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ABSTRACT A new affine-precoded superimposed pilot (AP-SIP) scheme is conceived for both wireless
channel and radar target parameter estimation in a millimeter wave (mmWave) multiple-input multiple-
output (MIMO) orthogonal frequency division multiplexing (OFDM)-based integrated sensing and com-
munication (ISAC) systems. The AP-SIP scheme leads to enhanced estimation accuracy and improved
utilization of spectral resources. Initially, the pilot-assisted radar (PAR) and data-assisted radar (DAR)
parameter estimation models are separately developed for the estimation of the radar target parameters.
Subsequently, these are combined into a joint pilot-data radar (JPDR) model for simultaneously harnessing
both the signals to further boost the estimation accuracy. The sparse Bayesian learning (BL)-based joint-BL
(J-BL) technique is developed for this system that efficiently exploits the sparsity of the radar scattering
environment. Next, a group sparse BL (G-BL) technique is also derived that exploits the group sparsity
across subcarriers for the estimation of the wireless beamspace channel vector, which outperforms the
competing techniques, including conventional sparse BL. The optimal pilot, transmit precoder (TPC) and
receive combiner (RC) are determined at the dual-function radar-communication (DFRC) base station (BS)
and also at the user equipment (UE) for maximizing the performance attained. The Bayesian Cramer-Rao
bounds (BCRB) are explicitly derived to benchmark the performance of the wireless channel and radar
target parameter estimation. Simulation results are provided to demonstrate the improved performance of
the proposed schemes considering multiple metrics, such as the normalized mean squared error (NMSE),
bit error rate (BER) and achievable spectral efficiency (ASE).

INDEX TERMS Integrated sensing and communication (ISAC), dual-function radar-communication
(DFRC), millimeter wave (mmWave), affine-precoded superimposed-pilot (AP-SIP), Bayesian Learning
(BL).

I. INTRODUCTION

THE exponential increase in the number of wireless
devices and the demand for high data rates has led to

a significant congestion in the existing spectral bands [1]–
[3]. A cutting edge innovation to address this challenge is
to exploit the abundant spectrum in the millimeter wave
(mmWave) band for future wireless communication networks
[4], [5]. Nevertheless, a notable segment of the frequency

spectrum in these bands is currently designated for radar
systems, emphasizing the need to integrate sensing and
communication functionalities into a unified platform to meet
the desired throughput targets. This has led to a substantial
interest in the adoption of integrated sensing and commu-
nication (ISAC) systems, which facilitate the simultaneous
operation of both systems via the deployment of a dual-
function radar-communication (DFRC) transceiver [6], [7].
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TABLE 1: LIST OF ACRONYMS

AoA Angle of Arrival
AoD Angle of Departure
AP-SIP Affine-Precoded Superimposed Pilot
APES Angle and Phase Estimation
BL Bayesian Learning
BS Base Station
BCRB Bayesian Cramér-Rao Bound
BFIM Bayesian Fisher Information Matrix
CSI Channel State Information
CFR Channel Frequency Response
DFRC Dual-Function Radar-Communication
DAR Data-Assisted Radar
DoF Degrees-of-Freedom
DA-BL Data-Assisted Bayesian Learning
FD Frequency-Domain
FOCUSS Focal Underdetermined System Solver
G-BL Group BL
HAD Hybrid Analog-Digital
ISAC Integrated Sensing and Communication
JPDR Joint Pilot-Data Radar
J-BL Joint Bayesian Learning
MIMO Multiple-Input-Multiple-Output
MUI Multi-User Interference
mmWave Millimeter Wave
OFDM Orthogonal Frequency Division Multiplexing
OMP Orthogonal Matching Pursuit
PAR Pilot-Assisted Radar
PA-BL Pilot-Assisted Bayesian Learning
RAs Receive Antennas
RC Receive Combiner
RCS Radar Cross-Section
RF Radio Frequency
SNR Signal-to-Noise Ratio
SIP Superimposed pilot
TPC Transmit Precoder
TAs Transmit Antennas
TD Time-Domain
UE User-Equipment
ULA Uniform Linear Array
UPA Uniform Planar Array

TABLE 2: LIST OF NOTATIONS

NT Number of transmit antennas at the DFRC BS
NR Number of receive antennas at the DFRC BS
NRF Number of RF chains at the DFRC BS
Lt Number of targets/ scatterers
MR Number of receive antennas at the UE
MRF Number of RF chains at the UE
P Number of angular bins at UE
Q Number of angular bins at BS
R Number of range bins
K Number of Subcarriers
L Number of OFDM blocks transmitted in a frame
NF Number of frames transmitted
MP Number of pilot beams transmitted in NF frames
NCF Number of combining frames at the BS
NC Number of combining vectors at the BS
MCF Number of combining frames at the UE
MCU Number of combining vectors at the BS
αt Time-domain RCS coefficient of the target
βl Complex path gain of the lth scatterer
φl AoA at the UE from the lth scatterer
θl AoD/AoA at the DFRC BS from the lth target/scatterer
aR Receive array response vector at the BS
aT Transmit array response vector at the BS
bR Array response vector at the UE
γt Time-domain RCS vector
hf [k] CFR vector corresponding to kth subcarrier
hb,f Joint beamspace channel vector
Γt Time-domain RCS matrix
AR Receive codebook at BS
AT Transmit codebook at BS
BR Receive codebook at UE
FRF Frequency-flat RF TPC at the BS
WRF Frequency-flat RF RC at the BS
WBB Frequency-selective baseband RC at the BS
URF Frequency-flat RF RC at the UE
UBB Frequency-selective baseband RC at the UE
Hf [k] CFR matrix corresponding to the kth subcarrier
Hb,f [k] Beamspace CFR matrix corresponding to the kth subcarrier

Apart from the availability of much wider bandwidth,
the short wavelength of mmWave frequencies allows one
to pack large antenna arrays into devices having compact
form factors that can enable highly directional beamform-
ing. Thus, multiple-input-multiple-output (MIMO) technol-
ogy can be exploited to obtain high beamforming gains for
mitigating the effects of path loss, atmospheric absorption
and penetration losses that can otherwise cause a significant
hindrance to communication in the mmWave band [8], [9].
Furthermore, the deployment of a large number of antennas
at the DFRC transceiver can also lead to a significant
improvement in radar performance due to simultaneous

transmission/reception of multiple probing signals. This re-
sults in a remarkable increase in the number of degrees-of-
freedom (DoF), in turn leading to a substantial improvement
in the estimation accuracy [10]. However, it is difficult to
implement such a DFRC MIMO transceiver in the high-
frequency mmWave band as the conventional fully digital
architecture requires a single radio frequency (RF) chain for
each antenna element. This poses a significant obstacle at
mmWave frequencies since assigning a dedicated RF chain
for each antenna element results in significantly higher power
consumption coupled with soaring costs and complexity.
To overcome this impediment and pave the way for the
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practical realization of mmWave MIMO DFRC transceivers,
one can exploit the path-breaking hybrid signal processing
architecture that mandates a substantially reduced number of
RF chains than the traditional fully-digital architecture [11],
[12]. Orthogonal frequency division multiplexing (OFDM)
is eminently suitable for mmWave MIMO DFRC systems
due to its resilience to both multipath and inter-symbol-
interference (ISI) effects as well as owing to its potential
of achieving excellent performance in radar systems [13].
The orthogonality of the OFDM waveform guaranteed by the
discrete Fourier transform (DFT) and inverse DFT (IDFT)
operations at the receiver and transmitter, respectively, can
facilitate signal processing for both communications and
radar sensing. However, the availability of accurate channel
state information (CSI) plays a pivotal role in the design
of hybrid transmit precoders (TPC) and receive combiners
(RC), especially in wideband ISAC systems that transmit
over multiple subcarriers. Existing approaches for CSI and
radar parameter estimation in mmWave MIMO-OFDM ISAC
systems usually employ time-multiplexed pilot and data
signals to avoid mutual interference between them [14].
However, this time-multiplexing is highly inefficient, since
the pilot signals do not convey any information. In such
techniques, the pilot signal requires additional spectral re-
sources that could otherwise be used for data transmission.
To enhance the spectral efficiency, sophisticated methods
were introduced in [15], where the training signal is directly
superimposed onto the data signals. Nonetheless, this results
in interference between the data and training sequences,
ultimately resulting in a reduction of the estimation accuracy.
The affine-precoded superimposed pilot (AP-SIP) framework
is a novel technique that linearly precodes the pilot and
data signals, thus allowing their simultaneous transmission.
This naturally leads to a notable improvement in the spectral
efficiency since both the pilot and data are transmitted in the
same time-frequency slot [16]. However, it is important to
note that this does not affect the estimation and data decoding
performance, because the data and pilot can be decoupled. A
brief overview of existing contributions in related research
is presented next.

A. State-of-the-art
In the recent literature on ISAC, OFDM is a popular
waveform candidate for integrated sensing and communi-
cation [17]–[20]. Sturm et al. [17] explore the suitability
of integrated sensing as well as communication and studied
multiple DFRC waveforms for the estimation of the ranges as
well as velocities of multiple radar targets and transmission
of information symbols to a communication user. Shi et
al. [18] proposed a joint subcarrier selection and power
allocation scheme for minimizing the power consumption
in an OFDM-ISAC system for communication-centric wave-
form design. The authors of [19] considered a radar-centric
OFDM-based ISAC system and designed a radar waveform
by optimizing the Fisher information and CRB, subject to

both the interference caused to the communication system
and to sub-carrier power ratio constraints. As a further
development, the authors of [20] proposed a low peak-to-
average power ratio (PAPR) waveform for OFDM-based
DFRC and optimized a weighted objective function of multi-
user interference (MUI) and of the ideal radar beampattern
under power and PAPR constraints. The authors of [21]
explored the trade-off between the detection probability and
the achievable data rate in an ISAC system. Specifically,
a power allocation problem is formulated in their work
to minimize the transmit power at the DFRC BS, while
maintaining the required detection probability for monitoring
the target and meeting the achievable rate requirement of the
communication user.

Note that all the treatises reviewed above consider the
sub-6 GHz band for ISAC. Hence, they do not exploit the
large blocks of spectrum offered by the mmWave bands. The
authors of [22] described a novel inter-carrier interference
(ICI) aware two-stage algorithm designed for target detection
and parameter estimation. In their work, the MUltiple SIgnal
Classification (MUSIC) algorithm was employed for estimat-
ing the target angles and subsequently, for each estimated
angle, the delay and Doppler parameters were estimated via
the popular angle and phase estimation (APES) approach.
The authors of [23] developed a mmWave automotive radar
model based on the IEEE 802.11ad standard to enable joint
mmWave vehicular communication and radar operations in
the 60 GHz band. Along similar lines, the authors of [24]
studied the applicability of phase-modulated-continuous-
wave (PMCW) and orthogonal-frequency-division-multiple-
access (OFDMA) waveforms for a bistatic mmWave ISAC
system. However, mmWave signals suffer from high prop-
agation losses, increased signal blockage, and traditionally
require a high number of power-hungry analog-to-digital
converters (ADCs), digital-to-analog converters (DACs), and
power amplifiers, which prohibit the assignment of indi-
vidual RF chain for each antenna. This has motivated re-
searchers to explore a hybrid analog-digital (HAD) beam-
forming structure for addressing these challenges.

