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RESEARCH ARTICLE

Electric vehicle forecasts: a review of models and methods
including diffusion and substitution effects
Cristian Domarchi and Elisabetta Cherchi

School of Engineering, Newcastle University, Newcastle upon Tyne, UK

ABSTRACT
Governments worldwide are investing in innovative transport
technologies to foster their development and widespread
adoptions. Since accurate predictions are essential for evaluating
public policies, great efforts have been devoted to forecast the
potential demand and adoption times of these innovations.
However, this proves to be challenging, and it often fails to
deliver accurate predictions. Learning a lesson to guide future
work is critical but difficult because forecast figures depend on
modelling methods and assumptions, and exhibit a great
variability in methodologies, data and contexts. This paper
provides a critical review of the models and methods employed
in the literature to forecast the demand for electric vehicles (EVs),
with a focus on the methods for incorporating choice behaviour
into diffusion modelling. The review complements and extends
previous works in three ways: (1) it focuses specifically on the
ways in which fuel type choice has been incorporated into
diffusion models or vice-versa; (2) it includes a discussion on
forecast accuracy, contrasting the predictions with the actual
figures available and estimating an average root mean square
error and (3) it compares models and methods in terms of their
strengths and limitations, and their implications in forecasting
accuracy. In doing that, it also contributes discussing the
literature published between 2019 and 2021. The analysis shows
that EV demand estimation requires solving the non-trivial issue
of jointly modelling the factors that induce diffusion in a social
network and the instrumental and psychological elements that
might favour household adoption considering the available
alternatives. Mixed models that integrate disaggregate micro-
simulation tools to capture social interaction and discrete choice
models for individual behaviour appear as an interesting
approach, but like almost all methods analysed failed to deliver
satisfactory results or accurate predictions even when using
sophisticated modelling techniques. Further improvement in
various components is still needed, in particular in the input data,
which regardless of the method used, is key to the accuracy of
any forecasting exercise.
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1. Introduction

In an age of major technological advances, the transport market is rapidly evolving, with
countless technological innovations enabling better use of energy, more environmentally
friendly, safe and efficient behaviours, as well as significant changes in everyday mobility.
The recent upraise of innovative technologies represents the most relevant change in the
transport industry since the start of the transport “highway era” in the 1940s (Muller,
2004), and the main reason why the current time has been deemed “the cusp of a trans-
port revolution” by researchers and stakeholders alike (National Govenors Association,
2021).

In general terms, an innovation can be understood as any idea, practice or object that is
perceived as new by an individual or group (Rogers, 2003). Innovation in transport spans
from Electric Vehicles (EVs), Autonomous Vehicles (AVs) and Personal Aerial Vehicles
(PAVs), which are based on innovative vehicle technologies, to shared and connected
transport systems such as mobility-as-a-service (MAAS), ride-sourcing and shared mobility
in general, which employ smart technology for their operations, but mostly represent
innovative transport concepts.

Governments, mostly in developed countries, are investing in these technologies to
foster their development and boost adoptions. Regarding EV, the focus has been on
implementing measures such as incentives and tax rebates, support for the deployment
of charging infrastructure and fuel economy standards, to reduce the cost gap between
EVs and conventional vehicles (International Energy Agency, 2019). For example, in 2011,
the UK government introduced the “plug-in car grant” scheme to support the purchasing
of ultra-low emission vehicles (Roberts, 2020). Originally set at £5000 for all eligible
vehicles, it was reduced to £3500 for EVs and eliminated for plug-in hybrid EVs in 2018
(Suzuki, 2020). The scheme supported the purchase of more than 200,000 ultra-low emis-
sion vehicles at a cost of about £800 million, yet these vehicles only represent less than 2%
of the vehicle stock in the UK (Roberts, 2020).1 A similar scheme implemented by the
Chinese government in 2009 reimbursed buyers with roughly £2000 per EV purchase,
although this was reduced to about £1600 in 2019 (Barrett, 2021), and helped China to
become the largest market for EV, accounting for about 50% of global sales. The
overall market share of EVs in China, however, is below 2%. Similar cases can be observed
in European countries such as Denmark and the Netherlands (Suzuki, 2020), while in the
US, the Federal Government adopted income tax credits for up to US$7500 for the first
200,000 EVs sold, for a total expenditure of about US$1500 million (Winston, 2021).

Given these investments, considerable effort has been devoted to forecast the poten-
tial demand for transport innovations and their adoption times. Accurate predictions are a
necessity, not only to understand and predicting trends, but also for the formulation and
evaluation of policy measures. However, predicting the demand for innovations proves to
be particularly challenging. Forecast figures depend greatly on modelling methods and
assumptions, and a great variability in methodologies, data and contexts exists. In this
context, comparing results is difficult, and trying to use these results to make policy rec-
ommendation is risky.

This paper aims to provide a critical review of the methods employed in the literature
to forecast the demand for transport innovation, attempting to understand the validity of
their predictions and recommendations. While it is difficult to clearly identify which
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method is better to obtain robust forecasts in all circumstances, our focus is on analysing
the strengths and weaknesses of each modelling framework, identifying the elements
that might contribute to a more accurate representation of the transport diffusion inno-
vation problem. The review focuses on the forecast of EVs for two reasons: because much
more research is available for EVs than for the other “newer” innovations and, more
importantly, because the EV market is the most mature and consolidated among all
the innovations, allowing an interesting comparison between forecasts and actual
market penetration. It is worth mentioning that even if the basic EV technology has
existed for over 100 years, EVs2 – and alternative fuel vehicles in general – have experi-
enced a resurgence in the last decade or so (International Energy Agency, 2019). Never-
theless, they can still be considered an “innovation”, because, with few exceptions
(notably Norway with a market share of over 17% and Iceland with 6%; International
Energy Agency, 2021), their market shares are still marginal, and the product is still
under significant development. We concentrate on personal vehicles, attempting to
understand the purchase behaviour from a consumer perspective, and explicitly exclud-
ing the commercial vehicle market, which operates under different criteria and must be
analysed with different assumptions.

There are already excellent reviews on modelling methods for forecasting the EV
market. Coffman et al. (2017) identify factors that affect EV adoption, while Liao et al.
(2017) and Kumar and Alok (2020) focus on the attributes that consumers consider rel-
evant when choosing an EV in stated preference (SP) experiments. These three articles
mainly concentrate on the substitutional aspect of the EV adoption process – i.e. the
choice of EVs among other fuel alternatives. On the other hand, Al-Alawi and Bradley
(2013), updated later by Jochem et al. (2018), provide a detailed revision of the
methods used to model the diffusion of EVs adoption, focusing on methodological back-
grounds and data requirements. Our review complements and extends previous works in
three ways: (1) it focuses specifically on the ways in which choice has been incorporated
into diffusion models or vice-versa, and hence providing a substantially different literature
compared to Jochem et al. (2018),3 (2) it includes a discussion on forecast accuracy, con-
trasting the predictions with the actual figures available and estimating an average root
mean square error and (3) it compares models and methods in terms of their strengths
and limitations, and their implications in forecasting accuracy. In doing that, it also con-
tributes discussing the literature published between 2019 and 2021.

The paper is organised as follows. Section 2 provides a description of the methodology
followed to review the relevant literature. Sections 3–5 review models and methods to
incorporate choice behaviour into EV diffusion modelling: bottom-up models, top-
down models and mixed models, respectively. Section 6 provides a discussion on forecast
accuracy, model validation and some key points for further research.

