be constrained to be diagonal, tied across the components, or
replaced with a single scalar value to represent spherical Gaussian components. The number of
components and the type of co-variance matrix determine the complexity of the model, and they
are usually adjusted based on the complexity and amount of available data. For more details
about GMMs, see Reynolds (2009).
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1.4.4.2 Hierarchical clustering

Hierarchical (agglomerative) clustering algorithm creates a hierarchy of clustering solutions
through recursive merging of pairs of clusters. The merging algorithm starts with the value of
the distance threshold set to zero, resulting in the assignment of each data point to their own
singleton clusters. The threshold is then increased, and pairs of nearby clusters are merged when
the distance between them is less than the threshold. The algorithm terminates when all data
points belong to a single cluster, or when a threshold set by the user is reached.

The hierarchical clustering algorithm can use a variety of distance metrics and different methods
of calculating distance between clusters. Clustering methods include; the “single” method, which
defines the distance between two clusters as the distance between the nearest data points of the
two clusters, the “average” method defines the distance between clusters as the distance between
mean positions of constituent data points, and “complete” method uses the distance between
two furthest data points. Another popular method is the “ward” method, which minimises the
variance within clusters.

The choice of clustering method affects the resulting cluster structure, for example “single”
method tends to build clusters with very uneven sizes (“rich gets richer” type of pattern), it
can erroneously chain together multiple neighbouring clusters, however it performs well for
non-isotropic clusters. The “average” method struggles to correctly capture elongated clusters,
where one cluster can be split into multiple, or separate elongated clusters in close proximity
can be erroneously merged into one. The “complete” method methods tends to create more
even, compact clusters. For more details about hierarchical clustering, see Rokach and Maimon
(2005).

1.4.4.3 Random forest classifier

The random forest ensemble (Breiman, 2001) is a very versatile algorithm, which can be used to
perform both classification and regression, as well as unsupervised learning tasks, however here
I will focus on the classification functionality. The random forest classifier uses an ensemble of
decision trees, and it averages the results across the trees to find the final classification. Each
decision tree is trained on a subsample of observations, picked at random from the training data
set using bootstrapping. Additionally, only a subset of features is used to train each decision
tree, which is another source of randomness impacting the construction of the classifier. This
randomness allows the random forest to reduce over-fitting and the overall variance of the
classifier, which leads to improved classification performance.

The individual decision trees of the random forest are comprised of decision nodes arranged
into a branching structure, where threshold conditions are compared against the feature values of
individual observations, which effectively splits the data set as it propagates through the decision
tree. The terminal nodes of the decision tree are associated with data labels. During the training
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of a classifier based on decision trees, the choice of the data feature and the threshold value to
be used for a given decision node is made to optimise the splitting of the data set in a way that
separates observations of different classes. Popular choices for the criterion which quantifies the
quality of a split are Gini impurity and information gain. Gini’s impurity is defined as

I𝐺 = 1 −
𝐾∑︁
𝑘=1

𝑝2
𝑘 , (1.42)

where 𝐾 is the number of classes and 𝑝𝑘 is the proportion of observations of class 𝑘 in a set.
Information gain is the difference between the entropy of a set before and after a split. Entropy
is defined as

E = −
𝐾∑︁
𝑘=1

𝑝𝑘 𝑙𝑜𝑔(𝑝𝑘). (1.43)

Other than the choice of the criterion for optimal data set splitting, the random forest algorithm
has few relevant hyperparameters which need to be adjusted by the user. The number of
decision trees in the ensemble affects the variance of the classifier; increasing the number of
trees tends to reduce the variance of predictions, as the forest converges on the answer, but at
the expense of increased computation time. Without any additional constrains on the decision
trees, they are extended until every terminal node has only one observation in it. Therefore, the
construction process of the decision trees is also controlled by setting the maximum depth of
the tree, the minimal number of observations required to split a node, as well as the minimal
number of observations required at a terminal node. For more information about the random
forest algorithm, see Breiman (2001).
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Chapter 2

Light curve fingerprints: an automated
approach to the extraction of X-ray
variability patterns with feature
aggregation – an example application
to GRS 1915+105

2.1 Introduction

The work presented in this chapter contributes to the toolbox of automated characterisation
methods for light curve data. I explore the use of neural networks and Gaussian mixture models
for descriptive feature generation and clustering. I construct a representation of light curve data
called the “fingerprints”, which can be used in downstream classification, outlier detection and
clustering tasks. I demonstrate that such a method is useful in the analysis of the evolution of
a particular source of interest. In this work, I analyse the complete data set of GRS 1915+105
observations captured by the Proportional Counter Array on-board of the Rossi X-ray Timing
Explorer (RXTE/PCA) between 1996 and 2011.

2.1.1 Rossi X-ray Timing Explorer

Rossi X-ray Timing Explorer was a NASA satellite, launched in December 1995 and decom-
missioned in January 2012. It carried two pointed instruments, where the low energy range
(2-60 keV) was covered by the Proportional Counter Array (PCA, Jahoda et al., 1996), com-
prised of five Proportional Counting Units (PCUs), with the total collecting area of 6500 cm2.
It had a collimator, a field of view with a FWHM of 1◦ and no angular resolution, the time
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Figure 2.1: Examples of GRS 1915+105 X-ray light curves. Shown light curves have been
classified according to the Belloni et al. system. Classifications are shown in the upper-right
corner of each sub-figure. I use the curated set of classifications from Huppenkothen et al.

(2017). Light curves have 1 second cadence.

resolution of 1 𝜇s, and energy resolution of <18% at 6 keV. The high energy range (15-250 keV)
was covered by the High Energy X-ray Timing Experiment (HEXTE, Gruber et al., 1996), com-
prised of two clusters of four detectors, with the total collecting area of 1600 cm2. It had a field
of view similar to PCA, the time resolution of 8 𝜇s, and energy resolution of 15% at 60 keV.
RXTE also carried an All-Sky Monitor (ASM, Levine et al., 1996), comprised of three scanning
shadow cameras with the total collecting area of 90 cm2, which covered 80% of the sky every
90 minutes, in the energy range of 2-10 keV.

2.1.2 GRS 1915+105

GRS 1915+105 is a galactic black hole X-ray binary system discovered in 1992 (Castro-Tirado
et al., 1994), which shows an extraordinary complexity of X-ray flux variability. It was the only
known source to exhibit such intricate patterns of behaviour, until the discovery of the black hole
candidate IGR J17091−3624 (Kuulkers et al., 2003; Capitanio et al., 2006), which shares some
of the same characteristics (Altamirano et al., 2011).

In an attempt to demonstrate that the complex behaviour of GRS 1915+105 is controlled by just
a few simple physical variables, Belloni et al. (2000) constructed a classification system, which
assigned observations of the source to one of 12 classes. Classification was based on the presence
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of qualitative patterns in light curves and colour-colour diagrams of source observations. Work
that followed had expanded the classification system to a total of 14 classes (Klein-Wolt et al.,
2002; Hannikainen et al., 2003, 2005). This classification system is hereafter referred to as the
“Belloni et al. system”. Figure 2.1 shows an example of GRS 1915+105 light curve for each
one of the 14 classes. Some classes show steady flux without any structured variability, other
show periodic flares, dips or different types of periodic and aperiodic variability. There are both
inter-class and intra-class variations in the amplitude of flux variability.

Highly complex patterns of light curve variability of GRS 1915+105 are commonly interpreted
as being caused by a partial or complete disappearance of an observable innermost region of the
accretion disc. Disappearance of the disc, in turn, is caused by thermal-viscous instability of
the inner region of the disc (Belloni et al., 1997a,b). X-ray variability patterns corresponding to
the 14 classes of source behaviour can repeat almost identically months and years apart. This
suggests that the instability of the disc triggers a very specific and reproducible response (Belloni,
2001).

GRS 1915+105 was the first discovered stellar-mass source producing highly relativistic jets
(Mirabel and Rodriguez, 1994). In this regard, it sparked great research interest, as it offered
the possibility of studying coupled inflow-outflow processes of an accreting black hole, which
unlike more massive active galactic nuclei, evolves in observable time scales (Fender and Belloni,
2004). Plasma ejections of GRS 1915+105 in the form of jets have also been associated with the
instability of the accretion disc (Belloni et al., 2000; Nayakshin et al., 2000; Fender and Belloni,
2004), which supports the notion of disc-jet coupling.

Furthermore, Naik et al. (2002) found that intervals when the innermost region of the accretion
disc is not observable (which are associated with variability class 𝜒), are preferentially followed
by classes showing periodic bursts, i.e. classes 𝜌 and 𝛼. Therefore, following the changes of
variability classes can improve our understanding of the evolution of the source over longer
time scales, and it is an important method of probing the accretion dynamics, as pointed out by
Huppenkothen et al. (2017).

Huppenkothen et al. (2017) conducted the first study of the whole set of GRS 1915+105 ob-
servations from RXTE/PCA using machine learning. They characterised the observations of
the source and classified them according to the Belloni et al. system, using machine learning
classification methods. They used features derived from power spectra, time series features
extracted with an autoregressive model, and hardness ratio features derived from energy spectra.

2.1.3 Summary of this work

This section presents the classification of GRS 1915+105 observations using exclusively time
series features derived from light curve data in an unsupervised manner, using a neural network.
I choose not to use energy and power spectral features, found in the works of Belloni et al. (2000)
and Huppenkothen et al. (2017), hence making my method more generalisable to other data sets,
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sources, and energy bands. In principle, any type of univariate time series data can be analysed
using this method.

In order to perform machine learning on light curve data, they need to be represented with vectors
of constant length. It is a common approach to segment light curves to create time series of
constant length prior to feature extraction. However, it is not obvious how to aggregate features
of a light curve from a variable number of segments. I propose the “fingerprints” representation
as a method of aggregating segment-wise time series features into a constant-length vector which
describes a whole light curve of any length, in a manner that is interpretable by machine learning
algorithms.

I train a neural network which performs dimensionality reduction of light curve segments,
producing time series feature vectors of individual segments. I then perform clustering of
features of individual segments and use the number of segments assigned to each cluster to
construct the fingerprint representation, taking advantage of the fact that segments showing
similar patterns of light curve variability tend to cluster together. I show that the fingerprint
representation can be used to quantify the similarity of light curves and to perform machine
learning classification.

This chapter contains the following parts: Section 2.2 describes the data preparation process,
which starts with RXTE/PCA observations and produces a data set of light curve segments, a
suitable input for a neural network. Section 2.3 provides details about the neural network and
describes the process of dimensionality reduction of the data set, which results in the encoded
data representation (time series features). Section 2.4 describes the process of cluster analysis of
the encoded representation. Section 2.4.1 describes how Gaussian mixture models are used to
identify the set of light curve patterns from the encoded data representation. Section 2.4.2 shows
how the set of light curve patterns is used to construct the observation fingerprint. Section 2.4.3
shows how fingerprint can be used to assign light curves to classes of the Belloni et al. system,
and Section 2.4.5 demonstrates how the fingerprint can be leveraged to refine the classification
system in a data-driven way. Section 2.5 summarises the main results, discusses limitations of
the presented approach, and lists some ideas for further research.

2.2 Data preparation

I retrieve all available RXTE/PCA1 observations of GRS 1915+105 in Standard-1 format (0.125
second resolution light curves which combine all energy channels over the range of 2–60 keV).
Extraction is limited to the most reliable counting array number 2 (PCU2). This yields 1776
light curves, which are subsequently re-binned. I generate two data sets: one where binning is
performed at 1 second resolution, and another where binning is performed at 4 second resolution.
Two data sets are generated because I fix the input size of the neural network to 128 data points

1https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3browse.pl

https://heasarc.gsfc.nasa.gov/db-perl/W3Browse/w3browse.pl
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Table 2.1: Parameters of the two data sets of light curve segment.

Parameter 4s data set 1s data set
Cadence (s) 4 1
Segment length (s) 512 128
Stride length (s) 8 10
# segments 468,202 474,471

due to GPU hardware constraints (see Section 2.3.2 for more detail), therefore the time resolution
of the light curves is the main parameter which influences the amount and type of information
that is provided to the network. On the one hand, short time resolution data can resolve fast
variability structures of the X-ray source, but it cannot capture longer variability structures in a
light curve segment of fixed size. On the other hand, longer time resolution data can capture
more context within a light curve segment, but any fast variability structures are smoothed or
lost. Hence, I choose to train two separate models on the two data sets and compare them in
order to explore the effect of changing data resolution.

Similarly to Huppenkothen et al. (2017), I perform light curve segmentation in order to produce
a data set of segments of standard length. Only the good time intervals from each observation are
segmented, and the interruption periods of missing data are skipped. I choose the segment size of
128 data points, resulting in a segment length of 512 seconds for data with 4 second resolution. A
moving window segmentation is performed with a stride of 2 data points (8 seconds), yielding a
set of 468,202 segments derived from 1738 observations which satisfy the segmentation criteria.
This data set of light curve segments is hereafter referred to as “4s data set”. The same set of
1738 observations, binned to 1 second resolution, is segmented with a stride length of 10 data
points, yielding 474,471 segments. This data set of light curve segments is hereafter referred
to as “1s data set”. Stride size is adjusted in order to make the number of segments as close as
possible to the 4s data set. Table 2.1 lists parameters of the two data sets.

The time duration captured by the segments is not sufficient to contain the longest cycles of
flux variability produced by the source. For example, some observations of the class 𝛼 show
intervals of quiescence which last ∼1000 seconds, and are interlaced by periods of flaring which
last ∼500 seconds. However, the main goal of my study is not to classify individual light curve
segments, but rather to construct a new, data-driven system of segment templates, which create
classifiable observation signatures when grouped together with other segments from the same
light curve. See Section 2.4.3 for an example of a classification experiment which illustrates the
use of observation signatures (fingerprints).

A small stride size is selected in order to maximise the number of light curve segments available
for neural network training. It also ensures that the model is exposed to the full range of phase
shift of light curve patterns (Huppenkothen et al., 2017).

Light curve segments are independently standardised; count rate values of each segment are
mean centred and scaled to units of standard deviation. Segments are standardised in order to
decouple their shape and intensity information. Many of the patterns observed in the variability
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of GRS 1915+105 repeat at various mean count rate levels. Therefore, standardisation of the
segments is likely to cause segments showing similar shape patterns to align in the latent feature
space extracted from the data. I also allow for the possibility that some shapes could be shared
by several classes of variability, as described by Belloni et al. (2000), but at different intensities,
and standardisation can make it easier to draw links between those cases.

The resulting data set of light curve segments, together with corresponding count rate uncertainty
values (needed to calculate the reconstruction error, see Equation 2.1), is used to train a neural
network. The process is described in Section 2.3.

Original count rate levels of the light curve segments are also important in the data analysis, so
intensity information is added to the final feature set in the form of four descriptive statistics;
mean, standard deviation, skewness and kurtosis, which are calculated from the distribution of
count rate of each segment. These statistics make up one of the two sets of features used in
cluster analysis in Section 2.4, and this set of four intensity features is hereafter referred to as
“intensity features of light curve segments” (IFoS).

2.3 Feature extraction with a neural network

In order to address the problem of dimensionality reduction of light curve data, I propose
a Variational Autoencoder (VAE) with LSTM cells within its encoder and decoder blocks.
Autoencoders have been used in the past for the purpose of feature extraction from astronomical
data (for example Naul et al., 2018). Here I use a variational variant of an autoencoder, because
it introduces a Gaussian prior which applies a regularization effect on the produced latent space.
Non-regularized autoencoders can map similar inputs to very different latent variables (Hinton,
2013), therefore regularization of the latent space is required for the down-stream clustering and
merging of clusters discussed in Section 2.4.

2.3.1 Architecture of LSTM-VAE network

The network is built using Keras, an open-source neural network library (Chollet, 2015) with
Tensorflow backend, and Python 3 programming language.

Figure 2.2 shows a visualisation of the proposed LSTM-VAE architecture. The purpose of each
layer is as listed below.

• Encoder_input creates an instance of a tensor with dimensions of the model input, i.e.
a sequence of 128 values.

• Encoder_LSTM is a layer of CuDNNLSTM cells. CuDNN stands for the CUDA Deep
Neural Network library, which was developed by NVIDIA (Chetlur et al., 2014). The
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decoder

Encoder_input: InputLayer
input:

output:

[(None, 128, 1)]

[(None, 128, 1)]

Encoder_LSTM: CuDNNLSTM
input:

output:

(None, 128, 1)

(None, 1024)

Latent_mean: Dense
input:

output:

(None, 1024)

(None, 20)
Latent_log_variance: Dense

input:

output:

(None, 1024)

(None, 20)

Sampler: Sampling_func
input:

output:

((None, 20), (None, 20))

(None, 20)

Decoder_input: InputLayer
input:

output:

[(None, 20)]

[(None, 20)]

Expand_to_decoder_shape: RepeatVector
input:

output:

(None, 20)

(None, 128, 20)

Decoder_LSTM: CuDNNLSTM
input:

output:

(None, 128, 20)

(None, 128, 1024)

Collapse_to_output_shape(Dense): TimeDistributed(Dense)
input:

output:

(None, 128, 1024)

(None, 128, 1)

Figure 2.2: Architecture of the proposed LSTM-VAE model. The figure was generated using
the Keras utility plot_model. The left-most cell of each block contains the label assigned
to the corresponding instance of a Keras object, followed by class of Keras model layer
(except from Sampling_func which is a custom function; see Section 2.3.1). The right-most
cells contain shapes of input and output tensors of the objects. Shapes are presented using the

convention followed by Keras.
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library accelerates training of neural networks using a graphical processing unit (GPU).
This layer consists of 1024 such LSTM cells, which are not interconnected, but perform
recurrent computation on the input sequence, one data point at a time. Output from every
point of the sequence is stored within the state of the cell and used as input of the next
computation of the sequence. The output of this layer consists of the final state of the cells,
produced after the entire sequence has been processed. LSTM cells are trained to extract
informative variables from the data through the process of backpropagation of errors.
Increasing the number of LSTM cells tends to improve the network’s reconstruction loss
(see below for the definition of reconstruction loss), and the number of 1024 is selected
due to the GPU memory size constrain.

• Latent_mean and Latent_log_variance are two separate layers of fully interconnected
neurons. Their purpose is to perform the dimensionality reduction of the 1024 variables
extracted by the Encoder_LSTM layer. Latent_mean and Latent_log_variance each
output 20 values (which is the dimensionality of the latent space). The first set of 20 values
is used as the mean of the continuous latent variables, whereas the other set encodes their
spread. In other words, Encoder_LSTM, Latent_mean and Latent_log_variance
make up the Encoder block of the VAE, which maps the network input to the mean and
(log) variance vectors. Increasing the number of latent variables tends to improve the
network’s reconstruction loss, but it also increases the dimensionality of the latent space
and the computational complexity of downstream processes. I choose the number of latent
variables based on the results of preliminary experiments, where increasing the number
tended to improve the reconstruction quality, and the number of 20 reached the compromise
between the reconstruction performance and the complexity of the latent space.

• Sampler generates random numbers from normal distributions whose parameters are set
to the values of latent variable mean and variance. It is required in order to allow for
deterministic treatment of the inherently probabilistic network during training (the so-
called “re-parameterisation trick” (Kingma and Welling, 2014)).

• Decoder_input initialises the input tensor of the Decoder block of the model.

• Expand_to_decoder_shape replicates the values of latent variables to create sequences
of the same length as the initial light curve sequences. In other words, each LSTM cell
of the Decoder block receives values of the 20 latent variables at each iteration of the
sequential computation.

• Decoder_LSTM layer is the Decoder counterpart of Encoder_LSTM layer of the Encoder.
It also performs recurrent computation on the sequential input, but rather than processing a
single sequence of variable values, it processes 20 sequences of constant values. This layer
has 1024 cells, each producing a sequence of cell states from each iteration of recurrent
computation.
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Table 2.2: Summary of the LSTM-VAE training and fine-tuning. Validation loss stopped
improving after the quoted number of training epochs. Training was stopped after 50 consecutive

epochs without validation loss improvement. Best validation loss is shown.

Optimiser (rate) # epochs Loss Data set
Adam (Default) 176 14.44 1s
SGD (3 · 10−4) 43 14.20
SGD (1.5 · 10−4) 112 14.17
SGD (7.5 · 10−5) 164 14.16
Adam (Default) 209 107.63 4s
SGD (3 · 10−4) 5 103.67
SGD (1.5 · 10−4) 4 102.55
SGD (7.5 · 10−5) 12 102.02

• Collapse_to_output_shape is a fully connected layer which combines the 1024 se-
quences from the LSTM layer into a single sequence of 128 data points. The output of
this layer is the reconstruction of an input light curve segment.

2.3.2 Training and fine-tuning of LSTM-VAE networks

Both data sets are subdivided into training, validation and testing subsets. In order to ensure
that the subsets are independent, segments derived from the same observation are only included
in one of the subsets. In order to ensure completeness of the subsets, observations which have
Belloni et al. system classifications available (Huppenkothen et al., 2017), are assigned to the
subsets in a random, stratified fashion. At least one observation of each class is assigned to each
subset, and the remaining observations are assigned to training, validation, and testing subsets
according to the split ratio of 7/1/2. Since only two observations of 𝜂 class are available at this
stage, both observations are assigned to the training subset. Observations without Belloni et
al. system classifications are randomly distributed between the three subsets, while accounting
for the fact that observations contain variable number of count rate data points. The resulting
training sets contain ∼70% of total data points, validation sets contain ∼10% of data points, and
testing sets contain ∼20% of data points.

Two LSTM-VAE neural networks with identical architecture are trained to compress light curve
segments of 128 data points into 20 continuous latent variables, one network for each data set.
Data from the training set is used to adjust the parameters of the networks, and the validation set
is used to measure whether the adjustment improved the networks’ ability to process previously
unseen examples of data. The testing set is kept aside until all training and fine-tuning of models
is finished.

I train networks using the Keras implementation of Adam optimisation algorithm (Kingma and
Ba, 2015), and fine-tune them using the stochastic gradient descend (SGD) algorithm. The
clipvalue argument is set to 0.5 for both optimisers, which prevents numerical errors due to
exploding gradients. Training is performed with the batch size of 1024 (number of light curve



40
Chapter 2. Light curve fingerprints: an automated approach to the extraction of X-ray

variability patterns with feature aggregation – an example application to GRS 1915+105

0 100 200 300 400 500 600 700

No. t raining epochs

20

40

60

80

100

120

Lo
ss

t raining loss

validat ion loss

0 100 200 300 400

No. t raining epochs

100

200

300

400

500

600

700

Lo
ss

t raining loss

validat ion loss

Figure 2.3: Loss curves resulting from the training of LSTM-VAE models on 1s data set (left)
and on the 4s data set (right). Black vertical lines indicate that no improvement in validation
loss in the last 50 consecutive epochs and change of the optimiser. See Table 2.2 for full training

history.

segments propagated through the network simultaneously) for various numbers of epochs (i.e.
complete passes through the training set). Training is terminated when the validation loss value
does not improve for 50 consecutive epochs. See Table 2.2 for full training history, and Figure 2.3
for loss curves resulting from the training. Results suggest that satisfactory training results could
be achieved using Adam optimiser only, because improvements caused by SGD with decaying
learning rate are marginal.

I use an Nvidia Geforce Titan Xp GPU for network training. One epoch of training takes ∼266
seconds of computation, resulting in the total of ∼36.6 and ∼17.0 hours of training for 1s and
4s data sets respectively, which could be reduced to ∼13.0 and ∼15.4 hours respectively, if
fine-tuning with SGD optimiser was not performed.

The amount of GPU memory (12 GB for Titan Xp) sets a limit on the number of parameters of
the network for a given size of data batch. The number of parameters depends on the size of
propagated tensors, which in turn depends on the sizes of layers of the model (see shapes of the
Keras objects shown in Figure 2.2). In order to optimise the reconstruction performance within
the constraints of the GPU memory limit, I maximise the number of LSTM cells, which increases
the computational power of the network. Increasing the number of LSTM cells relative to the
number of data points in the input layer (i.e. the segment length) tends to improve reconstruction
performance. However, a decrease in the number of input data points means that less information
about the context of variability patterns is given to the network, which shifts the focus of the
analysis to short term patterns. The size of the training data batch could be reduced to allow
for an increased number of parameters of the network, leading to improved performance at the
expense of increased training time.
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The output of the network consists of the reconstruction of an input light curve segment. Perfor-
mance of the network is quantified using a loss function, which depends on the reconstruction
error and a regularisation term. The loss function is a sum of a mean square error weighted
by the data uncertainty (Equation 2.1) and Kullback-Leibler divergence (Equation 1.33). The
weighted mean square error is defined as:

WMSE =
1
𝑁

𝑁∑︁
𝑖=1

(︃
𝑥𝑖 − 𝑥𝑖̂
𝜎𝑖

)︃2
(2.1)

where 𝑁 is the number of processed data points, 𝑥𝑖 is the value of a data point 𝑖 in the input
light curve segment, 𝑥𝑖̂ is the value of a data point 𝑖 in the reconstructed sequence, and 𝜎𝑖 is the
uncertainty of the value of 𝑖 in the input light curve sequence. Uncertainty values are scaled with
the same value of standard deviation as the count rate values of light curve segments.

The networks are trained to minimise the value of the loss function. Examples of light curve
segments from 1s data set, together with their LSTM-VAE reconstructions, are shown in Fig-
ure 2.4. Examples for segments from 4s data set are shown in Figure 2.5.

2.3.3 Light curve feature extraction

The networks are used to perform dimensionality reduction on both data sets of standardised
light curve segments (generated using the method described in Section 2.2). The network
infers mean and variance of the 20 continuous latent variables from the data (i.e. outputs of
Latent_mean and Latent_log_variance layers of the network correspond to the mean and
variance parameters, see Section 2.3.1 for more details). The latent variables are a compressed
representation of the network’s input. For the purpose of further analysis, I do not sample from
latent distributions, but take the means of latent distributions, which are representative of the
position of each light curve segment within the latent space. The resulting set of latent variables
is hereafter referred to as “shape features of light curve segments” (SFoS). Hence, the shape
information of each light curve segment is represented by 20 SFoS values.