In this context, Liu et al. [25] considered a hybrid
beamforming architecture for an ISAC system and invoked
conventional techniques such as the MUSIC algorithm,
matched-filtering (MF) and APES for the estimation of the
radar target and wireless channel parameters. However, this
work considered the number of targets to be known at the
DFRC BS, which is not feasible in practice. The authors
of [26] proposed a transmit beamformer design scheme that
effectively mitigates the interference between multiple users
while simultaneously providing multiple beams for ISAC.
The authors of [27] considered the beam-split effect encoun-
tered in the mmWave/Terahertz (THz) band and proposed
a beam-split aware (BSA) algorithm. The BSA approach
aims to enhancing the angle-of-arrival (AoA) and channel
estimation performance by exploiting the angular deviations
in the spatial domain caused by beam-split, followed by
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utilizing the MUSIC algorithm for target parameter estima-
tion. Liyanaarachchi et al. [28] proposed an IDFT based
radar range profile estimation technique and subsequently,
these range profiles are exploited for MUSIC-based AoA
estimation. However, a key shortcoming of the various solu-
tions reviewed above is that they fail to exploit the inherent
sparsity of the scattering environment at mmWave frequen-
cies, arising from the presence of only a few non-zero radar
targets/ scatterers. Incorporating the sparsity may potentially
lead to a remarkable improvement in the accuracy of target
detection, radar parameter and channel estimation. Toward
this, Rahman et al. [29] proposed a fast marginalized block
sparse Bayesian learning (BL) algorithm (BSBL-FM) based
one-dimension (1-D) target parameter estimation for multi-
user MIMO-OFDMA systems. In their approach, the delay
is initially estimated using the BSBL-FM algorithm. Sub-
sequently, the rest of the sensing parameters are estimated
by employing the amplitude estimates corresponding to the
delays. Although these low-dimensional compressive sensing
(CS) techniques have a significantly lower complexity, their
estimation performance is modest [29]. As a further develop-
ment, the authors of [30], in their pioneering work, proposed
target parameter estimation relying on 1D, 2D and 3D CS
target parameter estimation algorithms. The authors of [31]
propose a novel orthogonal matching pursuit associated with
a support refinement (OMP-SR) algorithm for radar sensing
and channel estimation. Note that the existing schemes de-
signed for sparse parameter estimation in mmWave MIMO-
OFDM ISAC systems typically use time-multiplexed pilot
and data signals to avoid mutual interference. The pilot
sequence in such schemes occupies a large fraction of the
limited bandwidth, which results in substantially reduced
spectral efficiency. Very few studies have been conducted in
the literature to leverage the superimposed pilot (SIP)-based
framework for radar target parameter and channel estimation
in a ISAC system. In this regard, Bao et al. [32] proposed an
SIP framework for a bistatic ISAC system in the sub-6 GHz
band. In the scheme proposed therein, the channel is initially
estimated using only the pilot signal. The data symbols are
decoded in the next step using the channel estimate obtained
previously, followed by target parameter estimation using
both pilot and data symbols. However, the systems of [32]
do not incorporate the HAD transceiver architecture, which
is crucial for the realization of communication and sensing
in the mmWave band. Moreover, the inherent sparsity is not
capitalized on for target parameter/ channel estimation.

To overcome these shortcomings in the existing litera-
ture, we develop and analyze sparse estimation algorithms
designed for target sensing and channel state information
(CSI) acquisition in mmWave MIMO-OFDM ISAC systems,
relying on the affine-precoded SIP (AP-SIP) framework. This
leads to a notable improvement in the spectral efficiency
because the pilot and data are transmitted in the same time-
frequency slot in a superimposed fashion, while simulta-
neously allowing us to estimate the target parameters and

communication channel. Table I contrasts the contributions
of this paper to those in the existing literature discussed
above. Next, we provide a brief overview of the various
contributions of this paper.

B. Contributions
1) This paper considers a mmWave MIMO-OFDM ISAC

system relying on hybrid signal processing archi-
tecture and presents the design and analysis of an
affine-precoded superimposed pilot (AP-SIP) signal for
sparse radar target parameter and wireless channel
estimation, followed by data detection at the user
equipment (UE). It is worth noting that affine-precoded
superimposed pilot (AP-SIP) signaling in sub-6 GHz
can not be directly extended in the mmWave band.
In sub-6 GHz MIMO systems, the presence of a rich
scattering environment and a fully digital architecture
allows for transmitting a single block of SIP symbols,
effectively facilitating radar/ channel parameter esti-
mation. On the contrary, the mmWave MIMO systems
pose challenges for estimation due to their hybrid
analog-digital precoding architecture and the limited
number of angularly sparse multipath components.
Unlike sub-6 GHz systems, the prevalent mmWave
MIMO target parameter/ channel estimation schemes
require multiple reconfigurations of the analog pre-
coder’s phases during the estimation process to excite
all angular modes of the mmWave MIMO channel. To
address this, an intelligent framewise signal processing
is proposed.

2) Initially, a linear model is derived for sparse radar tar-
get parameter estimation that exploits the bandwidth-
efficient AP-SIP signal. Subsequently, pure pilot-
assisted Bayesian learning (PA-BL) and data-assisted
BL (DA-BL) algorithms are proposed for sparse radar
parameter estimation at the DFRC BS. Next, the joint
BL (J-BL) technique is derived together with the input-
output model that exploits both pilot and data symbols
for sparse estimation to achieve the best possible
estimation accuracy.

3) Unlike conventional sparse recovery techniques, in
which a sparsity constraint is imposed on individual
elements, in this work, the signal is divided into
multiple groups that can either simultaneously become
zero or non-zero. A sparsity constraint is imposed on
these groups, and this additional structural informa-
tion can significantly enhance the quality of sparse
signal recovery. Considering this, a group-sparse BL
(G-BL) technique is derived for channel estimation,
which exploits the group sparsity of the beamspace
channel across subcarriers, and results in an improved
performance in comparison to sparse Bayesian learn-
ing (SBL) and other conventional techniques, such as
the FOcal Underdetermined System Solver (FOCUSS)
[33] and orthogonal matching pursuit (OMP) [34].
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TABLE 3: Contrasting our contributions to the literature

Features [17] [23] [24] [25] [26] [27] [28] [29] [31] [32] Proposed

MIMO X X X X X X X X X X X

mmWave band X X X X X X X X

Hybrid architecture X X X X X X

Sparse model C X S X

Simultaneous sparsity X X

Bayesian Learning X X

SIP framework X X

Joint pilot-data radar model X

CRB X X X

Imaging X X X X X X X X X

Total coherence-based TPC, RC and pilot design X

Note C: only for communication channel estimation, S: only for sensing.

4) In sparse estimation problem y = Φx, The total
coherence of the dictionary matrix Φ can be defined
as

µt(Φ) =
∑
m

∑
m 6=n

∣∣Φ(:,m)HΦ(:, n)
∣∣2 .

The recovery performance can be significantly im-
proved by minimizing the total coherence of the dic-
tionary matrix, which serves as an indicator of the
correlation between the columns in a dictionary matrix
Φ. The sparse signal can be accurately recovered using
fewer measurements when the coherence is low [8],
[35]. Therefore, the TPC, RC and pilot signals are
designed by minimizing the total coherence of the
dictionary matrices.

5) The Bayesian Cramér-Rao bounds (BCRBs) are de-
rived for the estimates of the radar cross-section (RCS)
coefficients of the targets and wireless channel in the
ISAC system.

6) Exhaustive simulation results are presented for radar
target parameter estimation, two-dimensional (2D)
imaging, wireless channel estimation, data detection
and the achievable spectral efficiency (ASE) to char-
acterize the performance of the schemes proposed for
mmWave MIMO-OFDM ISAC systems.

C. Organization of the paper
The rest of this paper is organized as follows. Section II
introduces both the radar and communication system models.
Section III presents the PA-BL, DA-BL and J-BL schemes
followed by G-BL based wireless channel estimation in Sec-
tion IV. Section V describes the design of the optimal TPC/
RC and pilot signals for the proposed systems. The BCRBs
for the target parameter and wireless channel estimation are
presented in Section VI. Extensive simulation results are
presented in Section VII for characterising the performance
and validating the analytical results. Section VIII concludes
the paper.

Notations: The following notation is used throughout this
paper. Vectors are denoted by boldface lower case letters
while matrices are specified by boldface uppercase letters.
The quantity Diag(a) denotes a diagonal matrix with ele-
ments of vector a as its principal diagonal, while diag(B)
denotes the vector formed from the diagonal elements of a
matrix B. The quantity blkdiag (B1,B2, ..,BN ) represents
a block-diagonal matrix comprising matrices B1,B2, ..,BN

along the principal diagonal. The symbols � and ⊗ de-
note the Khatri-Rao and Kronecker products, respectively.
The symbols ∗ and ~ symbolize linear and circular con-
volution between two signals, respectively. The symbols
(·)T , (·)H , (·)∗, (·)† and Tr(·) denote the transpose, Hermi-
tian, conjugate, Moore-Penrose pseudoinverse, and trace of
a matrix, respectively. The l2, l0 and Frobenius norms are
denoted by || · ||2, || · ||0 and || · ||F , respectively. The
quantity vec(·) represents the vector obtained by stacking the
columns of the matrix and vec−1(·) reshapes a vector into a
matrix. E {·} denotes the expectation operator. The following
property of a diagonal matrix B is also exploited in this paper
for simplification vec(ABC) = (CT �A)diag(B).

