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Inclusive semileptonic B(s)-meson decays from Lattice QCD

by Alessandro Barone

The Standard Model (SM) is the most comprehensive framework to describe our cur-

rent understanding of the known particle physics world. However, its limitations are

well known as it cannot explain all observed phenomena. Discrepancies between mea-

surements of SM observables and theoretical predictions guide us in the search for new

physics and in extending the Standard Model.

One intriguing puzzle is the long-standing tension between the inclusive and exclusive

determinations of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |Vcb| and
|Vub|, respectively. Semileptonic decays of B mesons constitute the main channel for the

extraction of these parameters, and therefore represent crucial processes to address and

investigate this tension. As B-physics experiments perform measurements and collect

new data to study the B-meson properties, it becomes essential to address and under-

stand the tension, and to provide more precise theoretical inputs to further improve our

predictions.

In this work we address the nonperturbative calculation of the inclusive decay rate of

semileptonic B(s)-meson decays from lattice QCD. This type of computation may eventu-

ally provide new insight into the aforementioned tension in the determination of |Vcb| and
|Vub|. We also address the computation of lepton energy and hadronic mass moments,

which may provide ground for comparing lattice techniques with continuum approaches

such as OPE and perturbation theory. We present results from a pilot lattice computa-

tion for Bs → Xc lνl, where the initial b quark described by the relativistic-heavy-quark

(RHQ) formalism on the lattice and other valence quarks discretised with domain-wall

fermions are simulated approximately at their physical quark masses. We compare dif-

ferent methods for computing the decay rate and the moments from lattice data of

Euclidean four-point functions, namely approaches based on expansions in Chebyshev

polynomials, approaches based on the Backus-Gilbert technique and also combinations

of both. We find that the results we obtain are in excellent agreement. We further

test our setup studying the ground-state meson limit and how much it dominates the
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inclusive decay rate. We indicate possible strategies towards a computation with a more

comprehensive error budget, and leave a proper determination of the systematics effects

for future studies.
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INTRODUCTION

The Standard Model (SM) of particle particle physics is a renormalisable quantum field

theory (QFT) that describes three of the four known fundamental forces of Nature, i.e.

electromagnetic, weak and strong forces. It encodes information about all the known

elementary particles and their interactions. Over the past decades, it allowed us to

predict a wide variety of new particles and explain their behaviour and interactions.

While this model has proven to be extremely successful in understanding a huge range

of phenomena, it still fails to answer a large number of questions. Therefore, it cannot

be considered a fundamental theory of the Universe, but only an effective theory valid

at low energies. Some of the modern physics puzzles that are not taken into account by

SM are:

• quantum gravity: the SM describes three of the four fundamental interactions at

quantum level, but it does not include gravity, for which no satisfactory treatment

of a QFT is known;

• hierarchy problem: it is not clear why there are vastly different energy and mass

scales into the SM, namely the electroweak scaleMEW ∼ 102GeV and the reduced

Planck scale MP ∼ 1018GeV (with MP = 1/
√
8πG in natural units);

• mass generation problem: while SM successfully explains how particles acquire

mass, it does not explain why they have the masses they do and why there is such

a wide range of masses in the particle spectrum;

• cosmological constant: the vacuum energy density predicted by the SM is much

smaller than the observed cosmological constant of the universe.

These are only few of the puzzling problems we face; other issues concern for example

the strong CP problem, the origin of the parameters of the SM, the mass of the Higgs

boson, the nature of dark matter and dark energy, and others.
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Figure 1: Summary of current status of |Vcb| and |Vub| determination [5]. The black
solid and dashed lines correspond to 68% and 95% C.L. contours, respectively. The
lattice and experimental results are took from various groups, see [5] for full reference.

There are several different ways in which the SM could be extended, from ad hoc addition

of new physics guided by experimental constraints to theoretical extensions suggested by

first principles. However, the SM’s physical predictions that can be tested in experiments

are so far very robust: there are many extensions of the model which give acceptable

descriptions now, but may no longer do so once more constraining data becomes avail-

able. A crucial task is therefore to increase precision from both theoretical predictions

and experimental measurements to look for a signal or inconsistencies indicating New

Physics. One area of particular interest is quark-flavour physics, which involves weak

processes characterised by flavour-changing currents and aim to study the transitions

and interactions among quarks. Indeed, some of these processes have been shown some

tensions of the order of 2–3 σ (with σ being the standard deviation) between different

determinations [4]. For example, tensions arise from extractions of the same SM param-

eters from different processes, e.g. the CKM-matrix elements [4,5], or from discrepancies

between SM’s theoretical predictions and experimental results as in the case of the ratio

RD(∗) [6–11], to name a few. Any such anomalies could be an indicator of new effects:

while new particles may be too heavy to be produced with energies achievable by current

experimental facilities, quantum effects could leave detectable traces in flavour-physics

processes.

In this thesis we focus in particular on the b-quark sector of particle physics. Indeed,

the study of processes involving the bottom quark remains an exciting arena of precision

physics, in which intriguing tensions between observations and SM predictions have been

found [6,7,10,12–14]. One of these long standing tensions involves the measured values

of the CKM-matrix elements |Vcb| and |Vub| between exclusive and inclusive decays. The
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former refer to decays with a single hadron in the final state (usually the ground state),

whereas the latter refer to the case where all possible final states allowed by the decay

are accounted for. Considering the semileptonic channel (i.e. a weak force mediated

process where both hadrons and leptons are produced in the final state), |Vcb| and |Vub|
can be determined, for example, from the decay of a B into a D(∗) (or π), or through

the measurement of their inclusive decay rate. Other processes are indicated in the plot

in Fig. 1 and a more general and complete review can be found in [4,5]. One of the most

recent determination of |Vcb| is

|Vcb| = (42.19± 0.78)× 10−3 inclusive [4, 15],

|Vcb| = (39.36± 0.68)× 10−3 exclusive [5, 16–19] ,

which shows a tension of ≃ 2.7σ, for which the corresponding summary plot of lattice

results from the latest FLAG review [5] is shown in Fig. 1. In this work we focus on

semileptonic meson decays, and in particular on their inclusive version.

While many SM predictions can be obtained from analytical calculations and pertur-

bation theory, low-energy processes involving the strong force require the computation

of nonperturbative contributions. Lattice Quantum Chromodynamics (LQCD) plays

a central role in these computations: in particular, lattice calculations provide a solid

framework to address the determination of hadronic form factors, which parametrise

exclusive decay channels. In fact, the required lattice techniques to address exclusive

decays are well established (see reviews [5, 20]).

On the other hand, the existing results for the inclusive decay are based on perturbative

QCD and Operator Product Expansion (OPE) [15,21,22]. Given the described tensions,

an independent theoretical prediction is therefore very timely. First viable theoretical

proposals for how to accomplish the computation of the inclusive decay rate on the

lattice have appeared only recently [23]. The idea relies on the extraction of a forward-

scattering matrix element through analytic continuation of lattice results obtained in

an unphysical kinematical region. In [24] it was then proposed to address decay and

transition rates of multi-hadron processes through finite-volume Euclidean four-point

functions provided that a method to extract the associated spectral function exists.

In this thesis, we present work towards an improved understanding of the calculation of

the inclusive decay rate by means of a pilot study of semileptonic decays of Bs mesons

into charmed particles, namely Bs → Xc lνl, following [25], where the extraction of the

spectral function is bypassed, and the decay rate is evaluated directly. Part of this work

has been presented and published in [1–3]. In particular, we improve and compare two

existing methods, namely Chebyshev [25–27] and Backus-Gilbert [28,29] reconstructions.

In particular, this work provides a flexible setup to study inclusive decays on the lattice,

relying on the pilot study of [25]. We find that the two techniques used for the analysis
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are in agreement at the current statistical resolution for all the observables considered.

We also obtain reliable predictions for the ground-state limit of the inclusive decay,

which is found to reproduce the results of the exclusive channel evaluated with more

conventional methods.

This thesis is organised as follows. In Chap. 1 we briefly review the building blocks

of the Standard Model, highlighting in particular the electroweak and strong sector,

together with the basics of Heavy Quark Effective Theory. In Chap. 2 we introduce

the formalism of Lattice QCD, presenting the essential features adopted in this work.

In Chap. 3 we present the continuum formulation specific to both exclusive and inclusive

semileptonic Bs-mesons decay, and subsequently specialise to the lattice formalism for

inclusive decays in Chap. 4. We give the details of the computations in Chap. 5 and

present and discuss the result of our pilot study in Chap. 6. We summarise our findings

and outline future work in the Conclusions.
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CHAPTER 1

STANDARD MODEL

The Standard Model describes three of the four known fundamental forces and all the

elementary particles that have been observed in Nature. In particular, it includes the

quantum field theory of the strong, weak and electromagnetic interactions. It has been

developed in the second half of the 20th century, thanks to (but not limited to) the

central works of Yang and Mills [30], Glashow [31, 32], Salam and Ward [33, 34], Wein-

berg [35], Higgs [36,37], Brout and Englert [38], Gell-Mann [39,40], Politzer [41], Gross

and Wilczek [42].

In this chapter, we describe some of the core aspects of the Standard Model, and refer

to other textbooks for a more complete overview [43–45]. We introduce the particle

content of the model in Sec. 1.1 and describe the main mathematical aspects of gauge

theories in Sec. 1.2. We then review the electroweak and strong interactions in Sec. 1.3

and Sec. 1.4, respectively. For completeness, we conclude with some brief notes on Heavy

Quark Effective Theory in Sec. 1.5, which represent a common framework to study some

of the processes connected with this work.

1.1 Symmetries and particle content

A basic guiding principle to build particle physics models is given by symmetries: these

are transformations of fields of the theory that leave the physics equations invariant.

Symmetries can be discrete or continuous, global or local.

There are two general classes of transformations, space-time symmetries and internal

symmetries. Space-time symmetries transform the coordinate xµ ∈ M, with M being
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the four-dimensional Minkowski space, as

xµ → x′µ(xν) , µ, ν = 0, 1, 2, 3 . (1.1)

Examples of these are Lorentz and Poincaré continuous transformations, but also discrete

ones like parity or time-reversal.

Internal symmetries, on the other hand, transform the given field Φ(x) and do not act

on the space-time coordinates, but only on the field representation, i.e.

Φa(x) → Φ′a(x) =Ma
b Φb(x) , (1.2)

where Ma
b is a generic matrix and the sum over b is intended. If Ma

b is independent of

x, the symmetry is said to be global, whereas if it depends on the space-time coordinate

Ma
b ≡ Ma

b (x) it is said to be local. Local symmetries involve internal transformations

which depend on the space-time and are key to build gauge theories.

Symmetries are important for many reasons: we list some of the main ones here.

1. They classify the properties of all the known particles such as, e.g. spin, elec-

tric, colour charge,...etc. and they define conserved physical quantities through

generalisations of Noether’s theorem [46].

2. They determine the interaction among particles thanks to the gauge principle by

promoting global symmetries to local ones, which gives rise to gauge bosons as

mediators of the interactions.

3. Symmetries can be spontaneously broken: this is a natural way in which the mass

scale of the theory arises.

Symmetries are not always exact, but can be spontaneously or explicitly broken, depend-

ing on how the Lagrangian L of the theory and the vacuum |0⟩ (and more precisely the

vacuum expectation value of the fields) are modified under the given transformations.

In particular, for the purpose of this chapter we limit ourselves to consider three cases:

1. Unbroken symmetry. Both the Lagrangian and the vacuum are left unchanged, i.e.

L → L′ = L and |0⟩ → |0⟩′ = |0⟩ under application of a symmetry transformation.

2. Spontaneously broken symmetry. The Lagrangian is invariant, L → L′ = L, but
the vacuum is not, i.e. |0⟩ → |0⟩′ ̸= |0⟩.

3. Explicitly broken symmetry. This is the case where the transformations do not

constitute a symmetry of the Lagrangian in the first place, i.e. L → L′ ̸= L.
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The Standard Model is a gauge theory based on the symmetry groups

SU(3)C × SU(2)L × U(1)Y , (1.3)

where C stands for colour, L refers to the (left-handed) weak isospin and Y is the

hypercharge. SU(3)C describes the strong force through a QFT know as Quantum

Chromodynamics (QCD), and SU(2)L × U(1)Y describes the electroweak force, which

recovers the electromagnetic interaction described by the gauge group U(1)EM through

a spontaneous symmetry breaking mechanism at the electroweak scale MEW ∼ 102GeV,

as we will see in Sec. 1.3.1. The purely electromagnetic interaction can indeed be de-

scribed by an abelian gauge theory based on the group U(1)EM known as Quantum

Electrodynamics (QED) [47,48].

The Standard Model Lagrangian LSM can then be decomposed as

LSM = LQCD + LEW + LH + LY , (1.4)

where LQCD describes the strong force and LEW the electroweak one, whereas LH
account for the Higgs field and LY for the Yukawa couplings. We will discuss and clarify

these components in more detail in the following sections of this chapter.

The matter content of the Standard model is given by two types of fermions, which are

spin-1/2 particles. The first type are the leptons, which come in three generations given

by the charged electron e, the muon µ and the tauon τ , and their neutral partners,

i.e. the neutrinos νe, νµ and ντ . The second type are the quarks, also divided in three

generations, which come in different flavours, given by up u and down d (first generation),

charm c and strange s (second generation), bottom b and top t (third generation).

The interactions are carried by the gauge bosons, i.e. spin-1 particles that arise from

the gauge groups of the Standard Model. In particular, the strong force is mediated by

8 gluons, which carry colour and anti-colour charges and interact only with quarks. The

weak force is mediated by the positively and negatively charged W± bosons and by the

neutral Z0. Finally, the electromagnetic force is carried by the photon γ.

Quarks are charged with respect to all SM interactions and therefore interact with all

the gauge bosons. Charged leptons interact both with the electroweak bosons and the

photon, whereas the neutrinos interact only with the electroweak bosons.

The Higgs boson, the only spin-0 particle of the Standard Model, concludes the picture

and is responsible for the mechanism that provide the particles with mass.
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1.2 Non-abelian gauge theories

In this section, we briefly discuss the idea behind gauge theories and their construc-

tion [30]. We consider the general case of SU(N) local symmetry, SU(N) being the

special unitary group of N ×N matrices. This formulation can then be applied to the

group of interest SU(3)C and SU(2)L, as well the abelian group U(1)Y . From a physical

point of view, the request of local invariance corresponds to the fact that physical pro-

cesses are unaltered by an arbitrary rotation under SU(N) at each space-time point: for

example, in the SU(3)C case, this means that one is free to redefine the colour charges

at each space-time coordinate independently.

Let us consider a fermion field ψ ≡ ψ(x) with a mass m, for which the free Lagrangian

reads

L0 = ψ̄(iγµ∂µ −m)ψ . (1.5)

We now need to modify the above Lagrangian in order to make it invariant under the

local transformation

ψ(x)→ ψ′(x) = U(x)ψ(x) , (1.6)

ψ̄(x)→ ψ̄
′
(x) = ψ̄(x)U †(x) , (1.7)

where U(x) ∈ SU(N) such that

U(x) = exp

(︃
i

2
t ·α(x)

)︃
(1.8)

where t/2 is the vector containing the N2−1 generators of SU(N), i.e. T a = ta/2, which

are represented by N × N unitary matrices living in the corresponding su(n) algebra,

and α(x) is a vector of N2− 1 real components dependent on the space-time coordinate

x. In particular, the generators satisfy the anticommutation relation

[T a, T b] = ifabcT c , (1.9)

where fabc are the structure constant of the SU(N) group. We will highlight the im-

portance of this property of non-abelian groups at the end of the section.

Since U depends on x, the derivative term breaks the invariance, i.e.

ψ̄∂µψ → ψ̄
′
∂µψ

′ ̸= ψ̄∂µψ . (1.10)

To fulfil the invariance request, we introduce the covariant derivative

Dµ = ∂µ − igAµ , (1.11)



1.2. Non-abelian gauge theories 9

where g is a constant that parametrises the strength of the interactions and Aµ is a

N ×N algebra-valued matrix

Aµ =
1

2
t ·Aµ =

1

2
taAa

µ , (1.12)

with Aa
µ being theN2−1 gauge fields (or Yang-Mills fields) which mediate the interaction

associated with the SU(N) group. The invariance requirement

ψ̄Dµψ → ψ̄
′
D′

µψ
′ = ψ̄Dµψ (1.13)

is now satisfied provided that the derivative and gauge fields transform as

Dµ → D′
µ = ∂µ − igA′

µ , (1.14)

Aµ → A′
µ = U

[︃
Aµ −

i

g
U †(∂µU)

]︃
U † . (1.15)

We can now write the new Lagrangian as

L = ψ̄(iγµDµ −m)ψ (1.16)

= L0 − gψ̄γµAµψ

= L0 −
g

2
Aa

µ ψ̄γ
µtaψ ,

which can be split into the free Lagrangian L0 and an interaction part, which contains

the interaction of the fermion currents Ja
µ = ψ̄γµt

aψ and the gauge fields Aa
µ.

The pure gauge Lagrangian LG, which contains the interactions among the gauge fields

Aa
µ, is built as

LG = −1

2
Tr[FµνF

µν ] = −1

4
F a
µνF

aµν , (1.17)

where the last line follows from Tr
[︁
tatb
]︁
= 2δab and

Fµν =
1

2
F a
µνt

a (1.18)

with F a
µν being the field strength tensor. The latter can be built from the covariant

derivatives as

Fµν =
1

ig
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] , (1.19)

and it transforms under SU(N) as

Fµν → F ′
µν = UFµνU

† . (1.20)

A key feature of non-abelian gauge theories is the presence of the non-trivial commutator

[Aµ, Aν ] in Eq. (1.19), as it follows from Eq. (1.9). Indeed, this implies that the gauge
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Lagrangian contains terms that involve interactions among gauge fields (with 3 or 4

fields interacting at each vertex). This is a key feature of the weak and strong sectors

of the Standard Model. These terms are absent in the case of an abelian group U(1), as

the structure constants of the group are zero and all the generators commute.

This concludes the discussion on non-abelian gauge theories, which represents the under-

lying fundamentals to build the Standard Model, as we will outline in the next sections.

We showed how, starting from a free fermionic Lagrangian, it is possible to introduce

interactions with a field carrying a given charge by requiring invariance under the cor-

responding local transformations of SU(N). Finally, we showed how to introduce the

Lagrangian LG that contains the general kinetic terms for these gauge fields.

1.3 Electroweak theory

The electroweak theory is based on the SU(2)L×U(1)Y gauge groups, which correspond

to the weak isospin and hypercharge quantum numbers, respectively. In particular,

SU(2)L acts only on fermions with negative chirality (left-handed fermions), as deter-

mined by the quantum number associated with the chiral operator γ5 (see an explicit

representation in App. A.1). In particular, a fermion field ψ can be decomposed into its

positive (right) and negative (left) chiral components as

ψ = PRψ + PLψ ≡ ψR + ψL , (1.21)

where PR,L = (I± γ5)/2 are the right- and left-handed chiral projectors, respectively.

Let us now discuss explicitly the construction of the model. Left-handed quark and

leptons are introduced as SU(2)L doublets, defined as

Ll
1 =

(︄
νeL

eL

)︄
, Ll

2 =

(︄
νµL

µL

)︄
, Ll

3 =

(︄
ντL

τL

)︄
, (1.22)

for the charged and neutral leptons and

Lq
1 =

(︄
uL

dL

)︄
, Lq

2 =

(︄
cL

sL

)︄
, Lq

3 =

(︄
tL

bL

)︄
, (1.23)

for the quarks. The upper components of the doublets have weak isospin 1/2, whereas

the lower components have isospin −1/2. The doublets are also charged under U(1)Y ,

with hypercharges Y l
L = −1 and Y q

L = 1/3. It is useful for later purposes (in particular

in Sec. 1.3.2) to define in a compact notation these isospin components defining

Ll,q
i =

(︄
Ll,q
i+

Ll,q
i−

)︄
, (1.24)
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for both leptons and quarks. The right-handed components are charged under U(1)Y

and are singlets of SU(2)L. For a compact and uniform notation we define

Rl
1− = eR , Rl

2− = µR , Rl
3− = τR , (1.25)

for the leptons, which have hypercharge Y l
R− = −2, and

Rq
1+ = uR , Rq

2+ = cR , Rq
3+ = tR , (1.26)

Rq
1− = dR , Rq

2− = sR , Rq
3− = bR , (1.27)

which carry hypercharge Y q
R+ = 4/3 and Y q

R− = −2/3. Note that there are no right-

handed neutrinos in the Standard Model: we will comment more about this in Sec. 1.3.2.

The covariant derivatives with respect to the electroweak symmetry groups are

DL
µ = ∂µ − ig

1

2
σaW a

µ (x)− ig′Y Bµ(x) , DR
µ = ∂µ − ig′Y Bµ(x) (1.28)

where σa are the SU(2)L generators, i.e. the Pauli matrices, and Y is the generator of

U(1)Y . The coupling constant g and g′ refers to the strength of interaction of the gauge

fieldsW a
µ of SU(2)L and the field Bµ(x) of U(1)Y , respectively. The fermion electroweak

Lagrangian LEW,F = LlEW,F + LqEW,F is then given by

LlEW,F =
3∑︂

i=1

[︂
L̄
l
i iγ

µDL
µ L

l
i + R̄

l
i− iγ

µDR
µ R

l
i−

]︂
, (1.29)

LqEW,F =

3∑︂
i=1

[︁
L̄
q
i iγ

µDL
µ L

q
i + R̄

q
i+ iγ

µDR
µR

q
i+ + R̄

q
i− iγ

µDR
µ R

q
i−
]︁
. (1.30)

This Lagrangian contains now the kinetic terms for all the leptons and quarks together

with their interaction terms with the gauge bosons W 1
µ , W

2
µ , W

3
µ and Bµ. The gauge

Lagrangian for the latter can be constructed as in Eq. (1.17), i.e.

LEW,G = −1

4
W a

µνW
aµν − 1

4
BµνB

µν , (1.31)

where

Wµν = ∂µWν − ∂νWµ − ig[Wµ,Wν ] , (1.32)

Bµν = ∂µBν − ∂νBµ , (1.33)

are the field strength tensor for the fields Wµ =W a
µ σ

a/2 and Bµ, respectively. We have

then all the pieces to fully describe the SU(2)L × U(1)Y Lagrangian, which is given by

LEW = LlEW,F + LqEW,F + LEW,G . (1.34)

However, this does not yet represent the physics we observe in nature. Indeed, it is
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not possible to write any mass term for the leptons, quarks or gauge bosons, as such

term would explicitly break gauge invariance. The Lagrangian LEW presented here is

therefore incomplete: we discuss in the next sections how to generate the mass terms

for all the particles and how to relate the gauge fields W i
µ and Bµ to the physical gauge

bosons.

1.3.1 Spontaneous symmetry breaking and Higgs mechanism

As we just pointed out, gauge invariance forbids any mass term for leptons, quarks

and gauge bosons: such a term would be an example of an explicitly breaking of the

symmetry, as mentioned in Sec. 1.1. Instead, gauge bosons and fermions acquire mass

through the Higgs field [36–38] and its spontaneous symmetry breaking mechanism,

together with the Yukawa Lagrangian, which allows to generate the fermion masses

through the interaction with the Higgs boson.

Let us start presenting the Higgs sector. We consider a SU(2)L doublet of complex

scalar fields, that we indicate with

Φ(x) =

(︄
ϕ+(x)

ϕ0(x)

)︄
=

1√
2

(︄
ϕ1(x) + iϕ2(x)

ϕ3(x) + iϕ4(x)

)︄
, (1.35)

where ϕi(x), i = 1, 2, 3, 4 are real scalar fields, and its Lagrangian

LH =
[︁
DLµΦ(x)

]︁† [︁
DL

µΦ(x)
]︁
+ V (Φ(x)) , (1.36)

with DL
µ in Eq. (1.28) and where V (Φ) is the Higgs potential associated with the field

Φ(x)

V (Φ(x)) = −µ2Φ(x)†Φ(x) + λ
[︂
Φ(x)†Φ(x)

]︂2
. (1.37)

This potential has the peculiarity of having a negative mass term −µ2. It follows that

V (Φ) possesses a set of minima given by

Φ†Φ =
µ2

2λ
≡ v2

2
, (1.38)

where we defined the vacuum v2 = µ2

λ . This relation defines a set of equivalent vacuum

expectation values (vev) for the scalar field Φ. This implies that in the four-dimensional

space spanned by the real fields (ϕ1, ϕ2, ϕ3, ϕ4) there exists a three-dimensional sphere

along which the vev is always the same. Exploiting this observation, we can choose a

vev for the field ⟨Φ⟩ and re-parametrise the scalar doublet as fluctuations around it in

terms of three real fields θa(x), which corresponds to the three directions tangent to the

three-dimensional sphere that leave the vacuum invariant, and a real field h(x), which
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parametrises the fluctuations in the orthogonal direction, i.e.

⟨Φ⟩ = 1√
2

(︄
0

v

)︄
, Φ(x) =

1√
2
ei

1
2v

σaθa(x)

(︄
0

v + h(x)

)︄
. (1.39)

Note that the real scalar fields θa(x) correspond to massless particles known as Nambu-

Goldstone bosons [49, 50]. It is now possible to perform a gauge transformation that

removes the fields θa(x) from the parametrisation of the scalar field using the so called

unitary gauge [51, 52], for which the field Φ(x) reads

Φ(x) =
1√
2

(︄
0

v + h(x)

)︄
. (1.40)

The degrees of freedom carried by the fields θa(x) get in this way reabsorbed into the

longitudinal degrees of freedom of the massive electroweak bosons, whose fields also

undergo the gauge transformation. The field h(x) corresponds to the Standard Model

Higgs boson and its interaction with the gauge fields is responsible for generating the

electroweak boson masses, as it can be seen by substituting Eq. (1.40) in Eq. (1.36).

In Sec. 1.3.2 we will highlight how it is also responsible for all the fermion masses.

Rewriting the field as in Eq. (1.40) in the Lagrangian Eq. (1.36) we obtain the required

terms to connect the gauge fields with the physical massive bosons, which are expressed

as

W±
µ ≡

1√
2
(W 1

µ ∓ iW 2
µ) , (1.41)

Z0
µ ≡

1√︁
g2 + g′2

(gW 3
µ − g′Bµ) , (1.42)

together with the massless photon field γ

Aµ ≡
1√︁

g2 + g′2
(gW 3

µ + g′Bµ) . (1.43)

By inspection of the new mass term in the Lagrangian we can now see that they are

related to the vacuum and the coupling constant as

MW± =
gv

2
, (1.44)

MZ0 =
v

2

√︁
g2 + g′2 , (1.45)

Mγ = 0 . (1.46)

Note that this mechanism leaves the photon massless. Indeed, the choice of the vev

for the Higgs field leaves one unbroken generator Q = 1
2(σ

3 − I), which corresponds

to the electric charge operator. The spontaneous symmetry breaking mechanism of

SU(2)L ×U(1)Y is therefore broken into the electromagnetic U(1)EM , which remains a

symmetry of the Lagrangian.
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1.3.2 Yukawa interactions

We continue the discussion describing how to generate mass terms for leptons and

quarks [35] through the Higgs field. We start introducing the Yukawa Lagrangian in

the most general case for the three families of leptons as

LlY = −
√
2

3∑︂
i,j=1

[︂
L̄
l
iΦ(mij)R

l
j− + R̄

l
j−(m

∗
ji)Φ

†Ll
i

]︂
, (1.47)

where mij is a generic 3×3 matrix that mixes the left and right states. The spontaneous

symmetry breaking mechanism allows us to rewrite the scalar field Φ(x) as in Eq. (1.40),

which therefore generate mass term for the leptons in LlY , as well as their interaction

terms with the Higgs field h(x). Note that the fields in Eq. (1.47) are represented in

their electroweak interaction basis: in order to obtain the mass eigenstates we need to

diagonalise the matrix mij . This is possible through a biunitary transformation of the

lepton fields

Ll
i− → L′l

i− = VijL
l
j− , (1.48)

Rl
i− → R′l

i− = UijR
l
j− , (1.49)

where V and U are unitary matrix, which allow to diagonalise the matrix mij as

mij → m′
ij = V †

ilmlkUkj ≡ diag(λ1, λ2, λ3) , (1.50)

where λi ≡ m′
ii are the Yukawa couplings and m′

ij is now proportional to the mass

matrix. With λi ≡ m′
ii, and λe ≡ λ1, λµ ≡ λ2 and λτ ≡ λ3, we see that the masses of

the leptons e, µ and τ are given by

me = λev , (1.51)

mµ = λµv , (1.52)

mτ = λτv . (1.53)

The values of λi cannot be predicted by hand, but can (at present) only be fixed with

the help of experimental inputs for the mass of the leptons. Note again that, since there

are no right-handed neutrinos, neutrinos are massless in the Standard Model. While it is

experimentally known that neutrinos do have masses, it is not clear by which mechanism

they acquire mass in QFT. A possible extension to include neutrino masses is given by

the see-saw mechanism [53–59], which introduces sterile right-handed neutrinos with

extremely large masses that mix with the Standard Model left-handed ones, causing the

latter to become extremely light.
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We now turn to discuss the Yukawa Lagrangian for quarks

LqY = −
√
2

3∑︂
i,j=1

[︃
L̄
q
iΦ(m

−
ij)R

q
j− + R̄

q
j−(m

−∗
ji )Φ

†Lq
i (1.54)

+ L̄
q
i Φ̃(m

+
ij)R

q
j+ + R̄

q
j+(m

+∗
ji )Φ̃

†
Lq
i

]︃
,

which includes all terms for left- and right-handed quarks with all six flavours thanks to

the introduction of the field

Φ̃(x)i = ϵijΦ
∗
j (x) , Φ̃(x) =

(︄
ϕ∗0(x)

−ϕ∗+(x)

)︄
, (1.55)

where ϵij is the two-dimensional Levi-Civita tensor. This new definition allows to

give mass to the 1/2 weak isospin components, i.e. the up-type quarks, since under

reparametrisation around the vev and unitary gauge transformation we obtain

Φ̃(x) =
1√
2

(︄
v + h(x)

0

)︄
. (1.56)

After spontaneous symmetry breaking, recalling Eq. (1.24), the Yukawa Lagrangian gives

the mass terms

LqY ⊃ −v
3∑︂

i,j=1

[︃
L̄
q
i−(m

−
ij)R

q
j− + R̄

q
j−(m

−∗
ji )L

q
i− (1.57)

+ L̄
q
i+(m

+
ij)R

q
j+ + R̄

q
j+(m

+∗
ji )L

q
i+

]︃
.

Similarly to the lepton case, to find the actual masses we need to rotate the field in

their mass eigenstates by diagonalising the matrices m+
ij and m−

ij through the biunitary

transformations

Ll
i± → L′l

i± = V ±
ij L

l
j± , (1.58)

Rl
i± → R′l

i± = U±
ijR

l
j± , (1.59)

such that we obtain

m+
ij → m′+

ij = V +†
il m+

lkU
+
kj , (1.60)

m−
ij → m′−

ij = V −†
il m−

lkU
−
kj , (1.61)

The unitary matrices V ± and U± then connect the physical mass eigenstates with the

weak interaction eigenstates. In the next section we point out what this implies for the

interactions among quarks of different flavours and generations.
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1.3.3 Cabibbo-Kobayashi-Maskawa matrix

The transformations in Eqs. (1.58) and (1.59) have been introduced to find the mass ma-

tricesm′+
ij of the up-type andm′−

ij of the down-type quarks. However, these rotations ap-

ply to the whole Lagrangian, and affect the interaction between quarks and electroweak

bosons. After spontaneous symmetry breaking, the interaction terms in Eq. (1.30) be-

tween quarks and W± bosons read

LqEW,F ⊃
g√
2

3∑︂
i=1

(︁
Jµ
+iW

−
µ + Jµ

−iW
+
µ

)︁
=

g√
2

3∑︂
i=1

(︁
Jµ
+iW

−
µ + h.c.

)︁
(1.62)

where h.c. stands for “hermitian conjugate”, W±
µ are given in Eq. (1.41) and the left-

handed charged quark currents Jµ
±i are defined (after evaluating explicitly the products

between the SU(2)L doublets and Pauli matrices in the first term of Eq. (1.30)) as

3∑︂
i=1

Jµ
+i ≡

3∑︂
i=1

L̄
q
i−γ

µLq
i+ =

(︂
d̄L s̄L b̄L

)︂
γµ

⎛⎜⎝uLcL
tL

⎞⎟⎠ , (1.63)

3∑︂
i=1

Jµ
−i ≡

3∑︂
i=1

L̄
q
i+γ

µLq
i− =

(︂
ūL c̄L t̄L

)︂
γµ

⎛⎜⎝dLsL
bL

⎞⎟⎠ . (1.64)

After rotating into the mass eigenstates (indicated again with prime) the currents trans-

form as

Jµ
+i → J ′µ

+i = L̄
′q
i−γ

µL′q
i+ =

∑︂
k

L̄
q
i−V

−†
ik V +

ki γ
µLq

i+ , (1.65)

Jµ
−i → J ′µ

−i = L̄
′q
i+γ

µL′q
i− =

∑︂
k

L̄
q
i+V

+†
ik V −

ki γ
µLq

i− , (1.66)

which explicitly gives

3∑︂
i=1

J ′µ
+i =

(︂
d̄
′
L s̄′L b̄

′
L

)︂
V −†V +γµ

⎛⎜⎝u
′
L

c′L
t′L

⎞⎟⎠ , (1.67)

3∑︂
i=1

J ′µ
−i =

(︂
ū′L c̄′L t̄′L

)︂
V +†V −γµ

⎛⎜⎝d
′
L

s′L
b′L

⎞⎟⎠ . (1.68)

From these equations we define the Cabibbo-Kobayashi-Maskawa (CKM) matrix [60,61]

VCKM = V +†V − = (V −†V +)† =

⎛⎜⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎠ , (1.69)
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which by construction is a unitary matrix that mixes the quarks (the physical quarks

in their mass eigenstates) of different flavours and generations, allowing for charged

flavour-changing currents in the Standard Model. Therefore, the entries Vqq′ of the

matrix indicate how strongly each up-type flavour q mixes with the down-type quark

q′. Thanks to unitarity and the global symmetries of the Lagrangian (in particular U(1)

global symmetry), the CKM matrix has only four degrees of freedom, which can be

parametrised as three angles and a complex phase. Note in particular that the complex

phase has been introduced in [61] to allow for direct CP -violating processes in Standard

Model.

The CKM matrix can be represented in other ways. A very convenient parametrisation

is given by the Wolfenstein parametrisation [62], which is particularly useful to obtain a

first insight into the magnitude of the coupling between quarks of different generations.

It reads

VCKM =

⎛⎜⎝ 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

⎞⎟⎠+O(λ4) . (1.70)

where A ∼ ρ ∼ η ∼ O(1) and λ = 0.22500 ± 0.00067 [63–65]. This then shows the

hierarchical structure of the matrix: the magnitude of the interaction is stronger for

quarks of the same generation (the diagonal elements) and weaker for the coupling with

the other generations.