In order to assess how well SFoS describe the shape of light curve segments, I perform recon-
struction of several segments. Figures 2.4 and 2.5 show reconstructions of light curve segments
of each class of the Belloni et al. system. This set of segments demonstrates how the LSTM-VAE
responds to a range of different light curve patterns found in the data sets. The model is able
to reproduce the gross features of each segment, but it often does not account for fast count
rate changes, which results in reconstructions which are significantly smoother than the input
segments. This means that SFoS likely do not account for differences between segments lacking
structured variability, where the major difference lies in the root-mean-square (RMS) deviation
from the mean. Reconstructions of those segments would differ only in terms of the shape of
random noise. For example, see segments of class 𝜙 and 𝜒 in Figure 2.5.
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Figure 2.4: Examples of light curve segments from 1s data set. Segment reconstruction output
of the LSTM-VAE is shown in magenta. Segments originate from observations that had been
classified according to the Belloni et al. system. I use the curated set of classifications from
Huppenkothen et al. (2017). Both columns show the same segments, but in the right column
the range of the vertical axis is dynamic. All segments come from the testing subset of 1s data

set, except for class 𝜂, which was included only in the training subset.
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Figure 2.5: Examples of light curve segments and their LSTM-VAE reconstructions – the
counterpart of Figure 2.4 for 4s data set.

In order to remedy this limitation, IFoS (containing information about count rate mean, standard
deviation, skewness, and kurtosis of each segment) are used in the cluster analysis stage (Sec-
tion 2.4) together with SFoS. Segments with indistinguishable shapes and dissimilar RMS can
be distinguished based on their standard deviation values.

Figure 2.6 shows the distribution of IFoS values for segments of 𝜙, 𝜒 and 𝛾 classes from the 1s
data set. As expected, segments of class 𝛾 generally have larger mean and standard deviation
values than the other two classes, which indicates that IFoS would allow for segments of class
𝛾 to be distinguished from classes 𝜙 and 𝜒, even in segments where the characteristic “dip” of
class 𝛾 is not observed.
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Figure 2.6: Distributions of the IFoS values from segments assigned to classes 𝜙, 𝜒 and 𝛾 of
the Belloni et al. system. Classifications come from the set curated by Huppenkothen et al.
(2017). Four IFoS are the mean, standard deviation, skewness, and kurtosis of count rate values
of each segment. The box extends from the first to third quartile, and the green line shows the

median. Whiskers extend from the box to the 5th and 95th percentiles.

Furthermore, projections of SFoS and IFoS in Figure 2.7 show that IFoS could be used to
distinguish classes 𝜙, 𝜒, and 𝛾 much more reliably than SFoS alone. The projection was
produced using UMAP algorithm. In the projection of SFoS, data classified as 𝜙, 𝜒, and 𝛾
occupied the same region of UMAP space (in the central cluster of Figure 2.7a), indicating that
those classes are mostly indistinguishable in the SFoS space. Data classified as 𝜌 tends to occupy
separate regions of the SFoS space. Class 𝜌 is included in the projection to demonstrate that
data associated with characteristic light curve shapes tends to be distinguishable in terms of its
position in the SFoS space. IFoS projection uses the same subset of light curve segment data.
Classes still show significant overlap in the IFoS projection, but intensity features can clearly
provide meaningful information about the differences between classes 𝜙, 𝜒, and 𝛾.
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(a) SFoS (b) IFoS

Figure 2.7: UMAP projection of SFoS (left) and IFoS (right) of light curve segments from the
1s data set which have Belloni at al. system classifications of 𝜙, 𝜒, 𝛾 or 𝜌. Each point represents
a light curve segment, and colour-coding shows their classification according to the Belloni et

al. system.

2.4 Cluster analysis of generated features

2.4.1 Identifying the set of light curve patterns

Sections 2.2 and 2.3 describe the process of feature engineering of four IFoS and 20 SFoS, which
encode the shape and intensity information about light curve segments. This set of 24 features
is hereafter collectively referred to as “shape and intensity features of light curve segments”
(SIFoS). I generate two separate sets of SIFoS, one for the 1s data set, and one for the 4s data set.

In order to find the exhaustive set of light curve pattern templates which have been produced
by GRS 1915+105, I perform clustering of the data in the 24 dimensional space of SIFoS.
Clustering is performed with an implementation of Gaussian mixture model (GMM) included in
the machine learning library scikit-learn (Pedregosa et al., 2011). The algorithm approximates
the probability distribution of the data using a set of multidimensional Gaussian components
(see Section 1.4.4.1 for more details).

I explored the possibility of using density-based clustering algorithms DBSCAN (Ester et al.,
1996) and OPTICS (Ankerst et al., 1999), and I find that it is difficult to fine-tune the hyperpa-
rameters of those algorithms in a way that would not lead to a large proportion of the data being
rejected as noise. I find that GMM offers a much more straightforward method of assigning the
data to clusters. Therefore, I focus on the discussion of the application of GMM in the remainder
of this text.

I choose to use GMM to approximate the shape of the latent manifold in the SIFoS space, with
the intention of merging of the Gaussian components which show significant overlap. This way
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I use combinations of Gaussian components to account for the presence of any extended, curved,
non-Gaussian structures in the latent space. I am assuming that those structures correspond to
particular light curve patterns, and for each observation of the source, the relative amount of time
the source spends showing those patterns allows us to determine the class of that observation.
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Figure 2.8: Bayesian information criterion of GMM as a function of the number of Gaussian
components. I performed grid searches for the 1s data set (left) and the 4s data set (right). Figure
insets are zoomed into the regions indicated by the black dotted line boxes, which contain the
global minima. Minima were found at 222 Gaussian components for 1s data set and at 279

Gaussian components for 4s data set. Minima are marked by red crosses.

I perform a hyperparameter grid search to find the optimal number of Gaussian components
for the GMMs in SIFoS space. Figure 2.8 shows values of the Bayesian information criterion
(BIC) of those models as a function of the number of Gaussian components. BIC is a criterion
commonly used to select the best model from a set of models fit to the same data set. The number
of free parameters is one of the terms of BIC, so it penalises overly complex models. The model
which produces the minimum BIC achieves the compromise between complexity and likelihood
of the data (see Equation 2.2).

BIC = 𝑘 · log(𝑁) − 2 · L (2.2)

where 𝑘 is the number of free parameters of the model, 𝑁 is the number of samples of data, and
L is the log-likelihood of the data.

The grid search for the optimal number of components of the GMM is the most computationally
expensive procedure described in this chapter, barring the training of neural networks. The
convergence time for this algorithm is highly dependent on the initial random state, but as an
approximate point of reference, I inform that the fitting of the 222 component model to 1s data
set and 279 component model to 4s data set require 1.96 and 2.91 CPU hours respectively, using
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a CPU with clock speed of 3.40 GHz. Additionally, the fitting of 400 component models to 1s
and 4s data sets require 3.42 and 3.80 CPU hours respectively.

I use the default set of GMM hyperparameters as implemented in the scikit-learn library
(Pedregosa et al., 2011), except for the number of components. I therefore fit full covariance
matrices for each one of the Gaussian components. The computation time could be reduced
at the expense of fit quality if a different type of covariance matrix was chosen. Convergence
threshold and the number of iterations of the Expectation-Maximisation algorithm are other
tunable parameters.

Grid searches indicate that the global BIC minimum for 1s data set is produced by a model with
222 Gaussian components, and for 4s data set with 279 components. I accept those numbers as
the optimal numbers of components for GMM, however the stochastic nature of the algorithm
could cause the numbers to change slightly if the grid-search was to be repeated. The set of
clusters resulting from the assignment of light curve segment data points in SIFoS space to one
of the Gaussian components of GMM is hereafter referred to as “Gaussian clusters”.

Light curve segments showing similar type of variability patterns and count rate distribution are
expected to produce similar values of SFoS and IFoS. Consequently, segments showing similar
patterns are separated by smaller distances within the SIFoS feature space. Therefore, it is
expected that Gaussian clusters contain homogeneous subsets of light curve segments, which are
more similar to each other than to segments found in other Gaussian clusters.

Qualitative inspection of populations of the 222 Gaussian clusters of the 1s data set revealed
that it is the case indeed. 42 Gaussian clusters contain recurrent flares, characteristic of light
curve classes 𝜌 and 𝜈 (see Figure 2.4 for examples). Table 2.3 shows a breakdown of the
population of the clusters in terms of the classes of Belloni et al. system, and it shows that
the Gaussian clusters containing recurrent flares are indeed dominated by classes 𝜌 and 𝜈. 69
Gaussian clusters contain segments with low RMS and no obvious patterns of variability, and
their population consist mostly of classes 𝜒 and 𝜙. Further 15 Gaussian clusters contain segments
showing similar type of behaviour, but at higher average count rates, and the population of those
clusters consist mostly of classes 𝜒, 𝛾 and 𝜃. Virtually every one of the remaining Gaussian
clusters has some characteristic pattern; e.g. irregular flares, dips, negative or positive gradient,
flaring followed by quiescence and vice versa. Few Gaussian clusters contain segments whose
common patterns of variability are not immediately apparent upon visual inspection of a small
random sample of segments, which can indicate that the number of Gaussian components of the
GMM is too small.

In order to find the minimal, exhaustive set of light curve variability patterns, segments showing
the same characteristic patterns should arguably all belong to one cluster. Gaussian clusters
produced with the 222 and 279 component GMMs contain apparent degeneracies. The presence
of very similar Gaussian clusters is caused by the limitation of the GMM, which approximates the
probability density of the data set using multivariate Gaussian components. A single component
cannot spread over a curved data manifold; only multiple components can approximate the
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Figure 2.9: UMAP projection of the 222 means of Gaussian components of the GMM fit
to 1s data set. UMAP reduced dimensionality from 24 to 2. Some points are colour coded,
and common colours indicate Gaussian clusters containing light curve segments which show
common characteristic variability patterns. As mentioned in the text, “recurrent flare” stands
for behaviour characteristic of light curve classes 𝜌 and 𝜈, “mid-random” and “low-random”
stands for the lack of apparent structured variability (only random noise) at low and medium-
high mean count rates, “-ve gradient” stands for slow decrease of mean count rate, whereas
“long flare” stands for irregular, long periods of flaring characteristic of classes 𝜅 and 𝜆. All
the remaining Gaussian clusters are labelled as “other”, as their segments showed no obvious,
common variability patterns. The population of each type of cluster in terms of the classes of
Belloni et al. system is shown in Table 2.3. Grey lines indicate cluster mergers produced with
the Mahalanobis distance threshold of 3.34. For every group of merged clusters, the lines are

plotted between an arbitrarily chosen cluster and all the remaining clusters in the group.

curvature, as a series of locally flat sections. Light curve segments which show a similar type
of variability pattern can vary in more than one SIFoS due to their non-linear interaction within
the neural network model. Therefore, segments which, for example, vary in the frequency and
amplitude of a similar type of pattern, can follow a curved manifold, and hence end up in separate
Gaussian clusters. I address that in Section 2.4.3.

Figure 2.9 shows a two-dimensional UMAP projection of mean positions of GMM Gaussian
components which are fit to the 1s data set. Some points are colour coded to indicate the
characteristic patterns of light curve segments found in the corresponding Gaussian clusters.
Segments in clusters labelled as “other” contain segments whose common patterns of variability
are not immediately apparent upon visual inspection of a small random sample of segments.
Colour coding is assigned through manual inspection of data found in Gaussian clusters, which
is not a part of the proposed method of unsupervised data analysis. The purpose of this
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Table 2.3: Percentage distribution of light curve segments across the classes of Belloni et al.
system for each type of Gaussian clusters identified in Figure 2.9. Classes showing similar
patterns tend to be clustered together, which is an indication of the meaningfulness of the SIFoS

feature space.

recurrent flare mid-random low-random -ve gradient long flare other

𝛼 1.2 0.1 2.5 15.5 0.5 4.1
𝛽 1 2.4 2.5 19.9 9.7 11.3
𝜒 0 46.9 80.4 0.1 0 22.6
𝛿 0 0.8 0 12.2 2.8 8.6
𝜂 0 0 1.4 14.4 0 2.4
𝛾 0 27.5 0 0.1 0 8.2
𝜅 0.9 0.3 0 0 82.3 7.3
𝜆 0 0.1 0.4 3.4 1.1 4
𝜇 0.1 0 0 0.2 1.1 7.4
𝜈 5.9 0.9 1.3 2.8 0 3.5
𝜔 0 3.9 0 0.1 0 0.9
𝜙 0 1 11 4.8 0.1 1.9
𝜌 90.9 0 0 0 2.3 3.4
𝜃 0 16.1 0.4 26.7 0.1 14.5

visualisation is to shows that Gaussian clusters sharing the characteristic patterns of behaviour
tend to occupy similar regions of the SIFoS space.

2.4.2 Relating the set of light curve patterns to the Belloni et al. system

In order to transform the two sets of clusters into a set of observation features, for each observation,
I count the number of light curve segments assigned to each of the Gaussian components. This
results in 222 values per observation in 1s data set and 279 values per observation in 4s data
set. For each observation, I divide the counts by the sum of all counts for that observation.
Feature vectors are independently normalised in order to reduce the impact of variance in the
total number of segments extracted from each observation. This variance is caused by the fact
that observations vary in total duration and the number of data gaps. Since feature vectors are
normalised, they only contain information about the relative abundance of light curve patterns
within the corresponding observation. I refer to such 222-vectors and 279-vectors as observation
fingerprint, because they allow identification of distinct classes of light curve variability.

In order to showcase the usefulness of fingerprint representation of data, Figure 2.10a shows
the subset of 1s data set which has been human-labelled according to the Belloni et al. system,
in terms of the Gaussian clusters described in Section 2.4. Figure 2.10a shows combined
fingerprint for each class of observation (fingerprint of observations of the same class were
summed to produce the combined fingerprint). Rows of this heat map correspond to the 14
classes of observations, and columns correspond to the 222 Gaussian clusters of light curve
segments. Particular cells of the heat map reflect the relative abundance of segments of a
particular class which have been assigned to a particular Gaussian cluster. The heat map was
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Figure 2.10: (a) A heat map showing the distribution of light curve segments across the set
of 222 Gaussian clusters which were fit to the classified subset of 1s data set. (b) A heat map
showing the distribution of light curve segments across the set of 150 clusters. The set of
clusters results from the cluster merging procedure described in Section 2.4.3, applied to the
set of 222 Gaussian components (illustrated in Figure 2.10a). The heat map was normalised
row-wise. Colour indicates the relative abundance of light curve segments in the corresponding
cluster. Clusters are ordered based on their proximity in the SIFoS space; this was determined
using a hierarchical (single linkage) clustering algorithm. Observations’ class labels come from

Huppenkothen et al. (2017).

normalised row-wise, which means that high values indicate the Gaussian clusters which are
most closely associated with a particular light curve class. This in turn indicates which light
curve patterns are most abundant in light curves of a particular class.

The distinct appearance of the rows of the heat map indicates that the representation of light
curves in terms of Gaussian clusters allows us to distinguish observations of different classes of
the Belloni et al. system. This indicates that the light curve representation which employs the
set of patterns could serve as a viable feature space for supervised classification algorithms.
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Table 2.4: List of hyperparameters included in the grid-search of classification experiment
described in Section 2.4.3. Hyperparameters criterion and max_depth belong to the random
forest classifier. The possible values of criterion are “gini” and “entropy”, which stand for
Gini impurity and information gain respectively (see Section 1.4.4.3 for more details), and
max_depth controls the depth of decision trees of the random forest. “Merge distance” refers
to the Mahalanobis distance threshold used in the process of merging Gaussian clusters. I test
100 values evenly spaced between 1.5 and 5. Hyperparameter producing the largest F1 values

for the two data sets are also listed.

Hyperparameter Possible values 1s data set 4s data set
criterion “gini”, “entropy” “gini” “gini”
max_depth None, 5, 10, 15, 25 5 15
merge distance between 1.5 and 5 3.34 2.84

2.4.3 Classification of light curves using fingerprint representation

In order to test the usefulness of the Gaussian cluster representation in light curve classification, I
train random forest classifiers (Breiman, 2001) to assign observations to the Belloni et al. system
based on their fingerprint (note: I choose to disregard the subdivision of the 𝜒 class, because the
main distinguishing feature of those subclasses is the position in the colour-colour diagram). I
perform classification with the random forest classifier implementation included in the machine
learning library scikit-learn (Pedregosa et al., 2011) (see Section 1.4.4.3 for more details about
the algorithm). I train separate classifiers for 1s data set and 4s data set.

In order to address the issue of degeneracy of light curve patterns described in Section 2.4.1 I
merge Gaussian clusters separated by small distances. I use the Mahalanobis distance metric
between the mean positions of Gaussian components. Mahalanobis distance is a distance metric
used to measure the distance between a point and a distribution, while scaling the distance using
the variance of that distribution. Mahalanobis distance is defined as:

𝐷M =

√︃
(𝒖 − 𝒗)V−1(𝒖 − 𝒗)𝑇 (2.3)

where 𝑢 and 𝑣 are vectors whose separation is calculated, and 𝑉 is the co-variance matrix.

The distance threshold between means of Gaussian components which are merged is one of
the hyperparameters included in the grid-search during the training of random forest classifiers.
Gaussian components are allowed to merge if the distance calculated for both co-variance
matrices is smaller than the threshold hyperparameter. I discuss the effect of merging the
Gaussian components in Section 2.4.4.

I use the training and validation data subsets (described in Section 2.3.2) for the training of random
forest classifiers. I find that the label of observation 10258-01-10-00 from Huppenkothen et al.
(2017) disagrees with preceding literature (Klein-Wolt et al., 2002; Belloni and Altamirano,
2013), therefore I change the label from 𝜆 to 𝜇 prior to classifier training.

Due to the limited number of labelled observations, I do not perform n-fold cross-validation, but
instead I train the random forest classifier on 137 observations randomly sampled in a stratified



52
Chapter 2. Light curve fingerprints: an automated approach to the extraction of X-ray

variability patterns with feature aggregation – an example application to GRS 1915+105

manner from the data set of 159 observations which were used for training and validation of the
neural network, and use the remaining 22 for validation. I repeat this process 100 times for each
combination of hyperparameters and find the mean of performance scores resulting from the 100
validation trials. In order to account for the class imbalance, the classifiers automatically adjust
weights of each training sample to be inversely proportional to class frequencies. Table 2.4
lists hyperparameters included in the grid-search. The Scikit-learn (Pedregosa et al., 2011)
implementation of the random forest classifier controls the number of decision trees in the random
forest ensemble using the n_estimators hyperparameter. Therefore, I keep this number constant
for all the grid-search classifiers, and set the hyperparameter to 1000 for the final classifier used
on the testing data subset.

Hyperparameters min_samples_split and min_samples_leaf control the construction process of
the decision trees, and I keep the values constant at 2 and 1 respectively. These hyperparameters
control the splitting of the trees, and increasing the values would not allow for the classes with just
a single observation to be separated from other classes. I set the class_weight hyperparameter
to “balanced”, which sets the weights of the classes to be inversely proportional to the class
frequency in order to account for the imbalance in the number of observations of each class. Any
hyperparameters of the random forest classifier which are not mentioned in the text were set to
default values.

I use F1 and accuracy scores to measure the performance of classifiers. Both scores can take
values in the range between 0 and 1, the higher, the better. Accuracy is the proportion of correct
classifications out of all predicted classifications. F1 score is the harmonic mean of recall and
precision of classifications of a single class:

𝐹1 = 2 · precision · recall
precision + recall

(2.4)

where precision is the proportion of true positives out of the sum of all positives, and recall is
the proportion of true positives out of the sum of true positives and false negatives.

Reported F1 scores are weighted averages across the 13 classes. The scores are weighted by the
number of observations of the corresponding class in order to account for the class imbalance.
In general, weighted F1 is a more reliable performance indicator, because accuracy can be easily
biased when observations of one class significantly outnumber observations of other classes.

I find that the highest average validation performance scores for the 1s data set are weighted
F1 of 0.814 ± 0.065 and accuracy of 0.854 ± 0.054, while the highest average validation scores
for the 4s data set are 0.760 ± 0.068 and 0.810 ± 0.056 (reported uncertainty values are equal
to one standard deviation calculated from the performance scores of the 100 validation trials).
Therefore, I conclude that features derived from 1s data set perform better in the task of light
curve classification. Hyperparameters producing the highest average validation scores are listed
in Table 2.4 for both data sets.
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Figure 2.11: Confusion matrix showing classification results produced by the random forest
classifier with optimal set of hyperparameters for 47 testing set observations. The matrix shows
results for the lowest weighted F1 score out of the one thousand random initiations of the
classifier. Weighted F1 and accuracy of this initiation are 0.834 and 0.851 respectively. The
mean weighted F1 and accuracy performance scores across the one thousand initiations are

0.878 ± 0.027 and 0.894 ± 0.027 respectively

A random forest classifier with the optimal set of hyperparameters is trained on the observations
of the training subset and tested on the testing subset of 1s data set, containing 47 observations.
Random initiation of the algorithm is a significant cause of variance in the model performance,
therefore training and testing is repeated one thousand times. The mean of weighted F1 and
accuracy performance scores of those classifications are 0.878 ± 0.027 and, 0.894 ± 0.027 re-
spectively. It should be noted that reported uncertainty values account only for variance caused
by changes to the initial random state of the classifier.

Figure 2.11 shows the classification results with the lowest performance scores out of the set
of 1,000 testing trials. I present the results of the test which achieved the lowest scores,
because they reveal the most information about the low-confidence classifications. It appears
that my classifications disagree the most with the human-assigned labels for classes that have
few observations available. Therefore, it is likely that classification performance could improve
given a larger amount of training data. Since the number of labelled observations is very small,
the variance of test results is likely to be high. In order to test this, for each combination
of hyperparameters shown in Table 2.4, I perform 100 tests where 69 test observations are
randomly sampled in a stratified manner from the entire data set of 206 labelled observations
(combined training, validation and test data subsets), and the remaining observations are used
for training. Figure 2.17 shows the aggregated classification results of the 100 tests of the
classifier with optimal hyperparameters. Those results seem to agree with the results shown in
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Figure 2.11. The mean of weighted F1 and accuracy performance scores of those classifications
are 0.877± 0.031 and, 0.896± 0.026 respectively. The results also show that classes which have
only one training observation available (𝜆, 𝜈 and 𝜔) tend to disagree with the human-assigned
labels the most frequently.

From the test results presented in Figure 2.11, I examine each observation whose classification
disagrees with the human-assigned labels. Observations of class 𝛽 get assigned to other classes,
most likely because of the complex behaviour of its light curves. Some patterns of class 𝛽 can be
seen in light curves of other classes (Belloni et al., 2000). Observation with ID 40703-01-35-01
belonging to class 𝛽 (Klein-Wolt et al., 2002) is assigned to class 𝜃. This observation contains
many periods of missing data, and the good time intervals contain dips similar to the class 𝜃.
The observation also contains W-shaped intervals which resemble those characteristic of class
𝜃. Furthermore, the classifier predicts that 𝛽 is the second most probable classification of this
observation (top three predictions are 𝜃 (37.1%), 𝛽 (30.4%) and 𝛿 (6.1%)).

Two observations of class 𝜒, 10408-01-42-00 and 40703-01-20-03, are assigned to class 𝛾. Both
observations show significantly higher count rate and RMS than an average 𝜒 observation, which
is a possible cause of their classification. Class 𝜒 is the second most probable class prediction
for both observations; the top three predictions for 10408-01-42-00 are 𝛾 (21.8%), 𝜒 (21.8%)
and 𝜙 (14.8%), whilst for 40703-01-20-03 they are 𝛾 (21.9%), 𝜒 (21.9%) and 𝜙 (14.7%).

Two observations of class 𝜅, 40703-01-24-00 and 40703-01-25-00, are assigned to class 𝜌. Both
observations show fairly regular, sharp flares, similar to those characteristic to class 𝜌, however
they are noticeably wider than the canonical 𝜌 flares (see Figure 2.12 for the light curves of the
two observations). Other than the similarity to 𝜌 light curves, another factor influencing the
classification of these observations is likely the heterogeneity of the light curve behaviour of
observations labelled as 𝜅 by Klein-Wolt et al. (2002). More details about the ambiguity of 𝜅
classifications is provided in Section 2.4.5. Furthermore, class 𝜅 is the second most probable
class prediction for both observations. Top three predictions for 40703-01-24-00 are 𝜌 (16.0%),
𝜅 (15.5%) and 𝜒 (14.0%), whilst for 40703-01-25-00 they are 𝜌 (15.7%), 𝜅 (15.3%) and 𝜒

(13.4%).

Observation 20402-01-36-01 belongs to class 𝜆 and is assigned to class 𝜃 by the random forest
classifier. This observation shows behaviour which is very characteristic of class 𝜆; it shows
periods of flaring which alternate with low, quiet periods (see 𝜆 light curve in Figure 2.1 for an
example). The likely cause of this class assignment is the fact that only one 𝜆 observation is
included in the training data subset. The classifier predicts that 𝜆 is the second most probable
classification; top three predictions are 𝜃 (30.1%), 𝜆 (20.8%) and 𝜅 (13.2%).

Finally, observation 40703-01-29-01 belonging to class 𝜔 is assigned to class 𝜅 by the classifier.
This observation shows steady flux with no structured variability except a singe W-shaped dip,
which is a very typical 𝜔 behaviour (see Figure 2.12 for the light curve). The classifier predicts
that 𝜔 is the second most probable classification for this observation (top three predictions are
𝜅 (29.9%), 𝜔 (21.0%) and 𝛾 (16.8%)). One cause contributing to this classification is the fact
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Figure 2.12: Light curves of 𝜔 and 𝜅 observations discussed in Section 2.4.5. Each sub-
figure contains the first 1500 seconds of the light curve, or as much as is available in case
of shorter observations. Each sub-figure contains the observation ID and classification from
Huppenkothen et al. (2017). Figure 2.15 contains light curves which require individual time

axes.
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that only one labelled observation of class 𝜔 is available in the training data subset. However,
another major cause becomes apparent upon inspection of 𝜔 and 𝜅 observations. Many of
the observations labelled as 𝜅 by Klein-Wolt et al. (2002) show behaviour which very strongly
resembles class 𝜔. I discuss this issue in more detail in Section 2.4.5.

