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Introduction
Spherical harmonic representations are commonly used in
spatial sound field capture, processing, and reproduction
[1, 2, 3, 4]. The angular/directional dependency of the
individual modes is described by the spherical harmonics
or the Legendre functions whereas the radial dependency
by the spherical Bessel/Hankel functions. In practice, the
radially dependent components are realized as digital fil-
ters (so-called radial filters) which model the spatiotem-
poral and spectral properties of each mode [5, 6, 7, 8].
This paper addresses the design of radial filters modeling
the sound field of a plane wave. The filter coefficients
are derived analytically based on the time-domain ex-
pressions of the modal impulse responses. As outlined
in the following section, the presented approach can be
considered as a computationally efficient alternative to
the existing methods [9, 10].

Plane Wave Radial Filters
Let us assume a plane wave propagating in the direction
npw = (1, θpw, φpw) with θpw and φpw respectively denot-
ing the colatitude and azimuth angle. The spherical har-
monic expansion of the plane wave reads [1, Eq. (6.175)]

e−i
ω
c r cos Θ =

∞∑
n=0

(2n+ 1)i−njn(ωc r)Pn(cos Θ) (1)

in the frequency domain1, and [11, Eq. (11)]

δ
(
t− r

c cos Θ
)

=


0, | cr t| > 1
∞∑
n=0

(2n+ 1) c2rPn( cr t)Pn(cos Θ), | cr t| < 1
(2)

in the time domain. The modal transfer functions are de-
scribed by the spherical Bessel functions jn(ωc r), whereas
the finite-length modal impulse responses by the Legen-
dre polynomials Pn( cr t). The directivity of each mode is
represented by Pn(cos Θ) where Θ is the angle between
npw and the evaluation point x = (r, θ, φ) with r denot-
ing the radius, θ the colatitude, and φ the azimuth.

The modal impulse responses and transfer functions are
depicted in the first row (blue) of Fig 1(a) and 1(b), re-
spectively. Note that the transfer functions exhibit nth-
order zero(s) at ω = 0, which will be relevant when we

1The time harmonic term eiωt is omitted.

apply the pre-emphasis in the following. The finite sup-
port (| cr t| < 1) of the modal impulse response suggests
that the radial functions can be modeled by a finite im-
pulse response (FIR) filter in a discrete-time system.

However, designing the FIR radial filter based on the
time-domain expression (2) is not trivial. Note from
Fig. 1(b) that the modal spectrum (blue) is not band-
limited in the temporal frequency domain, and thus a
time-domain sampling will produce aliasing artifacts. As
discussed in [8], the spectral deviation from the original
modal transfer function depends on design parameters
such as the radius r, spherical harmonic order n, and the
sampling frequency fs.

Recently, we proposed an improved radial filter design
[10], which was inspired by a virtual analog modeling
method [12]. A continuous-time anti-aliasing filter is ap-
plied to the modal impulse response by using a polyno-
mial interpolation kernel. This leads to a closed-form ex-
pression of a quasi band-limited modal impulse response
which can be sampled with reduced aliasing. A consider-
able improvement in accuracy is thereby achieved with-
out oversampling.

In this paper, we tackle the aliasing problem with an
alternative approach which comprises of three steps:

1. Pre-emphasis by taking the antiderivative of the
modal impulse response

2. Time-domain sampling of the pre-emphasized im-
pulse response

3. De-emphasis of the sampled signal by using a digital
differentiator.

The presented approach was motivated by another vir-
tual analog synthesis method introduced in [13].

In the remainder, the nth-order modal impulse response
will be expressed as

gn(t) =

{
0, | tτ | > 1
1
2τ Pn( tτ ), | tτ | < 1,

(3)

where τ = r
c is the time-of-flight from the origin to x.

As listed in Table 1 (blue), the nth-order modal impulse
response is described by an nth-order polynomial.

Pre-emphasis

The main goal of the pre-emphasis is to reduce the
spectral components above the Nyquist frequency ( fs2 ),
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so that the aliasing artifacts are reduced when the
continuous-time signals are sampled. This is carried out
analytically by taking the (first-order) antiderivative of
the modal impulse response,

g(−1)

n (t) :=

∫ t

−∞
gn(t̃) dt̃ =


0, t

τ < −1

1
2τ

∫ t
−τ Pn( t̃τ ) dt̃, | tτ | < 1

1
2δn0,

t
τ > 1,

(4)

where δnm denotes the Kronecker delta. For n ≥ 1, the
pre-emphasized modal impulse responses exhibit a finite
support in time which are described by (n + 1)th-order
polynomials. For the zeroth order (n = 0), however,
the antiderivative is a right-sided signal with an infinite
length, which cannot be modeled by an FIR filter.