2. Review criteria and article classification

In line with the objective of this review, only articles that simultaneously contain a disag-
gregated model of individual behaviour (choice) and a model of the aggregate effects of
these choices in the network (diffusion) were considered in the analysis. We started by
analysing the articles in the reviews by Al-Alawi and Bradley (2013) and Jochem et al.
(2018), as well as their respective cited references, using a forward snowballing approach
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(Van Wee & Banister, 2016). This initial screening process yielded 88 candidate articles to
review. We continued with searches in the Scopus database using the keywords “electric
vehicle AND choice model”, “electric vehicle AND diffusion” and “electric vehicle AND pre-
ferences”. These generated a list of 1273 additional articles, which was later refined to
include only articles published in peer-reviewed journals or conference proceedings,
and then screened by titles and abstracts, reducing the list to 134. From the list of 88
+ 134 candidate articles, 168 containing choice experiments without a diffusion com-
ponent, or diffusion models without treatment of consumer choice, were excluded.4 54
articles were finally included in the review. We followed the scheme in Al-Alawi and
Bradley (2013) and Jochem et al. (2018), and classified them by their main modelling
method, into bottom-up, top-down and mixed models:

. Bottom-up models (29 articles) adopt an individual perspective in a simulation environ-
ment, where behavioural rules are implemented at the individual level such that
diffusion occurs as a product of social interaction.

. Top-down models (18 articles) operate from an industry perspective, combining an
aggregate framework for the diffusion component, with a disaggregate method (gen-
erally discrete choice models) for the substitutional effect.

. Mixed models (5 articles) combine the bottom-up and top-down approaches in a sys-
tematic manner. They integrate aggregate diffusion models with agent-based
models, taking advantage of both methods.

This rough classification scheme is based on the main modelling approach employed
in each article, and as such, it is not rigid. The scheme offers a tool to understand the many
nuances involved in modelling this complex problem and the techniques used to tackle
them.

Table 1 presents a summary of the 54 articles analysed, including information about
the behaviour rules and the social interaction models adopted, as well as the data
source, the country where the studies were applied, and the sample data period, which
usually corresponds to the reported data collection date5 These aspects are further
explored in the following sections.

3. Bottom-up models

Two main bottom-up frameworks have been implemented to model EV diffusion. Most
articles use agent-based modelling, while some recent applications work with evolution-
ary game theory. Both approaches are analysed in this section.

3.1. Agent-based models

Agent-based models (ABM) are simplified virtual representations of complex systems – in
this context, the social system where the innovation is diffused – constructed to study,
from a bottom-up perspective, the system’s properties that emerge from social inter-
actions. The unit of analysis is thus the agent, a software entity capable of flexible and
autonomous action according to certain pre-established “rules” (Nikolic & Kasmire,
2013) which determine its decision-making and its interaction with other agents in the
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Table 1. Summary of EV forecasting models.

Model type Sub-type
Individual

behaviour model
Social interaction
inclusion method Dataa

Validation
techniquesb Article Country

Sample data
Period

Bottom-up Single agent
based model

Nested logit Specific
parameter

Grounded (N) G1;G2 Cui et al. (2010) US Unspecified

Multinomial logit Willingness
to consider

Grounded (N) G1;G2;G3 Shafiei et al. (2012) Iceland Unspecified
Simulated G1 Tran (2012) N/A N/A

Mixed logit Consideration
threshold

Grounded (N) G1;G2;G3 Brown (2013) US 2009–2013

Ad hoc
(Question-based)

Specific
parameter

Simulated G1 Pellon et al. (2010) N/A N/A
Partially grounded (N) G1;G2;G3 Eppstein et al. (2011) US Unspecified
Grounded (S) G1;G2 Eppstein et al. (2015) US 2011

Specific
question

Grounded (?) G1;G2;G3 Silvia and Krause (2016) US Unspecified

Willingness
to consider

Grounded (N) G1;G2;G3;C Querini and Benetto (2014) France /
Luxemburg

2012

Grounded (S) G1;G2;G3;C Adepetu et al. (2016) US 2013
Ad-hoc
(Utility-based)

Not considered Grounded (C) G1;G2;G3;C Redelbach et al. (2013) Germany 2009–2010
Specific parameter Grounded (S) G1;G2 Kim et al. (2011) Korea Unspecified

Grounded (N) G1;G2 McCoy and Lyons (2014) Ireland Unspecified
Grounded (N) G1;G2;G3;C Buchmann et al. (2021) Germany 2018

Communication
model

Grounded (S) G1;G2;G3;C;V Klein et al. (2020) Germany 2019

Ad hoc
(Cost-min)

Not considered Grounded (N) G1;G2 Mock et al. (2009) Germany Unspecified
Specific
parameter

Grounded (?) G1;G2 Sweda and Klabjan (2011) US Unspecified
Grounded (S) G1;G2 Hoekstra and Hogeveen (2017) Netherlands Unspecified

Communication
model

Partially grounded (N) G1;G2 Ramsey et al. (2018) Poland Unspecified

Other (Alternative
approach)

Communication
model

Grounded (S) G1;G2 Wolf et al. (2015) Germany Unspecified
G1;G2;G3;C;V Kangur et al. (2017) Netherlands 2012

Bottom-up Multi agent
based model

Multinomial logit Willingness
to consider

Grounded (S) G1;G2;G3;
C;V;H

Noori and Tatari (2016) US 2015

G1;G2;G3;C Onat et al. (2017) US Unspecified
G1;G2;G3;C;V Sen et al. (2017) US 2015
G1;G2;G3;C;V Zhuge et al. (2019) China 2015–2016

Bayesian
choice model

Specific
parameter

Grounded (S) G1;G2;G3;
C;V;H

Zhang et al. (2011) US Unspecified

Ad-hoc
(Utility-based)

Specific
parameter

Partially grounded (C) G1;G2;G3 Huang et al. (2021) China 2020
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Ad hoc
(Cost-min)

Willingness
to consider

Simulated G1 Sullivan et al. (2009) N/A N/A

Not considered Grounded (C) G1 Choi (2016) South Korea Unspecified
Evolutionary
game theory

Ad hoc
(Utility-based)

Evolutionary
game theory

Partially grounded (P) G1 Li et al. (2019) China Unspecified
G1 Hu et al. (2020) China Unspecified

Top-down Aggregate
market model

Multinomial logit Bass-like curve Grounded (S) G1;G2 Mau et al. (2008) Canada 2002
Grounded (S) G1;G2;G3;C Higgins et al. (2012) Australia 2011
Grounded (N;P) G1;G2 Jensen et al. (2017) Denmark 2012–2013

Norton-Bass
model

Grounded (P) G1;G2 Jun and Kim (2011) South Korea Unspecified

System
dynamics

Multinomial logit Policy scenarios Grounded (P) G1;G2 BenDor and Ford (2006) US Unspecified
Willingness
to consider

Partially grounded (C) G1;G2 Struben and Sterman (2008) Theoretical N/A
Partially grounded (S) G1;G2;G3;C Shepherd et al. (2012) US 2004
Grounded (S) G1;G2;G3;C Mazur et al. (2018) UK Unspecified
Partially grounded (S) G1;G2;G3;C Oliveira et al. (2019) Portugal 2013
Partially grounded (P) G1;G2;G3 Keith et al. (2020) US Unspecified