The values of the CKM-matrix elements cannot be predicted from first principles, but

can only be extracted from a combination of experimental measurements and theoretical

predictions. Therefore, the study of flavour physics processes represents an interesting

subject to thoroughly test the Standard Model through, e.g., test of the unitarity of

the CKM matrix. For example, considering |Vub| and |Vcb| (which are of particular

interest in this thesis), some processes to extract the corresponding matrix elements are

given by leptonic decays of B → τντ , non-leptonic decays of B0 → ππ or exclusive and

inclusive semileptonic decays B(s) → D
(∗)
(s) lνl and B(s) → Xc lνl, respectively. Results

and constraints for the CKM matrix are collected and constantly updated by different

working groups such as FLAG [5], PDG [63], HFLAV [4], CKMfitter [66] and UTfit [67].

To conclude, we point out that there is no equivalent matrix for leptons due to the

fact that neutrinos in the EW model are massless. Indeed, this implies that neutri-

nos are always zero-mass eigenstates and therefore couple only with charged leptons

of the same generation. However, it is experimentally well-known that neutrinos are

massive and they oscillate between different flavours: this phenomenon can described

in the Standard Model in a similar way to what discussed in this section through the

Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [68,69].
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1.4 Quantum Chromodynamics

Quantum Chromodynamics is the gauge theory that describes the strong force. It is

based on the SU(3)C gauge group, which accounts for the colour charge of the quarks,

conventionally called red, blue and green. In this section we refer to the quark field with

the notation qf , where f stands for the flavour. In particular, under SU(3)C the quark

field is written as a triplet

qf =

⎛⎜⎝q
r
f

qbf
qgf

⎞⎟⎠ , (1.71)

where the superscripts refer to the colour charges.

The Lagrangian can be directly build from the procedure described in Sec. 1.2 for the

SU(3)C group. In particular, in this case the 8 generators are given by the Gell-Mann

matrices λa [70], i.e. T a = λa/2. The Lagrangian reads

LQCD =
∑︂
f

q̄f (iγ
µDµ −m)qf −

1

4
Ga

µνG
aµν , (1.72)

where Ga
µν are the gluon field strength tensors and the covariant derivate is

Dµ = ∂µ − igs
1

2
λaGa

µ , (1.73)

where Ga
µ, a = 1, 2, . . . 8 are the 8 gluon fields. Note that they carry both a colour and

an anti-colour charge and interact only with quarks.

1.4.1 Confinement and asymptotic freedom

QCD has some essential features originating from the non-abelian nature of the theory

known as confinement and asymptotic freedom, which we briefly discuss in this section to

highlight the peculiarity of the strong force. These are directly related to the properties

on the strong coupling

αs(µ) =
gs(µ)

4π
, (1.74)

where µ indicates the renormalisation scale. Indeed, the coupling is not fixed, but it

depends on the energy scale Q at which the given process is considered. The running

of the coupling is governed by its renormalisation group equation, obtained through the

solution of the QCD beta function. For instance, using perturbation theory at one loop
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Figure 1.1: Experimental measurement of the running of the strong coupling constant
αs ≡ αs(Q

2), where Q is the energy scale. The plot is taken from [63].

[71, 72] (altough it is now known also at higher order) we obtain

αs(Q
2) =

αs(µ
2)

1− b0 ln(Q2/µ2)αs(µ2)
, b0 = −

33− 2nf
12π

(1.75)

where nf is the number of flavours. This expression can be further manipulated intro-

ducing the QCD scale parameter ΛQCD

αs(Q
2) =

1

−b0 ln
(︂
Q2/Λ2

QCD

)︂ . (1.76)

ΛQCD denotes the scale at which the renormalisation group improved perturbation the-

ory ceases to be valid. Its numerical value can be determined experimentally or on

the lattice [5], and the latest estimate gives ΛQCD ∼ 300MeV [63], which is roughly

of the same order of the hadron masses. Therefore, ΛQCD also indicates the change of

regime of QCD: from the above equations we can see that αs ≪ 1 for Q→∞, whereas

αs ∼ O(1) for Q → ΛQCD. This implies that the energy scale at which we probe QCD

processes determines a substantially different behaviour of the theory: for small values

of αs, standard tools such as perturbation theory allow to extract analytical prediction

for the physics considered, whereas for large value of αs we enter in a nonperturbative

regime where other techniques must be employed, such as for example Lattice QCD

(see Chap. 2). The experimental measurement of the running of αs is shown in Fig. 1.1.

Let us now turn to confinement. It refers to the fact that quarks at low energy cannot
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propagate freely. Instead, they are constrained in colour-neutral bound states known

as hadrons. Hadrons are further categorised in mesons, i.e. bound states of a quark-

antiquark pair, and baryons, i.e. states of three quarks. More exotic states such as

tetraquarks [73–76] and pentaquarks [77,78] have also been observed recently, although

their structure is still under study. Confinement is related to the fact that at low

transferred momenta Q2 (i.e. at long distances), the coupling constant of QCD αs

becomes increasingly large, generating a stronger attraction between quarks. On a

more intuitive level, this is due to the fact that as two quarks separate, the energy

density between them increases and the gluons mediating the interaction give rise to a

quark-antiquark pair, which induces the creation of hadrons through a process called

hadronisation. The confinement property for a simple quark-antiquark system can be

modelled using the Cornell (or funnel) potential [79, 80]

V (r) = −4

3

αs

r
+ σr , (1.77)

which empirically describes interactions among a pair of quarks at a distance r, with

σ ≃ 0.18GeV2 [81]. Indeed, while at distances r ≲ 0.1 fm the first Coulomb-type

term dominates, as r increases the second linear term becomes more and more relevant

and leads to a creation of a “flux tube” of gluonic field lines responsible for the quark

confinement. This second term is therefore valid until string breaking, which leads to

the hadronisation process.

The asymptotic freedom property refers to the regime where αs is small and perturbation

theory can be applied, i.e. when we consider high energy scales. In particular, the

coupling constant asymptotically approaches zero for Q → ∞. At these scales, the

quarks inside the hadrons effectively behave like free point-like particles: this was first

observed in proton-electron elastic scattering, which at high energies can be understood

as a electron-quark elastic scattering, which is at the base of Feynman parton model [82].

Finally, we point out that the behaviour of the running coupling αs strictly depends on

the non-abelian nature of the group and the sign of b0 in Eq. (1.75), which is negative

for the number of quark flavours present in the Standard Model nf = 6. This is different

for an abelian theory such as Quantum Electrodynamics (QED), for which b0 has an

opposite sign such that the denominator in Eq. (1.75) is always positive.

1.5 Heavy Quark Effective Theory

We now discuss the Heavy Quark Effective Theory (HQET), which provide a useful

analytical framework commonly adopted to study some of the processes considered in

this work. We briefly present the general features and refer to other sources [83–86] for

more detailed reviews.
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The key observation for this effective theory relies on the fact that the b and c quark

masses are larger than the nonperturbative QCD scale

mb ≫ mc ≫ ΛQCD . (1.78)

It is then convenient to separate the heavy quarks explicitly in the Lagrangian and treat

them within the framework of an effective theory. For simplicity, we consider only one

heavy flavour that we indicate with Q. The QCD Lagrangian then reads

L(Q)
QCD = LQ + Lu,d,s + LQCD,G , (1.79)

LQ = Q̄(iγµDµ −mQ)Q(x) , (1.80)

where LQ contains the heavy quark, Lu,d,s contains the light quarks up, down and

strange and LQCD,G is the gauge Lagrangian. This is enough to describe a hadron H

with a single heavy quark. In this hadron, sea-quark fluctuations of QQ̄ are suppressed

by a power 1/(2mQ) due to the large mass of the heavy quark. Our goal is then to find

an effective Lagrangian for the heavy quark Q that can be expanded in powers of 1/mQ

and that recovers a lowest order Lagrangian in the static limit mQ → ∞. This limit

corresponds to the case where the momentum of the hadron is carried almost entirely by

the heavy quark. Given a mass MH and a momentum pH for the hadron, we introduce

the four-velocity v = pH
MH

, which in the rest frame is given by v = (1, 0, 0, 0). We can

further decompose the momentum as

pH = mQv + k , (1.81)

where we separated the large fraction of momentum mQv carried by the heavy quark

from the subdominant component k, which contains contributions from the lighter

flavours. A key aspect is that k is not altered significantly by the value of mQ as

long as mQ ≫ ΛQCD: this is due to the fact that the hadronic dynamics is dominated

by nonperturbative quark-gluon interactions. Indeed, we can write

MH =
√︂
p2H =

√︂
(mQv + k)2 = mQ + Λ̄ +O(Λ2

QCD/mQ) , (1.82)

where Λ̄ = v · k is the residual energy in the rest frame of H. This parameter is not

affected by flavour due to flavour independence of the quark-gluon interactions: this

lead to an approximate heavy-quark flavour symmetry.

The above discussion suggests the following decomposition induced by the two orthog-

onal projectors (1± /v)/2

Q(x) =
1 + /v

2
Q(x) +

1− /v
2

Q(x) ≡ ϕv(x) + χv(x) , (1.83)

Q̄(x) = Q̄(x)
1 + /v

2
+ Q̄(x)

1− /v
2
≡ ϕ̄v(x) + χ̄v(x) (1.84)
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such that the new fields

ϕv(x) =
1 + /v

2
Q(x) , χv(x) =

1− /v
2

Q(x) (1.85)

are eigenvectors of the /v operator

/vϕv = ϕv , /vχv = −χv , (1.86)

and similarly for ϕ̄v(x) and χ̄v(x). It is now convenient to decompose the covariant

derivative in its longitudinal and transverse components as Dµ = D
∥
µ +D⊥

µ , such that

v ·D = v ·D∥ and v ·D⊥ = 0, i.e.

D∥
µ = vµ(v ·D) , D⊥

µ = (gµν − vµvν)Dν , (1.87)

where gµν is the space-time metric tensor in Eq. (A.1). In particular, in the rest frame

v = (1,0) we have D⊥ = (0,−D) as well as the anticommutator

{ /D⊥
, /v} = 0 . (1.88)

The final step is now to factor out a phase that carries the major contribution of the

momentum mQv as

ϕv = e−imQ(v·x)hv(x) , χv = e−imQ(v·x)Hv(x) , (1.89)

where the new field hv(x) and Hv(x) are still eigenvectors of /v as the original ones. The

final Lagrangian then reads

LQ =h̄v(x)i(v ·D)hv(x)− H̄v(x) [i(v ·D) + 2mQ]Hv(x)

+ h̄v(x)i /D
⊥
Hv(x) + H̄v(x)i /D

⊥
hv(x) .

(1.90)

It is clear the hv(x) describes the massless modes of the heavy quark field, whereas

Hv(x) accounts for the QQ̄ fluctuations. Starting from the Dirac equation for Q(x),

substituting the new fields and projecting to (1 ± /v)/2 we arrive at a system of two

coupled equations for hv(x) and Hv(x)⎧⎨⎩i /D
⊥
Hv(x) = −i(v ·D)hv(x)

i /D
⊥
hv(x) = [i(v ·D) + 2mQ]Hv(x)

. (1.91)

From the latter we get

Hv(x) =

(︃
1

i(v ·D) + 2mQ

)︃
i /D

⊥
hv(x) , (1.92)

where the operator on the right is now non-local as it involves an infinite series of

derivative terms after expanding in powers of 1/mQ. From this we finally arrive at the
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equation of motion for the massless field

i(v ·D)hv(x) = −i /D⊥
(︃

1

i(v ·D) + 2mQ

)︃
i /D

⊥
hv(x) . (1.93)

We can now write down the final Lagrangian of this EFT

L(Q)
HQET = Lh + Lu,d,s + LG , (1.94)

with

Lh = h̄v(x)i(v ·D)hv(x) + h̄v(x)i /D
⊥
(︃

1

i(v ·D) + 2mQ

)︃
i /D

⊥
hv(x) . (1.95)

This formulation allows to describe hadrons with a heavy quark Q in terms of the field

hv(x). The Lagrangian Lh can be now expanded in powers of 1/mQ, and it recovers the

leading term for the massless field hv(x) in the static limit mQ →∞.

The hadron states can be described by replacing the four-momentum pH with the ve-

locity v = pH/mH , which is now the variable that encodes their kinematics. The states

read

|H(v)⟩ = 1

mH
|H(pH)⟩ , (1.96)

with normalisation

⟨︁
H(v′)

⃓⃓
H(v)

⟩︁
= 2(2π)3

pH,0

mH
δ(3)(p′

H − pH) . (1.97)

Together with the above effective Lagrangian, these transformations allow to redefine

important physical quantities such as, e.g., matrix elements for decay processes, into

the framework provided by HQET, and allow to treat them with the corresponding

parametrisation and expansion in 1/mQ.
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CHAPTER 2

LATTICE QCD

At low energies µ ≲ 1GeV quantum chromodynamics is a strongly coupled theory gov-

erned by a large value of the strong coupling αs ∼ O(1). In this nonperturbative regime,

standard methods such as perturbation theory are not reliable. Various approaches exist

to address nonperturbative calculations, as for example (but not limited to) QCD sum

rules [87,88] (see [86,89] for more extensive reviews), chiral perturbation theory [90], or

effective field theories such as HQET, briefly discussed in Sec. 1.5.

In this chapter, we introduce the basics of Lattice QCD, which provides a fully nonper-

turbative approach to QCD and enables us to make accurate predictions for low energy

processes through the use of numerical simulations on supercomputers. The core of this

formulation lies in the discretisation of four-dimensional space-time on a finite-volume

Euclidean lattice Λ of size L3 × T , where L denotes the spatial extent and T the tem-

poral one. Note that the use of Euclidean space-time is crucial to perform Lattice QCD

calculations, as we will show in Sec. 2.1. In the rest of this manuscript, we therefore as-

sume to be in Euclidean space unless explicitly stated otherwise. The physical distance

between sites, the lattice spacing a, and the lenght L of the sides of the spatial cubic

volume V = L3 are crucial parameters that regulate the theory, acting as ultraviolet

and infrared cutoff, respectively. This formulation is then well suited for numerical sim-

ulations, and physical predictions are obtained removing the regulators by considering

the continuum limit a→ 0 and the infinite-volume limit L→∞.

This chapter is organised as follows. We present the core ideas for calculating observables

on a lattice in Sec. 2.1 and address the strategy for the discretisation in Sec. 2.2, high-

lighting the actions relevant for this work. In Secs. 2.3 and 2.4 we discuss the strategies

for computing observables, addressing the construction of propagators and correlation

functions.
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2.1 Path integrals

The starting point for calculating observables in Lattice QCD is the path-integral formu-

lation of QFT in Minkowski space, which allows to address the evaluation of correlation

functions, which are crucial objects in QFT and Lattice QCD. A n-point correlation

function is defined as the expectation value of the time-ordered product

Cnpt(x1, x2, . . . , xn) = ⟨T{O1(x1)O2(x2) . . .On(xn)}⟩ , (2.1)

where Oi(xi) are interpolating operators with the quantum numbers of the physics pro-

cess we are interested in and T is the time-ordering operator. For simplicity, in the rest

of this section we indicate with O the time-ordered product of the operators Oi(xi). The

path integral then reads

⟨O⟩ = 1

Z

∫︂
D[Φ]O eiSM [Φ] , (2.2)

with Φ ≡ (Ψ, Ψ̄, U), where Ψ collects the fermion fields and U collects the gauge fields,

SM =
∫︁
d4xLQCD is the (Minkowski) QCD action and Z is the partition function defined

as

Z =

∫︂
D[Φ] eiSM [Φ] . (2.3)

Note that the expectation value is intended to be evaluated over both the fermionic

fields Ψ (“F”) and the gauge fields U (“G”), i.e. ⟨. . . ⟩ ≡ ⟨. . . ⟩F,G, as clear from the

measure D[Φ] ≡ D[Ψ, Ψ̄]D[U ] in Eq. (2.2). In order to make use of this expression for

numerical calculations, we need to follow a few steps, listed here schematically.

1. Wick-rotate the path integral into Euclidean space such that iSM → −SE , where
the Euclidean discretised action SE must reproduce the correct one in the contin-

uum limit a→ 0.

2. Replace the continuum space-time with a four-dimensional Euclidean lattice Λ

with size L3 × T and a given lattice spacing a.

3. Consider (classical) Euclidean operators and build the relevant correlators accord-

ingly.

Note that the degrees of freedom are now classical Euclidean field variables defined on

the lattice. The path integral becomes

⟨O⟩T =
1

ZT

∫︂
D[Φ]O e−S[Φ] , (2.4)
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with

ZT =

∫︂
D[Φ] e−S[Φ] , (2.5)

where T indicate the finite-volume prescription and where we dropped the “E” subscript

for simplicity. In the remainder of the chapter we assume to be in Euclidean space;

see App. A for a brief discussion of the relation between Minkowski and Euclidean

space.

The minus sign in e−S[Φ] allows us to interpret the exponential as a Boltzmann factor, as

long as S[Φ] is real. This implies that Eq. (2.4) can be interpreted as a weighted average

over field configurations with weight e−S[Φ]. This enables us to use a Monte Carlo

procedure to evaluate the multidimensional integrals by generating a large number of

Nconfig configurations Φα with probability

P [Φα] ∝ e−S[Φα] , (2.6)

and estimate the path integral as

⟨O⟩T ≃
1

Nconfig

Nconfig∑︂
α=1

O
⃓⃓⃓⃓
Φα

, (2.7)

where the operator O on the r.h.s. has now been evaluated on the configuration Φα.

Note that the QCD action can be split as S[Ψ, Ψ̄, U ] = SF [Ψ, Ψ̄, U ] + SG[U ], where SF

contains the fermion fields and SG represents the pure gauge part. Since SF is quadratic

in the fermion fields Ψ, we can integrate out the fermionic part “F” [91,92] and get

⟨O⟩T,F =

∫︂
D[Ψ, Ψ̄]Oe−S[Φ] ≡ det[D]O[U ]e−SG[Φ] , (2.8)

ZT,F =

∫︂
D[Ψ, Ψ̄] e−S[Φ] ≡ det[D]e−SG[Φ] (2.9)

where D is the Dirac operator of the SF action, cf. with Eq. (2.13). The path integral

then reduces to

⟨O⟩T =

∫︁
D[U ] det[D]O[U ] e−SG[U ]∫︁
D[U ] det[D] e−SG[U ]

. (2.10)

The gauge field U is, therefore, the only field we need to generate an ensemble of config-

urations for in order to evaluate the correlation function. This final equation represents

therefore the key ingredient to perform lattice computations.
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2.2 Discretised QCD actions

We now describe how to build a discretised QCD action and in particular how to treat

fermions on the lattice. We only report some of the central aspects and refer to other

sources [93,94] for more details. We consider a lattice Λ of size L3×T , with L being the

spatial extension and T the temporal one, and lattice spacing a. Considering L = aNL,

T = aNT , where NL and NT are the number of sites along the spatial and temporal

direction, respectively, and writing xµ = anµ, nµ ∈ N, the lattice is given by

Λ = {n = (n1, n2, n3, n4) |n1, n2, n3 = 0, 1, . . . , NL − 1;n4 = 0, 1, . . . NT − 1} . (2.11)

There is no unique way to proceed with the discretisation. All meaningful discretisation

have in common that the continuum limit a→ 0 recovers the correct QCD Lagrangian.

Such procedure comes with discretisation effects of order O(an), which can be further

improved through methods like, e.g., the Symanzik improvement program [95–97].

We present the key ideas for the discretisation of the quark fermion field q(x) in Sec. 2.2.1

through the naive fermions formulation. We then show how to build a pure gauge theory

in Sec. 2.2.2 and discuss Wilson-type quarks and the specific actions relevant for this

work in the remaining sections. We consider a single quark flavour for simplicity, but the

generalisation is straightforward as it just requires summing over all flavours involved.

2.2.1 Naive fermions and gauge invariance on the lattice

The naive action relies on the discretisation of the derivative

∂µq(x) →
1

2a
(q(x+ aµ̂)− q(x− aµ̂)) , (2.12)

which is valid up to O(a) discretisation errors, as it can be seen by Taylor expanding

q(x± aµ̂). The generic discretised action can be written as

S[q, q̄] = a4
∑︂
x,y

q̄(y)D(y, x)q(x) , (2.13)

where D is the Dirac operator, which contains the kinetic and mass term, as it will be

clear in the following discussion. Requiring gauge invariance under SU(3) transforma-

tions for the discrete theory with Ω(x) ∈ SU(3)

q(x) → q′(x) = Ω(x)q(x) , (2.14)

q̄(x) → q̄′(x) = q̄(x)Ω†(x) , (2.15)

Uµ(x) → Ū
′
µ(x) = Ω(x)Uµ(x)Ω(x+ aµ̂) , (2.16)
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we can build the discretised version of the covariant derivatives

Dµq(x) →
1

2a
(Uµ(x)q(x+ aµ̂)− U−µ(x)q(x− aµ̂)) , (2.17)

where Uµ is the gauge field, with U−µ(x) = U †
µ(x− aµ̂). The gauge field Uµ(x) connects

the lattice point x to x+aµ̂ and is therefore referred to as link variable. The interacting

naive Dirac operator takes the form

DF (y, x) =

4∑︂
µ=1

γµ
Uµ(y)δy+aµ̂,x − U−µ(y)δy−aµ̂,x

2a
+mq , (2.18)

which represents the massive kinetic term of the action, with mq being the bare quark

mass. Note that the free theory can be recovered setting Uµ(x) = I.

In a finite volume we need to impose boundary conditions on the fields to specify their

behaviour at the edges of the four-dimensional volume. In particular, the conditions are

given by

q(x+ aNµµ̂) = ei2πθµq(x) , (2.19)

where Nµ is the number of lattice points in the direction µ̂, i.e. N1 = N2 = N3 = NL

and N4 = NT , and θµ is the phase which is referred to as twist. Setting θµ = 0 ∀µ
corresponds to the periodic boundary conditions case: in this scenario, the volume is

equivalent to a torus. On the other hand, the case with θµ ̸= 0 corresponds to imposing

twisted boundary conditions [98,99]. From a physical point of view, boundary conditions

imply that the momentum space is restricted to the discrete values

pµ =
2π

aNµ
(kµ + θµ) kµ ∈ N, (2.20)

such that the accessible momenta on the lattice are given by

Λ̃ =

{︃
p | pµ =

2π

aNµ
(kµ + θµ), kµ = −Nµ

2
+ 1, . . . ,

Nµ

2

}︃
. (2.21)

2.2.2 Pure gauge action

From the naive formulation of Sec. 2.2.1 we see that the gauge fields are now elements of

the group SU(3) instead of the corresponding algebra as in the continuum. In particular,

the gauge link can be written as

Uµ(x) = eiaAµ(x) , (2.22)
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with Aµ(x) being the algebra-valued lattice gauge field. It can be shown that in the

limit a → 0 Eq. (2.22) allows to recover the correct continuum interactive action

from Eqs. (2.18) and (2.13).

We now proceed to build a lattice gauge action which recovers the continuum one in the

limit a→ 0. Considering that the fundamental objects on a lattice are gauge links, which

connect the adjacent sites and are related to the fields Aµ(x) through an exponential,

we can think of building the lattice version of the continuum Wilson line W on a path

γ and Wilson loop WL on a closed path γ̃

W [γ] = Pei
∫︁
γ dxµAµ , WL[γ̃] = Tr

[︂
Pei

∮︁
γ̃ dxµAµ

]︂
, (2.23)

where P is the path-ordering operator. In a similar way, we can build the corresponding

lattice object that connects two lattice point x and y through a ordered path C

P [U ] =
∏︂

(z,µ)∈C

Uµ(z) , (2.24)

which, following Eq. (2.16), transforms under SU(3) as

P [U ] → P [U ′] = Ω(x)P [U ]Ω†(y) . (2.25)

We can then consider the trace of path products along a closed loop C̃ to build the gauge

invariant quantity

L[U ] = Tr

⎡⎣ ∏︂
(z,µ)∈C̃

Uµ(z)

⎤⎦ , (2.26)

which is the analogous of the continuum Wilson loop. An arbitrary closed loop can be

used to build the QCD action, as long as it suitably treated in order to reproduce the

correct space-time symmetries. The simplest non-trivial path that can be constructed

from the gauge links is the plaquette

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x) , (2.27)

which represents a closed loop in the two-dimensional plane (µ̂, ν̂) that connects the

points x, x+ aµ̂, x+ aµ̂+ aν̂ and x+ aν̂.

We can finally build the Wilson gauge action as a sum over plaquettes, each of which is

counted with only one orientation

SG[U ] =
2

g2

∑︂
x

∑︂
µ<ν

ReTr [I− Uµν(x)] . (2.28)
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Taylor expanding the plaquette Uµν(x) in the lattice spacing a, it can be shown that

SG[U ] reproduces the correct gauge action up to O(a2) effects that vanishes in the limit

a→ 0.

This action can be improved to further eliminate lattice artefacts and obtain smaller

discretisation errors, as in the case, for example, of the Iwasaki gauge action [100, 101],

which is the one specifically considered in this work.

2.2.3 Wilson action

The naive action discussed in Sec. 2.2.1 presents however some problems. Indeed, let us

consider the free theory Uµ(x) = I and consider the Dirac operator in momentum space

D̃(p, q) =
∑︂
x,y

e−ip·yD(y, x)eiq·x = D̃(p)δ(p− q) , (2.29)

D̃(p) = mqI +
i

a

4∑︂
µ=1

γµ sin(pµa) . (2.30)

The propagator in momentum space Λ̃ (given in Eq. (2.21)), is

D̃
−1

(p) =
mqI− ia−1

∑︁
µ γµ sin(pµa)

m2
q + a−2

∑︁
µ sin

2(pµa)
. (2.31)

From this expression it is immediate to see that in the massless limit mq = 0 the

propagator has not only a pole in p = 0 as in the continuum theory, but it also has extra

15 poles for all the combinations of pµ ∈ {0, π/a}. This implies that the naive action

describes unphysical particles, called doublers, that we have to remove from the theory.

A possible solution to the doubler problem has been suggested by Wilson [102], who

proposed to add an irrelevant dimension-five term, theWilson term, that lifts the doubler

modes to higher masses of order E ∼ 1/a, which then decouple from the theory as a→ 0.

The Wilson operator is

OW (y, x) = −ar
4∑︂

µ=1

Uµ(y)δy+aµ̂,x − 2δy,x + U−µ(y)δy−aµ̂,x

2a2
, (2.32)

and it corresponds to the discretised version of the Laplace operator −ar/2 ∂µ∂µ, which
indeed vanishes as a→ 0. While the Wilson term fixes the doubler problem, it comes at

the cost of breaking chiral symmetry. This is understood in general thanks to the Nielsen-

Ninomiya no-go theorem [103], which states that no local action in an even-dimensional

Euclidean space-time can be constructed such that it simultaneously removes the dou-

blers and preserves chiral symmetry. Chiral symmetry is a central feature of QCD: for
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example, pions corresponds to the Goldstone bosons of this symmetry, and its sponta-

neous breaking mechanism explain their small mass. We will discuss one of the possible

formulations to implement chiral symmetry on a lattice in Sec. 2.2.6.

The Wilson action is then

SW [q, q̄, U ] = a4
∑︂
x,y

q̄(y)DW (y, x)q(x) , (2.33)

where the Dirac operator DW (y, x) = DF (y, x) +OW (y, x) is

DW (y, x) =

(︃
mq +

4

a
r

)︃
δy,x −

1

2a

±4∑︂
µ=±1

(1− γµ)Uµ(y)δy+aµ̂,x . (2.34)

where γ−µ = −γµ and U−µ(x) = U †
µ(x − aµ̂). This action represents the starting point

to build the actions considered in the next sections. The fermions discretised through

actions based on the Wilson one are therefore referred to as Wilson-type fermions.

2.2.4 Clover action

The Sheikholeslami-Wohlert action (or clover action), is a O(a)-improved Wilson action

of the form

SSW = SW + cswa
5
∑︂
x

∑︂
µ<ν

1

2
q̄(x)σµνF̂µν(x)q(x) , (2.35)

where σµν = −i[γµ, γν ]/2 and csw is the Sheikholeslami-Wohlert coefficient, which is a

real coefficient that has to be tuned nonperturbatively in order to remove the O(a) dis-
cretisation errors. The improvement is achieved through the addition of the dimension-

five term

SC = q̄(x)σµνF̂µν(x)q(x) , (2.36)

which is a magnetic moment term with

F̂µν(x) =
−i
8a2

(Cµν(x)− Cνµ(x)) , (2.37)

and where Cµν(x) is the sum of plaquettes in Eq. (2.27)

Cµν(x) = Uµν(x) + Uν−µ(x) + U−µ−ν(x) + U−νµ(x) , (2.38)

which represents a discretisation of the continuum field strength tensor. The name

“clover” comes from the fact that Cµν(x) represent a sum of loops in a two-dimensional

plane that reminds the shape of a clover leaf.
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2.2.5 Relativistic Heavy Quark action

The Relativistic Heavy Quark (RHQ) action is an anisotropic version of the clover

action, formulated with the intent of treating heavy quarks on a lattice through the

help of nonperturbative parameters that reduce the discretisation errors. While the

previous actions can be used to study light, strange and charm quarks, the bottom

quark requires the use of effective theories. Indeed, today typical lattice spacings range

between a−1 ∼ O(2 − 4GeV): in order to keep the discretisation errors under control,

the quark bare mass mq needs to satisfy the relation

mq ≪
1

a
=⇒ mqa≪ 1 , (2.39)

which is violated in the case of the b quark mass mb = 4.18+0.03
−0.02GeV [63], which corre-

sponds to the “running mass” (mb(µ = mb)) in the MS-scheme.

In this work we consider the Columbia formulation [104,105] of the RHQ action, which

is based on the Fermilab heavy quark action [106]. In particular, this action allows

to reduce the discretisation effects of order O((mqa)
n), O(pa) and O((pa)(mqa)

n) by

tuning three nonperturbative parameters [107], one of them being the bare mass mq.

The approach considered is similar to the one of HQET, where the heavy quark mass is

assumed to be much larger than its spatial momentum.

The action reads

SRHQ = a4
∑︂
x,y

Q̄(x)

[︃
mq + γ0D0 + ζγi ·Di −

a

2
(D0)

2 − a

2
(D)2 (2.40)

+ csw
∑︂
µ<ν

ia

2
σµνF̂µν

]︃
Q(y)

where we indicate with Q the heavy quark and where we defined the covariant derivatives

DµQ(x) =
1

2a
[Uµ(x)Q(x+ aµ̂)− U−µ(x)Q(x− aµ̂)] , (2.41)

D2
µQ(x) =

1

a2
[Uµ(x)Q(x+ aµ̂)− U−µ(x)Q(x− aµ̂)−Q(x)] . (2.42)

In this work we will consider heavy-light currents of the form Jµ(x) = Q̄(x)ΓJ
µq(x),

where q is a Wilson-type light quark (in practice a domain-wall fermion as in Sec. 2.2.6).

We report the construction of the O(a)-improved current [108]: while we don’t make

explicit use of them for the purpose of the present work, they may become important
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for future phenomenology studies. The improved terms are

J1
µ(x) = Q̄(x)2 ΓJ−→Dµq(x) , (2.43)

J2
µ(x) = Q̄(x)2 ΓJ←−Dµq(x) , (2.44)

J3
µ(x) = Q̄(x)2 ΓJ

µγi
−→
D iq(x) , (2.45)

J4
µ(x) = Q̄(x)2 ΓJ

µγi
←−
D iq(x) , (2.46)

where the gamma-matrices are defined in App. A.1 and the covariant derivatives
−→
Dµ

and
←−
Dµ are defined through their action on the quark fields as

−→
Dµq(x) =

1

2

[︂
Uµ(x)q(x+ aµ̂)− U †

µ(x− aµ̂)q(x− aµ̂)
]︂
, (2.47)

Q̄(x)
←−
Dµ =

1

2

[︂
Q̄(x+ aµ̂)U †

µ(x)− Q̄(x− aµ̂)Uµ(x− aµ̂)
]︂
. (2.48)

The improved current then reads

J imp
µ (x) = Jµ(x) + cJ,1µ J1

µ(x) + cJ,2µ J2
µ(x) + cJ,3µ J3

µ(x) + cJ,4µ J4
µ(x) , (2.49)

where the coefficients cJ,iµ can be computed through one-loop lattice perturbation the-

ory [109].

2.2.6 Domain-Wall Fermion action

The Domain-Wall Fermion (DWF) formulation, introduced in [110] and further de-

veloped in [111–114], makes use of a five-dimensional theory in order to circumvent

the Nielsen-Ninomiya no-go theorem [103] and preserve chiral symmetry. A chirally-

symmetric lattice action is characterised by the fact that it satisfies the Ginsparg-Wilson

equation [115]

{D, γ5} = aDγ5D , (2.50)

which recovers the continuum chiral symmetry relation {D, γ5} = 0 as a → 0. An

example of such an action is given by the overlap formulation [116–119], which has

explicitly been shown to satisfy the Ginsparg-Wilson relation [120].

Let us now briefly describe the DWF action in Shamir’s formulation [111, 113], and

refer to other reviews for more details [121, 122]. We consider a five-dimensional lattice

Λ5 = Λ× Ls, whose coordinates are given by X = (x, x5), with x ∈ Λ and x5 ∈ Ls, and

the fermionic fields

Q(X) , Q̄(X) . (2.51)
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The 5D action can be written in the usual way as

SDWF [Q, Q̄, U ] =
∑︂
X,Y

Q̄(Y )DDWF (Y,X)Q(X) (2.52)

where the Dirac operator is decomposed into aWilson-like operator and a one-dimensional

operator on the fifth dimension

DDWF (Y,X) = δy5,x5DW (y, x) + δy,xD5(y5, x5) , (2.53)

which are respectively parallel and perpendicular components with respect the 4D space-

time. In particular, DW reads

DW (y, x) = (4−M5) δy,x −
1

2a

±4∑︂
µ=±1

(1− γµ)Uµ(y)δy+aµ̂,x , (2.54)

where M5 corresponds to the height of the domain wall, which separates the points

x5 = 0 and x5 = Ls − 1, and D5 reads

D5(y5, x5) =δy5,x5 − (1− δy5,Ls−1)PLδy5+1,x5 − (1− δy5,0)PRδy5−1,x5 (2.55)

+mq(PLδy5,Ls−1δ0,x5 + PRδy5,0δLs−1,x5) ,

where mq is the mass of the four-dimensional quark field and PR,L = (I± γ5)/2 are the

right and left chiral projectors acting on the Dirac indices. Note that the gauge links

do not appear in D5 and they are therefore only defined on the 4D space as usual. The

physical four-dimensional fields live on the 4D boundary of Λ5 (in particular on the first

and the last 4D slice) and they are defined as

q(x) = PLQ(x, 0) + PRQ(x, Ls − 1) , q̄(x) = Q̄(x, Ls − 1)PL + Q̄(x, 0)PR , (2.56)

which shows that the right-handed modes are generated on the slice x5 = 0 and the

left-handed modes on the slice x5 = Ls − 1. These four-dimensional quark fields can

now be used to construct the observables of interest, e.g. the scalar density q̄(x)q(x).

