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ABSTRACT
Current DRL algorithms typically assume a fixed number of possi-
ble actions and sequentially select one action at a time, making them
inefficient for resource allocation problems with arbitrarily large ac-
tion spaces. Sequential action selection requires updating the state
for every action selected, which increases the depth of the decision,
the state space, the uncertainty, and the number of executions. This
affects the convergence of the algorithm and slows the execution
speed. Additionally, current DRL algorithms are not efficient for
online resource allocation problems with an arbitrary number of
task arrivals per time step because they assume a fixed number
of actions. To address these challenges, we propose a novel coali-
tion action selection approach that enables the DRL algorithm to
simultaneously select a coalition of an arbitrary number of actions
from a set with an arbitrary number of possible actions. By making
simultaneous decisions at each time step, coalition action selection
avoids the computational cost and large state space caused by the
sequential decision that updates the state multiple times. We evalu-
ate the performance and complexity of coalition action selection
and sequential action selection approaches using an online combi-
natorial resource allocation problem. The results demonstrate that
the coalition action selection approach retains close performance
to the offline optimal for various online traffic demand arrival rates
of the online combinatorial resource allocation problem, while the
performance of the sequential action selection approach decreases
as the size of the problem increases. The experiments also demon-
strate that coalition action selection has much lower computational
complexity than sequential action selection.
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1 INTRODUCTION
Combinatorial optimization (CO) problems involve finding the best
possible combination of discrete elements from a given set of feasi-
ble options. CO problems can be found in many fields, including
resource allocation and routing. A resource allocation problem is
considered a CO problem when it involves deciding on a combi-
nation of tasks to maximize an objective function. The tasks can
include computational tasks in task offloading that need to be trans-
ferred from low-capacity devices to other devices for faster com-
putation [43], or traffic demands or flows that require bandwidth
resources over a communication network [17].

Traditionally, mathematical optimization algorithms have been
used to solve CO problems [31]. However, if tasks in a CO prob-
lem arrive online and in arbitrary numbers, standard optimization
algorithms are not efficient because tasks are not known in ad-
vance, i.e., online CO problems require online decisions without
knowing future arrivals [33], but mathematical optimization algo-
rithms require complete information a priori. DRL is the state of
the art for sequential online decisions in dynamic and uncertain
contexts [4, 39] with incomplete information because it plans fu-
ture decisions by learning from experience and minimizes online
computational cost [20].

Current DRL algorithms make sequential decisions not only for
each time step but also for each available task in a single time
step. This comes with many drawbacks, such as the curse of dimen-
sionality [9], large depth of decision, and increased uncertainty,
which led to suboptimal results. One of the biggest advantages
of applying DRL for resource allocation problems is minimizing
online computational costs because it can be trained offline and exe-
cuted online [20]. However, the sequential decision of the DRL algo-
rithms on CO problems is still inefficient in terms of computational
costs. Furthermore, the curse of dimensionality makes training
DRL algorithms with sequential action selection slower and more
challenging for large problems [22]. Executing the DRL algorithm
sequentially for the tasks also incurs a delay in output. Moreover,
DRL for arbitrary action space problems, such as combinatorial
problems, is understudied. Because the CO problem includes an
arbitrary number of tasks in the online setting, the DRL algorithm
must work with an arbitrary action space. While these are not
negligible challenges, many existing DRL-based online resource
allocation algorithms [1, 5, 30] overlook these challenges assuming
that only one task arrives at each time step. A DRL-based online
resource allocation algorithm by [17] assumes that no new request
arrives until the current flow is completed. However, real online
resource allocation problems encounter arbitrary numbers of tasks.
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For example, [43] considered a scenario in which a cluster of com-
putational units has to make task-offloading decisions on multiple
tasks. They proposed a sequential action selection algorithm in
which, at each step, the available tasks are selected sequentially
until the resource constraint is exhausted. In other words, there are
multiple sequential action selections in a single time step to select
more tasks. [13] and [14] considered multiple tasks and proposed
a deep learning algorithm with a fixed number of outputs to pro-
duce binary outputs of fixed size. Other DRL-based combinatorial
optimization and resource allocation algorithms [3, 29] apply the
concept of sequence-to-sequence modeling using pointer neural
networks [38] and transformer networks [36] of natural language
processing (NLP) to select combinatorial actions. Nevertheless, all
existing multiple-action selection approaches suffer from either the
curse of dimensionality or have fixed outputs. Although sequence-
to-sequence modeling can be the right option when the order of the
output matters, as in the traveling salesman problem (TSP) [3], they
are not important when the output order does not matter. Therefore,
learning to produce an ordered sequential output for non-orderly
sets leads to computational costs in training and execution.

The dimensionality, execution complexity, and training com-
plexity of DRL algorithms in online combinatorial problems can
be minimized by changing the way current DRL algorithms select
actions. Instead of selecting a sequence of actions one after the
other, using sequential execution, until the constraint is met, a
coalition of actions can be selected simultaneously with a parallel
execution. Coalition formation is a negotiation procedure that aims
to resolve conflicts between entities by forming groups that can
achieve mutually beneficial outcomes. Recent work by [26] has
studied coalition formation and its application to various multia-
gent systems. In this work, we applied it to combinatorial action
selection, where tasks have to find the best coalition by learning
different possible coalitions. We model the selection of coalitions
as a single task and single coalition formation problem [10], where
a group of tasks must form a single coalition to use the limited
resources to maximize the combined long-term utility.

