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A cross-nested logit model for the English market 

Cristian Domarchi *, Elisabetta Cherchi 
School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom   

H I G H L I G H T S  

• Fuel type choice is not independent from vehicle segment choice. 
• Cars from the same segment are strongly perceived as similar by users. 
• Correlation due to fuel type is weaker. 
• These user perceptions can be key to foster adoption of electric cars. 
• Operating cost and second-hand cars are relevant attributes for policy design.  

A R T I C L E  I N F O   

Keywords: 
Car segment choice 
Fuel type choice 
Electric vehicles 
Hybrid electric vehicles 
Discrete choice models 
Revealed preferences 
Cross-nested logit 

A B S T R A C T   

In this article, we study the role of car segment and fuel type in the choice of alternative fuel vehicles and in the 
prediction of its market. For this purpose, we propose a joint choice cross-nested logit model to understand the 
demand for alternative fuel vehicles (AFV) and to study substitutional patterns between fuel types and vehicle 
segments with a full revealed preference approach, using only publicly available real data at disaggregate 
(household) level in England. Our results show that, as hypothesised, fuel type choice is not independent from car 
segment choice. The correlation patterns in the chosen specification reveal that individual car alternatives 
belonging to the same car segment are strongly correlated, while a weaker correlation exists between alternatives 
from different segments which share the same fuel type. The results suggest that creating awareness for cleaner 
fuel alternatives might be more effective if a targeted approach that considers these substitutional patterns is 
used. From a policy standpoint, while purchase prices play an important role and government policies have been 
concentrated in reducing the gap between ICE vehicles and AFVs in this dimension, our models stress the 
relevance of the operating cost variable, suggesting that its effect might also be crucial in the purchase decision.   

1. Introduction 

The transport sector is responsible for about 24% of direct carbon 
dioxide emission from fuel combustion, and roughly three quarters of 
these emissions come from road vehicles [1]. In a scenario of climate 
emergency, reducing transport emissions is imperative, and this goal 
requires encouraging active and public transport as well as fostering 
cleaner technologies for private cars. In 2021, alternative fuel vehicle 
(AFV) registrations were almost doubled compared to 2020, with 
around 6.6 million cars sold during the year. However, AFVs only 
represent 8% of the sales share and about 1% of the global fleet 

worldwide [2]. In the UK, while ultra-low emission vehicles, including 
battery electric vehicles (BEVs) and hybrid-electric vehicles (HEVs)1 

reached a record share of 34% of the total new registrations in 2021 [3], 
BEVs and HEVs together represent only about 5.0% of the vehicles li
cenced [4]. 

Governments in developed countries have been investing hefty 
amounts of resources to boost AFV adoption, and considerable efforts 
have been devoted to forecast their potential demand over time. Accu
rate predictions are a necessity for the formulation and evaluation of 
policy measures. Most AFV demand studies focused on the choice 
component have aimed to forecasting fuel type choice relying on stated 
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1 For the purposes of this paper, the “hybrid electric vehicle” (HEV) denomination includes both regular hybrid electric cars and plug-in hybrid vehicles. 
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preference (SP) experiment data, mainly because the AFV market is still 
relatively recent and not enough detailed historical records are available 
for estimation (see [5] for a review). Typically, these SP experiments ask 
first the car segment respondents bought or plan to buy and then 
customise the design for different car segments. This involves an implicit 
assumption of an order of priority in the decision process. However, the 
choice of fuel type and the choice of car segment (defined as groupings 
of vehicles that share similar attributes, market characteristics or design 
features) are often joint decisions. For example, an AFV in the UK is 1.4 
times more likely to belong to the SUV or multi-purpose car segments 
than its ICE counterpart, while ICE vehicles are 1.8 times more likely to 
be a mini or a small car than AFV [6]. 

Few authors have explicitly estimated joint models of car segment 
and fuel type choice with emphasis on AFV [7,8,9] or simultaneously 
with car use [10,11]. These works still rely on SP data to predict the 
demand for fuel type. As known, models estimated with SP data are 
unsuitable for market forecasting, mainly because of the lack of infor
mation to calibrate the model to reproduce the real market [12,13]. The 
review in Domarchi and Cherchi [14] shows that several forecasts based 
on discrete choice models have not proven to be accurate, with possible 
reasons for this discrepancy being the use of SP data for calibration, and 
the use of parameters imported from external sources for the utility 
functions. Frameworks that forecast EV market shares using discrete 
choice models to account for individual choices using RP data have an 
average root mean square error (RMSE) of 0.50, while the error in the 
SP-based model is 0.62. While this can also be attributed to several other 
factors – such as the technique used to model the diffusion component, 
and the quality of data sources for the rest of the parameters –, the 
figures still reveal that deriving parameter sensitivities from actual 
observed choices increases the reliability of the choice modelling results, 
obtaining a better representation of the population of interest. 

In this article, we aim to contribute to the current research by trying 
to understand the variables that influence household choices of fuel 
types and the substitutional patterns between fuel types and vehicle 
segments, using only real data at disaggregate (household) level. We 
propose a joint choice model of vehicle segment and fuel type estimated 
with a full revealed preference (RP) approach, i.e., fully grounded on 
publicly available real data, and use our results to forecast the AFV 
market under different policy scenarios. 

Brownstone et al. [7] estimate a similar model using a mixture of RP 
and SP data; however, they use a multinomial logit specification to ac
count for vehicle replacement decisions. Similarly, the nested logit 
model in Fridstrom and Østli [15], estimated with disaggregate sales 
data, includes nests defined by vehicle makes and models, and does not 
address substitution among segments and fuel types. Fernández-Antolín 
et al. [16] is the only paper we are aware of that estimates joint fuel 
type/car segment models using disaggregate sales information using a 
cross-nested logit (CNL) structure. However, our study differs in several 
ways. First, we have available all information on car attributes (they use 
a heuristic to impute vehicle attributes of the unchosen alternatives). 
Second, our model also includes the decision of purchasing “new” versus 
“second-hand” vehicles. This is important because about 73% of UK cars 
are purchased second-hand [17], and second-hand purchases might 
provide medium and low-income households with the opportunity of 
purchasing vehicle models or types that might not be affordable as new, 
such as AFV [18,19]. Third, our model includes also HEVs among the 
available alternatives in the choice set. This is also important because 
HEVs currently represent a significant share of the AFV market. Fourth, 
other than the vehicle attributes, our model also considers the effect of 
charging infrastructure availability, a relevant policy variable which 
might contribute to facilitate the behavioural changes required when 
owning an AFV. Fifth, we validate the model with a holdout validation 
sample. Even though model validation is essential for reproducibility 
and for deriving policy recommendations, a surprisingly reduced num
ber of transport preference studies consider it (see for example, [20,21]). 
Some of the previous studies carried out some sensitivity analyses, but to 

our knowledge, this is the first joint car segment/fuel type choice 
modelling study to include an actual validation analysis. 

The remainder of the article is organised as follows. Section 2 in
cludes a review of the literature with a specific focus on vehicle segment 
and fuel type choice models. Section 3 provides a description of the 
datasets and the modelling methodology, while Section 4 includes 
estimation and validation results as well as policy recommendations 
from the analysis of demand forecast, elasticities, correlations, and 
monetary valuations. Finally, Section 5 summarises the conclusions and 
recommendations for further work. 

2. Literature review 

The problem of personal vehicle choice has been studied since the 
first developments of discrete choice modelling. Lave and Train [22] and 
Manski and Sherman [23] were pioneers in studying the household 
vehicle purchase decision using disaggregate data. Estimating simple 
multinomial logit (MNL) models, they showed that preferences for 
vehicle segments are heterogeneous, and they vary as a function of 
vehicle and sociodemographic attributes. Later, Berkovec and Rust [24] 
reached a similar result using a nested logit (NL) model. Subsequent 
vehicle segment choice model applications incorporate additional di
mensions to the analysis, including whether the car was purchased new 
or second hand [25], attitudes and lifestyle [26], geographic and spatial 
attributes [27], and neighbourhood characteristics [28,29]. More recent 
works analyse the influence of household structure in vehicle choices 
[30,31] or study the vehicle segment choice as part of more complex 
frameworks that model more than one decision at once. Mannering et al. 
[32] study vehicle segment choice as part of their model of the car 
leasing market in the US, while Rith et al. [33] estimate a joint vehicle 
segment choice-energy consumption model using a Gaussian copula- 
based discrete-continuous model. Finally, Bhat et al. [34] estimate a 
joint model of car ownership, vehicle type and usage. While these 
studies reveal heterogeneity in preferences towards different car seg
ments, they do not consider fuel type part of the choice of a specific car 
segment. 