II. Radar and Communication System models
Consider a colocated mmWave MIMO-OFDM ISAC sys-
tem, wherein the DFRC BS is equipped with NT transmit
antennas (TAs), NR receive antennas (RAs) and NRF RF
chains satisfying NRF � min(NT , NR). The DFRC BS
transmits Ns < NRF data streams to serve a user equipment
(UE) having MR RAs and MRF RFCs, while simultaneously
estimating the radar parameters of Lt targets that are at
unknown locations in the environment, as shown in Fig. 1.
The system under consideration operates in the full-duplex
mode and, akin to several significant studies such as [25]
and [29], self-interference cancellation is assumed at the
DFRC receiver.
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FIGURE 1: mmWave MIMO-OFDM Joint RadCom schematic for subcarrier k

A. Radar model
Consider the radar scattering environment to be partitioned
into Q angle and R range bins. The Lt stationary targets
are assumed to be randomly scattered at unknown locations.
Let αt(q, r) represent the time-domain RCS coefficient of
the target present in the (q, r)th bin associated with a general
target located at an angle θq and range Rr from the DFRC
BS. The transmitted signal is reflected by a target located
at a range Rr and received at the DFRC BS after a round
trip delay of τr = 2Rr/c, where c is the speed of light. Let
x(n) ∈ CNRF×1 denote the signal vector transmitted by the
DFRC BS at time instant n. The echo yecho(n) ∈ CNS×1

received at the DFRC BS after combining can be expressed
as

yecho(n) =

Q−1∑
q=0

W̄HaR(θq)a
H
T (θq)F̄RFx(n) ∗ αt(q, n)

+ W̄Hv(n),

(1)

where v(n) denotes the symmetric complex additive
white Gaussian noise (AWGN) vector with distribution
CN (0, σ2

vINR). Furthermore, W̄ = W̄RFW̄BB ∈ CNR×NS
denotes the hybrid RC at the DFRC BS, whereas the matrix
W̄BB ∈ CNRF×NS is the baseband RC. The matrices W̄RF ∈
CNR×NRF and F̄RF ∈ CNT×NRF represent the RF RC and
RF TPC, respectively. The RF TPC and RC consist of a
digitally controlled phase-shifter network. Hence, W̄RF and
F̄RF must have constant-magnitude entries, which, without
loss of generality can be set as

∣∣W̄RF(i, j)
∣∣ = 1√

NR
and∣∣F̄RF(i, j)

∣∣ = 1√
NT
∀i, j. The choice of zero-padding (ZP)

is preferred instead of the cyclic prefix (CP) in mmWave
MIMO OFDM systems, since it provides a time window
for reconfiguration of the analog circuitry. The quantities
aR ∈ CNR×1 and aT ∈ CNT×1 represent the receive and
transmit array response vectors, which are given by

aT (θ) =
[
1, e−j

2π
λ dT sin(θ), . . . , e−j(NT−1) 2π

λ dT sin(θ)
]T
,
(2)

aR
(
θ
)

=
[
1, e−j

2π
λ dR sin(θ), . . . , e−j(NR−1) 2π

λ dR sin(θ)
]T
.
(3)

It is important to note that a uniform linear arrays (ULA) is
assumed for both the system and for the channel models for
simplicity. However, our approach can be readily extended
to a uniform planar array (UPA).

B. Communication model
Assume that the multiple targets present in the scattering
environment also act as potential scatterers for the commu-
nication channel. The received signal yUE ∈ CNs×1 after
combining at the UE can be expressed as

yUE[k] = ŪH [k]Hf [k]F̄RFx[k] + ŪH [k]z[k], (4)

where Ū[k] = ŪRFŪBB[k] ∈ CMR×Ns . The quantities
ŪBB[k] ∈ CMRF×Ns and ŪRF ∈ CMR×MRF denote the
frequency selective-baseband RC and frequency flat RF RC,
respectively. The RF RC is also constrained to constant
magnitude elements, i.e.,

∣∣ŪRF(i, j)
∣∣ = 1√

MR
. The vector

z[k] denotes the AWGN having the distribution CN (0, σ2
z).

Furthermore, Hf [k] ∈ CMR×NT represents the channel
frequency response (CFR) matrix corresponding to the kth
subcarrier, which is formulated as [36]

Hf (k) =

Lt∑
l=1

βle
−j2πk∆fτlbR(φl)a

H
T (θl), (5)

where βl is the complex path-gain and generated as indepen-
dent and identically (i.i.d.) samples obeying the distribution
CN (0, 1). The quantities τl ∈ R, φl ∈ R and θl ∈ R
denote delay, AoA and the AoD of the lth multipath com-
ponent, respectively. The quantity ∆f ∈ R represents the
subcarrier spacing of the MIMO-OFDM system. The vector
bR(φl) ∈ CMR×1 denotes the receive array manifold vector
for the ULA at the UE and can be defined similarly to (3).
Throughout the text, we will utilize the terms CSI, CFR, and
the channel matrix interchangeably.
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III. AP-SIP based RADAR parameter estimation
We harness an affine precoded superimposed pilot (AP-
SIP) signal for radar target parameter estimation, channel
estimation and data detection. Hence, the DFRC-BS trans-
mits an AP-SIP signal, which comprises both pilot and data
signals. The DFRC BS receives the echoes as a result of
reflections by multiple targets and by exploiting them it
estimates the target parameters such as RCS coefficients,
angle and range. Furthermore, the transmitted AP-SIP signal
is also received at the UE via targets that act as potential
scatterers. Subsequently, the UE exploits these for wireless
channel estimation and data detection.

A. Radar parameter estimation
For reducing the complexity, frequency domain (FD) signal
processing is employed, which is made possible via the
overlap and add method. To begin with, S snapshots of the
transmitted signal x(n) are partitioned into M blocks, where
the length of each block is S′, as shown in Fig. 2. Next,
each sub-block and the RCS coefficients αt(q, n′) are padded
with R− 1 and S′ − 1 zeros, respectively, to allow both the
sequences to possess an identical length K = S′ + R − 1.
A compact representation of the zero-padded transmit signal
vectors and RCS vectors corresponding to the n′th snapshot
in the m′th block is given by

{xm′(n′)}
K−1
n′=0 =

xm′(0), ..,xm′(S
′ − 1),0, ..,0︸ ︷︷ ︸

R−1

 ,

{αt(q, n′)}
K−1
n′=0 =

αt(q, 0), .., αt(q,R− 1),0, ..,0︸ ︷︷ ︸
S′−1

 .

Note that for a given bandwidth B, the range resolution is
given by ∆R = c/2B. Furthermore, for a given maximum
range Rmax and the FFT size K, the number of range bins
R and block length S′ can be set as R = Rmax/∆R and
S′ = K −R+ 1.

The echo signal vector yecho,m′(n
′) ∈ CNR×1 received

before combining and corresponding to the n′th time index
of the m′th block can be expressed as

yecho,m′(n
′) =

Q−1∑
q=0

aR(θq)a
H
T (θq)FRF,m′xm′(n

′) ~ αt(q, n
′)

+ vm′(n
′).

(6)
The FD signal received on the kth subcarrier in the m′th
block can be obtained upon applying the K-point FFT
operation to the received echo yecho,m′(n

′), which can be
represented as

yecho,m′ [k]=

Q−1∑
q=0

aR(θq)a
H
T (θq)FRF,m′xm′ [k]αf [q, k] + vm′ [k]

= HR[k]FRF,m′xm′ [k] + vm′ [k].
(7)

The quantity αf [q, k] ∈ C represents the FD RCS coefficient,
which is obtained via K-point FFT of the time-domain
(TD) coefficients {αt(q, n′)}K−1

n′=0. In ZP-OFDM, the receiver
processes the block of length K + LZP , corresponding to
each RF chain, using the overlap and add technique. To this
end, the block of the last LZP symbols is overlapped and
summed with the block of the initial K symbols to result in
a new block of length K symbols. Note that this new block
of length K represents a circular convolution between the
K transmit samples without ZP and the zero-padded RCS
coefficients. This is subsequently processed by a K-point
FFT block, as done in CP-OFDM processing.
The matrix HR[k] ∈ CNR×NT contains information about
the angles and ranges of the targets, which can be modeled
as

HR[k] =

Q−1∑
q=0

αf [q, k]aR(θq)a
H
T (θq). (8)

The above model can be expressed in the compact form as

HR[k] = ARDiag(γ̃(k))AH
T (9)

where γ̃(k) ∈ CQ×1, AR ∈ CNR×Q and AT ∈ CNT×Q
denoting the receive and transmit codebooks, respectively,
which can be expressed as

γ̃[k] =
[
αf [0, k] αf [1, k] ... αf [Q− 1, k]

]T
,

AR =
[
aR(0) aR(1) ... aR(Q− 1)

]
,

AT =
[
aT (0) aT (1) ... aT (Q− 1)

]
.

The SIP signal used for integrated sensing and commu-
nication is described next. The BS transmits NF = NT

NRF
,

frames each of length L. Thus, the total length of M
transmitted blocks is LNF . Furthermore, each frame consists
of MP /NF and L − (MP /NF ) pilot and data vectors,
respectively. The transmitted SIP matrix, corresponding to
the mth frame and kth subcarrier is Xm[k] ∈ CNRF×L,
which can be modeled as

Xm[k] = Xp,m[k]Pp,m + Xd,m[k]Pd,m, (10)

where Xp,m[k] ∈ CNRF×
(
MP
NF

)
and Xd,m[k] ∈

CNRF×
(
L−MPNF

)
denote the pilot and data matrices, respec-

tively, in the mth frame. Furthermore, Pp,m ∈ C
(
MP
NF

)
×L

and Pd,m ∈ C
(
L−MPNF

)
×L denote the pilot and data precod-

ing matrices for the mth frame. The data symbols are drawn
from a constellation having an average symbol power of ρd,
which leads to the property

E
[
Xd,m[k]XH

d,m[k]
]

=

(
L− MP

NF

)
ρdINRF . (11)

The average pilot power is fixed as

ρc =
Tr
(
Xp,m[k]XH

p,m[k]
)

NRF × MP

NF

, (12)
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FIGURE 2: Snapshots to frames formation

so that ρc + ρd = 1. The received signal matrix Ỹm[k] ∈
CNR×L corresponding to the mth transmitted frame, can be
formulated as

Ỹecho,m[k] = HR[k]FRF,mXm[k] + Ṽm[k], (13)

where FRF,m ∈ CNT×NRF represents the frequency-flat
RF TPC for the mth frame and Ṽm[k] ∈ CNR×L de-
notes the AWGN matrix with distribution CN (0, σ2

vINR).
Next, upon concatenating all the NF frames, the output
matrix Ỹecho[k] =

[
Ỹecho,1[k], Ỹecho,2[k], .., Ỹecho,NF [k]

]
∈

CNR×LNF can be expressed as

Ỹecho[k] = HR[k]FRFX[k] + Ṽ[k], (14)

where FRF = [FRF,1,FRF,2, ..,FRF,NF ] ∈ CNT×NT and
Ṽ[k] =

[
Ṽ1[k], Ṽ2[k], ..., ṼNF [k]

]
∈ CNR×LNF denote

the concatenated RF TPC and noise matrices, respectively.
Furthermore, X[k] = blkdiag (X1[k],X2[k], ..,XNF [k]) ∈
CNT×LNF represents the block diagonal SIP matrix corre-
sponding to the kth subcarrier.

