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1 Introduction

Holography provides a non-perturbative framework to study strongly coupled theories, such
as N = 4 SYM at a large N , through calculations in general relativity in asymptotically
AdS spacetimes [1]. In this paper we use holography to study excited states of thermal
systems in real time, and study their approach to thermal equilibrium. The main motivation
is to further develop and explore real-time holographic frameworks such as [2–4], and to
better understand the exotic class of mixed-signature black hole spacetimes that compute
real-time QFT observables.

Lorentzian evolution in AdS gravity is an initial-boundary-value problem, requiring both
initial data and boundary data. For excited states, the immediate question one must address
is how to choose the initial data. There are two common approaches taken in numerical
relativity. One approach starts with initial data for vacuum or thermal equilibrium and
performs a quench, where QFT sources vary in time and drive the system out of equilibrium.
The other approach taken is to make an ad-hoc choice of initial data. In the latter approach
it is not clear precisely how this choice of initial data is encoded in the QFT, or indeed
whether this is a valid QFT computation at all [5].

In this work we consider the QFT on a closed path in the complex time plane, the
Schwinger-Keldysh contour C, see figure 1. The holographic dual is no longer an initial-
boundary-value problem, but a boundary-value problem with a mixed signature [2, 3].
Consequently, initial data is no longer an input to the calculation. Instead, the task is to
find a bulk saddle point geometry whose boundary is in the conformal class of the Schwinger-
Keldysh contour itself. In this context one can generate coherent excited states by turning
on finite sources for single-trace operators in the Euclidean segment CE .
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Figure 1. The Schwinger-Keldysh contour C in the complex time plane. The circles are identified to
give a closed path. The associated Euclidean periodicity is the inverse temperature β = 1/T . For
each segment t is parameterised as follows; on C1 we have t = t1 with t1 ∈ [0, tf ] for some sufficiently
large tf > 0, on C2 we have t = −t2 with t2 ∈ [−tf , 0], and on CE we have t = −iτ with τ ∈ [0, β].

The present approach comes with two marked advantages. First, by also considering
perturbative sources on C1 and C2, one can compute a variety of real-time observables such
as retarded, advanced and symmetric two-point functions, as well as analogous sets of higher-
point functions. For example, retarded thermal three-point functions were recently computed
using these techniques [6, 7]. Second, the computation is defined in QFT terms, requiring
no bulk-intrinsic input such as ad-hoc choices of initial data to define the state, or ingoing
boundary conditions at horizons to compute correlators [8].

Related work preparing coherent excited states in vacuum includes [5, 9–12]. Specifi-
cally, [9] proved that turning on non-trivial Euclidean sources gives rise to coherent bulk states,
while [10] and [11] considered the effect of multi-trace operators and backreaction, and the
inclusion of interactions, respectively. Subsequently, [5, 12] investigated the extend to which
arbitrary bulk coherent states can be represented by such Euclidean path-integrals in the CFT.
Going beyond vacuum, [13–15] showed that sources on the closed SK contour correspond to
thermal coherent states while thermalisation was discussed in [16]. Ref. [17] studied the Mod-
ular Hamiltonian and Modular Flow for such bulk coherent states. Real time black hole forma-
tion in AdS3 was studied in the in-in formalism in [18] by an excitation of the vacuum, prepared
in the Euclidean by inserting a large number of primary operators on a circle at fixed radius.

In more detail, the QFT computation we are performing this work is as follows. We
consider N = 4 SYM with gauge group SU(N) at large N . This theory contains the following
∆ = 3 operator, the mass term for the gaugino λ4,

O3 ∼ tr(λ4λ4) + h.c. (1.1)

We consider the path integral on the Schwinger-Keldysh contour C, and introduce sources
λC for the operator O3 along this contour,

ZCFT[λC ] =
∫

Dχ exp
(
−iSCFT − i

∫
C

d4xλC(x)O3(x)
)

, (1.2)
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where χ collectively denote the CFT fields. The source function is comprised of three pieces;
on the Euclidean segment CE we write λC = λ(τ) while on the Lorentzian segments C1,2
we write λC = J1,2 respectively. To prepare a coherent excited state we treat λ(τ) finite
and non-perturbative, where it is inhomogeneous and periodic on the Euclidean time circle,
λ(τ) = λ(τ + β). Such a deformation breaks Euclidean time translations, and consequently
the Euclidean part of the path integral prepares a state at t = 0 which is not in thermal
equilibrium,1 described a density operator ρ̂(0) with transition amplitudes

⟨χ2|ρ̂(0)|χ1⟩ =
∫

χ(τ=β)=χ2
χ(τ=0)=χ1

Dχ exp
(
−SE −

∫
CE

dτ d3xλ(τ)O3(τ, x)
)

. (1.3)

In the Lorentzian segments, the sources J1,2 are treated only perturbatively, so as to generate
real-time response functions in this excited state. In particular we compute the following
one-point function,

⟨O3⟩ (t) = i
δZCFT[λ, J1, J2]

δJ1(t)

∣∣∣∣
J1=J2=0

= Tr (ρ̂(t)O3) , (1.4)

where ρ evolves in time according to the time-dependent Schrodinger equation giving rise
to ρ̂(t) = U(t)ρ̂(0)U †(t), with U(t) = e−iH t corresponding to the sourceless Lorentzian
segment of the contour.

