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Introduction
This paper proposes an improved time-domain simula-
tion of rigid spherical microphone arrays. The spatial
transfer function of an external sound source evaluated
on a rigid sphere can be represented as a spherical har-
monics expansion. Each harmonic mode is described by
the spherical Hankel function and its derivative, where
Laplace-domain poles and zeros characterize the corre-
sponding spectrum [1–4]. We convert the continuous-
time transfer function into the z-domain using a recently
proposed discretization technique called the band-limited
impulse invariance method [5]. The resulting discrete-
time system has a parallel structure composed of digital
IIR filters and a single FIR filter. The FIR part is de-
signed to cancel the aliasing introduced by the IIR filters.
The captured signals are simulated by applying the fil-
ters to any given source signal. The filter coefficients
are given in closed form, which is derived analytically.
The design accuracy of the proposed method is demon-
strated by numerical simulations. The results are com-
pared with frequency-domain approach and the conven-
tional impulse invariance method.

Time-Domain Simulation
The sound field of a point source at xs = (rs, θs, φs) cap-
tured on a rigid sphere x = (R, θ, φ) at the origin is
expressed in the spherical harmonics domain as (R < rs)
[6, Sec. 4.2]

S(x, ω) =

∞∑
n=0

2n+ 1

4π
Pn (cos Θs)

−hn(ωc rs)
ω
cR

2 · h′n(ωcR)
. (1)

The spherical coordinates (r, θ, φ) are defined with co-
latitude θ ∈ [0, π] and azimuth φ ∈ [0, 2π). The axis-
symmetric part in (1), described by the Legendre poly-
nomial Pn(·), is dependent on the angle between the
source and the receiver denoted by Θs. The spherical
Hankel functions of the second kind hn(·) and the deriva-
tives h′n(·) with respect to its argument characterize the
distance- and frequency-dependent part of the individ-
ual modes. The angular frequency ω in rad/s is related
to frequency in Hz by ω = 2πf . The imaginary unit is
denoted by i and the speed of sound in m/s by c.

The system function of each mode can be derived by
exploiting the series expansion of the spherical Hankel
functions hn(·),

hn(ξ) = − ine−iξ

(iξ)n+1

n∑
k=0

βn(k) · (iξ)k, (2)

where the coefficients are given as

βn(k) =

{
(2n−k)!

(n−k)! k! 2n−k , k = 0, 1, . . . , n

0, otherwise.
(3)

The expression (2) can be obtained by formulating [7,
Eq. (10.49.7)] in terms of iξ. Similarly, the derivative
of the spherical Hankel function h′n(·) can be expressed
as a series expansion by using the recurrence relation [7,
Eq. (10.51.2)],

h′n(ξ) = −hn+1(ξ) +
n

ξ
hn(ξ), (4)

yielding

h′n(ξ) =
in+1e−iξ

(iξ)n+2

n+1∑
k=0

γn(k) · (iξ)k, (5)

where the expansion coefficients are

γn(k) =


βn+1(k)− n · βn(k), k = 0, 1, . . . , n

1, k = n+ 1

0, otherwise
. (6)

By using (2) and (5), the rational part in (1) can be
rewritten as

−hn(ωc rs)
ω
cR

2 · h′n(ωcR)
=

c

rsR
e−i

ω
c (R−rs)An(iω), (7)

which consists of an amplitude scaling c
rsR

, a propaga-
tion delay of rs−R

c seconds, and a frequency-dependent
term denoted by An(iω). The modal spectrum An(iω) is
characterized by the ratio of two polynomials,

An(iω) =

∑n
k=0 β̂n(k) · (iω)k∑n+1
k=0 γ̂n(k) · (iω)k

, (8)

whose coefficients are defined as

β̂n(k) = βn(k) · ( rsc )k−n (9)

γ̂n(k) = γn(k) · (Rc )k−n−1. (10)

The magnitude spectra for some selected orders (n =
0, 1, . . . , 7) are shown in Fig. 3 (top left). The 0th-order
spectrum constitutes a first-order low-pass filter. For
n ≥ 1, the modal spectrum has its peak around f ≈ c n

2πR .
The magnitude response has a low-shelf cut at lower fre-
quencies, and exhibits a low-pass slope of −20 dB/decade
at higher frequencies.
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Figure 1: Laplace-domain zeros and poles of the modal
transfer functions for n = 0, 1, . . . , 10 and rs

c
= R

c
= 1 s

(cf. (11)). The zeros/poles of each order are depicted with
the same color and connected with gray lines. The digits in-
dicate the respective modal orders. Note that, for n = 0, the
modal transfer function is a single-pole system with no zero.

The analytic continuation of (8) can be considered as
the Laplace-domain representation (s ∈ C) of the system
function,

An(s) =

∑n
k=0 β̂n(k) sk∑n+1
k=0 γ̂n(k) sk

, (11)

meaning that An(iω) is the slice of An(s) along the imag-
inary axis (s = iω). The nth-order modal spectrum
is therefore characterized by n zeros and n + 1 poles,
which corresponds to the roots of the numerator and the
denominator, respectively. The zeros and poles of the
first eleven modal spectra (n = 0, . . . , 10) are depicted
in Fig. 1 for rs

c = R
c = 1 s (and thus β̂n(k) = βn(k) and

γ̂n(k) = γn(k)). It can be seen that the roots are distinct
and lie on the left half-plane (<(s) < 0). The modal
transfer functions are thus causal and minimum-phase
[8].