In addition to the sequential action selection approach in the
output, the representation of arbitrary-sized and orderless (ASO)
data in the input is another challenge in applying DRL to online
resource allocation problems. I.e. the information in the input to the
DRL algorithm can be arbitrary in size, and its order does not matter.
However, DRL algorithms, which use a standard neural network as
a function approximator, have a predetermined number of inputs
that accept a fixed number of inputs in a specific order [34]. Because
each input neuron of the neural network is set to accept and sense
specific information from the input at a corresponding index, the
DRL algorithm will consider different permutations of the same
input as different information. This increases the size of the state
space and slows down the training of the DRL algorithm. To benefit
from DRL approaches in circumstances with such arbitrary inputs
whose order does not matter, special architectural components are
required [15].

We can classify the existing techniques for the ASO input into
two categories: neural network-based input transformations and
stationary input transformations as presented in Section 2.2. Station-
ary transformations map an input of arbitrary length to a fixed-size
vector before it is fed into the policy of the DRL approach. Because

they can cause a collision of transformations by mapping two or
more sets to the same vector, current stationary ASO transforma-
tion strategies are less expressive and can cause ambiguity in the
DRL algorithm. On the other hand, neural network-based input
transformations are more expressive because the original input
is directly fed to the policy. The neural network of the policy is
used to learn both the input transformation and the policy. There-
fore, there is no ambiguity in the DRL. Hence, we adopt the neural
network-based input transformation to deal with ASO inputs.

The main contributions of this work are three-fold:
• We propose the first DRL algorithm that selects an arbitrary
number of actions simultaneously for combinatorial deci-
sions. This improves the convergence and execution speed
of DRL algorithms by minimizing the state space and depth
of decision.
• We adopt the transformer neural network to handle ASO
inputs and arbitrary action selection.
• We perform a numerical comparison using an online re-
source allocation problem to evaluate the convergence and
complexity of sequential versus coalition action selection.

In the following, Section 2 reviews related work. The problem
description is presented in Section 3. The proposed approaches
are described in Section 4 and then evaluated in Section 5. The
conclusions are presented in Section 6.

2 RELATEDWORK
Here, we review the methods related to our proposed coalition
action selection and stationary input transformation.

2.1 Task Offloading
The term sequential action selection refers to selecting one action at
a time, while the term coalition action selection refers to selecting a
combination of actions at each time step.

Most existing DRL algorithms employ a sequential action selec-
tion approach, in which actions are selected one at a time [2]. The
curse of dimensionality makes large Markov decision processes
(MDPs) intractable without a guarantee of convergence [9] for such
sequential action selection approaches. Gu [9] did an in-depth anal-
ysis of existing state aggregation and macro-action approaches to
reduce state space in MDPs. Delarue et al. [6] explicitly formu-
lated the action selection problem as a mixed-integer optimization
problem and used an optimization solver to find the optimal or
near-optimal action for the capacitated vehicle routing problem
(CVRP). This combinatorial action selection is not suitable for the
online combinatorial resource allocation problem for three reasons.
First, it accepts only a predefined number of 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑀 , inputs at a
time in the CVRP. If the number of cities is greater than 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑀 ,
it considers 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑀 by distance. There is no reasonable way to
choose a fixed number of traffic demands in our online resource
allocation problem because they have a complex feature vector
as presented in Section 3. Second, it generates a fixed number of
actions, whereas the number of actions to be selected in the online
combinatorial resource allocation problem is arbitrary in number,
depending on the resource constraint. Third, it is not convenient to
maximize long-term rewards with bootstrapping. There exist other
approaches with binary decisions in resource allocation [13, 14],



but they work with a fixed size of inputs and outputs. Similarly
to the limitation discussed for Delarue et al. [6], they are also not
convenient for long-term reward maximization. Another work by
Yao et al. [41] has proposed an approach that utilizes reversible
actions to modify a current solution for combinatorial optimization
problems. These actions involve flipping or swapping vertex labels
and are encoded using a graph neural network to represent state-
action pairs. They have mentioned that permutation invariance is a
drawback of their approach. He et al. [11] proposed a combinatorial
action selection approach for recommendation systems. However,
the action space is designed to be a fixed set of combinations of
tasks to be recommended, but combinatorial resource allocation
requires selecting an arbitrary number of actions.

Sequence-to-sequence modeling neural networks, such as the
pointer neural network [38] and the transformer neural network [36],
have shown significant advances in NLP. They are also applied to
combinatorial optimization problems such as CVRP [23]. However,
even though the encoder part of these sequence-modeling neural
networks is processed in parallel, the decoder part is still sequential
and gives the output sequentially.

2.2 Handling ASO Inputs in DRL
We classify existing techniques for handling ASO input as neural
network-based input transformations and stationary input transfor-
mations. One-hot encoding, bag-of-words [44], zero-padding [18],
and set-pooling are examples of stationary input transformations.
[19] proposed a multiagent DRL (MADRL)-based routing system
using one-hot encoding. For example, if we have a network with
seven nodes, the number 3 is encoded as 0010000 and the set {4,6}
is encoded as 0001010. Although one-hot encoding is used to avoid
dependence on the order in which nodes are enumerated, and when
nodes are variable in number, it still has two limitations to fully
represent ASO input. First, it is a static representation. It cannot rep-
resent nodes when they enter and leave the network dynamically.
Second, it has a maximum limit on the number of nodes that can
be represented. The numerical values that characterize the tasks
are also not represented in the one-hot encoding. Bag-of-words is a
technique commonly used in NLP to represent a text by the number
of occurrences of words. However, it is not suitable for numeric
state representation because it only represents the occurrences of
words. Zero-padding techniques assume a fixed length of the in-
put. If an input comes with a smaller size than the assumed value,
it is zero-padded to make it the set value. The work in [15] has
summarized existing approaches to dealing with variable inputs in
autonomous driving. In [7] and [42], they proposed elementwise
transformation followed by set-pooling to handle the ASO set. First,
each element of the set is fed to a DNN of fixed size. Then they
are concatenated using a pooling operation mean, sum, product,
and maximum. Note that although DNN is deployed, the primary
technique of handling the ASO input is aggregation of the outputs
of the DNN with set-pooling. Lee et al. [16] extended set-pooling
to consider the relationship between the elements of the set. These
methods have limitations when used for DRL. First, they are used
to generate the same output irrespective of the permutation of the
input but cannot help in the action representation to select an el-
ement of them. In other words, they cannot be used for coalition