2.4.4 The effect of merging Gaussian clusters on the fingerprint representation

As discussed in Section 2.4.3 and shown in Table 2.4, the optimal classification result for the
1s data set is achieved with the Mahalanobis distance threshold of 3.34 for Gaussian cluster
merging. This distance results in the reduction of the number of Gaussian clusters from 222
to 150. Grey lines in Figure 2.9 show which clusters are merged, where for every group of
merged clusters, the lines are plotted between an arbitrarily chosen cluster and all the remaining
clusters in the group. The merging results in nine composite clusters, eight of which consist of
only two Gaussian components each, whilst one composite cluster consists of 65 components.
All nine composite clusters contain only Gaussian components categorised “low-random” and
“mid-random” (colour-coded as red and magenta points in Figure 2.9), and the “other” category
with undefined variability (colour-coded as black). Out of the eight composite clusters made
up of two Gaussian components, six of them contain only “low-random” components, one
contained two “other” components, and one is made up of one “other” and one “mid-random”
component. The largest composite cluster contained 46 “low-random” components, 11 “mid-
random” components, and eight “other” components.

Gaussian components of the categories “low-random” and “mid-random” contain segments
showing no structured variability. This type of variability can be found in the segments of
multiple classes of observations; Figure 2.10b shows the distribution of light curve segments
across the set of clusters after merging. The largest composite cluster, consisting of 65 Gaussian
components (cluster index 150 in Figure 2.10b), contains the most abundant type of segment for
most classes, including 𝛼, 𝛽, 𝜒, 𝛿, 𝜂, 𝛾, 𝜈, 𝜙, and 𝜃. The segments of those classes are distributed
across multiple Gaussian components before merging, and they become more concentrated in a
smaller number of clusters after merging, which is most the most pronounced for classes 𝜒 and 𝜙.
However, significant differences between the fingerprints of all classes are still noticeable. Since
the distance threshold for cluster merging is adjusted to optimise the classification performance
(as discussed in Section 2.4.3), it suggests that the large number of discrete clusters containing
segments with random variability is not required to differentiate the classes.

2.4.5 Data-driven review of 𝜔 and 𝜅 classifications

Figure 2.13 shows the fingerprint representation of all 𝜔 and 𝜅 observations from Huppenkothen
et al. (2017). There clearly exist at least two groups of 𝜅 observations. Six of the observations
(40703-01-14-00/01/02, 40703-01-30-00/01/02) are much more similar to 𝜔 observations than
the other 𝜅 observations. In order to assess the similarity of presented observations, I perform



2.4. Cluster analysis of generated features 57

0 4 8
1

2
1

6
2

0
2

4
2

8
3

2
3

6
4

0
4

4
4

8
5

2
5

6
6

0
6

4
6

8
7

2
7

6
8

0
8

4
8

8
9

2
9

6
1

0
0

1
0

4
1

0
8

1
1

2
1

1
6

1
2

0
1

2
4

1
2

8
1

3
2

1
3

6
1

4
0

1
4

4
1

4
8

Cluster index

40703-01-13-01

40703-01-27-00

40703-01-29-01

20402-01-33-00

20402-01-35-00

40703-01-12-00

40703-01-14-00

40703-01-14-01

40703-01-14-02

40703-01-24-00

40703-01-25-00

40703-01-26-00

40703-01-30-00

40703-01-30-01

40703-01-30-02

O
b

se
rv

a
ti

o
n

 I
D

ω

κ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.13: Fingerprint representation of 𝜔 (above black line) and 𝜅 (below black line)
observations from Huppenkothen et al. (2017). Clusters are merged using the method described
in Section 2.4.3, using the optimal Mahalanobis distance threshold of 3.34 (merged clusters are
not plotted separately, unlike in Figure 2.10b). Colour indicates the relative abundance of light

curve segments in the corresponding cluster.
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Figure 2.14: Dendrogram resulting from the hierarchical clustering of 𝜔 and 𝜅 observations
based on their fingerprint, shown in Figure 2.13. Hierarchical clustering algorithm uses the
ward method and Euclidean metric. Splitting of branches of the dendrogram at smaller values of
Euclidean distance indicates that the observations in corresponding leaf nodes are more closely

related.
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Figure 2.15: Light curves of 𝜔 and 𝜅 observations which are mentioned in Section 2.4.3. The
top sub-figure contains only the second, longer good time interval of the observation. Middle
and bottom sub-figures contain two good time intervals of their respective observations, and the
data gaps are removed. Each sub-figure contains 1500 seconds of the light curve, or as much
as is available in case of shorter observations. Each sub-figure shows the observation ID and
classification from Huppenkothen et al. (2017). Figure 2.12 contains light curves of remaining

𝜔 and 𝜅 observations.
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Table 2.5: Chronological list of RXTE/PCA observations of GRS 1915+105 during periods
51288-51306 MJD and 51394-51432 MJD. Classifications from Klein-Wolt et al. (2002) (Class.
K), Pahari and Pal (2010) (Class. P) and Belloni and Altamirano (2013) (Class. B) are provided.

IDs of observation whose classifications seem to be inconsistent are marked with †.

Observation ID Date (MJD) Class. K Class. P Class. B
40703-01-12-00 † 51288 𝜅 𝜔 𝜔

40115-01-01-00 51288 - - -
40403-01-07-00 51291 𝜔 𝜔 𝜔

40703-01-13-00 51299 𝛾 - -
40703-01-13-01 51299 𝜔 𝜔 𝜔

40115-01-02-00 51299 - - -
40703-01-14-00 † 51306 𝜅 𝜔 -
40703-01-14-01 51306 𝜅 - -
40703-01-14-02 51306 𝜅 - -
40703-01-24-00 51394 𝜅 - -
40703-01-25-00 51399 𝜅 - -
40115-01-05-00 51406 - - -
40703-01-26-00 † 51407 𝜅 - 𝜔

40703-01-27-00 51413 𝜔 - -
40703-01-27-01 51413 𝛾/𝜔 𝜔 -
40703-01-28-00 51418 𝜔 - 𝜔

40703-01-28-01 51418 - - -
40703-01-28-02 51418 𝜔 𝜔 𝜔

40115-01-06-00/01 51423 - - -
40703-01-29-00 51426 𝜔 𝜔 𝜔

40703-01-29-01 51426 𝜔 - 𝜔

40703-01-29-02 51426 𝛾/𝜔 - 𝜔

40703-01-30-00 † 51432 𝜅 𝜔 -
40703-01-30-01 51432 𝜅 - -
40703-01-30-02 51432 𝜅 - -
40703-01-30-03 51432 𝛾/𝜅 - -

hierarchical clustering of observations in the fingerprint space. I use the hierarchical clustering
algorithm included in the SciPy package (Virtanen et al., 2020) and use the Euclidean metric
and “ward” method, which uses the Ward variance minimisation algorithm and creates clusters
of fairly regular sizes. (see Section 1.4.4.2 for more details about the algorithm).

Figure 2.14 shows a dendrogram resulting from the clustering of fingerprint of 𝜔 and 𝜅 ob-
servations (see Figure 2.12 and Figure 2.15 for their light curves). In the green branch of the
dendrogram, observations classified as 𝜔 by Klein-Wolt et al. (2002) are clustered with the six
𝜅 observations mentioned above. These observations show semiregular dips with one or more
re-flares. Observations 40703-01-13-01/29-01/30-00 clustered in the lower green sub-branch
show lower frequency of dipping than the other observations, making them more alike to the
canonical 𝜔 behaviour. Observations 40703-01-30-02/14-02/27-00 show a slightly higher dip-
ping frequency, whilst observations 40703-01-30-01/14-00/14-01 show the highest frequency of
dips in the green branch of the dendrogram. Similarity between fingerprint of 𝜅 observations
40703-01-14-00/01/02, 40703-01-30-00/01/02, and canonical 𝜔 observations is the result of the
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similarity between the light curves of those observations. Based on this similarity, I suggest that
those 𝜅 observations should be viewed as examples of an intermediate 𝜅/𝜔 state, with a major 𝜔
component.

Observations in the orange branch of the dendrogram show characteristic quasi-periodic and
aperiodic flares of class 𝜅. However, observations 40703-01-12-00/26-00 show a mix of flares
with large and small width as opposed to 40703-01-24-00/25-00 and 20402-01-33-00/35-00,
show a more consistent flare profile. Moreover, the presence of flares with greater width suggests
an intermediate 𝜅/𝜔 state with a major 𝜅 component. Furthermore, Belloni and Altamirano (2013)
indicate that observations 40703-01-12-00/26-00 belong to class 𝜔, whilst both Pahari and Pal
(2010) and Belloni and Altamirano (2013) indicate that observations 40703-01-14-00/30-00
belong to class 𝜔, which shows that ambiguity of 𝜅 and 𝜔 classification exists in the literature.

Table 2.5 shows a chronological list of observations captured in the periods when the source
was showing 𝜅 and 𝜔 behaviour, along with the classifications from Klein-Wolt et al. (2002),
Pahari and Pal (2010) and Belloni and Altamirano (2013). Observations of class 𝜅 and 𝜔 were
observed in close succession, which supports the notion of intermediate states between those
classes. Based on the classification of observations in the two periods shown in Table 2.5, it
seems that the source tends to transition between classes in the order 𝜅 → 𝜔 → 𝜅.

However, clustering results of the fingerprint representation should be interpreted with caution
due to the geometry of the data sampling space (see Section 2.5 for more details).

2.4.6 Classification of 1024 second segments

I conduct an additional classification experiment with the goal of making it as comparable as
possible to the work of Huppenkothen et al. (2017). The purpose of my work is primarily
to introduce an unsupervised method of light curve data characterisation, whilst the primary
objective of Huppenkothen et al. (2017) was to study GRS 1915+105, however both works use
machine learning methods to perform classification on this source, so in spite of the differences,
I believe that this experiment is informative.

I segment all the available RXTE/PCA observations of GRS 1915+105 in Standard-1 format
to 1024 second segments and use the stride length of 256 seconds, yielding the total of 11028
segments, 2141 of which have human-assigned labels. I split this data between the training,
validation, and testing data subsets in the ratio of approximately 50:25:25, ensuring that segments
created from a single observation are not split between data subsets. Data is split in a stratified
manner; at least one observation of each class is randomly assigned to each subset, and the
remaining observations are distributed according to the ratio of 50:25:25. This results in 982,
592 and 566 segments in the training, validation, and testing subsets respectively. Further 6573
and 2314 segments of observations with no human-assigned labels are also assigned to the
training and validation sets respectively.
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Figure 2.16: A row-wise normalised confusion matrix showing classification results for light
curve segments of 1024 seconds. The numbers in each row are divided by the sum of numbers

in that row.

In order to make the segments compatible with the LSTM-VAE network discussed in Section 2.3,
I further subdivide the 1024-second segments into 64 non-overlapping segments of 16 seconds
(which at the cadence of 0.125 seconds comprise 128 data points, as required by the network).
I train the network using the training subset and evaluate the performance of the network after
each epoch of training using the validation subset of data. I use the Adam optimiser with the
clipvalue argument set to 0.5 to train the network. Training is stopped after 269 epochs, when
the validation loss stopped improving for 50 consecutive epochs. I use the resulting network to
encode the light curve segments and create 20 SFoS features.

I fit a Gaussian mixture model with 250 components to the SIFoS features of the training and
validation subsets of data. I then perform a grid search of hyperparameters listed in Table 2.4,
where for each combination of hyperparameters I train a random forest classifier on the training
set and I evaluate the prediction on the validation set. I find that the highest weighted F1 and
accuracy performance scores of 0.834 and 0.851 respectively are produced using the merge
distance of 3.798, criterion of “entropy”, and max_depth of 5.

I test the classifier with optimal hyperparameters on combined validation and testing data subsets,
resulting in weighted F1 and accuracy performance scores of 0.811 and 0.822 respectively. The
accuracy of this classification is ca. 10 percentage points lower than that of Huppenkothen
et al. (2017). Their method is simpler and more accurate, but it requires a larger variety of data
features, i.e. power-spectral and hardness ratio features. Therefore, depending on the available
features, it might be the preferable method for the task of classification of 1024 second segments.
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Including those features in my method could result in a performance improvement, which is a
possible avenue of future investigation.

The possible avenues for improvement of both methods include the training on a larger amount
of labelled data, and the reduction of ambiguity in the labelled data. Ambiguity is caused by the
fact that the classes of the Belloni et al. system are not fully exhaustive and mutually exclusive.
This is discussed further in Section 2.5.

Figure 2.16 shows the confusion matrix of the predicted labels against the human-assigned labels.
Even though most of the segments are classified in agreement with the human-assigned labels,
the drop in performance is significant when compared to the other experiments shown in this
work (Section 2.4.3 and Section 2.4.7). In particular, all the𝜔 segments are classified as 𝛾, which
is most likely caused by the noise in the data. The data with cadence of 0.125 second contains
a significant amount of random noise, and the segmentation of data to the length of only 16
seconds followed by standardisation, results in segments which are seemingly featureless, with
occasional peaks and troughs beyond the noise level. The characteristic dips of class 𝜔 were not
preserved in this representation of data. In conclusion, re-binning of data to cadence longer than
0.125 seconds prior to LSTM-VAE training is likely to be beneficial for the performance of my
method. Additionally, when light curves are segmented to 1024 seconds prior to classification, I
cannot exploit the main advantage of the “fingerprint” representation, which aggregates features
of long light curves. Light curves of classes whose cycles of variability evolve over longer time
than 1024 seconds can yield segments which appear significantly different, depending on the
phase of a variability cycle.

2.4.7 Classification test with all available data

Figure 2.17 shows a summary of the classification results for the 100 tests where 69 test ob-
servations are randomly sampled in a stratified manner from the entire data set of 206 labelled
observations (combined training, validation and test data subsets), and the remaining obser-
vations are used for training (as described in Section 2.4.3). The mean of weighted F1 and
accuracy performance scores of those tests are 0.877 ± 0.031 and 0.896 ± 0.026 respectively.
Observations of the majority of the classes are classified in agreement with the human-assigned
classifications >80% of the time, however, observations of classes 𝜆, 𝜈 and𝜔 are usually assigned
to other classes. These classes are affected by very small sample size (each has only one training
observation), which limits the statistical significance of their classification results.

2.5 Discussion and summary

In this chapter, I introduce a data-driven method of light curve feature extraction and test the utility
of resulting features by conducting a set of supervised multi-class classification experiments,
using a set of human-labelled observations. Light curve classification of data in 1 second
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Figure 2.17: A row-wise normalised confusion matrix showing classification results of 100
test trials where 69 test observations are randomly sampled in a stratified manner from all the
available 206 labelled observations, as described in Section 2.4.3. Rows of the matrix correspond
to human-assigned classes (assumed true class), columns correspond to the classifications
predicted by the classifier, and the values in the matrix represent the number of observations.

The numbers in each row are divided by the sum of numbers in that row.

resolution resulting in a mean weighted F1 score of 0.878 suggests that the proposed method of
unsupervised feature extraction is capable of producing features which represent light curve data
in a meaningful way.

One possible application of the method is the unsupervised exploration of the data space. The
shape of the latent data manifold encodes information about modes of activity of the source
and its evolution between them. The analysis of correlation between SIFoS and various power-
spectral and energy-spectral features could be performed in order to study the links between
latent variables, the occurrence of different variability patterns and the physically interpretable
parameters. For example, broad-band power spectral shape could help to link variability patterns
with the geometry of the emitting regions (Heil et al., 2015), presence of high frequency quasi-
periodic oscillations could link the patterns with the orbital motion of matter in the accretion disc
(see Motta, 2016, for a review), and radio flux could link them with the emission of relativistic
jets (Belloni et al., 2011).

Work presented in this chapter shows that dimensionality reduction of the data set, followed by
clustering of observations in this reduced space could be a way to derive a set of classes of source
behaviour, which avoids the biases of human characterisation and annotation of data. Further-
more, I find that Gaussian component merging based on the Mahalanobis distance between them
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can help to reduce the problem of cluster degeneracy caused by the limitations of GMM, which
requires multiple components to follow curved data manifolds.

The Belloni et al. system of classification discussed in this work is not comprehensive, and to
some degree, it is arbitrary. As Belloni et al. (2000) point out, their classification system was
not intended to exhaustively list mutually exclusive modes of behaviour. This creates a problem
for any classification effort that is based on this system. A smaller number of classes could be
chosen, because some classes show behaviour that arguably lies on the same continuum. One
example of such a continuum could be followed by classes 𝜆 and 𝜅, which show similar behaviour
at slightly different time scales (Belloni et al., 2000). Furthermore, my work shows that classes
𝜅 and 𝜔 can show very similar light curve behaviour and possibly lie on a continuum as well. A
larger number of classes could just as well be required, as it is possible that there exist additional
patterns of behaviour that have not been characterised yet (similarly to classes 𝜔 and 𝜉 (a.k.a. 𝜂)
which were added to the Belloni et al. system later than the original 12). Transitions between
classes are observed, so ambiguity in classification of observations cannot be avoided.

Taking these considerations into account, it is very difficult to ensure the accuracy of classifi-
cation for large sets of unknown data, which cannot be standardised to adhere to the assumed
classification system. Performance of any supervised classification algorithm greatly depends
on the definition of the classes of observations, and any ambiguity is going to affect this perfor-
mance. Therefore, clustering of the data set can help in deriving a data-driven set of observation
classes, which helps to avoid the biases of human characterisation and annotation of data.

However, further work in this direction will need to address the problem of clustering of com-
positional data. The fingerprint representation uses vectors of fixed size, whose values sum up
to a positive constant. This is a type of compositional data, and as such it is constrained to the
geometry of a simplex (Aitchison and Egozcue, 2005), which means that results of clustering
of raw compositional data are often unreliable. Clustering methods applied to compositional
data should take into account the need for prior transformation of the data into an unbounded,
Euclidean space. This issue is an open area of research, and it is further complicated by the
presence of numerous zero values in the fingerprint compositional data (Aitchison et al., 2000;
Martín-Fernández et al., 2003). Study of the appropriate transformation methods for composi-
tional data goes beyond the scope of my work, therefore results of fingerprint clustering should
be interpreted with caution.

Since the proposed feature extraction method is easily generalisable to different types of time
series data, there exists a range of possible applications for the proposed feature extraction
pipeline. A similar type of analysis is possible for sources other than GRS 1915+105, and in
principle any energy band of light curves.

Fingerprint representation could be used to test whether the phenomenology observed in GRS
1915+105 is also present in other sources. For example, similarity in the variability of IGR
J17091−3624 (Court et al., 2017), and the Rapid Burster, MXB 1730-335 (Bagnoli and In’t Zand,
2015) could point to accretion physics which are independent of the nature of the accretor.
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Pattnaik et al. (2021) attempted machine learning classification of compact objects in low mass
X-ray binaries based on energy-spectral features, and found that fairly accurate classification was
possible. The presence of a black hole or neutron star in the binary system can have a significant
impact on the physical interpretation of the observed phenomenology. Classification of compact
objects using the fingerprint representation of X-ray variability patterns is a possible subject
of future work. However, care must be taken to select sources in the hard state, which show
structured X-ray variability.

Derivation of fingerprints which represent the set of light curve patterns observed in a fixed
amount of time could be the basis of a live monitoring system, which would alert the user about
changes in the behaviour of the source. This could involve classifying observations using a
known system of classes, but it could also involve the task of outlier detection, where the position
of an observation would be tracked within the encoded feature space. Observations producing
feature vectors which fall in sparse regions of the feature space would indicate an anomaly.

The main requirement of the proposed feature extraction method is that the light curves must be
evenly sampled in time. This requirement is satisfied by data similar in nature to the pointed
observations of RXTE/PCA. This includes data captured by the X-ray Telescope aboard the Neil
Gehrels Swift Observatory (Swift) (Burrows et al., 2005) or X-ray Timing Instrument aboard the
Neutron Star Interior Composition Explorer (NICER) (Gendreau et al., 2016) etc. High-speed
optical telescopes ULTRACAM (Dhillon et al., 2007) and HiPERCAM (Dhillon et al., 2016)
also produce light curves which are evenly sampled over the time of an exposure, and could be
analysed using the method I propose. However, the amount of data produced by ULTRACAM
and HiPERCAM is not large enough to justify the use of machine learning analysis. The Optical
Timing Camera (OPTICAM) (Castro et al., 2019) will produce a larger amount of data of similar
nature, and the proposed method of feature extraction could be appropriate for their analysis.

The proposed method could be used to characterise long-term light curves captured by all-sky
X-ray surveys, like those performed with the Gas Slit Camera aboard MAXI (Matsuoka et al.,
2009), the Burst Alert Telescope aboard Swift Gehrels et al. (2004) or the All Sky Monitor
aboard RXTE, provided that light curves have regular time bins. Interpolation could also be
performed if needed.

Pursiainen et al. (2020) interpolated ca. 30,000 light curves of the Dark Energy Survey Supernova
Programme using Gaussian Processes, and increased the cadence from the average of 7 days to
a constant 0.5 day cadence (see also Wiseman et al., 2020). Light curves generated by several
ground-based surveys could be made compatible with my feature extraction method using such
interpolation techniques. Those surveys include LSST, ZTF and Asteroid Terrestrial-impact Last
Alert System (ATLAS) (Heinze et al., 2018). Optimisation of the type and size of kernel used
in Gaussian Processes interpolation would need to be performed by the user prior to feature
extraction, and the choice of parameters would depend on the nature of data and the scientific
goal.
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In addition to the requirement of having even sampling in time, light curves should not have many
gaps which cannot be interpolated over, in order to be suitable for analysis using the proposed
feature extraction method. During the light curve segmentation stage, segments are extracted
using a moving window method, and segments which straddle over data gaps are discarded.
Therefore, light curves must have few gaps to allow for a choice of segment size which is large
enough to encompass time-scales which are relevant for the variability of the analysed data.

There are several limitations to this work. Figure 2.6 reveals that classes 𝜙 and 𝜒 are similar in
terms of IFoS. The only significant differences are (1) that mean count rate values of segments
of class 𝜒 span a larger range than the segments of class 𝜙, and (2) that segments of class 𝜒
can have more positive outliers in terms of kurtosis. Figure 2.7 shows that the combination
of IFoS contains enough information to distinguish many cases of those classes, but significant
areas of overlap still exist. The two classes are best distinguished based on the hardness of
their colour-colour diagrams (Belloni et al., 2000). Since both classes of observations show no
structured X-ray variability patterns, and their IFoS distributions largely overlap, it should be
noted that classification attempts based on features presented in this work could disagree with
classification of Belloni et al. (2000). The proposed method is only able to capture time series
patterns, therefore it would not be able to differentiate between observations which differ only in
terms of energy spectra. Nevertheless, users of the method could choose to supplement SIFoS
with additional features, dependent on their individual use case.

Another set of limitations involves data pre-processing. The re-binning of light curve data to 1 and
4 second resolution was a compromise between computational tractability and descriptiveness of
GRS 1915+105 variability. Even though the shortest timescale of significant X-ray flux changes
in this source is ca. 5 seconds (Nayakshin et al., 2000), binning inevitably led to a loss of
some fast variability information. Furthermore, the choice of light curve segment length was
influenced by computational constrains, but also informed by the previous work and knowledge
of the time scales of light curve patterns in GRS 1915+105. There is a fairly large degree of
tolerance for the choice of these parameters, but some knowledge of the time scales of interest
was required.

I did not fine-tune the method to study any particular subset of variability classes within the
source, however users interested in a more specialised study of a particular scientific problem
could choose to analyse light curves binned to smaller time bins to improve the modelling of very
narrow features. For example, Massaro et al. (2020) modelled the light curves of GRS 1915+105
using a system of ordinary differential equation, and successfully reproduced the sharp peaks
present at the beginning of the 𝜅 class bursts. Reconstruction of light curve segments binned to
1 second resolution results in some smearing of such fine features (see Figure 2.4), so the study
of this particular feature would benefit from higher time resolution. However, the light curves
of GRS 1915+105 contain a significant amount of noise, and increasing the temporal resolution
of light curves will result in the increased amount of noise in the training data set, which could
affect the ability of the model to identify patterns within the data.
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For cases where relevant time scales are difficult to predict, multiple fingerprint could be derived
from data in a range of temporal resolutions, and subsequently concatenated to create a single
feature vector. However, such an approach would increase the noise in feature vectors, so further
work is required to test this.

My main assumption was that light curve segments exhibiting similar type of variability patterns
and count rate distribution had similar values of SFoS and IFoS. Segments with more similar
values of SIFoS were consequently separated by smaller distances within the SIFoS feature
space. Therefore, it was expected that Gaussian clusters contained homogeneous subsets of light
curve segments, which were more similar to each other than to segments found in other Gaussian
clusters. Inspection of Gaussian cluster populations revealed that this assumption was justified
to a large degree, however fitting a GMM with a larger number of Gaussian components would
provide a greater precision of density estimation of data in the feature space, and hence reduce
the risk of non-homogeneity of created clusters. On the other hand, such an approach would
likely aggravate the issue of pattern degeneracy in the resulting set of light curve patterns, which
would potentially lead to a more complex fingerprint and ultimately to a more noisy feature set.

It should be noted that GMM is not inherently a clustering algorithm but a density estimation
algorithm. Following preliminary experiments with alternative clustering algorithms, I find the
approach of merging Gaussian components of GMM to be the most straightforward method of
clustering for this data set. However, it is possible that the issue of cluster degeneracy could be
circumvented if a better-suited clustering method was found. This is an important area of future
work.

Merging of clusters based on the Mahalanobis distance can help to reduce the number of de-
generate features, but in this work I rely on the classified subset of data to find the optimal
distance threshold. In cases where data classification is not possible, unsupervised methods
of evaluating clustering performance could be used instead, for example Silhouette Coefficient,
Calinski-Harabasz Index and Davies-Bouldin Index included in the scikit-learn library (Pe-
dregosa et al., 2011), however the computational cost of such an approach might be higher.

The timescales of X-ray variability probed by the method described in this chapter range from
1 second (resolution of the analysed light curves) to 128 seconds (size of a single light curve
segment fed to the neural network). However, in the context of the fingerprint representation,
the longest timescale could be several thousand seconds, because the fingerprints were generated
for entire light curves. Timescales of structured variability found in the light curves of GRS
1915+105 range from ∼20 s in case of the flares of the 𝜇 class, to ∼1000 s in case of the cycles
found in the 𝛼 class.