Holographically, the deformed CFT path integral (1.2) is computed through the holo-
graphic dictionary ZCFT[λC ] = Zbulk[ϕ(1) = λC ] where CFT sources λC give boundary
conditions for a bulk scalar. In particular, the holographic dual of the O3 operator is an
m2L2 = −3 scalar, ϕ, coupled to gravity in AdS5. This is captured by the following consistent
truncation of N = 8 gauged supergravity [19–22] which retains only this scalar field,2

Sbulk =
∫

d5x
√
|g|
(

R − 1
2(∂ϕ)2 − V (ϕ)

)
, (1.5)

V (ϕ) = 3
L2 cosh2

(
ϕ

2

)
(cosh(ϕ) − 5). (1.6)

To describe the excited state, we seek solutions of the bulk equations of motion of Sbulk
3 subject

to the boundary conditions that the boundary metric is in the conformal class of the Schwinger-
Keldysh contour C, and with Dirichlet boundary conditions for the scalar ϕ in accordance
with the holographic dictionary. Near the AdS boundary in Fefferman-Graham coordinates,

ϕ = z1ϕ(1) + . . . + z3ϕ(3) + . . . (1.7)

we have ϕ(1) = λ(τ) on the Euclidean segment of the contour and ϕ(1) = 0 otherwise. This
saddle is obtained by regular, piecewise solutions to the bulk classical equations, glued together
such that they exhibit continuity of field and first derivatives in the complex t plane [2, 3].
Since sources in C1,2 are treated perturbatively, the bulk Euclidean computation can be
considered first, independently, as a way to generate initial data for the Lorentzian segments.4

1In general, deformations by O3 completely break supersymmetry and also break the SU(4)R R-symmetry
group down to SU(3) [19].

2After appropriate field redefinitions by rescaling.
3Subject to suitable renormalisation [23].
4It is also worth noting that should equal sources be turned on in C1 and C2 the response would be causal

and also not affect the Euclidean computation. When expanded perturbatively this generates fully-retarded
correlation functions.
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Figure 2. An excited black hole state prepared using Euclidean path integral. The boundary of this
spacetime is given by the closed time contour shown in figure 1. The disk corresponds to a Euclidean
geometry, deformed by sources for a relevant operator λ(τ) which break time translations and cause a
departure from thermal equilibrium. The Lorentzian evolution of the state is given by the dynamical
black hole spacetime indicated. Real-time correlators may be extracted by considering perturbations
of this geometry.

The Euclidean geometry that we construct resembles the classic cigar geometry, with the
thermal circle smoothly shrinking to zero size in the interior. The geometry is deformed by the
nontrivial boundary conditions, λ(τ), which backreacts in the bulk, deforming the cigar. With
the Euclidean geometry constructed, taking the fields and their first derivatives on the τ = 0
slice provides initial data for the Lorentzian evolution. We may take coordinates so that ρ = 0
is the tip of the cigar (where the τ circle shrinks to zero size), and parameterise the time circle
τ(φ) using an angular coordinate φ ∼ φ+2π with τ(0) = 0 and τ(2π) = β so that near the tip,

ds2 = C2
(
dρ2 + ρ2dφ2

)
+ C3dx2

3, (1.8)

with C2, C3 constant. Taking τ = φ = 0 as initial data for the Lorentzian, we see the
tip of the cigar looks locally like Rindler. Without backreaction the causal development
of this initial data is (a portion of) the exterior region of a black hole in an excited state.
With backreaction, we will show that generically the event horizon of the black hole will
intersect this surface at ρ > 0 and thus include a portion of interior black hole spacetime,
as depicted in the causal diagram, figure 2.5

The rest of the paper proceeds as follows. In section 2 we detail the ansatz and equations
of motion to be used in the construction of the Euclidean and Lorentzian geometries. In
section 3 we compute the Euclidean saddle corresponding to the deformed cigar, as a boundary-
value problem, and read off initial data. In section 4 we perform Cauchy time evolution of
the initial data and monitor the approach to thermal equilibrium via a one-point function.
We discuss the maximal extension of the Lorentzian spacetime and the genericness of causal
shadows in section 5. We finish with a discussion in section 6.

