
The Bs → µ+µ−γ decay rate at large q2 from lattice QCD

R.Frezzotti and N.Tantalo
Dipartimento di Fisica and INFN, Università di Roma “Tor Vergata”,
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We determine, by means of lattice QCD calculations, the local form factors describing the
Bs → µ+µ−γ decay. For this analysis we make use of the gauge configurations produced by the
ETM Collaboration with Nf = 2 + 1 + 1 flavour of Wilson-Clover twisted-mass fermions at maximal
twist. To obtain the Bs meson form-factors, we perform simulations for several heavy-strange meson
masses mHs in the range mHs ∈ [mDs ,2mDs], and extrapolate to the physical Bs meson point
mBs ≃ 5.367 GeV making use of the HQET scaling laws. We cover the region of large di-muon

invariant masses
√
q2 > 4.16GeV, and use our results to determine the branching fraction for

Bs → µ+µ−γ, which has been recently measured by LHCb in the region
√
q2 > 4.9GeV. The largest

contribution to the uncertainty in the partial branching fractions at values of
√
q2 < 4.8GeV is now

due to resonance and other long-distance effects, including those from ”charming penguins”, which
we estimate by summing over the contributions from the JP = 1− charmonium resonances.

I. INTRODUCTION

The flavour-changing-neutral current (FCNC) transition Bs → µ+µ−γ, being strongly suppressed in the Standard
Model (SM), represents an ideal channel to look for signals of New Physics (NP). Although there is an additional factor
of αem in the amplitude for this process compared to that for the widely-studied Bs → µ+µ− decay, the presence of the
final state energetic photon removes the helicity suppression making the rates for the two processes approximately
comparable. The LHCb Collaboration has recently searched for signals of this process [1, 2] but found no significant
events resulting in an upper limit for the branching ratio of B(Bs → µ+µ−γ) < 2.0 × 10−9 for photons γ emitted by the

quarks1 (the so-called initial-state radiation contribution, or ISR) and for di-muon inviariant masses
√
q2 > 4.9GeV.

Future measurements will be able to reduce the experimental uncertainties and cover a larger portion of the phase
space reaching lower values of q2. On the other hand, a first-principles theoretical prediction of the Bs → µ+µ−γ decay
rate is currently missing. While the leading hadronic effects in the Bs → ℓ+ℓ− (ℓ = e, µ, τ) decay amplitude depend
only on the Bs-meson decay constant fBs , which is known to sub-percent precision from lattice computations, the
determination of the amplitude for the Bs → µ+µ−γ decay is much more complex. In this case the non-perturbative
hadronic effects depend not only on local form factors, but also on resonance contributions. Existing estimates of
the rate are based on light-cone sum rules (LCSR) [3], on model/effective-theory calculations, such as the relativistic
dispersion approach based on the constituent-quark picture [4] and, more recently, on the use of existing lattice QCD
results for the radiative leptonic form factors of the Ds meson to estimate some of the Bs → µ+µ−γ transition form
factors assuming vector-meson dominance (VMD) [5].

1 The final-state radiation (FSR) contribution, in which the photon is emitted from a final-state muon, dominates at small photon energies
and has been subtracted in Ref. [1]. The interference between FSR and ISR is instead found to be negligible.
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The aim of this paper is to provide a first-principles determination, using lattice QCD, of the local form factors
FV , FA, FTV , FTA and F̄T , which represent the only non-perturbative QCD input in the determination of the B̄s →
µ+µ−γ transition matrix elements 2 ⟨γ(ε)µ+µ−∣O7,9,10∣B̄s⟩, where ε is the photon’s polarization vector, and the Oi

are the standard operators appearing in the effective weak Hamiltonian Hb→s
eff describing the FCNC b→ s transition

and are defined in Eq. (3) below. We explore the region of large di-muon invariant masses
√
q2 > 4.16 GeV. In this

region, the impact of the contributions from the operators O1−6,8 (which are neglected at present) stemming from the

four-quark operators and from the chromomagnetic penguin operator in Hb→s
eff is expected to be modest [6], and the

rate can be reliably computed from the knowledge of the local form factors only. As an estimate of the systematic
error induced by this approximation, we employ a phenomenological description of the charming-penguin contribution,
illustrated in Figure 4 below, which is expected to be among the largest of the contributions we have neglected because
of the presence of broad charmonium resonances which are near or within the region of q2 we consider. Whilst we
find that the differential branching fractions themselves are dominated by the form factors (in particular by FV ), the

dominant uncertainty for
√
q2 < 4.8GeV is that due to charming penguin contributions (see Figure 22) and therefore

in order to improve the precision and to be able to reach lower values of q2 the development of a rigorous treatment of
the contributions from O1−6,8 will be necessary.

For this calculation we employ the same set of gauge configurations which have recently been used in our work
on the radiative leptonic form factors of the Ds meson [7]. The configurations have been generated by the Extended
Twisted Mass Collaboration (ETMC) with Nf = 2 + 1 + 1 flavors of Wilson-clover twisted-mass fermions at maximal
twist, and sea-quark masses tuned very close to their physical values for all quark flavours. The ensembles correspond
to four values of the lattice spacing a in the range [0.056,0.09] fm.

Our strategy for obtaining results for the physical B̄s meson, is to perform simulations at a series of unphysical
(lighter) heavy-strange pseudoscalar mesons H̄s, consisting of a heavy quark (h) and a strange anti-quark (s̄), with
mHs ∈ [mDs ,2mDs]. We then use heavy quark effective theory (HQET) relations to guide the extrapolation of the
results to the physical B̄s meson. For each heavy-quark mass we evaluate the form factors at four different values of
the energy of the photon Eγ (as measured in the rest frame of the decaying meson), which we keep fixed in units of the
heavy-strange meson mass mHs . The values are given by xγ ≡ 2Eγ/mHs = 0.1, 0.2, 0.3 and 0.4, and for mHs =mBs this
corresponds to q2 > (4.16GeV)2. Our main result is the calculation of BSD(xcutγ ), which is the ISR contribution (to

which we refer to in the paper as the structure-dependent contribution) to the branching fraction for q2 >m2
Bs
(1−xcutγ ),

and is given in Table VI. Our results at xcutγ = 0.166 (i.e. q2 > (4.9 GeV)2) is

BSD(xcutγ = 0.166) = 6.9(9) × 10−11 , (1)

which is well within the current upper-bound set by the LHCb, B(xcutγ = 0.166) < 2.0 × 10−9. Anticipating that future

experiments will be able to access values of q2 below (4.9GeV)2, we present in TableVI the partial branching fractions

corresponding to values of the lower cut-off
√
q2cut =mBs

√
1 − xcutγ from 4.1GeV to 5.2GeV in steps of 0.1GeV. We

find that the partial branching fractions in the q2-region we explored is dominated by the contribution of the vector
form factor FV ; the combined contribution of all other local form factors FA, FTV , FTA, F̄T is of the order of O(10%).
The plan for the remainder of this paper is as follows. In Section II we briefly recall the definition of the local

form factors in terms of matrix elements of the operators in the effective weak Hamiltonian. In Section III we explain
our strategy for the determination of the local form factors FV , FA, FTV and FTA, and present the results of the
continuum extrapolation for each value of the simulated heavy-strange meson mass. We also discuss the heavy-quark
scaling relations, which are then used to extrapolate the results to the mass of the physical Bs meson. In Section IV we
present our strategy for evaluating the local form factor F̄T , whose lattice determination is complicated by the problem
of the analytic continuation to Euclidean space-time of the relevant Minkowski correlation functions. We tackle this
problem using the spectral reconstruction technique developed in Ref. [8]. In SectionV we provide our determination
of the differential cross-section for Bs → µ+µ−γ as well as the total differential rate for different q2 intervals. We then
compare our results with existing estimates as well as with the LHCb measurement [1, 2] corresponding to the interval
q2 > (4.9 GeV)2. Finally, in SectionVI we present our conclusions and outlook for future improvements.

2 The text and diagrams here and below correspond to the decay of the B̄s meson, which contains a valence b-quark.
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II. THE EFFECTIVE WEAK HAMILTONIAN AND LOCAL FORM FACTORS

The low-energy effective weak Hamiltonian describing the b→ s transition, neglecting doubly Cabibbo-suppressed
contributions, is given by [9]

Hb→s
eff = 2

√
2GFVtbV

∗
ts

⎡⎢⎢⎢⎣
∑
i=1,2

Ci(µ)Oc
i +

6

∑
i=3
Ci(µ)Oi +

αem

4π

10

∑
i=7
Ci(µ)Oi

⎤⎥⎥⎥⎦
, (2)

where GF is the Fermi constant, Ci are the Wilson coefficients and Oi are local operators renormalized at the scale µ.
The latter are given by (PL(R) = (1 ∓ γ5)/2)

Oc
1 = (s̄iγµPLcj) (c̄jγµPLbi) , Oc

2 = (s̄γµPLc) (c̄γµPLb) , (3)

O7 = −
mb

e
s̄σµνFµνPRb , O8 = −

gsmb

4παem
s̄σµνGµνPRb , (4)

O9 = (s̄γµPLb) (µ̄γµµ) , O10 = (s̄γµPLb) (µ̄γµγ5µ) (5)

while the operators O3−6 are the QCD penguins. In the previous equations i, j are color indices, while Fµν and Gµν

are the electromagnetic and gluonic field strength tensor, respectively. In the following, for the CKM matrix elements
we use the PDG values ∣Vtb∣ = 1.014(29) and ∣Vts∣ = 4.15(9) × 10−2 [10]. Our conventions for the gamma matrices are

γ5 = iγ0γ1γ2γ3 , σµν = i
2
[γµ, γν] , (6)

while for the Levi-Civita tensor we adopt the convention ε0123 = −1. The transition amplitude for the decay of the B̄s

meson is given by

A[B̄s → µ+µ−γ] = ⟨γ(k, ε)µ+(p1)µ−(p2)∣ −Hb→s
eff ∣B̄s(p)⟩QCD+QED , (7)

where k = (Eγ = ∣k∣,k) and p = (EBs ,p) are the momenta of the photon and B̄s meson respectively, ε is the photon’s
polarization vector, and p1 and p2 the momenta of the µ+ and µ− respectively. The di-muon four-momentum is then

q = p1 + p2 = p− k. The amplitude A is then expanded to leading non-vanishing order (O(α3/2
em )) in the electromagnetic

coupling αem, and can be expressed as [9]

A[B̄s → µ+µ−γ] = −e αem√
2π
VtbV

∗
tsε
∗
µ [

9

∑
i=1
CiH

µν
i LV ν +C10 (Hµν

10 LAν −
i

2
fBsL

µν
A pν)] (8)

where we have defined

Lν
V = ū(p2)γνv(p1) , Lν

A = ū(p2)γνγ5v(p1) . (9)

The last term in Eq. (8), which only depends on the leptonic tensor Lµν
A [9] and on the decay constant fBs of the

Bs meson, corresponds to the final-state radiation (FSR) contribution (to which we refer in the following as to the
point-like contribution). The non-perturbative contribution to the structure-dependent part of the amplitude is instead
encoded in the hadronic tensors Hµν

i , which can be grouped into three different categories: the contribution from the
semileptonic operators O9−10, the contribution from the photon penguin operator O7, and finally the contributions
from the four-fermion operators O1−6 and from the chromomagnetic penguin operator O8.

The contributions from the semileptonic operators are depicted graphically in Figure 1. For these contributions the
real photon γ is emitted directly from one of the two quarks. The corresponding tensors Hµν

9−10 are given by

Hµν
9 (p, k) =H

µν
10 (p, k) = i∫ d4y eiky T̂⟨0∣ [s̄γνPLb] (0)Jµ

em(y)∣B̄s(p)⟩

= −i [gµν(k ⋅ q) − qµkν] FA

2mBs

+ εµνρσkρqσ
FV

2mBs

, (10)

where Jµ
em is the e.m. current, and T̂ represents “time-ordered”. The two tensors are parameterized by vector (FV )

and axial (FA) form factors, which are scalar functions of the single invariant of the process, namely the di-muon
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FIG. 1: Graphical representation of the contribution to the B̄s → µ+µ−γ decay amplitude from the semileptonic operators O9

and O10.

FIG. 2: Graphical representation of the contribution to the B̄s → µ+µ−γ decay amplitude from the photon penguin operator O7

in which the final-state photon is emitted directly from one of the valence quarks.

inviarant mass q2 = (p − k)2. In the following, as in our previous papers, we present the form factors as functions of
the dimensionless variable

xγ =
2p ⋅ k
m2

Bs

= 1 − q2

m2
Bs

, 0 ≤ xγ ≤ 1 −
4m2

µ

m2
Bs

, (11)

which in the decaying meson rest frame reduces to xγ = 2Eγ/mBs , where Eγ is the energy of the emitted photon.
The contribution from the photon penguin operator O7 is illustrated in Figures 2 and 3. In this case there are two

types of contribution: those in which the final-state real photon is emitted by the valence quarks (Figure 2), and those
in which the real photon is emitted by the penguin vertex (Figure 3). We indicate by Hµν

7A and Hµν
7B the hadronic

tensor corresponding to the first and second contribution respectively, with Hµν
7 =H

µν
7A +H

µν
7B. The hadronic tensor

Hµν
7A is given by

Hµν
7A(p, k) = i

2mb

q2
∫ d4y eiky T̂⟨0∣ [−is̄σνρqρPRb] (0)Jµ

em(y)∣B̄s(p)⟩

= −i [gµν(k ⋅ q) − qµkν] FTAmb

q2
+ εµνρσkρqσ

FTVmb

q2
(12)

where the two tensor form factors FTV and FTA are again scalar functions of xγ . Exploiting the relation γ5σµν =
−iεµνρσσρσ/2 one can show that the two tensor form factors obey the kinematical constraint FTV (1) = FTA(1) (see
also Ref. [4]). The hadronic tensor Hµν

7B, corresponding to the emission of the real photon from the FCNC vertex is
instead given by

Hµν
7B(p, k) = i

2mb

q2
∫ d4y eiqy T̂⟨0∣ [−is̄σµρkρPRb] (0)Jν

em(y)∣B̄s(p)⟩

= −i [gµν(k ⋅ q) − qµkν] F̄TAmb

q2
+ εµνρσkρqσ

F̄TVmb

q2
(13)

In this case, as discussed in Ref. [4], the two form factors obey F̄TV (xγ) = F̄TA(xγ) ≡ F̄T (xγ).3 Moreover at xγ = 1, i.e.
at q2 = k2 = 0 one has

FTV (1) = FTA(1) = F̄T (1) . (14)

3 Again this can be shown making use of the relation γ5σµν = −iεµνρσσρσ/2.
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FIG. 3: Graphical representation of the contribution to the B̄s → µ+µ−γ amplitude from the photon penguin operator O7 in
which the final-state photon is emitted from the penguin operator.

FIG. 4: Graphical representation of the contribution to the B̄s → µ+µ−γ amplitude from the four-quarks operators Oc
1 and Oc

2

with the virtual photon γ∗ emitted by the charm loop (the corresponding diagram with the real photon emitted from the strange
valence quark is not shown).

The form factor F̄T (xγ) is the most difficult to determine on the lattice. When the virtual photon γ∗ is emitted by a
valence strange quark, the presence of intermediate JP = 1− ss̄ resonance states forbids the analytic continuation to
Euclidean spacetime of the relevant Minkowskian correlation functions needed to evaluate F̄T (xγ). In this case, in
order to evaluate the form factor F̄T , we rely on the spectral density reconstruction technique developed in Ref. [8]. It
is the form factors FV , FA, FTV , FTA and F̄T which we evaluate from first principles via lattice QCD simulations. In
the following we sometimes refer to them as local form factors.

The remaining contributions to the amplitude A[B̄s → µ+µ−γ] are those corresponding to the four-quark operators
and to the chromomagnetic penguin operator. The corresponding hadronic tensors Hµν

i=1−6,8 are given by

Hµν
i=1−6,8(p, k) =

(4π)2
q2
∫ d4y d4x eikyeiqx T̂⟨0∣Jµ

em(y)Jν
em(x)Oi(0)∣B̄s(p)⟩ . (15)

In the high-q2 region which we consider, as discussed in Ref. [6], the contribution of the presently neglected terms
from Oi=1−6,8 is expected to be small, since they are of higher-order in the 1/mb expansion. Among them, one of the
most important contribution is that of the charming-penguin diagram depicted in Figure 4, due to the presence of
broad charmonium resonance contributions, which are near or within the region of q2 we have explored.