Fuel type choice has mostly been studied independently from that of 
vehicle segment. A vast amount of literature focuses on modelling 
preferences for fuel type with special emphasis on cleaner technologies 
[5]. The applications include: SP experiments to estimate fuel type 
choice models (e.g. [35,36,37,38,39,40,41,42,43,44]), joint latent class- 
choice models to identify consumer profiles [45,46], hybrid choice 
models with latent variables to test the effect of attitudinal variables 
[47,48,49] or to model diffusion of BEVs [50], and reference-dependent 
choice models capturing differing preference directions [51,21]. Fuel 
type choice has also been jointly modelled with other decisions like car 
ownership [52], car ownership and use [53,54], and car use and pref
erences for advanced vehicle technology options [55]. These studies, 
however, do not model the vehicle segment dimension. 

Modelling simultaneous vehicle segment and fuel type choices re
quires integrating information from the deciding household and the 
available vehicle alternatives. Ahn et al. [10] and Jäggi et al. [11] both 
estimate joint models of vehicle segment, fuel type, and car use –in terms 
of annual mileage– using SP data. These models use detailed information 
on car purchase and use, and the authors find that vehicle attributes and 
fuel prices are much more significant in explaining vehicle fleet choice 
than vehicle use. Higgins et al. [9] use SP data to estimate preferences 
for fuel types. They estimate seven Probit models –one for each US car 
segment–, which allows for a comparison of parameter sensitivities 
among car segment users. However, the models are estimated separately 
for each segment, which does not make it possible to study the corre
lation patterns among vehicle segments, or their interaction with fuel 
type. Hess et al. [8] estimate a cross nested logit (CNL) model that 
considers correlation patterns among both dimensions but using only SP 
data. While these studies allow a meaningful analysis of parameter es
timates, substitution patterns, and correlation structures, they cannot be 
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used for forecasting, as they are estimated with datasets that do not 
reflect the current market conditions. 

Brownstone et al. [7], on the other hand, employ revealed preference 
(RP) data to model preferences for vehicle segments and fuel types, 
albeit in combination with data obtained from an SP experiment. They 
include fuel types as dummy variables interacting with car segments. 
Their work is interesting because it considers both the purchases 
destined to replace an already existing vehicle, and those that add new 
vehicle to the household, in a hierarchical structure. However, the 
modelling structure requires estimating separate models for one- and 
two-household vehicles, and involves detailed information about car 
purchases over time, which might not always readily available. 

Fernández-Antolín et al. [16] instead estimate a joint car purchases 
and vehicle type CNL model with using car sales data from France. This 
is the only work we are aware of that uses real market data; however, 
lacking a detailed characterisation of the unchosen alternatives, they 
have to propose an alternative approach that use the empirical distri
butions of the attributes in the observed choices to impute vehicle at
tributes in the unchosen alternatives. In addition, they only consider the 
sale of new cars, and do not include HEV as an alternative. 

3. Datasets 

Information about the vehicle market was obtained from a privately 
sourced dataset that synthesises catalogue records from UK vehicle 
sellers since 1970 [56]. This dataset includes fields as car makes, 
models, trims, engine versions, specifications, and features, and was 
built using information from specialised magazines such as Auto Motor 
und Sport from Germany. The set contains 105 makes, 1107 models and 
90,046 model variations. With this dataset detailed consideration of 
makes, models, and trims would involve the estimation of a model with 
over 4200 alternatives. Modelling the choice of car makes and models is 
of interest mainly to car manufacturers and sellers on the marketing 
side. From a transport policy and planning perspective, the interest lies 
in understanding preferences for vehicle attributes and how they influ
ence fuel type choice. Therefore, our joint model of car segment and fuel 
type choice assumes then that the alternatives are not specific makes and 
models, but rather aggregations of car segment/fuel type combinations. 
We considered four fuel types (petrol, Diesel, electric, and hybrid- 
electric), and the nine vehicle segments as defined in the European 
classification scheme [57,58],2 and listed in Table 1 along with their 
respective UK market shares. 

The segment classification was not present on any of the datasets that 
we used for modelling purposes and thus we imputed it by hand into all 

the relevant datasets. 
Household information was sourced from the National Travel Survey 

(NTS), an annual household survey designed to monitor long-term 
trends in personal travel in England. Data from the NTS are available 
via the UK Data Service [6]. The relevant variables for modelling pur
poses include household characteristics, sociodemographic profile, and 
approximate location,3 plus a characterisation of each car in the 
household, up to the make/model/fuel type level. The dataset considers 
vehicles belonging to one of five fuel categories: Petrol, Diesel, BEV, 
PHEV (plug-in hybrids), and HEV (“pure” hybrids). For consistency, only 
data from the 2013–2020 period could be used in this study.4 We made 
an explicit distinction between PHEV and HEV considering that, while 
both combine an internal combustion engine with an electric drivetrain, 
user behaviour might be different since only pure hybrids do not use a 
plug and therefore drivers might not be influenced by EV-specific vari
ables such as driving range or the network of charging points. 

The NTS dataset for this timeframe contains 53,505 households. 
Since we are interested in modelling the choice of vehicle segment and 
fuel type – conditional on having chosen to purchase at least one vehicle 
– we excluded carless households from the analysis. We also rule out 
vehicles that were not destined to personal use (e.g., commercial cars) or 
with incomplete key information such as make, model and/or fuel type. 
The final dataset includes information from 47,375 vehicles belonging 
to 34,081 households. 

Table 2 summarises the main socioeconomic attributes of the final 
dataset used in the modelling and a comparison with those obtained 
from the complete NTS sample for the same period (2013− 2020). 
Excluding households without cars implies considering a low fraction of 
households from London – the region with the lowest motorisation rate 
in the nation – and also implies that the income distribution in the final 
dataset differs from the NTS distribution. Apart from these differences, 
no relevant biases seem to have been introduced by this change.5 

As Fig. 1 shows, the market share of petrol cars has been steadily 
reducing in the sample, from 66% in 2013 to 61% in 2020, while the 
share of Diesel cars is relatively constant. HEVs, PHEVs, and BEVs 
represent about 2% of the cars in the sample in 2019 and 3% in 2020. 
Fig. 2 shows that most of the vehicle fleet belongs to the B and C seg
ments (small and medium cars) although the participation of the latter 
segment is slightly decreasing. The proportion of large cars decreased 
from 14% in 2013 to 11% in 2020, while cars from the J segment (sport- 
utility vehicles) more than doubled their share in the same timeframe 
(9% to 19%). 

Since we are interested in modelling purchase decisions, we require 
information about purchase dates, which are not directly available in the 
NTS dataset. The sample, however, provides information about vehicle 
age, which can be used to estimate the year of first registration. As both 
the date of first registration and the date of purchase by the last owner 
are available online for any UK car licence plate, we carried out an in
dependent data collection process to obtain an estimation of purchase 
dates for each vehicle in the NTS sample. The resulting distribution of 
purchase years in the sample can be seen on Fig. 3, and it shows that the 
average ownership length is 2.71 years, with 58% of the cars in the 
sample having been purchased during the 2012–2016 period. 

Using this information, we built the set of alternatives (vehicle 
segment/fuel type) for each purchase year. The year of availability is 
specified in our source dataset (Teoalida), which includes information 
about the initial and final year of availability of each car make and 
model (sold as new), and these were used to obtain the new vehicle 
options that would have been available for the household at that time. 

Table 1 
Vehicle segment definition and UK share.  

Segment Segment name Example models UK share (%) 
(NTS 2020) 

A Mini cars Fiat 500, Hyundai i10 11.2 
B Small cars Renault Clyo, Vauxhall Corsa 25.3 
C Medium cars Ford Focus, Volkswagen Golf 20.7 
D Large cars Peugeot 406, Mazda 6 10.8 
E Executive cars Mercedes Benz E220, Jaguar XF 2.7 

F Luxury cars 
Porsche Panamera, BMW 7- 
Series 1.3 

J Sport utility cars Hyundai Tucson, Toyota RAV-4 18.9 

M 
Multi-purpose 
cars 

Citroën C4 Picasso, Ford Galaxy 6.3 

S Sport cars Audi TT, Porsche 911 2.8  

2 The classification has been used for market categorisation, regulation, and 
for modelling purposes, even though it lacks a specific definition of each 
segment. Example models are included in Table 1 for illustration. 

3 Up to the local authority level, distinguishing between urban and rural 
areas.  

4 Prior to 2013, the NTS used a different classification scheme for fuel types.  
5 The smaller sample size in 2020 is likely explained because of the effects of 

the COVID-19 pandemic in the sampling protocols. 
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The market for used cars was built assuming that every car is available to 
be purchased as second-hand from its initial year of availability to the 
present date. 