5See also the Cauchy evolution for spacetimes describing expanding plasma [24, 25], exhibiting a similar
causal structure.
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2 Ansatz and equations of motion

We begin with constructing an ansatz for bulk fields in Lorentzian signature, and then
describe how the ansatz is adjusted for the Euclidean segments. To motivate our choice,
we start with the Schwarzschild-AdS5 black brane written in Schwarzschild coordinates,
with AdS radius L = 1

ds2 = −
(

r2 − r4
H

r2

)
dt2 + dr2(

r2 − r4
H

r2

) + r2dx2
3. (2.1)

We define a new radial coordinate via r = rH sec
(πρ

2
)
, so that ρ = 0 is the horizon and

ρ = 1 is the AdS boundary,

ds2 = −3 + cos(πρ)
2 tan2

(
πρ

2

)
r2

Hdt2 +
π2 sec2 (πρ

2
)

6 + 2 cos(πρ)dρ2 + r2
H sec2

(
πρ

2

)
dx2

3. (2.2)

We then pick rH = 1/2 for convenience. The metric is deformed from Schwarzschild by
backreaction, which we allow by introducing the functions AL(t, ρ), BL(t, ρ), giving our
final ansatz,

ds2 = −3 + cos(πρ)
8 tan2

(
πρ

2

)
ALe−2BLdt2 +

π2 sec2 (πρ
2
)

6 + 2 cos(πρ)
dρ2

AL
+

sec2 (πρ
2
)

4 dx2
3, (2.3)

such that when AL = 1, BL = 0 we have planar Schwarzschild-AdS5. This is a particular
choice of ADM metric with a lapse function but no shift. The scalar field is treated in
first-order form, defining

ΦL = (1 − ρ2)−1ϕ, ΠL = eBL

AL
(1 − ρ2)−1ϕ̇ (2.4)

where dots denote t derivatives.
The wave equation for the scalar becomes,

Φ̇L = ALe−BLΠL, (2.5)

Π̇L = 13 sin(πρ) + 8 sin(2πρ) + sin(3πρ)
64π2(1 − ρ2)

×∂ρ

(
(3 + cos(πρ)) sec2

(
πρ

2

)
tan

(
πρ

2

)
ALe−BL∂ρ((1 − ρ2)ΦL)

)
−

(3 + cos(πρ)) tan2 (πρ
2
)

8(1 − ρ2) e−BV ′
[
(1 − ρ2)ΦL

]
. (2.6)

The Einstein equations Eµ
ν = 0 give the Hamiltonian constraint (from Et

t = 0)

A′
L = −

(
8π csc(πρ)
3+cos(πρ) +

8π cot2 (πρ
2
)
csc(πρ)

3(3+cos(πρ))2 (1−ρ2)2Π2
L +

cot
(πρ

2
)

3π

(
∂ρ

(
(1−ρ2)ΦL

))2
)

AL

− 2π csc(πρ)
3(3+cos(πρ))V

[
(1−ρ)2ΦL

]
, (2.7)

– 5 –
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the momentum constraint (from Et
ρ = 0)

ȦL = − 2
3π

A2
Le−BL cot

(
πρ

2

)
(1 − ρ2)ΠL∂ρ

(
(1 − ρ2)ΦL

)
, (2.8)

as well as a slice condition (from Eρ
ρ = 0)

B′
L = −

2π csc4 (πρ
2
)

sin(πρ)
3(3 + cos(πρ))2 Π2

L −
cot

(πρ
2
)

3π

(
∂ρ

(
(1 − ρ2)ΦL

))2
. (2.9)

2.1 Fields and equations on CE

The ansätze (2.3), (2.4) and the equations of motion (2.5), (2.6), (2.7), (2.8), (2.9) all apply
to the Euclidean problem also, once we make the following replacements,

t = −iφ, AL → AE , BL → BE , ΦL → ΦE , ΠL → iΠE , (2.10)

where φ is a Euclidean time coordinate with period 2π, and should be thought of as the
angle coordinate in our numerical domain. For clarity, this gives ΠE = eBE

AE
(1 − ρ2)−1ϕ̇

where the dot now denotes the φ derivative.

2.2 Fields and equations on C2

The ansätze (2.3), (2.4) and the equations of motion (2.5), (2.6), (2.7), (2.8), (2.9) all apply
to the Lorentzian problem on C2 also, once we make the following replacements,

t = −t2, AL → AL2, BL → BL2, ΦL → ΦL2, ΠL → −ΠL2 , (2.11)

For clarity, this gives ΠL2 = eBL2
AL2

(1 − ρ2)−1ϕ̇ where the dot now denotes the t2 derivative.
In practise we do not need to perform an additional integration to determine the fields
on C2 once they are known on C1, since we have no sources in the Lorentzian. Thus the
solution on C2 is given immediately by

AL2(t2) = AL(−t2), BL2(t2) = BL(−t2), ΦL2(t2) = ΦL(−t2), ΠL2(t2) = −ΠL(−t2).
(2.12)

where we suppressed ρ and as a reminder t2 ∈ [−tf , 0] for some arbitrary final time tf .