Exact chiral symmetry is recovered for Ls → ∞, since the Ginsparg-Wilson equation

is satisfied in this limit. It can also be shown that in this case the DWF formulation

is equivalent to the overlap one [123, 124]. However, in practical cases Ls takes a finite

value: as a consequence, the 4D fields contain some small mixing between right and

left modes, which leads to a residual chiral symmetry breaking effect. This effect is

parametrised by the residual mass mres that manifests as an additive renormalisation

term to the bare quark mass. Chiral symmetry is then recovered in good approximation

as long as the choice of Ls produces a small value of mres.
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2.3 Propagators

Let us now turn to discuss practical aspects of lattice computations, starting from how

to build propagators and consequently correlation functions. Propagators are essential

objects in QFT and they are the building blocks to compute correlators on a lattice, as we

will see in Sec. 2.4. They are formally defined as a the vacuum expectation value of the

time-ordered product of two given fields at different space-time points and correspond

to Green functions, i.e. the inverse of the kinetic operator for the given theory. For

example, considering a quark field q, the propagator G(y, x) from x to y reads

G(y, x) = ⟨q(y)q̄(x)⟩ , (2.57)

where q̄ = q†γ4 is the adjoint field in Euclidean space-time. Propagators relate to the

amplitude of a particle travelling between the two space-time points. On a discretised

finite-volume space-time, the propagator assumes the form of a N × N matrix, with

N = 3× 4×N3
L ×NT , where 3 refers to the SU(3) structure of QCD (colour), 4 to the

Dirac structure (spin) and N3
L ×NT to the size of the lattice. Considering a discretised

action with a Dirac operator D, the propagator G is obtained by solving the equation

DG = S , G = D−1S , (2.58)

where all the operators are written in their compact matrix form and S is a source

operator. The source can be thought as the equivalent of Dirac delta function in the

continuum version of the above equation; possible different choices for the source will

be discussed in the following sections.

Concerning the propagator, the variable dependence is explicitly given by

G(y, x)βα
ba

=
∑︂
z,µ,c

D−1(y, z)βµ
bc
S(z, x)µα

ca
, (2.59)

where the Greek characters indicate the Dirac structure and the Roman characters

indicate the SU(3) QCD structure. The propagator G(y, x)βα
ba

connects then the lattice

site (x, α, a) to the site (y, β, b) and has to be computed for every gauge field configuration

we are interested in. The expression in Eq. (2.58) is intended in its full matrix form,

i.e. it contains information about propagation from all possible sites x to all possible

sites y and it is referred to as all-to-all propagator. However, the operator D is typically

large (with a size N of order O(106) for small lattices, e.g. L3 × T = 163 × 24) and

the evaluation of its inverse is computationally very expensive and requires a lot of disk

space. Instead, we can consider the propagator from a fixed point x0 and indices α0

and a0 using a vector source S(x0,α0,a0)(z)µ
c
, i.e. a column of the matrix source S(z, x)µα

ca
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in Eq. (2.59), such that

G(y, x0)βα0
ba0

=
∑︂
z,µ,c

D−1(y, z)βµ
bc
S(x0,α0,a0)(z)µ

c
, (2.60)

The above expression must be evaluated for 12 sources for all the combination of Dirac

and colour indices α0 and a0 respectively, and it corresponds to a single column of the

inverse of the matrix D associated with the point (column) x0. We use the subscript

“0” to indicate that the source is intended to be a column vector fixed at that point

and indices and that the propagator is intended to be a column of the full propagator:

we refer to it as one-to-all propagator. This is the case that will be considered in the

whole manuscript. The propagator can be evaluated at multiple values of x0, which

can be averaged thanks to translational invariance to reduce the overall noise of the

final correlator. The matrix inversion can be performed through the help of numerical

methods such as the Conjugate Gradient (CG) algorithm [125]; we refer to other sources,

e.g. [126], for a more comprehensive review on possible approaches to the numerical

problem.

2.3.1 Point sources

Point sources are the most straightforward choice and are given by

S
(x0,α0,a0)
pt (z)µ

c
= δ(z − x0) δα0µ δa0c , (2.61)

following the convention of the previous section. They correspond to the standard Dirac

delta function that appears in the most conventional Green equation in the continuum.

They are placed at specific lattice sites and they are therefore sensitive to local fluctua-

tions of the gauge field. To maximise the information extracted and reduce the statistical

noise one would then need to place many sources across the lattice sites, perform many

inversion of the kinetic operator and average the results obtained.

2.3.2 Stochastic sources

Stochastic sources have been introduced to reduce the overall noise of the final observ-

ables in lattice QCD [127], but also in other different fields of physics [128–130]. Fol-

lowing the standard notation, we introduce N stochastic vector ηn with n = 1, 2, . . . , N

such that

⟨ηi⟩ = 0 , ⟨ηiη†j⟩ =
1

N

N∑︂
n=1

ηni η
n†
j = δij . (2.62)

where ηni is the i-th entry of the vector ηn and the average ⟨·⟩ is intended over the whole

set of noise vectors. We refer to it as a set of hits of stochastic sources. It can be
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shown that the expectation value of the matrix element E[Gij ] can be easily found by

solving Eq. (2.58) for all the N hits. Indeed

E[Gij ] = ⟨η†i (D−1η)j⟩ =
∑︂
k

D−1
jk ⟨η

†
i ηk⟩ = D−1

ij . (2.63)

While different choices of noise are possible, e.g. Gaussian noise, in this work we make use

of Z2 sources, which in some cases have been shown to produce minimum variance [127].

Indeed, the use of stochastic sources has the advantage of making use of the full volume,

in contrast to what happens with point sources. In our case, following [131], the i-th

entry corresponds to a site z of the lattice and explicitly to a Z2 × Z2 complex number

ηn(z) ∈
{︃

1√
2
(±1± i)

}︃
, (2.64)

which is drawn randomly for every source vector. The source reads

S
(n,α0,a0)
Z2

(z)µc = ηn(z)δα0µδa0c , (2.65)

where in this case there is no dependence on any fixed lattice site but only on a single

hit n. For this reason, the propagator in (2.60) now reads

Gn(y)βα0
ba0

≡
∑︂
z,µ,c

D−1(y, z)βµ
bc
S
(n,α0,a0)
Z2

(z)µ
c
. (2.66)

For a large number of hits N →∞ we have

∑︂
µ,c

⟨S(n,α,a)
Z2

(y)µc S
(n,β,b)†
Z2

(x)µc⟩ =
1

N

N∑︂
n=1

ηn(y)ηn(x)†δαβδab −→ δ(x− y)δαβδab ,

(2.67)

which reproduces the behaviour of the standard point sources. In particular, in this

work we make use of Z2-wall sources [132], where the time dependence of the stochastic

source is fixed at a given time t0, i.e.

η(z; t0) = η(z)δ(z4 − t0) . (2.68)

2.3.3 Smearing

The sources discussed so far rely on quark fields q that are placed on specific sites of

the lattice. However, this implies that the overlap with the physical wavefunction is

not optimal. We can then consider more general smeared fields to optimise the physical

signal we are interested in. For example, a common trick is to introduce a smearing

function that maximises the overlap of the wavefunction with the ground state and

reduces the excited-states contamination.
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Introducing the notation, we write G → GXY with X,Y ∈ {S,L}, where S stands for

“smeared” and L stands for “local”. We introduce the smearing operator HX that acts

on the quark field as qX = HXqL as

qX(x)α
a
=
∑︂
y

HX(x, y)αβ
ab
qL(y)β

b
(2.69)

q̄Y (x)α
a
=
∑︂
y

q̄L(y)β
b
HY †(y, x)βα

ba
,

where

[︁
HX(y, x)

]︁†
αβ
ab

= HX∗(x, y)βα
ba

and HL(x, y)αβ
ab

= δ(x− y)δαβδab . (2.70)

Note that the field is smeared only on the three-dimensional space on a given time plane t,

and the smearing operator depends on HS ≡ HS(x,y; t) with x = (x, x4) = (x, t). Here

we chose to keep the discussion general as in the previous section to keep the notation

as light as possible. The standard discussion (see for example the appendix of [133]) can

be easily recovered simply considering HS(x, y) ≡ HS(x,y)δ(x4 − t)δ(y4 − t).

Given a propagator GXY (y, x) = ⟨qX(y)q̄Y (x)⟩, it is clear that the smearing can be

applied independently both at the source point x or at then sink point y, adopting the

conventional terminology. The general expression then reads

GXY (y, x) =
∑︂
z,w

HX(y, z)GLL(z, w)HY †(w, x) . (2.71)

In practice, the propagator smeared at the source can be obtained by applying the

smearing operator directly at the point source, i.e.

DGLS = SHS† . (2.72)

Note that explicitly this implies

GLS(y, x) =
∑︂
z,w

D−1(y, z)S(z, w)HS(w, x)† =
∑︂
w

GLL(y, w)HS(w, x)† . (2.73)

On the other hand, the propagator smeared at the sink can be easily obtained by applying

the operator HS on the propagator GLL as

GSL = HSGLL . (2.74)

Finally, the smearing can also be applied simultaneously at both source and sink by

combining the previous operations

GSS(y, x) =
∑︂
z,w

HS(y, z)GLL(z, w)HS(w, x)† =
∑︂
z

HS(y, z)GLS(z, x) , (2.75)
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where we made use of Eq. (2.73). Note that in principle it is also possible to employ

different smearing, i.e. different choices of the operator HS , at source or sink.

Let us conclude discussing explicitly how to build a smeared source HS(y,x0), where

we are now considering explicitly a smearing operator that depends only on the spatial

coordinates. While in this work we make use of Jacobi smearing, here we briefly present

the the Wuppertal approach [134, 135] as a pedagogical introduction to smearing. Let

us consider the equation ∑︂
y

K(x,y)HS(y,x0) = δ(x− x0) , (2.76)

where we defined⎧⎨⎩K(x,y) = δ(x− y)− κsU(x,y)

U(x,y) =
∑︁3

j=1

[︂
Uj(x)δx+ȷ̂,y + U †

j (x− ȷ̂)δx−ȷ̂,y

]︂ , (2.77)

and κs is a parameter that controls the smearing width. The effect of the smearing is

to build a sort of “shell-model” wavefunction with each quark centred on x0 in a region

of radius

r2 =

∑︁
y |y|2|HS(y,x0)|2∑︁

y |HS(y,x0)|2
(2.78)

controlled by the value of κs. Since inverting K = I−κsU is computationally expensive,

we can make use of Jacobi iteration to obtain HS = K−1. Considering

HS = (1− κsU)−1 =
∞∑︂
n=0

κnsU
n = K−1 , (2.79)

we can define the matrix

HS(N) =

N∑︂
n=0

κnsU
n N→∞−→ K−1 , (2.80)

which converges to the desired matrix K−1 for a large enough value of N . In practice,

starting from HS(0) = HL, we repeat the following step

HS (n+1) = HL + κsUH
S (n) ,

for a large enough number of iterations N such that HS(N) approximate HS well enough.
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a

b

xsnk xsrc

Ga(xsrc, xsnk)

Gb(xsnk, xsrc)

Figure 2.1: Two-point correlator diagram (connected) corresponding to the meson
interpolator O = q̄a(x)Γqb(x). The quark qa is propagated from xsnk to xsrc through
the propagator Ga(xsrc, xsnk), whereas the quark qb is propagated from xsrc to xsnk by
Gb(xsnk, xsrc).

2.4 Interpolators and correlation functions

We now discuss how to build correlators on the lattice focusing on meson interpolators,

which are the ones of interest in this work. We consider operators of the form

O(x) = q̄b(x)Γqa(x) , (2.81)

where a, b label the flavours and Γ ∈ {ΓJ ,ΓJ
µ} (see App. A.1 for definition). In this way

we aim to keep track of all the possibilities for all scalar, pseudoscalar, vector and axial

operators with any combination of flavours. While we kept the discussion and notation

general in the previous sections, we will now adopt the standard nomenclature for this

sort of computations. We then refer to the source point as xsrc and the sink point as

xsnk. For simplicity, in order to expose the momentum flow, the following discussion is

specific to the case of the point source. Note that in practice we will use Z2 sources with

twisted boundary conditions as detailed in Chap. 5.

2.4.1 Two-point correlators

Let us consider the two-point correlator depicted in figure Eq. (2.1)

C2pt(xsnk, xsrc) = ⟨T{Osnk(xsnk)O†
src(xsrc)}⟩ , (2.82)

where the interpolating operators are

O†
src(xsrc) = q̄b(xsrc)Γ

†
src qa(xsrc) , (2.83)

Osnk(xsnk) = q̄a(xsnk)Γsnk qb(xsnk) . (2.84)

This notation makes it easy to keep track of the position of the gammas when construct-

ing the correlator. Note that a common case (as the ones considered in this work) is
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given by Osrc = Osnk and Γsrc = −γ4Γsnkγ
4 = ±Γsnk, where the last sign depends on

the commutation relation between γ4 and Γsnk. We are then creating a particle at the

source with the quark content qbq̄a that is then destroyed at the sink (recall that the

field q̄(x) creates a quark q, or equivalently destroys an antiquark q̄, in position x, and

vice versa for the field operator q(x)).

We can now write the components explicitly and apply Wick’s theorem [136] to get

C2pt(xsnk, xsrc) = ⟨T{q̄a(xsnk)α (Γsnk)αβ qb(xsnk)β q̄b(xsrc)α′ (Γ†
src)α′β′ qa(xsrc)β′}⟩

(2.85)

which is given by the sum

C2pt(xsnk, xsrc) = C conn
2pt (xsnk, xsrc) + δabC

disc
2pt (xsnk, xsrc) (2.86)

of a connected diagram

C conn
2pt (xsnk, xsrc) = −⟨(Γsnk)αβ (Γ

†
src)α′β′ ⟨qb(xsnk)β q̄b(xsrc)α′⟩F ⟨qa(xsrc)β′ q̄a(xsnk)α⟩F ⟩G

= −⟨(Γsnk)αβ (Γ
†
src)α′β′ Gb(xsnk, xsrc)βα′ Ga(xsrc, xsnk)β′α⟩G

= −
⟨︂
Tr
[︂
ΓsnkGb(xsnk, xsrc)Γ

†
srcGa(xsrc, xsnk)

]︂⟩︂
G
, (2.87)

and disconnected diagram

C disc
2pt (xsnk, xsrc) = ⟨(Γsnk)αβ (Γ

†
src)α′β′ ⟨qa(xsrc)β′ q̄a(xsrc)α′⟩F ⟨qa(xsnk)β q̄a(xsnk)α⟩F ⟩G

= ⟨(Γsnk)αβ (Γ
†
src)α′β′ Ga(xsrc, xsrc)β′α′ Ga(xsnk, xsnk)βα⟩G

=
⟨︂
Tr
[︂
Γ†
srcGa(xsrc, xsrc)

]︂
Tr [ΓsnkGa(xsnk, xsnk)]

⟩︂
G
, (2.88)

In the above steps we reordered the Grassman variables and used the fact that the

fermionic expectation value ⟨. . . ⟩F factorises with respect to the flavour. Note that

the disconnected piece enters only in the case of equal flavours a = b. We will focus

only on connected diagrams as these are the only ones relevant for this work. Using

γ5-hermiticity (see App. B.4) on Ga we finally get

C conn
2pt (xsnk, xsrc) = −

⟨︂
Tr
[︂
γ5ΓsnkGb(xsnk, xsrc)Γ

†
srcγ5G

†
a(xsnk, xsrc)

]︂⟩︂
G
. (2.89)

This allows to always compute one-to-all propagators from a fixed xsrc and reduce the

computational cost, as also clear in Eq. (2.91), where only a sum over xsnk is performed.

The final step is to project the correlators in momentum space. In particular, thanks

to momentum conservation, it is enough to project just one of the two interpolators

(typically the one at the sink)

Õsnk(psnk, t) =
∑︂
xsnk

e−ipsnk·xsnk Osnk(xsnk, tsnk) , (2.90)
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where we used the discrete Fourier transform in three dimensions such that the final

correlator reads

C2pt(psnk, tsnk, tsrc) = ⟨T{Õsnk(psnk, tsnk)O†
src(xsrc, tsrc)}⟩ (2.91)

=
∑︂
xsnk

e−ipsnk·(xsnk−xsrc)⟨T{Osnk(xsnk, tsnk)O†
src(xsrc, tsrc)}⟩

= −
∑︂
xsnk

e−ipsnk·(xsnk−xsrc)
⟨︂
Tr
[︂
γ5ΓsnkGb(xsnk, xsrc)Γ

†
srcγ5G

†
a(xsnk, xsrc)

]︂⟩︂
G
.

Note that we used translation invariance to include a dependence on xsrc in the expo-

nential with the intent to show explicitly the momentum flow. We will adopt the same

convention in the rest of the manuscript.

We can now insert a complete set of states I =
∑︁

n
|Hn⟩⟨Hn|

2En
, and defining t = tsnk − tsrc

thanks to time-translation invariance, and p = psnk = psrc we get

C2pt(p, t) =
∑︂
n

Zsnk,n Z
∗
src,n

2En

[︂
e−(T−t)En ± e−tEn

]︂
, (2.92)

where En ≡ En(p), Zsnk,n = ⟨0| Osnk |Hn(p)⟩ and Z∗
src,n = ⟨Hn(p)| O†

src |0⟩, and where

|Hn(p)⟩ is the n-th hadronic energy state with momentum p. Note that the relative sign

depends on the property of the time-reversal of the specific operators considered.

It is often useful to consider the case where the ground state dominates, e.g. to extract

the hadron mass associated with the ground state of the given interpolator. Focusing

on the positive sign in Eq. (2.92), we can then consider the case t≫ 0 such that

C2pt(p, t)
t≫0
=

Zsnk,0 Z
∗
src,0

2E0

[︂
e−(T−t)E0 + e−tE0

]︂
(2.93)

= 2A0e
−T/2 cosh ((T/2− t)E0) ,

where A0 = Zsnk,0 Z
∗
src,0/(2E0). The analysis of two-point functions is then particularly

useful to obtain the energies of the ground states and, in some cases, of some of the

excited states. It allows in this way to determine the basic properties of the gauge

ensemble considered for the computations.

2.4.2 Three-point correlators

We now focus on the construction of a generic three-point correlator. Similar to the

previous case, we consider the generic operators

O†
src(xsrc) = q̄b(xsrc)Γ

†
src qa(xsrc) , (2.94)

Jµ(x) = q̄c(x)Γ
J
µ qb(x) , (2.95)

Osnk(xsnk) = q̄a(xsnk)Γsnk qc(xsnk) . (2.96)
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c b

a

xsrcxsnk

Jµ(x)

Gb(x, xsrc)

Σac(xsrc, x)

Figure 2.2: Three-point correlator diagram. The black propagator Gb propagates
the quark qb from xsrc to x, whereas the green line is a sequential propagator that
propagates the quark qc from x to xsnk (with a fixed tsnk) and the then the quark qa
from xsnk to xsrc.

Note that the current operator Jµ depends on the index µ because of the ΓJ
µ matrix.

This is the case relevant for this work, but the treatment can be generalised trivially

considering a generic matrix Γ.

The correlation function, represented in Fig. 2.2, is given by

C3pt,µ(xsnk, x, xsrc) = ⟨T{Osnk(xsnk) Jµ(x)O†
src(xsrc)}⟩ . (2.97)

Expanding the representation it can be divided in connected and disconnect contribu-

tions as for the two-point functions. For simplicity, we will consider only the connected

contribution, which is the only one relevant in this work since we consider processes

where a ̸= b ̸= c. We then get

C3pt,µ(xsnk, x, xsrc) = ⟨q̄a(xsnk)Γsnk qc(xsnk)q̄c(x)Γ
J
µ qb(x)q̄b(xsrc)Γ

†
src qa(xsrc)⟩ (2.98)

= −⟨(Γsnk)αβ(Γ
J
µ)γδ(Γ

†
src)ϵζ ×

⟨qa(xsrc)ζ q̄a(xsnk)α⟩F ⟨qb(x)δ q̄b(xsrc)ϵ⟩F ⟨qc(xsnk)β q̄c(x)γ⟩F ⟩G
= −

⟨︂
Tr
[︂
ΓJ
µGb(x, xsrc)Γ

†
srcGa(xsrc, xsnk)ΓsnkGc(xsnk, x)

]︂⟩︂
G
.

We can then project into momentum space as before the operators Õsnk(psnk, tsnk) =∑︁
xsnk

e−ipsnk·xsnkOsnk(xsnk, tsnk) and J̃µ(q, t) =
∑︁

x e
−iq·xJµ(x, t), where q = psrc−psnk

is the momentum transfer, such that

C3pt,µ(xsnk, x, xsrc) =
∑︂

xsnk,x

e−ipsnk·(xsnk−xsrc)e−iq·(x−xsrc)× (2.99)

⟨T{Osnk(xsnk) Jµ(x)O†
src(xsrc)}⟩

= −
∑︂

xsnk,x

e−ipsnk·(xsnk−xsrc)e−iq·(x−xsrc)×⟨︂
Tr
[︂
ΓJ
µGb(x, xsrc)Γ

†
srcGa(xsrc, xsnk)ΓsnkGc(xsnk, x)

]︂⟩︂
G
.
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The practical evaluation of the above expression requires a lot of computational re-

sources, since each inversion of the kinetic operator uses a significant amount of computer

time. To overcome this we can introduce the sequential source method [137], defining

the sequential propagator as

Σac(xsrc, x) =
∑︂
xsnk

e−ipsnk·(xsnk−xsrc)Ga(xsrc, xsnk)ΓsnkGc(xsnk, x) . (2.100)

such that the final expression simplifies as

C3pt,µ(q,psnk, tsnk, t, tsrc) = −
∑︂
x

e−iq·(x−xsrc)
⟨︂
Tr
[︂
ΓJ
µGb(x, xsrc)Γ

†
srcΣac(xsrc, x)

]︂⟩︂
G

(2.101)

= ±
∑︂
x

e−iq·(x−xsrc)
⟨︂
Tr
[︂
γ5Γ

J
µGb(x, xsrc)Γ

†
srcγ5Σ

†
ca(x, xsrc)

]︂⟩︂
G
,

with exactly the same structure of the two-point function in Eq. (2.91), where we used

γ5-hermiticity on the sequential propagator

Σac(xsrc, x) = γ5

(︄∑︂
xsnk

eipsnk·(xsnk−xsrc)Gc(x, xsnk)γ5Γ
†
snkγ5Ga(xsnk, xsrc)

)︄†

γ5 (2.102)

= ±γ5
(︄∑︂

xsnk

eipsnk·(xsnk−xsrc)Gc(x, xsnk)Γ
†
snkGa(xsnk, xsrc)

)︄†

γ5

= ± γ5Σ†
ca(x, xsrc)γ5 ,

and where the sign has to be determined from the commutation or anticommutation

relation of Γsnk and γ5. It is then clear from this expression that instead of computing

all the all-to-all propagators we can simply compute Ga(xsnk, xsrc) with a fixed source in

xsrc as described in Sec. 2.3, fix the value of tsnk and compute the sequential propagator

Σca(x, xsrc) as ⎧⎪⎨⎪⎩
∑︂
x

Dc(y, x)Σca(x, xsrc) = Sseq(y, xsrc)

Sseq(y, xsrc) = eipsnk·(y−xsrc)Γ†
snkGa(y, xsrc)δ(y4 − tsnk)

. (2.103)

This requires us to invert the kinetic operators Da and Dc only once each instead of

multiple times for all the possible values of xsnk, provided that we fix the value of tsnk.

Note that while the sequential propagator Σca depends on the momentum psnk, we

omit its dependence in the arguments for consistency with the notation for the other

propagators.
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The complete insertion of states I =
∑︁

n
|Hn⟩⟨Hn|

2En
between Osnk and Jµ, and between Jµ

and O†
src gives

C3pt,µ(q,psnk, tsnk, t, tsrc) =
∑︂
n,m

Zsnk,nZ
∗
src,m

4Esnk,nEsrc,m
⟨Hsnk,n(psnk)| Jµ |Hsrc,m(psrc)⟩ ×[︃

θ(tsnk − t)θ(t− tsrc)e−Esnk,n(tsnk−t)e−Esrc,m(t−tsrc)

− θ(T + tsrc − t)θ(t− tsnk)e−Esrc,m(T+tsrc−t)e−Esnk,n(t−tsnk)

]︃
, (2.104)

where the definitions of energies and states follow from the conventions used for the

two-point functions.

The interest of three-point function often relies on the extraction of the matrix element

associated with the hadronic process Hsrc,0 → Hsnk,0 mediated by the current Jµ, where

the subscript “0” indicate the ground state. It is then convenient to fix tsnk such that

the excited states in Eq. (2.104) are suppressed for suitable value of t, i.e. tsnk − t≫ 0,

t− tsrc ≫ 0. In this regime, and with tsnk ≥ t ≥ tsrc, the three-point correlator reads

C3pt,µ(q,psnk, tsnk, t, tsrc) =
Zsnk,0Z

∗
src,0

4Esnk,0Esrc,0
⟨Hsnk,0(psnk)| Jµ |Hsrc,0(psrc)⟩ × (2.105)

e−Esnk,0(tsnk−t)e−Esrc,0(t−tsrc) .

2.4.3 n-point correlators

The treatment of Secs. 2.4.1 and 2.4.2 can be further extended and generalised to ar-

bitrary n-point correlation functions. In particular, quantities of interests in this work

are four-point functions, which address the extraction of matrix elements of the form

⟨H| J2J1 |H⟩ (2.106)

where |H⟩ is the initial hadronic states and J1,2 are current operators that mediate a

given physical process. To avoid further complications in this chapter, we discuss their

construction directly in connection to the process of interest in Sec. 4.1.
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CHAPTER 3

B(S) SEMILEPTONIC DECAYS

In this chapter we review the formalism to describe semileptonic decays involving B(s)

mesons, focusing in particular on the exclusive decay Bs → D
(∗)
s lνl and its inclusive

version Bs → Xc lνl in Fig. 3.1. However, the formalism can be applied more in general to

other channels such as, e.g., B → X lνl or D(s) → Xlνl [2]. We start in Sec. 3.1 recalling

the kinematic relations of an exclusive three-body decay and extending them to the

inclusive case. In Sec. 3.2 we describe the quantities relevant for the exclusive processes

Bs → D
(∗)
s lνl. We finally address the inclusive case in Sec. 3.3, where we derive all the

equations necessary to study these decays, focusing in particular on the computation of

the decay rate, the lepton energy moments and the hadronic mass moments.

In this work we consider the case where the lepton is represented by an electron or a

muon, l = e, µ, and we therefore focus on the limit ml = 0. Note that, as opposed to the

rest of the manuscript, the physics processes described here are treated in Minkowski

space as in Chap. 1.

The Bs decay under study is triggered by an effective weak interaction b̄ → c̄. The

tree-level Hamiltonian for the process is given by

HW =
GF√
2
Vcb [ν̄lLγµlL] Jµ , Jµ = b̄Lγ

µcL , (3.1)

where GF is the Fermi constant and Vcb is the CKM-matrix element for the charged-

current flavour-changing quark transition, and Jµ is the electroweak quark current for

this process. We can also decompose Jµ = Vµ − Aµ with Vµ = b̄γµc and Aµ = b̄γµγ5c

being the vector and axial currents, respectively.
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Bs

{︄ }︄
Xc

W+

b̄

s

νl

l+

c̄

s

Figure 3.1: Feynman diagram for Bs → Xc lνl.

3.1 Kinematics

We first review the kinematics of a three-particle decay. Let us consider a particle of

mass m with four-momentum p that decays into three particles with masses mi and

four-momenta pi, i = 1, 2, 3. The basic conservation law is

p = p1 + p2 + p3 , s = p2 = m2 , (3.2)

where s is the Mandelstam variable. We can define additional invariants as⎧⎪⎪⎨⎪⎪⎩
s1 = (p− p1)2 = (p2 + p3)

2 ,

s2 = (p− p2)2 = (p1 + p3)
2 ,

s3 = (p− p3)2 = (p1 + p2)
2 ,

, (3.3)

which are related to the subsystem of two particles 23, 13 and 12 respectively. These

quantities are not independent, since

s1 + s2 + s3 = m2 +m2
1 +m2

2 +m2
3 . (3.4)

If we consider the rest frame of the decaying particle, the invariants si read explicitly

si = (p− pi)2 = m2 +m2
i − 2mEi , (3.5)

where Ei =
√︂
m2

i + p2
i can range between Ei

⃓⃓
min

= mi and Ei

⃓⃓
max

=
√︂
m2

i + p2
i

⃓⃓
max

.

The maximum value Ei|max corresponds to the limiting case where all the momentum

flows into the particle mi, whereas the other two particles mj and mk with j ̸= k ̸= i

are produced at rest. The range for si is then{︄
si
⃓⃓
min

= m2 +m2
i − 2mEi

⃓⃓
max

= (pj
⃓⃓
min

+ pk
⃓⃓
min

)2 = (mj +mk)
2

si
⃓⃓
max

= m2 +m2
i − 2mEi

⃓⃓
min

= (m−mi)
2

. (3.6)

Incidentally, this also shows that

Ei

⃓⃓
max

=
1

2m

[︁
m2 +m2

i − (mj +mk)
2
]︁
. (3.7)
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However, not all these values of si are accessible, as we still need to take into account the

full kinematic constraints. Imposing momentum conservation and integrating over all the

possible angular distributions for the three particles, we see that the whole kinematics

relies on only two independent variables: we can take, for example, s3 = (p1 + p2)
2 and

E2. Typically, s3 ≡ q2 would be the momentum of a mediator particle. For these two

we have

(m1 +m2)
2 ≤ q2 ≤ (m−m3)

2 , m2 ≤ E2 ≤
1

2m

[︁
m2 +m2

2 − (m1 +m3)
2
]︁
. (3.8)

These relations would represent a box in the phase space (q2, E2). However, they are

related to each other and must then obey further constraints. In particular, we have{︄
q2 = (p1 + p2)

2 = m2
1 +m2

2 + 2p1 · p2 ,
q2 = (p− p3)2 = m2 +m2

3 − 2mE3 ,

{︄
q0 = E1 + E2 ,

q0 = m− E3 .
(3.9)

Combining these expressions we can work out the relations for E1 and E3

E3 =
m2 +m2

3 − q2
2m

, E1 =
m2 −m2

3 + q2

2m
− E2 . (3.10)

If we assume E2 fixed, for q2 we get

q2 = m2
1 +m2

2 + 2

{︄
E2

[︃
m2 −m2

3 + q2

2m
− E2

]︃
(3.11)

− cos θ12

√︂
E2

2 −m2
2

√︄[︃
m2 −m2

3 + q2

2m
− E2

]︃2
−m2

1

}︄
,

where the term inside the brackets corresponds to p1 · p2 and cos θ12 = p1 · p2/(|p1||p2|)
is the angle between p1 and p2. This final formula shows the relation between the two

independent variables q2 and E2, which, together with the ranges in Eq. (3.8), fully

determines the phase space of the three-body decay.

Let us now extend the previous discussion to the kinematics of inclusive Bs-meson

semileptonic decays Bs → Xc lνl in the Bs rest frame, i.e pBs = (MBs , 0, 0, 0), which can

be obtained by extending the previous discussion. Since Xc represents all possible final

states allowed by conservation laws, there are three independent kinematic variables, one

more compared to the exclusive case. We can choose q2, El and MXc , which correspond

to s3, E2 and m3 from the previous derivation, with

q = pBs − pXc = pl + pνl ,

{︄
q0 =MBs − EXc = El + Eνl ,

q = −pXc = pl + pνl .
(3.12)



50 Chapter 3. B(s) semileptonic decays

In the limit of massless leptonsml = mνl = 0, from Eq. (3.8) it follows that the kinematic

variables must lie in the following ranges⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ q2 ≤ (MBs −MXc)

2 ,

0 ≤ El ≤
1

2MBs

(M2
Bs
−M2

Xc
) ,

MDs ≤MXc ≤MBs .

(3.13)

The variables q2 and El are related to one another by

q2 = 2plpνl = 2ElEνl(1− cos θlνl) (3.14)

= (1− cos θlνl)El

[︄
M2

Bs
−M2

Xc
+ q2

MBs

− 2El

]︄
,

where we used Eq. (3.10) for Eνl , and cos θlνl = pl · pνl/(|pl||pνl |) is the angle between

the electron and neutrino momenta. Rearranging for q2 we get

q2 =
(1− cos θνl)El

MBs − (1− cos θνl)El
(M2

Bs
−M2

Xc
− 2MBsEl) . (3.15)

Considering the minimum and maximum values for cos θνl, for every El fixed the corre-

sponding q2 lies in the range

0 ≤ q2 ≤ 2El

MBs − 2El
(M2

Bs
−M2

Xc
− 2MBsEl) . (3.16)

This concludes the discussion on the inclusive kinematics: from the last two equations

and the ranges in Eq. (3.13) we can now obtain the phase space in the plane (q2, El) for

any given value of MXc .

3.2 Exclusive semileptonic decays

We now review the standard formalism for treating the exclusive decays Bs → D
(∗)
s lνl.

QCD matrix elements associated with such decays can be described by form factors.

Hadron form factors appear in any transition between an initial and final hadronic state

induced by an electromagnetic or weak interaction of quarks. They are functions of the

momentum transfer and fully describe the nonperturbative dynamics involved in the

decay process.