action selection because their final output is aggregated to a single
output vector using set-pooling. Second, although the methods are
permutation-invariant and work for any size, they can often trans-
form different sets to the same output. This makes them ineffective
for DRL algorithms because they need to interpret different states
differently to avoid ambiguity.

Various neural network-based input transformation techniques
are available, such as set neural networks [16, 25, 42], permutation-
invariant neural networks (PINN) [34], recurrent neural networks
(RNN) [12, 32], graph neural networks (GNN) [27], pointer net-
works [38], and the attention-based transformer neural network
known by its title “Attention is all you need” [36]. Set neural net-
works use a neural network to transform input sets into output
sets and then apply maximum pooling or sum pooling to form the
context vector. PINN is designed to recognize elements of an or-
dered input vector, even when there is noise or some elements are
missing. RNN processes inputs sequentially, which makes it prone
to vanishing gradients and is not suitable for orderless inputs. GNN
is designed to work with graph-structured inputs. It uses iterative
message passing and embedding to propagate a representation of
the input among the elements of the graph. GNN is not important
for the ASO input because the inputs have no graph-structured
relationship. Despite this, it can be applied by considering the ASO
input as a fully connected graph, but this incurs computational cost.
Furthermore, the GNN in the fully connected graph is similar to
the transformer [37, 40].

The transformer neural network [36], which is also known as a
transformer, is the state-of-the-art attention-based neural network
that processes input simultaneously. It uses an attention mecha-
nism at every layer of the encoder and decoder network to learn the
dependency between elements of a sequence of input. The encoder
simultaneously transforms the input and the decoder produces the
output sequentially. The transformer is more popular in NLP, but it
is also applied to CO problems [23]. In NLP, the input sequence is
embedded in a dictionary. However, since the input is numerical
data in CO, the embedding layer is replaced by a feedforward neural
network [23]. Transformers are more efficient than GNN in repre-
senting ASO input elements (traffic demands in our case) because
of the attention mechanism, which allows the traffic demands to
compute the global context among themselves in parallel. If the or-
der of the input is important, it can use the positional encoder [36],
but we do not need it in our case because the traffic demands are
independent. We used the encoder part of the transformer to han-
dle ASO input and output the Q-values in parallel from the hidden
states for the coalition action selection.

3 PROBLEM DESCRIPTION
The description of the problem is customized from the multiagent
learning (MAL) approach for online distributed resource allocation
in a network of computing clusters by Zhang et al. [43]. In MAL,
tasks with different resource requirements arrive to be processed
in a computing cluster from an external environment or are routed
internally from neighboring clusters. The offloading of tasks to
neighboring clusters aims to maximize global utility by efficiently
using resources to process tasks before their deadline. MAL focused
on whether to allocate each task locally or forward it to one of the



neighboring clusters, assuming a limit on the number of tasks that
can be transferred due to the limited capacity of the communication
links. I.e. the number of tasks that can be offloaded are bound by
the preset limit. Our work is complementary to MAL, where MAL
decides whether tasks are processed locally or offloaded to their
neighboring clusters, and our work uses a DRL algorithm to make a
combinatorial decision on which of the tasks use the link given the
resource constraint and which of them are deferred to the next time
step. We customized the problem description of the work by Zhang
et al. [43] to consider the bandwidth constraint of a link connecting
two clusters as a constraint rather than setting a limit on the number
of tasks that can be offloaded. Therefore, the resource allocation in
MAL is a computational resource and the resource allocation in our
work is a communication resource known as traffic demand 1 [1].
Traffic demands are requests for bandwidth resources to transfer
tasks from a source cluster to a neighbor cluster.

Traffic demands are indicated by the identifier 𝑘 , which ranges
from 1 to the total number of traffic demands. To make the iden-
tifiers continuous from 1 to the number of traffic demands, the
identifier is updated at every time step because new traffic demands
can be generated and others can expire. Traffic demand is described
by a feature vector that comprises the utility of allocating traffic
demand𝑉𝑘 , the bandwidth demand of traffic demand 𝐷𝑘 in Optical
Data Units (ODUK) as used by [1], the time length the bandwidth
is needed for traffic demand 𝐿𝑘 in time steps, and the maximum
allowable waiting time𝑊𝑘 in time steps before it is allocated. Fur-
thermore, the time step at which a traffic demand is generated,
indicated by 𝐺𝑘 , is recorded for every traffic demand. A set of traf-
fic demands are denoted by {𝑘}, and hence the set of their 𝑉𝑘 , 𝐷𝑘 ,
𝐿𝑘 , and𝑊𝑘 are denoted by {𝑉𝑘 }, {𝐷𝑘 }, {𝐿𝑘 }, and {𝑊𝑘 } respectively.
At each time step, the total number of traffic demands generated
is between 0 and 𝑘𝑚𝑎𝑥 . The communication links have a resource
constraint of 𝐵 (in ODUK).