The mass of ∼12.4𝑀⊙ (Reid et al., 2014) corresponds to the gravitational radius (𝑅𝑔) of 18.3
km. It means that the timescale of 1 s corresponds to 1.6 × 103𝑅𝑔. GRS 1915+105 has a very
large disc radius of 𝑅𝑇∼1010m, which depends on the binary separation, because of the tidal
truncation (Done et al., 2004). It means that light should travel from the black hole to the edge
of the disc in ∼33.4s.
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Chapter 3

Light curve fingerprint method applied
to IGR J17091−3624

The previous chapter introduced the “light curve fingerprints”; a standard, vector representation of
light curves with variable length. It demonstrated how the fingerprints can be used for the analysis
of X-ray variability of the Galactic low-mass black hole X-ray binary system GRS 1915+105.
However, in addition to the analysis of individual sources, the light curve fingerprints could be a
useful tool for the analysis of large data sets, containing observations of multiple sources, with
various types of variability and intensity of signal. Since this methodology is based exclusively
on the time series information, it should be possible to extend the analysis to other sources, after
appropriate scaling of light curve intensity. In order to test the fingerprint representation on
data of another source, I apply it to the RXTE observations of IGR J17091−3624, which also
shows very complex patterns of flux variability, similar to those of GRS 1915+105. I investigate
whether the method would be able to identify similar activity in the two sources, and hence test
what adjustments need to be made in order to extend the use of fingerprint representation to other
sources.

3.1 Can the fingerprints find similarity between IGR J17091−3624
and GRS 1915+105?

IGR J17091−3624 is a black hole LMXB whose X-ray variability has been found to show great
similarity to that of GRS 1915+105 (Altamirano et al., 2011). The variability of both of the
sources has been categorised into discrete systems of classes (Belloni et al., 2000; Court et al.,
2017). I use the RXTE observations of IGR J17091−3624 from year 2011 (with observation ID
96420-01) to test the fingerprint method of light curve characterisation. Observations with ID
numbers 96065-03 and 96103-01 are excluded because of contamination caused by GX 349+2,
another variable X-ray source that was present in the field of view (Altamirano et al., 2011;
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Table 3.1: The nine variability classes of IGR J17091−3624 introduced by Court et al. (2017),
and the closest corresponding variability class in GRS 1915+105 (as introduced by Belloni et al.
(2000)). Court et al. (2017) did not find analogies to the remaining GRS 1915+105 classes in

IGR J17091−3624. Credit: Court et al. (2017)

IGR J17091−3624 Class GRS 1915+105 Class
I 𝜒

II 𝜙

III 𝜈

IV 𝜌

V 𝜇

VI 𝜆

VII None
VIII None
IX 𝛾

Rodriguez et al., 2011; Court et al., 2017). I aim to verify whether the method can be used to
classify observations of this source, which shows variability that is similar to the one found in
the training data set of GRS 1915+105 observations that was used to condition the method.

3.1.1 Classification based on variability shape and intensity information

In this first classification experiment, I follow the steps of data preparation and classification
as described in Sections 2.2 to 2.4.3, treating the IGR J17091−3624 data as if they were new
observations of GRS 1915+105. The only modification is the scaling of the IGR J17091−3624
data, which is applied to account for the significant difference in brightness between the two
sources. I scale and offset the count rates across all the IGR J17091−3624 segments to make
their mean and standard deviation identical with those of GRS 1915+105. In summary, I create
the fingerprint representations of 215 IGR J17091−3624 observations by following these steps:
re-binning of light curves to 1 second bins, segmentation (using the segment length of 128s,
stride length of 10s), scaling to GRS 1915+105 intensity, encoding of segments using the LSTM-
VAE, clustering of standardised latent variables and intensity features using the GMM that was
fit to the GRS 1915+105 data, and finally merging the clusters using the Mahalanobis distance
threshold of 3.34.

Once the fingerprints of IGR J17091−3624 observations are constructed, I proceed with the
classification step. The ground truth class assignment of IGR J17091−3624 light curves is taken
from Court et al. (2017). Court et al. (2017) created a set of nine variability classes, denoted by
Roman numerals I - IX, which describe the different types of variability observed in the source.
Court et al. (2017) also provided their classification for the 215 observations. Additionally, Court
et al. (2017) matched the IGR J17091−3624 classes with GRS 1915+105 classes, based on the
similarity of their spectral hardness evolution as a function of time and count rate, power spectral
features and light curve morphology.
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Figure 3.1: A confusion matrix showing classification results for the 185 IGR J17091−3624
observations with a matching GRS 1915+105 class, using the default fingerprint representation
that contains both intensity and shape information. Weighted F1 and accuracy of this matrix are
0.195 and 0.270 respectively. The mean weighted F1 and accuracy performance scores across
the one thousand initiations of the random forest classifier are 0.193± 0.024 and 0.268± 0.014

respectively.

Table 3.1 provides the matching variability classifications from the two sources. Based on
this information, I assign the Belloni et al. system classification to each observation of IGR
J17091−3624. Since classes VII and VIII do not have corresponding GRS 1915+105 classes,
I exclude those from the classification experiment, which leaves 185 observations. I train a
random forest classifier on the whole available set of 208 classified GRS 1915+105 fingerprints
and use it to predict the classes of IGR J17091−3624 fingerprints. As mentioned in previous
sections, random initiation of the random forest classifier is a significant cause of variance in
the model performance, therefore training and testing is repeated one thousand times. Mean
of weighted F1 and accuracy performance scores of those classifications are 0.193 ± 0.024 and
0.268 ± 0.014 respectively.

Figure 3.1 shows the classification results of an experiment with average performance scores in
the form of a confusion matrix. It is clear that the classifier is biased towards the 𝜒 and 𝜇 classes;
the recall (i.e. proportion of true positives out of the sum of true positives and false negatives)
of 𝜒 is 1.0 and the precision (proportion of true positives out of all positives) is only 0.103. 𝜇
class has recall of 0.943 and precision of 0.569. The classifier showed some limited ability to
differentiate the 𝛾 class, with recall of 0.128. The classification of 𝜌 observations is one of the
most striking results; 𝜌 is the most characteristic class of variability in GRS 1915+105, due to
its recurrent flares. However, the classifier assigns most of the 𝜌 observations to the 𝜒 class, and
some to the 𝜇 class.
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The fact that some 𝜌 class observations are classified as 𝜇 could be caused by the shorter period
of heartbeats in IGR J17091−3624. Some 𝜇 observations in GRS 1915+105 show recurrent
flares with a period of ∼20 seconds, which is similar to the heartbeat of IGR J17091−3624.
However, the large number of 𝜒 classifications suggests that the classifier was not able to utilise
the information about the shape of the variability patterns in the light curves. Similarly to
the 𝜌 class of GRS 1915+105, the heartbeat class of IGR J17091−3624 (class IV) shows very
characteristic, recurrent flares. They tend to be less regular and have a shorter period than those
of GRS 1915+105, but nevertheless they differ significantly from the 𝜒-like variability, which
is random and has no structure. The inability of the classifier to differentiate these two classes
indicates that the SFoS were either not informative enough or underutilised.

Even though the light curve segments were scaled to have the same mean as the GRS 1915+105
segments, this did not guarantee that the 𝜌 class observations of the two sources would show
similar intensities. In order to achieve this, the observations of different classes would need
to be scaled separately, but this is not viable, because it would require the prior knowledge of
light curve classifications. In order to prevent the IFoS from causing the observations of the
same classes to become misaligned in the feature space, and to test whether the SFoS of IGR
J17091−3624 contain enough information to match its light curves with the most similar classes
of GRS 1915+105, I perform a classification experiment using SFoS alone.

3.1.2 Classification based on variability shape information alone

In order to construct the fingerprints of IGR J17091−3624 observations based on SFoS alone, I
follow the same steps as in the previous section, but this time I fit a GMM model to the SFoS
of the training set of GRS 1915+105 light curves. Instead of performing a grid search for the
optimal number of Gaussian components, I fit one GMM with 500 components, which is well
above the expected number of components that would produce a minimum BIC value. This is an
alternative approach that reduces computational time, and is valid thanks to the cluster merging
step applied later.

This model fitting step is followed by the same procedure as described earlier, i.e. I first find the
assignment of each light curve segments to a Gaussian component. Then, I search for the optimal
Mahalanobis distance threshold in a grid search over the hyperparameters given in Table 2.4,
using the training and validation subsets of GRS 1915+105 data. When the optimal distance is
identified, I use it to construct the fingerprints of the observations of both sources. Fingerprints
of GRS 1915+105 sources are constructed in order to verify whether the modified representation
still allows for reasonable classification performance, and to use it as a benchmark. I classify the
test set of GRS 1915+105 observations to find this benchmark performance score.

Mean of weighted F1 and accuracy performance scores of those classifications are 0.810± 0.035
and 0.842 ± 0.025 respectively. Figure 3.2 shows the classification results with the lowest
performance scores out of the set of 1,000 testing trials. The weighted F1 and accuracy of this
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Figure 3.2: Confusion matrix showing classification results for the 47 testing set observations
of GRS 1915+105, using the fingerprint representation that contains shape information (SFoS
features) only. The matrix shows results for the lowest weighted F1 score out of the one thousand
random initiations of the classifier. Weighted F1 and accuracy of this initiation are 0.731 and
0.787, respectively. The mean weighted F1 and accuracy performance scores across the 1000

initiations are 0.810 ± 0.035 and 0.842 ± 0.025, respectively.

initiation are 0.731 and 0.787 respectively. The results show that the SFoS provide the classifier
with enough information to identify the observations of classes 𝜒, 𝜌 and 𝜃 with maximum recall
of 1.0, whilst 𝛿 has a high recall of 0.8. Classes 𝛼, 𝜇, 𝜈 and 𝜙 also show 1.0 recall, but for a
small test sample size of only 1 − 2 observations.

This experiment confirms that the shape information alone might not be enough to differentiate
class 𝛾 from 𝜒 even for the GRS 1915+105 observations, which the method is conditioned
on. However, the classifier shows no signs of confusion between classes 𝜒, 𝜇, 𝜙 and 𝜌, which
indicates that observations showing characteristic patterns of variability should be classified
correctly even if observed at different intensities. Therefore, if patterns characteristic to those
classes were observed in IGR J17091−3624, then the method should be able to classify them
correctly based on their SFoS only.

After having verified that the new fingerprints can provide a good classification performance on
the GRS 1915+105 data, I perform the classification of 185 observations of IGR J17091−3624.
The mean weighted F1 and accuracy performance scores of the one thousand initiations are
0.204 ± 0.011 and 0.257 ± 0.009. The confusion matrix of an example initiation are shown in
Figure 3.3. The majority of observations are again classified as classes 𝜒 and 𝜇, but this time
the classifier also shows bias towards the class 𝛾, with many 𝜆, 𝜇 and 𝜌 observations labelled
as 𝛾, despite the fact that the class still has a low recall of 0.16. A majority of observations
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Figure 3.3: A confusion matrix showing classification results for the 185 IGR J17091−3624
observations with a matching GRS 1915+105 class, using the fingerprint representation that
contains shape information only. Weighted F1 and accuracy of this initiation are 0.204 and 0.265
respectively. The mean weighted F1 and accuracy performance scores across the one thousand

initiations of the random forest classifier are 0.204 ± 0.011 and 0.257 ± 0.009 respectively

of class 𝜌 are now assigned to class 𝜇, with the remaining observations distributed across all
the other classes. The classification of IGR J17091−3624 observations using exclusively SFoS
information shows that the lack of IFoS information makes very little difference to the overall
performance of the classifier.

The disagreement between Court et al. (2017) classifications and those predicted with fingerprints
could be caused by the LSTM-VAE model finding significant differences between the light
curves of GRS 1915+105 and IGR J17091−3624. In such a case, SFoS generated from the
light curves of the two sources would differ significantly. Examination of the light curves of
the two sources shows that they indeed differ in several aspects. For instance, the flares in 𝜌
class light curves of IGR J17091−3624 are less regular in shape than those of GRS 1915+105.
The period of flares is also significantly shorter; the 𝜌 flares in GRS 1915+105 have periods
ranging between ∼40− 150 s, while 𝜇 flares range between 10− 100 s (Belloni et al., 2000). The
periods in corresponding classes of IGR J17091−3624 range between ∼20 − 45 s and 10 − 30 s
respectively. Additionally, the count rate levels of IGR J17091−3624 are 10 − 50 times lower
than those of GRS 1915+105 (Altamirano et al., 2011), resulting in a smaller signal-to-noise
ratio and a much greater amount of noise in the scaled light curves. In order to investigate if the
unexpected classification is caused by the differences between the variability of the sources, I
will first examine whether the LSTM-VAE network can successfully encode and reconstruct the
variability of IGR J17091−3624. Once that is verified, I will examine how the encoding (SFoS)
of the two sources differ.
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3.1.3 Encoding the variability of IGR J17091−3624

Figure 3.4 shows the LSTM-VAE reconstruction of some example light curve segments of IGR
J17091−3624 which show variability of classes III (equivalent to 𝜈), IV (equivalent to 𝜌) and
V (equivalent to 𝜇), all of which show characteristic quasi-periodic flares similar to those found
in GRS 1915+105. LSTM-VAE is able to reconstruct the majority of flaring behaviour in IGR
J17091−3624 well. Figure 3.4 segments (b), (d) and (e) show examples of flares with various
periods and morphologies, whose reconstruction was successful most of the time. Segment
(e) shows a reconstruction where the LSTM-VAE attempts to fit a dip in the rising phase of
each flare, which could be an attempt of fitting a double-peak that is characteristic of 𝜌 flares
in GRS 1915+105 (Neilsen et al., 2011), although it is also observed in other classes; see for
example class 𝜇 in Figure 2.4. Something about the morphology of flares in (e) causes the
model to associate it with the double-peaked profile, in spite of the fact that it systematically
underestimates the count rates in the modelled dips. Segment (f) shows that the model struggles
to reconstruct the flares when they are less regular. The reconstruction of IGR J17091−3624
light curve segments shows that the LSTM-VAE is capable of capturing the variability structure
of a significant number of observations showing quasi-periodic flaring. Therefore, disagreement
in the classification of GRS 1915+105 and IGR J17091−3624 observations cannot be explained
by a failure of the neural network to capture the variability of IGR J17091−3624.

In order to shed some light on the reason the SFoS do not allow for the differentiation of 𝜇
from 𝜌 in IGR J17091−3624, let us now examine how the variability of input data affects their
position in the latent space of the LSTM-VAE. Even though the VAE architecture is meant to
prevent this type of behaviour, it is still hypothetically possible for an autoencoder network to
map similar data to disjoint locations of the latent space, causing substantial differences in SFoS
values, in spite of a seemingly small difference in the appearance of light curve segments. It is
also possible that segments of a light curve could span multiple regions of the latent space, and
collectively look like a different class in the context of the fingerprint.

Figure 3.5 shows the UMAP projection of the SFoS of both the GRS 1915+105 and IGR
J17091−3624 segments. GRS 1915+105 segments showing the most characteristic variability
classes are coloured. It is apparent that all classes show significant scatter across the latent space,
but the bulk of segments of these characteristic classes aggregates in discrete sections of the
latent data manifold; class 𝜌, which shows the most regular, recurrent flares, occupies the two
outer folds on top and to the right of the data cloud. The central section is occupied by classes
with less regular flaring behaviour, 𝜇, 𝜈, and 𝜅, with a significant portion of 𝜈 occupying the
outer folds as well. The circular structure in the bottom-left is primarily composed of class 𝜒,
which shows no structured variability.

Now, keeping in mind the relationship between the GRS 1915+105 classes (and their variability
patterns), and the latent space regions, I examine the distribution of class IV (𝜌) segments of
IGR J17091−3624 in this space, in order to verify if they occupy similar regions of the SFoS
space as the GRS 1915+105 segments of the same class. Observations of class IV can be roughly
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(a) Observation ID: 96420-01-04-01, Class: III
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(b) Observation ID: xp96420010601, Class: IV
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(c) Observation ID: xp96420010400, Class: IV
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(d) Observation ID: xp96420010700, Class: V
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(e) Observation ID: xp96420012504, Class: V
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(f) Observation ID: xp96420011804, Class: V

Figure 3.4: Examples of reconstruction of IGR J17091−3624 light curve segments for obser-
vations classified as IV (𝜌) and V (𝜇). The input data is shown in black and the reconstruction

in magenta.
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Figure 3.5: UMAP projection of SFoS from segments of GRS 1915+105 and IGR
J17091−3624. Classification of the GRS 1915+105 segments is indicated with colour for

some characteristic classes.

grouped into four types with respect to their segment distribution in the SFoS space. Figure 3.6
shows the segment distribution of four example observations:

• (3.6a) The light curve segments of this observation show mostly regular flares with a
period of ∼27 s. The morphology of flares does not change significantly within a segment,
and many show the characteristic 𝜌-like double peak (see an example in Figure 3.4b),
with few segments showing abrupt changes in the flare intensity, duration, and shape. Its
segments are clustered in the 𝜇-dominated, lower-central region.

• (3.6b) Segments of this observation show clear quasi-periodic oscillation with a period of
∼30 s, with some segments showing flares that can change morphology or stop abruptly.
Segments found in the region associated with 𝜒-like variability can show very irregular
behaviour, but some also contain intervals with very well-defined flares, which do not last
for the duration of a whole segment. Its segments are scattered across multiple regions,
including those associated with 𝜒, 𝜇 and 𝜌-like variability.

• (3.6c) Light curve segments of this example observation show fairly regular flares with a
period of ∼32 s, a slow rising phase, and one or multiple sharp peaks in the maximum
intensity phase (see an example in Figure 3.4c). Its segments are clustered around the
intersection of the outer folds and the inner region of the manifold, bridging the regions
associated with the 𝜇 and 𝜌 variability.
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(a) (b)

(c) (d)

Figure 3.6: UMAP of SFoS of four example IGR J17091−3624 class IV observations

• (3.6d) Segments of this observation show clear quasi-periodic oscillation with a ∼43 s
period, even though the morphology of the flares is quite irregular. The flares tend to have
a slowly rising profile with a sharp peak. Its segments are in the 𝜌-dominated outer folds,
but close to the joining point of the two folds.

The position of light curves in the SFoS space shown in Figure 3.6 reveals that the segments move
from the 𝜇-dominated region out to the 𝜌-dominated region as the period of flaring increases.
In an ideal scenario, the LSTM-VAE would map the frequency of signal to one of the latent
variables, and thus completely disentangle this parameter of the signal from others, like phase
or morphology. In case of this network, the frequency of signal is not controlled by a single
variable, but multidimensional regions of the latent space seem to correlate with the frequency
of signal. This observation points to a possible explanation for the fact that most of the class IV
(𝜌) observations of IGR J17091−3624 were classified as 𝜇, which could be due to the flaring
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frequency. There are at least two possible approaches to testing this. One way involves generating
synthetic light curves based on the IGR J17091−3624 data and increasing their period to track
how their position in the SFoS space changes. Alternatively, the latent space could be probed
using the LSTM-VAE decoder, which could be used to generate light curve segments from
arbitrary SFoS values, and hence sample light curve segments from the regions which seem to
be associated with changing frequency of signal. The first method is preferred, because it gives
more insight into the workings of the encoding block of the LSTM-VAE, which is more relevant
to the feature extraction process and light curve classification. In the next section I investigate
the effect of changing signal frequency on the SFoS values and the resulting classification.

3.1.4 Effect of changing flare period on light curve classification

In order to test whether the period of the flare could be a major factor that causes the neural
network to associate the flaring light curves of IGR J17091−3624 with other classes than the
𝜌 class of GRS 1915+105, I synthesise new light curves from the data of IGR J17091−3624,
artificially increase the period of the flares in the light curves, and then track their position in the
SFoS space. The synthesis method finds the time bins with count rates at the base level (outside
the flare) in order to elongate those base level sections of the light curve, and to minimise changes
to the morphology of the flares themselves. In order to achieve the desired period of the flares
in the synthesised light curves, I insert additional bins in random positions of the light curve,
where the number of inserted bins is equal to

𝑏𝑖𝑛𝑠𝑒𝑟𝑡 = 𝑏𝑜𝑙𝑑

(︃
𝑝𝑛𝑒𝑤

𝑝𝑜𝑙𝑑

)︃
− 𝑏𝑜𝑙𝑑 (3.1)

where 𝑏𝑖𝑛𝑠𝑒𝑟𝑡 is the number of bins to be inserted, 𝑏𝑜𝑙𝑑 is the number of bins in the original light
curve, 𝑝𝑛𝑒𝑤 is the new, desired period, and 𝑝𝑜𝑙𝑑 is the period in the original light curve. The
probability of insertion is weighted using the probability density function of the count rates to
the third power, so that the insertion is most likely to happen in the positions where the count
rate is closest to the mode count rate value (most popular value in the distribution). I use the
log-normal distribution to approximate the distribution of count rates in the light curve. The
probability density function of a log-normally distributed random variable 𝑥 is

𝑓 (𝑥) =
(︄

1
𝜎(𝑥 − 𝜃)

√
2𝜋

exp

(︄
−

ln2 (︁
𝑥−𝜃
𝑚

)︁
2𝜎2

)︄)︄
(3.2)

for 𝑥 > 𝜃;𝜎,𝑚 > 0, where 𝜃 is the location parameter, 𝜎 is the shape parameter, and 𝑚 is the
scale parameter (Heckert and Filliben, 2003). The probability density function is parameterised
separately for each light curve, so that 𝜃 is set to the mean of the natural logarithm of the count
rate, 𝜎 is set to the standard deviation of the natural logarithm of the count rate, and 𝑚 is set
to the exponential of 𝜃. I find the log-normal likelihood of each observed count rate value in
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the 0.125 second bins, and then cube it, in order to make the values farther from the mode of
the distribution even less likely. Then I select 𝑏𝑖𝑛𝑠𝑒𝑟𝑡 bins to be replicated, through random
selection of light curve bins with replacement, where the probability of selecting each bin is
set to the cubed log-normal likelihood of that bin divided by the sum of log-normal likelihood
values across all bins.

New bins are inserted in the selected positions, and the count rate values of the new bins are set to
the moving average value at that selected position, where the moving average is calculated using
a window with the size of 11 bins. The moving average is used instead of the original count rate
values in order to minimise the noise in the synthetic light curve at this stage; initially, I want to
simulate data that follows the general trend of the light curve. Subsequently, I add random noise
to the inserted count rate bins, where the magnitude of the noise is a random value drawn from
the normal distribution with the mean of zero, and the standard deviation equal to that of the
count rate distribution in the original light curve. The noise values are then adjusted to match
the fractional root-mean-square (RMS) variability amplitude (𝐹𝑣𝑎𝑟 ) of the original light curve.
The 𝐹𝑣𝑎𝑟 (Vaughan et al., 2003) is defined as

𝐹𝑣𝑎𝑟 =

√︄
𝑆2 − 𝜎2

𝑒𝑟𝑟

𝑥2 (3.3)

where 𝑆2 is the variance of light curve count rates, 𝜎2
𝑒𝑟𝑟 is the mean square measurement error,

and 𝑥 is the mean count rate. 𝐹𝑣𝑎𝑟 is the square root of the rate-normalised excess variance,

𝜎2
𝑋𝑆 = 𝑆2 − 𝜎2

𝑒𝑟𝑟 (3.4)

which is the variance with the subtracted contribution of Poisson measurement errors. I use
𝐹𝑣𝑎𝑟 as a measure of variance in the light curves, and I scale the magnitude of noise added to
the synthesised light curve in order to minimise the difference between the 𝐹𝑣𝑎𝑟 of the observed
light curve and the synthesised light curve.

A scaling factor is found for every synthesised light curve using the L-BFGS-B1 (Zhu et al., 1997)
algorithm implemented in the Python optimisation/minimisation module of SciPy package
(Virtanen et al., 2020). The lower and upper bounds for the scaling factor value are set to 0 and
1 respectively, and the initial guess is set to 0.5. The algorithm has two termination conditions,
where one tests for the change in the value of the objective function over one iteration, and the
second tests for the magnitude of the projected gradient, and they are both set to 0.01. Once the
noise multiplication factor is found, I use it to scale the Gaussian noise added to the new bins.
Finally, I re-bin the synthetic light curves to 1 s temporal resolution.

I synthesise light curves with elongation factors of 1.0, 1.2, 1.5, 1.8, 2.0, 3.0, 4.0, and 5.0 using
each one of the 25 IGR J17091−3624 heartbeat light curves as the starting point. Figure 3.7 shows

1L-BFGS-B is the limited memory version of the Broyden–Fletcher–Goldfarb–Shanno minimisation algorithm
that allows for the setting of bounds on the parameter space. See Byrdt et al. (1995) for more details about the
algorithm.
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(a) ObsID: 96420-01-06-01, Class: IV

0 20 40 60 80 100 120
Time (s)

0.5

1.0

1.5

2.0

2.5
Ra

te
 (k

ct
s/

s)

(b) Period increased by the factor of 1.5
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(c) Period increased by the factor of 2.0
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(d) Period increased by the factor of 3.0

Figure 3.7: First 128 s of IGR J17091−3624 observation 96420-01-06-01 classified as IV (𝜌)
and synthetic light curves with increased period generated from that observations. LSTM-VAE
reconstruction is included; the input data is shown in black and the reconstruction in magenta.

examples of synthetic data: Subfigure 3.7a shows an original 128 s segment from observation
96420-01-06-01, while Subfigures 3.7b to 3.7d show segments of synthetic light curves generated
from that observation, which are made with elongation factors 1.5, 2.0 and 3.0. It is clear that
changes to the morphology of flares are not completely avoided in the synthesis process, but the
periodicity of the signal is retained, and the peaks are still very well-defined.

Figure 3.8 shows the UMAP projection of SFoS of the light curves synthesised from observations
96420-01-06-01 and 96420-01-04-00. Segments of light curves with increasing flare period are
marked with different colours. The resulting figures confirm the previous inferences about the
position of 𝜌 and 𝜇 segments of GRS 1915+105 light curves, i.e. light curve segments that
show quasi-periodic flares are mapped to specific regions of the SFoS space, where the bottom
central region of the manifold is associated with the shortest periodic signals found in the GRS
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(a) ObsID: 96420-01-06-01 (b) ObsID: 96420-01-04-00

Figure 3.8: UMAP of the SFoS variables of two IGR J17091−3624 observations of class IV
(𝜌), plotted together with the synthetic light curves generated based on those observations,
were the period of flaring in the synthetic light curves was increased. The original periods
of observations 96420-01-06-01 and 96420-01-04-00 are 27.27 s and 31.65 s respectively.
Different colours indicate different factor by which the period of the light curve is increased
compared to the original. Grey data points in the background are SFoS of all GRS 1915+105

and IGR J17091−3624 segments.