3.2.1 Decay into pseudoscalar final state

Let us first consider the case Bs → Ds lνl, where the final-state hadron is the pseu-

doscalar Ds meson, JP = 0−. In this case, only the vector current Vµ contributes to the
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decay because of parity conservation. The amplitude then reads

A(Bs → Dslνl) =
GF√
2
Vcb [ν̄lLγµlL] ⟨Ds(pDs)|V µ |Bs(pBs)⟩ . (3.17)

The QCD matrix elementMDsBs
Vµ

≡ ⟨Ds(pDs)|Vµ |Bs(pBs)⟩ can be decomposed as

MDsBs
Vµ

= (pBs + pDs)µ f
+
DsBs

(q2) + (pBs − pDs)µ f
−
DsBs

(q2) , (3.18)

where f+DsBs
(q2) and f−DsBs

(q2) are the form factors for the given decay. On the other

hand, the form factors can be related to the matrix elements as

f+DsBs
(q2) =

psBs
− psDs

(EBs + EDs)(p
s
Bs
− psDs

)− (EBs − EDs)(p
s
Bs

+ psDs
)
× (3.19)(︄

MDsBs
V0

− (EBs − EDs)

psBs
− psDs

MDsBs
Vs

)︄
,

f−DsBs
(q2) =

psBs
+ psDs

(EBs − EDs)(p
s
Bs

+ psDs
)− (EBs + EDs)(p

s
Bs
− psDs

)
× (3.20)(︄

MDsBs
V0

− (EBs + EDs)

psBs
+ psDs

MDsBs
Vs

)︄
,

where MDsBs
Vs

= 1/3
∑︁3

k=1MDsBs
Vk

, psDs
= 1/3

∑︁3
k=1 pDs,k and psBs

= 1/3
∑︁3

k=1 pBs,k

are the averages over the three spatial directions. The matrix element is commonly

reformulated as

MDsBs
Vµ

=

[︄
2pDs,µ +

(︄
1−

M2
Bs
−M2

Ds

q2

)︄
qµ

]︄
f+DsBs

(q2)

+
M2

Bs
−M2

Ds

q2
qµf

0
DsBs

(q2) ,

(3.21)

where f+DsBs
(q2) is referred to as vector form factor and

f0DsBs
(q2) = f+DsBs

(q2) +
q2

M2
Bs
−M2

Ds

f−DsBs
(q2) , (3.22)

is the scalar form factor. Note that f0DsBs
(0) = f+DsBs

(0) such that there is no divergence

at q2 = 0 in Eq. (3.21). The name scalar form factor refers to its relation with the

hadronic matrix elements involving the scalar current c̄b, in particular

⟨Ds(pDs)| (mb −mc)b̄c |Bs(pBs)⟩ = (M2
Bs
−M2

Ds
)f0DsBs

(q2), (3.23)

where mb and mc are the bottom and charm quark masses, respectively. Furthermore,

the contraction of the matrix element with the transferred momentum q is proportional

to the scalar form factor, i.e. qµMDsBs
Vµ

= (M2
Bs
−M2

Ds
)f0DsBs

(q2).
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A useful observable for this exclusive process is the differential decay rate

dΓ(Bs → Dslνl)

dq2
=
G2

F |Vcb|2
24π3

(q2 −m2
l )

2

(q2)2
|pDs |

{︃(︃
1 +

m2
l

2q2

)︃
|pDs |2|f+BsDs

(q2)|2

+
3m2

l

8q2
(M2

Bs
−M2

Ds
)2

M2
Bs

|f0BsDs
(q2)|2

}︃
.

(3.24)

Indeed, it is experimentally accessible by measuring the distribution in momenta of the

Ds and can therefore be directly combined with the Standard-Model prediction for the

r.h.s of the equation to extract the CKM-matrix element |Vcb|.

3.2.2 Decay into vector final state

Let us now consider the decay Bs → D∗
s lνl, where D

∗
s is a vector particle JP = 1−.

Vector mesons such as the D∗
s are unstable hadrons in QCD and they are observed

indirectly as resonances. In order to describe them here, we assume that they can be

treated as asymptotic final states with fixed masses, as supported by the experimentally

determined mass of the D∗
s meson MD∗

s
= 2112.2± 0.4MeV and its narrow width given

by Γ < 1.9MeV [63].

Spin-1 particles are characterised by momentum and polarisation. Assuming the D∗
s

three-momentum to be in the z-direction, pD∗
s
= (0, 0, |pD∗

s
|), the polarisation four-

vectors are given by

εµ± =
1√
2
(0,∓1,−i, 0) , εµ0 =

1

MD∗
s

(|pD∗
s
|, 0, 0, ED∗

s
) , (3.25)

where εµ± are the transverse vectors with positive and negative helicity, and εµ0 is the

longitudinal one. They all fulfil ε ·ε∗ = 1 and are orthogonal to the D∗
s four-momentum,

i.e. pD∗
s
· ε = 0, where we suppressed the polarisation index for simplicity.

Both vector and axial currents contribute to the decay into a vector final state. In

particular, following the notation in [138] and defining

MD∗
sBs

Vµ
≡
⟨︁
D∗

s(pD∗
s
, ε)
⃓⃓
Vµ |Bs(pBs)⟩ , MD∗

sBs

Aµ
≡
⟨︁
D∗

s(pD∗
s
, ε)
⃓⃓
Aµ |Bs(pBs)⟩ , (3.26)

we have

MD∗
sBs

Vµ
= ϵµνρσε

∗νqρpσD∗
s

2fV (q
2)

MBs +MD∗
s

, (3.27)
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where ϵµνρσ is the Levi-Civita tensor and fV (q
2) is the vector form factor, and

MD∗
sBs

Aµ
=iε∗µ(MBs +MD∗

s
)fA1(q

2)

− i(2pD∗
s
+ q)µ(ε

∗ · q) fA2(q
2)

MBs +MD∗
s

− iqµ(ε∗ · q)
2MD∗

s

q2
(︁
fA3(q

2)− fA0(q
2)
)︁
,

(3.28)

where fA0(q
2), fA1(q

2), fA2(q
2) and fA3(q

2) are the axial form factors. Note that there

are only three independent form factors as

2MD∗
s
fA3(q

2) = (MBs +MD∗
s
)fA1(q

2)− (MBs −MD∗
s
)fA2(q

2) , (3.29)

with fA0(0) = fA3(0). The form factor fA0(q
2) is the analogous of the scalar form factor

f0BsDs
(q2), as it is related to the pseudoscalar current b̄γ5c as

2MD∗
s
(ε∗ · q)fA0(q)

2 =
⟨︁
D∗

s(pD∗
s
, ε)
⃓⃓
i(mb +mc)b̄γ5c |Bs(pBs)⟩ . (3.30)

3.3 Inclusive decays

Inclusive decays Bs → Xc lνl are characterised by a sum over all the possible final

states allowed by the kinematics of the given b̄ → c̄ weak transition. The state Xc can

therefore include single-particle states, e.g. the Ds meson, but also multiparticle ones.

Inclusive decays can be analytically studied in the framework of HQET [139–144]: this

introduction closely follows [142, 143]. The matrix element (averaged over the spin) for

the interaction is given by

|M(Bs → Xc lνl)|2 ∝
∑︂
Xc

∑︂
l spin

| ⟨Xc lνl|HW |Bs⟩ |2
2MBs

(2π)3δ(4)(pBs − q − pXc) , (3.31)

where q = pl + pνl = pBs − pXc is the transferred momentum between the initial and

final hadronic states. We consider the decay in the rest frame of the Bs meson, i.e.

pBs = (MBs , 0, 0, 0). The leptonic and hadronic contributions to the matrix element can

be decomposed as

|M(Bs → Xc lνl)|2 = G2
F |Vcb|2MBsLµνW

µν , (3.32)
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where Wµν ≡Wµν(pBs , q) is the hadronic tensor defined as

Wµν(pBs , q) =
1

(2π)2MBs

∫︂
d4x e−iq·x ⟨Bs(pBs)| Jµ†(x)Jν(0) |Bs(pBs)⟩ (3.33)

=
1

2MBs

∑︂
Xc

(2π)3δ(4)(pBs − q − pXc)

× ⟨Bs(pBs)| Jµ†(0) |Xc(pXc)⟩ ⟨Xc(pXc)| Jν(0) |Bs(pBs)⟩ ,

where in the last line we inserted a sum over a complete set of charmed states Xc,

with
∑︁

Xc
|Xc(pXc)⟩ ⟨Xc(pXc)| ≡

∑︁
Xc

∫︁ dpXc
(2π)3

1
2EXc

|Xc(pXc)⟩ ⟨Xc(pXc)|, and Lµν is the

leptonic tensor defined as

Lµν = pµl p
ν
νl
+ pνl p

µ
νl
− gµνpl · pνl − iεµανβpl,αpνl,β . (3.34)

The hadronic tensor can be further decomposed in terms of five real scalar structure

functions Wi ≡Wi(q
2, pBs · q/MBs) as

Wµν = −gµνW1 + vµvνW2 − iεµναβvαqβW3 + qµqνW4 + (vµqν + vνqµ)W5 , (3.35)

where v is the velocity of the Bs meson, v = pBs/MBs = (1, 0, 0, 0) in its rest frame,

and q = (q0, q) = (MBs − ω,−pXc). From now on, we will indicate with ω = EXc the

energy of the final state hadron. The hadronic tensor contains all the information about

the nonperturbative QCD effects. It can be directly related to the discontinuity of the

forward-scattering matrix element

Tµν = − i

2MBs

∫︂
d4xe−iq·x ⟨Bs|T{J†

µ(x)Jν(0)} |Bs⟩ , (3.36)

which can be decomposed into structure functions Ti in a similar way,

Tµν = −gµνT1 + vµvνT2 − iεµναβvαqβT3 + qµqνT4 + (vµqν + vνqµ)T5 . (3.37)

Using the integral representation of the Heaviside step function

θ(x) =
1

2πi

∫︂ ∞

−∞
dz

eixz

z − iϵ = − 1

2πi

∫︂ ∞

−∞
dz

e−ixz

z + iϵ
, (3.38)

we can evaluate Eq. (3.36) and find

Tµν =
(2π)3

2MBs

∑︂
Xc

⟨Bs| Jµ† |Xc⟩ ⟨Xc| Jν |Bs⟩
MBs − EXc − q0 + iϵ

δ(3)(q + pXc)

− (2π)3

2MBs

∑︂
Xcbb

⟨Bs| Jν |Xcbb⟩ ⟨Xcbb| Jµ† |Bs⟩
EXcbb

−MBs − q0 − iϵ
δ(3)(q − pXcbb

) ,

(3.39)

where we omitted the momentum dependence of the states for simplicity. Xcbb indicates

a complete set of states containing two b̄ quarks and a c quark. From this expression, it
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can be seen that at a fixed value of the three-momentum q the tensor Tµν presents two

cuts in the complex plane of q0 = q · v along the real axis in the regions

−∞ < q0 < MBs −
√︂
M2

Xmin
c

+ q2 and −MBs +
√︂
M2

Xmin
cbb

+ q2 < q0 <∞ , (3.40)

where M2
Xmin correspond to the lowest possible value for the states Xc and Xcbb, re-

spectively. Approximating the meson masses with that of the their heavy quarks, the

minimum separation between the cuts (occurring at q2 = 0) is given by 2mc. The decay

Bs → Xc lνl occurs only in the lower cut, since the upper cut corresponds to the process

b̄→ cb̄b̄. To finally relate Tµν to Wµν , we use the relation

1

x± iϵ = P
1

x
∓ iπδ(x) , (3.41)

with P being the principal value, and evaluate the imaginary part of Tµν (the disconti-

nuity across the cut) as

1

π
ImTµν =− (2π)3

2MBs

∑︂
Xc

⟨Bs| Jµ† |Xc⟩ ⟨Xc| Jν |Bs⟩ δ(4)(pBs − q − pXc)

− (2π)3

2MBs

∑︂
Xcbb

⟨Bs| Jν |Xcbb⟩ ⟨Xcbb| Jµ† |Bs⟩ δ(4)(pBs + q − pXcbb
) .

(3.42)

The first term of this equation corresponds to the hadronic tensor in Eq. (3.33), which

then corresponds to the discontinuity across the cut. For the left-hand cut we have

− 1

π
ImTµν =Wµν , − 1

π
ImTi =Wi , (3.43)

which shows that the Ti are analytically continued from the structure functions Wi.

Therefore, the integrals of Wi over q0, necessary to obtain the total decay rate, are

related to the integrals of Ti over a contour C in the complex plane of q0 that encloses

the physical (left-hand) cut such that the discontinuity of Tµν is included. While in

Lattice QCD it is possible to address the calculation of Wµν directly, as we will see

in Chap. 4, this last relation is central to apply QCD perturbation theory to inclusive

decays (in the regime where the separation between the cuts is larger than ΛQCD [139], as

for b̄→ c̄ transitions). Indeed, inclusive observables admit a double expansion in αs and

1/mb [139–142], and techniques such as Operator Product Expansion (OPE) [145–147]

can be applied to the time-ordered product of the form

tµν =
i

2MBs

∫︂
d4xe−iq·xT{J†

µ(x)Jν(0)} , (3.44)

which is directly related to Tµν , and can be expanded in a sum of local operators by

performing a short distance expansion.
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3.3.1 Decay rate

In this section, we work out explicitly the key quantities necessary to calculate the total

decay rate. Since this is a central observable in this work, we report the full details of

the calculations. The starting point is the differential decay rate, given by

dΓ

dq2dq0dEl
=
G2

F |Vcb|2
8π3

LµνW
µν . (3.45)

We can calculate the expression for the total decay rate contracting the leptonic and

hadronic tensors explicitly and integrating. Note that for the leptonic tensor pνl,µL
µν = 0

and pl,µL
µν = m2

l p
ν
νl
; it follows that qµL

µν = m2
l p

ν
νl
. We get

LµνW
µν =W1

[︁
q2 −m2

l

]︁
+W2

[︃
2ElEνl −

1

2
(q2 −m2

l )

]︃
+W3

[︁
q2(El − Eνl)−m2

l (El + Eνl)
]︁
+W4

[︃
1

2
m2

l (q
2 −m2

l )

]︃
+W5

[︁
2m2

lEνl

]︁
.

(3.46)

This expression can be split into a massless contribution

LµνW
µν

⃓⃓⃓⃓
ml=0

=W1q
2 +W2

(︃
2El(q0 − El)−

q2

2

)︃
+W3q

2(2El − q0) (3.47)

= q2
(︃
W1 −

1

2
W2 − q0W3

)︃
+ 2El(q0W2 + q2W3)− 2E2

l W2 .

and a massive one δLµνW
µν

⃓⃓⃓⃓
ml ̸=0

= LµνW
µν − LµνW

µν

⃓⃓⃓⃓
ml=0

as

δLµνW
µν

⃓⃓⃓⃓
ml ̸=0

= m2
l

[︃
−W1 +

1

2
W2 − q0W3 +

1

2
(q2 −m2

l )W4 + 2(q0 − El)W5

]︃
, (3.48)

where we used Eνl = q0 − El. The next step is then to integrate Eq. (3.45) over the

lepton energy El substituting Eq. (3.46). It is convenient to calculate beforehand the

integral over En
l as

∆En
l = n

∫︂ Emax
l

Emin
l

dElE
n−1
l = (Emax

l )n − (Emin
l )n . (3.49)

where the maximum and minimum values for the electron energy can be obtained by

squaring pνl = q − pl, and solving for El considering the limit cases q · pl = ±|q||pl|.
Assuming either electrons or muons in the final state, i.e. considering the massless case

limit ml = 0, we find

Emin
l =

q2

2(q0 + |q|)
=

1

2
(q0 − |q|) , Emax

l =
q2

2(q0 − |q|)
=

1

2
(q0 + |q|) . (3.50)
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The final expression for ∆En
l then becomes

∆En
l =

1

2n
[(q0 + |q|)n − (q0 − |q|)n] (3.51)

=
1

2n

n∑︂
k=0

(︃
n

k

)︃
qn−k
0

[︂
|q|k − (−|q|)k

]︂
=

1

2n−1

n∑︂
k=0
k odd

(︃
n

k

)︃
qn−k
0 |q|k ,

with |q| =
√︁

q2 =
√︁
q20 − q2, which leads us to the general expression

∫︂ Emax
l

Emin
l

dElE
n−1
l =

1

n
∆En

l =
1

2n−1 n

n∑︂
k=0
k odd

(︃
n

k

)︃
qn−k
0 |q|k . (3.52)

In particular, we have explicitly

∆El = |q| ,
∆E2

l = q0|q| ,

∆E3
l =
|q|
4

(︁
3q20 + |q|2

)︁
,

∆E4
l =

q0|q|
2

(︁
q20 + |q|2

)︁
,

∆E5
l =
|q|
16

(︁
5q40 + 10q20|q|2 + |q|4

)︁
,

∆E6
l =

q0|q|
16

(︁
3q40 + 10q20|q|2 + 3|q|4

)︁
,

(3.53)

which we will make use of in Sec. 3.3.4. In the remaining of this chapter we always

consider only the case ml = 0. Proceeding with the calculations, the integration over

the lepton energy El in the massless limit gives the double differential decay rate

dΓ

dq2dq0
=
G2

F |Vcb|2
8π3

√︁
q2
[︃
W1q

2 +
1

3
(q20 − q2)W2

]︃
. (3.54)

Since on the lattice we can address the calculation of Wµν , as we will show in Chap. 4,

we now need to rewrite the structure functions Wi in terms of the hadronic tensor Wµν .

We then consider explicitly

W00 = −W1 +W2 + q20W4 + 2q0W5 , (3.55)

Wij = δijW1 + qiqjW4 − iεij0kqkW3 , (3.56)

W0i =Wi0 = qi(q0W4 +W5) , (3.57)

which we will have to invert and subsequently substitute in Eq. (3.54). Before proceed-

ing, we recall that the structure functions are real and that W †
µν = Wνµ, which implies
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1
2(Wij +Wji) = Re(Wij) and

1
2(Wij −Wji) = Im(Wij). Multiplying the spatial indices

of the hadronic tensor by qi and qj and summing over the indices we get more general

relations ∑︂
i

Wii = 3W1 + q2W4 , (3.58)∑︂
i,j

qiWijq
j = q2W1 + (q2)2W4 , (3.59)

∑︂
i

qi(W0i +Wi0) = 2(q0W4 +W5)q
2 , (3.60)∑︂

i,j,k

Wijε
ijkqk = −iq2W3 , (3.61)

where in the last line we used εij0k = ε0ijk = εijk and
∑︁

i,j εijlε
ijk = 2δkl , and the indices

run over the spatial components 1, 2, 3. We stress that these equations are general and

hold for every q. We can now invert these relations to express the structure functions

in terms of the hadronic tensor. In the case q = 0 we can only derive

W1 =
1

3

∑︂
i

Wii . (3.62)

For all the other cases q ̸= 0 we can solve the system given by Eq. (3.58) and (3.59) and

obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q2W4 =

1

q2

∑︂
i,j

qiWijq
j −W1

W1 =
1

3

(︄∑︂
i

Wii − q2W4

)︄ , →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q2W4 =

3

2

1

q2

∑︂
i,j

qiWijq
j − 1

2

∑︂
i

Wii

W1 =
1

2

∑︂
i

Wii −
1

2

1

q2

∑︂
i,j

qiWijq
j
.

(3.63)

We can now determine W5 from Eq. (3.60) as

W5 =
1

q2

∑︂
i

qi
1

2
(W0i +Wi0)− q0W4 (3.64)

=
1

q2

∑︂
i

qi
1

2
(W0i +Wi0)−

q0
q2

⎡⎣3
2

1

q2

∑︂
i,j

qiWijq
j − 1

2

∑︂
i

Wii

⎤⎦ ,
as well as W2 from Eq. (3.55)

W2 =W00 −
q0
q2

∑︂
i

qi(W0i +Wi0) +W1 + q20W4 , (3.65)

where we can further substituteW1 andW4 from the system (3.63) to get a full expression

in terms of Wµν .
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We summarise all the relations between the relevant structure functions and the hadronic

tensor as

W1 =
1

2

∑︂
i,j

[︃
δij −

qiqj

q2

]︃
Wij , (3.66)

W2 =W00 −
q0
q2

∑︂
i

qi(W0i +Wi0) +
q20

(q2)2

∑︂
i,j

qiWijq
j (3.67)

+
1

2

(︃
1− q20

q2

)︃∑︂
i,j

[︃
δij −

qiqj

q2

]︃
Wij ,

W3 =
i

q2

∑︂
i,j,k

Wijε
ijkqk , (3.68)

W4 =
1

(q2)2

∑︂
i,j

qiWijq
j − 1

2

1

q2

∑︂
i,j

[︃
δij −

qiqj

q2

]︃
Wij , (3.69)

W5 =
1

q2

∑︂
i

qi
1

2
(W0i +Wi0)−

q0
(q)2

∑︂
i,j

qiWijq
j (3.70)

+
q0
q2

∑︂
i,j

[︃
δij −

qiqj

q2

]︃
Wij .

We can now rewrite the differential decay rate with the change of variables ω =MBs−q0
and q2 = q20 − q2 (note that the Jacobian of the transformation is 1) as

dΓ

dq2dω
=
G2

F |Vcb|2
8π3

√︁
q2
[︃
W1(q

2
0 − q2) +

1

3
q2W2

]︃
. (3.71)

Substituting Eq. (3.66) and (3.67) we finally obtain the massless differential decay rate

dΓ

dq2dω
=
G2

F |Vcb|2
24π3

√︁
q2

{︄
q2

[︄
W00 −

∑︂
i

Wii

]︄
+
∑︂
i,j

qiWijq
j

− q0
[︄∑︂

i

qi(W0i +Wi0)

]︄

+ q20

[︄∑︂
i

Wii

]︄}︄
.

(3.72)

From this expression we can now define the key quantities we use in this work. We can

conveniently rewrite the differential decay rate in a compact form as

dΓ

dq2dω
=
G2

F |Vcb|2
24π3

√︁
q2X(q2, ω) , (3.73)

where we defined

X(q2, ω) ≡ 3√︁
q2

∫︂ Emax
l

Emin
l

dEl LµνW
µν . (3.74)
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The function X(q2, ω) can be decomposed as

X(q2, ω) = X(0)(q2, ω) +X(1)(q2, ω) +X(2)(q2, ω) , (3.75)

where the superscripts distinguish the components in powers of q0 =MBs − ω, i.e.

X(0)(q2, ω) = q2

(︄
W00 −

∑︂
i

Wii

)︄
+
∑︂
i,j

qiWijq
j , (3.76)

X(1)(q2, ω) = −q0
∑︂
i

qi(W0i +Wi0) , (3.77)

X(2)(q2, ω) = q20
∑︂
i

Wii . (3.78)

Eventually, the total decay rate can be obtained integrating over ω and q2

Γ =
G2

F |Vcb|2
24π3

∫︂ q2
max

0
dq2

√︁
q2

2∑︂
l=0

X̄
(l)
(q2) , X̄

(l)
(q2) ≡

∫︂ ωmax

ωmin

dωX(l)(q2, ω) , (3.79)

with ωmin =
√︂
M2

Ds
+ q2, ωmax =MBs−

√︁
q2 and q2max = (M2

Bs
−M2

Ds
)2/(4M2

Bs
), where

the latter can be obtained solving q2max = q20 − q2min with q2min = 0. To summarise

Γ =
G2

F |Vcb|2
24π3

∫︂ q2
max

0
dq2

√︁
q2

2∑︂
l=0

X̄
(l)
(q2) , X̄

(l)
(q2) ≡

∫︂ ωmax

ωmin

dωX(l)(q2, ω) ,

X(0)(q2, ω) = q2W00 +
∑︂
i

(q2i − q2)Wii +
∑︂
i ̸=j

qiWijq
j ,

X(1)(q2, ω) = −q0
∑︂
i

qi(W0i +Wi0) , (3.80)

X(2)(q2, ω) = q20
∑︂
i

Wii .

The above expressions constitute the central formulas used in this work. In particular,

they allow to rewrite the total decay rate as an integral over the energy ω of the final-

state hadron and its three-momentum q2 through the help of the functions X(l)(q2, ω),

which contains linear combinations of components of the hadronic tensor and kinematics

factors. These expressions are particularly convenient to address the calculation on the

lattice, as we will show in Chap. 4.

3.3.2 Longitudinal and transverse components

To further study the inclusive decay process, it is advantageous to decompose X(q2, ω)

in its longitudinal and transverse components. Indeed, these components are useful to
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isolate different physical channels, as e.g. in the case of the ground-state limit addressed

in Sec. 3.3.3, but also for comparison with other approaches such as the OPE [29]. To

this end, we define a basis e∥, e1 and e2 for the three-dimensional space such that

e∥ =
q√︁
q2
, ea · e∥ = 0 , ea · eb = δab , a = {1, 2} . (3.81)

From the basis vectors we can build the longitudinal (∥) and transverse (⊥) projectors

Πij
∥ = ei∥e

j
∥ =

qiqj

q2
, Πij

⊥ =
2∑︂

a=1

eiae
j
a = δij − qiqj

q2
, δij = Πij

∥ +Πij
⊥ . (3.82)

Note that the restriction to the three-dimensional space is due to the fact that we are

implicitly assuming to be in the rest frame of the Bs meson, and all the equations are

then referring to that specific frame. While Lorentz-invariance is then non-explicit, it

is clear that we are left with SO(3) symmetry and we are free to rotate the frame with

respect to the direction of the q momentum. We obtain for X(q2, ω) in Eq. (3.75)

X(q2, ω) = q2W00 − q0
∑︂
i

qi(W0i +Wi0) + (q20 − q2)
∑︂
i,j

δijWij + q2
∑︂
i,j

qiqj

q2
Wij

= q2W00 − q0
∑︂
i

qi(W0i +Wi0) + (q20 − q2)
∑︂
i,j

Πij
∥ Wij + q2

∑︂
i,j

Πij
∥ Wij

+ (q20 − q2)
∑︂
i,j

Πij
⊥Wij , (3.83)

where we used δij = Πij
∥ +Πij

⊥. Splitting the components with different projectors in the

above equation as X(q2, ω) = X∥(q2, ω) + X⊥(q2, ω), the longitudinal and transverse

contributions read

X∥(q2, ω) = q2W00 − q0
∑︂
i

qi(W0i +Wi0) +
q20
q2

∑︂
i,j

qiWijq
j , (3.84)

X⊥(q2, ω) = (q20 − q2)
∑︂
i,j

[︃
δij − qiqj

q2

]︃
Wij (3.85)

=

(︃
1− q20

q2

)︃⎡⎣∑︂
i

(︁
(qi)2 − q2

)︁
Wii +

∑︂
i ̸=j

qiWijq
j

⎤⎦ .
In term of the structure functions these corresponds to

X∥(q2, ω) = q2W1 + q2W2 , (3.86)

X⊥(q2, ω) = 2q2W1 . (3.87)

We have then further decomposed X(q2, ω) into longitudinal and transverse components

with respect to the three-momentum q2, as defined through the projectors in Eq. (3.82).

We will show how to make practical use of these expressions in the next section.
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3.3.3 Ground-state limit

In this section we consider the limit case where only the lowest-mass final state D
(∗)
s

contributes to the inclusive decay, i.e.

Wµν → 1

2MBs

[︃
δ(ω − EDs)

1

2EDs

⟨Bs(pBs)|Jµ†|Ds(pDs)⟩⟨Ds(pDs)|Jν |Bs(pBs)⟩

+δ(ω − ED∗
s
)

1

2ED∗
s

⟨Bs(pBs)|Jµ†|D∗
s(pD∗

s
, ε)⟩⟨D∗

s(pD∗
s
, ε)|Jν |Bs(pBs)⟩

]︃
.

(3.88)

In this limit we can reconstruct the inclusive process starting from simulations of the

corresponding exclusive decays. This provides an ideal environment to further test the

inclusive setup and analysis strategy, as well as to assess the contribution of the excited

states contained in the inclusive decays.

For the following discussion it is convenient to assume the momentum to be in the z-

direction, q = (0, 0, q3) and label the parallel and perpendicular components explicitly

as q1 = q2 = q⊥ = 0 and q3 = q∥. In a similar way, we also label the hadronic tensor as

W⊥⊥ = (W11 +W22)/2, W33 = W∥∥, W03 = W0∥, W30 = W∥0; all the other components

do not appear in this case. The final X(l)(q2, ω) then read

X(0)(q2, ω) = q2(W00 − 2W⊥⊥) , (3.89)

X(1)(q2, ω) = −q0q∥(W0∥ +W∥0) , (3.90)

X(2)(q2, ω) = q20(W∥∥ + 2W⊥⊥) , (3.91)

together with the longitudinal and transverse contributions

X∥(q2, ω) = q2W00 − q0q∥(W0∥ +W∥0) + q20W∥∥ , (3.92)

X⊥(q2, ω) = 2(q20 − q2)W⊥⊥ . (3.93)

In order to show the connection of these components with the underlying exclusive

form factors, we first introduce the HQET basis: this is commonly used to study these

processes and it simplifies the calculations we address in this section. In this framework,

the form factors depend on the variable

w(∗) = v
D

(∗)
s
· vBs =

M2
Bs

+M2

D
(∗)
s

− q2

2MBsMD
(∗)
s

, (3.94)

which takes the place of the conventional momentum transfer q2, and where

v
D

(∗)
s

=
p
D

(∗)
s

M
D

(∗)
s

, vBs =
pBs

MBs

, (3.95)
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are the four-velocities of D
(∗)
s and Bs, respectively. In this picture, the matrix elements

for the pseudoscalar final state Ds and the vector final state D∗
s are given by

⟨Ds(pDs)|Vµ |Bs(pBs)⟩√︁
MBsMDs

= (vBs + vDs)µh
+(w) + (vBs − vDs)µh

−(w) , (3.96)⟨︁
D∗

s(pD∗
s
, ε)
⃓⃓
Vµ |Bs(pBs)⟩√︁

MBsMDs

= ϵµναβ ε
∗ν vαD∗

s
vβBs

hV (w
∗) , (3.97)⟨︁

D∗
s(pD∗

s
, ε)
⃓⃓
Aµ |Bs(pBs)⟩√︁

MBsMDs

= iε∗µ(1 + w∗)hA1(w
∗)− i(ε∗ · vBs)vBs, µhA2(w

∗) (3.98)

− i(ε∗ · vBs)vD∗
s µhA3(w

∗) ,

where h±(w), hV (w
∗) and hAi(w

∗) are the HQET form factors. In particular, defin-

ing in a compact notation the matrix elements MJµ = ⟨Ds(pDs)|Jµ|Bs(pBs)⟩ and

M∗
Jµ

= ⟨D∗
s(pDs , ε)|Jµ|Bs(pBs)⟩, we can calculate explicitly the longitudinal and trans-

verse components. Starting from the the pseudoscalar decays we have

MV0√︁
MBsMDs

=

(︃
1 +

EDs

MDs

)︃
h+ +

(︃
1− EDs

MDs

)︃
h− , (3.99)

MV∥√︁
MBsMDs

=
p
∥
Ds

MDs

(h+ − h−) , (3.100)

MV⊥√︁
MBsMDs

= 0 . (3.101)

For the D∗
s decay mediated by vector currents the only non-zero contribution is given

by the transverse component

M∗
V⊥√︁

MBsMD∗
s

=
p
∥
Ds

MDs

hV , (3.102)

whereas for the axial currents we have

M∗
A0√︁

MBsMD∗
s

= −i q∥

MD∗
s

[︃
(1 + w∗)hA1 −

(︃
hA2 +

ED∗
s

MD∗
s

hA3

)︃]︃
, (3.103)

M∗
A∥√︁

MBsMD∗
s

=
i

MD∗
s

[︄
ED∗

s
(1 + w∗)hA1 −

q2∥

MD∗
s

hA3

]︄
, (3.104)

M∗
A⊥√︁

MBsMD∗
s

= i(1 + w∗)hA1 . (3.105)

It is then useful to decompose the hadronic tensorWµν =Wµν
V V +Wµν

AA−W
µν
V A−W

µν
AV in

order to disentangle contributions from different physical channels, such that X can also

be rewritten in a way that exposes the V −A structure of the charged current, namely

X = XV V +XAA −XV A −XAV . (3.106)
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Combining Eqs. (3.92) and (3.93) with (3.88) and the expressions above for the matrix

elements we obtain X∥(q2, ω) and X⊥(q2, ω) in the ground-state limit

X
∥
V V (q

2, ω) =
q2

4MDsEDs

[︁
(MDs +MBs)h

+ + (MDs −MBs)h
−]︁2 , (3.107)

X⊥
V V (q

2, ω) =
q2

2MDsED∗
s

[(MBs − ED∗
s
)2 − q2]h2V , (3.108)

X
∥
AA(q

2, ω) =
1

4M∗
Ds
E∗

Ds

{︄
E∗

Ds
(MBs − E∗

Ds
)(1 + w∗)hA1 (3.109)

+ q2

[︄
(1 + w∗)hA1 − hA2 −

MBs

M∗
Ds

hA3

]︄}︄2

,

X⊥
AA(q

2, ω) =
M∗

Ds

2E∗
Ds

[︁
(MBs − E∗

Ds
)2 − q2)

]︁
(1 + w∗)2h2A1

. (3.110)

Note in particular that in the rest frame of the Bs the HQET form factors h±(w) are

related to the standard f±DsBs
(q2) as

h±(w) =
1

2
√︁
MBsMDs

[︁
(MBs ±MDs)f

+
DsBs

(q2) + (MBs ∓MDs)f
−
DsBs

(q2)
]︁
, (3.111)

from which we can write X
∥
V V (q

2, ω) as

X
∥
V V (q

2, ω) =
MBs

EDs

q2|f+DsBs
(q2)|2 . (3.112)

We have in this way shown how the ground-state limit of the inclusive decays can be

related to the underlying HQET form factors, in particular through the decomposition

into longitudinal and transverse components, further divided according to the nature

of the currents. This is in useful, for example, to compare the inclusive results with

the exclusive one in different channels, which can be computed on the lattice with more

conventional techniques [148–150]. Furthermore, a solid understanding of the ground

state limit could provide a way to better assess the effect of the excited states, as for

example in the P-wave contributions [151–153].

3.3.4 Moments

We conclude this chapter discussing moments of various kinematical quantities, which

describe the distribution of the given kinematic variable in the decay process. Lattice

calculations of moments are particularly interesting for comparison with experiments

and with OPE approaches [154–160]: indeed, they can provide a way to test the validity

of these analytical techniques [29], which heavily rely on perturbative expansions. In

particular, we focus on hadronic mass moments and lepton energy moments, as they are

the ones that have been studied experimentally [161–166].
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We then define the hadronic mass moments ⟨(M2
Xc

)n⟩, withM2
Xc

= (pBs−q)2 = (ω2−q2),
through the ratio

⟨(M2
Xc

)n⟩ = ΓHn

Γ
=

∫︁
dq2dωdEl (ω

2 − q2)n
[︂

dΓ
dq2 dω dEl

]︂
∫︁
dq2dωdEl

[︂
dΓ

dq2 dω dEl

]︂ , (3.113)

ΓHn ≡
∫︂

dq2dωdEl

(︁
ω2 − q2

)︁n [︃ dΓ

dq2 dω dEl

]︃
, (3.114)

as well as the lepton energy moments ⟨En
l ⟩

⟨En
l ⟩ =

ΓLn

Γ
=

∫︁
dq2dωdElE

n
l

[︂
dΓ

dq2 dω dEl

]︂
∫︁
dq2dωdEl

[︂
dΓ

dq2 dω dEl

]︂ , (3.115)

ΓLn ≡
∫︂

dq2dωdElE
n
l

[︃
dΓ

dq2 dω dEl

]︃
. (3.116)

We also consider the corresponding differential moments

Hn(q
2) ≡ ⟨(M2

Xc
)n⟩q2 =

∫︁
dωdEl (ω

2 − q2)n
[︂

dΓ
dq2 dω dEl

]︂
∫︁
dωdEl

[︂
dΓ

dq2 dω dEl

]︂ , (3.117)

Ln(q
2) ≡ ⟨En

l ⟩q2 =

∫︁
dωdElE

n
l

[︂
dΓ

dq2 dω dEl

]︂
∫︁
dωdEl

[︂
dΓ

dq2 dω dEl

]︂ . (3.118)

We can address the numerator of these moments in a similar way with respect to what

we discussed in the previous sections. We define

X
(n)
H (q2, ω) =

24π3

G2
F |Vcb|2

1√︁
q2

∫︂
dEl (ω

2 − q2)n
[︃

dΓ

dq2 dω dEl

]︃
(3.119)

=
3√︁
q2

∫︂
dEl (ω

2 − q2)nLµνW
µν ,

X
(n)
L (q2, ω) =

24π3

G2
F |Vcb|2

1√︁
q2

∫︂
dElE

n
l

[︃
dΓ

dq2 dω dEl

]︃
(3.120)

=
3√︁
q2

∫︂
dElE

n
l LµνW

µν ,

where the prefactor 24π3

G2
F |Vcb|2

1√
q2

has been introduced for convenience to match the con-

ventions in Eq. (3.74). We also define the corresponding versions integrated over ω, i.e.