To take into account this contribution, we follow Refs. [4–6] and include the charming-penguin diagram in Figure 4
as a q2-dependent shift of the Wilson coefficient C9, namely

C9 → Ceff
9 (q2) = C9 +∆C9(q2) , (16)

where ∆C9(q2) can be phenomenologically modelled as a sum over the contributions from all the JP = 1− charmonium
resonances [4, 5, 11]

∆C9(q2) = −
9π

α2
em

(C1 +
C2

3
)∑

V

∣kV ∣eiδV
mV B(V → µ+µ−)ΓV

q2 −m2
V + imV ΓV

, (17)

where ΓV is the total decay width of the resonance V , mV its mass, and B(V → µ+µ−) the branching fraction for the
decay into a di-muon. The coefficient kV and the phase shift δV take into account deviations from the factorization
approximation, which corresponds to δV = ∣kV ∣−1 = 0. The values of (some of) the parameters entering Eq. (17), for the
low-lying resonances, can be taken from experiments, but clearly this introduces a systematic error in our prediction.
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In the evaluation of the rate, we will use Eq. (17), and estimate the associated systematic error in a conservative way by
varying the input parameters over a sufficiently broad range. The conservative systematic we associate to the missing
charming-penguin diagram in Figure 4 is expected to be sufficiently large to cover the uncertainty of all the other
missing contributions from Eq. 15. In the future, in order to remove this source of systematic uncertainty and reduce
the theory error, it will be extremely important to evaluate Hµν

i=1−6,8 on the lattice, in particular the charming-penguin
contribution of Figure 4, which we plan to do. We now turn to the discussion of the calculation of the local form
factors FV , FA, FTV , FTA and F̄T .

III. THE LOCAL FORM FACTORS FV , FA, FTV AND FTA

As illustrated in the previous section, the form factors FW (xγ), W = {V,A,TV,TA}, can be computed from QCD
matrix elements involving the e.m. and the following currents

Jν
A = ZV s̄γ

νγ5b, Jν
V = ZAs̄γ

νb, Jν
TA = −iZT (µ)s̄σνργ5b

qρ

mBs

, Jν
TV = −iZT (µ)s̄σνρb

qρ

mBs

, (18)

where, as already stated, qν = pν − kν is the four-momentum of the charged muon pair. In the previous equation we
have introduced the scheme- and scale-dependent renormalization constant (RC) ZT (µ) of the tensor current, and the
(finite) RCs of the axial and vector currents that in twisted-mass QCD are chirally rotated with respect to the ones of
standard Wilson fermions. From now on, we work in the rest frame of the decaying meson and thus set p = (mBs ,0).
In terms of the hadronic tensors

Hµν
W (p, k) ≡ i∫ d4y eiky T̂⟨0∣Jν

W (0)Jµ
em(y)∣B̄s(0)⟩ , W = {V,A,TV,TA} , (19)

and recalling the definitions given in Eqs. (10)-(12), one has that

Hµν
A (p, k) = i [(k ⋅ q)g

µν − qµkν] FA

mBs

, Hµν
V (p, k) = ϵ

µνρσkρpσ
FV

mBs

Hµν
TA(p, k) = −i [(k ⋅ q)g

µν − qµkν] FTA

mBs

, Hµν
TV (p, k) = ϵ

µνρσkρpσ
FTV

mBs

. (20)

In Section III and AppendixB of Ref. [12] we show in detail that for the emission of a real photon, the hadronic tensor
Hµν

W can be extracted for all values of xγ from the Euclidean three-point correlation function:

Bµν
W (t,k) = a

T

∑
ty=0

a3∑
y

a3∑
x

(θ(T /2 − ty) + θ(ty − T /2)e−EγT ) e tyEγ−ik⋅y ⟨0∣ T̂ [Jν
W (t,0)Jµ

em(ty,y)ϕ†
Bs
(0,x)] ∣0⟩ , (21)

where T is the temporal extent of the lattice 4, a is the lattice spacing, and ϕ†
Bs

is an interpolating operator with

the quantum numbers to create the B̄s meson which, as in Ref. [7], we smear using Gaussian smearing. For the
electromagnetic current Jµ

em we use the exactly-conserved point-split lattice operator

Jµ
em(x) =∑

f

Jµ
f = −∑

f

qf {ψ̄f(x)
irfγ5 − γµ

2
Uµ(x)ψf(x + µ̂) − ψ̄f(x + µ̂)

irfγ5 + γµ
2

Uµ(x)†ψf(x)} . (22)

In the forward half of the lattice 0≪ t≪ T /2 one has

Rµν
W (t,k) ≡

2mBs

e−t(mBs−Eγ) ⟨B̄s(0)∣ϕ†
Bs
(0)∣0⟩

Bµν
W (t,k) =H

µν
W (p, k) +⋯ , (23)

where the ellipsis indicates terms that vanish exponentially in the large t limit. Eq. (21) is valid for t < T /2, however, as
explained in Appendix B of Ref. [12], Hµν

W (p, k) can also be obtained from the backward half of the lattice T /2≪ t≪ T
exploiting time-reversal symmetry. The Wick contractions of the correlation function in Eq. (21) give rise to two distinct
topologies of Feynman diagrams, namely to quark-line connected and quark-line disconnected diagrams; these are

4 T is not to be confused with T̂ which represents “time-ordered”.
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FIG. 5: The diagram on the left represents the quark-line disconnected contributions to the correlation function Bµν
W in which the

photon is emitted by a sea quark. In our numerical simulations we work in the electroquenched approximation and neglect such
diagrams. The diagram on the right represents the quark-line connected contributions and illustrates our choice of the spatial
boundary conditions, which allow us to set arbitrary values for the meson and photon spatial momenta. The spatial momenta of
the valence quarks in terms of the twisting angles are as indicated. Each diagram implicitly includes all orders in QCD.

illustrated in Figure 5. In the disconnected diagrams the photon is emitted from a sea quark. This contribution vanishes
in the SU(3)-symmetric limit and when loop of charmed and heavier quarks are omitted, and is neglected in the present
study; this is the so-called electroquenched approximation. We focus instead on the calculation of the dominant,
quark-connected contributions for which only the strange- and bottom-quark components of the electromagnetic
current Jµ

em contribute.

As explained in Ref. [12], it is possible to use twisted boundary conditions to assign arbitrary values to momenta of
the photon and B̄s-meson, k and p respectively, at the price of violations of unitarity which vanish exponentially with
the lattice extent L [13–15]. This is achieved by treating the two quark propagators beginning or ending at y, i.e.
the point at which the electromagnetic current is inserted in the right-hand diagram of Figure 5, as corresponding to
two distinct quark fields ψ0, ψt having the same mass and quantum number, but satisfying different spatial boundary
conditions. Defining ψs to be the spectator quark-field in the right-hand diagram of Figure 5, we set the spatial
boundary conditions of the three quark fields ψ0, ψt, ψs as follows:

ψr(x +nL) = exp{(2πin ⋅ θr)}ψr(x) , r = {0, t, s} , (24)

where θ{0,t,s} are arbitrary spatial-vectors of angles, in terms of which the photon and meson lattice momenta can be
written as

p = 2

a
sin(aπ

L
(θ0 − θs)) , k = 2

a
sin(aπ

L
(θ0 − θt)) , (25)

We choose the photon momentum to be in the z-direction, k = (0,0, kz), and set

θ0 = θs = 0 , θt = (0,0, θt). (26)

With such a choice of kinematics, the form factors can be obtained from the large time behaviour, 0≪ t≪ T /2, of the
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ensemble β V /a4 a (fm) aµℓ mπ (MeV) L (fm) Ng

A48 1.726 483 ⋅ 128 0.09075 (54) 0.00120 174.5 (1.1) 4.36 109
B64 1.778 643 ⋅ 128 0.07957 (13) 0.00072 140.2 (0.2) 5.09 400
C80 1.836 803 ⋅ 160 0.06821 (13) 0.00060 136.7 (0.2) 5.46 72
D96 1.900 963 ⋅ 192 0.05692 (12) 0.00054 140.8 (0.2) 5.46 100

TABLE I: Parameters of the ETMC ensembles used in this work. We present the light-quark bare mass, aµℓ = aµu = aµd, the
lattice spacing a, the pion mass mπ, the lattice size L and the number of gauge configurations Ng that have been used for each
ensemble. The values of the lattice spacing are determined as explained in Appendix B of Ref. [22] using the value
f isoQCD
π = 130.4(2)MeV for the pion decay constant.

following estimators

RV (t,k) ≡
1

2kz
(R12

V (t,k) −R21
V (t,k)) ÐÐÐÐÐ→

0≪t≪T /2
FV (xγ) , (27)

RA(t,k) ≡
i

2Eγ

(R11
A (t,k) +R22

A (t,k)) ÐÐÐÐÐ→
0≪t≪T /2

FA(xγ) , (28)

RTV (t,k) ≡
1

2kz
(R12

TV (t,k) −R21
TV (t,k)) ÐÐÐÐÐ→

0≪t≪T /2
FTV (xγ) , (29)

RTA(t,k) ≡ −
i

2Eγ

(R11
TA(t,k) +R22

TA(t,k)) ÐÐÐÐÐ→
0≪t≪T /2

FTA(xγ) . (30)

For each form factor it is useful to distinguish the two contributions due to the emission of the real photon from
the bottom and strange quarks (left and right diagrams in Figures 1 and 2). We denote the two contributions by
F b
W and F s

W for W = {V,A,TV,TA}. They are simply obtained by setting respectively the electric charges qs = 0
and qb = 0 in all the previous formulae. A minor complication arises in the axial channel W = A due to the presence
of a point-like contribution, proportional to qbfBs and −qsfBs respectively in F b

A and F s
A, which then cancels in the

sum of the two contributions due to qb = qs. This point-like contribution, which is always present in the radiative
leptonic decays of charged pseudoscalar mesons [12], can however, be easily removed by calculating the following
zero-momentum-subtracted estimator

R
(s,b)
A (t,k) ≡ i

2Eγ
(R11,(s,b)

A (t,k) −R11,(s,b)
A (t,0) +R22,(s,b)

A (t,k) −R22,(s,b)
A (t,0)) ÐÐÐÐÐ→

0≪t≪T /2
F
(s,b)
A (xγ) . (31)

We refer the reader to Ref. [12] for more details on the removal of the point-like contribution.

A. Numerical results for FV , FA, FTV , FTA

We now turn to the discussion of our numerical results for FV , FA, FTV and FTA. They have been obtained using
the gauge field configurations generated by the Extended Twisted Mass Collaboration (ETMC) employing the Iwasaki
gluon action [16] and Nf = 2 + 1 + 1 flavours of Wilson-Clover twisted-mass fermions at maximal twist [17]. This
framework guarantees the automatic O(a) improvement of parity-even observables [18, 19]. A detailed description of
the ETMC ensembles can be found in Refs. [20–23], and we also refer to Ref. [7] for additional information on the
tuning of the sea and valence quark masses. In Table I we present the parameters of the ETMC ensembles that have
been used in the present computation, while in Table II we collect the relevant RCs used to renormalize the vector,
axial, and tensor currents.

The presently available lattice spacings are not small enough to perform simulations at the physical bottom quark mass.
For this reason our strategy to reach the physical Bs meson mass, is to perform simulations for a series of heavy-strange
quark masses, and then extrapolate to the physical point using heavy-quark effective theory (HQET) scaling relations,
to be discussed in the next sections. For each of the ensembles of Table I, we have performed simulations at five
different values of mHs , the mass of the lightest pseudoscalar meson composed of a valence heavy quark of mass mh
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ensemble ZV ZA ZT (MS,5 GeV)
A48 0.68700 (15) 0.7284 (18) 0.7541 (98)
B64 0.706379 (24) 0.74294 (24) 0.7735 (93)
C80 0.725404 (19) 0.75830 (16) 0.7928 (85)
D96 0.744108 (12) 0.77395 (12) 0.8141 (74)

TABLE II: The values of the vector (ZV ), axial (ZA), and tensor (ZT ) renormalization constants, for the ETMC ensembles of
Table I. ZT values were kindly provided to us by the ETMC, and are from a preliminary analysis [24]. For the present work, we
increased their uncertainties by a factor of 3. The scale-independent renormalization constants ZV and ZA have been determined
in Ref. [22] using Ward-identity methods.

and a strange antiquark with mass ms. The five values correspond to the following five mh/mc ratios (mc is the mass
of the charm quark determined by the condition mηc = 2.984(4) GeV, see Refs. [8, 22]):

mh

mc
≃ 1, 1.5, 2, 2.5, 3 . (32)

Such values of the heavy quark masses mh give rise to heavy-strange meson masses mHs in the range mHs/mDs∈ [1, 2].
For each ensemble and heavy quark mass mh, we evaluate the Euclidean three point function Bµν

W (t;k, p) at four
evenly-spaced values of the dimensionless variable xγ :

xγ =
2Eγ

mHs

= 0.1,0.2,0.3,0.4 . (33)

For an illustration of the quality of the plateaus, we present in Figure 6 the estimatorsR
(s,b)
W (t, xγ) ≡ R(s,b)W (t, (0, 0, kz(xγ)),

W = {V,A,TV,TA}, obtained at xγ = 0.2 on the finest lattice spacing ensemble (D96) for mh/mc ≃ 2. In each figure
the blue band shows our estimate of the corresponding form factor, obtained from a constant fit in the region where

the estimators R
(s,b)
W (t, xγ) display a plateau. The band already includes the systematic error due to the choice of

the fit-interval, which is estimated by performing a second fit shifting the fit-interval forward in time by an amount
∆T = 0.4,0.35,0.30,0.27,0.25 fm, respectively for mh/mc ≃ 1,1.5,2,2.5,3, and then adding the difference between the
central values obtained in the two different fits as a systematic error5. For the tensor form factors the results are
obtained using the preliminary values of ZT (µ) in the MS scheme at µ = 5 GeV, provided to us by the ETMC [24].

The ensembles of Table I all correspond to lattices with a spatial extent in the range L ≃ 4.4 - 5.4 fm. These volumes
are expected to be large enough for the finite size effects (FSEs) on the form factors to be small. For the smallest
heavy quark mass considered, mh =mc, and for the form factors FA and FV , this has been explicitly checked in Ref. [7]
using an additional ensemble, the B96, which has a large spatial extent L of more than 7.5 fm. Here, using the B96
ensemble, we have checked that FSEs are very small (at the level of our statistical uncertainty or smaller) also for
the tensorial form factors FTV and FTA, and we therefore consider our results on the ensembles listed in Table I as
infinite-volume quantities.
Next we consider the cut-off effects. For each value of xγ and mHs , the extrapolation to the continuum limit is

performed using the following Ansatz

F
(b,s)
W (xγ ,mHs , a) = F

(b,s)
W (xγ ,mHs) (1 +D

(b,s)
W (xγ ,mHs)a2) , W = {V,A,TV,TA} , (34)

where F
(b,s)
W (xγ ,mHs) and D

(b,s)
W (xγ ,mHs) are fit parameters which depend on xγ and mHs , and are different for the

four channels W = {V,A,TV,TA} and for the two contributions F s
W and F b

W . We estimate the systematic uncertainty
due to the continuum-limit extrapolation by performing two different linear extrapolations: in the first one we include
the full dataset, and in the second one we remove the measurements on the ensemble with the largest lattice spacing
(A48). The two results are combined as follows: let fA and fB represent generically the continuum values of FW (xγ),
for a givenW = {V,A,TV,TA} and xγ ∈ {0.1, . . . , 0.4}, obtained respectively from the linear fit by including or omitting
the result at the coarsest lattice spacing. We determine the final central value f̄ through a weighted average of the form

f̄ = wA fA + wB fB , wA +wB = 1 . (35)

5 The choice of ∆T , for each value of mh, has been adjusted so that this is small enough to avoid the region of large times where the

signal-to-noise ratio of the estimator Rs,b
W is very small, and at the same time large enough to provide a reasonable estimate of the

systematics due to the choice of the fit interval.
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FIG. 6: The estimators Rs
W (t, xγ) (left) and Rb

W (t, xγ) (right) for W = {V,A,TV,TA}. The data corresponds to the D96
ensemble at xγ = 0.2 and for mh ≃ 2mc. The blue bands show our estimates of the form factors from a constant fit in the region

where the estimators R
(s,b)
W (t, xγ) display a plateau.