Bass-like curve Grounded (S;P) G1;G2 de Santa-Eulalia et al. (2011) Germany 2009
Other
(Utility-based)

Development
model

Partially grounded (N;S) G1;G2;G3;C Kong et al. (2020) China Unspecified

Simulation
model

Other
(Utility-based)

Policy scenarios Grounded (N) G1;G2 Plötz et al. (2014) Germany 2011

Multinomial logit Policy scenarios Grounded (N) G1;G2;G3;C Schmelzer and Miess (2015) Austria 2013
Modified
choice model

Multinomial logit Policy scenarios Grounded (N;P) G1;G2;G3;C Brand et al. (2017) UK 2013
Discrete-continuous
choice model

Policy scenarios Grounded (S) G1;G2;G3 Liu and Cirillo (2018) US 2014

Hybrid choice/
latent variable model

Policy scenarios Grounded (S) G1;G2 Tchetchik et al. (2020) Israel 2014

Probit model Policy scenarios Grounded (N,P) G1;G2;G3;C Archsmith et al. (2021) US 2017–2018
Mixed Mixed model Multinomial logit Willingness

to consider
Grounded (C) G1;G2 Shafiei et al. (2013) Iceland Unspecified

G1;G2;G3;C Pasaoglu et al. (2016) EU Unspecified
Grounded (?) G1;G2 Yang et al. (2015) China Unspecified

Nested logit Willingness
to consider

Grounded (N) G1;G2;G3;C Kieckhäfer et al. (2014) Germany 2008

Choice set
formation

Grounded (N) G1;G2;G3;C Kieckhäfer et al. (2017) Germany 2008

aSources for grounding: (N) = Nationwide or big-scale surveys; (S) Ad hoc surveys; (C) Combination of nationwide and ad hoc surveys; (P) Sales information; (?) Undisclosed.
bValidation techniques: (G1) = Grounding by storytelling; (G2) = Grounding by sensitivity analyses; (G3) = Grounding by initialisation; (C) = Calibration; (V) = Verification; (H) = Harmonisation.

TRA
N
SPO

RT
REV

IEW
S

1123



system. ABM offer an interesting methodology to account for the social component of EV
diffusion, as individual decisions can be designed to depend on the interaction between
several agents and the social network. The flexibility of the ABM makes them particularly
suitable to test the effect of economic variables but also to analyse the effect of public
attitudes and awareness, provided that a solid theoretical approach is used to ground
agent behaviour. However, the models can become very complex and often simplifica-
tions are made that might diminish their benefits when used for forecasting purposed.

3.1.1. General modelling framework
The EV system is intrinsically multi-agent, as individual purchase behaviour – the demand
side – depends strongly attributes of the supply side (price and other costs, driving range)
and on other aspects such as charging, fuelling and maintenance infrastructure which are
regulated and hence determined by government policies. However, modelling simul-
taneously several agents with different goals and cognitions is very complex and most
of the ABM works focus on consumer adoption behaviour (i.e. single-agent models)
assuming that both supply and policy measures are exogenous variables. This might be
generally true for small demand increments – like those occurring during the first
diffusion stages – but a greater EV demand might require relevant changes from EV sup-
pliers, as well as from authorities and energy providers. In this case, the more complex
multi-agent models could be useful to understand the interactions that drive diffusion.
Only 8 articles analysed include agents representing the supply side of the EV market,
i.e. vehicle manufacturers and dealers, who react to actions of other agents with their
own profit maximising objective functions. In these multi-agent models, manufacturer
agents can respond to government policies and demand changes by adjusting engine
types, fuel economy, vehicle types and prices. These models are usually simplified rep-
resentations of complex agent relationships and might suffer from lack of realism
especially when data input is limited.

3.1.2. Individual decision rules
The individual behavioural rules for consumer agents represent the core of ABM and are
key for forecasting policies, because they set the nature of a decision process that involves
defining if the purchase of a vehicle is required – either to add a new vehicle to the house-
hold, or to replace an already existing one – and then choosing the specific vehicle to buy
among a set of – possibly –many alternatives. Roughly three types of decision rules have
been used: discrete choice models (DCM), ad-hoc behavioural rules and other approaches.

3.1.2.1. Discrete choice models. Discrete choice models (DCM) represent arguably the
approach most used in transport (but also other fields) to reproduce the behavioural
process that leads to the agent’s choice. DCM take a causal perspective, assuming that
there are factors that collectively determine, or cause, the agent’s choice. Some of
these factors are observed by the researcher and some are not. The treatment of the
unknown factors as random variables leads to the probabilistic outcome of the DCM
(Train, 2009).

Given the “popularity” of DCM, these would appear as an obvious method to be used
to simulate the agent decision rules within an ABM. Surprisingly, DCM are only employed
as behavioural rule in 9 of the 29 ABM articles analysed. As shown in Table 1, 5 of these
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articles adopt a simple multinomial logit (MNL6) model. Other chosen specifications
include nested logit (Cui et al., 2010); mixed multinomial logit (Brown, 2013; Tran,
2012) and Bayesian MNL with varying coefficients (Zhang et al., 2011).

In their usual specifications, DCM are static, meaning that their parameters do not
change over time. Different adjustments have been adopted to account for the
dynamic nature of the diffusion process, i.e. the positive impact of the social network
on the probability of buying EVs. While Zhang et al. (2011) and Cui et al. (2010) capture
this effect by expressing the coefficients as a function of effects like word of mouth or pre-
vious knowledge of the innovative technology, most articles include in the DCM a willing-
ness to consider (WtC) variable, first proposed by Struben and Sterman (2008), which
multiplies the utility of the EV alternative and is most commonly assumed as varying
between 0 and 1 as a function of the number of EV adopters (Noori & Tatari, 2016;
Onat et al., 2017; Shafiei et al., 2012; Sen et al., 2017). This approach has been designed
with a practical focus, i.e. the resulting demand curve must follow the typical S-shaped
diffusion curve. The methods used to achieve this are extremely diverse, and as such it
is difficult to make any judgement on their theoretical soundness and robustness. In
addition, as will be seen later, few of these methods have been used to produce forecasts,
making a detailed accuracy-based comparison also unfeasible.

In all these applications, parameters are estimated exogenously from the ABM. By con-
struction, this also means that the coefficients do not vary throughout the simulation
process. Interestingly, only Zhang et al. (2011) – relying on a SP experiment – and
Brown (2013) – with revealed preference information from a national transport survey
– estimate their choice models as part of their ABM setup. In the remaining articles, the
coefficients are imported from external sources. This might be a disadvantage, especially
if parameters from the population of interest are not available and external samples are
used (Shafiei et al., 2012, 2013). In addition, the modelling framework might not be
entirely appropriate for the nature of the data used for estimation; for example, if MNL
models are estimated with SP data, this could translate into biased standard errors for
the estimated parameters (Ortúzar & Willumsen, 2011).

3.1.2.2. Ad-hoc behavioural rules. The remaining 20 ABM articles model EV choice with
simplified heuristics that attempt to incorporate most of the behavioural elements that
research has found to be relevant for EV adoption (Sovacool, 2017). The heuristics used
can be classified in question-based rules, utility-based rules and cost minimisation rules.

. Question-based rules, used in 6 articles, imply agents responding to a set of questions at
each time step. These questions are used to decide first if it is necessary to buy a new
vehicle and then to determine whether costs, benefits and desirability of the available
alternatives reach the threshold of WtC above which adoption will occur.