This behavior can be explained in the Laplace domain,
where the antiderivative corresponds to a spectral weight-
ing of 1

s . The dc pole introduced by the antiderivative
is canceled out only if the modal transfer function has
at least one dc zero. This is the case for n ≥ 1 as de-
picted in Fig. 1(b). For n = 0, the pre-emphasized radial
function exhibits a dc pole which makes it an unstable
system. The corresponding impulse response is no longer
absolutely integreable [14].

If a stronger pre-emphasis is required, higher-order an-
tiderivatives can be considered. For the same reason as
discussed above, the antiderivative order k must be less
than or equal to the spherical harmonic order n, since
the corresponding Laplace transform is 1

sk
. The pre-

emphasized modal impulse response satisfying n ≥ k can
be expressed as

g(−k)

n (x) =

0, | tτ | > 1

τk−1

2n+1n!
dn−k

dtn−k

(
( tτ )2 − 1

)n
, | tτ | < 1

(5)

which follows from the Rodrigues’ formula [15,
Eq. (14.7.13)]. If k = n, which is the maximum allow-
able antiderivative order for a given modal order n, the
time-domain expression (5) reads

g(−n)

n (x) =

0, | tτ | > 1

τn−1

2n+1n!

(
( tτ )2 − 1

)n
, | tτ | < 1,

(6)

which can be also found in [16, Eq. (25)–(31)]. In Table 1,
the polynomial representations of the antiderivatives are
listed for selected n and k.

The temporal and spectral properties of the pre-
emphasized modal impulse responses are illustrated in
Fig. 1(a) and Fig. 1(b). Note that, at high frequen-
cies (ωc r > n), the decay rate increases to (k + 1) ×
−20 dB/decade irrespective to the modal order n. It
can be also seen that higher-order antiderivatives lead
to smoother impulse responses at | tτ | = 1.

Sampling

The pre-emphasized modal impulse responses (n ≤ k) are
uniformly sampled at a given sampling rate fs. Since only

the finite interval | tτ | < 1 must be considered, the length
of the discrete-time sequence is 2bτfsc+ 1 samples. Note
that the pre-emphasized spectrum is not ideally band
limited. Although reduced, time-domain sampling still
produces aliasing artifacts.

De-emphasis

Once the pre-emphasized modal impulse response is sam-
pled, a de-emphasis is applied to restore the original spec-
trum of the radial function. Ideally, the de-emphasis
should have a transfer function of iω. In this paper, we
use an IIR digital differentiator, [17, Eq. (5)],

Hdiff(z) =
8

7Ts

1− z−1

1 + 1
7z
−1
. (7)

which achieves an accurate magnitude response with
moderate phase errors at high frequencies. The resulting
group delay is in the order of 10 µs. In order to use the
de-emphasized signal as an FIR filter, the output of the
IIR differentiator is evaluated only up to a finite length.

Note that the spectral tilting (≈ iω) introduced by the
de-emphasis not only modifies the spectrum of the pre-
emphasized modal impulse response but also the aliasing
spectrum. The distortion occurring in low frequencies is
thereby further reduced at the cost of increased aliasing
artifacts at high frequencies.

It is worth mentioning the main difference between the
proposed method and the band-limitation approach in-
troduced in [8]. The latter attempts to reduce only the
components above the Nyquist limit while keeping the
baseband signal unaffected. This is done by employ-
ing a continuous-time low-pass filter such as the La-
grange interpolation kernel. No post-processing is thus
needed. In the proposed approach, the pre-processing
(pre-emphasis) affects the entire frequency range which
has to be compensated for in a post-processing (de-
emphasis) after the sampling.

Evaluation
In this section, the proposed method is used to build the
plane-wave radial filters for radius r = 0.1 m and sam-
pling frequency fs = 48 kHz. The speed of sound is set to
c = 343 m/s. We only consider the first-order antideriva-
tives (k = 1) for the pre-emphasis. For each mode, 29
samples are obtained by sampling the pre-emphasized
modal impulse response within | tτ | < 1. The de-emphasis
is performed by using the aforementioned IIR differentia-
tor. Thirty-three output samples are used as the FIR co-
efficients which are depicted in Fig. 2(a). For the zeroth
order (n = 0), where a pre-emphasis is infeasible, the FIR
coefficients are obtained by directly sampling the original
modal impulse response.

The magnitude response of each radial filter, shown in
Fig. 2(b), is in good agreement with the original spec-
trum. Compared to direct sampling without pre/post-
processing (indicated by thin red line), noticeable im-
provements are observed in low frequencies. Some devi-
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ations can be seen close to the Nyquist frequency which
are due to aliasing that are not completely suppressed.