1915+105 𝜇 class, and the segments with longer periods are associated with the outer folds to
the right and top of the manifold, with progressively longer periods mapped farther out from the
centre. UMAP of synthetic light curves generated from other observations show similar trends.

The segments showing the longest period flares are mapped to the ends of the outer folds of the
SFoS manifold, and beyond a certain period length, an increasing proportion of segments gets
mapped to the central region of the manifold. This period at which the transition happens is most
likely dictated by the light curve segment length used in the LSTM-VAE. In fact, Figure 3.8a
shows this transition; the segments of light curve with the elongation factor of 4 (resulting in a
period of ∼109 s) are mostly positioned in the outer folds of the SFoS manifold, and the segments
with elongation factor of 5 (which results in a period of ∼136 s) are clustered at the terminal
ends of the outer folds and in the central region as well.

The position of synthetic light curve segments in the SFoS space seems to be a very good indicator
of the light curve’s variability pattern, and in case of segments showing recurrent flares, their
relative period of the flare. It seems that the segments with shorter period are associated
with the 𝜇 class region of the manifold, and the increasing period causes them to move to the
regions associated with the 𝜌 class. Therefore, the fact that the heartbeat observations of IGR
J17091−3624 were rarely classified as 𝜌 in the previous experiments seems to be caused by
the fast periods of quasi-periodic flares. In order to confirm this, I again use a random forest
classifier trained on all 208 GRS 1915+105 observations to predict the class of synthetic IGR
J17091−3624 light curves. I perform classification 1000 times to account for the effect of the
random initiation of the algorithm. Table 3.2 shows the classification results, and it lists the
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proportion of times that different classes are predicted for a given light curve, unless one class
exceeds 95% of all classifications, and then only that one class is shown. Surprisingly, the effect
of increasing flare period had a very limited effect on making the heartbeat IGR J17091−3624
light curves more similar to GRS 1915+105 𝜌 class. Out of the 25 observations, the only ones
which are more likely to be classified as 𝜌 following the increase in flare period are 96420-
01-05-01, 96420-01-05-04, 96420-01-06-00, 96420-01-06-01 and 96420-01-06-02. In case of
96420-01-04-00, 96420-01-06-02 and 96420-01-05-03, the classification of 𝜌 actually became
less likely. A large proportion of the light curves is likely to be classified as 𝜙.

3.2 Direction of further development

Classification experiments involving the observations of IGR J17091−3624 show that the fin-
gerprint method of light curve characterisation, in its current state of development, does not
find similarity between the variability of IGR J17091−3624 and GRS 1915+105. The desired
outcome of the classification should draw links between the similar variability classes of the two
sources, mimicking the outcome of a manual analysis of the data by an astronomer, just like in
the work of Court et al. (2017).

Exclusion of the intensity information from the fingerprint representation is a natural step in the
development of the method, since different sources analysed by the method will show variable
intensity levels. Intensity features provide useful information during the analysis of the variability
of a single source, but the natural conclusion that transpires from the experiments shown in this
chapter is that the characterisation of variability of different sources should be based on the
outputs from the LSTM-VAE alone.

Projections of data in the LSTM-VAE latent space show that the network can successfully encode
information about the frequency of quasi-periodic behaviour. However, further investigation is
needed to probe the reasons why fingerprints of IGR J17091−3624 light curves showing such
behaviour are not classified as the 𝜌 class, which would be the expected outcome for the
“heartbeat” type of observations.

3.2.1 Quantifying reconstruction accuracy of light curve segments using LSTM-
VAE

In order to quantify the reconstruction accuracy of the IGR J17091−3624 light curve segments,
and compare it to the reconstruction of GRS 1915+105 segments from the test subset, I calculate
the RMS difference (error) between every light curve segment and their LSTM-VAE reconstruc-
tion. Figure 3.9a shows the histograms of RMS error for all light curve segments of both sources
in the units of standard deviation (like the LSTM-VAE input and output), whereas Figure 3.9b
shows the same errors that have been scaled back to the original count rate units. The median
RMS error of GRS 1915+105 and IGR J17091−3624 segments are 0.79 𝜎 (133.1 counts/s) and
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Figure 3.9: RMS errors calculated between the light curve segments and their LSTM-VAE
reconstructions. The RMS errors are calculated for (a) standardised light curve segments, and
(b) segments scaled to the original count rate units. Only the GRS 1915+105 light curve

segments from the test subset of data are included.

0.86 𝜎 (200.8 counts/s) respectively. The probability density functions of RMS errors of the
two sources mostly overlap, however, the average RMS error of GRS 1915+105 segments are
significantly smaller than those of IGR J17091−3624. The GRS 1915+105 segments also have
a significantly lower minimum RMS error of 0.05 𝜎 (17.0 counts/s), compared to 0.19 𝜎 (64.3
counts/s). However, GRS 1915+105 segments produce several outliers with high RMS errors in
the count rate space; the maximum is 1260.0 (NB: the domain of Figure 3.9b is set to focus on the
visible data, whilst truncating the high-error outliers). The maxima of the two histograms shown
in Figure 3.9a are virtually identical, but the IGR J17091−3624 histogram shows a high-error
spike.

The fact that the RMS errors of IGR J17091−3624 segments are significantly higher than those
of GRS 1915+105 indicates that the LSTM-VAE is not able to reconstruct the light curves of the
former source as well as the latter. A slight reduction in the accuracy of the reconstruction of
IGR J17091−3624 light curve segments is expected, because the training set of data provided
to the neural network did not contain any light curves of this source. The significant difference
in the minimum RMS error between the sources is likely caused by the fact that the variability
patterns found in the light curves of IGR J17091−3624 are more irregular and noisy.
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Chapter 4

Searching for periodicities in the
optical photometry of Be X-ray binaries

This chapter describes a method of automatic detection and characterisation of periodic signals
of the type that can be found in the optical light curves of Be X-ray binaries (BeXRBs). The
method consists of a pipeline of several algorithms which process the output of the weighted
wavelet Z-transform (WWZ) (Foster, 1996). I apply the method to the I-band photometry of a
sample of BeXRBs observed in the Small Magellanic Cloud as part of the Optical Gravitational
Lensing Experiment (OGLE), and discuss what the results can reveal about the properties of these
sources. Future photometric surveys will require automated methods of periodicity detection in
order to identify different types of periodic behaviour in large data sets. The aim of the work
described in this chapter is to develop a proof of concept pipeline that automatically characterises
periodic signals which can be transient or change over time. The application of this pipeline
to the sample of BeXRB light curves can contribute to the study of binary orbital behaviour
and non-radial pulsations observed in those sources, and probe their relation to the physics of
decretion discs in the Be stars.

This chapter contains the following sections: Section 4.1 introduces the X-ray Variables OGLE
Monitoring System, where the analysed data sample was sourced from. It also describes the
motivation for the analysis of this data, and the types of variability expected from BeXRB systems.
Section 4.2 provides details about the data preprocessing. Section 4.3 describes the development
of a new periodicity detection and characterisation pipeline that uses a new implementation of
the weighted wavelet Z-transform. It also describes how the parameters of the pipeline are tuned
using synthetic data. Section 4.4 presents the results of application of the pipeline to the sample
of OGLE light curves of BeXRBs. Finally, Section 4.5 summarises the main results, discusses
limitations of the presented method, and lists some ideas for further work.
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4.1 Introduction

4.1.1 Optical Gravitational Lensing Experiment (OGLE)

The Optical Gravitational Lensing Experiment (OGLE) is one of the longest-running variabil-
ity sky surveys, regularly monitoring the densest stellar fields. It searches for microlensing
phenomena in the Galactic Bulge and the Magellanic Clouds, which contain large numbers
of background stars with potential to cause microlensing events during stellar transit. OGLE
was first proposed by Paczynski (1991), and aims to probe the nature of dark matter. OGLE
made its first observations in 1992 (OGLE-I, Udalski et al., 1992), with subsequent phases of
the experiment spanning the periods of 1997-2000 (OGLE-II, Udalski et al., 1997), 2001-2009
(OGLE-III, Udalski, 2003), and 2010-present (OGLE-IV, Udalski et al., 2015), with operation
suspended between March 2020 and August 2022 due to the COVID-19 pandemic. The current
phase of the experiment covers over 3000 square degrees of the sky and monitors over a billion
sources.

The X-ray Variables OGLE Monitoring System was introduced in 2008 (XROM, Udalski, 2008),
with the intention of providing continuous, nearly real-time monitoring of the optical counterparts
of a sample of around 50 X-ray sources. The work presented in this chapter is focused on the
I-band photometry of Be X-ray pulsars identified in the Small Magellanic Cloud (SMC), which
are included in the XROM sample. Throughout the text, I use the SXP designation introduced
by Coe et al. (2005) to identify the sources. SXP (SMC X-ray Pulsar) prefix is followed by the
spin period measured at the time of discovery (in the unit of seconds), for example SXP756.

Combined OGLE-II, OGLE-III and OGLE-IV I-band light curves of sources in this sample can
reach almost 26 years of coverage. They show yearly observing seasons, which typically last
between 230 − 280 days. Longer time gaps separate the different phases of the experiment. The
cadence of observations varies between the observing seasons, starting with the median value
of ∼3 d during OGLE-II, ∼2 d during OGLE-III, and ∼4 d during OGLE-IV, with occasional
intervals of daily cadence. The brightness of sources can show variations of up to one magnitude,
with several sources showing extreme changes over weekly, monthly, or yearly time scales
(referred to as "swoopers" by Schmidtke et al., 2013).

4.1.2 Expected causes of variability in the OGLE light curves of Be X-ray binaries

As described in Section 1.2.2, we can distinguish two most prominent mechanisms causing the
optical variations in BeXRBs; one relating to pulsation of the Be star, and another relating to the
perturbation of the decretion disc caused by the orbiting neutron star.

Orbital perturbation is often marked by fast rise exponential decay (FRED) profile in the optical
light curve, which is caused by the collision of the neutron star and the decretion disc around
the Be star. Neutron stars in BeXRBs often have eccentric orbits, which can facilitate a rapid
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brightening of the system upon the decretion disc disruption, and a gradual fading, as the neutron
star moves away from periastron. The neutron star disruption of the decretion disc is also
associated with X-ray emission, therefore the orbital period can be unambiguously determined
given a periodic X-ray signal.

We also expect a more sinusoidal optical profile for systems with less eccentric orbits and/or a
warped/diffuse decretion disc. In such systems, the neutron star would travel through regions
with a gradually changing gas density, and the moment of collision with the decretion disc would
not be defined by a sudden optical brightening.

Periodic oscillations with sinusoidal profiles, which are not associated with the orbital period of
the neutron star, are thought to be caused by non-radial pulsations of the Be star. Non-radial
pulsations are expected to have periods between 0.1-2 days and can therefore alias with the
sampling pattern (the window function) of the light curves, creating periodogram features which
can be easily confused with binary behaviour. Aliases are apparent light curve oscillations which
are caused by periodic changes in the intensity of the source, which have a period that is shorter
than the typical observation frequency of the light curve. Aliases are expected to appear at the
frequencies given by

𝑓𝑎 = |𝑚 × 𝑓𝑁 − 𝑓𝑠 |, (4.1)

where 𝑓𝑁 is the sampling frequency, 𝑓𝑠 is the frequency of the signal, and 𝑚 is an integer.

4.1.3 Motivations for the time-frequency analysis

The aperiodic, long-term variability of I-band photometry is mostly driven by the changing
size of the Be star decretion disc. As mentioned in Section 1.2.2, the exact causes of mass
loss and disc formation are not known, but it is hypothesised that non-radial pulsations could
be the cause of mass ejection from the rapidly spinning Be star, resulting in disc formation.
Given that the relative changes in size of the decretion disc can be directly inferred from the
I-band magnitude, the hypothesis of non-radial pulsation driving mechanism can be tested via
the tracking of periodic oscillations in the optical light curve. If non-radial pulsations were
causing the swelling of the decretion disc, we would expect to observe that time intervals of
I-band brightening are preceded by (or coincide with) periods of pulsation-driven oscillations.
In order to test this hypothesis, periodic variability needs to be detected, classified as having
originated from non-radial pulsations, and also be localised in time so that their occurrence can
be correlated with I-band changes.

For these reason, I apply the WWZ transform, which allows for the detection of periodicities
while maintaining adequate time resolution. For the purpose of signal classification, I apply the
method introduced by Bird et al. (2012). They analysed the OGLE-II and OGLE-III photometry
of 49 X-ray sources, and presented evidence for two types of periodic behaviour. Authors
calculated two new metrics which allow for some differentiation between the different types of
variability, based on the shape of the phase-folded pulse profile.
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In addition to the goal of probing the physics of this specific subset of sources, the additional aim
of this work is to develop a method of automated, time-resolved signal detection and classification
that can test the whole range of frequencies in a single pass. As such, this method has the potential
for being developed into a pipeline for the automatic processing of a large photometric data sets.
New sky surveys like LSST (Ivezic et al., 2019), will be monitoring millions of sources, and the
tracking of appearance and disappearance of periodic signals in the light curves of sources of
interest will be essential to conduct studies of larger samples, for example the sample of BeXRBs
discovered in the future.

4.2 Data preparation

In this work, I use OGLE-II data kindly provided by the authors of Bird et al. (2012), and
supplemented with the data from OGLE-III and IV, which are publicly available from the OGLE
website1 as part of the XROM sub-catalogue. The OGLE-IV XROM data of sources SXP18.3,
SXP264 and SXP893 are not included in the online archive, and the data presented here was
kindly provided by Andrzej Udalski. The sources are not present in the XROM sample, because
in this phase of the experiment, they are found in the gaps between the detectors of the 32-chip
camera, outside the reference images of OGLE-IV. However, the sources serendipitously appear
in the active region of the detector due to imperfect setting of the telescope. The data presented
here were reduced independently of the standard reduction of the OGLE-IV photometry, using
non-standard reference images that cover the whole 32-chip mosaic of the camera.

The Be star non-radial pulsations would be best observed in the V-band photometry, since the
I-band is dominated by the cooler decretion disc, while the brightness changes of the star itself
would be the most detectable in the V-band. However, the V-band light curves available from
the OGLE survey are much sparser than the I-band data, and as such are not adequate for the
periodicity search. Therefore, this analysis is limited to the I-band data only.

Incorporation of the OGLE-II data into this study requires some pre-processing to ensure that
it is compatible with data of OGLE-III and IV. Comparison of OGLE-III data that was also
provided by Bird et al., and the version available online1, revealed that the two versions of the
data were inconsistent. The data presented in Bird et al. (2012) were reduced independently of
the more recent OGLE-XROM reduction. Different modifications of Julian Day were applied,
resulting in a 0.5 day offset between the public data and data from Bird et al. (2012) for some,
but not in all the sources.

In order to ensure that OGLE-II, OGLE-III and OGLE-IV data is compatible and that their time
stamps are modified consistently, I calculate the timestamp-to-timestamp distance as the function
of time offset between the two versions of the OGLE III light curve and find the minimum for each
source, which indicates the offset for which most of the time stamps overlap. More specifically, I

1http://ogle.astrouw.edu.pl/

http://ogle.astrouw.edu.pl/
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normalise the flux of the two light curves between the values of 0 and 1, graph them together, and
calculate the sum of distances between consecutive data points in the time-flux plane. I offset
(shift) one of the light curves in time, calculating the distances for offset values in the grid ranging
from -5 to 5 days with a step of 0.1 day. I find that the light curves of some sources produce a
sharp dip in the sum of point-to-point distances for offset values of 0 or 0.5 day, indicating that
the data points of the two OGLE III light curves overlap. I adjust the time stamps of OGLE II
data from Bird et al. (2012) using the offset values, which produced significant reduction in the
point-to-point distance. I then combine this data with OGLE III and IV from the online archive1,
and use the resulting light curves in the analysis described below.

I use Prophet, an open source Python library for time series forecasting released by Facebook
(Taylor and Letham, 2018), to perform light curve de-trending. Prophet can fit models with
additive non-linear trends and periodic components. It is a tool that was designed to forecast
business time series with interpretable parameters that allows for a semi-automated fitting without
the prerequisite of the detailed knowledge of the underlying model. Prophet is a regressive model
which forecasts the value of a variable 𝑦 at a time 𝑡 using three main components,

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡 (4.2)

where 𝑔(𝑡) is the trend function, 𝑠(𝑡) is the periodic (seasonal) component, ℎ(𝑡) is the holiday
component that is used to model irregular events, and 𝜖𝑡 is a normally distributed error term.
Prophet frames the model fitting as a curve fit and not a time series fit, which allows for the
fitting of an unevenly sampled time series.

Prophet allows for two modes of fitting the trend: the nonlinear saturating growth trends, and
a linear trend with change points. The former method uses a logistic function to fit a saturating
maximum or saturating minimum trend, and since the trends in the optical light curves of the
BeXRBs tend to be more complex, I opt for fitting of a linear trend with 𝑆 number of change
points at times 𝑠 𝑗 , for 𝑗 = 1, . . . , 𝑆. The trend function if given by

𝑔(𝑡) = (𝑘 + 𝑎⃗(𝑡)T𝛿)𝑡 + (𝑚 + 𝑎⃗(𝑡)T𝛾⃗) (4.3)

where 𝑘 is the base growth rate, 𝛿 is the rate adjustment vector with 𝑆 components, 𝑚 is an offset
parameter, 𝛾⃗ is the offset adjustment vector with 𝑆 components, and 𝑎⃗ is a change point indicator
Boolean vector such that

𝑎 𝑗 (𝑡) =
⎧⎪⎪⎨⎪⎪⎩

1, if 𝑡 ≥ 𝑠 𝑗

0, otherwise,
(4.4)

so that the 𝑎⃗(𝑡)T𝛿 term, i.e. the growth rate adjustment at time 𝑡, becomes the sum of adjustments
up to that point. Components of the offset adjustment vector 𝛾⃗ are set to 𝛾 𝑗 = −𝑠 𝑗𝛿 𝑗 to make
the trend function continuous. Prophet allows for the input of a predefined set of trend change
points. I do not set any prior change point dates. Instead, I allow the algorithm to distribute
the change points uniformly between the first and last observation of the light curve. I set the
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number of change points 𝑆 to be equal to the number of days between the first and last observation
divided by 30, resulting in approximately one change point per month. The change point prior
scale parameter is set to 0.1, which allows for a fairly fast gradient change from one observing
season to the next, but does not allow the model to fit the fast, sharp flares, which should not be
altered for the purpose of periodicity analysis.

Default seasonal components in Prophet have yearly, weekly and daily timescales to account for
various patterns caused by human behaviour, and I disable the fitting of those. It is also possible
to add custom seasonal components, and those can be useful when fitting persistent, periodic
variability in the BeXRB light curves. Prophet fits seasonal components using a standard
Fourier series

𝑠(𝑡) =
𝑁∑︁
𝑛=1

(︃
𝑎𝑛 cos

2𝜋𝑛𝑡
𝑃

+ 𝑏𝑛 sin
2𝜋𝑛𝑡
𝑃

)︃
(4.5)

where 𝑁 is the number of Fourier components, 𝑎𝑛 and 𝑏𝑛 are the Fourier coefficients, and 𝑃 is
the period. For the general de-trending of light curves for the purpose of signal detection, I do
not add any seasonal components to the model.

Holiday components of a Prophet model allow for the fitting of events which are predictable but
non-periodic. That is accomplished through the fitting of independent regressors for each day
indicated as a holiday. I disable the fitting of these for the purpose of light curve de-trending.

Model fitting in Prophet is performed through maximum a posteriori estimation using the Stan
(Carpenter et al., 2017) implementation of the L-BFGS algorithm.

4.3 Periodicity detection using wavelets

4.3.1 New implementation of the weighted wavelet Z-transform

Techniques presented in the previous chapters of this thesis could be useful tools for the task of
identifying and differentiating types of variability based on the light curve patterns they generate.
The LSTM-VAE could be useful for the characterisation of light curve segments, and periodic
variability could be detected based on the values of latent variables of those segments. However,
this method requires evenly sampled data. Additionally, in the current state of development of
the LSTM-VAE, it is difficult to predict whether the network would pick up on the periodicities
of highest frequency unless the network was re-trained on augmented data that contains the
complete range of expected signal frequencies. Finally, the LSTM-VAE would force the user
to make a trade-off between the localisation of signals and the lowest frequency that could be
tested for: the light curve segments create a high-pass filter, causing signals with a long period
to be missed, whilst the temporal resolution of a period search would be dictated by the segment
length and stride size.
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Given these considerations, I decide to use methods designed for the analysis of unevenly sampled
data instead. As explained in Section 1.3.2, the use of WWZ as opposed to dynamic Lomb-
Scargle spectra can be beneficial, because it does not require the setting of a window size, thanks
to the non-uniform time-frequency resolution grid (illustrated by Figure 1.5). For this purpose,
I develop a new Python implementation of the WWZ transform based on the code from the
Python package LIBWWZ2. LIBWWZ is based on the Python 2.7 code by Aydin (2017), and
the Fortran code by Templeton (2004), which in turn is based on the BASIC code by Foster
(1996). LIBWWZ code was developed for the application in geophysical data collection systems
(Garcés et al., 2022), but has been used for the analysis of several astronomic objects since then
as well (Urquhart et al., 2022; Lin et al., 2023). The main reason for the development of a new
Python implementation of the WWZ is the optimisation of the LIBWWZ code to minimise the
computational time, and at the same time to maintain the ease of customisation of the code in
the high-level Python language.

The improvements in computation speed are achieved through the use of the Numpy package for
scientific computing in Python (Harris et al., 2020), and taking advantage of its vectorisation
capability. However, performing vectorised operations on Numpy arrays required that they were
kept in random access memory of the workstation throughout the WWZ calculation, which was
prohibitive for transforms performed on light curves with thousands of observations, for millions
of combinations of frequency (𝜔) and time shift (𝜏). Therefore, in addition to vectorisation, the
package Cython is used to increase the speed of iterative sums performed over the observations
to calculate the response of the trial functions, the 𝑆 matrix, the observation weights and the
weighted variation of the data (i.e. the solving of Equations (1.12) to (1.14), (1.17) and (1.23)).
Cython (Behnel et al., 2011) is a Python extension compiled using C, which greatly reduces
the time required to compute numerical loops. The use of Cython to perform those sums means
that the subsequent operations can be performed on Numpy arrays with only two dimensions
(𝜔 × 𝜏) instead of three (𝜔 × 𝜏 × 𝑡). The Cython portion of the implementation is also inspired
by the C implementation of WWZ by Hartman and Bakos (2016). The combined effect of
these optimisations results in the reduction of computation time by a factor of up to 100 when
compared to the LIBWWZ implementation. Additionally, my implementation fixes a bug of the
LIBWWZ code, which does not set the weighted variation of the data to zero as it loops over
increasing frequency steps. The implementation is shared publicly on GitHub3.

4.3.2 Parameter tuning of the wavelet transform using synthetic data

In order to test the sensitivity of WWZ and adjust the parameters of the method, I perform the
WWZ-based periodicity detection on synthetic data. Figure 4.1 shows the WWZ transform of
a synthetic light curve with the sampling pattern of the I-band OGLE light curve of SXP9.13,
which is one of the BeXRBs from the OGLE-XROM sample. The light curve has 9462 days

2https://github.com/RedVoxInc/LIBWWZ
3https://github.com/jorwatkapola/period_search

https://github.com/RedVoxInc/LIBWWZ
https://github.com/jorwatkapola/period_search
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(a) Synthetic light curve

(b) WWZ transform of the synthetic light curve

Figure 4.1: (a) A synthetic light curve with the typical OGLE sampling, which has transient,
sinusoidal signals of 25, 30, 2.5 and 400 days injected into the intervals indicated by red dash-
dotted boxes. (b) WWZ transform of the synthetic light curve. Red dash-dotted boxes indicate
periodic signals, as explained above. Grey vertical lines indicate the observation timestamps.
The series of horizontal dashed black lines shows the quasi-Nyquist frequency, calculated as
the median time difference between time stamps in every observing season. The wavelet power
value is capped at 19.5 (corresponding to 𝛼 = 0.05 for an F-distribution with ∞ and 2 degrees

of freedom).
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of coverage, with 2263 observations clustered into 24 observing seasons of variable length and
sampling frequency (the median time separation between observations is indicated by the dashed
black lines in Figure 4.1b). Signals with periods of 25, 30, 2.5 and 400 days are added to four
separate sections of the light curve, indicated by red dash-dotted boxes in Figure 4.1. Signals
with periods of 25 and 30 days are introduced into two consecutive observing seasons, in order
to test whether WWZ can detect the relatively small change in period and localise them in time.
The period of 2.5 days is added to one observing season in order to test whether a signal close
to the quasi-Nyquist frequency could be unambiguously detected. A signal with a period of 400
days is introduced into eight consecutive observing seasons to test the temporal resolution of
WWZ for lower frequency signals. The signals are simple sine waves, with amplitudes scaled
to the standard deviation of the de-trended SXP9.13 flux. Normally distributed noise with the
mean of zero and standard deviation of the SXP9.13 flux is also added to increase the scatter
of the data and make the test more challenging. Figure 4.1a shows the resulting synthetic light
curve.

The WWZ transform is performed on the data. In this test and analyses discussed in following
sections, the numbers of time shifts and frequency steps are adjusted based on the time coverage
of the light curve. One time shift is calculated for every 6.66 days of coverage, so that the number
of time shifts is

𝑁𝜏 =
3

20 days
𝑇 (4.6)

where𝑇 is the time coverage of the data (time difference between the first and the last observation
in days). Tested frequencies range between the lower limit of 1/2000 d−1 and the upper limit of
1/2 d−1, where the lower limit is set due to the limited time coverage (corresponding to less than
5 cycles of a 1/2000 d−1 signal in the longest OGLE-XROM light curve), and the upper limit is
set at the quasi-Nyquist frequency of the majority of seasons in the light curve (∼2 day median
time gaps between the observations). The frequency step is set according to

Δ 𝑓 =
1

5𝑇
(4.7)

which corresponds to the oversampling rate of 5, as explained in Section 1.3.1. The decay rate
𝑐 of the WWZ is set to

𝑐 =
1

20(8𝜋2)
(4.8)

which is a factor of 20 smaller than the value of 1/(8𝜋2), the common choice for the light curves
of variable stars, as indicated by Foster (1996). This choice is made to improve the sensitivity to
high frequency signals, which would otherwise be suppressed by the increased threshold on the
effective number of data points 𝑁eff, which is explained in more detail below.