2.3 Matching conditions

To construct the piecewise solution on C requires appropriate matching conditions between
each of the three segments. These conditions guarantee C1 of the fields in the complex t

plane, as required for the piecewise solution to be a saddle point.
Between CE and C1 at (φ, t1) = (2π, 0) the solutions we study are time-reversal symmetric,

so that ΠE(2π, ρ) = ΠL(0, ρ) = ȦE(2π, ρ) = ȦL(0, ρ) = ḂE(2π, ρ) = ḂL(0, ρ) = 0. In
addition we require continuity of field values,

ΦE(2π, ρ) = ΦL(0, ρ), (2.13)
AE(2π, ρ) = AL(0, ρ), (2.14)
BE(2π, ρ) = BL(0, ρ), (2.15)

– 6 –
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which we enforce by using the Euclidean solution at φ = 2π to specify the Lorentzian initial
data at t = t1 = 0.6

Between CE and C2 at (φ, t2) = (0, 0) the matching conditions are similarly satisfied,
again, all time derivatives are zero and

ΦE(0, ρ) = ΦL2(0, ρ), (2.16)
AE(0, ρ) = AL2(0, ρ), (2.17)
BE(0, ρ) = BL2(0, ρ), (2.18)

which are satisfied once the matching conditions between CE and C1 are satisfied if the
solution on C2 is generated by the map (2.12).

Between C1 and C2 at (t1, t2) = (tf ,−tf ), we have the following conditions

ΦL(tf , ρ) = ΦL2(−tf , ρ), (2.19)
AL(tf , ρ) = AL2(−tf , ρ), (2.20)
BL(tf , ρ) = BL2(−tf , ρ), (2.21)
ΠL(tf , ρ) = −ΠL2(−tf , ρ). (2.22)

Which are all automatically satisfied for all tf > 0 if the solution on C2 is generated by
the map (2.12).

3 Euclidean: the deformed cigar

In this section we construct regular Euclidean solutions corresponding to nontrivial source
λ for the O3 operator. The proper time at the boundary is τ , with period β, we have
that λ(τ) = λ(τ + β) and λ(0) = ∂τ λ(0) = 0. We refer to the resulting geometry as the
deformed cigar.

In the numerical construction we work with the angular coordinate φ with period 2π,
rather than τ directly. Near the boundary, ρ = 1, we have the following behaviour,

ΦE = λ(τ(φ)) + O(1 − ρ), (3.1)
ΠE = ∂τ λ(τ(φ)) + O(1 − ρ), (3.2)
AE = 1 + O(1 − ρ)2, (3.3)
BE = B∞(φ) + O(1 − ρ)2. (3.4)

Note that B∞(φ) allows for boundary time reparameterisations, encoding the map from φ to
proper time τ through boundary. The proper time at the boundary is given by,

τ(φ) =
∫ φ

0
e−B∞(φ′)dφ′, (3.5)

and the proper period of the Euclidean time circle is β = τ(2π).
6Note that if one requires the existence of a Fefferman-Graham expansion at this corner, λ must be smooth

since coefficients of the near-boundary expansion involves higher derivatives of λ [2, 3]. Our choice of λ is not
smooth at the corner.
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In the interior near the tip of the cigar, ρ = 0, we have the following behaviour,

ΦE = Φc + O(ρ)2 (3.6)
ΠE = 0 + O(ρ)2 (3.7)

AE = −V (Φc)
12 + O(ρ)2 (3.8)

BE = log
(
−V (Φc)

12

)
+ O(ρ)2 (3.9)

where Φc is a constant. This form of the metric means that near ρ = 0 we have

ds2 = 3π2

2 (−V (Φc))
(
ρ2dφ2 + dρ2

)
+ 1

4dx2
3 + O(ρ)2 (3.10)

so that φ ∼ φ + 2π is a good angular coordinate for a regular origin and there is no conical
singularity. Roughly speaking, each term in the ρ expansion corresponds to the contributions
of higher multipoles on the thermal circle ∼ ρneinφ. In this work we specialise to solutions
which only include the even multipoles, respecting a discrete Z2 symmetry present in our
choice of source function λ(τ).