Theoretically, 45 aggregate alternatives (9 segments × 5 fuel types) 
could have been generated for each household. We computed the at
tributes of each aggregate alternative as the arithmetic mean of their 
value across all these 45 elementary alternatives (makes and models) 
that are part of that vehicle segment and fuel type. This aggregation 
produces some high variances in important attributes – mainly engine 
size and vehicle price – and several tests with different aggregation 
strategies showed that it could lead to biased parameters. Moreover, 
some segment–fuel type combinations do not exist in the dataset (for 
example, no cars from the A segment use Diesel from 2018 onwards, and 

no BEV sport cars or small PHEV cars appear in the dataset). To over
come these difficulties, we first generated basic aggregate alternatives 
(car segment–fuel type combinations), and then created sub-groups for 
those aggregate alternatives with a high variance in a relevant attribute. 
After testing several possible configurations and verifying the stability of 
the results, we generated the final choice set, whose size varies over time 
considering the evolution of the market for each segment and fuel type 
combination. Table 3 presents its general structure, in addition to the 
minimum, mean, and maximum number of available alternatives per 
segment and fuel type. For example, the A segment (mini car) includes 
minimum 1 Petrol vehicle alternative, and maximum 3 different Petrol 
alternatives, with an average of 1.9. The smallest choice set consists of 
21 aggregate vehicle alternatives, the biggest 79. 

4. Modelling framework 

To model jointly the choice of car segment and fuel type accounting 
for possible cross-correlation between them, we used a cross-nested logit 
(CNL) model with 3 fuel type nests (ICE, EVs, and HEVs) and 9 vehicle 
segment nests. In a CNL specification [59], alternatives can belong to 
more than one nest, and allocation parameters αim measuring the degree 
of membership of alternative i to nest m must be estimated. The choice 
probabilities have the following form: 

P(i) =
∑M

m=1

(
∑

j∈Sm

(
αjmexp

(
V̂ j
) )1

/ϕm

)ϕm

∑M

l=1

(
∑

i∈Sm

(
αjlexp

(
V̂ j
) )1

/ϕl

)ϕl
•

(αimexp(V̂ i) )
1
/ϕm

∑J
j=1

(
αjmexp

(
V̂ j
) )1

/ϕm 

Where V̂ j are alternative-specific utilities and ϕm are nest parameters 
to be estimated. Economic consistency of the correlation structure re
quires that 0 < ϕm ≤ 1 ∀m (and the allocation parameters must comply 
with two consistency restrictions: 0 ≤ αjm ≤ 1 ∀j,m and 

∑M
m=1αjm = 1∀j. 

In practice, these restrictions are imposed before estimation. 
Our model assumes that each alternative simultaneously belongs to 

exactly one car segment nest and one fuel type nest. Theoretically, this 
would require estimating 2 allocation parameters per alternative (up to 
158 parameters), which would unnecessarily increase the complexity of 
the estimation process. Several approaches exist to overcome this diffi
culty. In this work, we adapt the simplification proposed by Hess and 
Palma [60], which, under the assumption that alternative j simulta
neously belongs to one fuel type nest m1 and to one car segment nest m2, 
uses a logistic transformation of the allocation parameters such that: 

αj,m1 =
exp
(
α0j,m1

)

exp
(
α0j,m1

)
+ exp

(
α0j,m2

)

and αj,m2 = 1 − αj,m1 . For normalisation purposes, we restrict α0j,m2 = 0 
and only estimate the α0j,m1 parameters. After several tests, our preferred 
CNL model specification restricts all the α0j,m1 parameters to be equal, 
allowing for a realistic representation of the correlation structure while 
keeping estimation times manageable. 

2-level nested logit models were also estimated for comparison. NL1 
accounts for correlation due to car segment only (i.e., one nest for every 
segment). NL2 includes three nests, one for ICE vehicles, one for plug-in 
electrics (BEV/PHEV), and one for pure hybrids (HEV). NL3 is a 3-level 
nested logit model (NL3), which simultaneously considers correlations 
due to both factors (car segment and fuel type), with the superior hi
erarchical level accounting for correlation due to car segment, and the 

Table 2 
Comparison of socioeconomic and vehicle attributes from our sample and NTS 
survey.  

Variable Value % of 
modelling 
subsample 

% of 
complete 
NTS sample 

Cars per household 

0 0 22.6 
1 53.9 43.1 
2 37.0 27.4 
3 or more 9.0 6.8 
Average 1.39 1.24 

Survey year 

2013 14.3 14.6 
2014 14.0 13.9 
2015 14.1 14.1 
2016 13.7 13.7 
2017 12.7 12.8 
2018 12.4 12.5 
2019 12.8 12.7 
2020 6.0 5.7 

England region 

North East 4.9 5.5 
North West 13.8 13.3 
Yorkshire & The 
Humber 

10.5 10.0 

East Midlands 9.5 8.6 
West Midlands 10.2 10.1 
East of England 13.0 11.3 
London 8.8 14.4 
South East 17.7 16.6 
South West 11.5 10.2 

Region type Urbana 74.0 75.8 
Rural 26.0 24.2 

Household Income level 
(Thousands of GBP per 
year) 

<15 15.6 24.5 
15–29 25.9 25.7 
30–44 25.8 22.5 
45–60 8.6 7.3 
>60 24.0 20.2 
Average income 44.7 39.5 

Household size 
(persons) 

1 19.4 27.7 
2 41.7 36.9 
3 16.3 15.0 
4 15.6 13.6 
5 or more 7.0 6.6 
Average size 2.5 2.4 

Car fuel type 

Petrol 62.0 60.7 
Diesel 36.6 38.0 
Electric (BEV) 0.1 0.1 
Plug-in hybrid 
(PHEV) 

0.2 0.2 

Hybrid-electric 
(HEV) 1.0 1.0 

Vehicle age (Years) Average age 7.8 8.5 

Annual distance travelled 
(Thousands of km) 

<10 49.1 50.7 
10–20 39.6 37.5 
>20 11.3 11.8 
Average distance 12.5 12.5 

Sample totals 
Number of 
households 34,081 53,505 

Number of cars 47,375 66,571  

a The NTS considers households in a built-up area with 10,000 inhabitants or 
more, as “urban”. The rest of the households are deemed “rural”. 
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Fig. 1. Fleet composition by fuel type and survey year (NTS).  

Fig. 2. Fleet composition by car segment and survey year (NTS).  

Fig. 3. Sample distribution by date of car purchase.  
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inferior level considering correlation due to fuel type.6 Figs. 4 to 7 
illustrate the hierarchical structures that were tested in our models. 

We specify the utility functions considering vehicle and household 
attributes, including both generic coefficients (those that are the same 
for all alternatives), and specific coefficients (those that might be 
different for some vehicle segments and fuel types). Table 4 presents a 
summary of these attributes. 

Following previous applications, our model assumes that the car 
purchasing decision might depend on whether the vehicle is bought new 
or second-hand. The widespread presence of second-hand alternatives 
also implies more variability in the vehicle market, as car brands or 

models that are no longer in production might still be available as used 
vehicles. The NTS dataset does not provide information on this attribute. 
Instead, we rely on a different nationwide survey – the Understanding 
Society Survey (USS; [17]),7 according to which about 73% of the vehi
cles in the UK are purchased second-hand. Using USS data, we estimated 
a binary choice model that predicts whether each vehicle in the dataset 
was bought new or second-hand. 

Both new and second-hand purchase prices are available for each 
alternative. Due to the lack of specific information on the substitution 
patterns between new and second-hand vehicles, we assume that the 
decision of purchasing a new or a second-hand vehicle precedes the 
decision of which vehicle segment or fuel type to buy, and thus house
holds that purchased a second-hand vehicle only observe second-hand 
vehicle prices for their chosen and non-chosen alternatives. Prices are 
available for 95% of the records in our dataset. We imputed the 
remaining purchase prices using a simple regression model. 

We got an estimation of fuel consumption per vehicle, in terms of 
distance travelled per volume unit of fuel from the Teoalida dataset.8 

However, the impact of fuel consumption in the household budget also 
depends on fuel prices and travel routines. To consider this, an expected 
annual expense AE indicator was calculated for each alternative j, vehicle 
v, and purchase year t, as follows: 

AEhjt = FCj • KMv • FPt 

In this expression, FCq is the fuel consumption (in litres per kilo
metre) of vehicle type j, obtained from the Teoalida dataset; while KMv is 
the annual distance currently travelled by vehicle v (in kilometres), as 
reported in the NTS. Finally, FPt is the average price of fuel (in pence per 
litre) during year t. This information was sourced from Department for 
Business Energy and Industrial Strategy [61]. 