Let NCF = NR
NRF

denote the number of combining
frames. Each combining frame is combined using NC/NCF
combining vectors. After receive combining, the output
matrix Y̆q[k] ∈ C(NC/NCF )×LNF , corresponding to the qth
combining frame, can be expressed as

Y̆q[k] = WH
BB,q[k]WH

RF,qỸecho[k]. (15)

Next, the final output matrix Yecho[k] =[
Y̆T

1 [k], Y̆T
2 [k], ..., Y̆T

NCF
[k]
]T

∈ CNC×LNF obtained

after concatenation of Y̆q[k] across all the NCF frames can
be written as

Yecho[k] = WH
BB[k]WH

RFHR[k]FRFX[k] + V[k], (16)

where WRF = [WRF,1,WRF,2, ...,WRF,NCF ] ∈
CNR×NR is the concatenated frequency-
flat RF RC matrix and WBB[k] =

blkdiag [WBB,1[k],WBB,2[k], ...,WBB,NCF [k]] ∈ CNR×NC
represents the frequency-selective baseband block-
diagonal matrix. The quantity V[k] = WH [k]Ṽ[k] ∼
CN

(
0, σ2

vW
H [k]W[k]

)
∈ CNR×LNF denotes the

combined noise matrix, where W[k] = WRFWBB[k].
It is important to note that baseband precoding, F̄BB, is
not utilized during the target parameter estimation and
channel state information (CSI) estimation of the UE. To
optimize the baseband precoder, CSI information is required
at the transmitter, which is not available during the training
phase. This approach aligns with previous contributions, as
exemplified in [14], in the context of mmWave MIMO CSI
estimation. In this context, these contributions utilize only
the RF precoder for CSI estimation.
Now, one can construct the block diagonal SIP matrix
X[k] ∈ CNT×LNF as

X[k] = Xp[k]Pp + Xd[k]Pd, (17)

where Xp[k] ∈ CNT×MP and Xd[k] ∈ CNT×(LNF−MP ) are
the block-diagonal pilot and data matrices, which can be
expressed as

Xp[k] = blkdiag (Xp,1[k],Xp,2[k], ..,Xp,NCF [k]) ,

Xd[k] = blkdiag (Xd,1[k],Xd,2[k], ..,Xd,NCF [k]) .
(18)

Furthermore, Pp ∈ CMP×LNF and Pd ∈ C(LNF−MP )×LNF

represent the block-diagonal pilot and data precoding matri-
ces, respectively, which can be expressed as

Pp = blkdiag (Pp[1],Pp[2], ..,Pp[Nc]) ,

Pd = blkdiag (Pd[1],Pd[2], ..,Pd[Nc]) .
(19)

Note that in the SIP framework, it is important to suppress
the interference caused by the data matrix during the channel
estimation and the pilot matrix during the data detection
phases. Toward achieving this, the pilot and data precoding
matrices should necessarily satisfy the following properties:

PpP
H
p = IMP

, PpP
H
d = 0MP×(LNF−MP ),

PdP
H
d = I(LNF−MP ), PdP

H
p = 0(LNF−MP )×MP

.

One can observe that in order to satisfy the above properties,
the constituent precoding sub-matrices Pp,m and Pd,m can
be selected as the first MP /NF rows and the rest of the
[L− (MP /NF )] rows to be those of any unitary matrix, re-
spectively. The pilot and data assisted radar target parameter
estimation schemes are discussed next.

1) Pilot-assisted radar (PAR) model
To estimate the radar parameters from the pilots, the received
echo matrix is post-multiplied by PH

p to decouple the pilot
component as follows:

Y̌p[k] = WH [k]HR[k]FRFXp[k] + V̌p[k], (20)

where Y̌p[k] = Yecho[k]PH
p ∈ CNC×MP and V̌p[k] =

V[k]PH
p ∈ CNC×MP . Substituting now the expression of

8 VOLUME ,



HR[k] from (9) into (20), the above model can be rewritten
as

Y̌p[k] = WH [k]ARDiag(γ̃[k])AH
T FRFXp[k] + V̌p[k].

(21)
Next, performing the vec(·) operation and applying the prop-
erty of the so-called Khatri-Rao product [37], the received
echo vector can be equivalently expressed as

y̌p[k] = Ωp[k]γ̃[k] + v̌p[k], (22)

where y̌p[k] ∈ CNCMP×1,v̌p[k] ∈ CNCMP×1 and Ωp[k] ∈
CNCMP×Q denotes the pilot sensing-matrix. The corre-
sponding expressions can be given as

y̌p[k] = vec(Y̌p[k]),

v̌p[k] = vec(V̌p[k]) ∼ CN (0, σ2
v [IMP

⊗WH [k]W[k]])

Ωp[k] =
(
XT
p [k]FTRFA

∗
T �WH [k]AR

)
.

(23)
Let Γt ∈ CQ×R denote the TD RCS matrix whose (q, r)th

entries are represented by αt(q, r). One can obtain the FD
RCS matrix Γf ∈ CQ×K from Γt using the relationship of
- Γf =

[
Γt 0

]
FT , where F ∈ CK×K represents the DFT

matrix. The expression can be simplified as

Γf = ΓtF
T
1 , (24)

where F1 ∈ CK×R represents the first R columns of F.
Thus, by vectorizing (24), one obtains the relationship:

γf = F̃1γt, (25)

where γf =
[
γ̃T [1], γ̃T [2], .., γ̃T [K]

]T
= vec(Γf ) ∈

CQK×1 is FD RCS vector, F̃1 = (F1 ⊗ IQ) ∈ CQK×QR.
The quantity γt = vec(Γt) ∈ CQR×1 is TD RCS vec-
tor obtained via vectorization of the TD RCS matrix Γt.
Stacking y̌p[k] across all the subcarriers, the received vector
yp = [y̌Tp [1], y̌Tp [2], .., y̌Tp [K]]T ∈ CKNCMP×1 can be
modeled as

yp = Ωpγf + vp, (26)

where vp = [v̌Tp [1], v̌Tp [2], .., v̌Tp [K]]T is distributed as
CN (0,Rv,p) and is of size CKNCMP×1. The matrix Ωp =
blkdiag (Ωp[1],Ωp[2], ..,Ωp[K]) ∈ CKNCMP×QK . Lever-
aging the relationship in (25), one obtains the pilot-assisted
radar input-output model

yp = Φpγt + vp, (27)

where Φp = ΩpF̃1 ∈ CKNCMP×QR is the pilot sensing
matrix. Since this is a linear model, one can obtain the
best linear unbiased estimate (BLUE) of γt employing the
popular least squares (LS) technique, which is given as
γ̂LSt = Φ†pyp. Similarly, the minimum mean square error
(MMSE) estimate can be derived as

γ̂MMSE
t =

(
ΦH
p R−1

v,pΦp + R−1
γ

)−1
ΦH
p R−1

v,pyp, (28)

where the covariance matrices ovey Rγ = E
{
γtγ

H
t

}
∈

CQR×QR and Rv,p = σ2
v

[
IKMP

⊗WH [k]W[k]
]
. At this

juncture, it is important to note that the data symbols are
also known at the DFRC BS. Furthermore, in a frame, the

number of data symbols L−MP /NF is large in comparison
to the number of pilot symbols, which equals MP /NF . Thus,
one can develop a more robust radar parameter estimation
model by incorporating the increased number of observations
corresponding to the data symbols, which can lead to a sig-
nificant boost in the accuracy of target parameter estimation.
Toward this end, the data-assisted radar model is presented
next.

2) Data-assisted radar (DAR) model
One can obtain the data-assisted radar model by post-
multiplying the echo Yecho[k] with PH

d as

Y̌d[k] = WH [k]ARDiag(γ̃[k])AH
T FRFXd[k] + V̌[k],

(29)
where Y̌d[k] = Yecho[k]PH

d ∈ CNC×(LNF−MP ) and V̌[k] =
V[k]PH

d ∈ CNC×(LNF−MP ). Applying the vec(·) operation
to the observation matrix of (29) yields the vectorized
observation y̌d[k] ∈ CNC(LNF−MP )×1 as

y̌d[k] = Ωd[k]γ̃[k] + v̌d[k], (30)

where Ωd[k] ∈ CNC(LNF−MP )×Q and v̌d[k] ∈
CNC(LNF−MP )×1. The corresponding expressions can be
given as

Ωd[k] =
(
XT
d [k]FTRFA

∗
T �WHAR

)
v̌d[k] ∼ CN (0, σ2

v [I(LNF−MP ) ⊗WH [k]W[k]])
(31)

Stacking the vectors y̌d[k], across all the subcarriers, one
can obtain the FD input-output model for the RCS vector
γf as

yd = Ωdγf + vd, (32)

where yd ∈ CKNC(LNF−MP )×1 and vd ∈
CKNC(LNF−MP )×1. The corresponding expressions
can be given as

yd = [y̌Td [1], y̌Td [2], .., y̌Td [K]]T

vd = [v̌Td [1], v̌Td [2], .., v̌Td [K]]T ∼ CN (0,Rv,d).
(33)

The noise covariance matrix obeys

Rv,d = σ2
v [IKNC(LNF−MP ) ⊗WH [k]W[k]]). (34)

The matrix Ωd = blkdiag (Ωd[1],Ωd[2], ..,Ωd[K]) ∈
CKNC(LNF−MP )×QK . Similar to the pilot-assisted radar
model, the data-assisted radar model constructed for the
estimation of the TD RCS vector can be formulated as

yd = Φdγt + vd, (35)

where Φd = ΩdF̃1 ∈ CKNC(LNF−MP )×QR is the data
sensing matrix. One can observe that in both the PAR and
DAR models of (27) and (35), respectively, the observation
vectors and the sensing matrices of both the systems are
available at the DFRC BS. Thus, one can jointly exploit
the information from both the PAR and DAR models for
enhanced parameter estimation accuracy, which is described
next.
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3) Joint pilot-data radar (JPDR) model
For improved parameter estimation, one can stack the output
vectors yp and yd from (27) and (35), respectively, to obtain
the model

yj = Φjγt + vj , (36)

where the above-mentioned terms can be defined as[
yp
yd

]
︸ ︷︷ ︸
yj∈

CKNCLNF×1

=

[
Φp

Φd

]
︸ ︷︷ ︸
Φj∈

CKNCLNF×QR

γt +

[
vp
vd

]
︸ ︷︷ ︸
vj∈

CKNCLNF×1

,

(37)

where vj denotes the noise vector that is distributed
as CN (0,Rj), and the covariance matrix Rj =
blkdiag(Rv,p,Rv,d). The matrix Φj is the joint-sensing
matrix. It is important to note that typically very few targets
(Lt � QR) are present in the scattering scene; consequently,
there are very few non-zero values in the TD RCS matrix
Γt. Therefore, Γt is a sparse matrix and its vectorized
version, γt, is a sparse vector. Although, the system models
in (27), (35) and (36) are linear in nature, conventional
RCS estimation approaches such as the best linear unbiased
estimator (BLUE) and MMSE lead to poor performance.
This is due to the fact that these schemes do not exploit
the sparsity of γt. Therefore, these problems are sparse
recovery problems and consequently, techniques such as
OMP can be utilized for solving them effectively. However,
the performance of OMP is sensitive both to the choice of
the threshold and of the sensing matrix. In this context, the
Bayesian learning framework proposed in [38] has shown
excellent performance for sparse signal recovery, which is
described next for radar parameter estimation.

B. J-BL for radar RCS parameter matrix estimation
In the joint Bayesian learning framework (J-BL) of the sparse
signal recovery, the RCS coefficient vector γt is assigned the
parameterized Gaussian prior

p(γt; Λ) =

QR∏
l=1

1

πλl
exp

(
−|γt(l)|

2

λl

)
. (38)

The quantity λl denotes the hyperparameter corresponding
to the lth element of γt that controls its prior variance.
The diagonal matrix of hyperparameters is defined as Λ =
Diag (λ) ∈ RQR×QR, where the vector λ ∈ RQR×1 is
defined as

λ = [λ1, λ2, .., λQR]
T
.