The WWZ has a tendency to assign extremely high power values (order of 105 − 106) to the
scalogram pixels which correspond to wavelets with frequency approaching the sampling rate
(I refer to elements of the scalogram as pixels, where each pixel corresponds to a wavelet with
a specific frequency 𝑓 and a specific time shift 𝜏). Extremely high power values are also
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sometimes assigned to wavelets which are positioned at the edges of the observing seasons. The
high power values of those wavelets make it difficult to differentiate them from real detections,
so they must be filtered out. Wavelets causing false positives in WWZ tend to have small 𝑁eff

values, and therefore, I filter out wavelets with 𝑁eff<10. This reduces the sensitivity of WWZ to
high frequency signals, because high frequency wavelets do not have a long enough time span
to have significant amplitude over the required number of data points. This issue is mitigated
by the decreased decay constant value, which allows the wavelets to continue for several extra
oscillations.

Having established the values of all of these settings, the WWZ transform of the synthetic light
curve is performed. It took 4 minutes and 45 seconds to compute (for 1419 time shifts and,
23609 frequency steps). Figure 4.1 shows the resulting scalogram. Pixels with power equal to
zero are masked out with white colour, and for the remaining pixels the colour bar is capped
at the value of 19.5 (corresponding to the critical value of 𝛼 = 0.05 for the F-distribution with
∞ and 2 degrees of freedom; this choice is discussed in more detail in Section 4.3.3). All four
signals are clearly detected, with peak frequencies of the scalogram corresponding to periods of
25.5, 29.9, 2.5 and 409.0 days. Detections corresponding to the periods of 25, 30 and 2.5 days
are well constrained in time, with little power leaking into the pixels outside the corresponding
time windows. They are also clearly separated in time and frequency, with a clear transition from
25 to 30-day period. The 2.5 day detections appear as two separated power peaks rather than one,
and only one of them exceeds the 19.5 power level. The low power and its uneven distribution
through the signal window are caused by a combination of effects; the significant amount of
Gaussian noise and the signal frequency being close to the sampling frequency. However, the
detection can be clearly differentiated from any spurious peaks due to its extent, which indicates
that wavelets of this frequency produced high power over multiple time shifts. The signal with
the longest period is not constrained in time as well as the other signals; a significant amount
of power leaks outside the time window where the signal is present. The reduced temporal
resolution of the low frequency signal is a consequence of the reduced decay constant value.
However, the power distribution over time shows a Gaussian-like profile, with the peak at the
centre of the time window where the 400 d signal was injected. A signal with a period of 191.0
days is also detected in the same time window as the 400-day signal, and it is caused by the
window function of the light curve; power is also found at the 191 d period if all the flux values
are set to 1.

Figure A.6 shows a WWZ transform of the same data, using alternative settings. There, the
decay constant is set to the conventional value of 𝑐 = 1/(8𝜋2), which is 20 times larger than
the one used for the transform shown in Figure 4.1. No filtering based on the value of 𝑁eff is
applied. Comparison of the two figures illustrates that the smaller decay constant can provide a
more complete coverage of the high frequency end of the scalogram, and together with the 𝑁eff

filter, it removes many of the spurious detections of individual pixels showing extremely high
power. These settings are therefore required to detect the signal with 2.5-day period, which is
otherwise much more difficult to distinguish from the spurious peaks in the scalogram.
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4.3.3 Detection and characterisation of signals

Following the WWZ transform, the pixels corresponding to likely detections must be identified in
order to undergo further characterisation. However, estimation of the WWZ power significance
level is not straightforward. Despite significant improvement in the speed of the WWZ code,
evaluating thousands of Monte Carlo simulations for every light curve would be prohibitively
expensive in terms of computation time. Instead, I identify the detection power threshold based
on the F-distribution critical value. As Foster (1996) remarked, The WWZ power should follow
the F-distribution with (𝑁eff−3) and 2 degrees of freedom, but since 𝑁eff is not an integer, the
actual distribution of the WWZ power cannot be precisely defined.

However, the effect of increasing the first parameter of the F-distribution (i.e. the numerator
degrees of freedom in Equation (1.21), 𝑑𝑓1) does not have a significant effect on the critical value.
For example, the smallest value of (𝑁eff−3) observed in a WWZ with 𝑁eff < 10 pixels filtered
out is 7, and the 𝛼 = 0.05 critical value of an F-distribution with 7 and 2 degrees of freedom
is 19.3532. As the first parameter is increased, the critical value asymptotically approaches the
maximum of 19.4957 at 𝑑𝑓1 = ∞. Therefore, for the practical reason of identifying detections in
the scalogram, it is reasonable to use the F-distribution with ∞ and 2 degrees of freedom, which
provides the highest critical value for any value of 𝛼. An inspection of the WWZ transform of
the synthetic light curve shows that the real signals create power peaks reaching power values
between 31-124. However, multiple repetitions of this test with re-sampled Gaussian noise reveal
that the power of the 2.5 d peak can drop to ∼20. Hence, the detection threshold is set at 19.5,
corresponding to 𝛼 = 0.05, which allows for all the true signals in the test light curve to be
detected.

This WWZ power threshold is then used to identify the pixels associated with candidate detec-
tions. In the time shift-frequency plane of the WWZ scalogram, the detections appear as regions
of high power with one or more peaks, and the power decays gradually, in both frequency and time
shift directions, as the distance from the peak increases. This results in multiple neighbouring
pixels exceeding the detection power threshold. For the purpose of signal characterisation, pixels
which exceed the detection threshold due to the same signal frequency and at a similar time,
must be clustered and analysed together. I process each cluster separately, in order to be able to
differentiate signals of different physical origin appearing at different times. I identify the pixels
associated with each disconnected cluster using the agglomerative clustering algorithm with the
single-linkage method (see Section 1.4.4.2 for more details about the algorithm), and apply it to
the Boolean detection matrix derived from the WWZ scalogram. The distance threshold of the
clustering algorithm is set to 1.1, because neighbouring pixels are separated by the distance of
1, whereas the shortest possible distance between non-neighbouring clusters is 2.

For every cluster of pixels above the detection threshold, I calculate the local WWZ spectrum by
summing the power over the pixels spanned by the cluster, in the time shift direction. In order
to account for the possibility of multiple signals being present in the cluster, I use a peak finding
algorithm included in the SciPy package (Virtanen et al., 2020) to reveals the most prominent
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frequencies in the cluster. The algorithm finds the local maxima in a series of values through
simple comparison of neighbouring values. As an additional requirement, I set the prominence
parameter to 10% of the maximum power value in the spectrum. The prominence of a peak is
defined as the minimum drop in elevation between the peak and a power value higher than that
peak (i.e. the vertical distance between a peak and its key col). Setting a prominence requirement
prevents the algorithm from marking all the local maxima as peaks, so it only returns ones which
stand out significantly.

For every frequency peak of a cluster, I compute wavelets of the corresponding frequency at the
first and last time shift of the cluster (using the wavelet function from Equation (1.20)). Then,
using these two most extreme wavelets, I find the most extreme time values with the wavelet
weight above the minimum threshold of 10−3 (using the weight formula from Equation (1.19)).
These timestamps define a time window where observations are deemed to have a significant
contribution to the power of the cluster. This approach is used to maximise the recovery of
observations which contribute to the power within the cluster, which makes the phase-folding
analysis better defined, particularly for high frequency signals, which can be detected using a
relatively small number of observations. However, in case of the low frequency clusters, it also
results in a window which stretches far outside the cluster. I therefore add another constraint on
the window of observations, restricting it to the first and last 𝜏 where the pixel power is larger
than the critical value of 𝛼 = 0.1. Additionally, if no observations are found between the first
and last 𝜏 exceeding the critical value of 𝛼 = 0.05, I deem that to be a false detection. Figure 4.2
shows an example illustration of all of these detection criteria, overlaid on top of the sections of
the light curve where 2.5 d, 25 d and 400 d signals are detected. The final sets of observations
which are used in the phase folding analysis are marked by the blue shaded regions.

For every cluster above the detection threshold, and every frequency peak within it, I phase-fold
the observations matching the detection criteria described above, and then bin the phase-folded
data. The number of bins is a set depending on the number of observations, according to

#bins =
30 × #observations

1000
, (4.9)

with the minimum capped at 10 and the maximum capped at 30. The number of bins is
automatically adjusted for each subset of observations undergoing the phase-folding analysis.
This is because an increase in the number of bins can improve the resolution of the phase-folded
profile, especially when there are many observations available. On the other hand, reducing the
number of bins can prevent the fitting of sparse profiles with many empty bins, which is useful
for cases where there are only a few observations available.

Phase span and phase asymmetry metrics are calculated for every phase-folded profile. The
metrics were introduced by Bird et al. (2012) for the purpose of characterisation of phase-folded
pulse profiles, with the aim of differentiating sinusoidal profiles from FRED-like profiles. The
phase span (PS) is defined as the full width at half maximum of the peak in phase space, while
the phase asymmetry (PA) is defined as the ratio of phase differences between the maximum and
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(a) detection of 2.5 day signal
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(b) detection of 25 day signal

0 2000 4000 6000 8000 10000
Days

1.0

0.5

0.0

0.5

1.0

1.5

Ar
bi

tr
ar

y 
un

its

wavelet
weight (w)
w = 10 3

 = 0.1
true signal

(c) detection of 400 day signal

Figure 4.2: Example sets of observations identified as signal detections in the WWZ of the
synthetic light curve, shown in Figure 4.1, together with illustrations of the detection criteria.
Bounds of the window where the signal was injected into the light curve are marked with red
dash-dotted lines, like in Figure 4.1, and observations which had the signal added to them are
marked by solid blue points. The final detection window is marked with the blue shaded region
(bounded by the first and last pixels with power corresponding to at least 𝛼 = 0.1, and within
the window where the wavelet weight of the drawn wavelets is at least 𝑤 = 10−3). The wavelets
are drawn at the first and last 𝜏 of the cluster with power corresponding to at least 𝛼 = 0.05.
The sub-figures show three detection clusters and the wavelets corresponding to signals with

periods of (a) 2.5 d, (b) 25 d, and (c) 400 d.
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the points where the profile drops to 10% of the maximum. In addition to this, I also find an
alternative PA metric, by calculating the ratio of phase differences between the edges of the peak
at the half-maximum and at the 10% of the maximum.

However, calculating PS and PA metrics directly from the binned data can be unreliable, because
the profiles do not always decay monotonically, either due to noise or sparseness of data. In order
to approximate these metrics in a more reliable manner, I first smooth the binned profiles by
fitting the Savitzky-Golay filter to the series of mean values of the binned data. Savitzky-Golay
filter is applied by locally fitting a least-squares polynomial to an evenly sampled series, using a
moving window (see Schafer, 2011, for more details about the filter). I use the SciPy (Virtanen
et al., 2020) implementation of the filter with the polynomial order of 2. The window size of the
filter is adjusted to the number of bins, according to

Savitzky-Golay window length =
#bins

2
, (4.10)

so the window length can vary between 5 and 15, depending on the number of phase bins.

Figure 4.3 shows the results of the phase-folding analysis of the synthetic light curve shown in
Figure 4.1. The sub-figures show the binned, phase folded data, with heights of bars representing
the mean flux in each bin. The black lines show the Savitzky-Golay filter fit to the mean values
of binned data. The darker shaded region corresponds to the full width at half maximum, and the
lighter region shows where the profile is above 10% of the maximum. The PA and PS metrics
calculated for the detection of true signals place all of them in the sinusoidal profile region of the
PS-PA plane (with approximate boundaries at PS>0.4 and PA<2 according to Bird et al. (2012)).

The profile of the 29.9 d period (Figure 4.3c) has the PA of 2.135, which is slightly higher than
the value expected for a sinusoid profile. However, upon inspection it becomes clear that the
29.9 d pulse does have the wide, symmetric profile of the sine wave, and that the PA value is
inflated due to the slightly skewed position of the maximum. The alternative PA (calculated at
the half-maximum level) has the value of 1.423, and is a more accurate representation of the
symmetry of the profile.

Figure 4.3f shows the profile of a spurious detection found at around 4770 d timestamp, outside
any window where signals were injected. Together with a second spurious detection found
at around 8480 day time stamp, they are both caused by the Gaussian noise. Both of these
spurious detections produce sparse phase-folded profiles due to the small number of contributing
observations, resulting in a significant number of empty bins. I filter out many spurious detections
like this by setting a requirement that at least half of the bins must be populated.

Results of this test with synthetic data show that it is possible to automatically detect signals
using the WWZ transform, and to characterise the peaks using the PS and PA metrics, but care
must be taken in case of high frequency, poorly-sampled signals.
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Figure 4.3: Phase folded profiles of data responsible for detections presented in Figure 4.1.
The black lines show the Savitzky-Golay filter fitted to the mean values of binned data. The
vertical black dashed line indicates the maximum, and the horizontal black dashed line shows

the half-maximum level. The grey dashed line indicates the 10% of the maximum level.
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Table 4.1: Sources included in the WWZ analysis. All listed sources come from the OGLE-
XROM sample of Small Magellanic Cloud BeXRBs. Dates are presented as the Truncated
Julian Date (TJD), which is defined as the Heliocentric Julian Date (HJD) minus 2.45 × 106

days. Candidates for newly detected periodicities are listed together with the classification of
the profiles derived from the phase-folded light curves.

Source name No. observations TJD range New candidate periods (days)

SXP0.09 2542 627.9 – 9928.5
SXP0.92 2485 625.9 – 9928.5
SXP2.763 1425 2086.9 – 9916.6
SXP9.13 2263 466.5 – 9928.5 Sinusoidal (3.0 or 0.753)
SXP22.07 1048 2104.9 – 9910.6 FRED-like (146.4)
SXP25.5 2254 621.8 – 9928.5
SXP31.0 1252 2104.9 – 9918.5
SXP34.08 1822 2086.9 – 9928.5
SXP46.6 2913 2086.9 – 9928.5
SXP59.0 2840 626.9 – 9928.5
SXP74.7 2509 466.5 – 9928.5
SXP91.1 1734 2086.9 – 9928.5
SXP101 1578 2086.9 – 9927.5 Sinusoidal (3.0 or 0.750)
SXP138 2045 2086.9 – 9928.5
SXP152.1 1968 2086.9 – 9928.5
SXP169.3 1995 2086.9 – 9928.5
SXP264 1199 621.8 – 7258.8
SXP293 1249 621.9 – 7367.6
SXP304 2215 627.9 – 9928.5 FRED-like (341.3)
SXP323 2246 621.8 – 9928.5
SXP327 2046 2086.9 – 9928.5
SXP504 2293 621.8 – 9928.5
SXP565 2127 628.9 – 9928.5 Sinusoidal (4.9 or 0.831)
SXP701 2311 621.8 – 9928.5
SXP726 2098 627.9 – 9928.5 FRED-like (112.0)
SXP756 2186 466.6 – 9928.5
SXP893 1195 466.5 – 7364.6
SXP1323 2178 627.9 – 9928.5

4.4 Wavelet-based detection of signals in the OGLE-XROM pho-
tometry

In this section, I discuss the results of applying the WWZ-based periodicity detection pipeline to
the I-band light curves of a sample of OGLE-XROM sources listed in Table 4.1. The light curves
of the sources are de-trended using the trend component of the Prophet model. Once the trend
is removed, the WWZ transform is performed on the data. As described in the previous section,
the range of tested frequencies is bound by the lower limit of 1/2000 d−1 and the upper limit of
1/2 d−1, with the frequency step adjusted according to Equation (4.7). I limit the discussion to
the most prominent detections from the WWZ transform of each source, however the scalograms
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with all detections can be found in Appendix A, together with light curves of the analysed
sources, which are not included in this section.

4.4.0.1 SXP0.09

The WWZ of the SXP0.09 light curve shows two separate detections of the ∼17 d period, first
with the period of 17.0 d (20.6 power), centred at 3496.8 TJD, and second with the period of
17.3 d (42.3 power), centred at 9791.8 TJD, both lasting for about one observing season. Some
power at the same period can also be observed around 6000 TJD, however the power peak is
below the detection threshold. Other short detections are also found at 4891.2 TJD with the
period of 168.3 d (22.3 power), and at 3496.8 d with the period of ∼13 d. The latter has a multi-
peaked spectrum, with the greatest power at the period of 13.9 d (20.0 power). Schmidtke et al.
(2013) report a detection of a 13.3 d period in the same observing season, and they interpret it as
an alias of a 0.93 d pulsation. Power at period ∼250 d (below detection threshold) is also present
throughout the OGLE-III seasons, as reported by Rajoelimanana et al. (2011) and Schmidtke
et al. (2013), but it ceases at around 6000 TJD. PS and PA values of all signals indicate sinusoidal
profiles.

4.4.0.2 SXP2.763

A signal with a period of ∼82 d is present across almost the entire light curve of SXP2.763,
with three detection clusters stretching between 2086-3448, 4569-6612 and 8080-8835 TJD
(showing peak powers of 63.9, 406.4 and 26.0 respectively). There is also a fourth detection
cluster between 7440-7667 TJD (20.6 power), where the signal seems to temporarily drift to a
period of 86.9 d. This apparent drift is observed during a period when the amplitude of the
oscillations observed in the light curve decreased (see Figure 4.4a). The amplitude of oscillations
is correlated with the brightness of the source; they are the most prominent in the brightest parts
of the light curve, and disappear completely in the dimmest parts. Hence, the power of the ∼82 d
detections also correlates with the brightness of the source. Phase-folded profiles of the ∼82 d
detections all have a PA≤1; the two most prominent detections however have PS of 0.38 and
0.34, which places them outside the sinusoidal region of the PS-PA plane. The narrow profile
of the oscillations and the amplitude-brightness correlation point towards the orbital origin of
the signal. Orbital origin is also suggested by Schmidtke et al. (2006) and Coe and Kirk (2015).
The period of 81.81 ± 0.06 was reported by Bird et al. (2012).

Four other detections are found in the WWZ of SXP2.763. This includes a peak at 3502 TJD at
a period of 42.1 d with power of 24.6, which is a potential harmonic of the ∼82 d signal. Three
peaks corresponding to periods of 131.1 d, 148.0 d and 116.7 d are found in the last observing
season and are likely spurious, resulting from fits to the 29 isolated observations.
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Figure 4.4: I-band OGLE light curve of analysed sources. OGLE-II, III and IV are separated
by black dashed lines.
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Figure 4.5: WWZ transform of SXP9.13 light curve. Grey vertical lines indicate the observation
timestamps. The series of horizontal dashed black lines shows the quasi-Nyquist frequency,
calculated as the median time difference between time stamps in every observing season. The
wavelet power value is capped at 19.5 (corresponding to 𝛼 = 0.05 for an F-distribution with
∞ and 2 degrees of freedom). Dashed magenta boxes indicate the most extreme pixels which

exceed the 𝛼 = 0.05 power level, for every detection.

4.4.0.3 SXP9.13

Detections in the WWZ of this source in the order of decreasing period are: 405.6 d (22.3 power,
1774.4-3576.1 TJD), 234.6 d (26.0 power, 973.7-2935.5 TJD), 192.6 d (32.8 power, 2361.6-
3876.3 TJD), 39.4 d (22.1 power, 620.0-927.0 TJD), 36.0 d (19.8 power, 653.4-733.5 TJD). A
3.0 d period is also detected in the first two observing seasons of OGLE-IV (23.3 power, 5818.1-
5831.5 TJD, and 20.9 power, 5537.9-5544.5 TJD), shown in Figure 4.5. The most prominent
detection has the period of 192.6 d, and it is caused by the window function of the light curve; it
was also detected in the synthetic light curve test described in Section 4.3.2, although it peaked
at a different time. Other detections with periods >100 d have noisy phase-folded profiles, and
have PS-PA values that indicate sinusoidal profiles.

Signals with ∼40 d period were previously reported by Edge (2005) and Galache et al. (2008),
who also reported power at ∼20 d. The ∼20 d period was in turn interpreted as an alias of a
0.95 d non-radial pulsation. However, Rajoelimanana et al. (2011) interpreted it as a harmonic
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Figure 4.6: Lomb-Scargle periodogram of a section of SXP9.13 light curve between 5346-
5985 TJD, over the range of frequencies expected for a non-radial pulsation of the Be star. The

most prominent peaks are labelled with their corresponding periods.
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Figure 4.7: Phase-folded profiles of signals detected in the light curve of SXP9.13.

of a 80.1± 0.06 d period, together with other harmonics at 20 and 26.6 d. Furthermore, Galache
et al. (2008) reported an X-ray orbital period of 77.2 ± 0.3 d. However, the ∼80 d period was
not found by Schmidtke et al. (2013). I find some power below the detection threshold at ∼20 d
and ∼80 d periods, which together with the asymmetric profile of the 39.4 d period (PA=2.7,
see Figure 4.7a), point toward the binary orbital period as the cause of the signal. Furthermore,
Coe and Kirk (2015) gave the X-ray period of 40.10 d. However, these signals seem to vanish
after 3000 TJD, which coincides with a dip in the brightness of the source by ∼0.2 mag (see
Figure 4.4b), and they do not re-appear following the re-brightening of the source, which comes
back to the brightness level from before the dip, and then continues to gradually brighten up by
another ∼0.35 mag. These observations do not seem to support the interpretation that the ∼80 d
period is driven by the orbital period, unless the decretion disc becomes so diffuse following
the source’s brightening that its interaction with the neuron star stops being observable in the
photometry, but this diffusion would also need to happen without any transition period when the
∼80 d period could reappear.
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Figure 4.8: Phase-folded profiles of signals detected in the light curve of SXP22.07.

The 3.0 d period is detected in the first two seasons of OGLE-IV, with some power also appearing
in the third season (6250 TJD), as well as the third season of OGLE-II (1750 TJD). I have not
found previous reports of this periodicity. The phase-folded profile of the second detection
is sparse, with multiple gaps, however the profile of the first detection has a clearly sinusoidal
shape (see Figure 4.7b). Figure 4.6 shows a Lomb-Scargle periodogram of the first two observing
seasons of OGLE-IV in the range of frequencies between 0.167 − 25d−1. The most prominent
peaks are found at the periods of 1.483, 0.753, 0.595, 0.429, 0.373 and 0.271 d, and they
correspond closely to the alias pattern expected for an NRP with the period of 0.753 d; the
aliases of such a signal are expected to have periods of 3.043, 1.489, 0.598, 0.374, 0.272, 0.214,
and 0.176 d, for the nominal sampling frequency of 1 day (derived from Equation (4.1) with
𝑚 = {1 . . . 7}). Therefore, the 3.0 d period is most likely an alias of an NRP with the period
of 0.753 d. The periodogram also shows peaks at the periods of 0.429, 0.300, 0.230 and 0.187,
which can be aliases of the 1.483 d period (expected at 3.07, 0.754, 0.43, 0.301, 0.231, and
0.188 d).

4.4.0.4 SXP22.07

The WWZ scalogram of SXP22.07 produced detections at 271.9 d (25.1 power, 2104.9-2959.6
TJD), 238.7 d (28.5 power, 2104.9-3907.7 TJD), 146.4 d (29.2 power, 2104.9-2672.5 TJD),
108.3 d (32.6 power, 4295.0-5456.9 TJD), 84.0 d (27.1 power, 3106.5-4735.7 TJD), 65.4 d (22.5
power, 2438.8-2699.2 TJD) and 57.7 d (21.9 power, 2639.1-2866.1 TJD).

The phase-folded profiles of the pulses with 271.9 and 238.7 d are noisy, with the mean intensity
varying widely from one bin to the next, which is likely an indication that the detections are
spurious, potentially caused by the sampling pattern of the light curve. The power of the 238.7 d
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Figure 4.9: WWZ transform of SXP22.07 light curve. Grey vertical lines indicate the observa-
tion timestamps. The series of horizontal dashed black lines shows the quasi-Nyquist frequency,
calculated as the median time difference between time stamps in every observing season. The
wavelet power value is capped at 19.5 (corresponding to 𝛼 = 0.05 for an F-distribution with
∞ and 2 degrees of freedom). Dashed magenta boxes indicate the most extreme pixels which

exceed the 𝛼 = 0.05 power level, for every detection.

period drops close to the background level around ∼5000 TJD, and it increases again after
∼7000 TJD.

Rajoelimanana et al. (2011) suggested a period of 75.97±0.06 d, and Bird et al. (2012) reported
a signal with 83.7±0.1 d period, while Schmidtke et al. (2013) interpreted their results as either
a ∼77.3 d period or a ∼0.986 d non-radial pulsation, with the latter increasing from 0.983 to
0.989 d from season to season. However, I find that a drift to a longer period can also be observed
for the ∼80 d signal in the WWZ scalogram, during the OGLE-III phase (see Figure 4.9). The
signal drifts from 80.1 to 84.7 d period, and is also preceded by detections of 65.4 and 57.7 d
periods, which mostly cover the range of periods expected from aliases of NRPs reported by
Schmidtke et al. (2013). Signals with 57.7, 65.4 and 84.7 d periods have sinusoidal profiles (see
Figure 4.8b for an example), and therefore it is possible that they are aliases of the NRP reported
by Schmidtke et al. (2013).

The 146.4 d period has the FRED-like profile (see Figure 4.8), with PS 0.383, PA 3.375, but it
is only detectable until ∼3250 TJD, which coincides with the first dip in the brightness of the
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Figure 4.10: Phase-folded profiles of signals detected in the light curve of SXP25.5.

source. The brightness of the source partially recovers after the dip, but does not reach the same
levels as in the first three observing seasons of OGLE-III (see Figure 4.4c). The stopping of
the FRED-like oscillation when the source fades could be an indication of the interaction of the
neutron star with the disc.

4.4.0.5 SXP25.5

The WWZ scalogram of SXP25.5 produces detections at 610.1 d (23.5 power, 621.8-1816.0 TJD),
276.5 d (21.6 power, 621.8-1635.9 TJD), 211.3 d (25.7 power, 621.8-1976.1 TJD), 119.2 d (21.8
power, 2269.7-2796.7 TJD), 11.3 d (23.7 power, 5778.9-5925.6 TJD), 3.3 d (218.7 power, 9835.1-
9928.5 TJD), 3.0 d (22.7 power, 2202.9-2209.6 TJD).