This calculation is only valid for petrol, Diesel, HEVs, and PHEVs. In 
the case of BEVs, their annual expense must be estimated considering 
their battery size and range. The corresponding annual expense is 
computed as: 

AEhjt =
BSj

BRj
• KMv • EPt 

Here BRj, is the battery range (in kilometres) reported by the man
ufacturers of vehicle type j, while BSj is the battery size (in kWh). EPt 

represents the average energy price for the purchase year t, sourced from 
Department for Business Energy and Industrial Strategy [62]. 

We also tested the influence of variables that are specific to the AFV 
segment, namely battery size (in kWh) and driving range (in km). Most of 
them were non-significant in our models, likely due to the very low share 
of BEV and PHEV users in the sample (0.1%) which does not allow 
evaluating the importance of attributes specific to this category. In 
addition, for the driving range we had available a range of values pro
vided by the manufacturers and we took the average. These values 
depend on the battery size and the efficiency estimated by the manu
facturers, which we believe might be problematic. We then keep battery 
size, which is a more direct indicator, as an explanatory variable for 
illustrative purposes, as we believe that its effect should be significant in 
fuel type choice provided that further information is available to esti
mate the models. As seen in the model results, this variable is indeed 
significant in our chosen specification. 

Table 3 
General structure of the choice set.  

Segment Fuel type 

Petrol Diesel BEV PHEV HEV 

A 1–3 [1.8] 0–3 [1.8] 0–1 [0.8] 0–0 [0.0] 0–1 [0.2] 
B 1–3 [1.8] 2–3 [2.7] 0–1 [0.6] 0–0 [0.0] 0–1 [0.9] 
C 1–3 [2.4] 0–2 [1.3] 0–1 [0.8] 0–1 [0.2] 1–3 [1.5] 
D 1–3 [2.4] 1–3 [2.4] 0–1 [0.0] 0–1 [0.0] 0–3 [1.2] 
E 1–3 [2.1] 1–2 [1.9] 0–0 [0.0] 0–1 [0.2] 0–1 [0.8] 
F 1–3 [2.8] 1–2 [1.7] 0–1 [0.0] 0–1 [0.0] 0–3 [1.5] 
J 1–3 [2.3] 1–3 [2.6] 0–3 [0.5] 0–1 [0.1] 0–1 [0.8] 
M 1–3 [1.8] 1–3 [2.2] 0–1 [0.5] 0–1 [0.1] 1–1 [1.0] 
S 3–3 [3.0] 0–2 [1.3] 0–0 [0.8] 0–1 [0.1] 0–1 [0.2]  

Fig. 4. 2-level nested model NL1.  

Fig. 5. 2-level nested model NL2.  

6 We tested another 3-level structure – with fuel types in the superior nests 
and car segments in the inferior nests; however, we obtained parameters 
incompatible with the theoretical formulation and decided to discard the 
results. 

7 The USS is a UK-based household longitudinal study that measures several 
social, economic, and behavioural factors, including some transport behaviour 
questions.  

8 CO2 emissions were highly negatively correlated with fuel consumption. 
The models including it as an explanatory variable resulted in decreased levels 
of fit, so the variable was discarded. 
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We also tested the influence of the national network of charging points 
in the probability of choosing BEVs and PHEVs. The historical infor
mation about the network of charge stations in the UK9 was obtained 
from European Alternative Fuels Observatory [63]. We expected the 
variable to have a positive influence in the probability of selecting both 
BEVs and PHEVs. Moreover, we hypothesised that the probability of 
buying an AFV should increase if the car is bought new, and if the 
household has more than one car. However, only the first effect was 
statistically significant in the models. 

Brake horsepower, torque, and engine size were preliminary chosen as 
variables that characterise vehicle power. Since they are highly corre
lated, we tested different model specifications including them and 
finally, engine size was chosen as the attribute to represent vehicle power 
in our model. Interestingly, this effect was only significant for house
holds in urban areas (74% of the sample). A similar analysis led to vehicle 
length being chosen as the representative geometric attribute for each 
car. 

As Cao et al. [27], Potoglou [29] and Chen et al. [28] show, house
hold location might have an influence in the preferences for certain 
vehicle segments. Our model specification accounts for the effect 
household zone classification (urban or rural) and the urban density of the 
area as spatial variables that might influence the choice of specific car 
segments. We tested several effects in our formulation, and the only 
significant result was obtained considering that the probability of 
choosing larger vehicles – e.g., those belonging to segments J and M – 
increases when the household is located in a zone with low population 
density (persons per hectare). Similarly, we found that rural households 
positively value cars with a larger engine size. 

Finally, we added a series of dummy variables to control for fixed 
effects. In each model, we estimate 3 constants for fuel type, 8 for En
glish region, 19 for purchase year, and 8 for car segment. Our model 
assumes that the preference parameters are constant regardless of year 
or purchase and geographic location. We explored an alternative 
formulation of the model considering systematic taste variations to 
analyse preference heterogeneity due to the purchase year. However, 
the coefficients were non-significant, and we have not included them in 
our preferred specifications. 

Fig. 6. 3-level nested model NL3.  

Fig. 7. Cross-nested logit model CNL.  

Table 4 
Summary of attributes in the utility functions.  

Variable 
type 

Name Alternatives Unit 

Vehicle 

Purchase cost All (Generic) GBP (thousands) 
Expected annual 
expense 

Petrol and Diesel 
(Specific) 

GBP (thousands) 

Expected annual 
expense 

BEV, PHEV and HEV 
(Specific) 

GBP (thousands) 

Engine size 
Petrol, Diesel, HEV 
(Specific) Litres 

Vehicle length All (Generic) Meters (m) 

Battery size BEV and PHEV 
(Specific) 

Kilo-watt x hour 
(kWh) 

Charging points 
network 

BEV and PHEV 
(Specific) 

# of points 

New vehicle dummy BEV; HEV (Specific) Dummy 

Other 
Density in the 
household area 

Segments J and M 
only (Specific) 

persons per 
hectare 

Interactions 

Vehicle length ×
Household size 

All (Generic) metres x persons 

Purchase cost × Low 
income 

All (Generic) GBP (thousands) 

Purchase cost ×
Medium income All (Generic) GBP (thousands) 

Engine size × Urban 
household 

Petrol, Diesel, and 
HEV (Specific) Litres  

9 While it would certainly be desirable to test this variable in a more disag
gregate fashion – i.e., considering the availability of charging points that are 
geographically close to each household – we only have access to this infor
mation about public charging stations for the current year (2022). The lack of 
historical information conspires against the incorporation of this disaggregate 
variable in the utility functions. 
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5. Results 

In this section we present the modelling results. We retained 80% of 
the household dataset for modelling estimation and held the remaining 
20% for validation. First, we detail the estimation results and then 
analyse model validation results. We then use the parameters to obtain 
some derived monetary valuations and elasticities. 

5.1. Estimation results 

As both the NL and the CNL models require an a priori definition of 
the correlation structure, we estimated several versions of the models to 
test different nest configurations and parameters. Several structures 
were discarded because of microeconomic inconsistencies (i.e., nest 
parameters >1), while others presented identification issues. The results 
in this section stem from the preferred specifications, chosen because of 
their internal consistency. 

Modelling results are reported in Table 5 (modelling attributes and 
goodness-of-fit), Table 6 (structural parameters), and Table 7 (con
stants). First, we note that the estimated parameters for the utility 
functions are similar in all specifications and the marginal utilities of all 
attributes have the expected sign. While all coefficients in all models are 
significantly different from zero at 99%, with few exceptions, the CNL 
results appear to be the strongest. More importantly, looking at the 
goodness-of-fit indicators, the CNL has by far the lowest values of AIC 
and BIC, indicating that the additional parameters estimated in the CNL 
do significantly improve the overall level-of-fit. All the NL specifica
tions, although overall good models, are clearly inferior to the CNL. 
Interestingly, among the NL models, the basic 2-level nested model 
(NL1), has the best overall fit in terms of AIC and BIC values. It should 
also be noted that model NL1 performs better than model NL3 that 
considers a 3-level hierarchy of car segment a fuel type, while model 
NL2, which only accounts for the correlation due to engine type, is the 
worst. This suggests that indeed the correlation due to car segments 
seems to be prevalent, but there is also correlation among fuel type 
across segments, which is not captured by model NL3, reinforcing that 
the cross-nested specification is the best formulation to account for 
correlation between fuel types and car segments. 