The log-likelihood log p(yj ;λ) can be derived as

log p(yj ;λ) = −ξ − log |Σyj | − yHj Σ−1
yj yj , (39)

where ξ = −KNCLNF log(π) and Σyj = (ΦjΛΦH
j +

Rj) ∈ CKNCLNF×KNCLNF . The maximum-likelihood
(ML) estimate of λ can now be computed as follows

λ̂ML = arg max
λ≥0

log p(yj ;λ). (40)

Due to the non-concave nature of the log-likelihood function
in (40), direct maximization of log p(yj ;λ) is mathemati-
cally intractable [38]. The iterative expectation-maximization
framework offers an attractive low-complexity approach to
solving the above problem, which ensures convergence to a
local optimum. In this algorithm, to begin with, the complete
data can be defined as {yj ,γt}, where the quantity γt

denotes the latent variable. Let Λ̂
(j−1)

represent the estimate
of Λ obtained in the (j − 1)st iteration. The log-likelihood
function of complete data in the expectation-step (E-step) is
given by

L
(

Λ|Λ̂
(j−1)

)
= E

γt|yj ;Λ̂
(j−1) {log p(yj ,γt; Λ)} , (41)

which can be simplified to

L
(

Λ|Λ̂
(j−1)

)
= E {log [p (γt; Λ)]}+ E {log [p (yj |γt)]} .

(42)
Evaluation of the above expectation requires computation of
the a posterior density function of the parameter vector γt,
which can be formulated as

p

(
γt|yj ; Λ̂

(j−1)
)

= CN
(
γ̂

(j)
t ,Σ(j)

)
, (43)

where γ̂
(j)
t and Σ

(j)
r are expressed as

γ̂
(j)
t = Σ(j)ΦH

j R−1
j yj ,

Σ(j)
r =

(
ΦH
j R−1

j Φj +
(
Λ̂(j−1)

)−1
)−1

.
(44)

Subsequently, the log likelihood function L
(

Λ|Λ̂
(j−1)

)
is

maximized with respect to Λ in the maximization step (M-
step). As it can be readily seen from (42), the second term
E {log [p (yp|γt)]} is independent of the hyperparameters Λ.
Therefore, this can be discarded during the maximization
stage. The optimization problem of the estimation of Λ in
the jth iteration can be formulated as

Λ̂
(j)

= arg max
Λ

E {log [p(γt; Λ)]} ,

= arg max
Λ

QR∑
l=1

(
− log (πλl)−

E
γt|yj ;Λ̂

(j−1)

{
|γt(l)|2

}
λl

)
.

(45)
It is important to highlight that when multiple closely spaced
targets exist within the same angle-range bin, they are treated
as a single-point target. Consequently, the RCS coefficients
associated with different angle-range bins are considered
independent. Hence, as a result of this independence, the
maximization of the Λ in (45) can be decoupled with respect
to each λl as

λ̂
(j)
l = arg max

λl

(
− log (πλl)−

E
γt|yj ;Λ̂

(j−1)

{
|γt(l)|2

}
λl

)
.

(46)

10 VOLUME ,



Algorithm 1: Joint Bayesian leaning (J-BL) based
RCS matrix estimation

1 Input: Joint observation vector yj , joint-sensing
matrix Φj , noise covariance matrix Rj and
stopping threshold δ and κmax

2 Initialization:
3 • Hyperparameters λ̂(0)

l = 1, ∀ 1 ≤ l ≤ QR i.e.

Hyperparameter matrix Λ̂
(0)

= IQR.
4 • Set counter variable j = 0, and

5 • Λ̂
(−1)

= 0QR.

6 while, ||Λ̂
(j)
− Λ̂

(j−1)
||2F > δ and j < κmax do

7 j ← j + 1,
8 E-Step: Evaluate the a posteriori covariance and

mean

Σ(j)
r =

(
ΦH
j R−1

j Φj +
(
Λ̂(j−1)

)−1
)−1

γ̂
(j)
t = Σ(j)ΦH

j R−1
j yj

9 M-Step: Update the hyperparameters

λ̂
(j)
l = Σ(j)(l, l) +

∣∣∣γ̂(j)
t (l)

∣∣∣2
10 end while
11 Output: γ̂t

Solving the above problem via setting the gradient with
respect to λl to zero, the estimate of the hyperparameters
λl in the jth iteration is given by

λ̂
(j)
l = E

γt|yj ;Λ̂
(j−1)

{
|γt(l)|2

}
. (47)

The hyperparameter update in (47) can be formulated as

λ̂
(j)
l = Σ(j)(l, l) +

∣∣∣γ̂(j)
t (l)

∣∣∣2 . (48)

The E-step and M-step above are repeated for κmax iterations
or ||Λ̂

(j)
− Λ̂

(j−1)
||2F ≤ δ, whichever occurs first, where

the SBL parameters κmax and δ are chosen judiciously for
precise estimation. A concise summary of the various steps
involved in the proposed J-BL technique for RCS parameter
estimation is given in Algorithm-1. The estimated TD RCS
matrix Γt can be expressed as

Γ̂t = vec−1 (γ̂t) ,

wherein the QR × 1 vector γ̂t is reshaped into the Q × R
matrix Γ̂t.

Note that the AP-SIP signal is for communication pur-
poses which we have exploited for radar parameter estima-
tion at the DFRC BS. Using the same AP-SIP signal, the
UE estimates the channel and decodes the data. This fulfils
the aim of unifying the radar and communication signal pro-
cessing tasks in the ISAC system. The next section develops
the sparse communication channel estimation model.

IV. AP-SIP based Communication Channel estimation
The UE exploits the echoes from the Lt scatterers to obtain
the CSI estimate, which is subsequently used for decoding
the data symbols as well. In this regard, a sparse recovery
problem is formulated for channel estimation that exploits
the simultaneous sparsity over all the subcarriers. Let the
quantized sets of spatial angles for the AoA and AoD spaces,
ΦR and ΘT , respectively, be constructed as

ΦR =
{
φp : φp =

π

P
(p− 1)− 1, 1 ≤ p ≤ P

}
, (49)

ΘT =

{
θq : θq =

π

Q
(q − 1)− 1, 1 ≤ q ≤ Q

}
, (50)

where P and Q are the respective grid sizes. Therefore,
the transmit and receive array response dictionaries for the
communication sub-system are formulated as

AT (ΘT ) = [aT (θ1),aT (θ2), . . . ,aT (θQ)] ∈ CNT×Q,
BR(ΦR) = [bR(φ1),bR(φ2), . . . ,bR(φP )] ∈ CMR×P .

One can relate the CFR matrix Hf [k] to the beamspace
CFR matrix Hb,f [k] ∈ CP×Q [14], [39] using the relation-
ship:

Hf [k] = AR(ΦR)Hb,f [k]AH
T (ΘT ). (51)

The CFR vector corresponding to the kth subcarrier hf [k] ∈
CMRNT×1 can now be derived by vectorize the Hf [k] and
exploiting the property of the Kronecker-product as

hf [k] = Ψhb,f [k], (52)

where Ψ = (BR(ΦR) ⊗ AH
T (ΘT )) ∈ CMRNT×PQ is the

sparsifying-dictionary and hb,f [k] = vec(Hb,f [k]) ∈ CPQ×1

is the beamspace CFR vector. Consequently, the output
corresponding to the mth frame of the SIP signal, prior to
combining at the receiver, is expressed as

ỸUE,m[k] = Hf [k]FRF,mXm[k] + Z̃m[k]. (53)

Applying a procedure similar to the one carried out in (13) to
(16), one can obtain the end-to-end communication system
model for YUE[k] ∈ CMCU×LNF as

YUE[k] = UH
BB[k]UH

RFHf [k]FRFX[k] + Z[k], (54)

where MCU is the number of RC vectors at the UE and
MCF = MR

MRF
represents the number of RC frames at the

UE. The matrix URF is defined as
URF = [URF,1,URF,2, . . . ,URF,MCF

] ∈ CMR×MR ,

UBB[k] = blkdiag (UBB,1[k], . . . ,UBB,MCF
[k]) ∈ CMR×MCU .

Let U[k] = URFUBB[k] ∈ CMR×MCU . The distribution of
the noise matrix Z[k] at the UE receiver is determined as
CN (0, σ2

zU
H [k]U[k]) ∈ CMCU×LNF . Similar to the PAR

model, the output pilot matrix Y̆UE[k] ∈ CMCU×MP , after
decoupling can be expressed as

Y̆UE[k] = UH
BB[k]UH

RFHf [k]FRFXp[k] + Z̆[k], (55)

where Y̆UE[k] = YUE[k]PH
p and Z̆[k] = Z[k]PH

p ∈
CMCU×MP . The observation vector y̆p,u[k] obtained upon
applying the vec(.) operation to Y̆UE[k], can be derived as

y̆p,u[k] = Ω̃p,u[k]hf [k] + zp[k], (56)

VOLUME , 11
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FIGURE 3: Group-sparse structure of the joint beamspace
channel hb,f

where y̆p,u[k] = vec(Y̆UE[k]) ∈ CMCUMP×1, zp[k] =
vec(Z̆[k]) ∼ CN (0, σ2

z(IMP
⊗ UHU)) ∈ CMCUMP×1,

hf [k] = vec(Hf [k]) ∈ CMRNT×1 and Ω̃p,u[k] =(
XT
p [k]FTRF ⊗UBB[k]HUH

RF

)
∈ CMCUMP×MRNT . There-

fore, the sparse channel estimation model of the kth sub-
carrier can be formulated as

y̆p,u[k] = Ωp,u[k]hb,f [k] + zp[k], (57)

where Ωp,u[k] = Ω̃p,u[k]Ψ =(
XT
p [k]FTRFA

∗
T (ΘT )⊗UH

BB[k]UH
RFBR(ΦR)

)
∈

CMCUMP×PQ. Since only the entries corresponding
to the active AoA-AoD pairs are non-zero, the beamspace
channel matrix Hb,f [k] is sparse in nature. This implies that
(57) is once again a sparse recovery problem. Furthermore,
the support set of the beamspace CFR Hb,f [k] is the same
for all subcarriers (1 ≤ k ≤ K) [39], [40], as depicted in
Fig. 3, which is termed as group sparsity. This key attribute
of the wideband channel can be exploited for further
enhancing the estimation performance. As the support sets
of hb,f [k] coincide for 1 ≤ k ≤ K, one can observe the
group-sparsity in the stacked beamspace channel, as shown
in Fig. 3. Therefore, upon stacking all the observations
y̆p,u[k] in (57) over all the subcarriers 1 ≤ k ≤ K, the group
Bayesian learning (G-BL) model of channel estimation can
be formulated as

yp,u = Φp,uhb,f + zp, (58)

where yp,u = [y̆Tp,u[1], y̆Tp,u[2], .., y̆Tp,u[K]]T ∈
CKMCUMP×1 is the stacked observation vector,
hb,f = [hTb,f [1],hTb,f [2], ..,hTb,f [K]]T ∈ CKPQ×1

is the joint beamspace channel vector and
zp = [z̆Tp,u[1], z̆Tp,u[2], .., z̆Tp,u[K]]T ∼ CN (0,Rz) ∈
CKMCUMP×1 is the noise vector. The corresponding
covariance matrix of the noise zp can be formulated as
Rz = (IKMCUMP

⊗ UHU) ∈ CKMCUMP×KMCUMP .
The equivalent sensing matrix is expressed as
Φp,u = blkdiag {Ωp,u[1],Ωp,u[2], ..,Ωp,u[K]} ∈
CKMCUMP×KPQ.