Rajoelimanana et al. (2011) reported the orbital period of 22.50±0.01 d and Bird et al. (2012)
reported 22.53±0.01 d, while Schmidtke et al. (2013) did not find this period in their analysis.
Coe and Kirk (2015) gave the X-ray orbital period of 22.5 d. The WWZ scalogram shows some
power at this period during the latter half of the OGLE-III phase, as well as the second season of
OGLE-IV, but always below the detection threshold. The detection of an 11.3 d signal however
could be a harmonic of the ∼22 d signal, with some power at 7.5 and 5.6 d periods as well. The
folded profile is highly asymmetric, with PA of 0.40 (left-skewed profile, see Figure 4.10a).

A signal with a period of 3.3 d is strongly detected in the last observing season of OGLE-IV, and
also with the period of 3.0 d in the first season of OGLE-III, but power at the ∼3 d period is also
observed in other seasons of OGLE-II and III. Schmidtke et al. (2013) reported the detection
of a 0.598 d NRP in OGLE-II and the first four seasons of OGLE-III. I find power at the ∼3 d
period in five of those seasons, and it also disappears completely in the first two seasons of
OGLE-IV, just like the NRP described by Schmidtke et al. (2013). The phase-folded profile of
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Figure 4.11: Phase-folded profiles of signals detected in the light curve of SXP31.0.

the detection at 2206 TJD has a very sparse profile, with many empty bins, but the profile of
the 3.3 d detection at 9881 d has a well-defined, sinusoidal profile (PS=0.475, PA=0.886, see
Figure 4.10b). Therefore, the ∼3 d period is most likely an alias of the 0.598 d NRP.

4.4.0.6 SXP31.0

The light curve of SXP31.0 shows prominent outbursts throughout OGLE-III and IV, detected
in the WWZ with the period of 90.1 d (80.9 power, 2104.9-8317.1 TJD). Schmidtke et al. (2013)
reported a period of 90.57±0.09 d and described it as having a FRED-like profile. I find that the
phase folded profile has a PS of 0.420 and PA of 1.697, which would place it in the sinusoidal
region of the PS-PA diagram. However, the profile is clearly asymmetric (see Figure 4.11a), and
with the alternative PA of 2.3, it is a clear indication of the FRED-like profile. Furthermore, Coe
and Kirk (2015) gave the X-ray orbital period of 90.4 d.

4.4.0.7 SXP46.6

The WWZ scalogram of SXP46.6 shows two periods which persist through multiple observing
seasons; the first one at 137.3 d (61.4 power, 2086.9-9928.5 TJD), and the second one at 220.8 d
(54.4 power, 2180.3-6565.0 TJD). The former is detected throughout the light curve, and it
corresponds to the X-ray period reported by Galache et al. (2008) at 137.36± 0.35 d and Kennea
et al. (2018b) at 143.29± 4.5 d, as well as the optical periods reported by Schmidtke et al. (2007)
(138.4 ± 0.9 d), McGowan et al. (2008) (∼137 d), Rajoelimanana et al. (2011) (136.4 ± 0.2 d),
and Bird et al. (2012) (137.4 ± 0.2 d). McGowan et al. (2008) found that the phase-folded
profile of the modulation is highly non-sinusoidal, and has a double-peaked structure. I find a
similar result from the WWZ detection at 137.3 d; the profile of the peak is narrow and highly
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Figure 4.12: Phase-folded profiles of signals detected in the light curve of SXP46.6.

asymmetric (PS= 0.292, PA= 0.414), as illustrated in Figure 4.12a. The 220.8 d period lasts from
the start of OGLE-III until ∼6500 TJD and has a noisy, wide, asymmetric profile (PS= 0.483,
PA= 0.640). It was also found by McGowan et al. (2008) in the Lomb-Scargle periodogram,
and it can be interpreted as the beat period between the 137.3 d period and the annual observing
cycle, while Coe and Kirk (2015) gave the X-ray orbital period of 137.4 d.

Another signal with a FRED-like profile (see Figure 4.12b) is detected starting from the end of
OGLE-III, with period of 69.0 d (30.6 power, 4769.7-6064.4 TJD), with some power present
throughout OGLE-IV. I find some power at this period during the first half of OGLE-III as well.
A period of 69.2 d was also reported by Schmidtke et al. (2007) and at 68.98 d by Schmidtke
et al. (2013). It is most likely a harmonic of the 137.3 d period.

The WWZ scalogram contains one large detection cluster in the last observing season of OGLE-
IV, which spans the periods between ∼17 d and ∼160 d, with main peaks at 47.4 d (285.7 power)
and 26.7 d (150.5 power) periods (see Figure A.13). The final observing season is separated
from the earlier observations by >750 d, and it shows a very well sampled, prominent outburst,
whose decay is followed by a re-brightening, which is exaggerated by the de-trending of the light
curve (because the gradient of the fitted trend seems to have been too negative), and contains a
single high-flux observation ∼50 d after the outburst. Since the outburst also contributes to the
dominant 137.3 d signal, this combination of effects resulted in a large artefact detection cluster
in the WWZ.

4.4.0.8 SXP59.0

The WWZ of SXP59.0 contains two large detection clusters in the final observing season of
OGLE-IV, with peaks at the periods of 48.6 d (76.9 power) and 19.4 d (67.3 power), which are
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Figure 4.13: Phase-folded profiles of signals detected in the light curve of SXP59.0.

similar to the artefact found in the WWZ of SXP46.6. The light curve of that season shows three
peaks in the time span of ∼50 d.

Other prominent detections include a 249.7 d period (71.4 power, 1220.8-7446.3 TJD), which
has a noisy, sinusoidal profile (PS=0.412, PA=1.430) and is present from the start of the light
curve, but disappears for the last four seasons of OGLE-IV. Periods of 160.2 d (41.4 power,
5117.6-6632.3 TJD), and 147.5 d (34.2 power, 4857.4-6305.3 TJD), have similar profiles but are
present in shorter time intervals. A period of 117.7 d (38.7 power) is detected between 3349.4-
6452.1 TJD, which coincided with the time interval when the source faded from 15.2 mag to
15.8 mag and then re-brightened to 15.2 mag (see the light curve in Figure 4.4d). The 117.7 d
period is the closest to the X-ray period of 122.10± 0.38 d reported by Galache et al. (2008) and
the 122.0 d given by Coe and Kirk (2015), however the phase-folded profile of this modulation is
wide and asymmetric, with a left skew (see Figure 4.13a), which does not support the possibility
of orbital origin of the signal. Furthermore, Schmidtke et al. (2013) found no evidence of the
122 d period in the OGLE-III data.

Coe and Orosz (2000) found a period of 14.26 d in the OGLE-II data, but they found that folding
the data on that period produced only a small sinusoidal modulation. In the WWZ transform,
I find a signal with a period of 15.4 d (33.3 power, 1054.0-1220.8 TJD) in the second season
of OGLE-II, which reappears in the seventh season of OGLE-III at 15.2 d (21.4 power, 4203.4-
4283.5 TJD), with some power also present in the sixth season. It has a sinusoidal profile with
PS of 0.492 and PA of 1.223 (see Figure 4.13b).

Additionally, Schmidtke and Cowley (2005) reported peaks in the periodogram at 20, 30 and 60 d
periods in OGLE-II data, while Rajoelimanana et al. (2011) reported a period of 62.15± 0.04 d,
however only the 20 d period was detected in the WWZ, with little power at the 30 and 60 d
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Figure 4.14: Phase-folded profiles of signals detected in the light curve of SXP91.1.

periods in the first OGLE-II season. A period of ∼40 d is also detected in the second, seventh,
and eighth seasons of OGLE-III, all showing sinusoidal profiles.

4.4.0.9 SXP74.7

The WWZ of SXP74.7 shows a signal with a period of ∼33.3 d, detected in the OGLE-II and
III data, as well as the final season of OGLE-IV, while the other seasons of OGLE-IV are likely
sampled too sparsely to capture the modulation. The phase-folded light curve profiles have
sinusoidal PS-PA values. The optical and X-ray periods of ∼33.3 d were previously reported in
the literature (Schmidtke and Cowley, 2005; Edge, 2005; Rajoelimanana et al., 2011; Bird et al.,
2012; Schmidtke et al., 2013; Coe and Kirk, 2015).

4.4.0.10 SXP91.1

The WWZ of SXP91.1 shows a detection of a persistent signal with a period of 88.4 d (408.7
power), which corresponds to the period of the prominent oscillation of the light curve, and with
the shape metrics of PS=0.346 and PA=1.522, it is a candidate for the orbital period modulation
(see Figure 4.14a). Two other persistent signals are present in the WWZ of the source; one
with a 116.5 d period (58.8 power) with its sinusoidal profile shown in Figure 4.14b, as well
as one with a 71.2 d period, which was not detected by the pipeline however, likely due to the
artefact detection cluster, which is present in the last seasons of OGLE-IV for this source as
well. Galache et al. (2008) showed that SXP89.0 is in fact a misidentification of SXP91.1, and
gave two X-ray periods, 87.6 ± 0.3 d for SXP89.0 and 117.8 ± 0.5 d for SXP91.1. Townsend
et al. (2013) determined the orbital period measurement of 88.42 ± 0.14 d, while Kennea et al.
(2018b) reported a 89.25± 2.54 d period in the X-ray data. The optical period of ∼88 d was also
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reported by Bird et al. (2012) and Schmidtke et al. (2004). The latter also reported a period of
6.2 d in the MACHO data of this source, but I find no evidence of it in the WWZ scalogram.

4.4.0.11 SXP101

The WWZ scalogram of SXP101 shows a strong signal with a period of 22.0 d, detected as three
detection clusters in OGLE-III and the first two seasons of OGLE-IV; it is detected between
2086.9-2700.8 TJD with peak power of 49.7, between 3134.6-3881.9 TJD with peak power of
52.3, and between 4215.6-6117.3 TJD with peak power of 232.7. Starting from the third seasons
of OGLE-IV the signal is not detected, but some power can still be found at the period of 22.0 d,
as well as periods of 11.2, 7.3, 5.5 d, which are likely to be harmonics of the 22.0 d signal
(see Figure 4.16.). As shown in Figure 4.15a, the source had a fairly flat light curve throughout
OGLE-III, but in the first four seasons of OGLE-IV it brightened by ∼0.14 mag, reaching
a maximum in the fourth season, and then fading by ∼0.08 mag below the OGLE-III level.
The cessation of the 22.0 d period in the third season of OGLE-IV coincides with the source
reaching its maximum brightness, but the sampling cadence of OGLE-IV is also significantly
reduced during that time, which seems to be the more likely cause of the cessation of the signal,
especially since its harmonics persist. In the final season of OGLE-IV the sampling cadence
improves again, reaching the median frequency of more than one observation per night, however
only the 7.3 d harmonic persists, and the 22.0 d period does not re-appear. Assuming orbital
period origin of the 22.0 d signal, the cessation of the signal could be explained by the fact that
the source reaches its minimum brightness in the last season of OGLE-IV, which can indicate
that the decretion disc becomes too small to be disrupted by the neutron star. Galache et al.
(2008) reported a maximum of the X-ray periodogram at 25.2 d, however, below the significance
level. Furthermore, I find that the optical light curve phase-folded on the 22.0 d period has the
sinusoidal profile, not expected for a signal of orbital period origin. However, Coe and Kirk
(2015) gave the X-ray orbital period of 21.9 d.

The WWZ also gives a detection of a signal with a period of 3.0 d (24.4 power, 2954.4-
2987.8 TJD) in the third observing season of OGLE-III, with some power also present in the
following seasons, until the first season of OGLE-IV. Phase-folded profile of the detection is
sparse, with multiple gaps. Figure 4.17 shows a Lomb-Scargle periodogram of the third observing
season of OGLE-III in the range of frequencies between 0.04− 5d−1. The most prominent peaks
are found at the periods of 3.005, 1.508, 0.750, 0.600, 0.375 and 0.273 d, and they correspond to
the alias pattern expected for an NRPs with the period of 0.750 d (the expected values are 3.000,
1.500, 0.600, 0.375, and 0.273 d, for the nominal sampling frequency of 1 d). Additionally, this
source showed an NRP-like periodicity that preceded an increase in brightness, which could be
an indication of a link between the NRP and the growing of the decretion disc.
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Figure 4.15: I-band OGLE light curves of analysed sources. OGLE-II, III and IV are separated
by black dashed lines.
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Figure 4.16: WWZ transform of SXP101 light curve. Grey vertical lines indicate the observa-
tion timestamps. The series of horizontal dashed black lines shows the quasi-Nyquist frequency,
calculated as the median time difference between time stamps in every observing season. The
wavelet power value is capped at 19.5 (corresponding to 𝛼 = 0.05 for an F-distribution with
∞ and 2 degrees of freedom). Dashed magenta boxes indicate the most extreme pixels which

exceed the 𝛼 = 0.05 power level, for every detection.
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Figure 4.17: Lomb-Scargle periodogram of a section of SXP101 light curve between 2777-
3038 TJD, over the range of frequencies expected for a non-radial pulsation of the Be star. The

most prominent peaks are labelled with their corresponding periods.
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Figure 4.18: WWZ transform of SXP138 light curve. Grey vertical lines indicate the observa-
tion timestamps. The series of horizontal dashed black lines shows the quasi-Nyquist frequency,
calculated as the median time difference between time stamps in every observing season. The
wavelet power value is capped at 19.5 (corresponding to 𝛼 = 0.05 for an F-distribution with
∞ and 2 degrees of freedom). Dashed magenta boxes indicate the most extreme pixels which

exceed the 𝛼 = 0.05 power level, for every detection.
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Figure 4.19: Phase-folded profiles of signals detected in the light curve of SXP138.
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4.4.0.12 SXP138

The WWZ scalogram of SXP138 shows a detection with a period of 122.3 d (47.9 power, 5410.4-
6925.4 TJD) which corresponds to the time interval when the brightness of the source exceeded
𝐼 = 16 mag (see the light curve in Figure 4.15b). Edge et al. (2004) reported a similar period of
125 ± 1.5 d in MACHO object 207.16202.50, which is coincident with SXP138. Figure 4.19a
shows that the phase-folded light curve of this WWZ detection has a FRED-like profile. In the
same time interval I also find a 102.2 d periodicity (24.8 power, 5817.5-6464.9 TJD), which
is close to the weak X-ray period of 103.6 d reported by Galache et al. (2008). The phase-
folded profile shows some asymmetry, but it is still in the sinusoidal region on the PS-PA plane
(PS=0.435, PA=1.984). Coe and Kirk (2015) gave the X-ray orbital period of 125.0 d.

Schmidtke et al. (2013) report an NRP with a period of 0.933 d in the second, third, and eight
observing seasons of OGLE-III. In those seasons, the WWZ shows some power at the period of
∼14 d, see Figure 4.18. I also find a strong detection in the last season of OGLE-IV, with the
period of 14.0 d (255.8 power, 9628.2-9928.5 TJD). It has a sinusoidal profile (see Figure 4.19b),
and it could be and alias of the 0.933 d NRP, which is expected at the 13.925 d period for a
0.933 d signal with a sampling frequency of 1 d. The power at the ∼14 d period seems to
be present in the observing seasons, with the median observation frequency of ≥0.5d−1 and
15.92 < 𝐼 < 16.06 mag.

The WWZ also returns detections at the periods of 4.4 d (42.6 power, 7005.4-7025.5 TJD,
PS=0.396, PA=1.475), 6.6 d (22.4 power, 9875.2-9915.2 TJD, PS=0.593, PA=1.405), 148.7 d
(42.5 power, 5156.8-6952.1 TJD, PS=0.342, PA=1.486), as well as several other periods in the
range 180-361 d with noisy phase-folded profiles, which do not have well-defined shapes.

4.4.0.13 SXP152.1

The WWZ scalogram of SXP152.1 shows two strong detections of a ∼37 d periodicity with
a sinusoidal profile; in the first two seasons of OGLE-IV with a 36.4 d period (43.0 power,
5123.5-5830.9 TJD, PS=0.575, PA=1.260), and in the final season with a 37.8 d period (72.2
power, 9294.5-9928.5 TJD, PS=0.594, PA=0.907). The period was reported by Schmidtke et al.
(2013) at 36.28 d and interpreted as an alias of an NRP with a period of 1.026 d.

The WWZ also detects a sinusoidal 72.1 d periodicity (26.1 power, 2173.7-2654.2 TJD,
PS=0.620, PA(alt.)=0.915) in the first two seasons of OGLE-III, and a 190.7 d period (21.9
power, 3061.3-4115.7 TJD), which shows peak power in the fifth season, but seems to be present
throughout the OGLE-III data. The latter period has a noisy, fairly narrow, left-skewed profile
(PS=0.359, PA=0.395). Similar periods re-appear in the ninth and tenth seasons of OGLE-IV,
this time at 80.1 d (29.6 power, 8200.0-9281.2 TJD, PS=0.488, PA=0.506) and 188.9 d (31.3
power, 8253.4-9428.0 TJD, PS=0.565, PA=2.442), with the longer period showing an asymmet-
ric profile again (see Figure 4.20a).
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Figure 4.20: Phase-folded profiles of signals detected in the light curve of SXP152.1.

Other periods are also detected in the same time interval, including a 148.2 d period (23.5 power,
7592.7-8700.6 TJD) with a FRED-like profile (see Figure 4.20b), which also shows some power
in earlier seasons of OGLE-III and IV, possibly as a doublet of peaks with another period of
∼125 d. In the tenth seasons of OGLE-IV, the 148.2 d period is dominated by the 134.9 d period
(22.6 power, 8713.9-9154.4 TJD, PS: 0.397, PA=2.563), which also has a FRED-like profile,
similar to the one of the 148.2 d modulation. The appearance of the signals in the latter half
of the OGLE-IV data coincides with the rapid fading of the source, which becomes dimmer by
Δ𝐼 ∼ 0.6 mag (see Figure 4.15c). The steep gradient of the de-trending model caused some
significant changes to the shape of the light curve, which makes the interpretation of the results
more difficult. Other periods detected in the final seasons of OGLE-IV include 374.8 d (25.3
power, 7686.2-9928.5 TJD), 267.4 d (21.7 power, 7118.9-7946.4 TJD), 218.3 d (34.8 power,
7699.5-9468.1 TJD), however they have noisy profiles and are likely caused by the gaps in the
data.

4.4.0.14 SXP169.3

The WWZ scalogram of SXP169.3 shows detections of 68.4 d (32.9 power, 2287.1-3081.3 TJD,
PS=0.330, PA=2.589) and 228.5 d (24.2 power, 2086.9-3521.8 TJD) periods, where the former
has a FRED-like profile and corresponds to the orbital period, whilst the former has a noisy
profile and is likely caused by the window function of the data. The optical period of ∼68 d
was previously reported by Schmidtke et al. (2006); Bird et al. (2012); Schmidtke et al. (2013),
whilst Galache et al. (2008) reported an X-ray period of 68.54 ± 0.15 d.

Several sinusoidal oscillations with periods in the range of 33-55 d are detected throughout
OGLE-IV (see Figure 4.21 for examples showing the best definition of phase-folded profiles).
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Figure 4.21: Phase-folded profiles of signals detected in the light curve of SXP169.3.

A period with a more asymmetric, FRED-like profile is detected at 34.6 d (21.8 power, 7459.3-
7652.8 TJD, PS=0.441, PA(alt.)=2.136), and is a potential harmonic of the 68.4 d period.

Schmidtke et al. (2013) found an NRP with a period of 0.755 d in the OGLE-III data, and it
is likely to be the cause of the power at the ∼3 d period, which is present in the WWZ of both
OGLE-III and IV. This power only exceeds the detection threshold in two observing seasons, first
at the period of 3.3 d (20.0 power, 6952.1-6958.7 TJD) and then at 4.0 d (76.1 power, 9828.4-
9915.2 TJD). In the first season of OGLE-III, this power is also closer to the 4.0 d period, then
drifting to ∼3 d period until the very last season of OGLE-IV. There might be anti-correlation
between the period of this NRP alias and the brightness of the source, which reaches maxima in
the first, second, and last observing seasons (see the light curve in Figure 4.15d).

4.4.0.15 SXP264

The WWZ transform of the SXP264 light curve shows a strong detection of a FRED-like, 49.1 d
period (77.5 power, 1930.5-4361.0 TJD), which lasts through most of the OGLE-III phase,
however it fades in the last two seasons, where a sinusoidal oscillation is detected, first at a
91.0 d period (71.6 power, 4020.4-5315.8 TJD), and then at a 75.7 d period (65.4 power, 4227.4-
5369.2 TJD, PS=0.484, PA=1.300). Phase folded profiles of the 49.1 d and 91.0 d periods are
shown in Figure 4.22. No strong periods are detected in the OGLE-IV data of the source, likely
due to the sparse sampling (see the light curve in Figure 4.23a), however the WWZ shows some
power around the ∼50 d period, starting from 5800 TJD. The 49.1 d signal corresponds to the
orbital period of 49.2 d (Coe and Kirk, 2015).
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Figure 4.22: Phase-folded profiles of signals detected in the light curve of SXP264.

4.4.0.16 SXP293

The WWZ of SXP293 shows a strong detection of a 59.7 d period (419.6 power), which persists
throughout the light curve. Figure 4.24a shows the phase-folded light curve, which has a clear
FRED-like profile. A dip in the profile right before the maximum was reported by Schmidtke
et al. (2013), and it is also visible in the figure. This modulation is caused by the orbital period;
Kennea et al. (2018b) reported a 59.62 ± 0.95 d period in the X-ray data.

4.4.0.17 SXP304

Three signals are detected in the WWZ spectrogram of SXP304; they have periods of 341.3 d
(47.9 power, 627.9-7560.0 TJD), 171.4 d (47.7 power, 2749.6-5531.8 TJD) and 390.0 d (21.6
power, 3783.7-5411.7 TJD). I find no evidence of the 520 ± 12 d period reported by Schmidtke
et al. (2006). The 171.4 d and 390.0 d periods have sinusoidal profiles, whilst the 341.3 d period
has a narrow peak with an asymmetric profile, shown in Figure 4.24b. The 341.3 d period
persists throughout the light curve, but its power drops below the detection threshold during the
last four seasons of OGLE-IV. Kennea et al. (2018a) reported the detection of two X-ray outbursts
from this source, first one between 57736.97-57764.57 MJD, and the second one starting from
58407.54 MJD (670.5 d after the start of the first outburst), and peaking at 58442.34 MJD, with
no other X-ray detections outside those times. Based on these detections, they estimated the
candidate orbital period of ∼662 d, which is close to the double of the 341.3 d optical period.
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Figure 4.23: I-band OGLE light curves of analysed sources. OGLE-II, III and IV are separated
by black dashed lines.
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Figure 4.24: Phase-folded profiles of signals detected in the light curves of SXP293 and
SXP304.
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Figure 4.25: Phase-folded profiles of signals detected in the light curve of SXP327.

4.4.0.18 SXP323

The WWZ of SXP323 showed a 964.1 d period (28.9 power, 621.8-7079.8 TJD) with a noisy,
sinusoidal profile (PS=0.531, PA=1.499), which persists throughout the light curve, but its power
falls under the detection threshold in the last six seasons of OGLE-IV. However, there is a very
strong 2.4 d signal detected in every season where the sampling was good enough to test for this
period. The signal has a well-defined sinusoidal profile, and it is an alias of an NRP reported by
Schmidtke et al. (2013), with the period of the pulsation drifting from 0.7079 to 0.7086 d.
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Figure 4.26: Phase-folded profiles of signals detected in the light curve of SXP504.

4.4.0.19 SXP327

The WWZ transform of SXP327 shows a FRED-like periodicity with a double peak and the
period of 45.9 d (104.9 power, 2086.9-5130.1 TJD) (see Figure 4.25a). This behaviour was
previously reported by Coe et al. (2008), who also showed that it is caused by the 45.99 d orbital
period.

In the rising phase of the light curve (shown in Figure 4.23b), during the first four seasons of
OGLE-IV, the orbital modulation is dominated by detections of longer periods, in the range
between 67-156 d. They are noisy, some are roughly sinusoidal, but others show a narrow
central peak. These periodicities are likely caused by the fact that the large orbital oscillation
was slightly deformed during de-trending. Longer periodicities which persist throughout the
light curve have very noisy profiles and are likely caused by the sampling structure of the light
curve. The final season of OGLE-IV shows a multi-frequency cluster of detections, with the most
prominent period at 15.7 d (207.1 power), which has a sinusoidal profile, shown in Figure 4.25b.
Other peaks in that cluster correspond to periods of 11.6 d (74.4 power, PS=0.564, PA=0.646),
24.5 d (57.5 power, PS=0.332, PA=0.460), and 48.3 d (48.2 power, PS=0.767, PA=0.263), with
the last two corresponding to the orbital period and its harmonic.

4.4.0.20 SXP504

Three periods are detected in OGLE-II data of SXP504; a sinusoidal oscillation at 32.6 d
(55.7 power, 621.8-1008.8 TJD, PS=0.575, PA=1.545) (shown in Figure 4.26a), as well as two
asymmetric ones at 138.4 d (22.1 power, 621.8-1309.0 TJD, PS=0.308, PA=2.173) and 226.7 d
(23.8 power, 621.8-1722.6 TJD, PS=0.534, PA=3.194). The 138.4 d asymmetric period might
be a harmonic of the 271.7 d (47.7 power, 3684.1-8894.5 TJD) period, which shows some power
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Figure 4.27: Lomb-Scargle periodogram of a section of SXP565 light curve between
628.9−998.8 TJD, over the range of frequencies expected for a non-radial pulsation of the

Be star. The most prominent peaks are labelled with their corresponding periods.

throughout the entire light curve, but only exceeds the detection threshold starting from the fifth
season of OGLE-III. Light curve phase-folded on the 271.7 d period is shown in Figure 4.26b.
The 271.7 d period is most likely the orbital period; an X-ray period of 265.3± 2.9 d was reported
by Galache et al. (2008), while Edge et al. (2005) found an optical period of 268.6 ± 0.1 d and a
coinciding X-ray period.