We numerically solve (2.5), (2.6) (2.7), (2.9) (after applying the map (2.10)) as a boundary
value problem, subject to the following regularity and boundary conditions,

∂ρΦE(φ, 0) = 0 ΦE(φ, 1) = λ(τ(φ)) (3.11)
ΠE(φ, 0) = 0, ΠE(φ, 1) = ∂τ λ(τ(φ)) (3.12)

∂ρAE(φ, 0) = 0, AE(φ, 1) = 1 (3.13)
BE(φ, 0) = log (AE(φ, 0)) , ∂ρBE(φ, 1) = 0 (3.14)

where the conditions near ρ = 0 are present to ensure regularity. We use fourth-order finite
differences for ρ and Fourier spectral methods for φ, with the resulting nonlinear equations
solved iteratively using the Newton-Raphson method. The momentum constraint (2.8), is
used to check the solution and perform continuum convergence tests, which are presented in
appendix A. The solution for λ = A

(
2π
β

)
sin20

(
2π
β τ
)

is shown in figure 3. Since λ is peaked
near τ = β/4 and τ = 3β/4 and ΦE decays rapidly into the bulk, we used an amplitude A = 20
in order to generate appreciable backreaction along τ = φ = 0. The resulting initial data for
the Lorentzian evolution in section 4 is extracted at τ = φ = 0 and is shown in figure 4.
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Figure 3. The deformed cigar saddle point, forming the Euclidean part CE of the bulk Schwinger-
Keldysh contour C of figure 1. These are polar plots with ρ as the radial coordinate and φ the angle,
with ρ = 1 the edge of the disk and the conformal boundary of AdS. The surface τ = φ = 0 is the
horizontal interval starting at the centre and ending on the boundary on the right hand side in each
plot. For clarity, the colour scales for ΦE and ΠE have been restricted to [0, 2] and [−2, 2] from their
full ranges of [0, 21.8] and [−65.4, 65.4] respectively.

0.0 0.2 0.4 0.6 0.8 1.0

ρ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ΦE
ΠE

AE
BE

Figure 4. A τ = 0 (φ = 0) slice of the Euclidean path-integral prepared state shown in figure 3. This
serves as time-symmetric initial data for the Cauchy evolution of the Lorentzian fields ΦL, ΠL, AL,
BL through the matching conditions outlined in section 2.3.

– 9 –



J
H
E
P
0
1
(
2
0
2
4
)
1
5
2

4 Lorentzian evolution

In this section we study the Lorentzian segment of the Schwinger-Keldysh contour, without
sources. This corresponds to a Cauchy development of the initial data extracted from the
Euclidean segment of section 3, as shown in figure 4, via the matching conditions of section 2.3
for time-reversal symmetric data at τ = 0. We compute the bulk geometry and analyse
the ringdown of one-point functions.

The Cauchy evolution scheme is as follows. Given ΦL, ΠL, AL, BL at some time t, we use
the scalar equation (2.5), (2.6) to compute ΦL and ΠL on the next time slice at t + ∆t. We
then use the Hamiltonian constraint (2.7) and the slice condition (2.9) to determine AL, BL

at t + ∆t by integrating along the slice. The momentum constraint (2.8) is not solved directly
and is used to monitor the accuracy of the solution. We use second-order finite differences for
ρ derivatives, and fourth-order Runge-Kutta for time stepping. Boundary conditions at the
AdS boundary follow from the required lack of CFT sources, i.e. ΦL(t, 1) = 0, ΠL(t, 1) = 0,
AL(t, 1) = 1, and preserving the asymptotic time coordinate, BL(t, 1) = B∞ where B∞ is a
constant read off from the initial data. At ρ = 0, the dynamics are frozen since the lapse
function is zero there, consequently each Cauchy slice intersects the ρ = 0 corner.7

The results of performing the Cauchy evolution is shown in figure 5. Convergence tests
are given in appendix A. We note that a portion of the late time dynamics are those of a
Schwarzschild black brane whose event horizon lies inside the domain of development of the
initial data. The Schwarzschild solution in these coordinates is given by

AL =
(2π

β̃

)4
+ 2

(
1 −

(2π

β̃

)4
)

csc2 (πρ
2
)

3 + cos(πρ) , BL = B∞, ΦL = ΠL = 0, (4.1)

parameterised by the temperature β̃−1. Note that β̃ should be distinguished from β, the
(proper) period of the Euclidean circle from section 3. This is indicated in figure 6 showing
how gtt assumes the Schwarzschild solution outside the event horizon at late times, with
β̃/β ≃ 0.881. Also shown in figure 6 is the ringdown of the vev of the O3 operator, consistent
with the longest-lived QNM of this emergent Schwarzschild solution.

An analysis of the causal structure is shown in figure 7. The event horizon was obtained
by fitting to (4.1) at late time to find the horizon radius, then shooting an outgoing null
geodesic backwards in time from there. We obtained the conformal diagram by shooting
both ingoing and outgoing null geodesics backwards in time from each indicated spacetime
point to see where they intersected the initial data surface. Rays that hit the boundary were
reflected and then integrated further until they also hit the initial data surface. This data
is sufficient to directly compute the conformal map.