Looking at the single attributes, results in Table 5 show that, as ex
pected, individuals on lower (low and medium) income have a higher 
sensitivity to purchase price, but further tests did not suggest the pres
ence of possible income effect. Similarly, an additional monetary unit 

spent in annual cost is significantly more highly valued than an addi
tional pound added to purchase price, which can be explained by 
considering that such an increase would represent a much higher relative 
expense in terms of annual costs than purchase prices. Moreover, 
households appear to value the annual operation cost of an electric 
vehicle less than its non-electric counterpart. This interesting result 
could be explained by the lower average operation costs of a BEV 
considering the current patterns of fuel and electric energy prices, and 
by the more negative perceptions usually associated with “out of pocket” 
expenditures – as opposed to purchase prices, usually perceived as long- 
term investments (e.g., [64]). This might imply that monetary re
ductions in energy cost could have a positive effect in boosting demand 
for AFV over time. Interestingly, this effect is not captured by model 
NL1, which is the only specification that does not consider correlation 
between vehicles that operate using the same fuel type. 

Users appear to prefer cars with a larger engine size, although the 
effect was only significant for urban households. As Wicki et al. [65] 
report, this is the most frequent outcome of choice models that predict 
AFV choice; however, the effect might not be the same for the whole 
population, and some differences have previously been observed in the 
literature (e.g., [66]). The impact of vehicle length depends on the 
household size, i.e., larger households would generally prefer bigger 
cars, as expected, but living in an area of high density decreases the 
probability of households purchasing SUVs (segment J) and multi- 
purpose vehicles (segment M). 

As expected, the likelihood of buying a BEV or PHEV increases with 
the number of charging point. Similarly, the effect of the battery size is 
significant in both the NL3 and CNL models, implying that the effect of 
driving autonomy could only be captured by the specifications that 
simultaneously address correlation due to car segment and fuel type. 
Finally, the probability of buying an electric or hybrid vehicle signifi
cantly increases if the car is purchased new. This is also an expected 
effect, as the proportion of second-hand purchases is significantly lower 
for AFVs than for ICE cars and the second-hand market of EVs, PHEVs, 
and HEVs has still not reached its full potential. 

Table 6 shows the structural parameters estimated. As discussed in 
section 4, for economic consistency, parameters need to be in the range 
[0,1]. Parameters whose estimated values was higher than 1 were con
strained to the upper limit. The t-test values compare each coefficient 
with 1. Understandably, the CNL model shows strong correlations be
tween cars belonging to the same segment – except for luxury cars (F) 
and sport cars (S), where the structural parameters were in fact fixed to 

Table 5 
Model results (I) – general indicators and parameters of the utility functions.  

Alternative Name NL1 NL2 NL3 CNL 

Est. t-test Est. t-test Est. t-test Est. t-test 

Main coefficients 
All Purchase price − 0.020 − 13.11 − 0.027 − 2.03 − 0.008 − 5.29 − 0.017 − 15.31 
Petrol, Diesel; HEV Expected annual expense − 0.316 − 13.81 − 0.427 − 2.13 − 0.274 − 5.55 − 0.315 − 17.63 
BEV; PHEV Expected annual expense − 0.519 − 12.32 − 0.128 − 0.51 − 0.247 − 3.25 − 0.384 − 9.37 
J, M segments 

(All fuels) 
Urban density − 0.175 − 3.33 − 0.067 − 1.81 − 0.176 − 3.34 − 0.175 − 3.36 

BEV, PHEV Charging points 0.068 8.05 0.279 12.40 0.140 9.80 0.099 6.58 
BEV, PHEV Battery size 0.001 1.07 0.006 1.45 0.002 2.60 0.005 4.97 
BEV, PHEV, HEV New car dummy 0.296 8.92 1.176 11.48 0.716 11.61 0.527 8.88 
Interactions 
All Purchase price × Medium income − 0.005 − 5.89 − 0.013 − 1.96 − 0.003 − 3.88 − 0.003 − 5.48 
All Purchase price × Lower income − 0.006 − 6.73 − 0.024 − 2.02 − 0.004 − 4.30 − 0.004 − 6.31 
All Engine size × Urban household 0.023 5.67 0.038 2.00 0.029 5.31 0.019 5.05 
All Vehicle length × Household size 0.030 6.26 0.077 2.04 0.050 5.00 0.020 4.52 
Goodness-of-fit indicators 
– Log-likelihood* − 117,457 − 121,644 − 119,723 − 116,950.8  

Sample size 37,814 37,814 37,814 37,814  
Number of parameters 56 50 57 58 

– ρ2 (market share) 0.066 0.033 0.048 0.070  
Akaike Information Criterion (AIC) 235,026 243,387 239,560 234,018  
Bayesian Information Criterion (BIC) 235,504 243,814 240,046 234,513  
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1, possibly because these more expensive segments usually present 
higher attribute variability – and strong correlations due to fuel type. It 
must be noted that the best specification was obtained by imposing 
equality among all three fuel type nest parameters, i.e., implying that 
the degree of correlation among alternatives inside each individual nest 
is the same across all nests. Model NL2, that only accounts for correla
tion due to fuel type, was estimated using the same restriction. 

Models NL1, NL3, and CNL – all addressing correlation at the car 
segment level – show significant effects in this regard, except for the 

more expensive alternatives (segments S and F). Correlations appear to 
be lower for segments J (SUVs) and M (multi-purpose cars), pointing to a 
higher variability between different makes and models inside these 
groups. In contrast, car models belonging to the most “traditional” cat
egories (A to D), seem to be perceived as similar alternatives by users, 
revealing that the effect of specific makes and model could be less 
relevant for the purchase decision. 

In line with this discussion, the allocation parameter shows that al
ternatives are much more associated with their respective car segment 

Table 6 
Model results (II) – structural parameters.  

Parameter type Level NL1 NL2 NL3 CNL 

Est. t-test (1) Est. t-test (1) Est. t-test (1) Est. t-test (1) 

Car segment 

A (Mini cars) 0.051 − 245.42 – – 0.404 − 13.72 0.044 − 367.67 
B (Small cars) 0.059 − 196.75 – – 0.469 − 16.92 0.041 − 349.49 
C (Medium cars) 0.157 − 67.05 – – 0.520 − 14.00 0.134 − 90.57 
D (Large cars) 0.140 − 69.75 – – 0.415 − 17.79 0.115 − 104.64 
E (Executive cars) 0.171 − 47.07 – – 0.528 − 10.67 0.135 − 50.08 
F (Luxury cars) 1 NA – – 1 NA 1 NA 
J (Sport utility cars) 0.350 − 22.77 – – 0.475 − 14.55 0.357 − 26.12 
M (Multi-purpose cars) 0.243 − 38.56 – – 0.656 − 7.96 0.326 − 25.51 
S (Sport cars) 1 NA – – 1 NA 1 NA 

Fuel type ICE (Petrol, Diesel) – – 0.342 − 3.93 0.075 − 64.92 0.551 − 8.86 
Allocation Parameter – – – – – – − 3.514 − 29.31  

Table 7 
Model results (III) – constants.  

Constant type Level NL1 NL2 NL3 CNL 

Est. t-test (0) Est. t-test (0) Est. t-test (0) Est. t-test (0) 

Fuel type 

Petrol 0 NA 0 NA 0 NA 0 NA 
Diesel − 0.219 − 2.77 − 0.710 − 1.76 − 0.188 − 3.27 − 0.199 − 2.67 
Battery electric (BEV) − 1.601 − 9.32 − 8.898 − 25.25 − 4.409 − 14.46 − 3.137 − 12.84 
Plug-in hybrid (PHEV) − 1.916 − 10.26 − 8.517 − 27.56 − 4.366 − 14.27 − 2.780 − 10.88 
Hybrid-electric (HEV) − 0.599 − 6.28 − 5.365 − 23.67 − 2.657 − 14.40 − 1.142 − 9.67 