Our estimate of the systematic error, which is added (linearly to be conservative) to the statistical uncertainty, is then
obtained using

σ2
syst = ∑

i=A,B

wi (fi − f̄)2 . (36)

The weights wi, with i = {A,B}, are chosen according to the Akaike Information Criterion [25] (AIC), namely

wi ∝ e
−(χ2

i+2N(i)pars−N(i)data
)/2

, (37)

where χ2
i is the total χ2 obtained in the i-th fit, and N

(i)
pars and N

(i)
meas are the corresponding number of fit parameters

and measurements.
In Figures 7 and 8 we show the results of our continuum fits, for the smallest (xγ = 0.1) and largest (xγ = 0.4)

simulated values of xγ . The fits shown in the figures are those for which the full dataset has been used. Clearly for
large quark masses mh, as a consequence of the Parisi-Lepage theorem [26, 27], the statistical noise of the data rapidly
increases. The quality of the fits is very good, and in Figure 9 we show the histogram of the reduced χ2 distribution
corresponding to the 160 continuum extrapolations we have performed.

B. Extrapolating the results for the local form factors FV , FA, FTV , FTA to the physical Bs meson

In this section we discuss the asymptotic formulae used to extrapolate the form factors, computed for mHs ∈
[mDs , 2mDs], to the physical point mHs =mBs ≃ 5.367GeV. For heavy quark masses mh and energetic photons, there
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FIG. 7: Continuum limit extrapolation of the lattice data for F s
W (left) and F b

W (right) for xγ = 0.1. The transparent bands
correspond to the best-fit function obtained in the linear a2 fit employing the full dataset. In the panels, the different colors
correspond to different values of the heavy quark mass mh.

are elegant and simple relations relating the four form factors. In Ref. [28] (see also [29–32]), the authors studied in
detail the behaviour of the axial and vector form factors contributing to the radiative B → γℓν decay amplitude in the
framework of the HQET and large-photon-energy expansions. The relations derived in Ref. [28] imply that up to (and
including) order O(1/mHs ,1/Eγ) terms in the heavy-quark and large-photon-energy expansion, the axial and vector
form factors FA and FV are given by

FV (xγ ,mHs)
fHs

= ∣qs∣
xγ
(R(Eγ , µ)
λB(µ)

+ ξ(xγ ,mHs) +
1

mHsxγ
+ ∣qb∣∣qs∣

1

mh
) , (38)

FA(xγ ,mHs)
fHs

= ∣qs∣
xγ
(R(Eγ , µ)
λB(µ)

+ ξ(xγ ,mHs) −
1

mHsxγ
− ∣qb∣∣qs∣

1

mh
) , (39)

where fH̄s
is the decay constant of the H̄s = s̄h pseudoscalar meson of mass mH̄s

, λB(µ) is the first inverse moment of
the Bs-meson light-cone distribution amplitude (LCDA), and R(Eγ , µ) = 1 +O(αs) is a radiative correction factor
that is the same for FV and FA. Finally, ξ(xγ ,mHs) is a power-suppressed term, common to both form factors, that
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FIG. 8: Same as in Figure 7 for xγ = 0.4.

can be written as [33]

ξ(xγ ,mHs) =
A

mHs

+ B

mHsxγ
. (40)

In Eqs. (38)-(39), perturbative radiative corrections to the subleading terms and O(ms/(m2
Hs
)) terms have been

neglected. The leading contribution to the form factors comes from the emission of the photon from the strange quark.
Radiation from the heavy quark is suppressed by a factor proportional to 1/mHs and the corresponding subleading
terms are proportional to ∣qb∣ in Eqs. (38)-(39).

The large mass/photon-energy behaviour of the tensor form factors FTA and FTV including order O(1/mHs ,1/Eγ)
corrections has been investigated in Ref. [9] and is given by

FTV (xγ ,mHs , µ)
fHs

= ∣qs∣
xγ
(RT (Eγ , µ)

λB(µ)
+ ξ(xγ ,mHs) +

1 − xγ
mHsxγ

+ ∣qb∣∣qs∣
1

mHs

) , (41)

FTA(xγ ,mHs , µ)
fHs

= ∣qs∣
xγ
(RT (Eγ , µ)

λB(µ)
+ ξ(xγ ,mHs) −

1 − xγ
mHsxγ

+ ∣qb∣∣qs∣
1

mHs

) , (42)

where RT (Eγ , µ) = 1 +O(αs) is the radiative correction. Again, perturbative radiative corrections to the subleading
terms and O(ms/(m2

Hs
)) terms have been neglected. In Eqs. (41), (42) we have explicitly inserted in the l.h.s.
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FIG. 9: Histograms of the χ2/dof distribution corresponding to the 160 continuum limit extrapolations we have performed using
the full dataset (left) and excluding the coarsest lattice spacing ensemble, the A48 (right).

the dependence on the renormalization scale µ, which is instead absent in FV and FA which are scale-independent
quantities. The previous relations imply that, neglecting power suppressed contributions and radiative corrections, one
has FTV (xγ) = FTA(xγ) = FV (xγ) = FA(xγ).
We now explain that the above asymptotic relations for the form factors, being valid in the limit of large Eγ ,

are not sufficient to describe their behaviour in the range of the simulated values of mHs and xγ because of the
presence of sizeable non-asymptotic contributions from resonances. To highlight this point, we start from the canonical
decomposition of the form factors in terms of intermediate-state contributions. The hadronic tensor Hµν

W (p, k) in
Eq. (19)

Hµν
W (p, k,mHs) ≡ i∫ d4y eiky T̂⟨0∣Jν

W (0)Jµ
em(y)∣H̄s(0)⟩ , (43)

can be decomposed as

Hµν
W (p, k,mHs) = i∫

0

−∞
dt eiEγt⟨0∣Jν

W (0)Jµ
em(t,k)∣H̄s(0)⟩ + i∫

∞

0
dt eiEγt ⟨0∣Jµ

em(t,k)Jν
W (0)∣H̄s(0)⟩

≡Hµν
W,1(p, k,mHs) +H

µν
W,2(p, k,mHs) , (44)

where

Jµ
em(t,k) ≡ ∫ d3xe−ikx Jµ

em(t,x) . (45)

We now focus on the contribution from the first time-ordering, Hµν
W,1, which can be written as

Hµν
W,1(p, k,mHs) = i∫

0

−∞
dt eiEγt⟨0∣Jν

W (0)ei(Ĥ−mHs−iε)tJµ
em(0,k)∣H̄s(0)⟩

= ⟨0∣Jν
W (0)

1

Ĥ +Eγ −mHs − iε
Jµ
em(0,k)∣H̄s(0)⟩ =∑

n

⟨0∣Jν
W (0)∣n⟩⟨n∣Jµ

em(0,k)∣H̄s(0)⟩
2En(−k)(En(−k) +Eγ −mHs)

, (46)

where Ĥ is the QCD Hamiltonian. The contributing intermediate states ∣n⟩ are B = −1, S = 1 states with JP = 1− for
W = {V,TV } and JP = 1+ for W = {A,TA}. Their energies are given by En(−k) =

√
m2

n +E2
γ . In the following, in

order to model the xγ and mass behaviour of the form factors, we only consider the contributions coming from the
resonances that we treat as stable particles. Using the following relations (ηn is the polarization of the vector meson
∣n⟩, kn = (En,−k), pγ = kn − p):

⟨0∣Jν
V ∣n⟩ = ηνn mn f

V
n , ⟨0∣Jν

TV ∣n⟩ = fTV
n [ η

ν
n

mHs

(kn ⋅ q) −
kνn
mHs

(ηn ⋅ q)]

⟨0∣Jν
A∣n⟩ = iηνn mn f

A
n , ⟨0∣Jν

TA∣n⟩ = −ifTA
n [ η

ν
n

mHs

(kn ⋅ q) −
kνn
mHs

(ηn ⋅ q)]

⟨n∣Jµ
em∣H̄s(0)⟩ = gn εµνγβ(η∗n)ν kn,γ pβ W = {V,TV } ,

⟨n∣Jµ
em∣H̄s(0)⟩ = g′n [(η∗n)µ(p ⋅ pγ) − (η∗n ⋅ pγ)pµ] +O(p2γ) , W = {A,TA} , (47)
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and given that at leading-order in mHs one has fWn ∝ fHs , and assuming that at leading-order the form factors gn
and g′n are constant, one obtains that each of the intermediate states in Eq. (46) gives a contribution FW,n(xγ) to the
form factor FW (xγ) which scales as (rn ≡mn/mHs)

FW,n(xγ)∝
fHs√

r2n +
x2
γ

4
+ xγ

2
− 1

. (48)

In the static limit, since rn approaches one, the scaling relations in Eqs. (38) - (42) are recovered. However, it is
important to notice that for xγ = 0 the denominator in Eq. (48) develops a pole for rn → 1, signalling the fact that
the scaling laws are different at xγ = 0 and xγ ≠ 0 (in this last case the denominator approaches a non-zero value
xγ/2 +O(x2γ) in the mh →∞ limit). For small enough values of xγ , the presence of a quasi-pole may generate large
corrections to the scaling relations in Eqs. (38) - (42), which we now discuss. We start by recalling the following HQET
relations for the masses mH̄∗s

and mHs1 of the lowest-lying vector mesons H̄∗s and H̄s1 in the JP = 1− and JP = 1+
channel [34]

m2
H̄∗s
−m2

H̄s
= 2λ2 +O (

1

mh
) , λ2 ≃ 0.24 GeV2 , (49)

mH̄s1
−mH̄s

= Λ1 +O (
1

mh
) , Λ1 ≃ 0.5 GeV . (50)

As is well known, the first relation comes from the fact that the ground-state pseudoscalar (JP = 0−) and vector
(JP = 1−) mesons, are members of the same HQET spin-doublet, and so they become degenerate in the infinite
heavy-quark mass limit. The mass-splitting between the ground-state pseudoscalar and axial-vector meson is instead of
order O(ΛQCD). This implies that for the lowest-lying intermediate state (n = 1) contributing to FW , for W = {V,TV },
one has

r1 =
mH∗s

mHs

≃ 1 + λ2
m2

Hs

Ô⇒
√
r21 +

x2γ

4
+ xγ

2
− 1 ≃ λ2

m2
Hs

+ xγ
2
+ . . . , (51)

where the ellipses indicate subleading corrections at large mh and small xγ . For W = {A,TA}, one has instead

r1 =
mHs1

mHs

≃ 1 + Λ1

mHs

Ô⇒
√
r21 +

x2γ

4
+ xγ

2
− 1 ≃ Λ1

mHs

+ xγ
2
+ . . . . (52)

The previous equations show that for small values of xγ the quasi-pole produces an enhancement of the form factor
of order O(m2

h) and O(mh), respectively in the vector-like and axial-like channels. In the following section we will
combine the leading-order relations Eqs. (38)- (42), with the quasi-pole behaviour described by Eqs. (51), (52) in order
to extrapolate the form factors to the physical Bs meson mass.

C. Numerical results at the physical Bs mass

Guided by the analysis in the previous section, we introduce some model-dependent interpolating formulae for the
form factors which describe their q2 dependence in the resonance region and have the correct asymptotic behaviour in
the limit of large mh. We have extrapolated our results for FW , W = {V,A,TV,TA}, obtained at the five different
simulated values of the heavy quark mass mh in Eq. (32), employing the following fit Ansatz (z = 1/mHs)

FV (xγ , z)
fHs

= ∣qs∣
xγ

1

1 +CV
2z2

xγ

(K + (1 + δz)
z

xγ
+ 1

z−1 −ΛH
+Amz +Axγ

z

xγ
+BV

mz
2 +BV

xγ

z2

xγ
) , (53)

FA(xγ , z)
fHs

= ∣qs∣
xγ

1

1 +CA
2z
xγ

(K − (1 + δz)
z

xγ
− 1

z−1 −ΛH
+Amz + (Axγ + 2KCA)

z

xγ
+BA

mz
2 +BA

xγ

z2

xγ
) , (54)

FTV (xγ , z)
fHs

= ∣qs∣
xγ

1 + 2CV z
2

1 +CV
2z2

xγ

(KT + (AT
m + 1)z +AT

xγ

z

xγ
+ (1 + δ′z)z

1 − xγ
xγ

+BT
mz

2 +BTV
xγ
(1 − xγ)

z2

xγ
) , (55)

FTA(xγ , z)
fHs

= ∣qs∣
xγ

1 + 2CT
Az

1 +CT
A

2z
xγ

(KT + (AT
m + 1)z +AT

xγ

z

xγ
− (1 + δ′z − 2KTC

T
A)z

1 − xγ
xγ

+BT
mz

2 +BTA
xγ
(1 − xγ)

z2

xγ
) , (56)
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where CT
A = CA + δCT

A , KT = K + δKT , and K,δKT , δz,ΛH ,CV ,CA, δC
T
A ,Am/xγ

,AT
m,A

T
xγ
, δ

′

z and BW
m/xγ

(W =
{V,A,TV,TA}) are free fit parameters. Our strategy to extrapolate the form factors to the physical Bs-meson consists
in a simultaneous global fit of the mass and xγ dependence of all four form factors. The phenomenological fit Ansatz
described by Eqs. (53)-(56) takes into account the constraints discussed in the previous section, and contains the
quasi-pole corrections to the asymptotic scaling described by Eqs. (38), (39), (41) and (42). We however relaxed the
constraint AT

m = Am and Axγ = AT
xγ

due to the presence of the same function ξ(xγ ,mHs) in the expression for the

tensor-like and vector-like form factors in Eqs (38)-(42). The position of the pole is taken to be the same in the vector
and tensor-vector channel, while we allow for the possibility of having a different pole in FA and FTA (i.e. δCT

A ≠ 0).
This is due to the fact that while in the vector channel vector-meson-dominance is expected to work well since the
vector (H∗s ) and pseudoscalar (Hs) ground-state mesons become degenerate in the static limit, this is not the case in
the axial channel where many resonances with masses of order mHs +O(ΛQCD) are present. The axial pole should
be considered to be an effective pole, and its position can therefore be slightly different in the axial and tensor-axial
channel due to the different couplings to the excited states. Moreover, in order to account for the fact that the tree-level
equality between tensor-like and vector-like form factors is spoiled by the radiative corrections, we also allow for the
possibility that δKT ≠ 0. Notice that in the tensor form factors, the numerator in the pole term is inserted to ensure
the validity of the kinematical constraint FTA(1) = FTV (1). Finally, we have included a parameter ΛH to account for
the fact that the hadron mass mHs differs from the heavy quark mass mh by an amount of order O(ΛQCD) (see the
last terms in Eqs. (38) and (39)), and two parameter δz, δ

′
z to account for violations of the relations in Eqs. (38)-(42)

which are only exactly valid in the limit of a massless strange quark and neglecting radiative corrections to the power
suppressed terms. Our determination of the decay constant fHs , on the same configurations used for the computation
of the form factors, is discussed in detail in AppendixA. In the same appendix we also discuss our determination of
fBs , for which we get the value

fBs = 224.5(5.0)MeV . (57)

Our determination of fBs agrees with the Nf = 2 + 1 + 1 FLAG average fFLAG
Bs

= 230.3(1.3)MeV at the level of 1.1σ,
although our uncertainty is larger. Using the Ansätze in Eqs. (53)-(56) we have performed a total of N ≃ O(500) fits
which differ on whether the fit parameters δKT , δC

T
A , δz, δ

′

z are set to zero or not, and on whether we include or not
the fit parameters describing the O(1/m2

Hs
) corrections. The total number of measurements is 80 and the maximum

number of fit parameters used is 14. To stabilize the fits, large Gaussian priors are imposed on the fit parameters

δKT , δC
T
A , δz, δ

′

z,ΛH and BW
m/xγ

. These are

δKT = 0 ± 0.4 GeV−1 , δ(
′)

z = 0 ± 1 , δCT
A = 0 ± 0.4 GeV , ΛH = 0.75 ± 0.5 GeV , BW

m/xγ
= 0 ± 2.5 GeV . (58)

We minimize a correlated χ2 function which takes fully into account the correlations between the values of a given
form factor at the different simulated values of xγ and mHs . However, in order to avoid having an ill-conditioned
covariance matrix, we assume, in the construction of the χ2, that the different form factors are instead uncorrelated.
The error on the fit parameters are always properly estimated, since they are obtained from the dispersion of the
results obtained repeating the fits for each jackknife sample.
Many of the fit parameters entering Eqs. (53)-(55) are not needed in order to obtain a good χ2/dof, and a good

description of the data is already obtained by setting δKT = δCT
A = δz = δ

′

z = 0 and neglecting the O(1/m2
Hs
) corrections.

However, in order to estimate correctly the systematic errors due to the mass extrapolation, it is important to span
over a sufficiently large number of fit Ansätze.