Finally we illustrate the matching of the bulk solution between each of the segments of C
in figure 8, at an arbitrary choice of radius ρ = 1/2. We also picked an arbitrary final time
tf = β/2 to illustrate that the bulk matching between C1 and C2 holds for any choice of tf ,
as discussed in section 2.3. This is a consequence of the lack of sources in these segments.

7In detail, (2.6) implies that ∂tΠL(t, 0) = 0. Since the initial data gives ΠL(0, 0) = 0 we have ΠL(t, 0) = 0,
which together with (2.5) implies that ∂tΦL(t, 0) = 0. The initial data also satisfies ∂ρΠL(0, 0) = ∂ρΦL(0, 0) = 0,
then subleading pieces of (2.5) and (2.6) imply that ∂ρΠL(t, 0) = ∂ρΦL(t, 0) = 0. This in turn, through (2.8),
implies that ∂tAL(t, 0) = 0.
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Figure 5. Lorentzian Cauchy evolution giving the bulk dual of the segments C1, C2 of the Schwinger-
Keldysh contour of figure 1, developing from the deformed cigar solution of the Euclidean path integral
of section 3 at spatial resolution N = 2048.

0.0 0.2 0.4 0.6 0.8 1.0

ρ
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−0.2
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0.0

(1
−
ρ

2
)2
g t
t

2πt/β = 0

2πt/β = 1

2πt/β = 1.5

2πt/β = 2

2πt/β = 7

Schw.
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2πt/β

10−1

100
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104

β
3
|〈O

3
〉|

Figure 6. Approach to thermal equilibrium at late times. Left: the metric component gtt (grey)
converges to the known Schwarzschild solution (4.1) outside the event horizon (red dashed). Right:
the one-point function of the gaugino bilinear O3 rings down to zero (black), as governed by the
longest lived QNM of the late time Schwarzschild black hole (red dashed).
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Figure 7. Lorentzian part of the bulk Schwinger-Keldysh contour, with no sources turned on. A
dynamical event horizon is present inside the domain of development at all times. The geometry
outside the event horizon settles down to the Schwarzschild metric at late times, and the event horizon
(red) intersects the initial data surface. Colour indicates the value of ΦL. Left: the numerical domain
in coordinates t, ρ, with ρ = 1 the AdS boundary and ρ = 0 the tip of the deformed cigar in the initial
data. Right: causal diagram for the same simulation constructed by shooting pairs of null geodesics
through the numerical domain. The white dots in both are a guide to the eye for the mapping from
one to the other. The dashed line denotes the putative Cauchy horizon for data on Σ (i.e. boundary
of the domain of development).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2πt1/β

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

C1

ΦL
ΠL

AL
BL

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5

2πt2/β

C2

ΦL2

ΠL2

AL2

BL2

0 1 2 3 4 5 6

2πτ/β

CE

ΦE
−ΠE

AE
BE

Figure 8. Time evolution of the bulk fields at ρ = 0.5 in each segment of the bulk dual of the
Schwinger-Keldysh contour of figure 1, illustrating the matching of fields between each segment
outlined in section 2.3. We have chosen an arbitrary choice of final time for the contour, tf = β/2,
despite knowing the bulk solution up to tf ≃ 1.1β, to highlight that matching holds at any choice of tf ,
due to a lack of sources in the Lorentzian segments. In accordance with the conditions of section 2.3,
the fields Φ, A, B match at the joins between any two segments, while Π (orange curve) is zero at
(τ, t1) = (β, 0) and at (τ, t2) = (0, 0), and changes sign at (t1, t2) = (tf ,−tf ) since ∂t1ΦL = −∂t2ΦL2
at this join. In the rightmost plot we choose to show −ΠE rather than ΠE to further illustrate the
(unnecessary) matching of the second time derivative of Φ, i.e. ∂2

t1
ΦL = −∂2

τ ΦE at τ = 0, β.
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We observe that the number of derivatives in the complex t plane which are continuous at
the corners τ = 0 and τ = β is higher than strictly necessary for a solution of the Einstein
equations. Here this is a consequence of choosing an order-20 zero in λ(τ) at τ = 0.