Purchase year 

2002 0 NA 0 NA 0 NA 0 NA 
2003 0.118 1.06 0.114 0.40 0.028 0.46 0.103 0.96 
2004 0.019 0.23 − 0.082 − 0.37 − 0.018 − 0.37 0.005 0.06 
2005 0.031 0.39 − 0.027 − 0.12 − 0.006 − 0.14 0.025 0.33 
2006 − 0.020 − 0.25 − 0.241 − 0.99 − 0.051 − 1.08 − 0.022 − 0.30 
2007 − 0.023 − 0.29 − 0.239 − 0.99 − 0.048 − 1.02 − 0.026 − 0.35 
2008 − 0.025 − 0.32 − 0.235 − 0.97 − 0.053 − 1.14 − 0.028 − 0.38 
2009 − 0.026 − 0.33 − 0.229 − 0.96 − 0.046 − 1.00 − 0.028 − 0.38 
2010 − 0.022 − 0.28 − 0.246 − 1.01 − 0.039 − 0.86 − 0.021 − 0.29 
2011 − 0.023 − 0.30 − 0.287 − 1.13 − 0.043 − 0.94 − 0.020 − 0.27 
2012 − 0.015 − 0.20 − 0.253 − 1.03 − 0.036 − 0.78 − 0.013 − 0.18 
2013 − 0.026 − 0.33 − 0.275 − 1.10 − 0.045 − 0.97 − 0.024 − 0.32 
2014 − 0.033 − 0.43 − 0.290 − 1.14 − 0.051 − 1.09 − 0.033 − 0.45 
2015 − 0.041 − 0.53 − 0.319 − 1.21 − 0.060 − 1.28 − 0.039 − 0.54 
2016 − 0.057 − 0.73 − 0.368 − 1.32 − 0.071 − 1.51 − 0.052 − 0.70 
2017 − 0.039 − 0.50 − 0.322 − 1.22 − 0.062 − 1.32 − 0.034 − 0.46 
2018 − 0.108 − 1.38 − 0.414 − 1.40 − 0.087 − 1.80 − 0.094 − 1.27 
2019 − 0.095 − 1.21 − 0.404 − 1.37 − 0.082 − 1.69 − 0.076 − 1.03 
2020 − 0.080 − 0.99 − 0.394 − 1.36 − 0.079 − 1.61 − 0.058 − 0.76 

Region 

North East − 0.031 − 4.18 − 0.152 − 2.10 − 0.028 − 3.87 − 0.031 − 4.60 
North West − 0.030 − 4.71 − 0.122 − 2.12 − 0.024 − 4.03 − 0.031 − 5.19 
Yorkshire − 0.041 − 5.85 − 0.173 − 2.10 − 0.034 − 4.47 − 0.038 − 6.11 
East Midlands − 0.035 − 5.10 − 0.148 − 2.08 − 0.025 − 3.98 − 0.034 − 5.36 
West Midlands − 0.035 − 5.09 − 0.137 − 2.12 − 0.026 − 4.07 − 0.034 − 5.50 
East England − 0.026 − 4.04 − 0.112 − 2.09 − 0.018 − 3.40 − 0.026 − 4.28 
London 0 NA 0 NA 0 NA 0 NA 
South East − 0.022 − 3.55 − 0.104 − 2.08 − 0.016 − 3.34 − 0.022 − 3.73 
South West − 0.036 − 5.29 − 0.135 − 2.11 − 0.025 − 4.05 − 0.035 − 5.75 

Car segment 

A (Mini cars) 0 NA 0 NA 0 NA 0 NA 
B (Small cars) 1.026 48.88 0.304 2.05 1.009 47.41 1.023 48.19 
C (Medium cars) 0.853 32.73 0.245 2.06 0.905 36.98 0.871 34.65 
D (Large cars) 0.208 7.02 0.015 1.05 0.200 6.55 0.254 9.03 
E (Executive cars) − 1.185 − 27.27 − 0.424 − 2.02 − 1.203 − 33.79 − 1.117 − 24.77 
F (Luxury cars) − 3.624 − 56.55 − 0.740 − 2.02 − 2.502 − 42.37 − 3.554 − 56.59 
J (Sport utility cars) 0.084 1.99 0.155 2.10 0.402 15.90 0.087 2.24 
M (Multi-purpose cars) − 0.398 − 11.02 − 0.098 − 1.91 − 0.257 − 8.81 − 0.486 − 11.09 
S (Sport cars) − 2.329 − 52.13 − 0.283 − 2.01 − 1.243 − 34.45 − 2.327 − 55.16  
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(97.1%) than with their fuel type (2.9%). This, again, shows that the 
choice of a specific fuel type is not independent from car segment se
lection, and that the correlation stemming from belonging to the same 
car segment is stronger than that derived from using the same fuel type. 
This is an effect that is clearly captured only by the cross-nested 
specification. 

The NL3 model reveals that users perceive electric vehicles, hybrid 
cars, or ICE alternatives as similar between each other only if they 
belong to the same car segment nest. This result is analogous to what can 
be inferred from the allocation parameter in the CNL model; however, 
the degree of association of each alternative to both nests cannot be 
quantified in the NL3 specification. 

Finally, the constants in Table 7 control for fixed effects in the 
dataset. The strongest associations are derived from fuel type and car 
segments, while the effect of purchase years and England regions ap
pears less relevant. 

5.2. Model validation 

Using the 20% holdout dataset and the estimated parameters, we 
compute the Brier score, the mean absolute error (MAE), the Akaike 
Information Criteria (AIC), and the Bayesian Information Criteria (BIC) 
to compare the predictive ability of our models. The Brier score [67] is 
calculated as: 

BS =
1

Nv

∑Nv

n=1

∑M

m=1
(P̂(ymn) − ymn )

2  

where P̂
(
ynm
)

is the predicted probability that individual n chooses 
alternative m, ymn is the actual outcome variable, valued 0 (non-chosen) 
or 1 (chosen), and Nv is the sample size of the validation dataset. This 
indicator is bounded by the interval [0,2] with a good model closer to 
BS = 0. 

The mean absolute error is calculated as 

MAE =
1
M

∑M

m=1
|ŝm − sm|

where ŝm and sm is the predicted and observed market shares of alter
native m in the sample. The AIC and BIC are the same indicators used to 
evaluate the models and they measure how well the model fits with the 
data it was generated from. The validation indicators for the four 
specifications are listed in Table 8. 

The CNL confirms to be the best performing model. It has the best 
accuracy indicators in 6 of the 8 analysed cases, and it has a marginally 
inferior Brier Score at the car segment level, compared to the best per
forming model (NL1). In particular, the CNL performs always better than 
all the NL models at alternative level. 

It is also relevant to mention that our holdout validation sample has a 
total of 9454 observations, which were randomly chosen from the 
original NTS sample. This method of splitting the dataset was adopted to 
avoid issues derived from using smaller holdout samples (as reported by 
[21]). 

5.3. Monetary valuations and elasticities 

Despite the similarities among the models, different correlation 
structures lead to relevant differences in the magnitudes of certain pa
rameters. This can be analysed in more detail using monetary valuations 
derived from the models. We estimate the monetary valuation of attri
bute k as the marginal rate of substitution between the perceived attri
bute and the purchase cost, at constant utility [68]. Table 9 presents the 
results. 

Looking at the CNL, which is the best specification, the monetary 
valuation of a bigger engine size remains relatively constant across all 
income groups, with a range valuation between £0.88 and £1.09 per 
additional cc. Valuations of car length are dependent on household size – 
for the most frequent household (2 persons), the preferred model gives a 
range from £1.85 to £2.31 per additional mm, while the monetary 
valuation of additional charging points varies from £4.70 to £5.85. 
Finally, the perceived disutility of an additional pound spent on opera
tion costs is constantly higher than the marginal disutility of purchase 
price, across all vehicle types, with the ratio of operation cost sensitivity 
over purchase cost sensitivity estimated between 14.88 and 18.52 for 
Petrol, Diesel, and HEVs. In the case of BEVs, the effect is reduced 
because, as we have seen, the marginal disutility of operation costs is 
lower for electric cars. 

The alternative NL specifications seem to show some inconsistencies 
in these valuations. For example, NL1 fails to acknowledge the corre
lation between alternatives with the same fuel type, which implies an 
erroneous estimation of the valuations of normal and rapid charging 
points – both much lower than the other models. Similarly, models NL2 
and NL3, with less appropriate correlation structures than the CNL, yield 
significantly higher estimations for the valuation of vehicle length, 
which appear to be unlikely. 

Next, we study arc elasticities at the alternative level to analyse de
mand sensitivity against changes in both purchase prices and operation 
costs. We first calculate the choice probabilities in the modelling dataset 
using the CNL model, and then compute the variations in these proba
bilities due to a 10% increase in price and annual operation cost. We 
then compute the individual arc elasticities as the ratio between the 
relative variations of demand and price, and aggregate them using a 
weighted average, where the weights are the predicted choice proba
bilities [69]. 

The direct purchase price elasticities range from − 0.12 to − 3.14, 
indicating a mostly inelastic demand for car segments and fuel types. 
Most individual values are lower than the ones reported by Fridstrom 
and Østli [15] (− 0.97 to − 1.72), Fernández-Antolín et al. [16] (− 0.34 to 
− 2.34) and Train and Winston [70] (− 1.7 to − 3.2). However, our results 
are not directly comparable with these studies. Elasticities are expected 
to be higher in absolute value when modelling purchases at the make- 
model level because when costs are higher, switching to a different 
model from the same segment is easier than choosing a different 
segment altogether. Moreover, these studies model fuel type choice 
using new vehicle sales data only. As second-hand vehicles tend to be 
cheaper, users could be less affected by price increases in this case. 