We combine the results of the N different fits using two different criteria. The first one is based on the AIC discussed
in Section IIIA, i.e. we assign to each of the N fits a weight wi given by

wi ∝ exp(− (χ2
(i) + 2N (i)pars −N

(i)
data) /2) ,

N

∑
i=1
wi = 1 , (59)

where χ2
(i) is the total χ2 of the i-th fit, and N

(i)
pars and N

(i)
meas are the corresponding number of fit parameters and

measurements. The second criterion consists in selecting only those fits leading to a good χ2/dof and assigning them
an uniform weight, i.e. using

wi ∝ θ (c − χ2
(i)/N

(i)
dof) ,

N

∑
i=1
wi = 1 , (60)

and we set c = 1.4 which corresponds approximately to 1 + 2
√

2/N (i)dof , where
√

2/N (i)dof is the standard deviation of the

reduced χ2 distribution with N
(i)
dof degrees of freedom. Then, with a given choice for the weights wi, the final central
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FIG. 10: Extrapolation to the physical Bs meson of the four form factors FA (top left) , FTA (top right), FV (bottom left) and
FTV (bottom right). The form factors are divided by the decay constant fHs of the heavy-strange pseudoscalar meson. The
different colors correspond to the different simulated values of the Lorentz invariant xγ . Finally, the continuum bands correspond
to the best-fit function obtained after applying the model-averaged procedure described by Eqs. (61)-(62) using the weights in
Eq. (60).

value x̄ is obtained from a weighted average:

x̄ =
N

∑
i=1
wixi , (61)

where xi is the result obtained from the i-th fit. The sum in Eq. (61) is evaluated in a correlated way, so that the
statistical errors of the xi are correctly propagated to x̄. The systematic error, which is added in quadrature to the
statistical error of x̄, is then given by

σ2
x,syst =

N

∑
i=1
wi (xi − x̄)2 . (62)

We have found that the results obtained using the weights in Eq. (59) and Eq. (60) are consistent well within the
uncertainties. However, at small xγ the errors obtained using the AIC are typically smaller than those obtained using
Eq. (60). In order to be conservative, we take the results obtained using the weights in Eq. (60) to obtain our final
results for the form factors.

The results of the extrapolation are collected in the plots of Figure 10. The continuum bands in the figure correspond
to the best-fit function obtained after applying the above procedure with the weights in Eq. (60). We obtain for the
pole coefficients CV , CA and CA + δCT

A the values

CV = (0.57(3) GeV)2 , CA = 0.70(7) GeV , CA + δCT
A = 0.77(4) GeV . (63)

The result for CV can be compared with the value expected from the HQET relation in Eq. (49), namely CV ≃ λ2 ≃
(0.5 GeV)2. Although slightly larger (recall that the Ansatz we use is a phenomenological description of the full
form factors where excited-states contributions are always present), our determination is in line with expectations,
and provides nice evidence that the reason behind the steep rise of the vector form factors at small xγ is due to the
presence of the quasi-pole. Concerning the position of the axial pole, the value we obtained for CA and δCT

A is also
qualitatively in line with the expectations CA,CA + δCT

A ≃ O(Λ1). We did not find clear evidences of non-zero values

of δz, δ
′

z and δKT . We obtain

1 + δz = 1.02(9) , 1 + δ
′

z = 1.06(8) , K = 1.46(10) GeV−1 , K + δKT = 1.39(6) GeV−1 , (64)
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xγ FV FA FTV FTA

0.1 1.103(38) 0.290(13) 1.026(35) 0.413(17)

0.2 0.610(13) 0.226(8) 0.564(15) 0.326(8)

0.3 0.422(8) 0.186(6) 0.389(10) 0.270(6)

0.4 0.322(6) 0.157(5) 0.297(8) 0.230(5)

TABLE III: Our results for the form factors FV , FA, FTV and FTA extrapolated to the physical mass mBs , for the four
simulated values of xγ = 0.1,0.2,0.3,0.4.
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FIG. 11: Comparison between our results for the form factors FW with W = {V,A,TV,TA} (shown in the figure by the red
bands), and existing model-dependent results [3–5]. The region between the vertical red dashed lines corresponds to the region of
simulated xγ , and therefore within this region our results are obtained through an interpolation of our lattice data.

and for the fit parameter ΛH we obtain the value ΛH = 0.70(17)GeV. Finally, for the parameters Am,A
T
m,Axγ and

AT
xγ

we obtain

Am = 0.8(5) , AT
m = 1.4(3) , Axγ = −1.0(1) , AT

xγ
= −1.0(1) . (65)

The relation Axγ = AT
xγ

which holds in the HQET and large-photon-energy expansion neglecting perturbative radiative
corrections and non-zero strange-quark mass effects, appears to be well reproduced by our data. As for the relation
Am = AT

m, we find that the fitted values of Am and AT
m are slightly different, which can be attributed to radiative

corrections and/or O(ms/mHs) effects as well as to statistical fluctuations. In Table III we provide our results for the
four form factors, extrapolated to the physical mass mBs and for the four simulated values of xγ . The fit parameters,
including their correlations, are available upon request from the authors.

Our results for the form factors can be compared with available phenomenological and model estimates. The form
factors FW , W = {V,A,TV,TA}, have been previously obtained using relativistic dispersion relations [4] , light-cone
sum rules [3] and recently a hybrid approach [5] in which the existing lattice results for the form factors FV and FA in
Ds → ℓνγ decays are used to obtain the form factors FV and FA entering Bs → µ+µ−γ decays using a VMD-inspired
ansatz. The comparison between our determination of FW , W = {V,A,TV,TA} and the existing model-dependent
results is shown in Figure 11. Our results are given by the red curves, and outside the region of measured xγ are
obtained by using the best-fit function obtained in the global fits discussed above. Our results for FTV and FTA turn
out to be in rather good agreement with the estimate of Ref. [4], taking into account that the results of the relativistic
dispersion approach contain a systematic uncertainty which is difficult to quantify. However we find significant
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differences with respect to the results of Ref. [3] for FTV and FTA. For the axial form factor FA, the differences between
our results and those of Ref. [4] are of similar size as the one present for FTV , while more significant deviations are
observed for the vector form factor FV . Moreover, we disagree with both the estimates given in Ref. [3] and Ref. [5]
for FV and FA. The disagreement with the light-cone sum rule calculation was somehow expected, given that large
differences with respect to lattice QCD calculations have been already observed in the radiative leptonic decays of
the Ds meson [7]. The smaller value of FV obtained in Ref. [5] could be, at least partially, traced back to the fact
that their estimate of the strange-quark contribution to the form factor gD∗sDsγ , an essential input parameter of their
VMD-inspired approach, turns out to be substantially smaller than the one obtained by the HPQCD Collaboration in
Ref. [35] and in our recent paper [7] (which are instead in very nice agreement with each other). Before discussing the
implications of our results for the branching fraction B(Bs → µ+µ−γ), we present now our results for the form factor
F̄T .

IV. THE LOCAL FORM FACTOR F̄T

The form factor F̄T can be computed from the knowledge of the hadronic tensor

Hµν

T̄
(p, k) = i∫ d4x ei(p−k)x T̂⟨0∣Jν

T̄ (0)J
µ
em(x)∣B̄s(0)⟩ = −εµνρσkρpσ

F̄T

mBs

, (66)

where

Jν
T̄ = −iZT (µ)s̄ σνρ b

kρ

mBs

. (67)

As in the case of the currents Jν
TV and Jν

TA, we renormalize the tensor current JT̄ using the non-perturbative
determination of ZT (µ) in the MS scheme at the scale µ = 5 GeV given in Table II. Note that Hµν

T̄
(p, k) =Hµν

TV (p, p−k),
and recall that F̄T (1) = FTV (1) = FTA(1) (see Eq. (14)). A significant complication is that the hadronic tensor
Hµν

T̄
(p, k) suffers from problems of analytic continuation to Euclidean spacetime. To demonstrate this, we start by

writing explicitly the contributions to the hadronic tensor Hµν

T̄
from the two time orderings, namely

Hµν

T̄
(p, k) = i∫

0

−∞
dt ei(mBs−Eγ)t ⟨0∣Jν

T̄ (0)J
µ
em(t,−k)∣B̄s(0)⟩ + i∫

∞

0
dt ei(mBs−Eγ)t ⟨0∣Jµ

em(t,−k)Jν
T̄ (0) ∣B̄s(0)⟩ . (68)

Making use of

Jµ
em(t,k) = ei(Ĥ−iε)t Jµ

em(0,k) e−i(Ĥ−iε)t , (69)

where Ĥ is the QCD Hamiltonian, one has Hµν

T̄
(p, k) =Hµν

T̄ ,1
(p, k) +Hµν

T̄ ,2
(p, k) with

Hµν

T̄ ,1
(p, k) = ⟨0∣Jν

T̄ (0)
1

Ĥ −Eγ − iε
Jµ
em(0,−k)∣B̄s(0)⟩ ,

Hµν

T̄ ,2
(p, k) = ⟨0∣Jµ

em(0,−k)
1

Ĥ +Eγ −mBs − iε
Jν
T̄ (0)∣B̄s(0)⟩ . (70)

The two integrals in Eq. (68) can only be Wick-rotated from Minkowskian time t to Euclidean time τ = it if the
following positivity conditions are met

⟨n∣Ĥ −Eγ ∣n⟩ > 0, ⟨m∣Ĥ +Eγ −mBs ∣m⟩ > 0 , (71)

where ∣n⟩ and ∣m⟩ are the intermediate states contributing respectively to the first and second time ordering in Eq. (70).
In the rest frame of the B̄s meson in which we work, all intermediate states contributing to the hadronic tensor have
three momentum ∣k∣ = Eγ , therefore the condition ⟨n∣Ĥ −Eγ ∣n⟩ > 0 is always satisfied and one can safely set ε = 0 in
the first contribution on the r.h.s. of Eq. (70). This is not the case for the second condition in Eq. (71) due to the
presence of light unflavoured JP = 1− intermediate states. Indeed, defining mV0 to be the mass of the lightest hadronic
state contributing to the second time ordering, the analytic continuation is obstructed if the photon energy Eγ satisfies

√
m2

V0
+E2

γ +Eγ <mBs Ô⇒ xγ < 1 − (
mV0

mBs

)
2

. (72)
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As in the case of the local form factors FW , W = {V,A,TV,TA}, we can distinguish the two contributions F̄ b
T and F̄ s

T
to the form factor F̄T , corresponding respectively to the emission of the virtual photon γ∗ from the bottom (Figure 3
left) and strange (Figure 3 right) quark line 6. The lightest hadronic intermediate state in the second time ordering are
given, respectively for the bottom- and strange-quark contributions, by the Υ(1S) resonance and by K+K− states
in a P-wave7. Given that mΥ ≃ 9460 MeV >mBs , the bottom quark contribution is not affected by the problem of
analytic continuation, which is only present in the strange quark contribution. Indeed, with 2mK ≃ 1 GeV, one finds
that analytic continuation is obstructed for

xγ < xthγ ≡ 1 − (
2mK

mBs

)
2

≃ 0.96 , (73)

i.e. for all the values of xγ that we are considering.
Recently, some of us have proposed a novel strategy [8] to circumvent the problem of analytic continuation of

electroweak amplitudes of the type present in Eq. (68), i.e. involving an hadron-to-vacuum QCD matrix element of the
product of two currents. In order to briefly summarise the strategy, we focus on the strange-quark contribution to
Hµν

T,2(p, k). To keep the notation simple, we set E ≡mBs −Eγ and define

Cµν
q,2(t,k) ≡ ⟨0∣Jµ

q (t,−k)Jν
T̄ (0) ∣B̄s(0)⟩ , Hµν

T̄q,2
(E,k) ≡ i∫

∞

0
dt eiEtCµν

q,2(t,k) , q = s, b , (74)

so thatHµν

T̄ ,2
(p, k) =Hµν

T̄b,2
(E,k)+Hµν

T̄s,2
(E,k). The main idea for circumventing the problem of the analytic continuation

of Hµν

T̄s,2
(E,k), is to consider the spectral-density representation of the time-dependent correlation function Cµν

s,2(t,k),

Cµν
s,2(t,k) = ∫

∞

E∗

dE′

2π
e−iE

′tρµν(E′,k) , (75)

where [E∗,∞) is the support of the spectral density ρµν(E′,k), and in our case E∗ =
√
m2

V0
+E2

γ with mV0 = 2mK .

Combining Eqs. (74) and (75) it follows that (see Ref. [8] for details)

Hµν

T̄s,2
(E,k) = lim

ε→0+
∫
∞

E∗

dE′

2π

ρµν(E′,k)
E′ −E − iε = PV∫

∞

E∗

dE′

2π

ρµν(E′,k)
E′ −E + i

2
ρµν(E,k) , (76)

where PV denotes the principal value of the integral. The Minkowski correlator Cµν
q,2(t,k) can always be analytically

continued to Euclidean spacetime. The Euclidean correlator C̄µν
s,2(t,k) ≡ C

µν
s,2(−it,k) is then related to the spectral

density ρµν(E′,k) via

C̄µν
s,2(t,k) = ∫

∞

E∗

dE′

2π
e−E

′tρµν(E′,k) . (77)

Since C̄µν
s,2(t,k) can be computed using Monte Carlo simulations, we have formally solved the problem of analytic

continuation; by inverting the relation in Eq. (77) to determine ρµν(E′) we can then obtain Hµν

T̄s,2
(E,k) using Eq. (76).

However, in order to determine ρµν(E′,k) using Eq. (77), an inverse Laplace transform of the Euclidean correlator
C̄µν

s,2(t,k) is required. This is a well-known ill-posed numerical problem when C̄µν
s,2(t,k) is only known on a finite set

of points in time and is affected by uncertainties, which is the typical situation encountered in a lattice calculation.
In Ref. [8] it has been proposed to use the −iε term appearing in the denominator of Eq. (76) as a regulator of the
problem by introducing the smeared amplitude Hµν

s,2(E,k; ε)

Hµν

T̄s,2
(E,k; ε) = ∫

∞

E∗

dE′

2π

ρµν(E′,k)
E′ −E − iε = ∫

∞

E∗

dE′

2π
K(E′ −E; ε)ρµν(E′,k) , (78)

where

K(x; ε) ≡ 1

x − iε =
x

x2 + ε2 + i
ε

x2 + ε2 . (79)

6 The two contributions are obtained by the replacements Jµ
em → Jµ

b
and Jµ

em → Jµ
s in Eqs. (68)-(70) (see Eq. (22)).

7 In the electroquenched approximation in which we work the Zweig-suppressed contributions from uū, dd̄ and cc̄ resonances are absent.
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The key point is that for non-zero values of ε, the kernel function K(x; ε) is smooth, and its convolution integral with
the spectral density ρµν(E′,k) can be evaluated, from the knowledge of C̄µν

s,2(t,k) only, using the Hansen-Lupo-Tantalo

(HLT) method introduced in Ref. [36] (see also Refs. [37–39] for recent applications of the method). The idea is to
numerically evaluate the smeared amplitude Hµν

T̄s,2
(E,k; ε) for finite values of the smearing parameter ε using the HLT

method (to be discussed in the next section), and then to extrapolate to ε = 0, exploiting the fact that (see Ref. [8] for
a proof)

Hµν

T̄s,2
(E,k; ε) =Hµν

T̄s,2
(E,k) +A(E,k)ε +O(ε2) . (80)

We stress that the problem of evaluating Hµν

T̄s
(E,k) is ill-posed only for E > E∗, i.e. if the inequality in Eq. (72) is

satisfied. Instead, for E < E∗, one can directly set ε = 0 in Eq. (76) (in this case the integrand is non-singular), and by
using

1

E′ −E = ∫
∞

0
dt e−(E

′−E)t (valid for E < E′) , (81)

one arrives at (see Ref. [8])

Hµν

T̄s,2
(E,k) = ∫

∞

0
dt eEt C̄µν

s,2(t,k) <∞ , (82)

which is the standard formula used to evaluate the form factors in absence of problems of analytic continuation (see
e.g. Eq. (21)) and the one we apply here to determine Hµν

Tb,2
(E,k).