X̄
(n)
H (q2) =

∫︁
dωX

(n)
H (q2, ω) and X̄

(n)
L (q2) =

∫︁
dωX

(n)
L (q2, ω), such that

ΓHn =
G2

F |Vcb|2
24π3

∫︂
dq2
√︁

q2X̄
(n)
H (q2) , (3.121)

ΓLn =
G2

F |Vcb|2
24π3

∫︂
dq2
√︁

q2X̄
(n)
L (q2) . (3.122)
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The moments can then be computed as

⟨(M2
Xc

)n⟩ = ΓHn

Γ
=

∫︁
dq2
√︁
q2X̄

(n)
H (q2)∫︁

dq2
√︁
q2X̄(q2)

, (3.123)

⟨En
l ⟩ =

ΓLn

Γ
=

∫︁
dq2
√︁

q2X̄
(n)
L (q2)∫︁

dq2
√︁
q2X̄(q2)

, (3.124)

together with their differential versions

Hn(q
2) =

X̄
(n)
H (q2)

X̄(q2)
, (3.125)

Ln(q
2) =

X̄
(n)
L (q2)

X̄(q2)
. (3.126)

Let us now calculate explicitly the central quantities X
(n)
H (q2, ω) and X

(n)
L (q2, ω). For

the leptonic moments, the calculation is quite involved as the factor En
l adds power of

the lepton energy in the integral. In the massless limit, using Eq. (3.47) we get∫︂
dElE

n
l LµνW

µν

⃓⃓⃓⃓
ml=0

=q2
(︃
W1 −

1

2
W2 − q0W3

)︃
∆En+1

l

n+ 1

+ 2(q0W2 + q2W3)
∆En+2

l

n+ 2
− 2W2

∆En+3
l

n+ 3
.

(3.127)

Recalling the definition in Eq. (3.120), we can substitute the structure functions in Eqs. (3.66),

(3.67) and (3.68) to obtain

X
(n)
L (q2, ω) =

3√︁
q2

{︄
W00

[︄
−1

2
(q20 − q2)

∆En+1
l

n+ 1
+ 2q0

∆En+2
l

n+ 2
− 2

∆En+3
l

n+ 3

]︄
(3.128)

+
q20 − q2

q2

∑︂
i

Wii

[︄
1

4

∆En+1
l

n+ 1

(︁
q2 + q20

)︁
− q0

∆En+2
l

n+ 2
+

∆En+3
l

n+ 3

]︄

+
∑︂
i

qi(W0i +Wi0)
q0
q2

[︄
1

2
(q20 − q2)

∆En+1
l

n+ 1
− 2q0

∆En+2
l

n+ 2
+ 2

∆En+3
l

n+ 3

]︄

+
∑︂
i,j

qiWijq
j 1

|q|4
[︃
− 1

4
(q2 + 3q20)(q

2
0 − q2)

∆En+1
l

n+ 1
+

(q2 − 3q20)

(︄
−q0

∆En+2
l

n+ 2
+

∆En+3
l

n+ 3

)︄]︃

+ i
q20 − q2

q2

∑︂
i,j,k

Wijε
ijkqk

[︄
−q0

∆En+1
l

n+ 1
+ 2

∆En+2
l

n+ 2

]︄}︄
,

which provides a full and complete expression for all orders n in terms of the hadronic

tensor. We can then make use of the general formula in Eq. (3.52) to determine explicitly

all values of n. In particular, for n = 1 we can substitute the expressions in Eq. (3.53)
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to obtain the final result

X
(1)
L (q2, ω) =

1

2
q0|q|2W00 +

1

2
q0(q

2
0 − |q|2)

∑︂
i

Wii +
1

2
q0
∑︂
i,j

qiWijq
j (3.129)

− 1

2
q20
∑︂
i

qi(W0i +Wi0) +
i

2
(q20 − |q|2)

∑︂
i,j,k

Wijε
ijkqk .

Finally, the case involving the hadronic moments is trivial, as ω and q2 are independent

and do not contribute to the El integral, i.e.

X
(n)
H (q2, ω) = (ω − q2)nX(q2, ω) . (3.130)

We will explicitly consider the moments at order n = 1 for the numerical investigations

in this work.
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CHAPTER 4

INCLUSIVE DECAYS ON THE LATTICE

In this chapter we discuss the strategy for computing the inclusive-decay observables

we defined in Chap. 3 in Lattice QCD. We start off in Sec. 4.1 by defining a set of Eu-

clidean correlation functions, in terms of which we express a number of target observables

in Sec. 4.2. In Sec. 4.3 we then address the underlying data-analysis problem.

4.1 Operators and correlation functions

The interpolating operators for the Bs → Xc lνl semileptonic processes (exclusive and

inclusive) are given by

OBs(x) = b̄(x) γ5 s(x) , (4.1)

ODs(x) = c̄(x) γ5s(x), (4.2)

Jν(x) = b̄(x) ΓJ
ν c(x) , (4.3)

where ΓV
ν = γν and ΓA

ν = γνγ5 (see App. A.1), and where the fermion fields b(x), c(x)

and s(x) correspond to the b, c and s quark (Euclidean) fields, respectively.

We start considering the Bs two-point functions. Following the conventions of Sec. 2.3.3,

we rewrite the operator at source and sink in a more general way as

OX
Bs
(xsrc) = b̄

X
(xsrc)Γsrc s

X(xsrc) , OX
Bs
(xsnk) = b̄

X
(xsnk)Γsnk s

X(xsnk) , (4.4)
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s

b

xsrcxsnk

s

c

xsrcxsnk

Figure 4.1: Illustration of valence quarks in two-point correlation functions for the
Bs (left) and Ds (right) mesons.

where Γsrc = Γsnk = γ5 and the superscript X,Y ∈ {S,L}, indicate smearing (S) or no

smearing (L). The correlator reads

CY X
Bs

(psnk, tsnk, tsrc) =
∑︂
xsnk

e−ipsnk·(xsnk−xsrc)× (4.5)⟨︂
Tr
[︂
γ5ΓsnkG

Y X
s (xsnk, xsrc)Γ

†
srcγ5G

Y X †
b (xsnk, xsrc)

]︂⟩︂
G
,

where GY X
q indicates the propagator of the quark q with smearing X at the source and

Y at the sink. In particular, we compute zero-momentum projected two-point correla-

tors with all possible combinations of smearing at source and sink, i.e. CLS
Bs

(tsnk, tsrc),

CSL
Bs

(tsnk, tsrc) and CSS
Bs

(tsnk, tsrc), where we suppressed the momentum dependence to

indicate that psnk = 0. We will use the same convention in the rest of the manuscript.

In a similar way, we compute the smeared-smeared and local-smeared two-point func-

tions for the Ds correlation function CLS
Ds

(psnk, tsnk, tsrc) and C
SS
Ds

(psnk, tsnk, tsrc). Both

two-point correlators are depicted in Fig. 4.1.

We also compute three-point correlators for the Bs → Ds lνl process in Fig. 4.2, which,

together with the Ds two-point functions, will be used to investigate the correspond-

ing exclusive process and compare it with our inclusive study. The smeared-smeared

correlator is

CSS
DsBs,µ(q,psnk, tsnk, t, tsrc) =

∑︂
xsnk,x

e−ipsnk·(xsnk−xsrc)e−iq·(x−xsrc)× (4.6)

⟨T{OS
Ds

(xsnk, tsnk)Vµ(x, t)OS†
Bs
(xsrc, tsrc)}⟩ ,

which after Wick contraction reads

CSS
DsBs,µ(q,psnk, tsnk, t, tsrc) =

∑︂
x

e−iq·(x−xsrc)
⟨︂
Tr
[︂
γ5Γ

V
µΣcs(x, xsrc)Γ

†
srcγ5G

†
b(x, xsrc)

]︂⟩︂
G
,

(4.7)

where the sequential propagator is given by

Σcs(x, xsrc) =
∑︂
xsnk

e−ipsnk·(xsnk−xsrc)Gc(x, xsnk)ΓsnkGs(xsnk, xsrc) (4.8)
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bc

s

xsrcxsnk

Vµ(x, t)

Figure 4.2: Three-point correlator diagram for the exclusive channel Bs → Ds lνl.

where Gs(xsnk, xsrc) propagates the s quark from xsrc to xsnk and Gc(x, xsnk) propagates

the c quark from xsnk to x.

The core of the inclusive computation relies on the construction of the four-point corre-

lator in Fig. 4.3, which addresses the matrix element in the hadronic tensor in Eq. (3.33)

Wµν ∼ ⟨Bs| J̃
µ†
J̃
ν |Bs⟩ . (4.9)

In particular, with tsnk ≥ t2 ≥ t1 ≥ tsrc,

CSJJS
µν (q,psnk, tsnk, t2, t1, tsrc) =

∑︂
xsnk

e−ipsnk·(xsnk−xsrc)× (4.10)⟨︂
OS

Bs
(xsnk, tsnk) J̃

†
µ (q, t2) J̃ν (q, t1)OS†

Bs
(xsrc, tsrc)

⟩︂
=

∑︂
xsnk,x1,x2

e−ipsnk·(xsnk−xsrc)eiq·x2e−iq·x1×⟨︂
OS

Bs
(xsnk, tsnk) J

†
µ (x2, t2) Jν (x1, t1)OS†

Bs
(xsrc, tsrc)

⟩︂
,

where the currents are projected onto three-momentum by a discrete Fourier transform

J̃ν(q, t) =
∑︁

x e
−iq·xJν(x, t). We can now use Wick’s theorem to get an expression for

the four-point correlator in terms of propagators (cf. with Sec. 2.4), i.e.⟨︂
OS

Bs
(xsnk, tsnk) J

†
µ (x1, t1) Jν (x2, t2)O

S†
Bs

(x, tsrc)
⟩︂
= (4.11)

=
⟨︂
b̄(xsnk)Γsnks(xsnk) c̄(x2)Γ

J†
µ b(x2) b̄(x1)Γ

J
ν c(x1) s̄(xsrc)Γ

†
srcb(xsrc)

⟩︂
=
⟨︂
Tr
[︂
Gb(x2, xsnk)ΓsnkGs(xsnk, xsrc)Γ

†
srcGb(xsrc, x1)Γ

J
νGc(x1, x2)Γ

J†
µ

]︂⟩︂
G
+⟨︂

Tr
[︂
Gb(xsrc, xsnk)ΓsnkGs(xsnk, xsrc)Γ

†
src

]︂⟩︂
G

⟨︂
Tr
[︂
Gb(x2, x1)Γ

J
νGc(x1, x2)Γ

J†
µ

]︂⟩︂
G

=

b
c

b

s

xsrcxsnk

x2 x1

+

s
b

xsrcxsnk

c
b x1x2

.
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bcb

s

xsrcxsnk

J†
µ(x2) Jν(x1)

Gb(xsrc, x1)

Σcbs(x1, xsrc)

Figure 4.3: Diagram of the four-point correlator. The black line, Gb(xsrc, x1), is a
propagator for the b quark from x1 to xsrc; the green one, Σcbs(x1, xsrc), is a sequential
propagator that propagates the s quark from xsrc to xsnk, the b quark from xsnk to x2
and the c quark from x2 to x1.

The disconnected diagrams are suppressed in the semileptonic region because of energy

conservation, as the b̄c state is more massive than the Bs meson, and will therefore be

ignored in the remaining of this work. The only contribution is then given by

CSJJS
µν (q,psnk, tsnk, t2, t1, tsrc) =

∑︂
xsnk,x1,x2

e−ipsnk·(xsnk−xsrc)eiq·x2e−iq·x1 × (4.12)⟨︂
Tr
[︂
Gb(x2, xsnk)ΓsnkGs(xsnk, xsrc)Γ

†
srcGb(xsrc, x1)Γ

J
νGc(x1, x2)Γ

J†
µ

]︂⟩︂
G
.

The above expression can be evaluated with the sequential-propagator method as de-

picted in Fig. 4.3, for which the correlator reads

CSJJS
µν (q,psnk, tsnk, t2, t1, tsrc) =

∑︂
x1

e−iq·x1 × (4.13)⟨︂
Tr
[︂
γ5Γ

J
νΣcbs(x1, xsrc)Γ

†
srcγ5G

†
b(x1, xsrc)

]︂⟩︂
G
.

where

Σcbs(x1, xsrc) =
∑︂
x2

eiq·x2Gc(x1, x2)Γ
J†
µ Σbs(x2, xsrc) , (4.14)

Σbs(x2, xsrc) =
∑︂
xsnk

e−ipsnk·(xsnk−xsrc)Gb(x2, xsnk)ΓsnkGs(xsnk, xsrc) . (4.15)

In particular, Σcbs(x1, xsrc) is a sequential propagator whose source Sseq (cf. Eq. (2.103))

is built on a sequential propagator Σbs(x2, xsrc).

Let us now work out the full Euclidean-time dependence for the four-point correlator by

inserting a complete set of states, I =
∑︁

Xc
|Xc(pXc)⟩ ⟨Xc(pXc)|, which is understood to
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include an integration over all possible momenta pXc under a Lorentz invariant phase-

space integral. Considering that q = pBs − pXc , with pBs = psnk = psrc, we get

CSJJS
µν (q,pBs , tsnk, t2, t1, tsrc) = (4.16)

=
∑︂
xsnk

e−ipBs (xsnk−xsrc)⟨OS
Bs
(xsnk, tsnk)J̃

†
µ(q, t2)J̃ν(q, t1)OS†

Bs
(xsrc, tsrc)⟩

=
∑︂
xsnk

e−ipBs (xsnk−xsrc) ⟨0| e−(T−tsnk)ĤOS
Bs
(xsnk, 0)e

−(tsnk−t2)Ĥ ×

J̃
†
µ(q, 0)e

−t2Ĥet1Ĥ J̃ν(q, 0)e
−(t1−tsrc)ĤO†S

Bs
(xsrc, 0)e

−tsrcĤ |0⟩

=
e−(tsnk−t2)EBs e−(t1−tsrc)EBs

(2EBs)
2

⟨0| OS
Bs
|Bs(pBs)⟩ ⟨Bs(pBs)| OS†

Bs
|0⟩ ×

⟨Bs(pBs)| J̃
†
µ(q, 0)e

−(t2−t1)Ĥ J̃ν(q, 0) |Bs(pBs)⟩ ,

where we assumed tsnk − t2 ≫ 0 and t1 − tsrc ≫ 0 such that the excited states of the

OBs operator are suppressed and the Bs ground state dominates. In order to obtain the

matrix element

⟨Bs(pBs)| J̃
†
µ(q, 0)e

−tĤ J̃ν(q, 0) |Bs(pBs)⟩ , (4.17)

which will be used to address the computation of the hadronic tensor, we can remove

the exponential factors that do not depend on EXc using the two-point correlators⎧⎨⎩CSL
Bs

(pBs , tsnk, t2)
tsnk−t2≫0

= 1
2EBs

⟨0| OS
Bs
|Bs(pBs)⟩ ⟨Bs(pBs)| O†L

Bs
|0⟩ e−(tsnk−t2)EBs

CLS
Bs

(pBs , t1, tsrc)
t1−tsrc≫0

= 1
2EBs

⟨0| OL
Bs
|Bs(pBs)⟩ ⟨Bs(pBs)| O†S

Bs
|0⟩ e−(t1−tsrc)EBs

.

(4.18)

We can indeed build the ratio

Rµν(q,pBs , t2, t1) =
CSJJS(q,pBs , tsnk, t2, t1, tsrc)

CSL
Bs

(pBs , tsnk, t2)C
LS
Bs

(pBs , t1, tsrc)
, (4.19)

which in the limits tsnk − t2 ≫ 0 and t1 − tsrc ≫ 0 gives

Rµν(q,pBs , t2, t1) −→
1

2EBs
⟨Bs(pBs)| J̃

†
µ(q, 0)e

−(t2−t1)Ĥ J̃ν(q, 0) |Bs(pBs)⟩
1

2EBs
| ⟨0| OL

Bs
|Bs(pBs)⟩ |2

. (4.20)

Inserting a complete set of states we get

Rµν(q,pBs , t2, t1) =
1

| ⟨0| OL
Bs
|Bs(pBs)⟩ |2

∑︂
Xc

⟨B(pBs)| J̃
†
µ(q, 0) |Xc(pXc)⟩ × (4.21)

e−(t2−t1)EXc ⟨Xc(pXc)| J̃ν(q, 0) |Bs(pBs)⟩ .

From the ratioRµν(q,pBs , t2, t1) we can finally construct the key correlator Cµν(q,pBs , t)

to address the inclusive analysis: using in particular translational invariance, t = t2− t1,
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we obtain

Cµν(q,pBs , t) =
1

2EBs

| ⟨0| OL
Bs
|Bs(pBs)⟩ |2Rµν(q,pBs , t, 0) (4.22)

=
1

2EBs

∑︂
X

⟨Bs(pBs)| J̃
†
µ(q, 0) |Xc(pXc)⟩ e−tEXc ⟨Xc(pXc)| J̃ν(q, 0) |Bs(pBs)⟩

=
1

2EBs

⟨Bs(pBs)| J̃
†
µ(q, 0)e

−tĤ J̃ν(q, 0) |Bs(pBs)⟩ ,

where the factor | ⟨0| OL
Bs
|Bs(pBs)⟩ |2/(2EBs) can be extracted from fits of Bs the two-

point functions. This correlator is now directly related to the matrix element relevant

to address the evaluation of the hadronic tensor, as we will discuss in the next section.

Since we assume to be in the rest frame of the Bs meson, we set pBs = 0 and EBs =MBs .

For simplicity we suppress the Bs and Xc momentum label in the rest of the chapter.

4.2 Decay rate and moments

The previous expression Eq. (4.22) is related to the hadronic tensor in Eq. (3.33) through

a Laplace transform

Cµν(q, t) =

∫︂ ∞

0
dω

1

2MBs

⟨Bs| J̃
†
µ(q, 0)δ(Ĥ − ω)J̃ν(q, 0) |Bs⟩ e−ωt

=

∫︂ ∞

0
dωWµν(q, ω)e

−ωt ,

(4.23)

where we dropped the label pBs for simplicity, and where

Wµν(q, ω) =
1

2MBs

∑︂
Xc

δ(ω − EXc) ⟨Bs| J̃
†
µ(q, 0) |Xc⟩ ⟨Xc| J̃ν(q, 0) |Bs⟩ . (4.24)

Determining the hadronic tensor through the inversion of Eq. (4.23) presents an ill-posed

inverse problem, similar to extracting hadronic spectral densities from Euclidean corre-

lators. While it is relatively straightforward to reconstruct Cµν from Wµν , the reverse

process is highly challenging. There is no universal prescription to address the inverse-

Laplace transform: common approaches rely on the maximum entropy method [167–169],

the Bayesian approach [170], the sparse modelling approach [171], the Backus-Gilbert

method [24,28] and the Chebyshev-polynomial technique [26,27].

Fortunately, for computing the inclusive decay rate and the moments, it is not neces-

sary to directly calculate the hadronic tensor itself. Instead, we only need to compute

integrals X̄
(l)
(q2) in Eq. (3.80), which involve smearing the hadronic tensor with the

leptonic tensor integrated over the lepton energy. Note that, without loss of generality,

X̄
(l)
(q2) can refer to the decay rate, as in Eq. (3.80), or to one of the moments X̄

(l)
H and

X̄
(l)
L in Eqs. (3.119) and (3.120), respectively, where l refers to the order of the given
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moment. Indeed, in general we can write

X̄
(l)
(q2) =

∫︂ ωmax

ωmin

dωWµν(q, ω)k(l)µν(q, ω) , (4.25)

where k
(l)
µν(q, ω) represents a known kinematic factor dependent solely on energy and

three-momentum. We can modify this expression by introducing a Heaviside step func-

tion θ(ωmax − ω) and extending the integration limits to ωmax → ∞ and ωmin → ω0,

where ω0 ≤ ωmin. This allows us to rewrite it as

X̄
(l)
(q2) =

∫︂ ∞

ω0

dωWµν(q, ω)k(l)µν(q, ω)θ(ωmax − ω)

=

∫︂ ∞

ω0

dωWµν(q, ω)K(l)
µν(q, ω) ,

(4.26)

where we defined the kernel function K
(l)
µν(q, ω) = k

(l)
µν(q, ω)θ(ωmax−ω). It is important

to note that the value of ω0 can be freely chosen within the range 0 ≤ ω0 ≤ ωmin.

This freedom exists because there are no states below the ground state energy ωmin, as

indicated by Eq. (4.24). For example, in the case of Bs → Xc lνl we have ωmin =MDs for

the contribution from the vector channel when the transferred momentum q approaches

zero. We will later take advantage of this flexibility in selecting the value of ω0.

Let us now discuss the process of obtaining X̄
(l)
(q2) from lattice data for Cµν(q, t). To

begin with, we introduce a smoothing technique for the kernel K
(l)
µν(q, ω) by replacing

the step function with a sigmoid function given by

θσ(x) =
1

1 + e−x/σ
. (4.27)

While it is necessary to eventually take the limit σ → 0 to obtain the physical observ-

ables, smoothing is valuable for controlling and understanding the systematic effects in-

volved in computation strategy. Following the approach in [25], we expand the smoothed

kernel K
(l)
σ,µν(q, ω) as a polynomial of e−aω (setting a = 1 for simplicity) up to a certain

order N . This expansion [26] can be written as

K(l)
σ,µν(q, ω) ≃ c(l)µν,0(q, σ) + c

(l)
µν,1(q, σ)e

−ω · · ·+ c
(l)
µν,N (q, σ)e−ωN , (4.28)

where we have N +1 coefficients c
(l)
µν,k(q, σ). Consequently, the target quantity X̄

(l)
σ (q2),

which now depends on the smearing parameter σ, can be computed as

X̄
(l)
σ (q2) =

∫︂ ∞

ω0

dωWµν(q, ω)e−2ωt0K(l)
σ,µν(q, ω; t0)

≃ c(l)µν,0
∫︂ ∞

ω0

dωWµν(q, ω)e−2ωt0 + c
(l)
µν,1

∫︂ ∞

ω0

dωWµν(q, ω)e−2ωt0e−ω + . . .

+ c
(l)
µν,N

∫︂ ∞

ω0

dωWµν(q, ω)e−2ωt0e−ωN , (4.29)



76 Chapter 4. Inclusive decays on the lattice

where now c
(l)
µν,k ≡ c

(l)
µν,k(q, σ; t0). The factor e−2ωt0 has been introduced, and com-

pensated for in the new kernel K
(l)
σ,µν(q, ω; t0) = e2ωt0K

(l)
σ,µν(q, ω), in order to avoid the

equal-time matrix element t1 = t2, see Eq. (4.10), which contains contributions from

the opposite time ordering corresponding to the unphysical b̄scb̄ final states. Inserting

now Eq. (4.23) we arrive at the compact expression

X̄
(l)
σ (q2) =

N∑︂
k=0

c
(l)
µν,kC

µν(q, k + 2t0) , (4.30)

which relates Cµν(q, t), which can be computed on the lattice, to X̄
(l)
σ (q2). It is impor-

tant to note that the expression provided is an approximation of X̄
(l)
σ (q2) due to the

truncation at a finite value N . We follow the same convention for all similar quantities

discussed in the subsequent sections. Furthermore, the order N of the polynomial ap-

proximation is directly linked to the temporal separation t = t2 − t1 of the two charged

currents in the four-point function in Eq. (4.10). To complete the computation of the

observables for a specific σ value, the next step involves performing the phase-space

integration over the energy ω, as for example in Eq. (3.80) for the decay rate.

The most general expressions for the kernels related to the decay rate are

K
(0)
σ,00(q, ω; t0) = e2ωt0q2 θσ (ωmax − ω) , (4.31)

K
(0)
σ,ii(q, ω; t0) = e2ωt0(q2i − q2) θσ (ωmax − ω) , (4.32)

K
(0)
σ,ij(q, ω; t0)

i ̸=j
= e2ωt0qiqj θσ (ωmax − ω) , (4.33)

K
(1)
σ,0i(q, ω; t0) = −e2ωt0qiq0 θσ (ωmax − ω) , (4.34)

K
(2)
σ,ii(q, ω; t0) = e2ωt0q20 θσ (ωmax − ω) , (4.35)

where ωmax ≡ ωmax(q
2) =MBs −

√︁
q2. For the transverse components we have

K⊥
σ,ii(q, ω; t0) = e2ωt0(q2i − q2)

(︃
1− q20

q2

)︃
θσ (ωmax − ω) , (4.36)

K⊥
σ,ij(q, ω; t0)

i ̸=j
= e2ωt0qiqj

(︃
1− q20

q2

)︃
θσ (ωmax − ω) , (4.37)

and for the longitudinal ones

K
∥
σ,00(q, ω; t0) = e2ωt0q2 θσ (ωmax − ω) , (4.38)

K
∥
σ,0i(q, ω; t0) = −e2ωt0q0qi θσ (ωmax − ω) , (4.39)

K
∥
σ,ij(q, ω; t0) = e2ωt0

q20
q2
qiqj θσ (ωmax − ω) . (4.40)

All the other combinations vanish. Note that the kernels K
(n)
H,σ,µν(q, ω; t0) for the

hadronic mass moment are proportional to the ones for the decay rate up to a factor

(M2
X)n = (ω2 − q2)n.
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For the lepton moments with n = 1 as in Eq. (3.129), which we will take as a case study

later, we obtain explicitly the kernels

K
(1)
L,σ,00(q, ω; t0) = e2ωt0

1

2
q0q

2 θσ (ωmax − ω) , (4.41)

K
(1)
L,σ,0i(q, ω; t0) = −e2ωt0

1

2
q20qi θσ (ωmax − ω) , (4.42)

K
(1)
L,σ,ij(q, ω; t0)

i ̸=j
= e2ωt0

1

2
q0q

iqj θσ (ωmax − ω) , (4.43)

K
(1)
L,σ,ii(q, ω; t0) = e2ωt0

1

2

(︁
q20 − q2 − (qi)2

)︁
θσ (ωmax − ω) , (4.44)

together with the antisymmetric kernel (indicated with “tilde”)

K̃
(1)
L,σ,ij(q, ω; t0) = e2ωt0

1

2
(q20 − q2)

∑︂
k

εijkqk θσ (ωmax − ω) . (4.45)

We have now presented the main idea of how to address the calculation of the quantities

X̄
(l)
(q2) and provided the explicit form of the kernels relevant for our study. In the

remaining of this chapter we describe in practice the strategies adopted to perform the

analysis of the lattice data for extracting the inclusive-decay observables.

4.3 Data analysis

In the previous section we discussed the problem of computing the inclusive decay rate

and moments and how it can be translated into finding a suitable polynomial approxi-

mation for the kernel K
(l)
σ,µν(q, ω; t0). Here we present two distinct approaches that we

use to determine the expansion coefficients c
(l)
µν,k given the lattice data for the ratio of

correlation functions in Eq. (4.19). The aim is to compare how the two methods perform

and determine if there is any advantage in using one instead of the other.

In principle, one could directly compute X̄
(l)
σ (q2) as defined in Eq. (4.30) from the lattice

data for Cµν(q, t). For example, for a given order N , the coefficients c
(l)
µν,k in the power

series for the analytically known kernel K
(l)
σ,µν(q, ω; t0) could be determined via linear

regression: this would allow to construct X̄
(l)
σ (q2) from the data for Cµν(q, t). However,

the number of available time slices in the window where Cµν(q, t) can be extracted from

the lattice data limits the order of the expansion. Moreover, extracting a significant

signal for the observables becomes challenging due to the exponential decay of the signal-

to-noise ratio [172, 173] as the Euclidean time separation t1 − tsrc increases. Note that,

given the structure of the four-point functions, this corresponds to small values of t

for the correlator Cµν(t). To address this issue, we need a regulator that balances the

truncation-induced systematic errors and the statistical noise. Therefore, we outline two

regularisation approaches that achieve this balance, one based on Chebyshev polynomials

and the other based on the modified Backus-Gilbert method.
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For completeness and more flexibility we introduce the following notation

X̄
(l)
σ (q2) =

∫︂ ∞

ω0

dωWµν(q, ω)e−2ωt0K(l)
σ,µν(q, ω; t0) (4.46)

=
1

2MBs

∫︂ ∞

ω0

dωK(l)
σ,µν(q, ω; t0) ⟨Bs| J̃

µ†
(q, 0)e−ωt0δ(Ĥ − ω)e−ωt0 J̃

ν
(q, 0) |Bs⟩

≡ ⟨ψµ(q)|K(l)
σ,µν(q, Ĥ; t0) |ψν(q)⟩ ,

where we made use of Eq. (4.24) and defined |ψν(q)⟩ = e−Ĥt0 J̃
ν
(q, 0) |Bs⟩ /

√︁
2MBs .

Note that the Dirac delta δ(Ĥ − ω) has been introduced in order to restrict the inte-

gral over the physical states and that the kernel has been promoted to an operator,

K
(l)
σ,µν(q, Ĥ; t0).

4.3.1 Chebyshev-polynomial approach

Chebyshev polynomials Tk(ω), defined on −1 ≤ ω ≤ 1, provide an optimal approxima-

tion of functions under the L∞-norm. For the case at hand we define shifted Chebyshev

polynomials T̃ k(ω), which represent a family of polynomials in e−ω defined on an arbi-

trary interval: we provide a summary of basic properties in App. C. Through the use of

these shifted polynomials, the generic kernel function can be expanded up to order N

as

K(l)
σ,µν(q, ω; t0) =

1

2
c̃
(l)
µν,0T̃ 0(ω) +

N∑︂
k=1

c̃
(l)
µν,kT̃ k(ω) , (4.47)

where

T̃ k(x) = Tk(h(x)) =

k∑︂
j=0

t̃
(k)
j e−jω , (4.48)

and h(x) = Ae−x +B is a map h : [ω0,∞]→ [−1, 1], with A and B given in Eq. (C.28)

and the coefficients t̃
(k)
j given in Eq. (C.33). Thanks to the polynomials’ orthogonality

properties, the coefficients of the approximation can be computed by projecting the

kernel function into the Chebyshev-polynomial basis as

c̃
(l)
µν,k =

∫︂ ∞

ω0

dωK(l)
σ,µν(q, ω; t0)T̃ k(ω)Ωh(ω) , (4.49)

where the weight function Ωh(x) is defined in Eq. (C.18). In this way, the expectation

value of the kernel operator is

⟨ψµ|K(l)
σ,µν(q, Ĥ; t0) |ψν⟩ =

1

2
c̃
(l)
µν,0 ⟨ψµ| T̃ 0(Ĥ) |ψν⟩+

N∑︂
k=1

c̃
(l)
µν,k ⟨ψµ| T̃ k(Ĥ) |ψν⟩ , (4.50)
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where there is no summation over pairs of indices µ and ν. In order to exploit the

bound on the Chebyshev polynomials in |T̃ k(ω)| ≤ 1, we divide the terms in the previous

expression by the normalising factor ⟨ψµ|ψν⟩ = Cµν(2t0). For a more compact notation

we define

⟨K(l)
σ ⟩µν ≡

⟨ψµ|K(l)
µν(q, Ĥ; t0) |ψν⟩
⟨ψµ|ψν⟩

, ⟨T̃ k⟩µν ≡
⟨ψµ| T̃ k(Ĥ) |ψν⟩
⟨ψµ|ψν⟩

, (4.51)

with ⟨T̃ k⟩µν being the Chebyshev matrix elements, for which |⟨T̃ k⟩µν | ≤ 1, such that

⟨K(l)
σ ⟩µν =

1

2
c̃
(l)
µν,0⟨T̃ 0⟩µν +

N∑︂
k=1

c̃
(l)
µν,k⟨T̃ k⟩µν . (4.52)

The generic state X̄σ(q
2) now reads

X̄
(l)
σ (q2) =

∑︂
{µ,ν}

⟨ψµ|ψν⟩ ⟨K(l)
σ ⟩µν , (4.53)

and in particular for the decay rate,

X̄
(0)
σ (q2) = C00(2t0)⟨K(0)

σ ⟩00 +
∑︂
i

Cii(2t0)⟨K(0)
σ ⟩ii +

∑︂
i ̸=j

Cij(2t0)⟨K(0)
σ ⟩ij , (4.54)

X̄
(1)
σ (q2) =

∑︂
i

(︂
C0i(2t0)⟨K(1)

σ ⟩0i + Ci0(2t0)⟨K(1)
σ ⟩i0

)︂
, (4.55)

X̄
(2)
σ (q2) =

∑︂
i

Cii(2t0)⟨K(2)
σ ⟩ii . (4.56)

The transverse component in Eq. (3.85) is given by

X̄
⊥
σ (q

2) =
∑︂
i

Cii(2t0)⟨K⊥
σ ⟩ii +

∑︂
i ̸=j

Cij(2t0)⟨K⊥
σ ⟩ij , (4.57)

together with the longitudinal one in Eq. (3.84)

X̄
∥
σ(q

2) = C00(2t0) ⟨K∥
σ⟩00 +

∑︂
i,j

Cij(2t0)⟨K∥
σ⟩ij (4.58)

+
∑︂
i

(︂
C0i(2t0)⟨K∥

σ⟩0i + Ci0(2t0)⟨K∥
σ⟩i0

)︂
.