A. G-BL for communication channel estimation
The beamspace channel for the kth subcarrier hb,f [k] is al-
located the parameterized Gaussian prior probability density
function

p(hb,f [k]; Υ) =

PQ∏
g=1

1

πυg
exp

(
−|hb,f [k](g)|2

υg

)
. (59)

The quantity υg denotes the hyperparameter corresponding
to the gth element of hb,f [k] that controls its prior vari-
ance. The diagonal matrix of hyperparametrs is defined as
Υ = Diag (υ) ∈ RPQ×PQ, where the vector υ ∈ RPQ×1

is defined as υ = [υ1, υ2, .., υPQ]
T . Note that the a priori

covariance of the vector hb,f [k] is Rh = Υ, which is initially
unknown. Since the sparsity profile of hb,f [k] is identical
for all the subcarriers, the prior distribution for the joint
beamspace channel vector hb,f can be formulated as

p(hb,f ; Υ) =

K∏
k=1

PQ∏
g=1

1

πυg
exp

(
−|hb,f [k](g)|2

υg

)
. (60)

To exploit group sparsity, the same set of hyperparameters
is assigned to all the groups, i.e. 1 ≤ k ≤ K. Hence υg
is assigned to the elements corresponding to row indices
of {(k − 1)K + g}Kk=1 of hb,f , for all 1 ≤ g ≤ PQ. To
estimate the KPQ parameters of hb,f , the proposed G-
BL method therefore requires only PQ hyperparameters,
which makes the G-BL appealing for this scenario due
to its lower complexity. The matrix Rz is the covariance
matrix of the AWGN vector zp. Moreover, the a priori
covariance matrix of the joint beamspace channel vector hb,f
is R̃h = (IK ⊗Υ). The estimation of hb,f necessitates the
estimation of the hyperparameter matrix Υ. Furthermore, as
the hyperparameters obeys υg → 0, all the components of
hb,f associated with the particular hyperparameter approach
zero, thus leading to group sparse recovery [38]. Once
again, to exploit the EM technique for ML estimation of
the beamspace CFR, the complete data is represented as
{yp,u,hb,f}. Furthermore, Υ̂

(j−1)
represents the estimate

of Υ in the (j − 1)st EM iteration. In the E-step, the log-
likelihood of the complete data can be derived as

L
(

Υ|Υ̂
(j−1)

)
= E

hb,f |yp,u;Υ̂
(j−1) {log p(yp,u,hb,f ; Υ)} ,

(61)
which can be further expanded as

L
(

Υ|Υ̂
(j−1)

)
=E {log [p (hb,f ; Υ)]}

+ E {log [p (yp,u|hb,f )]} .
(62)

The posterior density of hb,f required for evaluating the
expectation above is formulated as

p

(
hb,f |yp,u; Υ̂

(j−1)
)

= CN
(
ĥ

(j)
b,f ,Σ

(j)
)
, (63)
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where the expressions for Σ(j) and ĥ
(j)
b,f can be written as

Σ(j) =

(
ΦH
p,uR

−1
z Φp,u +

(
IK ⊗

(
Υ̂(j−1)

)−1
))−1

,

ĥ
(j)
b,f = Σ(j)ΦH

p,uR
−1
z yp,u.

(64)

Subsequently, the log-likelihood function L
(

Υ|Υ̂
(j−1)

)
is maximized with respect to Υ in the maximization step
(M-step). As it can be readily seen, the second term
E {log [p (yp,u|hb,f )]}, the expression for which is given in
(62), is independent of the hyperparameter matrix Υ, and can
therefore be dropped at this stage. The estimate of Υ in the
jth iteration is obtained as the solution of the optimization
problem

Υ̂
(j)

= arg max
Υ

E {log [p(hb,f ; Υ)]} . (65)

Substituting the value of p(hb,f ; Υ) into (65) and ignoring
the terms that do not depend on Υ yields

Υ̂
(j)

= arg max
Υ

PQ∑
g=1

−K log(υg)−
K∑
k=1

E
{
|hb,f [k](g)|2

}
υg

.
(66)

The maximization of this equation with respect to Υ can
be equivalently solved by maximizing with respect to each
υg. Differentiating the above cost function with respect to
each υg and equating to zero yields the estimate of the
hyperparameter υg in the jth iteration as

υ̂(j)
g =

1

K

K∑
k=1

E
hb,f |yp,u;Υ̂

(j−1)

{
|hb,f [k](g)|2

}
, (67)

where the conditional expectation can be derived as

E
{
|hb,f [k](g)|2

}
=
∣∣∣ĥ(j)
b,f [(k − 1)K + g]

∣∣∣2
+ Σ(j)[(k − 1)K + g, (k − 1)K + g].

(68)
The hyperparameter estimate υ̂(j)

g in the jth iteration can be
obtained by exploiting (67). The above E-step and M-step are
repeated until either the maximum number of iterations κmax
is exhausted or ||Υ̂

(j)
− Υ̂

(j−1)
||2F ≤ δ. The main steps of

the proposed G-BL approach harnessed for the estimation of
the joint beamspace channel hb,f are succinctly summarized
in Algorithm-2.
Subsequently, one can estimate the beamspace channel vec-
tor corresponding to the kth subcarrier hb,f [k] from ĥb,f
by selecting the rows [(k − 1)PQ + 1 : kPQ] of ĥb,f .
Therefore the estimated beamspace channel matrix Ĥb,f [k]
for subcarrier k is ultimately determined as

Ĥb,f [k] = vec−1
(
ĥb,f [k]

)
.

The estimate of the CFR can in turn be obtained as Ĥf [k] =

ΨĤb,f [k]. The channel estimate obtained above can now be
utilized for data detection at the UE, and its low-complexity
frame-wise procedure for which is discussed next.

Algorithm 2: Group Bayesian learning (G-BL) based
sparse channel estimation

1 Input: Observation vector yp,u, equivalent sensing
matrix Φp,u, noise covariance matrix Rz and
stopping parameters δ and κmax

2 Initialization:
3 • Hyperparameters υ̂(0)

g = 1, ∀ 1 ≤ g ≤ PQ i.e.

Hyperparameter matrix Υ̂
(0)

= IPQ.
4 • Set counter variable j = 0 and

5 • Υ̂
(−1)

= 0PQ.

6 while, ||Υ̂
(j)
− Υ̂

(j−1)
||2F > δ and j < κmax do

7 j ← j + 1,
8 E-Step: Evaluate the a posteriori covariance and

mean

Σ(j) =

(
ΦH
p,uR

−1
z Φp,u +

(
IK ⊗

(
Υ̂(j−1)

)−1
))−1

ĥ
(j)
b,f = Σ(j)ΦH

p,uR
−1
z yp,u

9 M-Step: Update the hyperparameters
10 for g = 1, ..., PQ do

υ̂(j)
g =

1

K

K∑
k=1

∣∣∣ĥ(j)
b,f [(k − 1)K + g]

∣∣∣2
+ Σ(j)[(k − 1)K + g, (k − 1)K + g]

11 end for
12 end while
13 Output: ĥb,f = ĥ

(j)
b,f

B. Downlink data detection
We commence by decoupling the data component in YUE[k]
of (54) via post multiplication with PH

d . The resultant output
is formulated as

Y̌UE
d [k] = UH

BB[k]UH
RFHf [k]FRFXd[k] + Z[k]PH

d , (69)

where Y̌UE
d [k] = YUE[k]PH

d ∈ CMCU×(LNF−MP ). The
mth frame can be retrieved by selecting the columns
[(m− 1) (L−MP /NF ) + 1 : m (L−MP /NF )] of
Y̌UE
d [k]. The output corresponding to the mth frame

is then:

YUE
m [k] = UH

BB[k]UH
RFHf [k]FRF,mXd,m[k] + Zm[k], (70)

where YUE
m [k] ∈ CMCU×(L−MP /NF ) and

Zm[k] ∈ CMCU×(L−MP /NF ). Let Hm[k] =
UH

BB[k]UH
RFHf [k]FRF,m ∈ CMCU×NRF denote the

equivalent channel matrix. The MMSE data detector
for this system is formulated as

X̂MMSE
d,m [k] =

(
H
H

m[k]Hm[k] +
1

ρdSNR
INRF

)−1

×H
H

m[k]YUE
m [k].

(71)
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V. Precoders/ Combiner and Pilot optimization
This section describes the design of the optimal baseband RC
and pilots. To improve the sparse estimation performance, the
optimal baseband RC and pilot matrices can be obtained by
minimizing the total coherence of the dictionary matrix Φp,u.
Toward this, set the RF TPC and the RF RC as the discrete
Fourier transform (DFT) matrices of size NT×NT and MR×
MR [41]- [42]. Furthermore, since the matrix Φp,u is block-
diagonal, the total coherence minimization of Φp,u reduces
to minimizing the coherence of each sub-matrix Ωp,u[k] =(
XT
p [k]FTRFA

∗
T (ΘT )⊗UH

BB[k]UH
RFBR(ΦR)

)
. The total co-

herence of Ωp,u[k] is defined as

µt(Ωp,u[k]) =

PQ∑
m=1

PQ∑
m 6=n,n=1

∣∣Ωp,u[k](:,m)HΩp,u[k](:, n)
∣∣2 ,

(72)
which can be upper bounded as

µt(Ωp,u[k]) ≤ ||Ωp,u[k]ΩH
p,u[k]||2F . (73)

Let X̃[k] = XT
p [k]FTRFA

∗
T (ΘT ) and Ũ[k] =

UH
BB[k]UH

RFBR(ΦR). This implies that

||Ωp,u[k]ΩH
p,u[k]||2F = ||X̃[k]X̃

H
[k]||2F ||Ũ[k]Ũ

H
[k]||2F

=
PQ

MRNT
||XT

p [k]FHRFFRFX
∗
p[k]||2F ||UH [k]U[k]||2F .

(74)

Hence (74) can be updated as

||Ωp,u[k]ΩH
p,u[k]||2F =

PQ

MRNT
||XH

p [k]Xp[k]||2F ||

×UH
BB[k]UBB[k]||2F .

(75)

It is important to note that one can approximately minimize
the upper bound specified in (73) rather than minimizing the
total coherence µt(Ωp,u[k]). Furthermore, Xp is a block-
diagonal matrix as described in (18). Hence, the quantity
||XH

p [k]Xp[k]||2F can be further simplified in terms of its
components as

||XH
p [k]Xp[k]||2F =

NF∑
m=1

||XH
p,m[k]Xp,m[k]||2F . (76)

The minimization of ||XH
p [k]Xp[k]||2F can now be ac-

complished by minimizing ||XH
p,m[k]Xp,m[k]||2F . Similarly

||UH
BB[k]UBB[k]||2F can be minimized via the minimization

of ||UH
BB,q[k]UBB,q[k]||2F . Lemma-1 below derives the opti-

mal pilot matrix Xp,m[k] corresponding to the mth frame
that minimizes ||XH

p,m[k]Xp,m[k]||2F subject to the average
pilot power constraint given in (12).
Lemma 1: The optimal pilot submatrix X?

p,m[k] can be
determined as the solution of the optimization problem

X?
p,m[k] =argmin

Xp,m[k]

||XH
p,m[k]Xp,m[k]||2F

s.t. Tr
(
Xp,m[k]XH

p,m[k]
)

= ρcNRF
MP

NF
.