. Utility-based rules, used in 6 articles, entail agents evaluating a certain deterministic
utility function at each time step. These cannot be considered choice models as
their utilities are treated as a deterministic quantity – generally a linear combination
of several attributes – to be maximised by the consumer, without including a
random component. While in most cases the utility functions only consider socioeco-
nomic variables and vehicle cost and performance attributes, the utility functions in
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Klein et al. (2020) and Buchmann et al. (2021) also include EV awareness and social
network characteristics, respectively.

. Cost minimisation strategies, used in 6 articles, implement a behavioural rule that
establishes the monetary component as the ultimate determinant of adoption, even
when considering other relevant attributes.7 The methods usually involve agents
screening for available cars within their budget window, scoring them according to
size, performance (Choi, 2016), brand preferences (Mock et al., 2009; Sullivan et al.,
2009) and social influence (Ramsey et al., 2018; Sweda & Klabjan, 2011) and choosing
the alternative with the highest score.

Ad-hoc behavioural rules are tailored to each specific problem. Although logic and
valid, these rules lack a verified theoretical framework, that supports the behavioural
assumption. Models based on a well-documented behavioural theory, with known
assumptions, implications and limitations, should always be preferred over ad-hoc-
methods, whose behavioural foundations are not theoretically grounded, however
logical they might look. For this reason, the use of the DCM paradigm (as discussed in
section 3.1.2.1) is preferable, because it is based on the random utility theory, which pro-
vides a broadly verified and tested model of individual choice behaviour (McFadden,
2000).

3.1.2.3. Other approaches. All articles discussed so far model individual vehicle choice
mostly based on instrumental or functional EV attributes, such as purchase cost, operation
cost, vehicle size, or driving range, sometimes considering socioeconomic and spatial
attributes, while social influence is embedded in the ABM framework. Differently,
Kangur et al. (2017) include social influence using the Consumat framework devised by
Jäger (2000), where action depends on constant evaluations of satisfaction and certainty
towards transport needs. Wolf et al. (2015) uses the hot coherence model proposed by
Thagard (2006) where agents decide by maximising the coherence of their current
beliefs and emotions, subject to interactions with other agents. The decision to adopt
is mostly driven by the evolution of emotions and beliefs. However, the outcomes of
the model are behavioural intentions, i.e. no choice probabilities or market shares are
estimated.

3.1.3. Agent attribute and model parameter sources
Originally, ABM were largely conceptual and designed to understand complex social
systems, rather than making meaningful predictions (Zhang & Vorobeychik, 2019). ABM
were seen as “toy models” unrepresentative of real phenomena (Garcia & Jäger, 2011)
and accused of lacking realism. However, among the articles analysed in this review,
only Sullivan et al. (2009), Pellon et al. (2010) and Tran (2012) work with simulation exer-
cises not based on real population data. All the other articles analysed in this review are
grounded on data that characterises real populations. While many works rely specifically
designed surveys, Cui et al. (2010), Querini and Benetto (2014), McCoy and Lyons (2014)
and Choi (2016) gather information from large scale transport surveys. In these cases, the
social network is built by creating synthetic populations derived from both the disaggre-
gate survey variables and aggregate distributions of population attributes (Jeong et al.,
2016).
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ABM offer an interesting methodology to account for the social component of EV
diffusion, as individual decisions can be designed to depend on the interaction
between the agent and the social network. Social influence and norms, network
effects, social communication and the effects of advertisement on innovation diffusion
are often included as part of the decision process. Multi-agent models should be appro-
priate to model all the stages in the diffusion process; however, they require disaggregate
information about the vehicle supply market, the energy sector and the government, and
their mutual interactions, to define realistic behavioural rules. As these relationships are
extremely complex and depend on multiple factors that are difficult to analyse and
predict, there is a risk of behavioural oversimplification, especially when detailed infor-
mation is limited or unavailable.

It is expected that data availability and quality play a relevant role in the robustness
and accuracy of the forecasts. In general terms, models with a strong focus on the
demand side require a large amount of data at a disaggregate level for a proper charac-
terisation of agents and their social networks, and thus they are more prone to bias due to
low-quality input data or unrepresentative samples. Models that consider both demand
and supply depend on several sources of disaggregate and aggregate data to calibrate
the parameters in their sub-models. In this case, the intricate interrelation between
inputs and outputs of the sub-models makes the general models more prone to error
propagation due to the combination of several sources of data. These effects should be
considered to ensure reproducibility and accuracy.

3.2. Evolutionary game theory models

Evolutionary game theory (EGT) (Smith, 1982) combines game theory with dynamic evol-
ution process analysis. It models the interrelation between actors with multiple – and
possibly diverging – interests in complex systems where individual preferences are
influenced by actions performed by actors from other sectors Encarnação et al. (2018).
The method requires an explicit mathematical definition of both the individual strategies
and their expected outcomes. The purpose is to describe how these strategies are
adjusted to the current situation in a dynamic process (Li et al., 2019). The simulation
(game) is constructed so the combination of all the agents (players) using their best
response strategy leads to a certain equilibrium.

Very few EGT applications have been set up to study EV diffusion, and all refer to cases
of multiple stakeholders including manufacturers. Both Li et al. (2019) and Hu et al. (2020)
study EV diffusion in China and conclude, based on their simulations, that production sub-
sidies for manufacturers have better effects on EV diffusion than consumer purchase
subsidies.

While the EGT scheme might be useful to understand the roles of stakeholders and
their strategies in the system in a controlled fashion, the requirement that the strategies
and outcomes must be defined with closed mathematical expressions is only feasible in
very idealised situations – uniformly connected networks, deterministic behaviour, infinite
population size –which are scarcely found in the real world. This makes the method rather
unrealistic in most applications. ABM are the preferred way of studying EV diffusion with a
bottom-up framework, as they can reveal dynamics resulting from agent interaction in
realistic environments.8
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4. Top-down models

Top-down models can be understood as models built from aggregate information about
the EV market to model diffusion and incorporating a choice for the substitutional effect.
As summarised in Table 1, the 18 articles found belonging to this group can be classified
into three groups: (1) aggregate market models, (2) system dynamics (SD) models and (3)
other top-down approaches that do not belong to any of these two categories.

Top-down models are appropriate when a realistic market representation is required
as, compared to the bottom-up approach, they allow testing several scenarios in a
more organic manner, where economic effects appear in the system as a product of sta-
keholder interaction. While all the top-down models reviewed feature a choice com-
ponent to consider substitutional behaviour, forecasting involves computing choice
probabilities that depend on one or more exogenously estimated diffusion parameters
such as WtC. This is often one of the weakest components of the diffusion model and
might impact forecasting accuracy, as will be discussed below.

4.1. Aggregate market models

Aggregate market models extend the single-market diffusion process based on aggregate
economic information (sales, stocks, prices) as originally proposed by Bass (1969, 2004), by
using mostly MNL to account for the substitution among products based on the vehicle
characteristics. Bass-like models supplemented by MNL models are used in Mau et al.
(2008), Jun and Kim (2011) and Higgins et al. (2012). Jensen et al. (2017), on the other
hand, implement an advanced choice model, where the disaggregate utility parameters
are estimated exogenously but the alternative specific constants and scale of the model
are estimated jointly with a Bass-like diffusion model and hence adjusted to observed
market shares. This method allows the improvements on EV attributes not to be oversha-
dowed by the effect of constants that constrain the model to the low demand in the early
market.