5 Causal shadows

Since we preserved a Z2 symmetry λ(τ) = λ(τ + β/2) the dynamical black hole has an
identical asymptotic region under t → t − iβ/2. The initial data is also time symmetric.
These symmetries allow us to construct the maximal extension of the Lorentzian spacetime,
by combining images under t → t − iβ/2 and t → −t. The associated causal diagram
is shown in figure 9 and displays a ‘causal shadow’ [26], a region of the bulk spacetime
which is spacelike separated from both components of the boundary.8 Similar black hole
causal structure was previously seen from symmetric collapse of null shells as described by
Vaidya [26], for three dimensional Janus black holes [27] and for three dimensional black
holes with more than two asymptotic regions [28, 29]. Indeed, [28] interpreted such three-
dimensional wormholes within the in-in formalism using real-time holography. Finally, in a
recent series of papers [30–32], it was argued that novel wormhole configurations exhibiting
causal shadows can be used for counting black hole microstates, explaining the microscopic
origin of the Bekenstein-Hawking black hole entropy.

One may be concerned about the geometry lying beyond the Cauchy horizon for the
evolution we have performed; does it exist? There is a simple argument that shows that it
must. First, we note that the Lorentzian spacetime, globally, is not the analytic continuation
of the Euclidean one under τ → it. This is easy to see, since λ(τ) would continue to λ(it)
on the Lorentzian boundary, however the solutions we have constructed have zero sources
there. However, the causal diamond D as the domain of dependence of the double-sided
Cauchy initial data (formed from the union of τ = 0 and τ = β/2 Euclidean slices, shown as
the dotted line in figure 9) is independent of the choice of source function in the Lorentzian.
This is illustrated in figure 10. This follows from causality; any choice of time-symmetric
Lorentzian source function is unable to affect the region D. The solution inside D is then the
appropriate analytic continuation of the Euclidean solution, analogous to the continuation
from two back-to-back Rindler wedges into the full Minkowski spacetime. As a result, the
regions immediately to the future and past of the tip of the cigar are guaranteed to exist,
provided the Euclidean source choice λ(τ) is an analytic function. The causal shadow lies
inside D, though note however the size of the causal shadow is a consequence of global causal
structure and thus cannot be determined from analytic continuation of the Euclidean alone.

It is natural to ask whether causal shadows are generic for CFT states prepared by
Euclidean path integrals, deforming the thermal circle. Since the tip of the Euclidean cigar
at ρ = 0 corresponds to a trapped surface in the Lorentzian, the event horizon H must be
located at ρ ≥ 0 for matter obeying null energy condition. For a causal shadow to exist
one requires that the horizon grows.

8In [26] causal shadows are defined more generally as bulk regions spacelike separated from D[A] ∪ D[Ac]
where A is a spatial subregion and D[A] its boundary domain of dependence. In the present case, A is an
entire Cauchy slice of one component of the boundary.
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Figure 9. The maximal extension of the Lorentzian segment C1 in the bulk, constructed directly
from numerical solutions of the Einstein-scalar field system. Whilst far from thermal equilibrium,
this extension exists because of a combination of time-symmetric initial data, and a t → t − iβ/2
symmetry in its Euclidean preparation. The red lines are the event horizons associated to the right
and left boundaries, the vertical black lines. The diagonal black lines enclose a region of spacetime
spacelike separated from both boundaries, the ‘causal shadow’. The shading is the scalar field matter
distribution that supports this black hole, shown only where it is known from numerical solutions.
Black hole singularities are not indicated.

In more detail, let U be the tangent vector for a null geodesic congruence whose motion
is restricted to the t, ρ plane, i.e. U only has nontrivial components in the t, ρ directions. The
null Raychaudhuri equation for geodesics in this congruence is given by

θ̇ = −1
3θ2 − σ2 + ω2 − RµνUµUν , (5.1)

where dots denote derivatives with respect to the affine parameter s, with expansion θ, and
here vanishing shear and rotation σab = ωab = 0. Consider arbitrary matter contributions
obeying the null energy condition, so that TµνUµUν ≥ 0, then

θ̇ = −1
3θ2 − 1

2TµνUµUν . (5.2)

As usual, if θ < 0 anywhere along a geodesic γ, then it will evolve to −∞ at finite s, since

θ̇ ≤ −1
3θ2, θ(s0) = θ0 =⇒ θ ≤ θ0

1 + 1
3(s − s0)θ0

, (5.3)

and the right hand side goes to −∞ at finite s.
Now consider the geodesic γ that starts at the tip of the Euclidean cigar, ρ = t = 0. This

is the generator of the Cauchy horizon. One can show that at the tip, θ(0) = 0. From (5.2), if
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Figure 10. There is a spacetime region D in the Lorentzian segment which is insensitive to the choice
of time-symmetric Lorentzian boundary conditions, by causality. It follows that D depends only on
the deformed Euclidean cigar solution. Provided the Euclidean source function λ(τ) is itself analytic,
then the solution in D follows from analytic continuation of the Euclidean solution. Outside D the
choice of Lorentzian sources become important.