We find the highest absolute values of direct purchase price elasticity 
in Diesel cars from the smaller segments (A and B), and plug-in hybrids 

Table 8 
Validation indicators.  

Indicator Name (Range) Desirable qualities Aggregation level NL1 NL2 NL3 CNL 

BS Brier score (0–2) Closer to 0 
Per alternative 0.933 0.943 0.939 0.933 
Per car segment 0.791 0.797 0.791 0.792 
Per fuel type 0.454 0.461 0.444 0.451 

MAE Mean absolute error 
(0% –100%) 

Closer to 0% 
Per alternative 0.359% 0.535% 0.505% 0.345% 
Per segment 0.303% 0.313% 0.295% 0.300% 
Per fuel type 1.685% 0.234% 0.301% 1.350% 

AIC Akaike information criterion Lower Overall (Model) 59,689 62,591 60,452 59,668 
BIC Bayesian information criterion Lower Overall (Model) 60,104 62,949 60,860 60,083  
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and electric vehicles from the larger segments (D and E). While the 
elasticity values are similar across segments and fuel types, smaller av
erages are found for cars belonging to the J (sport utility vehicles) and M 
(multi-purpose vehicle) segments. On the other hand, annual operation 
cost elasticities range from − 0.14 to − 2.47. Consistent with the findings 
by Fridstrom and Østli [15], the demand for AFV appears, in general 
terms, less sensitive to variations in operation costs than the demand for 
ICE vehicles. 

Cross elasticities tend to be lower in magnitude than direct elastici
ties, mostly because the lost demand due to the increase of price in one 
alternative induces demand increases in several other alternatives and 
the effect is diluted. In terms of purchase price elasticities, the most 
significant substitutional patterns can be found between petrol and 
Diesel cars from the same segment. More interestingly, some increases in 
operational cost appear to induce increased demand for AFVs; for 
example, for medium cars (C segment), the cross-elasticity between 
Diesel and plug-in hybrids is 0.82, and for SUVs (M segment), it reaches 
0.28. 

In general terms, cross-elasticities between vehicle segments seem to 
be negligible (lower than 0.05). However, while it is known that cost 
parity between ICE vehicles and AFVs – considering both purchase price 
and operation costs – plays a crucial factor in AFV diffusion, our results 
appear to suggest that higher petrol and Diesel prices could play a more 
significant role in increasing the demand of electric and hybrid-electric 
vehicles than purchase prices. 

5.4. Simulation and policy implications 

Finally, taking advantage of the RP nature of the datasets, we were 
able to evaluate some simulation scenarios. We use the NTS dataset for 
2021, which contains vehicles sampled during that year – but which 
might have been purchased on any given year – and use the parameters 
of our best model specification (the CNL) to forecast market shares using 
the demand scenarios presented in Table 10 below. The base scenario (0) 
was built assuming that average purchase prices and vehicle attributes 
from the Teoalida dataset for 2021 were valid and estimating operation 
costs using the predicted average fuel and energy costs from the TAG 
book [71] for this year.10 The actual size of the charging points network 
for 2021 was also imputed to this dataset. 

Table 11 presents a summary of the 2021 forecasting results under 
these scenarios. For simplicity, they are given only at the fuel type level. 
The table provides a comparison with the reference UK market shares for 
2021, sourced from Department for Transport [4], and the percentage 
variation of shares between each scenario and the base case scenario. 

Looking at the comparison between the “0 – Base forecast” and the 
2021 actual shares, we can see that the model has a good predictive 
accuracy, with a mean absolute error of 2.6% in the forecast. In 
particular, the accuracy in predicting the AFV alternatives (BEV, PHEV, 
and HEV) is extremely high (lower than 0.2%). On the other hand, while 
the model correctly predicts the overall share of ICE cars, there is some 
error in predicting the shares of Petrol and Diesel cars, with the dataset 
for validation containing a higher share of Diesel cars than predicted by 
the model. This is, however, not a cause for major concern, as our main 
objective is to predict the demand for AFVs compared the ICE cars. We 
can accept that the model does not perfectly predict the split between 
Petrol and Diesel within ICE. 

In the scenarios, we see that a comprehensive BEV subsidy could 
generate increases of 16.1% and 31.7% in EV market shares and re
ductions in all other fuel types. However, more focused subsidies also 
achieve interesting results – while a subsidy for small BEVs would entail 
a demand increase of 11.2%, the same policy directed towards SUVs and 
MPVs would have a higher effect (40.6%). Smaller public expenditures 
would be expected in this case compared to a “one-size-fits-all” policy. A 
similar effect would be achieved with the proposed increase in the 
registration taxes for Petrol and Diesel vehicles (scenario XII). The 
assumption in this scenario is that the first-year rates for the vehicle 
excise duty (VED) tax are strongly increased for Petrol and Diesel cars as 
well as for HEVs. In the UK, these rates are dependent on the energy 
consumption of each vehicle [72] and are therefore different for each 
vehicle segment and fuel type. The results of this measure are interesting 
as they imply an increase in all AFV alternatives (not only BEV), and also 
highlight the relevance of more focused policies in terms of subsidies 
and tax increases. 

On the other hand, policies that interfere with operation costs ach
ieve more modest results – a general energy rebate would only mean an 
increase of <5.7% in BEV shares, while a tax on Petrol and Diesel would 
reach about 6.4% in BEVs and 13.0% for PHEVs. This would come with 
the additional benefit of further decreasing the demand for Diesel cars 
and increasing the share of HEVs. However, as our proposed tax rate is 
higher for Diesel (considering its higher impact on pollution), this sce
nario also generates a slight increase in the demand for Petrol cars. It 
must also be noted that the more focused policy that increases this 
rebate up to 20% for rural households (assuming that they are most 
likely to charge their vehicles at home), achieves a slightly more sig
nificant increase of 10.5% in the demand for BEVs, while decreasing the 
demand for the remaining types. 

Slight increases in the shares of Petrol and Diesel cars are also present 
in the two scenarios that combine fuel taxes and focused subsidies (IX 
and X), and it is not entirely surprising given that, according to our 
model, Petrol and Diesel cars appear to be close substitutes. This result 
reveals that, while a fuel tax policy might be effective to foster BEV 
demand, it must be carefully designed to avoid unintended effects in the 
market. The policy that augments the network of charging points 

Table 9 
Monetary valuations of items by model structure and income level.  

Specification NL1 NL2 NL3 CNL 

Low Med High Low Med High Low Med High Low Med High 

Engine size (£/cc) 0.86 0.91 1.12 0.75 0.95 1.41 2.43 2.69 3.60 0.88 0.91 1.09 
Vehicle length  
1 person/HH (£/mm) 1.14 1.20 1.47 1.50 1.91 2.83 4.17 4.62 6.17 0.93 0.96 1.15 
2 persons/HH (£/mm) 2.27 2.40 2.95 3.01 3.82 5.67 8.34 9.24 12.33 1.85 1.93 2.31 
3 persons/HH (£/mm) 3.41 3.60 4.42 4.51 5.72 8.50 12.51 13.85 18.50 2.78 2.89 3.46 
4 persons/HH (£/mm) 4.54 4.80 5.90 6.01 7.63 11.33 16.67 18.47 24.67 3.71 3.85 4.61 
5 persons/HH (£/mm) 5.68 6.00 7.37 7.51 9.54 14.17 20.84 23.09 30.84 4.63 4.82 5.76 
Charging points (x 1000) 2.61 2.76 3.39 5.42 6.88 10.21 11.64 12.89 17.22 4.70 4.89 5.85 
Operation cost sensitivity / 

Purchase cost sensitivity  
Petrol, Diesel, and Hybrid 12.06 12.75 15.66 8.31 10.55 15.66 22.82 25.28 33.76 14.88 15.47 18.52 
Electric 19.84 20.98 25.77 2.50 3.17 4.71 20.58 22.80 30.45 18.14 18.85 22.57  

10 The TAG Data Book is an online source that provides historical and refer
ence information on all the appraisal and modelling values referred to in the 
transport analysis guidance (TAG). 
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achieves increases of 21.4% for BEVs and 20.9% for PHEVs. Combining 
this policy with subsidies and fuel taxes could (scenario XI) could mean 
share increases of 82.4% and 34.4% respectively. While these are sig
nificant in relative terms, they would only entail modest effects in terms 
of global shares, as even in this scenario, BEVs, PHEVs, and HEVs would 
represent only 1.4%, 1.1%, and 1.1% of the market, respectively. The 
analysis appears to show that more radical policies should be adopted to 
boost BEV sales and adoption. 