Notwithstanding their parsimony – they can be described using a few simple closed-
form expressions and relatively few aggregate data are required for estimation, which can
be useful for a quick assessment – aggregate market models have been criticised because
they assume a fully connected social network and the shape of the diffusion curve
remains constant throughout the process (Peres et al., 2010). These models have a very
rigid structure, hence the forecasts dependmore on the assumptions and the specific par-
ameters of the models than on demand and supply response to market conditions. This
can greatly undermine their realism.

4.2. System dynamics models

System dynamics (SD) is a method of studying the behaviour of complex systems over
time (Forrester, 1962). Differently from the aggregate methods discussed in the previous
section, SD is essentially a simulation tool that uses aggregate variables such as feedbacks,
flows, stocks and time delays to model the behaviour of the system over time and DCM to
model the substitution effect. By explicitly accounting for the dynamic nature of the
process, SD considers the interactions of multiple stakeholders.
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The most widely employed SD framework to model transport innovations is the theor-
etical model proposed by Struben and Sterman (2008), which consists of three main
elements: a fleet turnover model (for manufacturers), a DCM of the car purchase decision
(for consumers) and a technology/social diffusion process. Social network effects are
included in the choice model via a WtC indicator, which depends on feedback from con-
sumers’ experience, word of mouth, marketing and the number of adopters in the
network. This framework has been combined with DCM in Shepherd et al. (2012) and Oli-
veira et al. (2019) who estimate a MNL model using data from SP surveys. While the
method is solid and behaviourally consistent, it is not clear how the parameters from
the technology/social diffusion component might be estimated, and this represents an
important disadvantage, especially in terms of model reproducibility and applicability
to different context.

Some articles have adopted other SD frameworks to model EV diffusion, with several
market-specific assumptions adopted to varying degrees of behavioural realism. Exogen-
ously estimated choice models are integrated with simplified representations of the
market in BenDor and Ford (2006), Mazur et al. (2018) and Kong et al. (2020) and with
SD models that still include a Bass-like diffusion curve in de Santa-Eulalia et al. (2011),
while more comprehensive market representations are supplemented with simplified
choice models in Kong et al. (2020) and Keith et al. (2020).

Compared with aggregate market models, SD relies on more complex representations
of the relationship between several system actors, including multiple interactions that are
absent from the simplified approach. The detailed consideration of these effects is a
welcome feature for models that deal with complex systems. This complexity, however,
comes at the cost of increasing information requirements and involving a series of micro-
economic and behavioural assumptions whose validity is not always verified. In addition,
as with other top-down methods, the focus is on the aggregate representation of stake-
holders, and the choice component of these models is usually modelled with a lower level
of detail than in bottom-up approaches. The lack of historical datasets for proper model
estimation is usually overcome by importing parameters from SP surveys or external
studies, which might affect consistency and forecasting accuracy.

4.3. Other top-down approaches

Two additional groups of approaches cannot be included in the two categories previously
defined. A first group of models (which we call simulation models) considers specifications
for the aggregate diffusion model that differ from Bass-like curves or SD simulations and
include a choice component. Plötz et al. (2014) model EV diffusion with an aggregate
model that simulates individual driving profiles for which a utility-maximising vehicle
option is chosen among the available alternatives. Schmelzer and Miess (2015) propose
a simulated general equilibrium model that incorporates a MNL model of vehicle type
choice, using a nationwide transport survey, with alternative specific constants calibrated
to match aggregate figures. Finally, Liu and Lin (2017) estimate choice probabilities for
vehicle technologies using a nested logit model, which are then then used to calculate
market shares, vehicle sales and stock. Diffusion occurs as a result of attribute evolution
over time As with SD, strong assumptions might mean that behaviour models are over-
simplified because the emphasis is on economic interactions at the macro level.

TRANSPORT REVIEWS 1129



A second group of models (which we call modified choice models) implement the
dynamic nature of the diffusion problem inside a DCM without relying on an aggregate
market model. Liu and Cirillo (2018) estimate a joint car ownership/use model over a 9-
year period. This paper is unique in considering the effect of multi-car household and
second-hand vehicle purchases. Tchetchik et al. (2020) instead combine concepts from
Rogers’ diffusion of innovations model (Rogers, 2003) with the theory of multiple goal
framing (Lindenberg & Steg, 2007), which suggests two main adoption motivators:
product attributes and individual attitudes and traits. This study offers an interesting fra-
mework to study the effect of psychological traits in EV diffusion. However, as in Liu and
Cirillo (2018), diffusion is only simulated via scenarios and the social dimension is not con-
sidered. Archsmith et al. (2021) estimate a Probit model that predicts vehicle class market
shares, with a calibrated parameter called “intrinsic growth rate” driving the diffusion
process. Similarly, Brand et al. (2017) model EV diffusion using a MNL model where the
network effect is captured by the alternative-specific constant, which the authors estimate
for several consumer segments, and adjust over simulation time. Further work is required
to include the social dimension in these choice modelling approaches. At their current
state, its exclusion represents a major drawback.

5. Mixed models

Mixed models use aggregate (most frequently, SD) models for the interaction between
vehicle supply, charging infrastructure and market shares, disaggregate ABM to capture
social interaction and DCM for individual behaviour. These approaches are relatively
new, and as shown in Table 1, our search found only five articles in this category.

Both Shafiei et al. (2013) and Yang et al. (2015) use a MNL with a WtC parameter to
model vehicle choice inside their ABM. They differ in the SD component, as Shafiei
et al. (2013) include consumers, the government, the energy supply system, fuel/charging
stations, car importers/dealers, car manufacturers, vehicles and consumers, while Yang
et al. (2015) consider vehicle demand, policy, electricity pricing and EV evolution. Kieckhä-
fer et al. (2014), on the other hand, implement a hybrid simulation approach to estimate
EV diffusion, with choice probabilities estimated using a nested logit model with a WtC
parameter. Finally, Pasaoglu et al. (2016) combine a comprehensive representation of
vehicle technology transition in the European Union with the socio-technological
model by Struben and Sterman (2008), and a MNL model estimated to assess consumer
preferences.

Mixed models are an interesting tool for integrating choice and diffusion, as they main-
tain the market focus of top-down models, while incorporating ABM to improve behav-
ioural characterisation. If detailed information is available from both the demand and
the supply side, they offer a more realistic representation of the system and its inter-
actions. There is still room for further improvement in both the diffusion and the substi-
tution components. Choice models should incorporate more complex structures and
include attributes such as social influence, individual psychological traits and agent com-
munication. In addition, a realistic representation of economic relations between market
stakeholders – authorities, vehicle producers and sellers, the energy sector – requires
increasing data acquisition and processing efforts, considering public and private
sources available.
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6. Method comparison and perspectives for model integration

This article has discussed several methods to predict EV diffusion, providing a breakdown
of their advantages and shortcomings. The following sections present a comparative
analysis of the methods discussed, based on validation techniques, and forecast accuracy
compared to real figures. Some comments on the integration of diffusion and substitution
models are provided in the final section.