To summarize, we evaluate the hadronic tensor Hµν

T̄
(p, k) in Eq. (66) as the sum of the following terms

Hµν

T̄
(p, k) ≡Hµν

T̄b
(E,k) +Hµν

T̄s
(E,k) , (83)

where

Hµν

T̄b
(E,k) ≡Hµν

T̄b,1
(E,k) +Hµν

T̄b,2
(E,k) , (84)

Hµν

T̄s
(E,k) ≡ lim

ε→0+
Hµν

T̄s,1
(E,k) +Hµν

T̄s,2
(E,k; ε) , (85)

and we have defined the first time ordering contribution as (q = b, s)

Hµν

T̄q,1
(E,k) ≡ ∫

0

−∞
dt eEt C̄µν

q,1(t,k) , C̄µν
q,1(t,k) ≡ C

µν
q,1(−it,k) , Cµν

q,1(t,k) ≡ ⟨0∣Jν
T̄ (0)J

µ
q (t,−k) ∣B̄s(0)⟩ , (86)

where the Euclidean correlator C̄µν
q,1(t,k) is the lattice input. On the lattice, because of the discretization of spacetime,

the relations above get slightly modified, as we will discuss in the next section.

A. Numerical results for F̄T

In order to evaluate the form factor F̄T we have performed simulations on a subset of the ensembles in Table I. These
are the B64 and D96 ensembles. The computations have been performed at all four values of xγ in Eq. (33) but only
at the following three values of the heavy quark mass,

mh

mc
≃ 1, 1.5, 2.5 . (87)

The reasons for reducing the number of ensembles and values of mh which we use are two-fold. Firstly, the use of the
spectral representation technique to overcome the difficulty in the continuation to Euclidean space is computationally
expensive and secondly the contribution to the differential rates from F̄T is small and so this form factor is not required
with the same precision as those studied in Section III.

Our strategy to compute F̄T consists in evaluating on the lattice the following three-point Euclidean correlation
function

Mµν

T̄q
(t, tsep,k) ≡ a3∑

x

⟨0∣Jµ
q (t + tsep,−k) Jν

T̄ (tsep) ϕ
†
Bs
(0,x)∣0⟩ q = s, b , (88)
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where ϕ†
Bs
(0,x) is the same interpolating operator as was used in Eq. (21), while tsep is the fixed time where the tensor

FCNC Jν
T̄
is inserted, which must be chosen large enough to ensure the dominance of the ground state. In the limit of

large tsep one has

Mµν

T̄q
(t, tsep,k) =

⟨B̄s(0)∣ϕ†
Bs
(0)∣0⟩

2mBs

e−mBs tsep (C̄µν
q (t) + . . .) , q = s, b , (89)

where the dots represent terms that are exponentially suppressed at large tsep, and

C̄µν
q (t,k) = θ(−t) C̄µν

q,1(t,k) + θ(t) C̄
µν
q,2(t,k) , q = s, b , (90)

where the correlators C̄µν
q,1(t,k) and C̄

µν
q,2(t,k) were introduced in the previous section.

Notice that the time t in the previous equations corresponds to the time separation between the electromagnetic and
tensor currents and is different from the time t introduced in Eq. (21). The choice of tsep has been adapted depending
on the contribution being considered. For q = b (and both t > 0 and t < 0) and for q = s, t < 0 we have chosen a large
tsep ≃ 2 fm, while for q = s and t > 0, which is the only contribution requiring the spectral density reconstruction method
of Eq. (78) and for which statistical accuracy is of the upmost importance 8, we have chosen tsep ≃ 1 fm, after checking
ground-state-dominance using the larger value tsep ≃ 1.7 fm. For the same reason, the inversions of the Dirac operator
for q = s and t > 0 have been performed using a number of stochastic sources which is eight times larger than that used
for q = b and q = s, t < 0.

We now discuss our determination of F̄T starting from the b-quark contribution F̄ b
T . In this case, since there is no

problem of analytic continuation, we proceed as in Eq. (74), and evaluate the hadronic tensor Hµν

T̄b
using 9

Hµν

T̄b
(E,k) = a

T /2−tsep
∑

t=−tsep
eEt C̄µν

b (t,k) , E =mBs −Eγ . (91)

For any simulated heavy-strange meson mass mHs the corresponding energy E in the previous equation is understood
to be

E =mHs −Eγ =mHs (1 −
xγ

2
) . (92)

From the knowledge of Hµν

T̄b
(E) we use Eq. (66) to determine the b-quark contribution F̄ b

T to the form factor F̄T . In

the rest frame of the decaying meson, and with our choice of the photon momentum (k = (0,0, kz)), the form factor
can be obtained using

F̄ b
T (xγ) = −

1

2kz
(H12

T̄b
(E,k) −H21

T̄b
(E,k)) , ∣kz ∣ = Eγ =mHs

xγ

2
. (93)

Our determination of F̄ b
T for the four different simulated values of xγ and for the three different heavy-strange meson

masses mHs , is shown in the left panel of Figure 12. The blue and red colors in the left panel correspond to our
results on the B64 and D96 ensemble, respectively. As the figure shows, we find that cut-off effects are very small, the
xγ behaviour is almost linear and the form factor decreases as the heavy-quark mass mHs increases. However, we
postpone the discussion of the extrapolation to the physical mass mBs to Section IVB, and concentrate here only on
the issue of the continuum extrapolation. Having only two lattice spacings available, and given the smallness of the
observed UV cut-off effects, we opt for extrapolating to the continuum limit at fixed mHs and xγ , employing either a
constant or linear Ansatz in a2. We then combine the results of the two extrapolations using the following criterion: if
the constant fit gives a χ2 smaller than two, we combine the results of the linear and constant fit using the weighted
average already illustrated in Eqs. (35)-(36) but using same weights for the linear and constant a2 extrapolation,
otherwise the final result is given by the result obtained using the linear a2 Ansatz. The result of the continuum-limit
extrapolation is illustrated in the right panel of Figure 12.

We now turn into the discussion of the more involved strange-quark contribution. In this case, as already discussed,
the form factor cannot be obtained as in Eq. (91) since

lim
T→∞

a
T /2−tsep
∑

t=−tsep
eEtC̄µν

s (t,k) =∞ , (94)

8 The statistical accuracy of the computed Mµν

T̄ ,q
(t, tsep,k) decreases as tsep increases.

9 With respect to Eq. (21), we have dropped the e−ET term, which is numerically negligible.
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FIG. 12: Left: values of F̄ b
T obtained on the B64 (blue data points) and D96 (red data points) ensembles as a function of xγ .

Right: results for F̄ b
T after extrapolation to the continuum as a function of xγ , obtained following the procedure described in the

text. The different symbols correspond to the different values of the simulated heavy quark mass mh.

due to the fact that for large and positive times t the correlation function behaves approximately as

C̄µν
s (t,k) ≃ e−E

∗t, E∗ < E . (95)

Our strategy to evaluate the contribution from the second time-ordering, which is the only one affected by the problem
of the analytic continuation, is to consider the smeared (or regularized) hadronic amplitude introduced in Eq. (78),
namely

Hµν

T̄s,2
(E,k; ε) = ∫

∞

E∗

dE′

2π
K(E′ −E; ε)ρµν(E′,k) , (96)

or equivalently, separating the real and imaginary part,

Re[Hµν

T̄s,2
(E,k; ε)] = ∫

∞

E∗

dE′

2π
KRe(E′ −E; ε)ρµν(E′,k) , KRe(x; ε) = Re[K(x; ε)] , (97)

Im[Hµν

T̄s,2
(E,k; ε)] = ∫

∞

E∗

dE′

2π
KIm(E′ −E; ε)ρµν(E′,k) , KIm(x; ε) = Im[K(x; ε)] , (98)

and then to perform the extrapolation to ε = 0. Eqs. (97) and (98) can be evaluated, from the knowledge of Cµν
s,2(t,k)

only, using the HLT method and we now briefly summarize the main ingredients of the procedure. To simplify the
notation, we concentrate directly on the Lorentz indices that are relevant for the determination of the form factor with
our choice of kinematics (decaying meson at rest, and k = (0,0, kz)), and define

C̄(t,k) ≡ 1

2
[C̄12

s (t,k) − C̄21
s (t,k)] , (99)

H2(E,k, ε) ≡
1

2
[H12

T̄s,2
(E,k, ε) −H21

T̄s,2
(E,k, ε)] , (100)

ρ(E′,k) ≡ 1

2
[ρ12(E′,k) − ρ21(E′,k)] . (101)

The final goal is to find, for fixed ε, the best approximation of the kernel functions KRe/Im(E′ −E; ε), in terms of the

basis function {e−aE′n}n=1,...,nmax , namely

KI (E′ −E; ε) ≃
nmax

∑
n=1

gI(n,E, ε) e−aE
′n ≡ K̃I (E′,E; ε)) , (102)

where I = {Re, Im}. In this way, once the coefficients gI are known, the smeared hadronic amplitude can be reconstructed,
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from the knowledge of C̄, using

H2(E,k; ε) ≡ ∫
∞

E∗

dE′

2π
ρ(E′,k)K(E′ −E; ε)

≃
nmax

∑
n=1
(gRe(n,E, ε) + igIm(n,E, ε))∫

∞

E∗

dE′

2π
e−aE

′nρ(E′,k)

=
nmax

∑
n=1
(gRe(n,E, ε) + igIm(n,E, ε)) C̄(na,k) . (103)

The problem of finding the coefficients gI presents a certain number of technical difficulties. Any determination of the
real and imaginary part of the smeared hadronic amplitude based on Eqs. (102) and (103) will inevitably be affected
by both systematic errors (due to the inexact reconstruction of the kernels) and statistical uncertainties (due to the
fluctuations of the correlator C̄(t,k)), which need to be simultaneously kept under control. The HLT method finds
an optimal balance between the size of the statistical and systematic errors. This is achieved by minimizing a linear
combination

WI[g] ≡
AI[g]
AI[0]

+ λB[g] , (104)

of the norm-functional

AI[g] = ∫
∞

Emin

dE′ ∣
nmax

∑
n=1

g(n)e−aE
′n −KI (E′ −E; ε) ∣

2

, (105)

which quantifies the difference between the approximated and the target kernel, and of the error-functional

B[g] = Bnorm

nmax

∑
n1,n2=1

g(n1) g(n2) Cov(an1, an2) , (106)

where Cov(an1, an2) is the covariance matrix of the correlator C̄(an), and Bnorm is a normalization factor introduced to
render the error-functional dimensionless. The algorithmic parameter Emin should only satisfy the constraint Emin < E∗,
and we choose Emin = 0.9

√
m2

ϕ +E2
γ . For each simulated value of xγ and mHs , we choose nmax by requiring that the

statistical error on the correlation function C̄(t,k) for all times t ≤ anmax must be smaller than 30%. The parameter λ
in Eq. (104) is the so-called trade-off parameter, and for a given value of λ, the minimization of the functional Wα

I [g]
gives the coefficients gλ

I . In the presence of statistical errors, the second term in Eq. (104) disfavours coefficients g
leading to too large statistical uncertainties in the reconstructed value of the smeared hadronic amplitude. The optimal
balance between having small statistical errors (small B[g]) and small systematic errors in the kernel reconstruction
(small AI[g]) can be achieved by tuning λ appropriately. This is done performing the so-called stability-analysis,
which is discussed in detail in Refs. [8, 37]. In brief, using the stability-analysis one monitors the evolution of the
reconstructed values of the real and imaginary part of H2(E,k; ε) as a function of λ. The optimal value, λ★, (which is
generally different for the real and imaginary parts) is chosen to be in the so-called statistically-dominated regime,
where λ is sufficiently small that the systematic error due to the kernel reconstruction is smaller than the statistical
one (in this region the results are therefore stable under variations of λ), but large enough to still have reasonable
statistical uncertainties. Finally, having determined the optimal value λ★, we repeat the calculation using a second
(smaller) value of λ = λ★★, which is determined by imposing the validity of the following condition

B[gλ★★

I ]
AI[gλ★★

I ]
= κ B[gλ★

I ]
AI[gλ★

I ]
, (107)

with κ = 10. Any statistically-significant difference between the values of the real and imaginary part of H2(E,k)
corresponding to the two choices λ = λ★ and λ = λ★★ is added as a systematic uncertainty in our final error. We refer
the reader to Ref. [37] for further details on this point.

At a finite lattice spacing, similarly to what had been done in Ref. [8], we adopt the kernel function

K(x; ε) = a

sinh [a(x − iε)] =
1

x − iε +O(a
2) , (108)
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which differs from the one in Eq. (79) only by O(a2) cut-off effects. A major difference in the analysis of H2(E,k)
compared to the strategy followed for Hµν

T̄b
(E,k) and Hµν

T̄s,1
(E,k), concerns the scaling of the energy E with the

heavy-strange meson mass, mHs . While the energy-scaling given by Eq. (92) leads to a smooth mass dependence for
the latter two contributions, this is not the case for H2(E,k): the main contributions to the spectral density ρ(E′,k)
are expected to depend on the position of the ϕ, ϕ(1680), ϕ(2170) (and possibly heavier) resonances. By scaling the
energy E according to Eq. (92), to our lightest simulated mass mHs =mDs would correspond an energy E smaller or
very close to that of one of the main ss̄ peaks. On the other hand, the energy E =mBs(1−xγ/2), corresponding to the
physical mass of the Bs meson, is much larger than the energy of such resonances. Since the behaviour of H2(E,k; ε)
below (or close to) the main ss̄ resonances is expected to be very different from the one at much larger energies of order
O(mBs), the mass scaling of H2(E,k; ε) that would result from the use of Eq. (92) is very complicated and difficult to
handle. At the same time setting E =mBs(1 − xγ/2) for all simulated mHs is problematic, as it leads to large cut-off
effects. For H2(E,k; ε) we thus chose to scale the energy E with the heavy-strange meson mass mHs according to

E(r) = (rmHs + (1 − r)mBs) (1 −
xγ

2
) . (109)

Note that any fixed r is allowed since

lim
mHs→mBs

E(r) =mBs (1 −
xγ

2
) , (110)

and for 0 ≤ r ≤ 1 one interpolates between the scaling in Eq. (92) (r = 1) and the case of a fixed energy E =mBs(1−xγ/2)
(r = 0). For each xγ we tune the value of r in such a way that for mHs =mDs , since mHs(1 − xγ/2) is the closest to
the resonance region, the corresponding energy E(r) is above that of the main ss̄ peaks, and at the same time small
enough to avoid large cut-off effects. We choose r = 0.65, 0.60, 0.57, 0.55, respectively for xγ = 0.1, 0.2, 0.3 and 0.4 for all
three values of mHs . Finally, we define the smeared form factor as

F̄ s
T (xγ ; ε) ≡ −

H(E,E(r),k; ε)
kz

, k = (0,0, kz) , (111)

H(E,E(r),k; ε) =H(0,k) + Hsub
1 (E,k) + Hsub

2 (E(r),k; ε) , (112)

where

H(0,k) = a
T /2−tsep
∑

t=−tsep
C̄(t,k) , Hsub

1 (E,k) = a
0

∑
t=−tsep

(eEt − 1) C̄(t,k) (113)

Hsub
2 (E(r),k; ε) = H2(E(r),k; ε) −H2(0,k; 0) . (114)

In the combined mHs →mBs and ε→ 0 limits, the smeared form factor tends to F̄ s
T (xγ). The zero-energy subtraction

allows us to define the contributions from the two time-orderings in such a way that cut-off effects start at order O(a2)
for both time-orderings. This is because they both are now free of the contact term C̄(0,k). This contact term does
not belong to either the first or second time ordering, and cannot be simply removed as this generates O(a) cut-off
effects. Since H2(E(r),k; ε) is evaluated via the HLT reconstruction method using the kernel function in Eq. (108),
to avoid the presence of O(a) cut-off effects also H2(0,k,0) is evaluated via the HLT method using the same type
of kernel function. Being able to define the two time-orderings separately turns out to be useful if a model for the
spectral density ρ(E′,k) is used to perform the ε→ 0 extrapolation, as will be discussed below.
In the plot of Figure 13, we give an example of the stability analysis in the case of the lowest simulated quark

mass, and for xγ = 0.1 and ε ≃ 1.4 GeV. In the figure we show the real and imaginary part of the smeared form factor
F̄ s
T (xγ ; ε), obtained employing different values of the trade-off parameter λ. The results are shown as a function of

AI[gλ]/AI[0] which is a measure of the goodness of the reconstruction. When the systematic error due to the inexact
kernel reconstruction becomes smaller than the statistical uncertainty, the reconstructed smeared form factor is stable
under variation of λ. In this region we determine λ★ and λ★★ which are given respectively by the red and blue data
points in the figure. The reconstructed kernel functions corresponding to our choice of λ★ are then shown in Figure 14.