3.1 Formulation of the Problem
The problem is to make an online combinatorial resource allocation
decision to maximize long-term utility over 𝑇 time steps, as shown
in the objective function of Equation (1a).

max
𝑋

𝑇

Σ
𝑡=1

| {𝑘 } |

Σ
𝑘=1

𝑉𝑘𝑡 · 𝑋𝑘𝑡 ·𝐺𝑘𝑡 (1a)

s.t.
| {𝐾 } |

Σ
𝑘=1

𝐷𝑘 · 𝑋𝑘𝑡 ·𝐺𝑘𝑡 ≤ 𝐵𝑡 ∀𝑡 ∈ 𝑇 (1b)

𝑇

Σ
𝑡=1

𝑋𝑘𝑡 ·𝐺𝑘𝑡 ∈ {0, 𝐿𝑘 } ∀𝑘 ∈ {𝑘} (1c)

where |{𝑘}| is the number of traffic demands, 𝐵𝑡 2 is the link band-
width constraint at time step 𝑡 ,𝐺𝑘𝑡 binary indicator where𝐺𝑘𝑡 = 1
if 𝐺𝑘 ≤ 𝑡 ≤ 𝐺𝑘+𝑊𝑘+𝐿𝑘 or 𝐺𝑘𝑡 = 0 otherwise, 𝑉𝑘𝑡 =

𝑉𝑘
𝐿𝑘

is an indi-
cator that utility is for the entire length of 𝐿𝑘 , and 𝑋𝑘𝑡 is the binary
decision variable for traffic demands where 𝑋𝑘𝑡 = 1 if the traffic
demand 𝑘 is allocated at time step 𝑡 and 0 otherwise. Equation (1c)
1Traffic demand is a communication resource required to transfer a task.
2The value of 𝐵𝑡 can be less than or equal to the value of 𝐵 because previous traffic
demands can continue using the link for 𝐿𝑘 steps.

ensures that a traffic demand is accepted for the entire length of 𝐿𝑘
or rejected. Note that our work is designed to be complementary
to MAL. It assumes clusters have decided which tasks to allocate
locally, which tasks must be forwarded to the neighboring clusters,
and to which neighboring cluster. Because the task routing in the
MAL decides for a one-hop distance at a time, the combinatorial re-
source allocation of the tasks that need to pass through a given link
is decided independently of the decision on other links. Therefore,
the objective function is from the perspective of a single link.

3.2 Deployment of the Models
In MAL, the models are deployed as distributed agents in the clus-
ters. In our case, because every link is shared by two clusters, the
agent for each link can be deployed in either of the clusters at both
ends of the link that has a higher number of processing units.

4 FORMULATING DRLWITH COALITION
ACTION SELECTION

A CO problem can be formally defined as a triplet consisting of a
set of CO problem instance {𝐼 }, a CO instance to a solution space
mapping function 𝑆 , and an objective function 𝑓 that maps the
solutions in 𝑆 (𝐼 ) to real values. This definition is described by [21]
and can be used to model the DRL algorithms with sequential and
coalition action selection.

4.1 Modeling the DRL Algorithm with
Sequential Action Selection in
Combinatorial Optimization

Oren et al. [21] modeled a sequential action selection process for
an instance 𝐼 using an MDP [24] of𝑇 time steps. At each time 𝑡 , the
state 𝑠𝑡 corresponds to a partial solution and the action 𝑎𝑡 ∈ 𝐴𝑠 cor-
responds to a feasible extension of 𝑠𝑡 . A reward 𝑟𝑡 + 1 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) =
𝑓 (𝑠𝑡 + 1) − 𝑓 (𝑠𝑡 ), transition probability 𝑝 (𝑠𝑡 + 1 |𝑠𝑡 , 𝑎𝑡 ), and an ac-
tion distribution set by a policy 𝜋 (𝑎𝑡 |𝑠𝑡 ) are also defined. This leads
to a distribution of trajectories 𝜌 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 + 1) for 𝑡 = 0, . . . ,𝑇 − 1,
where the transition of the trajectories 𝑝 (𝜌) is calculated as 𝑝 (𝜌) =
𝑝 (𝑠0)

∏𝑇−1
𝑡=0 𝜋 (𝑎𝑡 |𝑠𝑡 ) 𝑝 (𝑠𝑡 + 1 |𝑠𝑡 , 𝑎𝑡 ). The Q-function is defined as

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = E𝜌
[
Σ𝑇−1
𝑖=0 𝑟 (𝑠𝑖 , 𝑎𝑖 )

���𝑠0 = 𝑠𝑡 , 𝑎0 = 𝑎𝑡

]
. The objective of

theDRL agent is to find an optimal policy𝜋∗ (𝑎 |𝑠) = argmax𝑎 𝑄 (𝑠, 𝑎).