6.1. Model validation methods

One of the greatest challenges with any forecasting model is the validation phase, i.e.
evaluating if its assumptions and methods are appropriate for modelling the problem
of interest (Nikolic & Kasmire, 2013). We study the validation methods used in the
reviewed articles following the scheme proposed by Carley (2017), which classifies vali-
dation techniques in four groups:

. Grounding, or establishing the theoretical reasonableness of the model. All the 52
articles reviewed include storytelling (authors setting a claim for why the proposed
model is reasonable), and 49 of them are grounded in terms of initialisation (setting
initial model parameters based on real data, where possible). In 7 articles, grounding
is extended by including a parameter sensitivity analysis (simple performance
evaluation).

. Calibration, or the process of tuning model parameters and initial conditions to fit
detailed external real data, i.e. data that was not considered for model estimation or
simulation. Here, the focus is on the model’s inputs, and the purpose of calibration is
to ensure that the model output comes as close to reality as possible. Other than
simple grounding, this is the most frequently used validation technique. 12 articles cali-
brate their parameters using independent historic information – for example, early
years not forecast by the model –. In other four cases, calibration is based on model-
to-model comparison, i.e. these models are calibrated against results from another –
external – simulation model.

. Verification, or determining the validity of predictions against a set of real external data,
using statistical tests. This usually occurs after calibration and does not involve par-
ameter adjustment, but an overall assessment of the model’s forecasting ability.
Hence, the emphasis is in the modelling output. The type of data available determines
the level of detail of the verification process (point, pattern, distribution). Four recent
articles consider this technique. Model performance is statistically tested against a
benchmark model (e.g. a model estimated using data for the same context with
different assumptions) in Kangur et al. (2017) and Zhuge et al. (2019), and real-world
data in Sen et al. (2017) and Klein et al. (2020).

. Harmonisation, or the integration of calibration and verification in a multi-step process
using an auxiliary benchmark model. Here, modelling predictions are compared with
the predictions of a linear model, to statistically assess the adequacy of the theoretical
assumptions and their predictive value over and above that achievable through a
simple linear benchmark model (Carley, 2017). According to Carley (2017), harmonisa-
tion allows measuring the marginal improvement that the non-linear components in
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comparison to a simple benchmark model, fitted with the same data. As each model
component could theoretically be compared with a baseline model, harmonisation
could also be a useful tool to locate “areas or assumptions of the model that need
to be improved”. This approach is followed in Zhang et al. (2011) and Noori and
Tatari (2016). However, some authors do not consider harmonisation worthwhile and
do not include it as a relevant step of the validation process (e.g. Ngo & See, 2012;
Nikolic & Kasmire, 2013), possibly because some of its benefits can also be attained
by other methods with less implementation difficulties.

Perhaps unsurprisingly, 22 of the 52 articles do not report any validation other than
storytelling or initialisation. Only a handful of single-agent ABM include data calibration,
and most top-down and mixed models report only a calibration stage to tweak internal
parameters. The most detailed validation schemes are found only in the more complex
multi-agent approaches. The lack of validation in most of the articles analysed makes it
impossible to identify patterns.

It has been argued that in some cases, validation might not be possible due to a lack of
proper out-of-sample datasets or benchmark models (Carley, 2017). Nevertheless, vali-
dation is essential for reproducibility, especially if the model will be used to identify
and recommend policy measures, as it is the only method to evaluate its effectiveness
in representing the system of interest (e.g., Mabit et al., 2015; Parady et al., 2021). In
addition, as will be discussed, model grounding greatly helps reaching better forecasting
accuracy. Efforts should be made to include validation in any innovation diffusion
research, as results and conclusions depend on the validity of the modelling tools used.

6.2. Estimated EV adoption versus real figures

To understand the forecasting ability of the models analysed, we studied the subset of 19
articles that include annual forecasts for a clearly defined timeline and geographic context,
and for which actual market shares are publicly available.9 Table 2 presents the annual
market share predictions we could derive from these articles, and the corresponding
actual market figures of EV market shares for the same year and population, obtained by
retrieving data from the forecast tables, where available, or analysing the relevant plots
using the Plot Digitizer app (PlotDigitizer, 2022). In all studies, the figures represent the pre-
dicted EV market shares, with just two exceptions – Eppstein et al. (2015) predict plug-in
hybrid vehicle stock shares only, and Sen et al. (2017) forecast the EV share in terms of
annual sales. The actual market share figures were sourced from the International Energy
Agency (2021) website and the European Alternative Fuels Observatory (2020). For consist-
ency, we only consider predictions starting one year after the formal publication date.

Modellers often work with a range of variation for each relevant parameter and
combine their values to create several forecasting scenarios. For each article and scenario,
we contrast predictions with actual figures by estimating the average root mean square

error RMSE =
����������������������
(1/m) ·∑m

i
(Pi − Ai)

2

√
, where m is the number of forecasting years, and Pi

and Ai are the predicted and the actual shares in year i, respectively. We also computed
a relative measure of error provide to account for the fact that small error can be more
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Table 2. Comparison between predictions and actual figures for some EV diffusion models.

Article
(Best scenario) Context

Market shares per year (Predicted / Actual) Forecast error (RMSE)

2013 2014 2015 2016 2017 2018 2019 2020
1st
Year Average

Last
year

Mock et al. (2009)
(Scenario 1)

Germany 1.4 /
0.0

2.4 /
0.1

3.8 /
0.1

5.6 /
0.2

8.5 /
0.2

14.3 /
0.4

21.7 /
0.5

28.2 /
1.4

1.4 10.4 26.8

Higgins et al. (2012)
(Only scenario)

Victoria,
Australiaa

4.2 /
0.0

5.1 /
0.0

6.9 /
0.0

9.0 /
0.0

11.9 /
0.1

15.7 /
0.1

20.1 /
0.2

24.5 /
0.2

4.2 12.1 24.3

Shafiei et al. (2012)
(Low petrol +
Constant EV price)

Iceland 0.1 /
0.1

2.2 /
0.2

3.3 /
0.4

4.6 /
0.9

5.7 /
2.0

7.1 /
3.3

8.7 /
4.4

10.8 /
6.2

0.0 3.1 4.6

Shepherd et al. (2012)
(BAU scenario)

UK – 0.8 /
0.1

0.9 /
0.2

1.2 /
0.3

1.3 /
0.4

1.5 /
0.6

2.0 /
0.8

2.4 /
1.4

0.7 0.9 1.0

Brown (2013)
(WtC = Reluctant)

US – 0.1 /
0.1

0.3 /
0.2

0.6 /
0.2

0.8 /
0.3

1.0 /
0.5

1.2 /
0.6

1.4 /
0.8

0.0 0.4 0.6

Shafiei et al. (2013)
(Only scenario)

Iceland – 0.8 /
0.2

1.1 /
0.4

1.6 /
0.9

2.4 /
2.0

3.4 /
3.3

3.7 /
4.4

4.7 /
6.2

0.6 0.7 1.5

Redelbach et al. (2013)
(Only scenario)

Germany – – 4.4 /
0.1

– – – – 9.6 /
1.4

4.3 7.1 9.9

Kieckhäfer et al. (2014)
(Only scenario)

Germany – – 0.6 /
0.1

0.7 /
0.2

0.8 /
0.2

0.9 /
0.4

1.0 /
0.5

1.1 /
1.4

0.5 0.5 0.3

Querini and Benetto (2014)
(ECO scenario)