We have repeated the analysis for different values of ε and for all simulated xγ and mHs . The smearing parameter
ε cannot be however reduced arbitrarily since the uncertainties on F s

T̄
(xγ ; ε) generally increase as ε decreases, and

at the same time the reconstruction of the kernel function becomes poorer. The smallest value of ε for which the
errors are still under control is determined by both the statistical uncertainties on C̄(t,k) and by the size nmax of the
exponential basis.



25

-0.0345
-0.034

-0.0335
-0.033

-0.0325
-0.032

-0.0315
-0.031

-0.0305
-0.03

-0.0295

0.01 0.1

mh = mc, xγ = 0.1, ε ≃ 1.4 GeV

0.037
0.038
0.039
0.04

0.041
0.042
0.043
0.044
0.045

0.001 0.01

R
e[
F̄
s T
(x

γ
;ε
)]

ARe[g
λ]/ARe[0]

Im
[F̄

s T
(x

γ
;ε
)]

AIm[g
λ]/AIm[0]

FIG. 13: The real (left panel) and imaginary (right panel) part of the form factor F̄ s
T (xγ ; ε) on the B64 ensemble, for the lowest

simulated value of mh =mc, and for ε ≃ 1.4 GeV and xγ ≃ 0.1, as a function of the ratio AI[gλ]/AI[0] indicating the quality of
the kernel reconstruction obtained employing different values of λ. The plot shows an example of our stability analysis. The red
and blue data points in both panels correspond to the reconstructions obtained for λ = λ★ and λ = λ★★, respectively.
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In the plots of Figures 15 and 16 we show the ε-behaviour of the real and imaginary parts of the smeared form factors
for the different simulated heavy-strange meson masses mHs , and for the smallest (0.1) and largest (0.4) simulated
values of xγ . In the figure we show the results obtained on both the B64 and D96 ensembles. Few comments are in
order. First of all the observed cut-off effects are smaller or of the same size of the statistical error for all contributions,
with the exception of F̄ s

T (xγ ; ε) for mHs ≃ 1.78mDs . Such behaviour can be expected since larger masses correspond to

higher energies E(r). In addition, we observe that both the real and imaginary part of F̄ b
T (xγ) decrease in magnitude

as mHs increases.

We extrapolate the smeared form factor F̄ s
T (xγ ; ε) to the continuum limit at fixed ε, xγ and mh, following the same

procedure used for F̄ b
T (xγ). Next we perform the ε→ 0 extrapolation at fixed xγ and mh, which is the most delicate

step of the analysis. As already stated, using the kernel function K(x; ε) = (x − iε)−1, the leading corrections to the
ε = 0 limit are expected to be of the form

F̄ s
T (ε) = F̄ s

T +A1 ε +A2 ε
2 +O(ε3) , (115)

and in the following we indicate by asymptotic regime, the regime in which the corrections to the vanishing-ε limit can
be described by a low-degree polynomial in ε. The onset of the asymptotic regime for H2(E,k; ε) at a given energy
E, as discussed in detail in Ref. [8], depends on the (unknown) typical size, ∆(E), of the interval around E in which
H2(E,k) is significantly varying. Parametrically one must then have ε ≪ ∆(E) and at the same time ε ≫ 1/L to
avoid large FSEs. Assuming that H2(E,k) is dominated by the contribution from a single resonance, which at fixed
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xγ and mHs we approximate with a Breit-Wigner distribution centered at M and of width Γ, i.e.

H2(E,k) ≃HBW
2 (E) = R

M −E − iΓ
2

Ô⇒ H2(E,k; ε) ≃
R

M −E − i(Γ
2
+ ε)

, (116)

then within this approximation we have ∆(E) =
√
(E −M)2 + Γ2/4 . In our case the energy E is given for each xγ

and mHs by E(r) in Eq. (109), and it ranges from E(r) ≃ 3GeV at the lowest mass mHs = mDs to E(r) ≃ 4GeV
at mHs ≃ 1.78mDs . The peaks of the main ss̄ resonances, the ϕ, ϕ(1680) and ϕ(2170), are at M ≃ 1,1.7,2.2 GeV
respectively, with a mild dependence on the value of ∣k∣. In our computations we have ε ≃ O(1GeV) or higher and it
is not clear whether such values of ε are in the asymptotic regime, despite an approximate linear scaling in ε being
observed in Figure 15 and 16. To account for this source of systematic error we proceed as follows: we first carry out
the extrapolation to ε = 0 assuming that the observed behaviour is the asymptotic scaling, and perform a polynomial
extrapolation in ε (in practice, as explained below, we perform a quadratic extrapolation in ε, unless there is no signal
of a ε2 term, in which case we perform a linear extrapolation). In addition to the polynomial extrapolation, we follow
a second approach, performing the vanishing-ε extrapolation assuming the following model for the spectral density

ρmod(E′,k) = ∑
n=1,2,3

θ(Eθ −E′)
Rn(k)Γn

(En(k) −E′)2 + (Γn

2
)2
+ θ(E′ −Eθ(k))

D(k)
(E′)z , En(k) =

√
M2

n + ∣k∣2 . (117)

with z = 1/2,1, and where Mn and Γn are the mass and the decay width of the ϕ, ϕ(1680) and ϕ(2170) resonances
respectively for n = 1,2,3, which we take from the PDG[10]. The last term in Eq. (117) mimicks the continuum
behaviour at large energies starting at a threshold Eθ(k) > E3(k), and is compatible with the physical constraint
limE′→∞ ρ(E′,k) = 0. 10. For any fixed values of xγ and mHs , our model for the spectral density contains four free
real parameters: the three amplitudes R1(k), R2(k), R3(k), and the threshold energy Eθ(k). The parameter D(k) is
instead determined by the requirement that the spectral density is continuous at E′ = Eθ(k). The smeared hadronic
amplitude Hmod

2 (E,k; ε) associated with ρmod(E′,k) is then given by the convolution of ρmod(E′,k) with the kernel
function K(E −E′; ε). Finally, we can use Hmod

2 (E′,k; ε) to obtain the corresponding model smeared form factor,

F̄ s,mod
T (xγ ; ε) ≡ −

Hmod(E,E(r),k; ε)
kz

, (118)

Hmod(E,E(r),k; ε) ≡Hmod
2 (E(r),k; ε) −Hmod

2 (0,k; 0) +Hsub
1 (E,k) +H(0,k) . (119)

In Figure 17 we show the results of the polynomial extrapolation to vanishing ε, which we perform separately for
each xγ and mHs . In the figure we show, as an illustration, the results obtained for xγ = 0.1 and 0.4. The extrapolation
has been carried out using the following Ansatz for the smeared form factor

F̄ s
T (ε) = A +A1 ε +A2 ε

2 , (120)

where A,A1 and A2 are complex-valued free fit parameters, which are different for each xγ and mHs . In order to
avoid overfitting, for those cases when there is no signal of ε2-dependence visible in the data, we have set A2 = 0.
We have minimized a χ2-function constructed without taking into account the correlation between the values of the
smeared form factors corresponding to different ε, since they are too correlated, and the resulting correlation matrix is
ill-conditioned. In this way, the reduced χ2 resulting from the minimization, which is always well below one, cannot
be taken as a quantitative measure of the quality of the fit. To estimate the systematic error of the polynomial
extrapolation, we have also performed for all the cases a second fit, linear in ε, using only the five smallest simulated
values of ε. Any statistically-significant deviation from the results obtained in the fit with all simulated values of ε
included (i.e. those whose resulting best-fit functions are given by the coloured bands of Figure 17) is then added as a
systematic error. In Figure 17 the data points at ε = 0 correspond to our final results from the polynomial extrapolation,
after including the systematic error determined following the procedure described above. As is clear from the figure the
real and imaginary part of the form factor F̄ s

T (xγ) decrease in magnitude as the mass mHs increases, and already for
mHs ≃ 1.78mDs they are both one order of magnitude smaller than the tensor form factors FTV and FTA determined
in the previous section.
As discussed above, since the simulated values of ε may not be in the asymptotic regime, we have also performed

non-polynomial extrapolations in ε using the model in Eq. (117) with z = 1/2 and z = 1. The fits have been performed

10 The spectral density must vanish in the infinite-energy limit in order to have a finite Re[H2(E,k; ε)].
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FIG. 17: The extrapolation in ε of the real (top panels) and imaginary (bottom panels) components of the smeared form factors,
using the Ansatz in Eq. (120). For those cases when no ε2-dependence is visible in the data, we have set A2 = 0. The different
colours correspond to the three different values of mHs and the corresponding bands are the best-fit functions obtained from the
fits with all values of ε included. The left and right panels correspond to xγ = 0.1 and xγ = 0.4 respectively. The data points at
ε = 0 (which in the figures are slightly shifted horizontally for better visualization) correspond to our final results after including
the systematic error, determined as discussed in the text.

imposing Gaussian priors on all four fit parameters. The prior corresponding to the amplitude R1(k) of the ϕ resonance
is

R1(k) = ⟨R1(k)⟩ (1 ± 0.1) , (121)

where ⟨R1(k)⟩ has been estimated from an effective residue analysis of the correlation function C̄(t,k) at large times.
We use ⟨R1(k)⟩/∣k∣ = −0.045,−0.042,−0.040 GeV, respectively for mHs/mDs ≃ 1,1.27,1.78. The priors corresponding
to the two amplitudes R2(k) and R3(k) are instead

R2(k) =
⟨R1(k)⟩

2
(1 ± 1) , R3(k) =

⟨R1(k)⟩
2

(1 ± 1) , (122)

i.e. we assume that, within one standard deviation, they are at most of the same size as the contribution from the ϕ
resonance. Finally the prior on the threshold parameter Eθ(k) is

Eθ(k) = E3(k) + (0.5 ± 0.5) GeV , (123)

i.e. we assume that the onset of the perturbative regime occurs at an energy which is O(ΛQCD) larger than that of the
heaviest known ss̄ resonance. We have found that both values of z describe the data well at all masses and xγ .

11

For the real part of F̄ s
T (xγ), the results of the extrapolation to ε = 0, obtained using the model with either z = 1/2 and

1 are in good agreement with those of the polynomial extrapolation. For the imaginary part, instead, we find that the

11 Additionally, we have tried to fit our data using the model in Eq. (117) with z = 2, but found that it does not provide an equally good
description of the smeared form factor.
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FIG. 18: Comparison between the results from the polynomial extrapolation (given by the red band), and those obtained fitting
the smeared form factor using the model in Eq. (117) with z = 1/2 (given by the green band) and z = 1 (given by the blue band).
The top panels correspond to xγ = 0.1, mHs =mDs , while the bottom panels to xγ = 0.1, mHs ∼ 1.78mDs .

model results (in particular for z = 1/2) are significantly smaller than those obtained from the polynomial extrapolation.
The comparison is shown in Figure 18, for the case xγ = 0.1 and for both mHs = mDs and mHs ∼ 1.78mDs . All the

other cases are very similar. The lower value obtained for Im[F̄ s
T (xγ)] assuming the model ρmod(E′,k) for the spectral

density, could be due to the fact that at the simulated values of ε, the imaginary part of the kernel function still has a
sizeable overlap with the peaks of the nearby resonances (e.g. the ϕ(2170) resonance). In this case, the imaginary
part of the smeared form factor, Im[F̄ s

T (xγ ; ε)], is expected to decrease in value for smaller, presently unreachable,
values of ε. This behaviour cannot be captured by the polynomial extrapolation, but is in-built in our model for the
spectral density. To have a realistic estimate of the systematic uncertainty for F̄ s

T (xγ ; ε), we average the results of the
polynomial and model-dependent extrapolation with z = 1/2, and include a systematic error equal to half the difference
between the two results.

B. Extrapolating F̄T to the mass of the physical Bs-meson

We now discuss the extrapolation of the form factor F̄T to the mass of the physical Bs-meson. We start from the
b-quark contribution F̄ b

T (xγ), which we determined for three values of the heavy-strange meson mass mHs/mDs ≃ 1, 1.27
and 1.78 as shown in the right panel of Figure 12. To perform the mass extrapolation we make use of a phenomenological
VMD-inspired Ansatz to describe the combined xγ and mHs dependence of the form factor. At the physical Bs mass

point, the form factor F̄ b
T (xγ) is expected to be dominated by the contributions of neutral, JP = 1−, bb̄ resonance

states (e.g. Υ(1S), Υ(2S), Υ(3S), . . .). The contribution to the form factor F̄ b
T (xγ) of a given vector resonance

state containing an heavy quark (h) and an heavy anti-quark (h̄), for a given value of mHs , and approximating the
resonance as a stable state, is of the form

F̄ b
T,n(xγ) =

qb fnmn g
+
n(0)

En(En +Eγ −mHs)
+ regular terms , (124)
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FIG. 19: Extrapolation to mBs of the form factor F̄ b
T (xγ) using the Ansatz in Eq. (129). The red, blue and green bands

correspond to the best fit-function obtained for mHs/mDs ≃ 1,1.27,1.78, respectively. The magenta band correspond to our final
result for F̄ b

T at mHs =mBs .

where En =
√
m2

n +E2
γ , and mn and fn are respectively the mass and the electromagnetic decay constant of the vector

resonance. The latter is defined through

⟨0∣h̄γµh∣n(−k, η)⟩ = ηµ fnmn , (125)

where ∣n(−k, η)⟩ is the vector resonance state with given polarization η. The coupling g+n(0) is defined by [4]

⟨n(−k, η)∣ s̄σµνh ∣H̄s(0)⟩ = iη∗βϵµνβγ [g+n(p2γ)(p + qn)γ + g−n(p2γ)(p − qn)γ] + ig0n(p2γ)(η∗ ⋅ p)ϵµνβγpβqn,γ , (126)

with qn = (En,−k), pγ = p − qn . In the heavy-quark limit, mh →∞, the following scaling laws hold

fn ∝
1
√
mh
+ . . .∝ 1

√
mHs

+ . . . , mn

mHs

= 2 + Λn
T

mHs

+ . . . , (127)

where Λn
T ≃ O(ΛQCD), and the ellipses represent higher-order terms in the heavy-quark expansion. In light of the

previous relations F̄ b
T,n(xγ) can be further approximated with

F̄ b
T,n(xγ) =

qb
mHs

fn g
+
n(0)

1 + xγ

2
+ Λn

T

mHs

(1 +O (xγ ,
ΛQCD

mHs

)) . (128)

Our strategy to extrapolate F̄ b
T (xγ) to the physical mass mBs , consists in approximating the tower of contributions of

type 124, with a single effective pole. This is achieved through the use of the following fit Ansatz for the combined
mass and xγ dependence of the form factor

F̄ b
T (xγ ,mHs) =

1

mHs

A +Bxγ
1 + xγ

2
+ ΛT

mHs

, (129)

where A,B and ΛT are free fit parameters, and the effective-pole mass is meff = 2mHs +ΛT . We assume that A and B
are mass-independent, which is consistent with our data, as illustrated below12.
Using the Ansatz in Eq. (129) we have performed a combined fit of the xγ and mHs dependence of our data.

The total number of measurement entering the χ2 minimization is 12, and the number of fit parameters is 3. The
χ2/dof resulting from the minimization is very good and well below unity, although in this case we have employed an
uncorrelated χ2 function, since we find that the covariance matrix is ill-conditioned. To illustrate the quality of the fit,

12 The Ansatz in Eq. (129) assumes that g+n ∝
√
mHs for which however we are not aware of any formal proof in the HQET.
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xγ

0.1 0.2 0.3 0.4

F̄ b
T 0.028(1) 0.026(1) 0.025(1) 0.0239(9)

TABLE IV: Our results for the form factor F̄ b
T extrapolated to the physical mass mBs , for the four simulated values of

xγ = 0.1,0.2,0.3,0.4.
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FIG. 20: Mass dependence of the real (left panel) and imaginary (right panel) part of F̄ s
T (xγ) for the four simulated values of xγ .