The Chebyshev matrix elements can be constructed directly from the lattice data using

⟨ψµ| e−Ĥt |ψν⟩
⟨ψµ|ψν⟩

=
Cµν(t+ 2t0)

Cµν(2t0)
≡ C̄µν(t) , (4.59)

such that we can relate ⟨T̃ k⟩µν to the correlator C̄µν . Recalling that a generic function

of an operator can be written in terms of its eigenvalues, f(Ĥ) =
∑︁

X f(EX)PX , where

PX = |X⟩ ⟨X| is a projector on the state |X⟩, which is part of a complete set of states,
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I =
∑︁

X |X⟩ ⟨X|, we get

⟨T̃ k⟩µν =
⟨ψµ| T̃ k(Ĥ) |ψν⟩
⟨ψµ|ψν⟩

=
∑︂
X

⟨ψµ| T̃ k(Ĥ) |X⟩ ⟨X|ψν⟩
⟨ψµ|ψν⟩

(4.60)

=
∑︂
X

T̃ k(EX)
⟨ψµ|X⟩ ⟨X|ψν⟩
⟨ψµ|ψν⟩

=
∑︂
X

k∑︂
j=0

t̃
(k)
j e−jEX

⟨ψµ|X⟩ ⟨X|ψν⟩
⟨ψµ|ψν⟩

= t̃
(k)
0

∑︂
X

⟨ψµ|X⟩ ⟨X|ψν⟩
⟨ψµ|ψν⟩

+ t̃
(k)
1

∑︂
X

e−EX
⟨ψµ|X⟩ ⟨X|ψν⟩
⟨ψµ|ψν⟩

+ · · ·+ t̃
(k)
k

∑︂
X

e−kEX
⟨ψµ|X⟩ ⟨X|ψν⟩
⟨ψµ|ψν⟩

= t̃
(k)
0 C̄µν(0) + t̃

(k)
1 C̄µν(1) + · · ·+ t̃

(k)
k C̄µν(k) ,

such that

⟨T̃ k⟩µν =

k∑︂
j=0

t̃
(k)
j C̄µν(j) . (4.61)

Overall the full Chebyshev expansion of the kernel reads

⟨K(l)
σ ⟩µν =

1

2
c̃
(l)
µν,0⟨T̃ 0⟩µν +

N∑︂
k=1

c̃
(l)
µν,k⟨T̃ k⟩µν =

1

2
c̃
(l)
µν,0 +

N∑︂
k=1

c̃
(l)
µν,k

k∑︂
j=0

t̃
(k)
j C̄µν(j) (4.62)

= C̄µν(0)

(︃
1

2
c̃
(l)
µν,0t̃

(0)
0 + c̃

(l)
µν,1t̃

(1)
0 + · · ·+ c̃

(l)
µν,N t̃

(N)
0

)︃
+ C̄µν(1)

(︂
c̃
(l)
µν,1t̃

(1)
1 + c̃

(l)
µν,2t̃

(2)
1 + · · ·+ c̃

(l)
µν,N t̃

(N)
1

)︂
+ · · ·

+ C̄µν(N)
(︂
c̃
(l)
µν,N t̃

(N)
N

)︂
=

N∑︂
k=0

C̄µν(k)

N∑︂
j=k

c̃
(l)
µν,j

(︃
1− 1

2
δ0j

)︃
t̃
(j)
k ,

where we recall that ⟨T̃ 0⟩µν = 1 by definition. Collecting the coefficients into

c̄
(l)
µν,k ≡

N∑︂
j=k

c̃
(l)
µν,j t̃

(j)
k

(︃
1− 1

2
δ0j

)︃
, (4.63)

we arrive at the compact expression

⟨K(l)
σ ⟩µν =

N∑︂
k=0

c̄
(l)
µν,kC̄µν(k) . (4.64)

This expression has now the advantage of relating directly the approximation of the

kernel operator to the lattice data C̄µν instead of the Chebyshev matrix elements ⟨T̃ k⟩µν .
Furthermore, this expression may be quite convenient to assess the effect of the excited
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states, particularly those above ωmax. In particular, we may think of the data as a

spectral sum over lower- and higher-energy states X = {XL, XH}, as

C̄µν(t) =
∑︂
X

e−tEX
⟨ψµ|X⟩ ⟨X|ψν⟩
⟨ψµ|ψν⟩

(4.65)

=
∑︂
XL

e−tEXL
⟨ψµ|XL⟩ ⟨XL|ψν⟩

⟨ψµ|ψν⟩
+
∑︂
XH

e−tEXH
⟨ψµ|XH⟩ ⟨XH |ψν⟩

⟨ψµ|ψν⟩

≡ C̄L
µν(t) + C̄

H
µν(t) .

Considering that the kernel K
(l)
σ,µν contains a (smooth) step function to cut the high en-

ergy modes EXH
> ωmax (in the limit σ → 0), this implies that, assuming the polynomial

approximation to be good enough, the coefficients c̄
(l)
µν,k are such that

N∑︂
k=0

c̄
(l)
µν,kC̄

H
µν(k) ≈ 0 , min(EXH

) > ωmax . (4.66)

This shows the role of the polynomial approximation above ωmax and in particular the

role of the step function, whose effect is now encoded in the coefficients c̄
(l)
µν,k.

While the coefficients c̃
(l)
µν,k and c̄

(l)
µν,k are known analyticaly, C̄µν(k) needs to be computed

on the lattice using Monte-Carlo methods. The resulting statistical error on C̄µν(k) can

lead to violations of the bound |⟨T̃ k⟩µν | ≤ 1 despite the above normalisation when solving

the linear system (as in Eq. (C.39))⎛⎜⎜⎜⎜⎜⎜⎜⎝

C̄µν(0)

C̄µν(1)
...
...

C̄µν(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ã
(0)
0 0 · · · · · · 0

ã
(1)
0 ã

(1)
1 0 · · · 0

...
...

. . .
. . .

...
...

...
. . . 0

ã
(n)
0 ã

(n)
1 · · · · · · ã

(n)
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⟨T̃ 0⟩µν
⟨T̃ 1⟩µν

...

...

⟨T̃n⟩µν

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.67)

This can however be avoided in a Bayesian analysis of the correlator data, imposing the

bound in terms of priors. In particular, this bound has the effect of reducing the variance

of Eq. (4.52), as we will show in Sec. 6.2.3. One way to impose the constraint is to use a

Gaussian prior on some internal normally-distributed parameters ⟨τ̃k⟩µν ∼ N (0, 1) and

convert it to a flat prior on the interval [−1, 1] using the map f(x) = erf(x/
√
2) such

that ⟨T̃ k⟩µν = f(⟨τ̃k⟩µν). We refer to App. E.3 for a discussion on the fitting procedure

that we adopt.
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4.3.2 Backus-Gilbert method

A different way to approach the polynomial approximation of the kernel is given by a

variant of the Backus-Gilbert method [174] proposed in [28,175]. In this work we intro-

duce a generalisation of this method in order to consider a more flexible scenario which

allows us to choose polynomial bases that simplify the numerical treatment. Although

what we propose is mathematically equivalent to the approach in [176], our formulation

may have the advantage of avoiding some of the numerical technicalities that arise in

the original version. Note that we adopt a different notation with respect to the orig-

inal works (we use F instead of W for the final functional to avoid confusion with the

hadronic tensor).

The Backus-Gilbert method with our generalisation is presented in detail in App. D.

Here we briefly present the central idea in order to highlight the main features relevant

for the data analysis performed in this work. The strategy consists in addressing the

reconstruction of a given kernel K
(l)
σ,µν of the form

K(l)
σ,µν(q, ω; t0) =

N∑︂
k=0

g
(l)
µν,kP̃ k(ω) , (4.68)

where P̃ k(ω) =
∑︁k

j=0 p̃
(k)
j e−jω are a basis of functions with domain in [ω0,∞), and

g
(l)
µν,k ≡ g

(l)
µν,k(q, σ; t0) is a set of coefficients. In order to determine them, the strategy is

to minimise the functional [28,175]

F
(l)
µν,λ[g] = (1− λ)A

(l)
µν [g]

A
(l)
µν [0]

+ λB(l)
µν [g] , (4.69)

where

A(l)
µν [g] =

∫︂ ∞

ω0

dωΩ(ω)

[︄
K(l)

σ,µν(q, ω; t0)−
N∑︂
k=0

g
(l)
µν,kP̃ k(ω)

]︄2
(4.70)

is the L2-norm of the difference between the target kernel function and its reconstruction,

weighted with a smooth function Ω(ω), and

B(l)
µν [g] =

N∑︂
j,k=0

g
(l)
µν,jCov(C̄

P
µν(j), C̄

P
µν(k))g

(l)
µν,k (4.71)

is the variance of the corresponding channel X̄
(l)
µν , with C̄

P
µν(k) =

∑︁k
j=0 p̃

(k)
j C̄µν(j). The

functional F
(l)
µν,λ encodes the information about both systematic and statistical errors,

whose interplay is controlled by the parameter λ ∈ [0, 1), which in principle can be

chosen by hand. The values of the coefficients g
(l)
µν,k(λ) for each λ are given by the
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variational principle, i.e.

g
(l)
µν,k(λ) ↔

∂F
(l)
µν,λ

∂g
(l)
µν,k

= 0 . (4.72)

We can now devise a method to find the optimal λ∗, which balance systematic and

statistical errors. Following [175], we can evaluate the functional F
(l)
µν,λ at its minimum

i.e. F
(l)
µν (λ) = F

(l)
µν,λ[g(λ)], which then becomes a function of λ, and require that λ∗

maximises F
(l)
µν (λ),

dF
(l)
µν (λ)
dλ

⃓⃓⃓⃓
λ∗

= 0. This choice corresponds to A
(l)
µν [g∗]/A

(l)
µν [0] = B

(l)
µν [g∗],

i.e. an optimal balance between statistical and systematic errors. This is the prescription

we follow and take g
∗(l)
µν,k ≡ g

(l)
µν,k(λ

∗).

Following the steps for the Chebyshev approach we get for the kernel

⟨K(l)
σ ⟩µν =

N∑︂
k=0

g
∗(l)
µν,k⟨P̃ k⟩µν , (4.73)

⟨P̃ k⟩µν =
⟨ψµ| P̃ k(Ĥ) |ψν⟩
⟨ψµ|ψν⟩

=

k∑︂
j=0

p̃
(k)
j

⟨ψµ| e−jĤ |ψν⟩
⟨ψµ|ψν⟩

= C̄
P
µν(k) . (4.74)

In particular, considering the domain ω ∈ [ω0,∞) of the kernel functions and the poly-

nomials, we focus on two choices:

• exponential Backus-Gilbert: P̃ k(ω) = e−kω and Ω(ω) = 1 (and set g
(l)
µν,0 = 0 by

hand, as in the original proposal [28]);

• Chebyshev Backus-Gilbert: P̃ k(ω) = T̃ k(ω), i.e. the shifted Chebyshev polynomi-

als with Ω(ω) = 1/
√︁
e(ω−ω0) − 1 being the weight in Eq. (C.18) that enters in the

definition of the scalar product.
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CHAPTER 5

SIMULATION AND DATA ANALYSIS DETAILS

After outlining the theoretical framework for treating inclusive Bs-meson decays on the

lattice in Chap. 4, we now turn to the details of the simulation. The focus of this work

is a purely qualitative understanding of the method and we therefore perform a pilot

study using a single ensemble for a 243 × 64 lattice. We make no attempt to determine

a proper error budget to extract any sort of phenomenological prediction. In particular,

the goal is to test the methods developed and discussed in Chap. 4 and to build a solid

strategy to reliably study inclusive decays on the lattice, which in the future can be

extended by comprehensive studies of systematic effects.

In Sec. 5.1 we discuss the details of the simulation and the lattice setup. In Sec. 5.2 we

discuss the fundamentals of the data analysis and show some of the basic properties of

the two-, three- and four-point correlation functions obtained from the gauge ensemble

used, together with the details of the renormalisation procedure adopted.

5.1 Lattice setup

Our calculation is based on a 243 × 64 lattice with 2+1-flavour domain-wall fermion

(DWF) [111, 114] gauge-field ensembles with the Iwasaki gauge action [101] taken from

the RBC/UKQCD Collaboration [177] at lattice spacing a−1 = 1.785(5)GeV (corre-

sponding to a ≃ 0.11 fm), pion mass Mπ ≃ 340MeV and close-to-physical strange-quark

mass. The computations have been performed with the Grid [178–180] and Hadrons [181]

software packages.

We use the same simulation parameters RBC/UKQCD is using in the heavy-light meson

projects on exclusive semileptonic B(s) meson decays [150, 182–184]. In particular, the

valence-strange quark is simulated using DWF, whereas the valence-charm quark is
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simulated by using the Möbius DWF action [185,186]. Their masses are tuned such that

mesons containing bottom, charm and strange valence quarks have masses close to the

physical ones. The bottom quark cannot currently be simulated with DWF and some

EFT-based action is required; this will likely be overcome in the future. The b quark

has then been simulated at its physical mass using the Columbia formulation of the

relativistic-heavy-quark (RHQ) action [104, 105], which is based on the Fermilab heavy

quark action [106].

For the computation we average over 120 statistically independent gauge configurations,

and on each configuration the measurements are performed on 8 different linearly spaced

source time planes. We use Z2 wall sources [131, 132, 187] to improve the signal. We

induce 10 different momenta using partially twisted boundary conditions [98,99] for the

charm quark with the same momentum in all three spatial directions. All other momenta

in the Fourier sums in the expressions of two-, three- and four-point functions are set

to zero. Considering q = 2πθ/L in lattice units we have θ ≡ (θ, θ, θ), where θ indicates

the twist. We choose them such that all the momenta are linearly spaced in q2, i.e.

θk = 1.90
√︂

k
3 for k = 0, 1, . . . , 7, where the factor 1.90 is determined by the value of

q2max = 1.83 in lattice units. We also take θ = 1.90
√︂

1
9 and θ = 1.90

√︂
2
9 to increase

the resolution in q2 for small momenta. The large momenta induced may present non-

negligible cutoff effects: since our work is purely qualitative, we do not address them at

this stage and leave their treatment for future studies.

We compute two-point functions for both Bs and Ds. As discussed in Sec. 4.1, for

Bs we consider three cases at zero momentum CLS
Bs

(t, tsrc), C
SL
Bs

(t, tsrc) and C
SS
Bs

(t, tsrc)

with different smearing combinations, as indicated by the superscripts “L” (local) and

“S” (smeared). The smeared-smeared CSS
Bs

(t, tsrc) is also used to determine the renor-

malisation constant together with the three-point function. The sources are smeared

gauge-invariantly using Jacobi iteration [188, 189] using the same parameters as in

RBC/UKQCD’s study of exclusive semileptonic decays in [184,190,191].

The Ds correlators are relevant mainly for the analysis of the ground-state limit. We

compute the smeared-smeared correlator CSS
Ds

(q, t, tsrc) and the local-smeared correlator

CLS
Ds

(q, t, tsrc): the first one is used directly in combination with the three-point functions

for the exclusive-decay analysis, whereas the second one is used to extract the Ds-meson

energies at different momenta.

We also compute three-point correlators for the Bs → Ds lνl process

CSS
DsBs,µ(q, tsnk, t, tsrc) =

∑︂
xsnk,x

⟨OS
Ds

(xsnk)Vµ(x, t)OS†
Bs
(xsrc)⟩ . (5.1)

Following the analysis of [150, 182, 183], we extract its form factors and compare with

our inclusive results. The momentum is carried by the charm quark through twisted

boundary conditions, q = 2πθ/L. We use a source-sink separation of tsnk − tsrc = 20 in
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lattice units. The latter has been taken from other works [184] as initial guidance, but

it is certainly to be studied more carefully in future calculations.

We now move to the four-point correlators defined in Eq. (4.10), which are the building

blocks in the computation of inclusive processes. We use the same source-sink separation

as for the three-point functions, i.e., tsnk − tsrc = 20 in lattice units. The current J†
µ

is fixed at the time slice t2 = tsrc + 14, such that the time dependence is enclosed in

0 ≤ t ≤ 14 with t = t2 − t1. For this choice we find ground state saturation at the

points where we insert the currents. In practice, referring to Fig. 4.3, the contractions

are performed between a b-quark propagator Gb(x1, xsrc) and a sequential propagator

Σcbs(x1, xsrc). For the latter, we first propagate the s quark to point xsnk, starting from

a Z2 wall source at tsrc; we then use it as a sequential source at fixed tsnk with zero

momentum to propagate the b quark. The b quark is propagated to point x2, and it is

then used again as a source with a specific choice of gamma matrix corresponding to the

current J†
µ(x2) and the momentum insertion to propagate the c quark.

As before, the momentum q induced through partially twisted boundary conditions is

carried by the c quark. Given that we are dealing with (V − A) currents, we consider

all possible combinations of J†
µ(x2) and Jν(x1), i.e. V

†
µVν , V

†
µAν , A

†
µVν , A

†
µAν . However,

in the limit of massless leptons the combinations A†
µVν and V †

µAν do no contribute to

the total decay rate. Indeed, these terms are related to the structure function W3 as

WAV
ij +W V A

ij = iϵij0kq
kW3, as can be seen analysing parity in Eq. (3.56), which does

not contribute to the total decay rate for ml = 0.

For all the three-point and four-point functions we always average over the spatial di-

rections given that the momentum is the same in all three directions. Note in particular

that for the four-point correlators we have to average separately over J†
i Ji and J†

i Jk

with i ̸= k, as can be seen from Eq. (3.56).

5.2 Statistical analysis

We now briefly discuss the details of the data analysis, recalling first the very basics

of error propagation and refer to other sources for a more extensive discussion (see for

example [192,193]).

Considering a primary observable x, i.e. an observable that is directly measured through

lattice simulations, the mean ⟨x⟩ and variance σ2x = ⟨(x − ⟨x⟩)2⟩ can be estimated

straightforwardly through the sample mean x̄ and the sample variance s2x as

x̄ =
1

Nconfig

Nconfig∑︂
i=1

xi , s2x =
1

Nconfig

Nconfig∑︂
i=1

(xi − x̄)2 , (5.2)
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whereNconfig is the number of independent measurements and xi the actual measurement

on a given gauge configuration. We assume in general that the sample variance is a

good estimator and therefore simply refer to it as σ2x in the rest of the manuscript. For

a secondary observable y = f(x) that depends on a set of primary observables x =

(x(1), x(2), . . . ) through a generic function f , the mean and the variance are estimated

as

ȳ = f(x̄) , s2y = ∇fT · σ ·∇f , (5.3)

where ∇f ≡ (∂f/∂x(1), ∂f/∂x(2), . . . ) is the gradient of the funcion f and σ is the esti-

mator of the covariance matrix Cov(x(i), x(j)) = ⟨(x(i)−⟨x(i)⟩)(x(j)−⟨x(j)⟩)⟩, computed

as

σij =
1

Nconfig

Nconfig∑︂
k,l=1

(x
(i)
k − x̄(i))(x

(j)
l − x̄(j)) . (5.4)

The error propagation for secondary observables requires the computation of the gradient

of the given function f , whose calculation may be rather involved. To overcome this,

we can rely on methods that automatically account for the correct error propagation

without requiring the knowledge of the function derivatives.

In particular, in this work we make use of the bootstrap resampling method [194]. Given

a number Nconfig independent measurements D = {x1, x2, . . . , xNconfig
} of the primary

observable x, we create Nb bootstrap samples {xb1 , xb2 , . . . , xbNb
}, where

xbi =
1

Nconfig

Nconfig∑︂
j=1

xbi,j . (5.5)

where Db
i = {xbi,1, xbi,2, . . . , xbi,Nconfig

} is a set of Nconfig measurements randomly sampled

from the original dataset D. The mean and variance can then be computed as

x̄b =
1

Nb

Nb∑︂
i=1

xbi , (sbx)
2 =

1

Nb

Nb∑︂
i=1

(xbi − x̄b)2 , (5.6)

Note that these estimators are not unbiased and therefore x̄b ̸= x̄. The difference x̄b− x̄
is typically negligible, but it gives an idea of how far the result may be from the mean

⟨x⟩. The final measurement is quoted as x̄b ± sbx.

A secondary observable y = f(x) = f(x(1), x(2), . . . ) can now be computed in the same

way as

ȳb = f(x̄b) , (sby)
2 =

1

Nb

Nb∑︂
i=1

(ybi − ȳb)2 . (5.7)
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Figure 5.1: Bs two-point correlators at zero momentum (left) and corresponding effec-
tive mass (right) for all the combinations of smearing. The horizontal lines correspond
to the fitted values of the mass determined through a fit to the correlation functions
with the ansatz CXY

Bs
(t) = 2AXY e−T/2 cosh(E(T/2− t)).

where ybi = f(x
(1)b
i , x

(2)b
i , . . . ). It can be shown explicitly that this variance estimator

agrees with the previous one obtained with standard error propagation. The bootstrap

approach can then be easily implemented numerically without any specific knowledge of

the function f . For the analysis in this work we use Nb = 1000.

The fits are performed through a maximum likelihood method with a frequentist ap-

proach, as detailed in App. E.1. The only exception is given by the fits to extract

the Chebyshev matrix elements as described in Sec. 6.2.1 and in Apps. E.2 and E.3.

The latter have been performed partially using the library lsqfit [195, 196]. The data

analysis has been performed using the lattice data analysis package labc [197] (under

construction).

5.2.1 Two-point correlators

Let us give some details of the correlation functions from the gauge ensemble under

study. The Bs two-point functions for all the three combination of smearing “LS”,

“SL” and “SS” are plotted in Fig. 5.1 together with the effective mass defined as

MXY
eff,Bs

(t) = − ln

(︄
CXY
Bs

(t+ 1)

CXY
Bs

(t)

)︄
. (5.8)

The masses are determined through a fit to the correlator using the ansatz in Eq. (2.93).

The details of the fits are reported in Tab. 5.1.

The final value we use for the Bs mass is taken from the LS correlator and is given by

MBs = 5.3659(19)GeV , (5.9)

which is fully compatible with the PDG value MPDG
Bs

= 5366.92(10)MeV, as expected

thanks to the RHQ tuning in [184, 190]. The amplitude ALL = |⟨0|OL
BS
|Bs(pBs)⟩|2,
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Figure 5.2: Speed-of-light plot for the Ds meson. The numerator is the ground-state
energy for a given momentum as extracted from a fit to the data. The denominator
is given by either the lattice dispersion relation or the continuum one, where the Ds-
meson mass has been determined from a fit to the data at zero momentum.

necessary to build the correlator in Eq. (4.22), is obtained from the combination

ALL =
ALSASL

ASS
= 1.002(28)× 102 (5.10)

in lattice units.

Smearing XY A (lattice units) Meff (GeV) fit range χ2/dof p-value

LS 2.106(22)× 10−4 5.3659(19) [10, 13] 0.69 0.50

SL 2.112(55)× 10−4 5.3663(48) [9, 14] 2.22 0.07

SS 4.436(87)× 10−10 5.3659(34) [9, 15] 0.56 0.73

Table 5.1: Summary of the two-point correlator fits (correlated) for the Bs meson at
zero momentum.

Concerning the Ds meson, we are mainly interested in the EDs energy for the smaller

twists, as this will be used in the determination of the form factors from the exclusive

channels. We fit the ground-state energy to the correlator CLS
Ds

following the same

strategy we used for the Bs meson and report the results in Tab. 5.2.

q2 (GeV2) EDs (GeV) fit range χ2/dof p-value

0.00 1.6965(17) [16, 22] 0.36 0.88

0.26 1.7631(18) [10, 17] 0.99 0.43

0.52 1.8241(19) [8, 13] 0.84 0.50

0.79 1.8860(25) [8, 13] 0.67 0.61

Table 5.2: Summary of the two-point correlator fits (correlated) for the Ds-meson
correlator CLS

Ds
for the smallest momenta.

We also show the speed of light from the fitted masses of the Ds for the smallest mo-

menta, comparing with the continuum dispersion relation E =
√︁
M2 + p2 and the
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Figure 5.3: Ratio RBsDs,4(q, t) (left) and RBsDs,s(q, t) (right) built from the three-
point functions CBsDs,µ at q2 = 0.26GeV2, where “s” stands for the average of the
spatial components 1,2,3. The horizontal bands correspond to the final values for
⟨Ds|V4|Bs⟩ (left) and ⟨Ds|Vs|Bs⟩ (right) extracted from a constant fit to the data.

lattice dispersion relation (in lattice units) E = cosh−1(cosh(M) +
∑︁3

k=1(1 − cos(pk)))

in Fig. 5.2. The plot shows excellent agreement with the fitted energies.

5.2.2 Three-point correlators

The three-point functions generated in this work are used for determining some of the

form factors from exclusive decays to study the ground-state limit of the inclusive pro-

cess. In particular, the extraction of the form factors is addressed in Sec. 6.4. Here we

show explicitly some example of the extraction of the matrix element ⟨Ds|Vµ|Bs⟩ that
appears in the three-point function CBsDs,µ, as in Eq. (2.105), through the ratio [198]

RDsBs,µ(q, t) =
√︁
4MBsEDs

⌜⃓⃓⎷CSS
DsBs,µ

(q, tsnk, t, tsrc)C
SS
BsDs,µ

(q, tsnk, t, tsrc)

CSS
Bs

(tsnk, tsrc)C
SS
Ds

(q, tsnk, tsrc)
, (5.11)

which converges to ⟨Ds|Vµ|Bs⟩ for t ≫ tsrc and t ≪ tsnk. Note that for the sec-

ond three-point correlator we have CSS
BsDs,µ

(q, tsnk, t, tsrc) = CSS
DsBs,µ

(q, T − tsrc, T −
t, T − tsnk) in the region tsrc ≤ t ≤ tsnk. We show an explicit example for the case

q2 = 0.26GeV2 in Fig. 5.3 for the average of the spatial components RDsBs,s(q, t) =

1/3
∑︁3

k=1RDsBs,k(q, t) and the time component RDsBs,4(q, t).

5.2.3 Four-point correlators

The four-point correlators are central to the computation of the inclusive decay rate and

moments. Let us show an explicit example of the correlators we build for the average of

the spatial axial currents (denoted by “ss” to indicate the average over the directions 11,

22 and 33) in Fig. 5.4, where we show the zero-momentum and the q2 = 4.74GeV cases.

Note that the signal-to-noise ratio problem appears in the early time-slices: indeed,
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Figure 5.4: Four-point correlators with currents AsAs, which correspond to the av-
erage over the spatial channels A1A1, A2A2 and A3A3 at zero momentum (left) and
q2 = 4.74GeV2 (right).
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Figure 5.5: Correlator Cµν(t) (left) and C̄µν(t) = Cµν(t + 1)/Cµν(1) (right) for the
channel V4V4 at zero momentum. The orange line on the right plot is the exponential
functional e−tMDs , where the Ds-meson mass MDs

has been extracted from a fit to the
local-smeared two-point correlation function.

t = 0 corresponds to the case t1 = t2 (cf. Eq. (4.10)), hence the case where t1 is as far

as possible from the source in tsrc.

We also show an example of the correlator Cµν(q, t) of Eq. (4.22) for the channel V4V4

at zero momentum in Fig. 5.5 (left). In particular, the ground state is represented by

the pseudoscalar Ds: to show the exponential dependence as in Eq. (4.22), we consider

the normalised correlator C̄µν(t) = Cµν(t+ 1)/Cµν(1) in Eq. (4.59) and simply plot the

single exponential e−tMDs on top of it, see Fig. 5.5 (right), where the MDs has been

extracted from the two-point correlator fit. While this is a rough operation, it shows by

visual inspection that the correlator reproduces the expected exponential behaviour. In

this particular case, it also suggests that the effect of the excited states is mild.
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Figure 5.6: Determination of renormalisation Zbb
V (left) and Zcc

V (right) from the ratio
of two- and three-point functions defined in Eq. (5.13).

5.2.4 Renormalisation

The local vector and axial-vector currents used in our lattice calculation receive a finite

renormalisation. We use the almost nonperturbative prescription of [199], whereby

Vµ = ρbcV

√︂
Zcc
V Z

bb
V (Vµ)bare and Aµ = ρbcA

√︂
Zcc
V Z

bb
V (Aµ)bare . (5.12)

The subscript “bare” indicates the bare, unrenormalised heavy-light vector or axial-

vector current. Zcc
V is the vector-current renormalisation constant for domain-wall

fermions. Due to the approximate chiral symmetry of domain-wall fermions, Zcc
V = Zcc

A

up to residual chiral-symmetry-breaking effects. The renormalisation constants Zbb
V and

Zcc
V are computed from the charge of the heavy-light mesons, and are defined as

Zbb
V =

CSS
Bs

(tsnk, tsrc)

CSS
BsBs,0

(tsnk, t, tsrc)
and Zcc

V =
CLL
Ds

(tsnk, tsrc)

CLL
DsDs,0

(tsnk, t, tsrc)
, (5.13)

where both the two- and three-point functions are zero-momentum projected. The

results

Zbb
V = 9.085(50) and Zcc

V = 0.80099(21) (5.14)

are illustrated in Fig. 5.6. The coefficient ρbcV/A is expected to be close to unity and can

be computed in perturbation theory. Here we set it to its tree-level value, i.e. ρbcV/A = 1.

This is sufficient for the qualitative study aimed at here, where no attempt is made at

taking the continuum limit.
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CHAPTER 6

RESULTS

In this chapter we present and discuss the main results of this work. In Sec. 6.1 we

discuss how well the kernels K
(l)
σ,µν are approximated, for a given truncation, by the

polynomials through the reconstruction via Chebyshev and Backus-Gilbert methods.

In Sec. 6.2 we show the application of the data analysis strategies described in Sec. 4.3.

Eventually, we combine various analysis steps for a prediction of the inclusive decay

rate quantities in Sec. 6.3 and compare our results with the ground-state contribution

in Sec. 6.4. We report some first results for the moments in Sec. 6.5.

We emphasise once again that the work presented here focuses on a qualitative under-

standing of the methods aiming at developing reliable techniques, which in future work

can be used to make phenomenologically relevant predictions.

6.1 Polynomial approximation of the kernels

In this section we discuss the central aspects of the polynomial approximation. The

two ingredients to optimise the approximation are the choice of the lower end of the

integral in ω of the approximation ω0, and the value of t0 in Eq. (4.59). In particular,

we choose t0 = 1/2 in lattice units, such that the exponential growth of the term e2ωt0

in the kernels in Eqs. (4.31)-(4.45) is minimal, and the number of data points we can

use is maximised. We study two values of ω0, i.e. ω0 = 0 and ω0 = 0.9ωmin for each

momentum q2. We will present plots for the smallest q2 = 0.26GeV2 and one of the

largest q2 = 4.74GeV2 computed, and illustrate the case of σ = 0.02, which smoothes

the step function only mildly. Later we will also discuss the case of larger values of σ

to show how the limit σ → 0 is approached. Note that this section deals purely with

the approximation of the kernel with no connection to the data; for the Backus-Gilbert

method this means that we set λ = 0.
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Figure 6.1: Chebyshev-polynomial approximation of the kernel K
(0)
σ,00 with N = 9 at

q2 = 0.26GeV2 (left) and q2 = 4.74GeV2 (right) with different values of ω0 = 0 and
ω0 = 0.9ωmin. The solid blue line shows the target kernel function with a smearing
σ = 0.02.
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Figure 6.2: Polynomial approximation with Chebyshev and Backus-Gilbert (with

exponential basis) at different values of N for kernel K
(0)
σ,00 at q2 = 0.26GeV2 and

ω0 = 0.

We first highlight some of the main features of our approach. As shown in Fig. 6.1,

the quality of the approximation varies with ω0: starting the approximation as close as

possible to ωmin gives the best result, as the nodes of the interpolation (the points where

the target function and its polynomial reconstruction meet) are denser in the allowed

phase space in energy (the grey shaded area). This is most evident in the case of large

q2, as ωmin is further away from 0. This is then the region where we expect larger

deviations for the values of X̄
(l)
(q2) between the two choices of ω0. Note also that a

value slightly below ωmin (e.g. 0.9ωmin) safeguards against statistical fluctuations in the

Ds-meson mass.

Furthermore, we can see by visual inspection that the quality of the two polynomial

approximation strategies is comparable. This difference shrinks further as we increase
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Figure 6.3: Polynomial approximation at order N = 9 of the kernel K
(l)
σ,µν(q, ω; 2t0),

for l = 0 (first row), l = 1 (second row) and l = 2 (third row) with t0 = 1/2 and
σ = 0.02. The left column shows the case of the smallest q2 = 0.26GeV2, whereas
the right column shows one of the largest momentum q2 = 4.74GeV2. The grey area
corresponds to the kinematically allowed range ωmin ≤ ω ≤ ωmax for the given q2. The
solid lines show the target function; the dashed lines show the approximation with the
Chebyshev approach, whereas the dotted ones show the approximation with Backus-
Gilbert with an exponential basis and λ = 0.

the value of N , as we show exemplary in Fig. 6.2, where the polynomial approximation

is performed for degree N = 10, 25, 40.

In Fig. 6.3 we show the approximation for different components of the kernels K
(l)
σ,µν for

the decay rate with l = 0, 1, 2 and in Figs. 6.4 and 6.5 we show the total ones for the

leptonic kernel K
(n)
L,σ,µν(ω, q; t0) and K̃

(n)
L,σ,ij(ω, q; t0) at order n = 1, respectively.
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Figure 6.4: Polynomial approximation at order N = 9 of the leptonic kernel

K
(n)
L,σ,µν(q, ω; 2t0) at order n = 1 with t0 = 1/2 and σ = 0.02 for the µν components 00

(first row), 0i (second row), ii (third row) and ij with i ̸= j (fourth row).
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Figure 6.5: Polynomial approximation at order N = 9 of the leptonic kernel

K̃
(n)

L,σ,ij(q, ω; 2t0) with i ̸= j at order n = 1 with t0 = 1/2 and σ = 0.02.

Some comments are in order. While we recall once again that the plots presented in this

section are independent from the data, we need to take into account the available dataset

for the choice of the value of N . Indeed, due to the parameters of our simulations the

polynomial order N = 9 is the maximum value available. This depends on the size of

the lattice and the choice of tsrc, t2 and tsnk in the four-point correlator. In particular,

setting a = 1, the available time slices are 2t0 ≤ t < t2−tsrc, which in our case correspond

to 1 ≤ t < 14. Moreover, we need to make sure that t ≪ t2 − tsrc, i.e. t1 − tsrc ≫ 0:

the choice N = 9 corresponds to a separation t1− tsrc = 4. Of course, with an improved

dataset N could be chosen larger and the differences between the two approaches would

reduce further.

We also notice that the kernel for the decay rate with l = 0 is the most delicate to

treat, as it is the one that shows the sharpest drop to zero at the threshold. Note also

that for the case l = 0 we plotted only K
(0)
σ,00 as all the other kernels are the same up

to a constant factor. Furthermore, as shown in Fig. 6.2 the results for Chebyshev and

Backus-Gilbert agree very well and the quality of the approximation seems comparable.

To conclude, we point out that the approximation for the leptonic kernel K
(1)
L,σ,µν turns

out to be very smooth: this suggests that the systematic effect associated with the poly-

nomial approximation may be less significant than in other cases. However, the impact

of the systematics also depends on the magnitude of the contribution of each chan-

nel. Finally, we recall that the kernels for the hadronic mass moments K
(n)
H,σ,µν(ω, q; t0)

are related to the decay rate kernels Kσ,µν(ω, q; t0) = K
(0)
σ,µν(ω, q; t0) +K

(1)
σ,µν(ω, q; t0) +

K
(2)
σ,µν(ω, q; t0) by a multiplicative factor (ω2 − q2)n.