Luxembourg – – 0.7 /
0.3

0.9 /
0.4

1.5 /
0.7

2.1 /
0.9

2.7 /
1.3

3.3 /
2.1

0.4 0.9 1.2

Eppstein et al. (2015)
(No rebates scenario)

US
(PHEV only)

– – – 1.9 /
0.1

2.5 /
0.1

3.0 /
0.2

3.2 /
0.2

3.5 /
0.2

1.8 2.7 3.3

Choi (2016)
(70% fuel price change)

South
Korea

– – – – 19.7 /
0.1

21.6 /
0.3

23.1 /
0.5

23.9 /
0.7

19.6 21.7 23.2

Pasaoglu et al. (2016)
(Petroleum persistence)

EU – – – – 0.7 /
0.3

0.9 /
0.3

1.0 /
0.5

1.0 /
0.9

0.4 0.4 0.2

Brand et al. (2017)
(REF scenario)

UK – – – – – 1.7 /
0.6

0.5 /
0.8

0.2 /
1.4

1.1 0.9 1.2

Jensen et al. (2017)
(Calibrated before)

Denmark – – – – – 1.0 /
0.6

1.5 /
1.0

1.8 /
2.4

0.4 0.5 0.6

Kangur et al. (2017)
(Default scenario)

Netherlands – – – – – 3.5 /
1.6

4.5 /
2.3

5.2 /
3.2

1.9 2.1 2.0

Kieckhäfer et al. (2017)
(Pessimistic scenario)

Germany – – – – – 1.8 /
0.4

1.9 /
0.5

1.9 /
1.4

1.4 1.1 0.5

Sen et al. (2017)
(Base scenario)

US
(Sales share)

– – – – – 8.9 /
2.0

9.3 /
1.7

9.3 /
2.0

6.9 7.2 7.2

Mazur et al. (2018)
(Radical scenario)

UK – – – – – – 5.4 /
0.8

4.5 /
1.4

4.6 3.8 3.1

Oliveira et al. (2019)
(DP1)

Portugal – – – – – – – 1.5 /
0.9

0.6 0.6 0.6

aNo disaggregate data were available for the state of Victoria, Australia. The comparisons are made with Australia using International Energy Agency (2021) figures.
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relevant when predicting small quantities. However, in most cases analysed in this paper
the market shares are very low numbers, and this can create numerical problems even if
the method performs well. With this in mind, our analysis will be based on the absolute
errors though the results of the relative measure will also be discussed in some cases.

It is important to note that often the models aim only to test the effect of several pol-
icies and economic conditions and do not necessarily try to achieve realistic predictions.
Accordingly, Table 2 only contains the best performing scenario (the one with the
minimum RMSE value) for each article.10

A first striking conclusion of this analysis is that, for all articles, the scenario that best
reproduces the actual figures is the most pessimistic one – either the “business as
usual” case, or one that assumes more unfavourable conditions for EV diffusion. Even
in those cases, predictions almost invariably overestimate the actual market shares.
This is also confirmed when analysing the relative measures of error, whose lowest
values are also associated with pessimistic or default scenarios, as in Pasaoglu et al.
(2016) (mean error of 86.3% in their “petroleum persistence” scenario) and Kangur
et al. (2017) (87.0% error in their “default” scenario).

Several factors might play a role in this behaviour. First, while many articles concentrate
in evaluating scenarios with increased policies to stimulate EV uptake, their base case scen-
ario usually assumes that these policies will remain “the same” as in the initial forecasting
year. The evidence seems to show that, in general terms, this is true for the most relevant EV
markets, and in some cases such as China or UK, the incentives have been decreasing over
time (Kohn et al., 2022). Second, the most optimistic policy scenarios assumed highly
increased petrol costs, and/or important reductions in EV purchase prices, neither of
which have been observed. While it has been predicted that some EV models might be
close to cost parity with their internal combustion counterparts (Santos & Rembalski,
2021), EV purchase prices have been, on average, increasing over time, despite the subsidies
and rebates available (AutoTrader, 2022). As energy and vehicle purchase prices are crucial
parameters for scenario building – and they are usually sourced from external sources –
these uncertainties will distort forecasts regardless of the modelling method.

A different difficulty is observed when scenarios depend on theoretical parameters that
represent modelling assumptions. For example, the best prediction in Brown (2013) is
obtained when the agents are assumed to be “reluctant” to the EV alternative (e.g. with
a low WtC), and the largest diffusion barrier on Eppstein et al. (2015) is their “technology
comfort threshold” – a parameter reflecting “consumer uneasiness” with the PHEV alterna-
tive. These parameters are difficult to measure and impossible to predict, and these two
studies are notable in testing their influence in the forecasts using scenarios. Carrying
out a sensitivity analysis is recommended when working with theoretical parameters. As
seen on Table 2, ignoring this aspect can greatly affect predictive accuracy (e.g. Choi, 2016).

Scenario building is an important tool to process uncertainty and generate a range of
predictions where the effect of policy measures and/or economic parameters can be more
easily understood. Displaying the uncertainty of each forecast should also be encour-
aged.11 As can be seen in the last column of Table 2, prediction errors tend to increase
with time.12 As most models work with an S-shape diffusion curve, the forecasts are
mostly unable to reproduce results that greatly deviate from this pattern, such as the
important spike in EV stock share observed during 2020 in countries like Germany,
Iceland and UK (International Energy Agency, 2021).
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In addition, as Table 2 shows, the best performing models (mean RMSE less than 1.0%)
use a great variety of methods – 3 mixed models, 2 ABM, 1 aggregate market model, 1
modified choice model, 1 SD model. In contrast, the use of unrealistic parameters has a
potentially great effect on predictive accuracy (Choi, 2016; Higgins et al., 2012; Mock
et al., 2009). Regardless of the approach, the best results seem to be obtained by
models well calibrated using real data. Articles that use DCM to forecast EV diffusion
obtain a good predictive accuracy, though only when the alternative-specific constants
are calibrated using actual market shares, either with an aggregate market model
(Brand et al., 2017; Jensen et al., 2017), or the Struben and Sterman (2008) framework (Oli-
veira et al., 2019; Shepherd et al., 2012). Similarly, in their ABM simulation, Querini and
Benetto (2015) carry out a detailed calibration approach and ground their model in
detailed national statistics, obtaining acceptable simulation results in their most pessi-
mistic scenario, especially during the first years of the simulation. Mixed models seem
to offer the best accuracy when combining a realistic market representation in a SD com-
ponent with an ABM where decision rules are derived from DCM. This is the case for
Shafiei et al. (2013) and Pasaoglu et al. (2016), who report an extensive calibration
process using real aggregate and disaggregate information. In addition, models that
exclusively focus on the demand side tend to assume full availability of models and
fuel types, which is not necessarily the case, especially for the newer alternatives. Only
models that account also for the supply side can consider this effect and thus offer a
more reliable forecast.

While these results might be difficult to generalise, as they greatly depend on the scope,
assumptions, scenarios and data available, a better understanding of forecast accuracy can
be obtained with a meta-analysis of the predictions. Following similar exercises by
Wardman (2012, 2014, 2022) with transport elasticities, we quantify how the absolute differ-
ence between predicted and actual shares varies across the estimates as a function of some
relevant attributes of each study. Our dataset is relatively small (299 estimates coming from
19 articles), as it only includes the studies reviewed in Table 2 above – albeit considering
every scenario –. Considering this limitation, Table 3 shows the results of a simple linear
regression model13 of forecast errors as a function of study attributes.