4.2 Modeling the DRL Algorithm with Coalition
Action Selection for Combinatorial and
Online Resource Allocation Problems

The description of the coalition action selection problem makes
minor changes to the sequential one. Partial solutions are only a
subset of those in the sequential formulation. An illustrative exam-
ple is provided in Table 1. At each time 𝑡 , the state 𝑠𝑡 corresponds to
a partial solution. A feasible coalition of actions {𝑎𝑡 } ⊆ 𝐴𝑠 extends
the partial solution to another partial solution. The reward of the
coalition is 𝑟𝑡 + 1 = 𝑟 (𝑠𝑡 , {𝑎𝑡 }) = 𝑓 (𝑠𝑡 + 1)− 𝑓 (𝑠𝑡 ), which can be the
sum of the rewards of individual actions depending on the objective
function. The transition probability 𝑝 (𝑠𝑡 + 1 |𝑠𝑡 , {𝑎𝑡 }) and an action
distribution set by a policy 𝜋 ({𝑎𝑡 }|𝑠𝑡 ) are also defined. This leads to
a distribution of trajectories 𝜌 = (𝑠𝑡 , {𝑎𝑡 }, 𝑟𝑡 + 1) for 𝑡 = 0, . . . ,𝑇 − 1,



Table 1: Illustration of the depth of decision and state space of
sequential and coalition action selection for the 0-1 knapsack
problem

Sequential Action Selection Coalition Action Selection
{𝑖1, 𝑖2, 𝑖3}

{𝑖2, 𝑖3}

{𝑖3}

{i2}

{i1}

{𝑖1, 𝑖3}

{𝑖3}

{i1}

{i2}

{𝑖1, 𝑖2}

{i3}

{𝑖1, 𝑖2, 𝑖3}

{i3}

{𝑖1, 𝑖2}

{𝑖1, 𝑖2}

{i3}

where 𝑝 (𝜌) = 𝑝 (𝑠0)
∏𝑇−1
𝑡=0 𝜋 ({𝑎𝑡 }|𝑠𝑡 ) 𝑝 (𝑠𝑡 + 1 |𝑠𝑡 , {𝑎𝑡 }). Then, the

Q-function of the DRL algorithm is customized as 𝑄 (𝑠𝑡 , {𝑎𝑡 }) =
E𝜌

[
Σ𝑇−1
𝑖=0 𝑟 (𝑠𝑖 , {𝑎𝑖 })

���𝑠0 = 𝑠𝑡 , {𝑎0} = {𝑎𝑡 }
]
. The agent’s objective

is to find an optimal policy 𝜋∗ (𝑎 |𝑠) = argmax𝑎 𝑄 (𝑠, 𝑎). Note that
the Q-function is computed by the cumulative reward, but the exe-
cution and training are run in parallel for the elements of the partial
solution to output the Q-value for their best coalition.

4.3 The Depth of Decision and the Size of the
State Space of Coalition Action Selection
and Sequential Action Selection

DRL-based CO can be illustrated by a decision tree where the root
node represents the instance and the child nodes represent the
sub-problems after taking an action. An example of the structure of
the decision tree is shown in Table 1 with an example of a 0-1 knap-
sack problem, 𝐼 ={𝑖1, 𝑖2, 𝑖3} with corresponding weights {10, 15, 30},
utilities {80, 60, 100}, and a knapsack capacity of 30. In the trees,
the selected elements are represented by red labels at the edges.
The leaf nodes represent the terminal states when the knapsack
cannot add any more elements. The sequential action selection
technique selects only one element at a time. On the contrary, the
coalition action selection approach can select any feasible coalition
of elements whose sum of weights does not exceed the capacity. In
the DRL algorithm, the coalition is formed from the elements with
the highest Q-values. The sequential action selection has a depth
of 2 and a state space size of 5, while the coalition action selection
has a depth of 1 and a state space size of 3.

4.4 The DRL Algorithm with Coalition Action
Selection

The online resource allocation problem is a combinatorial opti-
mization problem as shown in Equation (1a). Figure 1 illustrates
the interaction between the resource allocation environment and
the DRL agent with coalition action selection. At each time step,
the DRL algorithm uses a policy 𝜋 , which is a transformer neural
network, that takes a state 𝑠 containing information about unallo-
cated traffic demands and the resource constraint feature vector
𝐵𝐿

3 for the next 𝐿 time step as input and outputs corresponding

3𝐵𝐿 is the future state of 𝐵𝑡 for 𝐿 time steps, where 𝐿 is the maximum possible value
of 𝐿𝑘 , because previous traffic demands occupy the link for 𝐿𝑘 time steps.
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Figure 1: The interaction diagram between the transformer-
based DRL agent with coalition action selection and the on-
line combinatorial resource allocation environment

Q-values for the traffic demands in parallel. Then, a coalition of
traffic demands is selected based on the order of the Q-values of
the traffic demands, considering the resource constraint for the
sum of their demands. A reward is computed from the sum of the
𝑉𝑘 of the selected traffic demands. 𝐵𝐿 is updated after every step
because once a traffic demand is allocated, it uses the link until 𝐿𝑘
expires. Traffic demands that are not accepted at the current step
remain available for decision in later steps as long as their𝑊𝑘 has
not expired. The dotted lines indicate that a copy is stored in the
replay memory. The state, action, and reward of the DRL algorithm
are as follows.

State: The state 𝑠 includes the feature vectors [𝑈𝑘 ,𝑉𝑘 , 𝐷𝑘 ,𝑊𝑘 , 𝐿𝑘 ]
of the set of traffic demands {𝑘} that are waiting to be allocated
and the bandwidth constraint vector of the link 𝐵𝐿 . Since 𝑈𝑘 is
used only in the selection of coalition actions, its explanation is
available in the description of the action. The state is variable in
size because the number of traffic demands can be arbitrarily large.
To handle this arbitrary length in the DRL algorithm, we used the
encoder part of the transformer neural network to process the input
simultaneously because it can handle ASO inputs as explained in
Section 2.2.

State Using Transformer: The state transformation is applied
by directly entering the set of feature vectors [𝑈𝑘 ,𝑉𝑘 , 𝐷𝑘 ,𝑊𝑘 , 𝐿𝑘 ] of
traffic demands {𝑘} and the resource constraint 𝐵𝐿 into the encoder
as 𝑠= {𝐵𝐿, {𝑘}}. 𝐵𝐿 is padded with 𝐵 to make its feature vector equal
to the length of the feature vector of a traffic demand.