The data points corresponding to the four simulated values of xγ have been slightly shifted horizontally for better visualization.
The data point in magenta corresponds to our final (conservative) estimate for F̄ s

T (xγ) at the physical mass mHs =mBs .

we show in Figure 19 the best-fit functions obtained from the global fit. As is clear from the figure, the VMD-inspired
Ansatz perfectly captures both the mass and xγ behaviour of our data. The resulting value of the parameter ΛT is

ΛT = −0.32 (11) GeV , (130)

which implies that at the physical Bs mass the effective pole is located at meff = 10.4 (1)GeV, i.e. around the mass of
the Υ(2S) resonance. To check for possible systematic errors due to the mass extrapolation we have repeated the fit
setting to zero the parameter B in Eq. (129). However, we did not find significant differences within uncertainties.
The magenta band in Figure 19 correspond to our final result for F̄ b

T (xγ) at mHs =mBs . This contribution turns out
to be small compared to the tensor form factors FTV (xγ) and FTA(xγ) described in Section III B, which are more

than one order of magnitude larger. In Table IV we give our results for F̄ b
T extrapolated at the physical mass mBs , for

the four simulated values of xγ .
We now turn into the discussion of the mass extrapolation of F̄ s

T (xγ). In this case the uncertainties are significantly

larger than those affecting F̄ b
T (xγ). Moreover, after including the systematic errors due to the ε → 0 extrapolation,

only a very smooth xγ-dependence is visible in the data within uncertainties. This is shown in Figure 20, where we plot
the real and imaginary part of F̄ s

T (xγ) as a function of 1/mHs for all simulated values of xγ . As is clear from the figure,
both the real and imaginary part of F̄ s

T (xγ) decrease as mHs increases. This is expected since the form factor vanishes
in the static limit. In this case, to have a conservative error estimate, we take the results at the largest simulated
mass mHs ≃ 1.78mDs as a bound for the value of the form factor at the physical point, mHs =mBs . Since no clear
xγ-dependence is visible in the data, we associate the same central value and errors to all xγ . Our final determination
is

Re[F̄ s
T (xγ)] = −0.019(19) , Im[F̄ s

T (xγ)] = 0.018(18) , (131)

which correspond to the data points in magenta in the panels of Figure 20.

V. THE Bs → µ+µ−γ DECAY RATE

The doubly-differential cross section for the Bs → µ+µ−γ decay can be written as

d2Γ

dxγ d(cos θ)
= d2Γ(PT)

dxγ d(cos θ)
+ d2Γ(INT)

dxγ d(cos θ)
+ d2Γ(SD)

dxγ d(cos θ)
, (132)
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where the superscript (PT) refers to the point-like contribution (which becomes negligible for large xγ), (SD) labels
the structure-dependent contribution and (INT) labels the contribution from the interference between the point-like
and structure-dependent terms in the amplitude. In Eq. (132) θ is the angle between the three-momenta of the µ+ and
the photon in the rest frame of the µ+µ− pair. Recalling that xγ = 2p ⋅ k/mBs

, cos θ is written in terms of Lorentz
invariant quantities in Eq. (135) below. We now present the expressions for the three terms on the right-hand side
of Eq. (132), neglecting the contributions from O1−6,8 except for the charming penguin diagram in Figure 4 which is

included in the effective Wilson coefficient Ceff
9 .

The structure-dependent contribution, which depends quadratically on the form factors, can be written as [4] 13

d2Γ(SD)

dxγ d(cos θ)
=
G2

F α
3
emm

5
Bs

210 π4
∣Vtb V ∗ts∣

2
J(xγ) [x2γ B0 (xγ) + xγ ξ (xγ , t̂) B̃1 (xγ) + ξ2 (xγ , t̂) B̃2 (xγ)] , (133)

where t̂ = (p − p1)2/m2
Bs

and p1 is the momentum of the µ+ lepton. The function ξ(xγ , t̂) is defined as

ξ(xγ , t̂) = xγ + 2m̂2
µ − 2t̂ , (134)

where m̂µ =mµ/mBs

14, in terms of which the angle θ is given by

cos θ = ξ(xγ , t̂)
xγ
√
1 − 4m̂2

µ/(1 − xγ)
. (135)

The Jacobian J(xγ) is

J(xγ) =
xγ

2

¿
ÁÁÀ1 −

4m̂2
µ

1 − xγ
. (136)

Finally the functions B0(xγ), B̃1(xγ) and B̃2(xγ) are as follows:

B0 (xγ) = (1 − xγ + 4m̂2
µ) (F1 (xγ) + F2 (xγ)) − 8m̂2

µ ∣C10(µ)∣2 (F 2
V (xγ) + F 2

A (xγ)) , (137)

B̃1 (xγ) = 8 [(1 − xγ)FV (xγ)FA(xγ)Re (Ceff ∗
9 (µ,xγ)C10(µ))

+ m̂b FV (xγ)Re (C∗7 (µ)F eff∗
TA (xγ)C10(µ)) + m̂b FA(xγ)Re (C∗7 (µ)F eff∗

TV (xγ)C10(µ)) ] , (138)

B̃2 (xγ) = (1 − xγ) (F1 (xγ) + F2 (xγ)) , (139)

where m̂b =mb/mBs ,

F1 (xγ) = (∣Ceff
9 (µ,xγ)∣

2 + ∣C10(µ)∣2)F 2
V (xγ) + (

2m̂b

1 − xγ
)
2

∣C7(µ)F eff
TV (xγ)∣

2
(140)

+ 4m̂b

1 − xγ
FV (xγ)Re (C7(µ)F eff

TV (xγ)Ceff ∗
9 (µ,xγ)) ,

F2 (xγ) = (∣Ceff
9 (xγ , µ)∣

2 + ∣C10(µ)∣2)F 2
A(xγ) + (

2m̂b

1 − xγ
)
2

∣C7(µ)F eff
TA(xγ)∣

2
(141)

+ 4m̂b

1 − xγ
FA(xγ)Re (C7(µ)F eff

TA(xγ)Ceff ∗
9 (µ,xγ)) (142)

13 In Ref. [4] the authors chose ŝ = (p − k)2/m2
Bs
= 1 − xγ and t̂ = (p − p1)

2/m2
Bs

, where p1 is the four-momentum of the µ+, as the

independent variables. We choose xγ and cos θ and J(xγ) is the Jacobian relating the two sets of variables.
14 ξ(xγ , t̂) can also be written as û − t̂, where û = (p − p2)

2/m2
Bs

and p2 is the momentum of the µ−.
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Vcc̄ MVcc̄ [GeV] Γ [MeV] B(Vcc̄ → µ+µ−)
J/ψ 3.096900(6) 0.0926(17) 0.05961(33)

Ψ(2S) 3.68610(6) 0.294(8) 8.0(6) ⋅ 10−3
Ψ(3770) 3.7737(4) 27.2(1.0) ∗9.6(7) ⋅ 10−6
Ψ(4040) 4.039(1) 80(10) ∗1.07(16) ⋅ 10−5
Ψ(4160) 4.191(5) 70(10) ∗6.9(3.3) ⋅ 10−6
Ψ(4230) 4.2225(24) 48(8) 3.2(2.9) ⋅ 10−5
Ψ(4415) 4.421(4) 62(20) 2(1) ⋅ 10−5
Ψ(4660) 4.630(6) 72+14−12 not seen

TABLE V: Masses, decay widths and branching fractions into a µ+µ− pair for the lowest-lying charmonium resonances
Vcc̄ [10]. For some of the charmonium resonances, in absence of information on the branching into µ+µ−, we provide
the branching into e+e−, which is expected to provide a good approximation of B(Vcc̄ → µ+µ−) given that
MVcc̄ ≫mµ,me. In those cases where the branching into e+e− is given, the numerical value of the branching is
preceded by an asterisk. For the last resonance in the table, the Ψ(4660) resonance, neither the branching into e+e− or
µ+µ− has been measured, and we input the fiducial value B(Ψ(4660)→ µ+µ−) = 1(1) ⋅ 10−5.

and

F eff
TV (xγ) = FTV (xγ) + F̄T (xγ) , (143)

F eff
TA(xγ) = FTA(xγ) + F̄T (xγ) . (144)

The interference and point-like contributions are given by

d2Γ(INT)

dxγ d(cos θ)
= −

G2
F α

3
emm

5
Bs

210 π4
∣Vtb V ∗ts∣

2 16 fBs

mBs

m̂2
µJ(xγ)

x2γ

(xγ + m̂2
µ − t̂)(t̂ − m̂2

µ)
×

⎡⎢⎢⎢⎢⎣

2xγm̂b

1 − xγ
Re (C∗10(µ)C7(µ)F eff

TV (xγ)) + xγ FV (xγ)Re (C∗10(µ)Ceff
9 (µ,xγ)) + ξ(xγ , t̂)FA(xγ) ∣C10(µ)∣2 ] (145)

and

d2Γ(PT)

dxγ d(cos θ)
=
G2

F α
3
emm

5
Bs

210 π4
∣Vtb V ∗ts∣

2 (8 fBs

mBs

)
2

m̂2
µ ∣C10(µ)∣2 J(xγ)[

1 − xγ + x2γ/2
(xγ + m̂2

µ − t̂)(t̂ − m̂2
µ)
−

⎛
⎝

xγ m̂µ

(xγ + m̂2
µ − t̂) (t̂ − m̂2

µ)
⎞
⎠

2

] . (146)

In the following we will use the Wilson coefficients evaluated in the MS scheme at the scale µ = 5GeV, which
corresponds to the same scheme and scale at which we calculated the tensor form factors. In the calculation of the rate
we input the value mb =mb(5GeV) = 4.073(11)GeV obtained from mb(mb) = 4.203(11)GeV [40] using the four-loop
quark-mass anomalous dimension [41].

We now discuss our strategy for estimating in a conservative way the systematic error due to the charming-penguin
diagram in Figure 4, corresponding to the emission of the µ+µ− pair from the cc̄ loop. As already discussed in
Section II, this contribution can be written as a process and q2 =m2

Bs
(1− xγ) dependent shift of the Wilson coefficient

C9 → Ceff
9 (q2) = C9 +∆C9(q2), and we rely on the phenomenological parameterization in Eq.(17) which we rewrite

here for convenience,

∆C9(q2) = −
9π

α2
em

(C1 +
C2

3
)∑

V

∣kV ∣eiδV
mV B(V → µ+µ−)ΓV

q2 −m2
V + imV ΓV

. (147)

The values of the parameters mV ,ΓV ,B(V → µ+µ−) are known experimentally for the lowest-lying resonances, and are
collected in TableV. Instead, the value of the coefficients ∣kV ∣ and the phases δV are largely unknown: δV = ∣kV ∣− 1 = 0
only holds in the factorization approximation. In order to estimate the systematic error induced in the parameterization
of Eq. (147) by the poor knowledge of some of the parameters, we follow a (conservative) procedure similar to the
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FIG. 21: Our determination of the differential branching dB/dxγ for xγ ∈ [0.025,0.4]. We give separately the point-like
(light-green band), interference (light-blue band), and structure-dependent (light-red band) contributions. The blue and red bands
correspond respectively to the determination of the interference and structure-dependent contribution obtained neglecting the
charming-penguin diagrams.

one adopted in Ref. [5]. We assume for each resonance the value ∣kV ∣ = 1.75(0.75)15, and that the phases δV are
completely unknown. Furthermore we assume that the resonance parameters are completely uncorrelated. To correctly
propagate the uncertainty on ∣kV ∣ and δV , as well as the one coming from all other input parameters (e.g. from the
CKM matrix elements ∣Vtb∣ and ∣Vts∣), we generate a large bootstrap sample of size Nb = O(1000) (and we assume
that the parameters δV are uniformly distributed in the interval [0,2π)), and repeat the calculation of the rate for
each bootstrap value of the input parameters. Central values and standard errors are then obtained from the usual
bootstrap average and dispersion formulae.

For the Wilson coefficients we take the values from Ref [9], which in the basis of operators which we use, correspond
to

C1(5GeV) = 0.147 , C2(5GeV) = −1.053 , C7(5GeV) = 0.330 , C9(5GeV) = −4.327 , C10(5GeV) = 4.262 ,
(148)

and for the remaining input parameters we take [10]

∣Vtb∣ = 1.014(29) , ∣Vts∣ = 4.15(9) × 10−2 , τBs = 1.521(5) × 10−12 s , (149)

where τBs
is the average between the lifetimes of the BsH and BsL mesons, which are the mass eigenstates of the

Bs − B̄s system. The Wilson coefficients computed in Ref. [9] include next-to-leading logarithm corrections. This
has a particularly large relative effect on C1 which is reduced by approximately 40% compared to the leading
logarithmic result [43, 44], and subsequently on the magnitude of the combination C1 +C2/3 entering the charming-
penguin parameterization in Eq. 147, which is increased by more than 60%. In the plot of Figure 21 we provide our
determination of the differential branching fraction

dB
dxγ

≡ τBs

dΓ

dxγ
, (150)

as a function of xγ ∈ [0.025, 0.4]. We give separately the point-like, interference, and structure-dependent contributions.
As the figure shows the point-like contribution becomes subleading for xγ ≳ 0.15, while the interference contribution
turns out to be orders of magnitude smaller than the structure-dependent one on the entire range of xγ explored. At

15 It has been found [42] that ∣kV ∣ ≃ 2.5 well describes the B →Kµ+µ− experimental data. The 1σ interval we choose for ∣kV ∣ thus spans
the region between ∣kV ∣ = 2.5 and ∣kV ∣ = 1 which corresponds to the value obtained in the factorization approximation.
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FIG. 22: Our determination of the IR-finite structure-dependent (BSD(xcutγ ), red band) and interference (BINT(xcutγ ), blue
band) contributions to the partial branching fractions B(xcutγ ). The vertical blue line corresponds to the experimental cut imposed
on the photon energy by the LHCb collaboration in Refs. [1, 2].

large xγ ≳ 0.2, the uncertainty stemming from the missing charming-penguin contributions is dominant over all other
sources of uncertainties, and therefore in order to improve the precision of the differential branching at large xγ a
rigorous treatment of the charming penguin diagrams is necessary.

We now proceed to discuss the determination of the total branching fraction

B(xcutγ ) = ∫
xcut
γ

0
dxγ

dB
dxγ

, (151)

as a function of the upper bound Ecut
γ =mBsx

cut
γ /2 on the measured photon energy. As is well known, B(xcutγ ) suffers

from an infrared divergence generated by the point-like contribution to dB/dxγ which at small xγ behaves as 1/xγ . The
infrared divergence appearing in the decay rate with a real photon in the final state is then cancelled by the O(αem)
virtual photon contribution to the Bs → µ+µ− decay amplitude, through the usual Block-Nordsieck mechanism [45]. The
interference (BINT(xcutγ )) and structure-dependent (BSD(xcutγ )) contributions are instead IR finite. In the experimental
analysis made by the LHCb Collaboration in Refs. [1, 2] the point-like contribution (called the final-state-radiation
(FSR) contribution in Refs. [1, 2]) has been included in the analysis of the Bs → µ+µ− invariant-mass distribution, as a
radiative tail. For the IR-finite structure-dependent contribution (called the initial-state-radiation (ISR) contribution
in Refs. [1, 2]) LHCb quotes the following upper-bound

BLHCb
SD (0.166) < 2 × 10−9 . (152)

In agreement with our results, the interference contribution has been instead considered negligible in Refs. [1, 2] on
the basis of the results of Ref. [4] obtained using the relativistic dispersion approach. In Figure 22 we provide our
determination of the IR-finite structure-dependent (BSD(xcutγ )) and interference (BINT(xcutγ )) contributions to B(xcutγ ).
The blue vertical line corresponds to the experimental cut xcutγ ≃ 0.166 adopted in the experimental result of Eq. (152).

For xcutγ = 0.166 we obtain

BSD(0.166) = 6.9(9) × 10−11 , (153)

while the interference contribution is completely negligible. Our result is well within the bound set by the LHCb
Collaboration (Eq. (152)). In Table VI we collect our results for the sum BSD+INT(xcutγ ) ≡ BSD(xcutγ ) +BINT(xcutγ ) of
the interference and structure dependent contribution to the partial branching fraction, for different values of xcutγ .
We can further compare our results with the ones obtained using the model-dependent determination of the form

factors FV , FA, FTV and FTA from Refs. [3–5]. The results of the comparison are shown in Figure 23. As the figure
shows, our results for BINT+SD are smaller than those obtained using the form factors from Ref. [3], and larger than
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√
q2cut [GeV] =mBs

√
1 − xcut

γ

4.1 4.2 4.3 4.4 4.5 4.6

BSD+INT × 1010 6.1(2.1) 5.3(1.7) 3.99(88) 3.31(74) 2.57(50) 2.02(39)

4.7 4.8 4.9 5.0 5.1 5.2

BSD+INT × 1010 1.47(22) 1.04(14) 0.685(90) 0.399(55) 0.188(29) 0.057(12)

TABLE VI: Our results for the partial branching fraction BSD+INT(xcutγ ) ≡ BSD(xcutγ ) + BINT(xcutγ ) for different values of xcutγ .
The interference contribution BINT(xcutγ ) is orders of magnitude smaller than BSD(xcutγ ) and completely negligible within
uncertainties.
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FIG. 23: Comparison between our results for BSD+INT(xcutγ ) (shown in the figure by the red band), the ones obtained in Ref. [5]
(shown by the orange band), and the ones we obtained using the form factors FV , FA, FTV and FTA from Ref. [3] (shown in the
figure by the green band), and Ref. [4] (shown in the figure by the blue band). We used the estimate of F̄T given in Ref. [4] to
produce the results corresponding to the blue band, while the green band has been obtained setting F̄T = 0. The impact of F̄T on
the branching fraction is however extremely modest, and negligible within uncertainties.

those obtained using the form factors from Refs. [4, 5] (w.r.t. Ref. [4] the difference is however less pronounced).
This is not surprising given that the same trend is observed for the form factors (see Figure 11). Finally, we repeat
that in order to obtain a more accurate theoretical prediction for BSD(xcutγ ) at large values of xcutγ , a first-principles
calculation of the charming-penguin contributions is needed, since our model-dependent estimate presently represents
the main source of uncertainty for large xcutγ .