Table 3. Meta-analysis of forecasting errors.
Attribute Level Coefficient T-Test

Constant – 13.096 3.72
Scenario type Pessimistic – Fixed

Neutral 2.196 1.93
Optimistic 8.135 6.99

Modelling approach Mixed – Fixed
Top-down 15.262 5.60
Bottom-up 5.445 2.42

Country-level figures Country population (million) 0.195 6.88
Total number of cars (million) −0.281 −7.66

Modelling location Rest of the world – Fixed
UK −24.597 −10.02
EU −10.872 −6.85

Years after first forecast – 1.394 6.15
Modelling variable Sales share Base Fixed

Stock share −9.976 −5.44
Adjusted R2 = 0.450
Sample size = 299
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This specification controls by scenario type (pessimistic scenarios tend to produce the
minimum differences with actual figures), modelling contexts (models estimated for
countries with higher population and lower number of cars tend to be more accurate,
especially when considering UK and EU data) and forecasting horizon (predictions are
more accurate for years closer to article publication). The results show that predictions
of overall stock shares are more accurate than sales shares. More importantly, keeping
everything else constant, the best approximation is obtained by using mixed models.
While bottom-up models show higher average forecasting errors, top-down models
seem to deviate further from actual figures, all of which confirms the relevance of accurate
disaggregate information for a proper market characterisation from the demand side. It is
important to stress in fact that, regardless of the method used, relying on good quality
input data is key to the accuracy of any forecasting exercise,

6.3. Diffusion and substitution: towards an integrated behaviour model

A reliable estimation of EV demand requires solving the non-trivial issue of jointly model-
ling the factors that induce diffusion in a social network and the instrumental and psycho-
social elements that favour household adoption considering the available alternatives. We
have reviewed several articles that attempt to solve this problem using a large array of
methods.

Forecasting variability cannot be easily explained by the information available on each
article. Our results provide some insight onto the elements that can contribute to better
forecasting indicators, namely:

. A theoretically sound representation of individual behaviour is crucial. DCM estimated
with context specific disaggregate data seem to deliver better results than top-down
approaches that simplify or ignore the individual behaviour dimension.

. Mixed approaches perform better than their top-down and bottom-up alternatives, as
they include both dimensions of the problem in an integrated framework.

. Regardless of the method, calibration is essential to properly ground the model to a
specific context. While this might require important efforts in terms of data collection
and analysis, the model will be more likely to provide meaningful and reproducible
results.

Some authors have proposed general guidelines for a behavioural framework that
might explain diffusion and substitution of innovative transport alternatives (Sovacool,
2017), including elements from microeconomic, psychological and sociological theories
along with transport and energy demand forecasting. Several studies focusing on the sub-
stitutional side of the problem have assessed the role of psychological traits such as pro-
environmental attitudes, innovative character, car performance anxiety and the symbolic
value of the car, in EV choice probabilities (Liao et al., 2017). However, these dimensions
have seldom been added to the diffusion-substitution models and only a few articles (e.g.
Kangur et al., 2017; Wolf et al., 2015) carry out significant efforts towards their integration.
Similarly, while every diffusion model includes a social diffusion component which
roughly complies with Rogers’ (2003) innovation diffusion theory, this is usually
implemented in a simplified fashion, without a deep analysis of agent interaction and
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communication. Notwithstanding the important contributions of Struben and Sterman
(2008), the communication analysis in Wolf et al. (2015), and the theoretical integration
by Sovacool (2017), the communication component of diffusion models remains in
need of further research efforts.

It is difficult to think of one unique modelling framework for studying the problem in
every context. Cultural, economic and political differences might play a key role in the
results of a policy, and these effects must be considered on the modelling stage. In
addition, the limited availability of historic data imposes a burdensome restriction on
any modelling framework, with data-based approaches lacking a strong behavioural
background the most affected. Understanding this problem and obtaining more accurate
forecasts requires a multi-targeted approach in an era of fast technologic development,
which often causes market uncertainties, modelling frameworks that attempt to integrate
all phenomena (psychological, social and economic) should be encouraged, especially if
they study the problem using multi-disciplinary approaches. However, considering all
phenomena in a single framework is hard. Discovering new influencing factors and inte-
grating new type of data into modelling is also interesting and promising for future
research. Qualitative research – scarcely present in the reviewed articles – can be key in
providing methods and tools to obtain a more detailed insight into individual and
social experiences with new technology adoption, which might then be used for
theory building with a wider scope.

Ultimately, robust predictions depend on the proper use of modelling techniques –
understanding their strengths and limitations – the use of real-world data for validation
and calibration and, notably, a robust and validated theoretical framework. As previously
discussed, this is relevant for model reproducibility and for gaining a better understand-
ing of transport diffusion motivators and their interactions. Crucially, theoretical robust-
ness (i.e. the stability of results to variation across context or other baseline
assumptions) also plays a key role in providing more accurate forecasts.

Notes

1. This article uses market shares (i.e. the proportion of EVs in the total fleet) as indicators of
market penetration, except where explicitly indicated. It must be noted that, the term
market share is also interchangeably referred to as penetration rate or adoption rate in the
literature.

2. In this article, the EV abbreviation generically refers to electric vehicles, and includes battery
electric vehicles, hybrid vehicles and plug-in hybrids. No specific distinction is made
between sub-typologies unless required.

3. Jochem et al. (2018)’s review consider 44 articles from 1995 to 2016. Our review includes 11 of
these 44 articles (the ones that include both diffusion and substitution) plus 43 additional
articles from between 2008 and 2021.

4. Diffusion/substitution studies outside the EV market (e.g. hydrogen or fuel-cell vehicles) and
recent works involving electric share vehicles or electric/autonomous vehicles were also
excluded from the review.

5. Note that, in 45% of the articles, this information is not provided. Interestingly, in some
articles, data were collection concluded several years prior to article publication, which
might be a slight concern in terms of parameter validity.

6. “In a deep sense, the ultimate goal of the researcher is to represent utility well enough that a
logit model is appropriate (i.e. that the only remaining aspects constitute simply white noise)
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Seen in this way, the logit model is the ideal rather than a restriction” (Train, 2009, pp. 35–36).
However, arguably noDCM is specified well enough for this to be true.

7. The cost minimisation technique is analogous to the utility maximisation expressed in mon-
etary terms.

8. An interesting comparison of ABM and EGT can be found on Adami et al. (2016).
9. We excluded theoretical modelling exercises, forecasts without a clearly defined timeframe

and/or geographic context, predictions without a reliable source for comparison, articles
without detailed yearly forecasts, and recent articles for which benchmark figures are not
yet available.

10. Note that four articles present detailed results for one scenario only.
11. We could not consider uncertainty in predictions of expected market shares, as suggested by

one reviewer, because the necessary information to perform these analyses is generally una-
vailable, with only Querini and Benetto (2015) and Kangur et al. (2017) providing confidence
intervals for their predictions.

12. We studied the possibility of defining an “acceptable accuracy”, as suggested by one
reviewer. However, we believe this should be evaluated in a case-by-case scenario. For
example, the relative error in Brown (2013) is 50%, but the author obtains an average
RMSE of 0.4%, which means that he correctly predicted a small increase in adoption rates
8 years after the forecast.

13. More complex specifications were tested but the basic linear model was deemed to have the
better level-of-fit and significance.
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