In Fig. 3, a modally band-limited (maximum order N =
10) plane wave is simulated and the spectral deviations
from the original spectrum are shown for different an-
gular positions (r = 1 m, Θ = 0, π2 ). The results are
compared for three different radial filter design meth-
ods: (i) Direct sampling without pre/post-processing, (ii)
band-limitation method using the fifth-order Lagrange
interpolator [10], and (iii) the proposed method based
on pre/de-emphasis2. It can be seen that the band-
limitation method achieves a high accuracy for a wide fre-
quency range. Although inferior to the band-limitation
method, the proposed approach clearly outperforms di-
rect sampling. Note that the difference between the
complex (red) and magnitude (yellow) spectrum errors
is more pronounced for the proposed method, which is
attributed to the non-ideal phase response of the digital
differentiator.

Conclusion
This paper addresses the time-domain modeling of plane-
wave radial functions. As an alternative to a recently
proposed band-limitation method [10], we presented a
novel radial filter design with reduced aliasing artifacts.
In the proposed method, the antiderivatives of the modal
impulse responses are sampled and post-processed by a
digital differentiator which reshapes the spectrum. Since
the polynomial coefficients describing the antiderivatives
are independent of other design parameters (i.e. radius
r, speed of sound c, and sampling rate fs), they can be
pre-computed and reused, which is beneficial for real-
time applications. The resulting radial filters exhibit an
accurate magnitude spectrum with moderate phase er-
rors at high frequencies. If required, the method can be
further improved by employing a more accurate differen-
tiator (e.g. linear-phase FIR filter) or by combining it
with the band-limitation method (e.g. with a low-order
interpolator). The proposed method is expected to be
used for spatial sound reproduction techniques such as
wave field synthesis [18].
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Table 1: The antiderivatives of the modal impulse responses g(−k)
n (x). For brevity, the argument is replaced by x = c

r
t and

the amplitude scaling factor ( r
c
)k−1 is omitted. Please also refer to Fig. 1(a).

n = 0 n = 1 n = 2 n = 3 n = 4
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2 + 4
3

k = 1 1
4x

2 − 1
4

1
4x

3 − 1
4x

5
16x

4 − 3
8x

2 + 1
16

7
16x

5 − 5
8x

3 + 3
16x

k = 2 1
16x

4 − 1
8x

2 + 1
16

1
16x

5 − 1
8x

3 + 1
16x

7
96x

6 − 5
32x

4 + 3
32x

2 − 1
96

k = 3 1
96x

6 − 1
32x

4 + 1
32x

2 − 1
96

1
96x

7 − 1
32x

5 + 1
32x

3 − 1
96x

k = 4 1
768x

8− 1
192x

6+ 1
128x

4− 1
192x

2+ 1
768

−1
2

0

+1
2

n = 0 n = 1 n = 2 n = 3

k
=

0

n = 4

−1
4

0

+1
4

k
=

1

− 1
16

0

+ 1
16

×
(r c

)k
−

1

k
=

2

− 1
96

0

+ 1
96

k
=

3

−1 0 1
c
r t

− 1
768

0

+ 1
768

−1 0 1
c
r t

−1 0 1
c
r t

−1 0 1
c
r t

−1 0 1
c
r t

k
=

4

(a) Modal impulse responses
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Figure 1: Pre-emphasized radial functions. The antiderivatives of the modal impulse responses with respect to time t are
shown in (a). Please note the scaling factor ( r

c
)k−1 indicated in the vertical axis and the different scale in each row. The

corresponding transfer functions are shown in (b). For each k, the magnitude responses are normalized by (r/c)k

(2k+1)!!
so that the

dc gain for n = k (diagonal) is 0 dB. The shaded subplots (k > n) corresponds to the antiderivatives that have an infinite
length and thus cannot be be realized as FIR filters.
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Figure 2: Plane-wave radial filters designed by the proposed method (radius r = 0.1 m, sampling frequency fs = 48 kHz). The
zeroth-order radial filter (shaded) is designed by directly sampling the time-domain representation without pre-empahsis. The
FIR coefficients are depicted in (a). The frequency responses (dashed) are compared with the original spectra (blue) in (b).
The red curves indicate the results obtained by direct time-domain sampling without pre-/post-processing.
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Figure 3: Discrete-time modeling of a plane wave using different radial filter design methods (modal bandwidth N = 10,
radius r = 1 m, incident angle Θ = 0, π

2
, sampling frequency fs = 48 kHz).
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