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

The rare radiative leptonic decay Bs → µ+µ−γ is a flavour-changing-neutral current transition which is forbidden at
tree level in the Standard Model and is therefore particularly sensitive to potential New Physics contributions. Although
there is an additional factor of αem in the amplitude for this process compared to that for the widely-studied Bs → µ+µ−
decay, the presence of the final state photon removes the helicity suppression making the rates for the two processes
comparable. On the other hand, while the leading hadronic effects in the Bs → ℓ+ℓ− (ℓ = e, µ, τ) decay amplitude
depend only on the Bs-meson decay constant fBs , which is known to sub-percent precision from lattice computations,
the determination of the amplitude for the Bs → µ+µ−γ decay is much more complex. In this case the non-perturbative
hadronic effects depend not only on local form factors, but also on resonance (including “charming penguin”) and
other long-distance contributions. In this paper, we have presented a first-principles calculation of the local form
factors FV , FA, FTV , FTA and F̄T , which provide the main contributions to the amplitude for the Bs → µ+µ−γ decay

at large di-muon invariant masses
√
q2 > 4.16GeV, above the peaks of the lowest charmonium resonances. In order to
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determine the amplitude, we combine our results for the form factors with previous phenomenological estimates of the
remaining contributions, in particular those from charming penguins. Whilst we find that the dominant contribution
to the differential branching fraction is given by the well-determined form factor FV , the largest contribution to the
uncertainty for q2 ≲ (4.8GeV)2 at present comes from the charming penguins.

The fitted results for the form factors are plotted as functions of xγ in Figure 11, where they are also compared to
earlier estimates obtained using different techniques [3–5]. It can be seen that, with a few exceptions, our results for
the form factors differ significantly from the earlier estimates (which also differ from each other). In particular our
results for the form factor FV , which gives the largest contribution to the amplitude, are significantly smaller than
that obtained in Ref. [3] and larger than those in Refs. [4, 5].

In evaluating F̄ s
T , the contribution to the form factor F̄T in which the virtual photon is emitted from the strange

anti-quark, one encounters the difficulty of performing the analytic continuation to Euclidean spacetime due to the

presence of intermediate vector ss̄ states with masses below
√
q2. As explained in detail in Sec. IV, in order to overcome

this problem, we have employed the novel spectral-density reconstruction technique developed in Ref. [8]. Since the
contribution of F̄T to the differential rate is small, and in view of the computational expense of implementing the
spectral representation technique, we have evaluated it at the same four values of xγ as the four other form factors,
but only on two ensembles and at three values of the heavy-quark mass (mh/mc = 1,1.5,2.5). We do not observe any
significant dependence on xγ in F̄ s

T (xγ) and present our results for its real and imaginary parts in Eq. (131). There is

no difficulty in the continuation to Euclidean space for F̄ b
T , the contribution to the form factor F̄T in which the virtual

photon is emitted from the b-quark, and we find that F̄ b
T is an order of magnitude smaller than FTV and FTA. The

results at the four values xγ = 0.1, 0.2, 0.3 and 0.4 are presented in Table IV.

We use our results for the local form factors to evaluate the Bs → µ+µ−γ amplitude for q2 > (4.16GeV)2, taking
into account the systematic uncertainties due to the contributions that we have not computed in the present work, in
particular those from the charming-penguin diagrams. We present our results for the partial branching fractions as a

function of the upper cut-off on xγ (or equivalently on the lower cut-off on
√
q2) in TableVI. Imposing the same cut

on the photon energy (q2 > (4.9 GeV)2, i.e. xγ < 0.166) as adopted by the LHCb Collaboration, we obtain a value for
the structure-dependent contribution to the branching fraction BSD(0.166) = 7.0(8) × 10−11, which is well within the
bound set by the LHCb collaboration BSD(0.166) < 2.0 × 10−9 [1, 2]. However, as illustrated in Figures 11 and 23, our
results disagree with the LCSR and model/effective-theory determinations of the branching fractions from Refs. [3–5];
in particular they are smaller than the result in Ref. [3] and larger than those in Refs. [4, 5]. The difference can be
traced back to the fact that our result for the form factor FV , which is the dominant contribution to the rate, is larger
(smaller) than those obtained in Refs. [4, 5] ([3]) by about a factor of 1.5 − 2.

At present our results for the branching fractions have uncertainties ranging from O(15%) for
√
q2cut = 4.9 GeV, to

O(30%) for
√
q2cut = 4.2 GeV. Our uncertainties should already be at the level of precision that can be obtained in the

future experimental measurements of B(Bs → µ+µ−γ) at LHCb. Our analysis shows that in order to further improve
the accuracy of the theoretical predictions in the low-q2 region, it is necessary to obtain a first-principles determination
of the (currently missing) charming-penguin contributions, which presently constitute the main source of uncertainty
in the differential branching fraction for q2 ≲ (4.8GeV)2. This can be seen as the difference between the light-red band
in Figure 21, which is our full result, and the dark-red curve in which the charming penguin contributions have been
neglected.
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Appendix A: Determination of the decay constant fBs

In this appendix we discuss our determination of the decay constant of the Bs meson, which enters in the extrapolation
formulae of Section IIIC. For this calculation, in order to account for any correlations in the determination of the
decay constants and form factors, we use the same configurations and masses as in the determination of the form
factors FW , W = {V,A,TV,TA} discussed in Section IIIA.
For each simulated value of the heavy-light meson mass mHs , and for each lattice spacing, we use two different

estimators of the decay constant fHs . The first determination of fHs is obtained from the pseudoscalar-pseudoscalar
two-point correlation functions

Csm-loc
PS (t) ≡∑

x⃗

⟨P loc
5 (t, x⃗)P †sm

5 (0)⟩, Csm-sm
PS (t) ≡∑

x⃗

⟨P sm
5 (t, x⃗)P †sm

5 (0)⟩ , (A1)

where the labels sm and loc indicate “smeared” and “local” respectively,

P loc
5 (x) = s̄(x)γ5h(x) , P sm

5 (x) = s̄(x)γ5HN
k (x, y)h(y) , (A2)

and where

Hk(x, y) =
1

1 + 6k
⎛
⎝
1 + k∑

ĵ

Uj(x)δ(x + aĵ, y)
⎞
⎠

(A3)

is the gauge-field-dependent Gaussian-smearing operator that has been used to construct the interpolating operator of
the H̄s meson in the Euclidean three-point correlation function Bµν

W (t;k, p) in Eq. (21). The Wilson parameter of the
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s̄ and h valence quarks entering the bilinears are always chosen to be opposite. In the large time limit t≫ a, t≪ T ,
the correlation functions Csm-loc

PS (t) and Csm-sm
PS (t) behave as

C sm-loc
PS (t) = ∣Z

sm-loc
PS ∣2
2mHs

(e−mHs t + e−mHs(T−t)) + . . . ,

C sm−sm
PS (t) = ∣Z

sm-sm
PS ∣2
2mHs

(e−mHs t + e−mHs(T−t)) + . . . , (A4)

where the ellipsis indicate terms that are subleading in the limit of large time separations. From the knowledge
of Z sm-loc

PS and Z sm-sm
PS it is possible to determine the decay constant fHs , without the need of any renormalization

constant, making use of [46]

ZPS ≡ ⟨H̄s∣s̄γ5h∣0⟩ =
∣Z sm-loc

PS ∣2
∣Z sm-sm

PS ∣ , fHs = a(mbare
s +mbare

h ) ∣ZPS∣
mHs sinh(amHs)

, (A5)

where mbare
s and mbare

h are the simulated values of the bare strange and heavy quark mass. The use of smeared
interpolating operators is essential in order to improve the signal for fHs , as it allows the ground state contribution to
be isolated at much smaller times (as compared to the standard local interpolating operator), where the correlation
function is generally more precise.
The second estimator of fHs that we use is obtained exploiting the fact that in the zero photon-momentum limit

k = 0, the spatial part Hii
A(0,0) of the axial hadronic tensor is equal to ifHs if we choose fictitious values q′s and q′h

for the electric charges of the strange and heavy quark entering Jµ
em in Eq. (22), in such a way that q′s + q′h = 1 (see

Appendix C of Refs. [12] for more details on this point). In the following we denote the determination of fHs from

Eqs. (A1)-(A5) as f2ptHs
, and the one from Hii

A(0,0) as f
3pt
Hs

. The two estimates of the the decay constants only differ
by cut-off effects and allow us to better constraint the result of the continuum fits. Our strategy is to perform the
continuum limit extrapolation at fixed values of mHs , fitting simultaneously f2ptHs

and f3ptHs
using the following Ansatz

ϕ2ptHs
≡ f2ptHs

√
mHs = A +B2pta2 +D2pta4, ϕ3ptHs

≡ f3ptHs

√
mHs = A +B3pta2 +D3pta4 , (A6)

where A,B2pt/3pt and D2pt/3pt are free fit parameters. Note that a common continuum value is enforced. In order
to avoid overfitting, given the limited number of gauge ensembles that we employ, we do not include fits with both
D2pt and D3pt as fit parameters, i.e. we set either D2pt or D3pt or both to zero. The fits are performed minimizing a
correlated χ2-function which takes into account the correlation between ϕ2ptHs

and ϕ3ptHs
evaluated on the same gauge

ensemble. The results of the extrapolation to the continuum limit for the five simulated values of mHs are illustrated in
Figure 24. We have performed a total of six different fits for each mHs , which differ depending on whether the ensemble
with the coarsest lattice spacing is included or not, and on whether we include or neglect the terms proportional to a4,
i.e. whether we set D2pt and/or D3pt to zero. The results obtained from the different fits are then combined using
the AIC, which has already been discussed in Section IIIA. To be conservative, we add linearly the systematic and
statistical errors from AIC. Having extrapolated the decay constants fHs for each of the five simulated values of mHs

to the continuum limit, in order to obtain fBs we need to perform the extrapolation in the mass. To do so, we make
use of the heavy-quark scaling relation

ϕ(mHs) = const. × (1 +
B

mHs

+O(m−2Hs
)) . (A7)

As is well known, Eq. (A7) is valid exactly only in the effective theory at the bare level. Logarithmic corrections to
Eq. (A7) are generated by the non-zero anomalous dimension of the axial current in the HQET, as well as from its
matching to the axial current in full QCD. Let JΓ(µ′) = Z−1J (αs(µ)) ℓ̄Γh b, where Γ is one of the Dirac matrices and
ℓ and h denote light and heavy quark fields in QCD, be a generic renormalized heavy-light current in QCD and let
J̃Γ(µ) = Z−1J̃

(αs(µ′)) ℓ̄Γhv be its counterpart in the HQET. The relation between the two currents is given, at leading

order in the heavy-quark mass mh, by [47]

JΓ(µ′) = CΓ(mh,mh) exp{∫
αs(µ′)

αs(mh)
γJ(αs)
2β(αs)

dαs

αs
− ∫

αs(µ′)

αs(mh)
γJ̃(αs)
2β(αs)

dαs

αs
} J̃Γ(µ′) , (A8)

where β(αs) is the QCD β-function, and γJ(J̃) is the anomalous dimension of the current J(J̃). In the case of the

QCD axial current one has γJ = 0. CΓ(mh,mh) is the matching coefficient and is obtained by imposing the equality
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FIG. 24: Continuum limit extrapolation of ϕHs for the five different simulated values of the heavy-strange meson mass mHs .
For each mass we show the continuum limit fits obtained employing all four lattice spacings. The blue and red data points
correspond respectively to the estimator ϕ2pt and ϕ3pt. The green, red, and blue bands correspond respectively to the pure a2 fit,
and to the a4 fit with D3pt = 0 and D2pt = 0. Finally, the black data point at a2 ≃ 0 correspond to our final determination, which
is obtained combining the six different fits we performed using the AIC.

between the renormalized proper vertices of the quark-bilinear in question, evaluated in QCD and in the HQET at the
heavy quark scale mh. Its two-loop expression for the axial current has been computed in Ref. [48] and is given by

Cγ0γ5(mh,mh) = 1 −
2

3

αs(mh)
π

− 2.95(αs(mh)
π

)
2

. (A9)

The anomalous dimension γJ̃ in the HQET (which does not depend on the specific Γ considered) has been computed
at three-loops in Ref. [47]. In summary, the relation in Eq. (A7) gets modified by the matching and by the running of

J̃Γ(µ′) into

ϕ(mHs) = Cγ0γ5(mh,mh) exp{∫
αs(mh)

0

γJ̃(αs)
2β(αs)

dαs

αs
} × const′ × (1 + B

mHs

+O(m−2Hs
)) , (A10)

and we have reabsorbed the µ′ dependence in Eq. (A8) into the constant factor, const′. A delicate point of the
analysis is the determination of the heavy quark mass mh of the HQET, which should be identified with the pole mass.
Notoriously, the pole mass is affected by renormalon ambiguities and its perturbative expansion in terms of the MS mass

mMS
h (mMS

h ) is asymptotically divergent. To avoid the use of the pole mass, we follow two different strategies and use, in
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FIG. 25: Extrapolation of the decay constant fHs to the physical Bs meson mass mBs ≃ 5.367 GeV using the Ansatz in
Eq. (A10) and with mh replaced by mHs . The red curve corresponds to the best-fit function, while the dashed vertical line
corresponds to the inverse mass of the Bs meson. The reduced χ2 of the fit is smaller than unit. Our final determination of fBs

is given in Eq. (A11).

place of mh, either the heavy-strange meson mass mHs (mHs −mh ≃ O(ΛQCD)), or the minimal-renormalon-subtracted
mass advocated in Ref. [49] (see also Ref. [50] for another alternative to the use of the pole mass).

The result of the extrapolation obtained replacing mh with mHs in Eq. (A10), and with the constant term and the
B coefficient considered as free fit parameters, is shown in Figure 25. The fit takes fully into account the correlation
between the values of the decay constant obtained at the different values of mHs . The resulting χ2/dof of the fit is
very good and smaller than unity. By repeating the fit employing the minimal-renormalon-subtracted mass, we find
that the value of fBs changes by less than 0.3σ, and therefore we do not add any additional systematic error. We
obtain the value

fBs = 224.5 (5.0)MeV , (A11)

which agrees with the Nf = 2+1+1 FLAG average fFLAG
Bs

= 230.3 (1.3) MeV at the level of 1.1σ. Our final uncertainty
is however much larger, which reflects the fact that our calculation is not tailored to be a precise determination of fBs

.
Our main interest is in the calculation of the local form factors contributing to the Bs → µ+µ−γ decay amplitude. The
main limitation preventing a more precise determination of fBs comes from the systematic uncertainty associated to
the continuum limit extrapolation, performed here with a rather limited number of lattice spacings. The new gauge
ensembles that the Extended Twisted Mass (ETM) Collaboration will produce at smaller values of the lattice spacing,
will allow for significantly reduced uncertainties on fBs .


	 The Bs+- decay rate at large q2 from lattice QCD
	Abstract
	Introduction
	The effective weak Hamiltonian and local form factors
	The local form factors FV, FA, FTV and FTA
	Numerical results for FV, FA, FTV, FTA
	Extrapolating the results for the local form factors FV,FA, FTV, FTA to the physical Bs meson
	Numerical results at the physical Bs mass

	The local form factor siunitxunit-deprecatedࡡ爠barbarFT
	Numerical results for siunitxunit-deprecatedࡡ爠barbarFT
	Extrapolating siunitxunit-deprecatedࡡ爠barbarFT to the mass of the physical Bs-meson

	The Bs+- decay rate
	Conclusions and future perspectives
	Acknowledgements
	References
	Determination of the decay constant fBs