6.2 Regularisation approaches in practice

We now include the data to complete the discussion of Sec. 6.1 and address the quality

of the regularisation approaches of Sec. 4.3 adopted for the data analysis. In this case,
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the term “regularisation” refers to the fact that the analysis techniques employed have

the effect of reducing the variance of the final observables by balancing systematic and

statistical noise. In this way, the computation of these quantities is well-defined and fea-

sible through numerical simulations. We focus separately on the Chebyshev-polynomial

approach in Sec. 6.2.1 and the modified Backus-Gilbert approach in Sec. 6.2.2. We

outline the effect on the variance and the main differences between the two in Sec. 6.2.3.

6.2.1 Chebyshev polynomials

Concerning the Chebyshev-polynomial approach, the correlator data C̄µν(t) are traded

with the fitted Chebyshev matrix elements as

C̄
fit
µν(k) =

k∑︂
j=0

ã
(k)
j ⟨T̃ j⟩µν , (6.1)

where the Chebyshev matrix elements satisfy |⟨T̃ j⟩µν | ≤ 1 by construction and the

coefficients ã
(k)
j are known and given by the power representation of the Chebyshev

polynomials, see App. C.2.4. Indeed, while the above equation implies a linear relation

between correlator and Chebyshev matrix elements as in Eq. (4.67), C̄µν(k) needs to be

computed on the lattice using Monte-Carlo methods and the resulting statistical error

can lead to violations of the bound |⟨T̃ k⟩µν | ≤ 1 when solving the linear system. This

can, however, be avoided with the help of a Bayesian analysis of the correlator data.

In practice, we adopt a MAP procedure with bootstrap as detailed in App. E and in

particular in App. E.3. This allows us to impose the constraints using a Gaussian prior

on some internal parameters ⟨τ̃k⟩µν ∼ N (0, 1) and convert it to a flat prior on the interval

[−1, 1] for ⟨T̃ k⟩µν using the map f(x) = erf(x/
√
2), for which ⟨T̃ k⟩µν = f(⟨τ̃k⟩µν). The

augmented χ2 to minimise for each bootstrap bin b reads

χ2
aug

⃓⃓⃓⃓
b

=
N∑︂

i,j=1

(︄
C̄

b
µν(i)−

i∑︂
k=0

ã
(i)
k f(⟨τ̃k⟩µν)

)︄
σ−1
ij

(︄
C̄

b
µν(j)−

j∑︂
k=0

ã
(j)
k f(⟨τ̃k⟩µν)

)︄

+
N∑︂
k=1

(⟨τ̃k⟩µν − ⟨τ̃ bk⟩µν)2 ,
(6.2)

where C̄
b
µν(i) is the b-th bootstrap bin for the correlator, σij = Cov(C̄(i), C̄(j)) and

⟨τ̃ bk⟩µν is randomly sampled from the normal distribution N (0, 1), as described in more

detail App. E.3. Note that the first Chebyshev matrix element ⟨T̃ 0⟩µν = f(⟨τ̃0⟩µν) = 1

by definition. It is therefore not treated as a fit parameter.
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Figure 6.6: Histogram of the Chebyshev matrix elements ⟨T̃ k⟩AiAi for k = 1, 2, . . . , N
with N = 9 for two values ω0 = 0 (blue) and ω0 = 0.9ωmin (orange) at q2 = 0.26GeV2.
The matrix element ⟨T̃ 0⟩AiAi

= 1 by definition and is therefore not shown. This channel
is one of the most precise: we find that in both cases the fitting procedure is able to
determine the matrix elements up to order N ≃ 7, after which the distribution of the
bootstrap bins remains flat.

Following Eqs. (4.52) and (4.64), the kernel with fitted Chebyshev matrix elements can

be written as

⟨K(l)
σ ⟩µν =

c̃
(l)
µν,0

2
⟨T̃ 0⟩µν +

N∑︂
k=1

c̃
(l)
µν,k⟨T̃ k⟩µν =

N∑︂
k=0

c̄
(l)
µν,kC̄

fit
µν(k) . (6.3)

An example of the Chebyshev matrix elements obtained from the fits can be seen in

Fig. 6.6, where we compare two different extractions according to the starting point of

the approximation ω0. The plots show the distribution of each order of the Chebyshev

matrix elements obtained through the fitting procedure, where each histogram reports

values obtained for all the 1000 bootstrap bins. We show the axial channel AiAi, as

its signal turns out to be particularly clean. In Fig. 6.7 we show results for the AiAj

channel, with i ̸= j, which is found to be the noisiest channel. Here, only few terms can

be determined meaningfully by the lattice data and higher-order terms just follow the

flat prior distribution in [−1, 1].

In both cases we observe that a larger number of Chebyshev matrix elements can be

determined meaningfully for ω0 = 0 than for ω0 = 0.9ωmin. For example, in the AiAi

channel the distribution of the former is close to the prior distribution, which is flat
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Figure 6.7: Histogram of the Chebyshev matrix elements ⟨T̃ k⟩AiAj
with i ̸= j for

k = 1, 2, . . . , N with N = 9 for two values ω0 = 0 (blue) and ω0 = 0.9ωmin (orange) at
q2 = 0.26GeV2. The results for ⟨T̃ k⟩AiAj

are less well constrained than the ones for
AiAi shown in Fig. 6.6. The minimum of the χ2 is determined almost entirely by the
uniform priors.

between −1 and +1, for N = 9, whereas the latter starts flattening at N ≳ 7. A

possible explanation follows from the properties of the polynomial representation and

the power representation of the shifted Chebyshev polynomials (discussed in App. C)

for the choice of domains [0,∞) and [0.9ωmin,∞). Indeed, the matrix t̃ from Eq. (C.34),

which in our case relates the Chebyshev polynomials to the power of the exponential

e−ω, can be further decomposed as

t̃ = APt , (6.4)

where Akk = (−2eω0)k is a diagonal matrix, Pjk =
(︁
j
k

)︁
is the lower triangular Pascal

matrix and the matrix t is related to the power representation of the standard Cheby-

shev polynomials Tk(ω) as in Eq. (C.10). This exposes the effect the choice of ω0 has:

considering Akk

⃓⃓⃓⃓
ω0 ̸=0

= eω0kAkk

⃓⃓⃓⃓
ω0=0

it follows that

(t̃)nk

⃓⃓⃓⃓
ω0 ̸=0

= t̃
(n)
k

⃓⃓⃓⃓
ω0 ̸=0

= eω0n t̃
(n)
k

⃓⃓⃓⃓
ω0=0

, (ã)nk

⃓⃓⃓⃓
ω0 ̸=0

= ã
(n)
k

⃓⃓⃓⃓
ω0 ̸=0

= e−ω0n ã
(n)
k

⃓⃓⃓⃓
ω0=0

.

(6.5)
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In our case, this implies that ã
(k)
j |ω0=0.9ωmin = e−0.9ωmink ã

(k)
j |ω0=0. The additional ex-

ponential factor largely cancels the ground-state exponential decay in the correlation

function in Eq. (6.1). Hence, the polynomial approximation has less structure to de-

scribe and higher-order terms become less relevant. Nevertheless, in both cases the

correlated χ2/dof of the fits are acceptable and the reconstruction of the data as in

Eq. (6.1) gives comparable results.

6.2.2 Backus-Gilbert

We now move to the modified Backus-Gilbert approach in the general case λ ̸= 0, for

which the coefficients are determined with reference to the data, in contrast with the

λ = 0 case. We consider the case λ = λ∗, which corresponds to the choice of optimal

balance between systematic and statistical error, as explained in Sec. 4.3.2. By visual

inspection of Fig. 6.8, which shows exemplarily the case of the decay rate, we find that

the polynomial approximation of the kernel functions gets worse. The effect of non-zero

λ can be understood as a correction to the optimal coefficients at λ = 0, see App. D.2.

In particular, if we rewrite the coefficients as g
∗(l)
µν,k = γ

(l)
µν,k + ϵ

∗(l)
µν,k we have

⟨K(l)
σ ⟩µν =

N∑︂
k=0

g
∗(l)
µν,kC̄µν(k) =

N∑︂
k=0

γ
(l)
µν,kC̄µν(k) +

N∑︂
k=0

ϵ
∗(l)
µν,kC̄µν(k) , (6.6)

where γ
(l)
µν are the coefficients for λ = 0 and ϵ

∗(l)
µν,k is a correction that takes care of the

reduction of the noise originating from the statistical error, as further discussed in the

following section.

6.2.3 Comparison between Chebyshev and Backus-Gilbert approach

We now point out similarities and differences between the two approaches. The calcu-

lation of ⟨K(l)
σ ⟩µν aims to improve accuracy by combining the naive polynomial approx-

imation with a correction term δ⟨K(l)
σ ⟩µν that accounts for variance reduction, i.e.

⟨K(l)
σ ⟩µν = ⟨K(l)

σ ⟩naiveµν + δ⟨K(l)
σ ⟩µν , (6.7)

where ⟨K(l)
σ ⟩naiveµν corresponds to Eq. (4.64). The correction term is specific to the adopted

strategy and is given by:

• δ⟨K(l)
σ ⟩CHEB

µν =
∑︁N

k=0 c̄µν,kδC̄µν(k), for the Chebyshev polynomials technique, where

δC̄µν(k) = C̄
fit
µν(k)− C̄µν(k);

• δ⟨K(l)
σ ⟩BG

µν =
∑︁N

k=0 ϵ
∗
µν,kC̄µν(k), for the Backus-Gilbert method, which corrects the

coefficients of the polynomial approximation as in Eq. (6.6).
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Figure 6.8: Polynomial approximation of the kernel K
(l)
σ,µν(q, ω; 2t0), for l = 0 (first

row), l = 1 (second row) and l = 2 (third row) with t0 = 1/2 and σ = 0.02 in the case
of Backus-Gilbert with exponential basis and λ ̸= 0. The value of λ has been chosen to
be λ∗ for each plot, which gives equal weight to the statistical and systematic errors.

This exposes that the Chebyshev-polynomial approach addresses the variance reduction

acting on the data, imposing rigorous mathematical bounds, whereas the Backus-Gilbert

method deals with it by modifying the coefficients of the polynomial approximation such

that they take into account information about the statistical error of the data. In both

cases, δ⟨K(l)
σ ⟩µν can be interpreted as a noisy zero that does not impact the naive

calculation but helps with variance reduction.
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Figure 6.9: Estimate of X̄σ(q
2) with the two different strategies for 10 different q2

with N = 9 and q2
max = 5.83GeV2.

6.3 Decay rate

In this section we present the main results of our work. In Fig. 6.9 we show the results of

X̄σ(q
2) for the decay rate for all the simulated values of q2 with a value σ = 0.02 for the

smearing parameter of the kernel (cf. Eq. (4.27)). For each simulation point we show the

results of three studied approaches, i.e., Chebyshev polynomials, exponential Backus-

Gilbert and Chebyshev Backus-Gilbert, all of them for both ω0 = 0 and ω0 = 0.9ωmin.

We find that all sets of three points for a given value of ω0 agree very well. However, sets

with different ω0 start deviating as we increase the value of q2. This can be understood

in terms of the polynomial approximation of the kernel: as q2 increases, the phase space

in ω shrinks, and the two approximations start differing increasingly. Our data indicate

that the approximation improves as ω0 → ωmin, as discussed in Sec. 6.1. In order

for the approximations for different ω0 to be comparable the order of the polynomial

needs to be increased for lower ω0. This is due to the fact for ω0 = 0 the nodes of the

approximation are not dense enough in the region of interest [ωmin, ωmax] with respect to

the case ω0 = 0.9ωmin, as shown for example in Fig. 6.1. It is also conceivable that other

systematics like finite-volume or cutoff effects may play a role here: indeed, different

values of ω0 result in different sets of coefficients of the polynomial approximation, which

give different weights to the the time-slices of the correlator C̄µν(t), as from Eq. (4.64).

These effects are beyond the scope of this work but will have to be addressed in future

studies.

In the previous section we have seen that the shape of the kernel, and hence, the quality

of approximation, varies substantially for different l and q2. The degree to which this

impacts the combined result X̄σ(q
2) = X̄

(0)
σ (q2) + X̄

(1)
σ (q2) + X̄

(2)
σ (q2) depends on the

magnitude of each contribution, as illustrated in Fig. 6.10. The plots indicate that the
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Figure 6.10: Contributions to X̄σ(q) from the Chebyshev-polynomial approach at
N = 9 and ω0 = 0 (left) and ω0 = 0.9ωmin (right) with associated error bars. The

black triangles correspond to the final value X̄σ(q
2) =

∑︁2
l=0

∑︁
{µ,ν} X̄

(l)
σ,µν(q

2). The

solid black lines separate the contributions from l = 0 (bottom), l = 1 (middle) and
l = 2 (top).

largest contribution originates from the channel with l = 2. The underlying kernel

is, at least for smaller values of q2, relatively smooth (Fig. 6.3). We therefore expect

less sensitivity to the systematics of the polynomial approximation in this kinematical

region, but more care is needed for larger q2.

We now address the stability under a change of the order N of the polynomial. Starting

from the Chebyshev approach, we study the saturation in Fig. 6.11. We start from the

fit with N = 9 (left). The plot shows the result where the first k Chebyshev matrix

elements (cf. legend) are taken from the fit, and the remaining N − k are replaced by

a flat distribution −1 ≤ ⟨T̃ j⟩µν ≤ 1 with j = k + 1, . . . , N . Comparing with the right

plot, we can see that the signal is dominated by small orders; for ω0 = 0, the signal

is saturated at around N ≃ 5, whereas for ω0 = 0.9ωmin saturation starts at N ≃ 3.

This is also compatible with the previous discussion on the fit of the Chebyshev matrix

elements, cf. with Figs. 6.6 and 6.7.

In order to estimate higher-order contributions, which are not constrained by our data,

we study how the results change after adding more terms in the Chebyshev distributions

on top of the N = 9 available. In this way we obtain an estimate of the approximation

up to N = 50, as in Fig. 6.12. We show in particular the case of distributions with

random values in Z2 = {−1, 1} (left) for ⟨T̃ k⟩µν beyond k = 9: these correspond to the

minimum and maximum value that the Chebyshev matrix elements can have. The case

with uniform distribution with values in [−1,+1] (right) gives similar results with slightly

smaller errors. In both cases, the extra terms contribute to the final error only mildly:

these observations suggest that the results obtained do not suffer from huge systematic

error from the polynomial approximation and represent a possible way to estimate the
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Figure 6.12: Truncation dependence of the Chebyshev polynomial approach, where
N = 9 is the reference case, and for N = 50 higher-order terms are sampled from a Z2

distribution (left) or a uniform flat distribution in [−1, 1] (right).

corresponding truncation error. A more complete study is however required for a reliable

estimate of the underlying systematic effects.

Concerning the Backus-Gilbert method, we investigate the stability around the chosen

value of λ∗, obtained with the prescription of Sec. 4.3.2. We focus in particular on

the channel X̄
(2)
σ,AiAi

(q2) as it is the one responsible for the largest contribution. The

plot is shown in Fig. 6.13. We can see that for small q2 the value of X̄
(2)
σ (q) is stable,

which implies that statistical and systematic errors are well balanced. For larger q2 the

situation is more delicate: this can be understood in terms of the reduced phase space in

ω, as shown for example in Fig. 6.8. A first attempt at mitigating the induced systematic

effect could be to identify the region where the two Backus-Gilbert approaches with

different bases are consistent, to identify (where possible) a plateau, and to estimate a

value inside such a region. In Fig. 6.13 (right) we see, however, that this is not always

the case: there is no clear plateau region for λ. Interestingly, the statistical error of the

Chebyshev approach turns out more conservative in this case, and compatible with the

result one would obtain from Backus-Gilbert. More generally, apart from the absence of
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a plateau region in some cases, both choices of polynomial basis are consistent between

themselves and with the Chebyshev-polynomial approach.

Coming back to the decay rate, to extract the final result we perform a polynomial fit

of degree two on X̄
(l)
σ (q2)/(

√︁
q2)2−l. The final decay rate is then obtained integrating

these results in the physical range in q. Since this is a qualitative study, we do not

report any final number. However, we report that the result obtained here seems to be

in the right ballpark if compared with the inclusive Bs-meson decay rate. Furthermore,

all the approaches give compatible results, and the final statistical error is of order 5%.

We now address similarities and differences between the two approaches. As in Sec. 6.2.3,

the calculation of X̄σ(q
2) aims to improve the accuracy by combining the naive polyno-

mial approximation with a correction term δX̄σ(q
2) that accounts for variance reduction,

i.e.,

X̄σ(q
2) = X̄

naive
σ (q2) + δX̄σ(q

2) , (6.8)

where X̄
naive
σ (q2) would correspond to Eq. (4.30). The correction terms are

δX̄
CHEB
σ (q2) = Cµν(2t0)

N∑︂
k=0

c̄µν,kδC̄µν(k) , δC̄µν(k) = C̄
fit
µν(k)− C̄µν(k) (6.9)

for the Chebyshev-polynomial approach, and

δX̄
BG
σ (q2) = Cµν(2t0)

N∑︂
k=0

ϵ∗µν,kC̄µν(k) (6.10)

for the Backus-Gilbert method. The effect of the variance reduction is illustrated in

Fig. 6.14, which shows the statistical error on X̄σ(q
2) with and without the correction
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term. The reduction in statistical error is substantial, in particular for the ω0 = 0.9ωmin

case, where the error is reduced by roughly 3–4 orders of magnitude. Additionally,

the magnitude of the correction varies depending on ω0, where larger values result in

a greater increase in |δX̄σ(q
2)| as q2 increases. As outlined before through Eq. (6.5),

the higher-order terms of the polynomial approximation for larger values of ω0 are less

relevant, and therefore the expansion gives more weight to the earlier time-slices, where

the signal-to-noise ratio is more pronounced.

To conclude this section we discuss some of the aspects we neglected for the purpose of

this study. In particular, all the results presented here have been obtained with kernels

smeared by a sigmoid with a fixed σ = 0.02. Eventually, however, one will have to first

take the infinite-volume and continuum limits, followed by an extrapolation to σ → 0.

The smearing of the step function is required to perform the polynomial approximation

and the numerical calculation. Note that the smearing is closely related to the inverse

problem associated with the extraction of the spectral function as in [24].

Exemplarily, we show the σ dependence at finite lattice spacing and volume in Fig. 6.15.

There, one sees that for our setup and statistical precision the dependence on σ is

mild. There is an indication that it might be more pronounced for larger q2. We argue

that here the extrapolation in σ is quite delicate and could lead to misleading results.

Indeed, increasing values of sigma would result in kernel functions quite different from

the target ones; on the other side, differences in small values of σ will not be captured

by a polynomial approximation with small value of N , as small deviations would be

noticeable only for higher degrees of approximations.
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6.4 Decay rate in the ground-state limit

We now study the ground-state limit of the inclusive approach as discussed in Sec. 3.3.3,

which provides a qualitative insight on the contribution of the excited states compared to

the exclusive process. Furthermore, it also serves as a useful cross-check of the inclusive-

decay analysis strategies.

The four-point function representing the ground state can be constructed with input

from lattice data for the exclusive decay Bs → Ds lνl. In particular, restricting the

discussion to the vector channel V V , the ground-state correlator

CG
µν(t) =

1

4MBsEDs

⟨Bs|V †
µ |Ds⟩⟨Ds|Vν |Bs⟩e−EDs t , (6.11)

can be constructed from lattice data for the ratio in Eq. (5.11) of three-point and two-

point functions

RDsBs,µ(t; q) =
√︁

4MBsEDs

⌜⃓⃓⎷CSS
DsBs,µ

(q, tsnk, t, tsrc)C
SS
BsDs,µ

(q, tsnk, t, tsrc)

CSS
Bs

(tsnk, tsrc)C
SS
Ds

(q, tsnk, tsrc)
, (6.12)

which converges to Mµ ≡ ⟨Ds|Vµ|Bs⟩ for t ≫ tsrc and t ≪ tsnk. As in Eq. (3.18), the

matrix element can be decomposed into form factors

Mµ = f+(q2)(pBs + pDs)µ + f−(q2)(pBs − pDs)µ . (6.13)
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Figure 6.16: Ground-state limit. The “exclusive” labels refer to the data built from
the three-point correlators as in Eq. (6.11), whereas the “inclusive” label refers to
the full inclusive data analysis starting from the four-point correlation functions. The
analysis has been performed using the Chebyshev approach.

Recalling that we assume pBs = 0, we then extract f+(q2) from a constant fit to the

combination (cf. Eq. (3.19))

Rf+(t; q)
q ̸=0
=

1

2MBs

(︄
RBsDs,0(t; q) + (MBs − EDs)

∑︁3
i=1RDsBs,i(t; q)∑︁3

i=1 qi

)︄
, (6.14)

which converges to f+(q2) as RDsBs,µ(t; q) → Mµ. We consider only the three smaller

momenta to test the approach, as the signal-to-noise deteriorates rapidly with larger q2.

The result of the inclusive analysis for the channel X̄
∥
σ,V V (q

2) is reported in Fig. 6.16.

In particular, we compare the expected value of X̄
∥
σ,V V (q

2) in Eq. (3.112) from the

extracted values of f+(q2) with the inclusive analysis performed using the mock data

CG
µν and the real data Cµν . Note that for the mock data the normalised correlator

corresponds simply to C̄
G
µν(t) = e−EDs t by construction.

We find excellent agreement between the results from the conventional analysis for ex-

clusive decay on the one side, and the one based on ground-state saturation, but using

the full analysis chain adopted for the inclusive decay, on the other side. This provides a

strong test of the analysis method for inclusive decay discussed in this work. The results

for the full inclusive decay, on the other hand, differ significantly from the exclusive case:

while future studies will have to establish to which extend this could be down to system-

atics like finite-volume or cutoff effects, the magnitude of the effect makes appear likely

to be to in large part due to contributions from the tower of finite states contributing

to the inclusive decay. In particular, the deviation is expected to be larger for smaller

q2, as the available phase space in ω is larger and may include more excited states.
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Figure 6.17: Evaluation of the numerators X
(1)
H,σ(q

2) (left) and X
(1)
L,σ(q

2) (right) of
the hadronic mass and lepton differential moments at n = 1, respectively.

6.5 Moments

Let us conclude this chapter by showing some results for the kinematic moments dis-

cussed in Sec. 3.3.4. In particular, at this stage we focus on the numerators X̄
(n)
H,σ(q

2) and

X̄
(n)
L,σ(q

2) of the differential hadronic mass and lepton moments as defined in Eqs. (3.125)

and (3.126), which refer to the distribution of the invariant mass (M2
Xc

)n and the lep-

ton energy En
l , respectively. The ratio in the moments ⟨(M2

Xc
)n⟩ and ⟨En

l ⟩ requires a

deeper understanding of the systematics involved. Indeed, apart from the systematics of

the polynomial approximation, both the numerator and denominator of these moments

involve a fit of
√︁
q2X̄σ(q

2), which has to be taken into account properly.

In Fig. 6.17 we show the hadronic mass (left) and lepton energy (right) moments at order

n = 1. As for the case of the decay rate, we see excellent agreement among the different

methods. The only tension is again the one appearing for different values of ω0 at higher

q2, as discussed in Sec. 6.3. Note that, compared to the decay rate, the errors are larger

for X̄
(1)
H,σ(q

2) and smaller (or comparable) for X̄
(1)
L,σ(q

2). This can be understood in

terms of the differences of the kernels: indeed, the hadronic mass moments introduce

extra factors that depend on ω in the kernels, whereas the behaviour of the leptonic

kernels is smooth as shown in Figs. 6.4 and 6.5. We therefore expect the polynomial

approximation to be more efficient in this second case.

A full treatment of (differential) moments on the lattice will allow to compare with ana-

lytical OPE approaches [29] to further test their validity. Moreover, lattice calculations

may allow to extract some of the parameters that appear in the perturbative expansion.
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CONCLUSIONS

In this work we have extended and improved the theoretical and computational frame-

work for addressing inclusive semileptonic decays in Lattice QCD first introduced in [25],

with specific focus on B(s) mesons. The discussion focused on the comparison of the

Chebyshev-polynomial approach [27] and the modified Backus-Gilbert method [28],

which both provide a promising way to address the calculations of physically relevant ob-

servables, such as decay rate and moments, specifically lepton energy and hadronic mass

moments. In particular, we improved the Chebyshev-polynomial technique through the

use of a generic set of shifted polynomials in e−ω, and we refined the statistical analy-

sis with a bootstrap method, that accounts for the bounds [−1, 1] in a consistent and

theoretical clean way. We also investigated how the results depend on the order N of

Chebyshev matrix elements, and we proposed a way to estimate the truncation error,

that will allow to address the systematics associated with the polynomial approximation.

Regarding the Backus-Gilbert approach, we introduced a generalisation of the method

of [28] similar to [176] to allow for the use of arbitrary bases of polynomials.

The two analysis methods have been shown to be compatible, and the final results for

the decay rate and the moments are in excellent agreement within the present statis-

tical resolution. We compared how the two techniques deal with the variance reduc-

tion of the final observables: the Chebyshev-polynomial technique relies on trading the

data with Chebyshev matrix elements that fully account for the bounds, whereas the

Backus-Gilbert approach achieves the same objective by adjusting the coefficients of the

polynomial approximation to reduce the statistical error.

In addition, we studied the ground-state limit, which offered a cross-check of the inclu-

sive analysis technique. At the same time, the data on the ground-state provide for a

quantitative measure for its contribution to the inclusive process.
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Overall, this work provides a robust foundation for studies employing these techniques.

However, several areas are still rather unexplored, as for instance systematic errors as-

sociated with the polynomial approximation, finite-volume effects, discretisation errors,

and the continuum limit, to name a few. These can be addressed in future work, in

particular through the study of processes such as B(s) → X lνl and D(s) → X lνl (and

their corresponding exclusive version) performing more extended simulations with a

comprehensive set of simulation parameters.

The long-term goal consists in obtaining precise and accurate predictions for the total

decay rate in the continuum and finite-volume limit of Lattice QCD with physical quark

masses. This long-term goal will play a crucial role in addressing the long-standing

tension of the CKM-matrix elements |Vcb| and |Vub|, contributing in this way to a wide

array of New Physics searches. However, many steps still have to be taken in order

to move towards a relevant phenomenological prediction. In particular, one of the first

tasks is to reiterate similar studies with new simulations on multiple ensembles, in or-

der to address finite-volume effects and to explore the continuum limit, as well as to

develop a solid strategy to perform the limit of the smearing parameter σ → 0. Such

studies will have to be supplemented by improved analytical understanding that guides

the mentioned extrapolations. Furthermore, a deeper understanding of the systematics

involved is required, which can be achieved, e.g., with the help of dedicated studies

with toy models, which offer a controlled environment to develop the required analysis

techniques. While the road ahead is long and the lattice precision is unlikely to deliver

a competitive prediction for the decay rate in the near future, these calculations also

provide an interesting framework to test other theoretical techniques. In particular,

the study of moments, which do not depend on the CKM-matrix elements, provide a

common ground to compare with OPE approaches and cross-validate their results.
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APPENDIX A

EUCLIDEAN FORMULATION

In this appendix we report some of the conventions and relations between the Euclidean

(E) and Minkowski (M) formulations used in this work. For Minkowski space-time we

use the metric

g =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠ . (A.1)

A.1 Gamma matrices

Let us first introduce the general notation we use for the gamma matrices. In order to

describe in a compact way all the relevant operators used in this work (i.e. scalar, pseu-

doscalar, vector and axial operators) and their properties (such as, e.g., transformation

under hermitian conjugation, transposition,...etc.), we indicate all possible gammas with

Γ ∈ {ΓJ ,ΓJ
µ} with J = V,A, and introduce the sign sJ as⎧⎨⎩ΓV = I

ΓA = γ5
,

⎧⎨⎩ΓV
µ = γµ

ΓA
µ = γµγ5

,

⎧⎨⎩sV = +1

sA = −1
, (A.2)
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Turning now to the actual representation, the Euclidean gamma matrices in the chiral

representation γEµ , with µ = 1, 2, 3, 4, are given by

γE1 =

⎛⎜⎜⎜⎜⎝
0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

⎞⎟⎟⎟⎟⎠ , γE2 =

⎛⎜⎜⎜⎜⎝
0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

⎞⎟⎟⎟⎟⎠ , (A.3)

γE3 =

⎛⎜⎜⎜⎜⎝
0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

⎞⎟⎟⎟⎟⎠ , γE4 =

⎛⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎠ ,

together with γE5 = γE1 γ
E
2 γ

E
3 γ

E
4 , which reads

γE5 =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠ . (A.4)

These matrices are hermitian and satisfy

γE†
µ = (γEµ )

−1 = γEµ , γE†
5 = (γE5 )

−1 = γE5 , (A.5)

as well as the anti-commutation relation

{γEµ , γEν } = 2δµν , {γEµ , γE5 } = 0 . (A.6)

The relation with the Minkowski matrices γMµ , µ = 0, 1, 2, 3 are given by

γM0 = γE4 , γEk = −iγMk , γE5 = −γM5 . (A.7)

A.2 Euclidean operators

We now consider the relation between Euclidean and Minkowski operators. Let us first

recall the relation for position space. The time variable is Wick rotated in Euclidean

space, i.e. tE = itM such that the four-vector x in position space reads

xM = (x0,x) = (−ix4,x) , xE = (x, x4) = (x, ix0) , (A.8)

In the next sections, we specify the relation between the two formulations for scalar,

pseudoscalar, vector and axial operators. We consider two different quark fields Q and
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q, where the relation between their Euclidean and Minkowski representation is given by

qM (x0,x) = qM (−ix4,x) ≡ qE(x, x4) , (A.9)

and similarly for Q.

A.2.1 Scalar and pseudoscalar operators

For a scalar or pseudoscalar operator P = Q̄ΓJq the relation between the two formula-

tions is given by

PM (x0,x) = Q̄
M
(x0,x)Γ

J,MqM (x0,x) (A.10)

= sJQ̄
M
(−ix4,x)ΓJ,EqM (−ix4,x)

= sJQ̄
E
(x, x4)Γ

J,EqE(x, x4)

≡ sJPE(x, x4) ,

where we recall that

ΓJ,M = sJΓJ,E . (A.11)

A.2.2 Vector and axial operators

For a generic vector or axial operator Jµ = Q̄ΓJ
µq = Q̄γµΓ

Jq we consider temporal and

spatial component separately. For the time component we have

JM
0 (x0,x) = Q̄

M
(x0,x)γ

M
0 ΓJ,MqM (x0,x) (A.12)

= sJQ̄
M
(−ix4,x)γE4 ΓJ,EqM (−ix4,x)

= sJQ̄
E
(x, x4)γ

E
4 Γ

J,EqE(x, x4)

≡ sJJE
4 (x, x4) ,

whereas for the spatial one

JM
k (x0,x) = Q̄

M
(x0,x)γ

M
k ΓJ,MqM (x0,x) (A.13)

= isJQ̄
M
(−ix4,x)γEk ΓJ,EqM (−ix4,x)

= isJQ̄
E
(x, x4)γ

E
k Γ

J,EqE(x, x4)

≡ isJJE
k (x, x4) .
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A.2.3 General operator

We can write in a general way the consideration of previous section for a generic operator

O. In particular we can write

OM = sEOOE , OE = sMO OM (A.14)

where sEO = 1/sMO are in general complex coefficients. The expectation value of the prod-

uct of n operators Oj , j = 1, . . . , n can be easily mapped from Euclidean to Minkowski

as

⟨OM
1 OM

2 . . .OM
n ⟩ = sEO1

sEO2
. . . sEOn

⟨OE
1 OE

2 . . .OE
n ⟩ (A.15)

where the Euclidean version is computed through a n-point correlators Cnpt on a lattice,

Cnpt ∝ ⟨OE
1 OE

2 . . .OE
n ⟩ . (A.16)

A.3 Matrix elements and correlators

We now show the relation between Euclidean and Minkowski matrix elements, from

which also follow the relation between correlators. This is helpful to understand where

the physical signals appear in the correlation functions computed in practice on the

lattice, i.e. either in the real or imaginary part of the Euclidean correlator. Indeed,

while we work in Euclidean space on the lattice, physics lives in Minkowski space and

we have to relate our computation to it. We consider the case of a three-point function,

as the four-point function case can be straightforwardly obtained from the following

discussion recalling Eq. (4.22).

Let us consider the process for two pseudoscalar meson Pi → Pf mediated by the

current Jµ: the relevant matrix element ⟨Pf | Jµ |Pi⟩ can be extracted from an Euclidean

three-point correlation function

CE
PfPi,µ ∝

⟨︁
PE
f

⃓⃓
JE
µ

⃓⃓
PE
i

⟩︁
. (A.17)

The corresponding physical matrix element in Minkowski space is ⟨PM
f |JM

µ |PM
i ⟩. Since

there are two pseudoscalar operators which both get a minus sign when switching be-

tween the two formulations (see Eq. (A.10)) we omit their superscript and focus only on

the current Jµ. Considering the spatial and temporal components separately we obtain

⟨Pf | JM
0 (x0,x) |Pi⟩ = sJ ⟨Pf | JE

4 (x, x4) |Pi⟩ (A.18)

⟨Pf | JM
k (x0,x) |Pi⟩ = isJ ⟨Pf | JE

k (x, x4) |Pi⟩ . (A.19)
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From the above equation is immediate to see the the physics signal of the Euclidean

correlator lies in its real part for the temporal components and in the imaginary part

for the spatial ones.
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APPENDIX B

DISCRETE SYMMETRIES

In this appendix we list some properties and discrete symmetries of Wilson-type fermions,

that apply in particular to the DWF and RHQ formulations used in this work. We fol-

low [93, 94] and refer to those sources for more details. Discrete symmetries are useful

for matrix element calculations, as they can be used to determine which elements (e.g.

which type of currents) contribute in a given process. We illustrate them considering a

quark fermion field q(x) and a gauge field Uµ(x). We indicate explicitly the dependence

on the gauge field in the quark propagator G(y, x;U) = ⟨q(y)q̄(x)⟩ in order to point out

precisely how G transforms under these symmetries.

B.1 Parity

The parity operator P has the effect of reversing the spatial coordinates, i.e.

P : x = (x, x4)→ xP = (−x, x4) . (B.1)

It acts on the quark and gauge fields as

P : q(x)→ qP (x) = γ4q(x
P ) ,

q̄(x)→ q̄P (x) = q̄(xP )γ4 ,

U4(x)→ UP
4 (x) = U4(x

P ) ,

Uj(x)→ UP
j (x) = −U−j(x

P ) ,

(B.2)

and the propagator transforms as

P : G(y, x;U)→ γ4G(y
P , xP ;UP )γ4 . (B.3)
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B.2 Time reversal

The time reversal operator T is the analogous of the parity operator for the time direction

T : x = (x, x4)→ xt = (x,−x4) . (B.4)

It acts on the quark and gauge fields as

T : q(x)→ qt(x) = γ4γ5q(x
t) ,

q̄(x)→ q̄t(x) = q̄(xt)γ5γ4 ,

U4(x)→ U t
4(x) = −U−4(x

t) ,

Uj(x)→ U t
j (x) = Uj(x

t) ,

(B.5)

and the propagator transforms as

T : G(y, x;U)→ γ4γ5G(y
t, xt;U t)γ5γ4 . (B.6)

B.3 Charge conjugation

Charge conjugation transforms particles into antiparticles and the corresponding oper-

ator C acts on the fermion field as

C : q(x)→ qC(x) = Cq̄(x)T , (B.7)

q̄(x)→ q̄C(x) = −q(x)TC−1 , (B.8)

Uµ(x)→ UC
µ (x) = U∗

µ(x) . (B.9)

where the transpose “T” transforms a column spinor into a row spinor and vice versa.