In the current study, the modal transfer function (11) is
converted into a partial fraction expansion,

An(s) =

n+1∑
k=0

ρk
s− pk

, (12)

where pk denotes the poles and ρk the residues. Equa-
tion (12) constitutes a parallel-structure filter. For a
digital emulation of the continuous-time transfer func-
tion An(s), the Laplace-domain representation has to be
converted into the z-domain. Conventionally used con-
version methods are the bilinear transform, the impulse
invariance method, and the matched z-transform. The
accuracy of the resulting digital filters are limited, as
demonstrated in [4]. An improved digital modeling is
introduced in the following section.

Band-Limited Impulse Invariance Method
The band-limited impulse invariance method was pro-
posed in [5], which models a continuous-time system with
high accuracy. It is an extension of the conventional im-
pulse invariance method which is one of the standard

mappings from the Laplace domain to the z-domain [9].
It is based on time-domain sampling of continuous-time
impulse responses. In the presented method, the model-
ing accuracy in terms of magnitude and phase spectra is
improved by applying an analytical anti-aliasing filtering
prior to the time-domain sampling. This section briefly
introduces the band-limited impulse invariance method,
where a first-order system with a single pole is consid-
ered. Applying it to higher-order systems (e.g. (12)) is
straightforward. Interested readers are referred to [5] for
further details.

We assume that the first-order system is causal and ex-
pressed in the Laplace-domain as

Ha(s) =
ρ

s− p , (13)

where the pole and residue are respectively noted by
p and ρ (<(p) < 0). For a sampling frequency fs, an
ideal anti-aliasing filtering yields a low-pass filtered sys-
tem function,

HBL(s) =

{
ρ
s−p , |=(s)| < ωs

2

0, |=(s)| > ωs
2

, (14)

with =(·) denoting the imaginary part of a complex vari-
able and ωs

2 = πfs the Nyquist angular frequency in
rad/s.

The ideally low-pass filtered impulse response can then
be obtained by deriving the inverse Laplace transform of
(14), yielding

hBL(t) =
1

2πi

∫ +iωs
2

−iωs
2

ρ

s− pds (15)

= ρ · eptu(t) + ρ · ε(t), (16)

where u(t) denotes the Heaviside step function. The
residual function, denoted by ε(t), is defined as

ε(t) (17)

=

{
ept

2πi

[
E1

(
(iωs

2 + p)t
)
− E1

(
(−iωs

2 + p)t
)]
, t 6= 0

1
2πi

[
log(iωs

2 − p)− log(−iωs
2 − p)

]
− u(0), t = 0

where E1(z) :=
∫∞
z

e−z′

z′ dz′ is the exponential integral
function [7, Eq. (6.2.1)]. Note that the decaying expo-
nential term ρ ·eptu(t) in (16) corresponds to the impulse
response of (13) without low-pass filtering, i.e. the full-
band impulse response. Equation (16) suggests that an
anti-aliasing filtering can be carried out by superimposing
the residual function ρ·ε(t) onto the full-band impulse re-
sponse. This also means that the residual function consti-
tutes an ideally high-pass filtered impulse response with
reversed sign (out of phase),

E(s) =

{
0, |=(s)| < ωs

2

− 1
s−p , |=(s)| > ωs

2

, (18)

where E(s) denotes the Laplace transform of ε(t). When
ρ ·E(s) is added to the original transfer function (13), the
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Figure 2: Modal impulse responses obtained from different
simulation approaches (R = 0.042m, rs = 0.5m, n = 0, . . . , 7,
fs = 48 kHz). The dotted line indicates the time-of arrival of
the wavefront on the sphere (tTOA = rs−R

c
≈ 1.34ms). The

curves are vertically separated for the ease of visualization.

spectrum above the Nyquist limit (|ω| > ωs
2 ) is canceled,

yielding the ideally low-pass filtered system function as
in (14).

When sampled with an interval of Ts := 1
fs
, the full-

band impulse response and the residual exhibit aliasing
spectra with the same magnitude spectrum but out of
phase. Thus, superimposing the respective signals in the
discrete-time domain cancels the aliasing. The full-band
impulse response is realized by an IIR filter using the
conventional impulse invariance method [10, 11]. The
z-transform of the resulting filter reads

H(IIR)(z) =
ρTs

2

1 + epTsz−1

1− epTsz−1
, (19)

which exhibits a pole at z = epTs and a zero at z = −epTs .
The residual is realized by an FIR filter whose coefficients
are obtained by sampling ρ · ε(t). To reduce the length
of the noncausal part, the residual has to be truncated
and windowed to a finite length (L samples) before the
sampling.