Action: The action space {𝑎} is the set of traffic demands {𝑘}.
The Q-values of the traffic demands are outputted from the last
layer of the encoder-only transformer. Then, the traffic demands
with higher demand than the capacity of the link are masked, and
the action selection starts for the rest in decreasing order of their Q-
value until the resource constraint is exhausted. If a traffic demand
has a higher 𝐷𝐿 than the resource constraint, the algorithm skips
it and checks the next one.

Distinguisher in Coalition Action Selection: DRL outputs
the same Q-value for the same input. Therefore, it will be challeng-
ing for coalition selection to learn to put the same traffic demands
on different coalitions. The𝑈𝑘 , which is 1 by default for all {𝑘}, is
included to distinguish the same traffic demands in the coalition ac-
tion selection. If two or more traffic demands have the same feature



vector, they are distinguished by indexing them with increasing𝑈𝑘 .
The𝑈𝑘 is updated at each time step.

Reward: The set of selected actions receives a joint reward 𝑟 ,
which is the sum of 𝑉𝑘 of the selected traffic demands.

Next State: Taking a set of actions {𝑎} in state 𝑠 of the prob-
lem transforms the state into a new state 𝑠′ with reward 𝑟 . The
selected traffic demands are removed from the set of unallocated
demands. The unallocated traffic demands and newly generated
traffic demands form the traffic demands of the next state. The
resource constraint vector 𝐵𝐿 is also updated by subtracting the
traffic demands {𝐷𝑘 } of the selected actions and also by releasing
the occupied resource of traffic demands whose 𝐿𝑘 has expired.

Our DRL algorithm with coalition action selection is in Algo-
rithm 1. First, it initializes hyperparameters. Then it runs for 𝐸
episodes and 𝑇 steps for every episode. Training is performed at
the end of the episode (lines 36 to 42). For the iterations of the steps,
it starts by generating initial traffic demands 𝑘𝑚𝑎𝑥 , as seen in line
4. After the first step, it generates any number of traffic demands
between 0 and 𝑘𝑚𝑎𝑥 per step, as seen in line 31. Lines 9 to 14 show
exploration and exploitation. Traffic demands are randomly shuf-
fled for exploration. When exploiting, the traffic demands and the
resource constraint are fed to the transformer to simultaneously
output Q-values for all traffic demands. Then they are sorted so
that they are selected accordingly, as seen in lines 18 to 27. Action
selection is carried out by iterating on the sorted {𝑘} using the
index 𝑎. In line 19, it checks if the demand 𝐷𝑎 of the traffic demand
at index 𝑎 of {𝑘} is not greater than the resource constraint. If not,
it appends the identifier of the traffic demand to the selected list
and adds its utility to the reward, as seen in lines 20 and 21. Then
update the resource constraint because traffic demand will use the
resource for 𝐿𝑎 time steps. This process continues until no more
traffic demand can be accepted. The reward is used to update the
Q-value of the selected traffic demands in the training. During train-
ing, only the selected actions update their Q-values with the target
Q-value computed from the shared reward and the best Q-value
of the next state, as seen in line 41. Because each action can be
explored with different coalitions of actions at different time steps,
the DRL algorithm gradually finds the optimal coalition using their
Q-values during constrained action selection.

We employ double Q-learning [35], which mitigates overestima-
tion bias, and prioritized experience replay [28], which prioritizes
experiences based on their importance to improve training effec-
tiveness. We use the decaying exploration-exploitation probability
𝜖 which starts at 1 and decays by subtracting 𝜖

5000 in every episode.

5 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate whether coalition action
selection, which benefits from reducing the depth of the decision,
the state space, and the action space, yields superior performance
and lower complexity than sequential selection. We implemented
our algorithm for the online resource allocation problem to assess
the validity of the hypothesis. First, we introduce the offline optimal.

5.1 Offline Optimal using Integer Programming
To evaluate the performance of the proposed algorithms, we use
integer programming (IP) as an offline optimal. We compared the

Algorithm 1 Transformer Neural Network-based DRL Algorithm
with Coalition Action Selection

Initialize parameters: primary transformer parameters 𝜃 ) ,
target transformer parameters 𝜃 ′ = 𝜃 ), discount factor 𝛾 = 0.99,

𝜖-greedy 𝜖 = 1, replay memory𝑀 = [], minibatch 𝑏 = [], start and
maximum episode (𝑒 = 1, 𝐸 = 50, 000), number of time steps𝑇 = 10
1: while 𝑒 ≤ 𝐸 do
2: 𝜖 = 𝜖 − 𝜖

5000
3: Time step 𝑡 = 1
4: Initialize the set of traffic demands {𝑘} with 𝑘𝑚𝑎𝑥 number

of random initial traffic demands
5: Initialize 𝐵 for 𝐿𝑚𝑎𝑥 time steps 𝐵𝐿 :𝐵𝑙 = 𝐵 for 0 ≤ 𝑙 ≤ 𝐿𝑚𝑎𝑥
6: Pad 𝐵𝐿 with 𝐵 to make it same length with the feature vector

of 𝑘
7: while 𝑡 ≤ 𝑇 do
8: Compute state 𝑠 = {{𝑘}, 𝐵𝐿 }
9: if rand ≤ 𝜖 then
10: Shuffle {𝑘} randomly and form new lists 𝑉 , 𝐷 , 𝐿,𝑊
11: else
12: Get Q-value 𝑄 = 𝑄 (𝑠 | 𝜃 ) in parallel for 𝑠
13: Sort {𝑘} in descending 𝑄 and form new lists 𝑉 , 𝐷 , 𝐿,