4.4.0.21 SXP565

The WWZ transform of the SXP565 light curve shows the most prominent detection at the period
of 86.1 d (74.7 power, 6997.8-9928.5 TJD), however this seems to be a component of a multi-
frequency cluster of detection, found in the second half of the OGLE-IV data; the phase-folded
light curve for this detection is noisy and lacks the structure of a real periodicity. Sinusoidal
oscillations with periods of 80.1 d (74.2 power, 5055.1-6223.4 TJD, PS=0.594, PA(alt.)=1.039)
and 64.6 d (63.8 power, 5041.7-5896.3 TJD, PS=0.555, PA=0.806) are detected in the first four
seasons of OGLE-IV. The 80.1 d period seems to show a drift to a longer period of 91.0 d (54.6
power, 7418.4-9928.5 TJD, PS=0.423, PA=1.018) (see the WWZ in Figure A.25). A sinusoidal
oscillation with a period of 152.3 d (32.3 power, 1977.5-3419.5 TJD, PS=0.457, PA=1.217)
is detected in the first four seasons of OGLE-III, which corresponds to the previously reported
orbital period (Galache et al., 2008; Bird et al., 2012; Coe and Kirk, 2015). Multiple other periods
are also detected during limited time intervals, and they have sinusoidal profiles or undefined,
noisy profiles. A sinusoidal oscillation with the period of 4.9 d (22.4 power, 769.1-809.2 TJD,
PS=0.394, PA=1.037) is also detected in the first season of OGLE-II, with some power also
present in the final season of OGLE-IV. The Lomb-Scargle periodogram of that season is shown
in Figure 4.27, and its most prominent peak corresponds to the period of 0.831 d, which is the
likely cause of the 4.9 d period. Additionally, several peaks from the periodogram are also found
in Figure 25 of Schmidtke et al. (2013), which suggests that the 0.334 d oscillation is also present.
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Figure 4.28: Phase-folded profiles of signals detected in the light curves of SXP726 and
SXP893.

4.4.0.22 SXP701

The WWZ transform of the SXP701 data shows detections of a ∼2.2 d signal throughout OGLE-
II, III and IV phases of the light curve. The phase-folded data shows a sinusoidal profile. The
Lomb-Scargle periodogram of the data shows evidence of the 0.28 d and 0.64 d periods reported
by Bird et al. (2012) and Schmidtke et al. (2013). Both of these signals are expected to produce
aliases at ∼2.3 d period, therefore the periodicity found in the WWZ transform is likely an alias
of these NRPs. I do not find evidence of the 412 d binary orbital period modulation (Coe and
Kirk, 2015).

4.4.0.23 SXP726

The WWZ transform of the SXP726 data shows detections of a ∼3.3 d signal throughout OGLE-
II, III and IV phases of the light curve. Eger and Haberl (2008a) reported this period along
with a ∼2.35 d in OGLE-II data (but little power is found at this period in the WWZ transform).
However, later Schmidtke and Cowley (2008) showed that higher frequency aliases at 0.302 d
and 0.673 d periods have higher power. Therefore, the ∼3.3 d and ∼2.35 d periods are most
likely aliases of the 0.302 d and 0.673 d NRPs. A FRED-like modulation with a period of
112.0 d is found in the most recent season of OGLE-IV, the phase-folded light curve is shown
in Figure 4.28a. An orbital period of 112.0 d is shorter than expected for a pulsar with a spin
period of 726 s (the expected orbital period of 661.4 d is given by Equation (1.1)). However,
recently Haberl et al. (2022) reported that the source showed an average spin-down rate of 4.3
s/yr over 17 years of X-ray observation. Assuming that the spin-down had been ongoing before
the measurement of the 726 s period (Eger and Haberl, 2008a), the orbital period of 112.0 d
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would be viable. Furthermore, the source reaches its maximum brightness in the latest observing
season (see the light curve in Figure 4.23c), which could be an indication of the decretion disc
growth, so the sudden onset of the binary orbital modulation could be justified. However, the
latest season of OGLE-IV covers a time interval of only 127.7 d, showing only two maxima of
the modulation. This means that the detection of the 112.0 d signal is likely spurious, and more
data is required to confirm whether any periodicity has appeared in the light curve of SXP726.

4.4.0.24 SXP756

The light curve of SXP756 shows very prominent outbursts with a period of ∼395.4 d, caused
by the binary orbital modulation. The orbital origin is confirmed by X-ray observations showing
a period of 389.9 ± 7.0 d (Galache et al., 2008). Bird et al. (2012) reported an optical period of
393.6 ± 1.2 d, whilst Schmidtke et al. (2013) found 393.1 ± 0.4 d. The WWZ scalogram shows
a persistent detection of the 395.4 d period, together with a series of its harmonics, which are
most prominent in the OGLE-III phase. Other periods with noisy phase-folded profiles are also
detected in the WWZ, which are most likely caused by the sampling pattern of the light curve. A
period of 11.3 d is detected in OGLE-II, III and the first season of OGLE-IV. It has a sinusoidal
profile, and Schmidtke et al. (2013) interpret it as an alias of an NRP with a period of 0.917 d.

4.4.0.25 SXP893

The WWZ transform of SXP893 data shows detections of a 3.7 d period, which is present
throughout OGLE-II and the first three seasons of OGLE-III. This periodicity has a sinusoidal
profile, and it is interpreted as an alias of an NRP with a period of 0.788 d. The periodicity is
detected until ∼3000 TJD while the source is steadily brightening, and there is no evidence of the
period reappearing after that, however the source continued to brighten throughout OGLE-II and
III, reaching a maximum of ∼15.89 mag on ∼5000 TJD. The source fades back to ∼15.95 mag
in OGLE-IV (see the light curve in Figure 4.23d). While the initial brightening of the source
could be driven by the NRP, and the subsequent fading could be caused by the cessation of the
pulsation, it is difficult to conclude if such a causality actually exists.

The WWZ shows a detection of a 91.2 d period (21.0 power, 1153.6-1531.8 TJD) in the OGLE-II
phase, which was reported by Schmidtke et al. (2004), who suggested that the binary has an orbital
period of either ∼91.5 or ∼187. A stronger period of 179.4 d (24.3 power, 466.5-3006.7 TJD)
is detected in the WWZ of OGLE-II and the first four seasons of OGLE-III, and it is the better
candidate for the orbital period, given its FRED-like profile (shown in Figure 4.28b), while the
profile of the 91.2 d period is very noisy and rather sinusoidal. Schmidtke et al. (2013) also
found a weak ∼182 d period, but concluded that more data is needed to confirm it. The detection
of a 366.0 d period (43.2 power, 3139.0-6977.6 TJD) found in the WWZ of the second half of
the light curve is likely to be caused by the annual data trains.
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4.4.0.26 SXP1323

The WWZ of SXP1323 shows detections of previously reported optical periodicities (Schmidtke
et al., 2006; Bird et al., 2012); the 26.2 d period is present throughout the OGLE-II, III and IV
data, and the 7.9 d period is detected until the fourth season of OGLE-IV, but beyond that it fades
below the detection threshold. Both modulations have sinusoidal profiles, which is unexpected
for the 26.2 d period, since it is associated with the binary period; Kennea et al. (2018b) reported
a 25.80 ± 0.43 d period in the X-ray data. This could be caused by low eccentricity of the orbit.
The orbital period of this system is also very short, given the spin period of ∼1323 s, especially
given that it has been shown to be spinning up (Carpano et al., 2017). A sinusoidal oscillation
with the period of 2.4 d (56.8 power, 9861.8-9895.2 TJD) is also detected in the final season of
OGLE-IV, with some power also present in earlier seasons. Schmidtke et al. (2013) interpreted
the 7.9 d and 2.4 d periods as aliases of NRPs with periods of 0.886 and 0.412 d.

4.4.0.27 Remaining sources

WWZ transforms of SXP0.92 and SXP34.08 produce no detections. The OGLE-XROM cata-
logue includes other sources, like: SXP11.5, SXP140, SXP15.3, SXP172, SXP18.3, SXP2.37,
SXP202, SXP280.4, SXP3.34, SXP342, SXP348, SXP455A, SXP455B, SXP6.85, SXP6.88,
SXP645, SXP65.8, SXP7.78, SXP7.92, SXP8.80, SXP82.4, SXP967. However, de-trending of
their light curves did not give a result that would be good enough to continue with the WWZ
transform.

4.5 Discussion and summary

In this chapter, I introduced a method of detection and characterisation of periodic signals,
and demonstrated how it can be applied to the unevenly sampled light curves of highly variable
sources. After tuning the parameters of the method using synthetic data with a realistic observing
pattern, I applied it to a sample of 28 Be X-ray binaries, thus detecting and characterising several
periodic signals for the first time. The resulting insights show that this wavelet-based periodicity
detection pipeline is a useful tool that can facilitate the automation of the time-frequency analysis
of photometric light curves, which show variability in the time scales of days, months, and years.
In this section, I discuss these results and limitations of the method, and outline directions for
further work that could refine it.

4.5.1 Periodicities in the OGLE-XROM sources

Application of the automatic detection pipeline to the OGLE-XROM data resulted in the discov-
ery of six new candidate periodicities, which are listed in Table 4.1 alongside their respective
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Figure 4.29: Corbet diagram of BeXRBs and candidates in the Galaxy and in the Small and
Large Magellanic Clouds. Blue dots indicate sources from the catalogue by Raguzova and
Popov (2005) (same as in Figure 1.3b). Orange stars indicate the sources whose FRED-like
periodicity was identified using the method discussed in this chapter. The red, dashed line

indicates the linear fit to the blue data points, as defined in Equation (1.1)).

sources and classifications. This analysis was supplemented with the manual fitting of Lomb-
Scargle periodograms, in the few cases where sinusoidal modulations strongly suggested the
presence of non-radial pulsations, which allowed me to identify the likely frequency of the pul-
sation resulting in the detected alias.

An oscillation with a 3.0 d period that was found in the first two seasons of OGLE-IV observations
of SXP9.13 is likely to be an alias of an NRP with a 0.753 d period. A sinusoidal, 3.0 d periodicity
was found in most of the OGLE-III data of SXP101, fading in the first season of OGLE-IV. The
periodogram of these data showed that the 3.0 d signal could be an alias of an NRP with a 0.750 d
period. Finally, the 4.9 d oscillation detected in the first season of SXP565 data is likely to be an
alias of an NRP with a period of 0.831 d.

In three cases, the new candidate periodicities show FRED-like profile of the phase-folded light
curve. These three periodicities are interpreted as candidate orbital periods of their corresponding
sources and added to the Corbet diagram in Figure 4.29. The candidate orbital period of SXP304
is in good agreement with the value expected for a BeXRB with the spin period of 304 s, as
given by Equation (1.1)). The candidate periods of SXP22.07 and SXP726 do not strictly agree
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with expectation, but the periods place the sources within the scatter of the point cloud of the
BeXRB sample in the spin-orbit plane, which means that they are not significant outliers.

SXP22.07 shows a signal with a 146.4 d period in the first two seasons of OGLE-III, when the
source is at its brightest. However, 146.4 days would be a relatively long orbital period for a
pulsar with a spin of 22.07 s (as the expected value is 29.2 d, according to Equation (1.1)), and I
have not found evidence of spin-up of the neutron star in the literature. The WWZ transform of
SXP726 shows a detection of a 112.0 d period in the last observing season of OGLE-IV, when the
source reached its maximum brightness. As discussed in Section 4.4.0.23, the candidate orbital
period of 112.0 d is shorter than expected for a BeXRB with a spin period of 726 seconds, but
there is evidence for the spin-down of this neutron star. However, only one cycle of that candidate
orbital period could be observed, so more data is required to verify whether the periodicity is
real.

The WWZ scalogram of SXP304 shows a strong detection of a 341.3 d period with a FRED-
like profile. Haberl et al. (2022) analysed eROSITA observations of SXP304 from November
2019 and found the spin period to be 302.29 ± 0.27 s, which is consistent with the value of
302.6 ± 0.4 s, measurements in November and December 2005 (Eger and Haberl, 2008b). This
indicates that the spin period of the source over those 14 years showed little change. Yang
et al. (2017) estimated the average spin period derivative to be 2.9 × 10−4 ± 8.7 × 10−4 s day−1.
Assuming a constant spin period, the expected orbital period of a 302.29 s pulsar (as derived
from Equation (1.1)) would be 302.5 d, which is another indication that the period of 341.3 d is
a probable candidate for the binary orbital period. Alternatively, it could be a harmonic of the
∼662 d period, which results from the observations of X-ray outbursts reported by Kennea et al.
(2018a).

The time-frequency analysis and classification of periodicities was also an opportunity to probe
the possible causality between the presence of NRPs and formation of the decretion disc. No
conclusive evidence was found in the sample of analysed light curves, but some apparent
correlations are note-worthy. For example, sinusoidal periods of ∼15 d and ∼20 d are found
in the data of SXP59.0 in three separate time intervals, and in every one of them the source
is fading. In the case of SXP101, the ∼3 d alias of an NRP is present throughout most of the
OGLE-III phase, when the brightness of the source is roughly constant. The source starts to
brighten in the first season of OGLE-IV, and at the same time the alias shows a drift to lower
frequency, ceasing after that. The scalogram of SXP169.3 shows a sinusoidal period of ∼3 d
throughout most of the light curve, but it was detected closer to the ∼4 d period in the first and
last observing seasons, around the times when the source reached the local brightness maxima.
An NRP alias with a period of ∼11.3 d is detected in the data of SXP756 until the first season
of OGLE-IV, and that is when the smoothly increasing trend of the source brightness becomes
more chaotic, with an overall decreasing trend. SXP893 shows an alias of an NRP at the period
of ∼3.7 d that lasts throughout OGLE-II and the first three seasons of OGLE-III data, while the
source increases in brightness at a constant rate until the end of OGLE-III, when it starts to fade.
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While these behaviours could be interpreted as potential correlation (or anti-correlation) between
the presence of NRPs and changes in the size of the decretion disc, some sources showing
persistent NRPs do not show consistent changes in brightness. For example, the scalogram of
SXP701 shows a persistent detection of an NRP alias at a ∼2.3 d period, while the light curve
shows a roughly constant brightness, following an interval of slow fading by ∼0.025 mag over
the first eight seasons. In SXP726, an NRP alias with a ∼3.3 d period is detected throughout the
light curve, while the source stays at a constant brightness level through OGLE-II and III, only
starting to brighten in OGLE-IV.

4.5.2 Wavelet-based detection pipeline

The first transformation applied to the data as part of the pipeline is the de-trending step, where
the trend component of the Prophet model is removed from the light curve. The Prophet
model is very flexible, and gives good fits to light curves showing a large variety of behaviours.
However, this flexibility means that it can easily over-fit or under-fit the data if not parameterised
correctly. I find that the settings described in Section 4.2 are adequate for the majority of OGLE-
XROM light curves, however a considerable number of sources (23 out of 51) could not be
used in the remainder of the pipeline because the quality of their trend fit was not good enough.
For example, light curves of some sources include large and rapid outbursts, which skew the
trend component of the Prophet model and cause the surrounding observations to be affected
disproportionately by de-trending. Other light curves show gradients which are changing too
quickly for the model. In future work, a more robust de-trending method must be implemented.
This could potentially be achieved by multi-steps de-trending where outliers are removed prior
to the fitting of the Prophet model, for example by a sigma-clipping moving window.

The next step of the pipeline is the WWZ transform of the de-trended light curve. As explained
in Section 4.3.2, estimating the confidence of WWZ detections is not always straightforward.
The use of the F-distribution critical value to set the minimum power threshold is a way to avoid
costly Monte Carlo simulations, which are often used to find the false positive rate. However,
in case of the WWZ transform, the main challenge is caused by spurious, peaks with very high
power that appear in the scalograms of poorly sampled light curves. The use of a relatively
small wavelet decay constant and a high threshold for the effective number of data points help
to mitigate the issue, but the small decay constant also causes the temporal resolution of the
method to deteriorate. One potential way of addressing this could involve a modification to
the wavelet function that would make the decay constant frequency-dependent, so that higher
frequency wavelets would decay more slowly and the lower frequency ones would decay faster.
This would result in a higher sensitivity to high frequency signals and a better time resolution of
the low frequency signals. However, this would result in the method becoming more similar to a
dynamic Lomb-Scargle spectrogram, and would result in the temporal resolution of the method
at the high-frequency rate to deteriorate. In this context, the optimal rate of wavelet decay is



132 Chapter 4. Searching for periodicities in the optical photometry of Be X-ray binaries

highly dependent on the sampling pattern of the data and the range of signal frequencies that we
are interested in probing, so the decay would need to be tuned with these considerations in mind.

Once the scalogram is calculated and a detection threshold is set, the regions of the scalogram
where signals are detected are identified through clustering. The currently implemented algo-
rithm is greedy, and merges all the adjacent pixels with high power into a single cluster. This
works well for most periodicities, but it becomes an issue when the scalogram shows a complex
pattern of detections, including drifts in frequency. A different method of identifying detection
clusters would be beneficial in such cases (see the scalogram of SXP565 is Figure A.25 for an
example of a complex pattern). For example, fitting of a Gaussian mixture model could allow
for the clustering of any arbitrary detection pattern, including drifts. If a Gaussian component
of a cluster had the covariance of time and frequency dimensions close to zero, then this would
indicate a stable frequency, resulting in the phase-folded analysis being triggered. However, a
significant correlation or anti-correlation would result in the pipeline flagging the detection as a
potentially drifting period, which would need to be analysed separately.

Following the identification of detection clusters and dominant frequencies within them, the
next step of the pipeline involves the phase-folding of the light curve. Another limitation of the
pipeline is the fact that a significant number of detections with periods >100 d have noisy profiles
which resemble neither sinusoidal nor FRED-like behaviour, and this only becomes transparent
during the phase-folding step of the pipeline. These detections are caused by the window function
of the data, and ideally should be filtered out automatically. A possible criterion for this filter
could be based on testing whether the phase-folded profile varies smoothly. For example, if the
Savitzky-Golay fit to the folded profile does not raise and fall monotonically from the maximum,
the detection should be flagged as anomalous or unreliable. This issue can also be observed for
some high frequency periods, which are sampled sparsely and show empty bins.

The phase-folded light curve profiles are characterised based on the phase span and phase
asymmetry metrics (Bird et al., 2012). These values are a useful way to quantify the shape
of the detected modulations, however in case of several profiles presented in Section 4.4, they
did not capture the shape accurately, often because the number of phase bins in the folded
light curve was not optimal or because of anomalous values in singular phase bins skewing the
result. The implementation of the alternative phase asymmetry metric helped to mitigate these
issues in several cases. A way to combine this alternative metric with the one proposed by Bird
et al. (2012) should be found in order to refine the classification of periodicities based on their
position in the PS-PA plane. Alternatively, profiles could be classified based on their position in
a three-dimensional space defined by all three metrics.

A possible extension of the pipeline could involve automation of the search for non-radial
pulsation periods. Fitting of a Lomb-Scargle periodogram over the high frequency range would
be triggered when a sinusoidal profile was detected, in order to test if high power aliases of that
period are present in the data. Another possible extension to the periodicity detection pipeline
could involve the calculation of gradients in the photometry of the sources exhibiting NRPs. A
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quantitative analysis of a larger sample of cases could then be performed in order to address the
question of causality between NRPs and the decretion disc formation.
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Chapter 5

Conclusions

In this thesis, I introduce new methodologies of variability analysis for light curve data, and
discuss their application to several X-ray binary systems. I addressed cases of variability in
the time scales ranging from seconds to decades, in optical and X-ray energy bands. These
methodologies are a contribution to the analytic toolboxes for the cases of both evenly and
unevenly sampled data.

5.1 Fast X-ray variability

Chapters 2 and 3 introduce a data-driven method of light curve feature extraction and aggregation
using an LSTM-VAE neural network and a GMM, show its application to data containing a wide
variety of X-ray variability, and validate the utility of resulting features by conducting a set
of supervised classification experiments. Presented results show that the proposed method is
capable of producing features which represent light curve data in a meaningful way.

During the classification of GRS 1915+105 light curves in chapter 2, I tested two variants of data
preprocessing, with 1 s and 4 s time bins, showing that the light curves binned to 1 s produced
a significantly better classification performance, with the mean of weighted F1 and accuracy
performance scores of 0.878 ± 0.027 and, 0.894 ± 0.027 respectively. I also showed that the
resulting light curve fingerprint representation can be used for the unsupervised exploration of
the latent data manifold, and quantification of similarity between light curves. A comparison of
fingerprints of 𝜅 and 𝜔 observations showed that they can be very similar, and possibly lie on
a continuum, showing a smooth transition between the two, which is not captured well by the
Belloni et al. system of variability classification. In chapter 3, I explored the application of the
fingerprint representation to the light curves of IGR J17091−3624, and found that the extension
of the methodology to other sources will require modifications, particularly in the handling of
differences in intensity between the sources. However, I found that similar light curves from the
two sources were not assigned to the same class in a series of classification experiments, despite
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an overlap in the regions of the latent space that they occupied. Further work will be required in
order to make the method fully generalisable to light curves of other sources.

In regard to potential future work on the data set of GRS 1915+105 X-ray light curves, a
supervised approach could be taken to study the link between the observed light curve patterns
and underlying physics. Huppenkothen et al. (2017) used a classification scheme of GRS
1915+105 states into stochastic and chaotic processes (Harikrishnan et al., 2011) in order to
leverage their machine learning classification algorithm in the study of the long term evolution of
accretion properties of the source, and similar studies could be complemented using the method
of feature extraction presented here. Ricketts et al. (2023) have made initial steps in this direction;
they utilised a variant of the autoencoder-based feature extraction pipeline to analyse the same
data set of GRS 1915+105 observations. They found a potential link between the variability
classes 𝛿 and 𝜙, as well as between 𝜈 and 𝛼, and recommended further investigation into the
potential physical origin of those similarities.

Further work on this pipeline will involve the use of data augmentation to improve the ability
of the network to generalise and interpolate between variability shapes, and hence increase the
overlap of similar shapes from different sources in the latent space. The major differences
between GRS 1915+105 and IGR J17091−3624 data lie in the frequency of signals, signal-to-
noise ratio, and base intensity level. Additional light curves could be synthesised based on the
GRS 1915+105 data, where the frequency of signals, noise levels and other parameters were
modulated, and the LSTM-VAE could be trained on this augmented data set in order to expose
it to a wide range of possible light curve shapes, and make the LSTM-VAE latent space more
robust.

5.2 Long-term photometric variability

Chapter 4 introduces the wavelet-based pipeline of periodicity detection and characterisation,
which can be a useful tool in the analysis of variability of Be X-ray binaries in the time scales
of days, months, and years. After tuning the parameters of the method on synthetic data with a
realistic observing pattern, I applied it to a sample of OGLE-XROM sources, hence detecting
and characterising several new periodicities for the first time. These periodicities included the
FRED-like modulations in three sources: SXP22.07, SXP304 and SXP726. In spite of the
clearly asymmetric profile of the last detection, more photometric data is required in order to
confirm that the signal is real. I also detected three new sinusoidal periodicities in the light
curves of SXP9.13, SXP101 and SXP565. These periodicities are an indication of non-radial
pulsations, and Lomb-Scargle analysis of these detections revealed the likely period of NRPs in
those sources.

The method has potential to be applied to larger samples of Be X-ray binaries, which could help
to quantify the correlation between non-radial pulsations and the swelling of the Be decretion
disc, in order to shed some light on the potential causality between these phenomena.
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Appendix A

Light curves and WWZ scalograms of
OGLE-XROM photometry

A.1 Light curves
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Figure A.1: I-band OGLE light curve of analysed sources. OGLE-II, III and IV are separated
by black dashed lines.
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Figure A.2: I-band OGLE light curve of analysed sources. OGLE-II, III and IV are separated
by black dashed lines.
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Figure A.3: I-band OGLE light curve of analysed sources. OGLE-II, III and IV are separated
by black dashed lines.
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Figure A.4: I-band OGLE light curve of analysed sources. OGLE-II, III and IV are separated
by black dashed lines.
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Figure A.5: I-band OGLE light curve of analysed sources. OGLE-II, III and IV are separated
by black dashed lines.

A.2 WWZ transform of synthetic data
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Figure A.6: An alternative version of the WWZ transform from Figure 4.1b, with decay
constant 𝑐 = 1/(8𝜋2) and not 𝑁eff filtering. It is a WWZ transform of a synthetic light curve
with the typical OGLE sampling, and transient signals of 25, 30, 2.5 and 400 days injected
into its separate subsections (see Figure 4.1a). Red dash-dotted boxes indicate signals as above.
Grey vertical lines indicate the observation timestamps. The series of horizontal dashed black
lines shows the quasi-Nyquist frequency, calculated as the median time difference between time
stamps in every observing season. The wavelet power value is capped at 19.5 (corresponding

to 𝛼 = 0.05 for an F-distribution with ∞ and 2 degrees of freedom).

A.3 WWZ transforms of OGLE-XROM light curves
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Figure A.8: WWZ transform of SXP0.92 light curve.
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Figure A.9: WWZ transform of SXP2.763 light curve.
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Figure A.10: WWZ transform of SXP25.5 light curve.
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Figure A.11: WWZ transform of SXP31.0 light curve.
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Figure A.12: WWZ transform of SXP34.08 light curve.



148 Chapter A. Light curves and WWZ scalograms of OGLE-XROM photometry

Figure A.13: WWZ transform of SXP46.6 light curve.
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Figure A.14: WWZ transform of SXP59.0 light curve.



150 Chapter A. Light curves and WWZ scalograms of OGLE-XROM photometry

Figure A.15: WWZ transform of SXP74.7 light curve.
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Figure A.16: WWZ transform of SXP91.1 light curve.
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Figure A.17: WWZ transform of SXP152.1 light curve.
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Figure A.18: WWZ transform of SXP169.3 light curve.
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Figure A.19: WWZ transform of SXP264 light curve.
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Figure A.20: WWZ transform of SXP293 light curve.
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Figure A.21: WWZ transform of SXP304 light curve.
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Figure A.22: WWZ transform of SXP323 light curve.
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Figure A.23: WWZ transform of SXP327 light curve.
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Figure A.24: WWZ transform of SXP504 light curve.
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Figure A.25: WWZ transform of SXP565 light curve.
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Figure A.26: WWZ transform of SXP701 light curve.
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Figure A.27: WWZ transform of SXP726 light curve.
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Figure A.28: WWZ transform of SXP756 light curve.
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Figure A.29: WWZ transform of SXP893 light curve.
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Figure A.30: WWZ transform of SXP1323 light curve.
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