The propagator G transforms as

G(y, x;U) → GC(y, x;U) = C G(y, x;UC)T C−1 . (B.10)

The specific form of C depends on the chosen representation of the gamma matrices.

A common choice is the chiral representation as in App. A.1, for which C = iγ2γ4.

Regardless of the representation, the following relations hold true

CΓJC−1 = (ΓJ)T , (B.11)

CΓJ
µC

−1 = −sJ(ΓJ
µ)

T , (B.12)

where we recall that sV = 1, sA = −1 and ΓV = I, ΓA = γ5, Γ
V
µ = γµ and ΓA

µ = γµγ5.
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B.4 γ5-hermiticity

The quark propagator G(y, x;U) obeys the property

G†(y, x;U) = γ5G(x, y;U)γ5 , (B.13)

which is typical of Wilson-type operators. It can be implement through the operator

H : G(x, y;U)→ γ5G
†(y, x;U)γ5 . (B.14)
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APPENDIX C

CHEBYSHEV POLYNOMIALS

In this appendix we review some properties of the standard Chebyshev polynomials and

generalise them for generic shifted polynomials. We refer to other sources [200, 201] for

more details.

C.1 Standard Polynomials

The standard Chebyshev polynomials of the first kind are defined as

Tk : [−1, 1]→ [−1, 1] , Tk(x) = cos
(︁
k cos−1(x)

)︁
, k ∈ N , (C.1)

from which it follows that

Tk(cos(θ)) = cos(kθ) , θ ∈ [0, π] . (C.2)

They are orthogonal with respect the scalar product∫︂ 1

−1
Tr(x)Ts(x)Ω(x) dx = πδrs

(︃
1− 1

2
δr0

)︃
, (C.3)

where Ω(x) = 1/
√
1− x2 is a weight function.

We list here some of the most useful properties that have been used explicitly in this

thesis.

• Recurrence relation. The polynomials satisfy the relation

Tk+1(x) = 2xTk(x)− Tk−1(x) , (C.4)
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with T0(x) = 1 and T1(x) = x.

• Zeros. Tk(x) has k zeros in (−1, 1) given by

x0j = cos

(︃
2j + 1

2k
π

)︃
, j = 0, 1, . . . , k − 1 . (C.5)

• Extrema. Tk(x) has k + 1 extrema in [−1, 1] given by

x′j = cos

(︃
j

k
π

)︃
, j = 0, 1, . . . , k . (C.6)

The values of the polynomials in the extrema are given by Tk(x
′
j) = (−1)j .

C.1.1 Polynomial representation

The expansion of the Chebyshev polynomials in xk is given by

Tn(x) =

[n/2]∑︂
k=0

d
(n)
k xn−2k , (C.7)

with ⎧⎨⎩d
(n)
k = (−1)k2n−2k−1 n

n−k

(︁
n−k
k

)︁
if k ̸= n

2

d
(n)
k = (−1)k if k = n

2

. (C.8)

Note that if n is even the powers of x are all even, and vice versa if n is odd. We can

rewrite this expression setting k = (n− j)/2 and t
(n)
j = d

(n)
(n−j)/2 as

Tn(x) =
n∑︂

j=0

t
(n)
j xj , (C.9)

with ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t
(n)
0 = (−1)n/2 if n even

t
(n)
k = 0 if n− k odd

t
(n)
k = (−1)(n−k)/2 2k−1 n

n+k
2

(︃n+k
2

n−k
2

)︃
if k ̸= 0 and n− k even

. (C.10)
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C.1.2 Power representation

A useful property involves the power representation of the standard Chebyshev polyno-

mial

pn(x) ≡ xn = 21−n

n∑︂′

k=0
n−k even

(︃
n

n−k
2

)︃
Tk(x) , x ∈ [−1, 1] , (C.11)

where the prime indicates that the first term is halved.

C.1.3 Chebyshev interpolation

The strength of the Chebyshev polynomials relies on the fact that they provide the best

approximation of the function f : [−1, 1] → R to any given order N in terms of the

L∞-norm. In other words, the minmax error, i.e. the maximum difference between the

target function and the reconstructed one, is minimised. In particular, for the functions

considered in this work, it is guaranteed that the Chebyshev approximation converges

when N →∞. The polynomial approximation reads

f(x) ≃ 1

2
c0T0(x) +

N∑︂
k=1

ckTk(x) , ck =
2

π

∫︂ 1

−1
dx f(x)Tk(x)Ω(x) , (C.12)

where we recall that T0(x) = 1 by definition. The coefficients are given by the projection

of the target function f on the basis of Chebyshev polynomials.

C.2 Shifted Polynomials

Let us now address the generalisation of the standard Chebyshev polynomials. In the

most general case, we want to consider a generic function f(x) defined in an interval [a, b]

and we want to approximate it with Chebyshev polynomials. In order to achieve that we

can define some shifted polynomials T̃n(x) with x ∈ [a, b] and look for an approximation

of the function at order N

f(x) =
1

2
c0̃T̃ 0(x) +

N∑︂
k=1

ck̃T̃ k(x) . (C.13)

The shifted Chebyshev polynomials are related to the standard ones by

T̃n(x) = Tn(h(x)) , (C.14)
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where h : [a, b] → [−1, 1], y = h(x) is a invertible function that maps the new domain

into the domain of the standard Chebyshev polynomials, with

h(a) = −1 , h(b) = +1 . (C.15)

We can then redefine the properties of the polynomials in a more general way. In

particular, the orthogonality relation now reads∫︂ b

a
dx T̃ r(x)T̃ s(x)Ωh(x) =

∫︂ b

a
dxTr(h(x))Ts(h(x))Ωh(x) , (C.16)

where Ωh(x) is the new weight for the shifted T̃n(x) which depends on the map h. To

show this and determine the form of Ωh(x), we can set x = h−1(y), dx = 1
h′(h−1(y))

dy

such that ∫︂ h(b)

h(a)
dy Tr(y)Ts(y)

Ω(h−1(y))

h′(h−1(y))
. (C.17)

From this equation, it is immediate to see that choosing

Ωh(x) = Ω(h(x))|h′(x)| (C.18)

we obtain ∫︂ b

a
dx T̃ r(x)T̃ s(x)Ωh(x) =

∫︂ 1

−1
dy Tr(y)Ts(y)Ω(y) , (C.19)

which indeed recovers the original orthogonality relation in Eq. (C.3). The coefficients

are then given by

c̃k =
2

π

∫︂ b

a
dx f(x)T̃ k(x)Ωh(x) =

2

π

∫︂ b

a
dx f(x)Tk(h(x))Ω(h(x))|h′(x)| (C.20)

h(x)=y
=

2

π

∫︂ 1

−1
dy f(h−1(y))Tk(y)Ω(y)

y=cos θ
=

2

π

∫︂ π

0
dθ f(h−1(cos θ))(cos kθ) .

The recursion relation Tn+1(x) = 2xTn(x)− Tn−1(x) becomes

T̃n+1(x) = Tn+1(h(x)) = 2h(x)Tn(h(x))− Tn−1(h(x)) = 2h(x)T̃n(x)− T̃n−1(x) .

(C.21)

Let us consider some of the possible maps in the following sections. We focus on maps

of the form

h(x) = A(x) +B = Aa(x) +B , (C.22)

where A and B are constants that depend on the values a and b of the domain of the

function f .



C.2. Shifted Polynomials 129

C.2.1 Linear map

The simplest map is given by the linear shift with

h : [a, b]→ [−1, 1] , h(x) = Ax+B , a(x) = x , (C.23)

where

A =
2

b− a , B = −b+ a

b− a . (C.24)

If we set y = h(x) we get

x = h−1(y) =
1

A
y − B

A
=
b− a
2

y +
b+ a

2
,

such that a generic function f in [a, b] can be approximated by

f(x) =
1

2
c0̃T̃ 0(x) +

N∑︂
k=1

ck̃T̃ k(x) , ck̃ =
2

π

∫︂ π

0
dθ f

(︃
b− a
2

cos θ +
b+ a

2

)︃
cos(kθ) .

(C.25)

C.2.2 Exponential map

Another way of shifting the polynomials can be achieved through

h : [a, b]→ [−1, 1] , h(x) = Ae−x +B , a(x) = e−x , (C.26)

where in this case the resulting polynomial is in term of exponentials (e−x)k. Setting

again y = h(x) and inverting we find

x = h−1(y) = − log

(︃
y −B
A

)︃
. (C.27)

Requiring h(a) = −1 and h(b) = +1 we can determine the coefficients as

A = − 2

e−a − e−b
, B =

e−a − e−b

e−a + e−b
. (C.28)

A generic function f in [a, b] is then approximated by

f(x) =
1

2
c0̃T̃ 0(x) +

N∑︂
k=1

ck̃T̃ k(x) , ck̃ =
2

π

∫︂ π

0
dθ f

(︃
− ln

(︃
cos θ −B

A

)︃)︃
cos(kθ) .

(C.29)

Note that this case is interesting because it allows us to easily consider an unbounded

function defined in an interval [a,∞] simply by considering the limit b→∞.



130 Chapter C. Chebyshev Polynomials

C.2.3 Polynomial representation

For a generic shifted polynomial with map h(x) = A(x) + B and A(x) = Aa(x), where

a(x) = x for a linear map and a(x) = e−x for an exponential map, the polynomial

representation reads

T̃n(x) =
n∑︂

j=0

t
(n)
j h(x)j =

n∑︂
j=0

t
(n)
j (A(x) +B)j =

n∑︂
j=0

t
(n)
j

j∑︂
k=0

(︃
j

k

)︃
A(x)kBj−k . (C.30)

We can expand this sum explicitly and re-sum it in order to isolate the coefficients of

A(x)j

T̃n(x) =
n∑︂

j=0

t
(n)
j

j∑︂
k=0

(︃
j

k

)︃
A(x)kBj−k (C.31)

= A(x)n
[︃(︃
n

n

)︃
t(n)n

]︃
+A(x)n−1

[︃(︃
n− 1

n− 1

)︃
t
(n)
n−1 +

(︃
n

n− 1

)︃
t(n)n B1

]︃
+A(x)n−2

[︃(︃
n− 2

n− 2

)︃
t
(n)
n−2 +

(︃
n− 1

n− 2

)︃
t
(n)
n−1B

1 +

(︃
n

n− 2

)︃
t(n)n B2

]︃
+ · · ·

+A(x)

[︃(︃
1

1

)︃
t
(n)
1 +

(︃
2

1

)︃
t
(n)
2 B + · · ·+

(︃
n

1

)︃
t(n)n Bn−1

]︃
+

[︃(︃
0

0

)︃
t
(n)
0 +

(︃
1

0

)︃
t
(n)
1 B + · · ·+

(︃
n

0

)︃
t(n)n Bn

]︃
,

and we get

T̃n(x) =
n∑︂

k=0

A(x)k
n∑︂

j=k

(︃
j

k

)︃
t
(n)
j Bj−k . (C.32)

Recalling that A(x) = Aa(x) with A = const and redefining the coefficients we finally

get

T̃n(x) =

n∑︂
k=0

t̃
(n)
k a(x)k , t̃

(n)
k = Ak

n∑︂
j=k

(︃
j

k

)︃
t
(n)
j Bj−k . (C.33)

We can also write this expression through the help of a matrix as⎛⎜⎜⎜⎜⎜⎜⎜⎝

T̃ 0(x)

T̃ 1(x)
...
...

T̃n(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

t̃
(0)
0 0 · · · · · · 0

t̃
(1)
0 t̃

(1)
1 0 · · · 0

...
...

. . .
. . .

...
...

...
. . . 0

t̃
(n)
0 t̃

(n)
1 · · · · · · t̃

(n)
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

a(x)1

...

...

a(x)n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (C.34)

where the matrix can be written in a compact notation as t̃ with (t̃)ij = t̃
(i)
j .
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C.2.4 Power representation

We also generalise the power representation as

p̃n(x) ≡ h(x)n = 21−n

n∑︂′

j=0
n−j even

(︃
n

n−j
2

)︃
T̃ j(x) , x ∈ [a, b] , (C.35)

which implies that (A(x) +B)n = p̃n(x). Using

p̃n(x) = (A(x) +B)n =

n∑︂
k=0

(︃
n

k

)︃
A(x)kBn−k (C.36)

we can work out iteratively the general expression for A(x) as

A(x)n = p̃n(x)−
n−1∑︂
k=0

(︃
n

k

)︃
A(x)kBn−k , a(x)n =

A(x)n

An
. (C.37)

We can now rewrite a(x)n in a more compact form as

a(x)n =

n∑︂
j=0

ã
(n)
j T̃ j(x) . (C.38)

The set of coefficients ã
(n)
j can be easily found numerically. In a more compact way, the

above equation can be expressed in matrix form as⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

a(x)1

...

...

a(x)n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ã
(0)
0 0 · · · · · · 0

ã
(1)
0 ã

(1)
1 0 · · · 0

...
...

. . .
. . .

...
...

...
. . . 0

ã
(n)
0 ã

(n)
1 · · · · · · ã

(n)
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

T̃ 0(x)

T̃ 1(x)
...
...

T̃n(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (C.39)

where the above matrix can again be written in a compact notation as ã with (ã)ij = ã
(i)
j .

It is immediate to see that the matrix ã and t̃ in Eq. (C.34) are related by

ã = t̃
−1
, ã−1 = t̃ . (C.40)
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APPENDIXD

GENERALISED BACKUS-GILBERT

In this appendix we reformulate and generalise the modified Backus-Gilbert approach

proposed in [28,175]. The idea is to provide a more general framework, which allows for

the use of an arbitrary basis, and to explore the properties and numerical advantages of

different choices.

D.1 The method

The problem we want to address is the evaluation of a generic observable O of the form

O =

∫︂ b

a
dω ρ(ω)K(ω) , (D.1)

where K(ω) is a function we will refer to as kernel and ρ(ω) is the spectral function

related to a given correlation function through the Källén-Lehmann representation [202,

203]

C(t) =

∫︂ b

a
dω ρ(ω)e−ωt . (D.2)

While typically the range of integration is a = 0 and b = ∞, here we chose to leave

it generic to keep the discussion general. The idea to address the computation is to

approximate the kernel in polynomials in e−ω (in lattice units a = 1) up to some degree

N , i.e. K(ω) =
∑︁N

j=0 gje
−ωj , such that the target observable can be estimated as

O ≃
N∑︂
j=0

gj

∫︂ b

a
dω ρ(ω)e−ωj =

N∑︂
j=0

gjC(j). (D.3)
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For example, a typical problem consists in the extraction of the spectral density of a

correlator, in which case one would consider the kernel to be a smoothed Dirac delta

K(ω) = δσ(ω) with a finite width σ, as for example a Gaussian.

The approach consists of weighting the two functionals A[g] and B[g] against each

other, where the first one provides a measure for the systematic effects coming from

the polynomial approximation, and the second one provides a measure for the variance

σ2O of the observable O, in particular, B[g] = σ2O =
∑︁

i,j giσijgj , where we defined

σij = Cov(C(i), C(j)). This is equivalent to solving a minimisation problem with con-

straints. We can then define a new functional Fθ as

Fθ[g] = A[g] + θ2B[g] , (D.4)

and determine the coefficients by variational principle ∂Fθ[g]/∂gj = 0 at different values

of θ2. The value θ2 = 0 corresponds to addressing exclusively the polynomial approxima-

tion, as prescribed by the choice of A[g], whereas the choices θ2 →∞ would correspond

to dealing purely with the variance minimisation and would result in gj = 0. Note

that we can map θ2 = λ/(1 − λ) for simplicity, such that λ ∈ [0, 1) and θ2 → ∞ for

λ → 1. Furthermore, any relative normalisation term between the two functionals can

be reabsorbed into θ2. Depending on the choice of the basis, the coefficients gj may

grow over different orders of magnitude and numerical instabilities may appear. This

can be addressed in practice by using arbitrary precision arithmetic.

We now discuss in detail how to generalise the modified Backus-Gilbert [28] for a generic

basis of functions, starting from the construction of A[g]. Following the original paper

we can generalise the L2-norm of the difference between the target function and the poly-

nomial reconstruction using an arbitrary family of basis functions Pk(x) =
∑︁k

j=0 p
(k)
j xj

defined in an interval x ∈ [p−, p+]. As for the Chebyshev, we will deal in general with a

shifted version of this family of polynomials in e−x defined in a generic interval [a, b]

P̃ k(x) =
k∑︂

j=0

p̃
(k)
j e−jx , x ∈ [a, b] , (D.5)

where P̃ k(x) = Pk(h(x)) and h(x) = Ae−x + B is an invertible map that satisfies

h(a) = p− and h(b) = p+. The interval [a, b] has to match the range of integration of

the observable O in Eq. (D.1). The functional A[g] now reads

A[g] =

∫︂ b

a
dωΩ(ω)

⎡⎣K(ω)−
N∑︂
j=0

gjP̃ j(ω)

⎤⎦2

. (D.6)

With respect to the original version we now have introduced a generic weight Ω(ω); note

that we start the approximation at P̃ 0(ω) (as long as Ω(ω) can be integrated in [a, b]).
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If we consider only the A[g] term, the solution of the system by variational principle is

given by

A · g = K ←→ g = A−1 ·K (D.7)

where

Aij =

∫︂ b

a
dωΩ(ω)P̃ i(ω)P̃ j(ω) , (D.8)

Ki =

∫︂ b

a
dωΩ(ω)P̃ i(ω)K(ω) , (D.9)

and g is a vector of parameters.

With this setup, the convenient choice consists in picking a set of (shifted) orthogonal

polynomials

⟨P̃ i, P̃ j⟩ =
∫︂ b

a
dxΩ(x)P̃ i(x)P̃ j(x) ∝ δij , (D.10)

with Ω being the actual weight that defines the scalar product. The advantage is imme-

diately clear, as the matrix A becomes

Aij = ⟨P̃ i, P̃ j⟩ , (D.11)

and the coefficients are given by

gi =
1

⟨P̃ i, P̃ i⟩

∫︂ b

a
dωΩ(ω)P̃ i(ω)K(ω) . (D.12)

Since the matrix A is now diagonal, the inverse required to compute Eq. (D.7) is ana-

lytically known. Furthermore, the solution is now equivalent to the projection on the

polynomial basis.

We can now include the B term, i.e. the covariance matrix of the data. Note that in

general we now need to consider a linear combination of the correlator at different time

slices according to the polynomial basis, i.e.

CP (k) =

∫︂ b

a
dω ρ(ω)P̃ k(ω) =

∫︂ b

a
dω ρ(ω)

k∑︂
j=0

p̃
(k)
j e−jω =

k∑︂
j=0

p̃
(k)
j C(j) , (D.13)

such that

B[g] =
∑︂
i,j

gi σ
P
ij gj , σPij = Cov(CP (i), CP (j)) . (D.14)
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The full functional is then

Fθ[g] = A[g] + θ2B[g] (D.15)

and the final solution is

gθ = F−1
θ ·K (D.16)

with

Fθ = A+ θ2B , (D.17)

where Bij = σPij . The steps considered here are mathematically equivalent to the ap-

proach in [176]. However, while the matrix considered in [176] is ill-conditioned by

construction and requires the use of arbitrary precision arithmetic to perform the inver-

sion, our formulation relies on the construction of a diagonal matrix A, in the case where

an orthogonal polynomial basis is chosen. Therefore, in this scenario the inversion of the

matrix F in Eq. (D.17) may be better conditioned and possible numerical instabilities

may be avoided.

On top of that we could also implement some constraints that our approximation has

to fulfil. In particular, following what was done for the spectral function in [28, 175],

we can require that the polynomial approximation preserve the (weighted) area of the

target function, i.e.

∫︂ b

a
dωΩ(ω)

N∑︂
k=0

gk P̃ k(ω) =

∫︂ b

a
dωΩ(ω)K(ω) . (D.18)

This can be expressed as

RT · gθ = r , (D.19)

where

Rk =

∫︂ b

a
dωΩ(ω)P̃ k(ω) , r =

∫︂ b

a
dωΩ(ω)K(ω) . (D.20)

Taking into account these constraints, the solution becomes

gθ = F−1
θ ·K + F−1

θ ·Rr −RT · F−1
θ ·K

RT · F−1
θ ·R

. (D.21)

The final observable then reads

Oθ ≃
N∑︂
j=0

gθ,jC
P (j) , (D.22)
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for a given value of θ. The choice of θ is in principle arbitrary. A common choice is to

take the value θ∗ that gives equal weight to the A and B functional, A[gθ∗ ] = B[gθ∗ ],

i.e. an equal weight to statistical and systematic error. For a given choice of θ, it is

important to make sure that the value of the final observable is stable for small changes

in θ, in order to make sure that the procedure did not introduce any bias.

To conclude, note that this recovers the method first proposed in [28] if we consider the

following substitutions

P̃ j(ω) → e−(j+1)ω ,

Ω(ω) → 1 ,

θ2 → λ/(1− λ) ,
F [g] → (1− λ)F [g] .

(D.23)

D.2 A different perspective

The previous reformulation in App. D.1 allows us to rely on arbitrary polynomials for

the approximation. In this general picture it is useful to consider a different perspective

to the method: we can reduce the problem to finding a suitable correction to the optimal

coefficients, i.e.

gj = γj + ϵj , (D.24)

where γj are the coefficients of the polynomial approximation coming purely from the

functional A[γ], i.e. γ = A−1K as in Eq. (D.7), and ϵj a correction that takes into

account the data. We can then rewrite the functional as

Fθ[g] = Fθ[γ + ϵ] = Fθ[γ] + δFθ[ϵ] , (D.25)

and explicitly

δFθ[ϵ] =

∫︂ b

a
dωΩ(ω)

[︄
N∑︂
k=0

ϵkP̃ k(ω)

]︄2
+ θ2

(︁
2γiσ

P
ijϵj + ϵiσ

P
ijϵj
)︁
. (D.26)

The minimisation of δFθ[ϵ] gives

ϵθ = −θ2
(︁
A+ θ2σP

)︁−1
σPγ , (D.27)

which is equivalent to the previous approach. It is then clear that ϵj are by construction

coefficients that should not modify the quality of the polynomial approximations but

take care of the reduction of the statistical noise. In practice, this will of course depend

on the choice of θ.
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APPENDIX E

FIT STRATEGY

In this appendix we discuss the fit strategy adopted in this work, reviewing in particular

the Maximum Likelihood method in App. E.1, the Maximum a Posteriori approach

in App. E.2 and the application of the latter with a boostrap analysis in App. E.3.

Thorough discussions about data fitting can be found, e.g., in [192,193,196,204–207]

To keep the discussion very general we consider a generic linear model of the form

y(x) =
M∑︂
α=1

pαXα(x) , (E.1)

where Xα(x) are known data and pα are the parameters to be determined.

E.1 Maximum likelihood (ML)

In the standard frequentist approach, we define the χ2 distribution as

χ2 =
N∑︂

i,j=1

(︄
yi −

M∑︂
α=1

pαXα(xi)

)︄
Cov−1

ij

⎛⎝yj − M∑︂
β=1

pβXβ(xj)

⎞⎠ (E.2)

where Covij = ⟨(yi−⟨yi⟩)(yj−⟨yj⟩)⟩ is the covariance matrix of the data. To obtain the

parameters pα we need to minimise the χ2 with respect to those parameters. Indeed,

the probability of the data (D) given the fit (F) is given by the probability distribution

P (D|F ) = 1

(2π)N/2
√︁

det[Cov]
e−

1
2
χ2
. (E.3)

Maximising this probability (the maximum likelihood (ML) method) is equivalent to

minimizing the χ2.
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We can now take the derivative

∂χ2

∂pγ

⃓⃓⃓⃓
p̂

= 2
N∑︂

i,j=1

(︄
yi −

M∑︂
α=1

p̂αXα(xi)

)︄
Cov−1

ij (−Xγ(xj)) = 0 , (E.4)

⇒
N∑︂

i,j=1

yiCov
−1
ij Xγ(xj) =

M∑︂
α=1

p̂α

N∑︂
i,j=1

Xα(xi)Cov
−1
ij Xγ(xj) ,

and defining ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
vγ =

N∑︂
i,j=1

yiCov
−1
ij Xγ(xj)

Uαγ =
N∑︂

i,j=1

Xα(xi)Cov
−1
ij Xγ(xj)

(E.5)

we get the final value for the parameters p̂α

p̂α =

M∑︂
γ=1

(U−1)γαvγ . (E.6)

Note that Covij is symmetric and so is its inverse Cov−1
ij . By definition, then, also U

and its inverse are symmetric. Furthermore, we note that U is the Hessian matrix of

the χ2: taking another derivative in Eq. (E.4) it is straightforward to see that

Uαγ =
1

2

∂2χ2

∂pα∂pγ
. (E.7)

U is also known as curvature matrix : for a linear model it is constant and independent

of the fit parameters. U−1 represents the covariance matrix of the parameters, i.e.

Cov(pα, pβ) = (U−1)αβ.

Let us prove that this is really the covariance. Assuming we only have one set of data yi

with the covariance Covij we can consider simulated values ySi of the data points, with

δySi = ySi − yi. The deviation of the parameters calculated on the simulated data set

δpα = pSα − pα is then

δpSα =
N∑︂
i=0

∂pα
∂yi

δySi , (E.8)

and the corresponding covariance σSαβ = Cov(pα, pβ) is

σSαβ = ⟨δpSαδpSβ ⟩ =
N∑︂

i,j=1

∂pα
∂yi

Covij
∂pβ
∂yj

, (E.9)
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since Covij = ⟨δySi δySj ⟩. Recalling Eqs. (E.5) and (E.6) we have

∂pα
∂yi

=

M∑︂
γ=1

N∑︂
k=1

(U−1)γαCov
−1
ik Xγ(xk) . (E.10)

Substituting this into the above equation we finally get

σSαβ =
M∑︂

γ,δ=1

N∑︂
i,j=1

(U−1)γα(U
−1)δβCov

−1
ij Xγ(xi)Xδ(xj) (E.11)

=
M∑︂

γ,δ=1

(U−1)γα(U
−1)δβ

N∑︂
i,j=1

Xγ(xi)Cov
−1
ij Xδ(xj)⏞ ⏟⏟ ⏞

Uγδ

= (U−1)αβ

We have thus shown that Cov(pα̂, pβ̂) = (U−1)αβ. It is important to notice that we

would have obtained the exact same result if we had considered a large number of

data set y
(d)
i and calculated the covariance with respect the the true value ytruei , with

deviation δy
(d)
i = y

(d)
i −ytruei . Indeed, the calculation would follow exactly the step above

and would lead to the same result.

For a non-linear model, the curvature matrix is no more independent from the fit pa-

rameters. It is, however, generally assumed that the estimated standard deviation corre-

sponds to the standard deviation of the model. The covariance matrix is then estimated

in this case as the inverse of the curvature matrix at the minimum of the χ2.

This is indeed the case when we “wrap” the parameters pα in some non-linear invertible

function pα = f(πα) to enforce some constraint. For example, if we know a priori

that the parameters must be positive, we may consider fitting some new parameters

πα = log(pα) and convert the final results in term of pα = exp(πα) after the fit. In such

a case the χ2 looks like

χ2 =
N∑︂

i,j=1

(︄
yi −

M∑︂
α=1

f(πα)Xα(xi)

)︄
Cov−1

ij

(︄
yj −

M∑︂
α=1

f(πα)Xα(xj)

)︄
. (E.12)

The optimal parameters π̂α can be found as usual by minimising the χ2 and solving for

πα. However, due to the fact that f is in general non-linear, in this case the parameters

have to be determined numerically.

E.2 Maximum a posteriori (MAP) estimation

The frequentist approach gives information about the probability of the data given the

fit P (D|F ). Instead, we would like to consider the probability of the fit given the data
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P (F |D): this can be achieved through Bayes theorem. Indeed, we can relate the prob-

abilities as

P (F |D) =
P (D|F )P (F )

P (D)
, (E.13)

where P (F ) is a prior distribution, which encodes the “a priori” knowledge about the

fit parameters, whereas P (F |D) is the posterior distribution. Bayesian statistics may

seem either subjective or determined by mathematical convenience, but it is indeed a

powerful tool to introduce bounds or other a priori information about the parameters.

In more details, P (D|F ) is taken to be the usual likelihood as above and P (F ) is usually

taken gaussian for mathematical convenience. A common choice for the latter is a

gaussian with mean µ = 0 and variance σ = 1. The probability P (D) is a constant

independent from the parameters and acts as a normalization, as it can be rewritten as

P (D) =
∑︂
F

P (D|F )P (F ) . (E.14)

The easiest and most convenient case is to consider a Gaussian distribution for the

parameters such that

P (F ) ∝ ΠM
α=1 exp

(︃
−1

2

(pα − p̄α)2
σ̄2α

)︃
≡ exp

(︃
−1

2
χ2
prior

)︃
, (E.15)

where we introduced some arbitrary mean values p̄α and standard deviations σ̄α based

on our prior knowledge of the parameter distributions. We can build in this way an

augmented χ2
aug = χ2 + χ2

prior, which is now made of the usual frequentist χ2 and of a

new “prior” χ2
prior, i.e.

χ2
aug =

N∑︂
i,j=1

(︄
yi −

M∑︂
α=1

pαXα(xi)

)︄
Cov−1

ij

(︄
yj −

M∑︂
α=1

pαXα(xj)

)︄
+

M∑︂
α=1

(pα − p̄α)2
σ̄2α

.

(E.16)

The parameters that minimizes the new χ2
aug can be found as usual as requiring

∂χ2
aug

∂pγ
= 0

∂χ2
aug

∂pγ
=
∂χ2

∂pγ
+

∂

∂pγ

M∑︂
α=1

(pα − p̄α)2
σ̄2α

(E.17)

=
∂χ2

∂pγ
+ 2

(︃
pγ
σ̄2γ
− p̄γ
σ̄2γ

)︃
= 0 .
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The parameters are given by p̂α =
∑︁M

γ=1(Ū
−1

)γαv̄γ where in this case

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v̄γ =

N∑︂
i,j=1

yiCov
−1
ij Xγ(xj) +

p̄γ
σ̄2γ

Ūαγ =
N∑︂

i,j=1

Xα(xi)Cov
−1
ij Xγ(xj) +

δαγ
σ̄2γ

. (E.18)

The same considerations as before apply here, as Ū and v̄α are still independent from

the parameters pα and the data yi. In particular, it is still true that

Cov(p̂α, p̂β) = (Ū
−1

)αβ . (E.19)

E.2.1 Most general MAP

We now consider the case where we “wrap” the parameters in a function pα = f(πα) in

a Bayesian context. In this case, the fit is performed on the new parameters πα, and the

prior is then introduced accordingly. The augmented χ2 looks like

χ2
aug =

N∑︂
i,j=1

(︄
yi −

M∑︂
α=1

f(πα)Xα(xi)

)︄
Cov−1

ij

(︄
yj −

M∑︂
α=1

f(πα)Xα(xj)

)︄
+

M∑︂
α=1

(πα − π̄α)2
σ̄2α

.

(E.20)

Imposing
∂χ2

aug

∂πγ
= 0 we get

∂χ2
aug

∂πγ

⃓⃓⃓⃓
⃓
π̂

= 2
N∑︂

i,j=1

(︄
yi −

M∑︂
α=1

f(π̂α)Xα(xi)

)︄
Cov−1

ij (−Xγ(xj)f
′(π̂γ)) + 2

(︃
π̂γ − π̄γ
σ̄2γ

)︃
= 0

(E.21)

from which we obtain

N∑︂
i,j=1

yiCov
−1
ij Xγ(xj)−

(︃
π̂γ − π̄γ
σ̄2γ

)︃
=

M∑︂
α=1

f(π̂α)

N∑︂
i,j=1

Xα(xi)Cov
−1
ij Xγ(xj)f

′(π̂γ) .

(E.22)

In general, this equation is now non-linear and the optimal value for the parameters

π̂α can be determined numerically. The error can be calculated as usual inverting the
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curvature matrix. For the internal parameters πα we get

1

2

∂2χ2

∂πα∂πβ

⃓⃓⃓⃓
π̂

=f ′(π̂α)

⎡⎣ N∑︂
i,j=1

Xα(xi)Cov
−1
ij Xγ(xj)

⎤⎦ f ′(π̂β) (E.23)

+

N∑︂
i,j=1

(︄
yi −

M∑︂
α=1

f(π̂α)Xα(xi)

)︄
Cov−1

ij (−Xβ(xj)f
′′(π̂β))δαβ + δαβ

1

σ2α

=f ′(π̂α)Uαβf
′(π̂β) + δβα

[︃
1

σ2α
− f ′′(π̂α)

f ′(π̂α)

π̂α − π̄α
σ̄2α

]︃
,

where in the last line we used Eq. (E.21). For the final parameters p̂α we then get the

covariance matrix

Cov(pα, pβ) =
1

2

∂2χ2

∂pα∂pβ

⃓⃓⃓⃓
p̂

=
1

f ′(π̂α)

1

2

∂2χ2

∂πα∂πβ

⃓⃓⃓⃓
π̂

1

f ′(π̂β)
(E.24)

= Uαβ + δαβ
1

f ′(π̂α)

[︃
1

σ2α
− f ′′(π̂α)

f ′(π̂α)

π̂α − π̄α
σ̄2α

]︃
1

f ′(π̂α)
.

E.3 MAP estimation with bootstrap analysis

As discussed in the previous sections, the inclusion of a “wrapping” function on the

parameters pα indicates that the distribution of these parameters is generally not Gaus-

sian. This conclusion arises from our assumption that the internal parameters πα follow

a Gaussian distribution, while the wrapping function introduces constraints that limit

the domain of pα. Rather than determining the central value of the data and esti-

mating error through the inverse of the curvature matrix (the Hessian of the χ2 with

respect to the parameters), a more suitable strategy is to employ a bootstrap approach.

This approach automatically accommodates any deviations from Gaussian behaviour.

In practice, this involves fitting all the bootstrap bins and constructing the parameter

distribution while handling the associated errors accordingly.

Our chosen methodology involves assuming a normal distribution for the internal pa-

rameters πα ∼ N (µ, σ) such that pα = f(πα) follow a distribution based on our prior

knowledge of the parameters. To implement this approach, we consider a set of Nb boot-

strap bins, each associated with data points ybi . For each bin, we perform a separate fit

that employs a distinct prior value π̄bα sampled from the normal distribution N (µ, σ).

This ensures that the appropriate prior information is included into pα. In cases where

the data contain limited information, leading to min(χ2
aug) ≈ min(χ2

prior), the fitting

process effectively returns the prior information we introduced by hand.
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