𝑊

14: end if
15: Reward r = 0
16: Selected = []
17: 𝑎 = 0
18: while 𝑎 ≤ |{𝑘}| do
19: if 𝐷𝑎 ≤ 𝐵𝑡 then
20: Selected = append(selected,a)
21: r = r + 𝑉𝑎
22: for i = 0 to 𝐿𝑎 do
23: 𝐵𝑖 = 𝐵𝑖 − 𝐷𝑎
24: end for
25: end if
26: 𝑎 = 𝑎+ 1
27: end while
28: Exclude the selected traffic demands from {𝑘}
29: Decrement {𝐿𝑘 } and {𝑊𝑘 } of the traffic demands
30: Free occupied resources from 𝐵𝐿 for all 𝐿𝑘 ≤ 0
31: Generate new traffic demands of size between 0 and 𝑘𝑚𝑎𝑥 ,

and append to {𝑘}
32: Compute next state 𝑠′
33: Store the experience (𝑠 , 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑟 , 𝑠′) to𝑀
34: Increment 𝑡
35: end while
36: Sample a minibatch of (𝑠 ,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ,𝑟 ,𝑠′) from𝑀 to 𝑏
37: Get Q-value 𝑄 ′ = 𝑄 (𝑠′ | 𝜃 ′) for the traffic demands at 𝑠′
38: Mask the Q-values of the infeasible (𝑊𝑘 > 𝐵) traffic demands

from Q’ and find maximum Q-value𝑚𝑎𝑥𝑄𝑖 = max(𝑄 ′
𝑖
) ∀𝑖 ∈ 𝑏

39: Compute target Q-values 𝑦𝑖 = 𝑟𝑖+𝛾𝑚𝑎𝑥𝑄𝑖 ∀𝑖 ∈ 𝑏
40: Get current Q-values 𝑐𝑢𝑟𝑟𝑄 = 𝑄 (𝑠 | 𝜃 ) for the traffic de-

mands
41: Update the DQN by minimizing Loss =

1
|𝑏 | Σ𝑖∈𝑏 (𝑦𝑖 − 𝑐𝑢𝑟𝑟𝑄𝑖 (𝑠𝑖 (𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑖 )))2

42: Update the targets: 𝜃 ′ ← 𝜃

43: Increment 𝑒
44: end while



total reward of the coalition action selection and the sequential
action selection approaches in each episode as a percentage of the
offline optimal. IP is unrealistic for online resource allocation, as
it assumes that all information about demand is available upfront.
Therefore, we store the traffic demands generated during the time
steps of the episode and run the IP at the end of the episode for the
objective function shown in Equation (1a).

5.2 Benchmark Selection
Although there exist some techniques that select a fixed number of
outputs at a time, as discussed in related work for CVRP [6] and
resource allocation [13, 14], they are not suitable for comparison
for the mentioned reasons. Therefore, we chose a sequential action
selection approach as in [43] and the offline optimal with IP as the
lower bound and the upper bound benchmarks, respectively.

5.3 Experimental Setup
Because our work is complementary to MAL as explained in Sec-
tion 3, we generate a random number of traffic demands in the
range of 0 and 𝑘𝑚𝑎𝑥 from a uniform distribution at every time step
to resemble the traffic demands that arrive at a cluster externally or
offloaded from neighboring clusters. First, we run the experiment
with a 𝑘𝑚𝑎𝑥 value of 10 to analyze convergence and complexity,
and then run the experiment for 𝑘𝑚𝑎𝑥 ∈ {2, 5, 10, 15, 20}, without
changing other settings, to evaluate performance with various traf-
fic demand arrival rates. The feature vectors of the traffic demands
are generated from a uniform distribution between 1 and 𝑉𝑚𝑎𝑥 =
5, 𝐿𝑚𝑎𝑥 = 1, and𝑊𝑚𝑎𝑥 = 3, inclusive. Similarly to the work by Al-
masan et al. [1], we consider threeODUK types for the values of {𝐷𝑘 }
with {ODU2, ODU3, and ODU4}, whose bandwidth requirements
are expressed in terms of multiples of ODU0 signals. Therefore, the
values of {𝐷𝑘 } are selected as a random choice of {8,32,64} ODU0
units, and the resource constraint 𝐵 is 100 (ODU0). The time step 𝑇
is 10.

The hyperparameters of our DRL algorithm are configured as
follows. The coalition action selection has five inputs including the
distinguisher, and the sequential action selection has four inputs.
The numerical inputs are embedded in a single-layer neural net-
work with 8 outputs. This is followed by 6 blocks of feedforward
neural network and multihead attention layers. The feedforward
neural networks have 32 neurons each. We used a multihead at-
tention value of 8. The final feedforward neural network layer has
one output, which will be the Q-value of the corresponding traffic
demand at the input. Note that the transformer processes the traffic
demands in parallel to compute the Q-values. We used a discount
factor of 0.99, a learning rate of 0.001, a replay memory of size
10,000 which stores the transitions in a first-in-first-out order, and
a minibatch size of 64. The mentioned number of encoder blocks
and their number of neurons are selected because they led to supe-
rior convergence after exhaustive trial-and-error experiments with
various choices. We ran the experiments for 40 runs. The experi-
ments are implemented with Pytorch. To ensure reproducibility,
the experiment environment is initialized with a seed value of 0.
The episodes are independent. All experiments are initialized with
50,000 episodes and run for 24 hours.