(77)

The corresponding closed-form solution may be expressed
as

X?
p,m[k] =

√
ρcNRFQ1

[
IMP
NF

0MP
NF
×
(
NRF−

MP
NF

)]T QH
2 ,

(78)
where Q1 ∈ CNRF×NRF and Q2 ∈ C

MP
NF
×MPNF are arbitrary

unitary matrices.
Proof: Given in Appendix A.

The optimal value of UBB,q[k] is given by the result in
Lemma 2 below.
Lemma 2: The closed-form solution of the optimization
problem

U?
BB,q[k] =argmin

UBB,q [k]

||UH
BB,q[k]UBB,q[k]||2F

s.t. ||UBB,q[k]||2F =
MCU

MCF

(79)

can be derived as

U?
BB,q[k] = Q3

[
IMCU
MCF

0MCU
MCF

×
(
MRF−

MCU
MCF

)]T QH
4 ,

(80)
where Q3 ∈ CMRF×MRF and Q4 ∈ C

MCU
MCF

×MCUMCF are
arbitrary unitary matrices.
Proof: Similar to the proof of Lemma-1.
One can now obtain the optimal designs for W?

BB[k] and
WRF along similar lines. The closed-form solution derived
above for the optimal pilot matrix X?

p[k] and baseband RC
U?

BB[k] at the UE, which minimize the total coherence of the
equivalent sensing matrix Φp,u. This enhances the perfor-
mance of channel estimation, leading to improved accuracy.
Similarly, the proposed optimal pilot X?

p[k] and DFRC
baseband RC W?

BB[k] design enhance the performance of
target parameter estimation through minimization of the total
coherence of the joint sensing matrix Φj .

VI. Bayesian Cramer Rao Bound
A. BCRB derivation for radar parameter estimation
This section derives the BCRB for the proposed J-BL tech-
nique, this procedure may also be readily extended to obtain
the analogous results for the DA-BL and PA-BL schemes as
well. We start by considering the linear model in (36). The
Bayesian Fisher Information matrix (BFIM) JR ∈ CQR×QR
is given by [43]

JR = J0 + Jγ , (81)

where J0 ∈ CQR×QR and Jγ ∈ CQR×QR are the BFIMs
corresponding to the measurement vector yj and RCS vector
γt, respectively, The matrices J0 and Jγ can be defined as

J0 = −E(yj ,γt)

{
∂2L(yj |γt)
∂γt∂γ

H
t

}
,

Jγ = −Eγt

{
∂2L(γt; Λ)

∂γt∂γ
H
t

}
,

(82)

where L(yj |γt) = logp (yj |γt) and L(γt; Λ) =
log p (γt; Λ) are the log-likelihood of the measurement and
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TABLE 4: Simulation Parameters for System-1 and System-2

Parameter System-1 System-2 Parameter System-1 System-2

System bandwidth, B 3.2 MHz 10.24 MHz # DFRC BS RFCs, NRF 4 8

Subcarrier Spacing, ∆f 100 kHz 160 kHz # UE antenna, MR 8 16

# subcarriers, K 32 64 # UE RFCs, MRF 2 4

# OFDM blocks in a frame, L 5 20 UE angular grid, P 10 20

# pilot vectors, MP 4 8 DFRC angular grid, Q 18 36

# DFRC Transmit/Receive antenna, NT and NR 16 32 DFRC range grid, R 16 32

Range resolution, ∆R = c/2B 46.87 m 14.70 m DFRC Angular resolution, ∆Q = π/Q 10◦ 5◦

log-prior density of the RCS vector γt, which can be
formulated as

L(yj |γt) = ξ1 − (yj −Φjγt)
HR−1

j (yj −Φjγt),

L(γt; Λ) = ξ2 − γHt Λ−1γt.
(83)

The constant terms ξ1 and ξ2 are derived as

ξ1 = −KNCLNF log π − log det(Rj),

ξ2 = −QR log π − log det(Λ).
(84)

Now, by substituting (83) and (84) into (82), one can express
the BFIMs as J0 = ΦH

j R−1
j Φj and Jγ = Λ−1. Hence, the

BFIM JR can be formulated as

JR = ΦH
j R−1

j Φj + Λ−1. (85)

Thus, the BCRB for the mean square error (MSE) of the
estimation of the RCS vector γt can be expressed as

MSE (γ̂t) ≥ Tr
(
J−1
R

)
. (86)

B. BCRB for CSI estimation
Similarly, the BFIM JC ∈ CPQ×PQ for the beamspace
channel vector corresponding to the kth subcarrier hb,f [k]
is given as

JC = JP + JH . (87)

The FIMs JP ∈ CPQ×PQ and JH ∈ CPQ×PQ correspond
to the pilot measurement vector yUE

p [k] and hb,f [k], respec-
tively, which are defined as

JP = −E(yUE
p ,hb,f [k])

{
∂2L(yUE

p |hb,f [k])

∂hb,f [k]∂hHb,f [k]

}
,

JH = −Ehb,f [k]

{
∂2L(hb,f [k];ΥΥΥ)

∂hb,f [k]∂hHb,f [k]

}
.

(88)

Applying a procedure similar to the one employed above in
Section VI-A for radar parameter estimation, one can obtain
the expression for JC as

JC =
[
ΦH
p,u[k]R−1

z Φp,u[k] + Υ−1
]
. (89)

Thus, the BCRB for the MSE of the estimate of the
beamspace channel Hb,f [k] can be expressed as

MSE
(
Ĥb,f [k]

)
≥ Tr

[
J−1
C

]
. (90)

The beamspace channel vector hb,f [k] and vectorized CFR
hf [k] are linearly related, as upon described in (52). Ex-
ploiting this, one can determine the BCRB for the estimate
of Hf [k], as shown below

MSE
(
Ĥf [k]

)
≥ Tr

[
ΨJ−1

C ΨH
]−1

. (91)

VII. Simulation Results
This section illustrates the performance of the proposed radar
target parameter estimation and wireless channel estimation
in mmWave MIMO ISAC systems. We consider two different
systems (System 1 and 2) with their detailed parameter
values presented in Table II, where Lt = 8 targets are
randomly distributed in the scattering environment whose
TD RCS coefficients are generated as random variables with
the distribution αt(q, r) ∼ CN (0, 1). The maximum ranges
for System-1 and System-2 are set to Rmax = 749.92 m and
470.4 m, respectively. From the available range resolution,
the range bins can be calculated as R = 16 and 32 for
System-1 and System-2, respectively. From the available
FFT size K, one can calculate the block lengths as S′ = 17
and S′ = 33 for System-1 and System-2, respectively.
Moreover, for a given maximum angle ([0, π] for ULA),
the angular resolution is given as π/Q. Therefore, for given
angular grid sizes Q = 16 for System-1 and 32 for System-
2, angular resolutions of 10◦ and 5◦, respectively, can be
achieved. The number of transmitted frames is NF = 4,
number of combining frames is NCF = 4 and combining
vectors is NC = 8 at the DFRC receiver for both the systems.
QPSK modulation is employed for the data symbols. For
BL-based estimation, the stopping parameters are set to
δ = 10−6 and κmax = 50. The regularization parameter for
FOCUSS is 0.1σ2, the lp-norm parameter is set to p = 0.8
with the stopping threshold ε = 10−6, and the maximum
number of iterations is chosen to be Nmax = 800.

A. Radar parameter estimation
Fig. 4a and 4d compare the NMSE performance of the PA-
BL, DA-BL and J-BL schemes proposed for the PAR, DAR
and JPDR models, to those of the J-OMP, J-FOCUSS and
J-MMSE techniques. The J-OMP, J-FOCUSS and J-MMSE
techniques are the extensions of the OMP, FOCUSS and
conventional MMSE algorithms, respectively, to the JPDR
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FIGURE 4: (a) NMSE versus SNR performance of RCS estimation for System-1; (b) NMSE versus SNR performance of
channel estimation for System-1; (c) BER versus SNR performance for System-1; (d) NMSE versus SNR performance of
RCS estimation for System-2; (e) NMSE versus SNR performance of channel estimation for System-2; (f) BER versus
SNR performance for System-2.

model. Results are presented for System-1 and System-2 in
Fig. 4a and Fig. 4d, respectively. Moreover, the performance
of the proposed schemes is also benchmarked against the
BCRB derived in (86) for the J-BL. The NMSE of the RCS
matrix estimate of the radar target is defined as

NMSE .
=
||Γ̂t − Γt||2F
||Γt||2F

.

One can observe that the J-BL algorithm results in the
lowest estimation NMSE, while the PA-BL has the worst
NMSE performance. This is attributed to the fact that the
output sizes of the PAR, DAR and JPDR models are directly
proportional to the number of pilot symbols, data symbols
and the sum of pilot and data symbols, respectively, and
the fact that in a typical wireless system, the number of
pilot symbols is significantly smaller in comparison to the
data symbols. This can also be observed from System-1,
in which the output sizes of the JPDR, DAR, and PAR
models are KNcLNF = 5120, KNc(LNF −Mp) = 4096
and KNcMp = 1024, respectively. An increase in the

number of observation sizes naturally enhances the esti-
mation accuracy [44], which justifies the superior NMSE
performance of the JPDR in comparison to its competitors.
The J-BL algorithm results in a significantly lower estimation
NMSE than the competing schemes such as J-OMP, J-
FOCUSS and J-MMSE. One can observe from Fig. 4a, a
significant NMSE improvement of around 3 dB, 7 dB and
7.2 dB of the proposed J-BL scheme in comparison to the
J-OMP, J-FOCUSS and J-MMSE, respectively. The poor
performance of the OMP algorithm is due to its sensitivity
both to the threshold and to the choice of the sensing matrix.
Even a minor variation in the stopping parameters leads
to potential structural and convergence errors. Additionally,
every incorrect column selection in an iteration affects all
subsequent iterations, triggering potential error propagation
[38]. Furthermore, the effectiveness of FOCUSS is also
limited by convergence problems and by its sensitivity to
the regularization parameter [45]. Since the MMSE estimator
ignores the sparsity of γt, it leads to the poorest NMSE
performance.
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FIGURE 5: Computational Complexity of PA-BL, DA-BL and J-BL for (a) System-1; (b) System-2.

Furthermore, the performance gap between the PA-BL and
DA-BL schemes increases from 2 dB in System-1, to 6
dB in System-2, as seen in Fig. 4a and Fig. 4d. This is
explained by the fact that the pilot overhead for System-2 is
MP /LNF = 0.1, whereas it equals 0.2 for System-1. Thus,
the relative pilot length normalized by the data record size
is reduced in System-2, resulting in the poor performance of
the PA-BL scheme in comparison to its DA-BL counterpart.
In addition, the performance of the J-BL algorithm is close
to that of the BCRB, although the J-BL assumes neither
the knowledge of the covariance matrix nor the support of
the sparse RCS vector. This demonstrates the efficiency of
the proposed scheme. Interestingly, the NMSE gap between
J-BL and BCRB is lower for System-2 than for System-
1. This is due to the fact that the number of observations in
System-2 is 40, 960, which is increased compared to System-
1 having 5120, which in turn is due to increasing the number
of subcarriers K from 32 to 64 and the number of OFDM
blocks L from 5 for System-1 to 20 System-2. This naturally
leads to superior estimation performance.