The first-order system (13) is modeled by a parallel com-
bination of the IIR and FIR filter. The IIR filter output
has to be delayed to accommodate the noncausal part
(M ≤ L) of the FIR filter. The z-domain transfer func-
tion of the digital filter thus reads

Hd(z) = H(FIR)(z) + z−MH(IIR)(z). (20)

The length of the FIR filter L and the overall delayM are
design parameters, which trades off the computational
complexity of the accuracy of the discrete-time model.

Evaluation
The proposed method is evaluated for a rigid sphere
with radius R = 0.042 m. We consider the sound field
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Figure 3: Modal magnitude spectra obtained from different
simulation approaches (R = 0.042m, rs = 0.5m, n = 0, . . . , 7,
fs = 48 kHz) and the resulting spectral errors. The top-left
plot depicts the ideal modal spectra, which are also shown in
the bottom row (gray).

of a spherical wave emitted by a point source at xs =
(0.5 m, 90◦, 180◦), i.e. on the negative x-axis. The speed
of sound is assumed to be c = 343 m/s, and the sampling
frequency is set to fs = 48 kHz.

For the band-limited impulse invariance method, the FIR
length is set to 15 samples and the pre-delay to 7 samples.
The FIR part is designed by windowing the residue with
a Kaiser-Bessel window (β = 8.6). The result is com-
pared with those from the frequency-domain sampling
and the conventional impulse invariance method. For
the frequency-domain simulation, the DFT length is set
to 216. The corrected version of the impulse invariance
method is used as described in [12, Sec. 7.3] and [10, 11].
Note that each method results in a different group de-
lay. In the following evaluations, the group delays are
removed and the impulse responses are time aligned for
ease of comparison.

The point source is excited by a discrete-time impulse
δ[n]. The resulting modal impulse responses and modal
spectra for the first eight orders (n = 0, 1, . . . , 7) are
depicted in Fig. 2 and Fig. 3, respectively. The errors
shown in Fig. 3 (bottom row) are the spectral deviations
from the original modal spectra (top left). Lower er-
ror thus means higher accuracy in magnitude and phase
spectrum.

In Fig. 2, the time-of-arrival of the first wavefront on the
spherical surface is indicated by dotted lines (tTOA =
rs−R
c ≈ 1.34 ms). Prominent pre- and post-ringings are

observed for the frequency-domain design (first column)
which is mainly due to the brick-wall low-pass filtering of
the spectrum below the Nyquist frequency fs

2 . Note also
that noncausal components appear earlier than tTOA,
leading to a longer group delay than other methods.
The conventional impulse invariance method (second col-
umn), which is based on time-domain sampling, does not
exhibit such oscillation and yields strictly causal impulse
responses. This causality, however, comes at the ex-
pense of spectral errors as shown in Fig. 3. The proposed
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Figure 4: Spatial impulse responses on the rigid sphere
(R = 0.042m, rs = 0.5m, n = 0, . . . , 18, fs = 48 kHz).
The receivers are placed on the equator, i.e. θ = 90◦,
φ ∈ [0◦, 360◦).

method (last column) is a compromise between these two
extreme cases. The FIR part reduces the aliasing occur-
ring in the impulse invariance method thereby improving
the modeling accuracy (cf. Fig. 3). Further improve-
ments can be achieved by increasing the FIR length L
(not shown here). The length of the noncausal part can
be controlled explicitly by the design parameter M .

The spatial impulse responses on the sphere are com-
puted by evaluating the modal expansion up to the 18th
order. To alleviate the truncation effect, a modal smooth-
ing is applied with the right-half of the Kaiser-Bessel
window (β = 8.6). Fig. 4 depicts the responses on the
equator (θ = 90◦, φ ∈ [0◦, 360◦)). It can be seen that
the frequency-domain simulation exhibits strong tem-
poral artifacts due to the brick-wall low-pass filtering
and temporal aliasing. Both the conventional and band-
limited impulse invariance methods better reveal the
spatio-temporal structure of the sound field. The diffrac-
tion pattern of the wavefront is clearly visible including
the creeping waves which propagate along the surface
[13, 14]. The two impulse invariance methods differ only
within the range t ∈ [tTOA−M · Ts, tTOA + (L−M) · Ts]
where FIR filters are used by the band-limited impulse
invariance method. Note that the noncausal component
(t ∈ [tTOA − M · Ts, tTOA]) resulting from the band-
limited impulse invariance method resembles that of the
frequency-domain method. This is not surprising, as
those components are essential for an aliasing-free simu-
lation.

Conclusion

This paper proposes a time-domain simulation of sound
fields captured on a rigid sphere. A recently intro-
duced discretization technique, called the band-limited
impulse invariance method, is used. The modeling ac-
curacy in the frequency domain is improved by reduc-
ing the frequency-domain aliasing which typically occurs
during time-domain sampling. It is also demonstrated
that the temporal structure of the sound field is better
modeled compared to the frequency-sampling method.
The improvement is achieved at the cost of additional
FIR filters whose length can be freely chosen by the user
depending on the desired accuracy, available computa-

tional power, and allowable latency (group delay). This
approach might be used for an efficient simulation of
spherical microphone arrays which are frequently used
in sound field capturing.
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