Figure 2: Performance of the coalition action selection and
the sequential action selection.

Figure 3: A) Complexity in number of executions for (1) Coali-
tion action selection and (2) Sequential action selection. B)
Complexity in CPU time for (1) Coalition action selection
and (2) Sequential action selection

5.4 Experimental Comparison
Convergence: First, we evaluate the convergence of the perfor-
mance of the two algorithms and their complexity. We compared
the performance of coalition action selection and sequential ac-
tion selection as a percentage of offline optimal in each episode.
To smooth the curves, the results in Figure 2 are plotted for an
averaged moving window of 1000 episodes. Figure 2 shows that
the coalition action selection approach converges faster and is su-
perior with an average gap of 2% over sequential action selection.
Because the 40 runs end with varying numbers of episodes during
the 24-hour training period, we normalize them to the minimum
number of episodes to ensure that the 95% confidence interval is
computed over an equal number of episodes for Figure 2.
Comparison of Execution Complexity: To compare the com-
putational cost of executing the sequential action selection and
coalition action selection approaches, we presented the number of



executions and the CPU time as shown in Figure 3. The box plot is
generated from the number of episodes in Figures 2. The number
of executions is a count of the number of computing Q-values for
the traffic demands. CPU time refers to the sum of the fraction of
seconds that the algorithm spent running the DRL algorithm to
select actions. The time the algorithm spends training is not con-
sidered. As seen in Figure 3 (A), the median number of executions
for episodes of the coalition action selection approach is 114 and
the number of executions for 50% of the episodes ranges between
110 and 117, while episodes of sequential action selection have a
median of 479 executions, and the number of executions of 50% of
them ranges between 455 and 499. The sequential action selection
performs more executions because it selects one action at a time,
resulting in some traffic demands to be executed again in the next
decision steps. On the other hand, coalition action selection has a
smaller number of executions because it selects multiple actions
after a single parallel execution. Figure 3 (B) shows that the CPU
time spent executing the DRL in sequential action selection and
coalition action selection is proportional to the number of execu-
tions in Figure 3 (A). The number of executions and CPU time are
averaged over the 40 runs episode-wise before being used for the
box plots.
Comparison of Performance and Execution Complexity with
Various Problem Sizes: Finally, we repeat the experiment for
traffic demand arrival rates of 𝑘𝑚𝑎𝑥 = 2, 𝑘𝑚𝑎𝑥 = 5, 𝑘𝑚𝑎𝑥 = 15, and
𝑘𝑚𝑎𝑥 = 20 to compare the algorithms with various sizes of the
online combinatorial resource allocation problem. Note that the
experiment discussed above is for 𝑘𝑚𝑎𝑥 = 10. The results are plotted
for the maximum convergence of the best run of 40 runs for a
moving window of 5000 episodes, as seen in Figure 4. For example,
the maximum convergence for the experiment with 𝑘𝑚𝑎𝑥 = 10
shown in Figure 2with amovingwindow of 1000 episodes is 93.777%
in episode 28036. However, Figure 2 is plotted for the average of
40 runs, while Figure 4 is plotted for the best run of the 40 runs.
The reason is that we were unable to compute an average run of
40 runs for 𝑘𝑚𝑎𝑥 values of 15 and 20 because some runs failed due
to limitations of the academic license of the Gurobi optimizer4,
which is used to compute the IP. Almost all runs failed for 𝑘𝑚𝑎𝑥
greater than 20. Note that, with amaximum arrival rate𝑘𝑚𝑎𝑥 of 20, a
maximumwaiting time of𝑊𝑚𝑎𝑥 of 3 for each traffic demand, and for
the time steps per episode 𝑇 of 10, there are 220∗3∗10 combinations
of solutions per episode in the worst case for the Gurobi optimizer.

The coalition action selection approach has shown superior per-
formance, with a convergence of around 95% to offline optimal
in the best runs of different problem sizes, but the performance
of sequential action selection algorithms decreases, up to 92%, as
the size of the problem increases. Note that the two algorithms
perform almost the same for very small arrival rates because all
traffic demands can be accepted without exhausting the resource
constraint. For 𝑘𝑚𝑎𝑥 = 10, Figure 2 shows that the coalition action
selection converges faster, but Figure 4 shows that they are almost
the same because it is plotted only for the maximum convergence.

To compare computational complexity, we present the running
time for each corresponding run that led to peak convergence in
Figure 4. Unlike Figure 3, which plotted the complexities as box

4https://www.gurobi.com/

Figure 4: The comparison of the coalition action selection
and sequential action selection in terms of performance at
peak convergence and average running time, of the episodes
of the best run, in CPU time at different numbers of traffic
demand arrival rates

plots in the run episodes, Figure 4 plots the average CPU time in the
run episodes because we have to plot a scalar value for every 𝑘𝑚𝑎𝑥
on the X-axis. The result shows that the coalition action selection
has a lower complexity than the sequential action selection.

6 CONCLUSIONS
We propose a DRL algorithm with coalition action selection for
online combinatorial resource allocation with arbitrary action space
and experimentally demonstrate that it provides better convergence
and lower complexity than sequential action selection. DRL with
coalition action provides better performance than sequential action
selection because it minimizes the number of iterations, the state
space, and the uncertainty of the problem by producing the Q-values
for all elements in the input in parallel, unlike sequential action
selection, which leads to longer iterations by selecting one action at
a time and updating the state for each action selected. The actions
of the coalition action selection are coordinated by training with
a shared reward. In other recent work, we have applied coalition
action selection to a combinatorial client-master MADRL setting
[8].
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