B. Wireless channel estimation and data detection
For wireless channel estimation, we assume that the UE is
equipped with MR = 8 antennas and MRF = 2 RFCs.
The size of the angular grid at the receiver is P = 10. The
number of combining vectors in MCF = 4 combining frames
is MCU = 8. The complex path gains βl are generated as
i.i.d. samples obeying the distribution CN (0, 1). Moreover,
the quantities φl and θl are randomly drawn from the interval
[0, π]. The NMSE of channel estimation is defined as

NMSE .
=

∑K−1
k=0 ||Ĥf [k]−Hf [k]||2F∑K−1

k=0 ||Hf [k]||2F
.

Fig. 4b and 4e illustrate the NMSE vs SNR of CSI estimation

at the UE. The figures clearly demonstrate that the proposed
G-BL yields a significantly improved performance in com-
parison to the SBL, OMP, and FOCUSS that also exploit
the sparsity. Despite being a Bayesian learning strategy, the
output of SBL suffers as it does not leverage the group
sparsity inherent in hb,f . This shows clearly the benefits that
can be accrued via exploiting it for sparse signal recovery in
our ISAC system. Once again, the existing sparse estimation
techniques such as FOCUSS and OMP lead to subpar
performance, as already observed and interpreted previously
for the NMSE of RCS estimation at the DFRC BS. The
NMSE improvement of G-BL at the UE over the competing
techniques is higher for System-2, which can once again be
attributed to the overall increase in the number of pilot beams
and subcarriers.

The bit error rate (BER) performance of the detection at
the UE is revealed by Fig. 4c and 4f. Additionally, the BER
performance is compared to a hypothetical receiver having
perfect CSI. The BER associated with BL-based schemes,
such as SBL and G-BL, is superior to that of the non-
BL schemes, such as OMP, FOCUSS, and MMSE. This is
due to the superior CSI estimation capability of the former,
which is consistent with the NMSE plots of Fig. 4b and 4e.
Additionally, the G-BL receiver approaches the BER of the
perfect CSI-based receiver, which demonstrates its enhanced
capability of CSI recovery. One can also observe the BER
performance improvement of System-2, in comparison to
System-1, as depicted in the Fig. 4f. This is once again a
reflection of the superior NMSE performance of the System-
2.

C. Computational Complexity Analysis
It is important to note that while the PAR, DAR and JPDR
models may appear similar, their performance in NMSE and
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FIGURE 6: Demonstration of parameter estimation by proposed PA-BL, DA-BL and J-BL techniques at SNR= −5 dB and
SNR= 5 dB with threshold η = 0.1 . 5(a)-5(f) are for SNR= −5 dB and 5(g)-5(l) are for SNR= 5 dB : (a) Angle and
range estimated at SNR = −5 dB using PA-BL (b) DA-BL (c) J-BL (d) Estimated RCS coefficient magnitudes at SNR
= −5dB using PA-BL (e) DA-BL (f) J-BL (g) Angle and range estimated at SNR = 5 dB using PA-BL (h) DA-BL (i)
J-BL (j) Estimated RCS coefficient magnitudes at SNR = 5 dB using PA-BL (k) DA-BL (l) J-BL.

computational complexities differ significantly. It can be seen
that the PA-BL, DA-BL and J-BL techniques have complex-
ities orders of O(K3N3

CM
3
P + Q3R3), O(K3N3

C(LNF −
MP )3 + Q3R3) and O(K3N3

CL
3N3

F + Q3R3) per EM
iteration, respectively, which arise due to the matrix inversion
required to compute the a posteriori covariance matrix in
equation (44). This difference in the computational complex-
ities can be seen in Fig. 5a and 5b. The JPDR model can
deliver superior NMSE performance compared to its PAR
counterpart. However, this improvement comes at the cost of
higher computational cost. Conversely, the PAR model offers
lower computational complexity, but sacrifices the NMSE
performance. Moreover, the performance of the DAR lies in
between that of the PAR and JPDR models. Therefore, when
the BS has to prioritize accuracy over complexity, the JPDR
model is a suitable choice. On the other hand, in the scenario
when the computational resources are limited, the BS may
opt for the PAR model.

D. 2D imaging
Upon obtaining the estimate of the TD RCS matrix Γ̂t, 2D-
imaging of the scattering scene can now be performed via
plotting its magnitude across the angle and range bins. The
presence of any target in the angle-range bin (θq, r) bin is
reliably detected if |α̂t(q, r)| > η, where η � 1 is a suitably
chosen threshold. Furthermore, if S is the set of all the (θq, r)
bins satisfying the detection criterion, then number of targets

that can be detected is given by L̂t = |S|. Fig. 6(a)-(i)
characterize the imaging performance of proposed PA-BL,
DA-BL and J-BL methods at SNR = −5 dB and SNR= 5
dB, with a threshold of η = 0.1, for System-1. Fig. 6(a)-(c)
and Fig. 6(g)-(i) represent the angle and range estimates at
SNR= −5 dB and SNR= 5 dB, respectively. Observe from
Fig. 6(a)-(c), that PA-BL results in a significantly higher false
positive rate, which is lower in DA-BL, with J-BL leading
to the lowest rate, a trend that is consistent with their NMSE
performance of RCS estimation as seen from Fig. 4a and Fig.
4d. The type-I error rate is further reduced at SNR= 5 dB,
as evident from Fig. 6(g)-(l). Fig. 6(d)-(f) and Fig. 6(j)-(l)
show the magnitude of the RCS coefficients evaluated at the
estimated AoAs for both SNR = −5 dB and SNR = 5 dB. It
is noteworthy that increasing the SNR not only improves the
estimation accuracy of the RCS values for the true targets,
but also reduces the false positive rate.

E. Optimal pilot power and achievable spectral efficiency
Fig. 7a illustrates the variation of the BER performance of
G-BL upon varying the average pilot power ρc for different
values of SNR= {0, 5, 10, 15} dB. Interestingly, one can
observe that the optimal pilot power, at which the minimum
BER is achieved, is close to ρc = 0.5. The BER is higher for
ρc ≤ 0.5, since the pilot is allocated lower power, resulting in
a poor channel estimate that degrades the BER performance.
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FIGURE 7: (a) BER versus average pilot power (ρc) performance; (b) Achievable spectral efficiency versus SNR for
System-1; (c) Achievable spectral efficiency versus SNR for System-2.

On the other hand, for ρc ≥ 0.5, while the quality of the
channel estimate improves, the BER performance is once
again poor, since now lower power is assigned to the data,
hence resulting in a lower Euclidean distance between the
constellation points. Hence, for all simulations of this paper,
ρc is set to its optimal value, which equals to 0.5. Fig. 7b
and 7c show the achievable spectral efficiency (ASE) of the
G-BL and contrasted to that of SBL, OMP, FOCUSS and
MMSE. The performance of a hypothetical receiver having
perfect CSI and fully digital TPC and RC is also shown
as a performance bound. The ASE is evaluated using the
procedure outlined in [39], which can be defined as

ASE .
=

1

K

K∑
k=1

Ns∑
s=1

log

(
1 +

SNR
Ns

λs
(
Hf [k]

)2)
, (92)

where λs
(
Hf [k]

)
, s = 1, 2, ..., Ns represents the sth eigen

value of the effective channel Hf [k]. The matrix Hf [k] can
be expressed as

Hf [k] = [U[k](:, 1 : Ns)]
H

Hf [k] [V[k](:, 1 : Ns)] ,

where U[k](:, 1 : Ns) and V[k](:, 1 : Ns) are the Ns
dominant left and right singular vectors. The simulation
parameters are set as shown in Table 4. From Fig. 7b,
G-BL is seen to achieve a SE that is very close to that
of the idealized hypothetical receiver having perfect CSI.
It is remarkable to note that the G-BL algorithm achieves
this without prior knowledge of the channel’s covariance
or the channel’s TD support, which makes it well suited
for practical deployment. The OMP and FOCUSS schemes
have performance gaps of approximately 2 dB and 2.5 dB,
respectively, with respect to G-BL at high SNR, confirming
the superior performance of the latter in comparison to the
benchmarks. Fig. 7c shows the ASE performance of System-
2. It is interesting to note an ASE improvement of 22 bps/
Hz, which is in line with our previous observation regarding
its improved NMSE performance.

VIII. Conclusions
Bandwidth-efficient superimposed pilot-based parameter es-
timation scheme were conceived for mmWave MIMO-
OFDM ISAC systems. Initially, the pilot-assisted radar
(PAR) and data-assisted radar (DAR) models were separately
developed for this mmWave MIMO-OFDM ISAC system
relying on hybrid beamforming. Subsequently, these were
combined into a single model to harness the power of
both the known signals at the DFRC BS. Then on BL-
based J-BL algorithm was developed for exploiting the
sparsity of the scattering environment for enhanced radar
parameter estimation. In continuation, the advanced G-BL
technique was proposed for estimating the CFR at the UE
in the mmWave ISAC system, which exploits the group
sparsity of the joint beamspace channel across the pilot
subcarriers. A framework was also developed to derive the
optimal TPC, RC and pilot signal via the minimization of
the total coherence of the sensing matrices. The pertinent
BCRBs were developed for analytically characterizing the
error covariance and MSE performance of the parameter
estimation schemes designed for radar and communication.
Our simulation results illustrated the efficacy of the proposed
schemes over the conventional OMP and FOCUSS schemes,
as well as the SBL, for radar target parameter and wireless
channel estimation. Furthermore, the proposed schemes were
seen to achieve an estimation performance close to the ideal
BCRB, which demonstrated their efficiency.

The AP-SIP framework considered in this paper is for
stationary targets. Future research may explore the proposed
AP-SIP framework for mobile targets, thus incorporating the
effects of Doppler shifts.

IX. Appendix
A. Optimal pilot matrix
Let us formulate the singular value decomposition (SVD) of
Xp,m[k] = Q1ΣQH

2 , where Q1 and Q2 are the left and right
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singular matrices of Xp,m[k], respectively. The matrix Σ ∈
CNRF×

MP
NF is the singular matrix, which has the structure

Σ =

[
Diag

(
σ1, σ2, ..., σMP

NF

)
0(

NRF−
MP
NF

)
×MPNF

]T
.

(93)
Upon employing this decomposition, the optimization prob-
lem in (77) can be recast as

σ?j = argmin
σj ,1≤j≤

MP
NF

MP
NF∑
j=1

σ4
j

s.t.

MP
NF∑
j=1

σ2
j = ρcNRF

MP

NF
.

(94)

The above problem can be solved invoking the
Karush-Kuhn-Tucker (KKT) conditions which yield
σ?j =

√
ρcNRF ,∀1 ≤ j ≤ MP

NF
. The substitution of σ?j in

(93) gives the desired result.
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