Finally, it must be noted that, since we only carry out a prediction for 
the short-term (one year ahead of the dataset used for estimating the 
model), any significant diffusive effects for the innovative alternative 

should be negligible, as should be the limited share of BEVs in the 
sample used for estimation. Our forecasts are likely considering early 
adopters of the technology. 

6. Conclusions 

In this article, we have provided evidence that the choice of alter
native fuel vehicles is a joint choice of type of fuel and vehicle segment 
(i.e., size and model of the vehicle). We proposed a cross-nested logit 
model to study substitutional patterns between fuel types and vehicle 
segments and to understand household preferences for alternative fuel 
vehicles (AFVs). Our models were estimated using revealed preferences 
data, i.e., real-world information from several UK data sources properly 
processed and combined. This allowed us to use our models in predictive 
mode and to provide grounded policy recommendations. A holdout 
validation dataset was also used to ensure predictive accuracy. 

The models show that, as hypothesised, fuel type choice is not in
dependent from car segment choice. Individual car alternatives 
belonging to the same car segment are strongly correlated, while a 
weaker correlation exists between alternatives from different segments 
which share the same fuel type. As previously reported in the literature, 
costs are an important barrier for the massive uptake of AFVs. Our model 
suggests that the marginal utility of operation cost is between 14.88 and 
18.52 times the marginal utility of purchase prices for ICE and HEVs, 
and between 18.14 and 22.57 times for BEVs. As operation costs depend 
essentially on energy and fuel prices, authorities should aim at reaching 
cost parity between engine types with a strategy considering both pur
chase price incentives and increasing the difference between petrol/ 
Diesel prices, on the one hand, and electricity costs, on the other. While 
purchase prices play an important role and government policies have 
been concentrated in reducing the gap between ICE vehicles and AFVs in 
this dimension, our models stress the relevance of the operating cost 
variable in this decision. Policies that involve fuel taxes or energy re
bates, while desirable in principle, should be carefully analysed because, 
as we showed, they could achieve unintended effects in the market. 

The substitutional patterns between car segments in this dataset 
reveal that, from a policy standpoint, the creation of awareness for 
cleaner fuel alternatives might be more effective by using a targeted 
approach that considers these different perceptions. The parameters in 
our models show that households located in lower density areas have 
rather low direct price elasticities, are more likely to purchase SUVs and 
multi-purpose vehicles and unlikely to switch to a different car segment 
if their circumstances remain unchanged. Considering these results, AFV 
attractiveness should be promoted for these specific users by focusing on 
their most valued attributes, such as car power and autonomy, in 
addition to costs. Similarly, urban households – where the population 
density is higher – are less likely to choose SUVs and MPVs, and instead 
tend to prefer the smaller segments (A to C). They are therefore more 

Table 10 
Simulation scenarios.  

Sc Name Purchase prices Operation cost Others 

0 Base – – – 

I Subsidy-New 
only 

20% subsidy for 
new EVs 

– – 

II Subsidy-All 

15% subsidy for 
new EVs 
25% subsidy for 
second-hand 
EVs 

– – 

III 
Subsidy- 
Small 

25% subsidy for 
A/B/C new EVs 
40% subsidy for 
A/B/C 2nd- 
hand EVs 

– – 

IV Subsidy-Big 

25% subsidy for 
J/M new EVs 
40% subsidy for 
J/M 2nd -hand 
EVs 

– – 

V Petrol tax – 
10% Petrol tax 
15% Diesel tax – 

VI 
Energy rebate 
(General) – 

10% electric 
energy rebate – 

VII Energy rebate 
(Separate)  

5% electric 
energy rebate for 
urban households 
20% electric 
energy rebate for 
rural households  

VIII Charge – – 

5% additional 
increase in 
charging points 
10% additional 
increase in rapid 
charging points 

IX III + V 

25% subsidy for 
A/B/C new EVs 
40% subsidy for 
A/B/C 2nd 
-hand EVs 

10% Petrol tax 
15% Diesel tax 

– 

X IV + V 

25% subsidy for 
J/M new EVs 
40% subsidy for 
J/M 2nd -hand 
EVs 

10% Petrol tax 
15% Diesel tax 

– 

XI III + V + VIII 

25% subsidy for 
J/M new EVs 
40% subsidy for 
J/M 2nd -hand 
EVs 

10% Petrol tax 
15% Diesel tax 

5% increase in 
charging points 
10% increase in 
rapid charging 
points 

XII 
Registration 
tax 

50% increase 
for new Petrol 
and Diesel cars 
20% increase 
for new HEVs 
(EVs are 
exempted from 
this tax) 

– –  

Table 11 
Summary of fuel type simulations by scenario.  

Scenario Petrol Diesel BEV PHEV HEV 

2021 shares (Reference) 61.9% 34.9% 0.7% 1.1% 1.5% 
0 - Base 67.8% 29.4% 0.8% 0.9% 1.2% 
Relative variation (%) with respect to base 
I – Subsidy-New only − 0.1% − 0.1% 16.1% − 1.2% − 0.4% 
II – Subsidy-All − 0.2% − 0.3% 31.7% − 1.6% − 0.4% 
III – Subsidy-Small − 0.1% − 0.1% 11.2% − 1.2% − 0.1% 
IV – Subsidy-Big − 0.3% − 0.4% 40.6% − 1.5% − 0.6% 
V – Petrol tax 0.9% − 2.6% 6.4% 13.0% 0.3% 
VI – Energy rebate (General) 0.0% − 0.1% 5.7% − 0.4% − 0.1% 
VII – Energy rebate (Focused) − 0.1% − 0.1% 10.5% − 0.8% − 0.2% 
VIII – Charge − 0.3% − 0.4% 21.4% 20.9% − 0.8% 
IX – III + V 0.8% − 2.8% 20.1% 11.4% 0.2% 
X – IV + V 0.6% − 3.0% 49.7% 11.2% − 0.4% 
XI – III + V + VIII 0.2% − 3.6% 82.4% 34.4% − 1.4% 
XII – Registration tax − 0.5% 0.3% 12.7% 10.0% 6.0%  
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likely to take better advantage of denser charging networks to obtain a 
greater flexibility. Furthermore, they should be less concerned with el
ements such as range anxiety and vehicle power, since their cars are 
majorly used for driving shorter distances in urban roads. Authorities 
should design policies that are targeted to different car segment users 
instead of a “one-size-fits-all” approach that implicitly considers fuel 
type choice as independent on vehicle type, ignoring other fundamental 
dimensions of the problem. This could also have an advantage in terms 
of public expenditure, as more focused subsidy policies can achieve 
similar results than more expensive, all-encompassing policy measures. 

Finally, our results show that the probability of buying an electric or 
hybrid vehicle significantly increases if the car is purchased new. While 
the AFV market is still on its first stages of diffusion, the second-hand 
market of AFVs is still rather limited. Policy makers should turn their 
attention to this market, as the purchase price barrier is reduced when 
buying second-hand, which would make cost parity more attainable. 
While this fact has been previously acknowledged by policy makers (e. 
g., [73]), only a limited number of specific policy measures for stimu
lating BEV adoption are currently aimed at this market (in countries 
such as the Netherlands, Germany, and Spain [74], New Zealand [75], 
and the United States [76]. 

From the research point of view, it is fair to note that our sample 
contains over 47,000 vehicles – however, <0.1% of them were electric. 
While the effect of a more robust charging network in the adoption of 
AFVs is significant in our models, we were not able to estimate a sig
nificant effect for any variable reflecting driving range (such as battery 
size). This effect in fact has been found to be significant in studies using 
SP data where variation in these attributes can be introduced by the 
modeller as part of the design. 

Similarly, we were able to include in our models only two specific 
spatial variables (population density and type of settlement), and both 
had a significant effect in vehicle type choice. It is likely that some 
differences in car segment choices might be explained by neighbour
hood attributes – for example, less accessible neighbourhoods might 
require larger cars because of their need to travel longer distances. More 
land use information is needed to capture these effects. 

While having detailed information on available alternatives con
tributes to more robust and informative models, this increases the actual 
size of the choice set, especially when considering the differences be
tween makes, models, and trims. Modelling the choice of a specific trim 
is not feasible, not only because, as Brownstone and Li [77] correctly 
point out, information about choices at the trim level is very unlikely to 
ever be available, but also because it is improbable if not unrealistic that 
any decision-maker would evaluate this immense number of alternatives 
when deciding which car to purchase. More work is required to under
stand this decision-making process, including simplification heuristics 
that might occur in practice. 
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