TµνUµUν = 0 along γ then θ = 0 everywhere along γ, and thus there is no sign of a singularity
being encountered at finite s. Consider some matter falling into the Cauchy horizon such
that TµνUµUν > 0 there. The effect is that θ̇ < 0 and hence θ becomes negative. Hence, a
singularity is reached at finite s and γ must lie inside the event horizon H. In summary, if
TµνUµUν > 0 anywhere along the Cauchy horizon, then we necessarily have a causal shadow.

The condition TµνUµUν > 0 will be obeyed generically by matter falling into the black
hole. In the case of a scalar field, TµνUµUν = (U · ∇ϕ)2. Recall that we can access a
portion of the Lorentzian geometry by analytic continuation, into D. We can use this to test
the condition TµνUµUν > 0 on the Cauchy horizon for a scalar field. For example, in the
neighbourhood of ρ = 0 we may describe the Euclidean geometry and the scalar field by

ds2 = dρ2 + ρ2dτ2, ϕ(τ, ρ) = ϕ0 + ϕ2ρ2 cos(2τ) (5.4)

where we have specialised to β = 2π for convenience, and suppressed spatial directions and
additional corrections in ρ. Because we are in the neighbourhood of the tip of the cigar, the
analytic continuation τ = it produces the Rindler spacetime. Now the Cauchy horizon is just
the Rindler horizon at ρ = 0, generated by U = ∂t. The causal development of the t = 0
data still only evolves into the exterior of Rindler, however we can perform a further analytic
continuation from Rindler into Minkowski, D, −dT 2 + dX2, by T = ρ sinh(t), X = ρ cosh(t),
where U = X∂T + T∂X . The scalar field becomes

ϕ = ϕ0 + ϕ2(X2 + T 2) =⇒ TµνUµUν = 16ϕ2T 2X2, (5.5)
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which is non-zero on T = X. Similar conclusions hold for higher multipoles of the scalar in
the small ρ neighbourhood, ϕnρneinτ . Hence provided the Euclidean time translations are
broken, so that the Euclidean quadrupole ϕ2 or higher moments ϕn are non-zero, we have
TµνUµUν > 0 on the Cauchy horizon and a causal shadow is formed.9

6 Discussion

Real time holography is relatively unexplored compared to its Euclidean counterpart. The
real time formalism comes with distinct advantages, allowing the computation of real-time
observables in field theory, such as all combinations of retarded and advanced correlation
functions. We applied real time holographic techniques to study excited thermal states in
N = 4 SYM. These were prepared by introducing relevant deformations with sources that
break the translation symmetry of the thermal circle. The deformation led to non-perturbative,
coherent departures from thermal equilibrium described by semi-classical gravity. We studied
the approach to thermal equilibrium in real-time under Lorentzian evolution. This required
the use of numerical relativity in order to construct the bulk dual.

We highlighted the connection between the geometry of dynamical black hole spacetimes
and non-equilibrium field theory, summarised in the causal diagrams of figures 2 and 7. The
event horizon is always present, intersecting the initial data surface away from the tip of the
deformed cigar geometry. We demonstrated that this feature is generic in the presence of
matter obeying the null energy condition, if one breaks translations on the Euclidean time circle.
It corresponds to a ‘causal shadow’ in the maximal extension of the Lorentzian spacetime.

Note that because the deformed cigar is regular at ρ = 0, one cannot prepare a finite
sum of QNMs with these techniques. This is because QNMs are not regular at ρ = 0 where
they behave as an ingoing mode ∼ ρ−iωe−iωt. Instead we can think of preparing an infinite
sum of them. From this sum, at late times the longest lived QNM dominates, and hence the
solution becomes increasingly singular in these coordinates (as figure 7 demonstrates this
is purely a coordinate artefact). An explicit construction of regular Cauchy data from an
infinite sum of QNMs was given for low dimensional examples in [33].

There are several open questions that arise for the formalism itself. We focused on saddles
which were constructed by piecewise gluing of Euclidean and Lorentzian segments. However,
it is not obvious whether there are other saddle points whose metrics are complex in the
interior and whether they should contribute to the gravitational path integral.10 It would also
be interesting to develop a numerical method to find bulk solutions when Ja ≡ J1 − J2 ̸= 0
non-perturbatively. The associated PDE problem is of mixed-type; with an appropriate
treatment of gauge redundancy (for example using the De-Turck method [35]), the Euclidean
equations have an elliptic character, the Lorentzian equations have a hyperbolic character,
and they must be compatible with one another along the gluing surfaces.11

9Note that if Euclidean-time translations were not broken, the corresponding cigar geometry would describe
an equilibrium state, whose Lorentzian geometry is obtained under analytic continuation and contain constant
Lorentzian sources.

10See [34] for a recent discussion of complex metrics and their role in gravitational path integrals.
11In contrast when Ja = 0 the response sources in the Lorentzian is causal, and can be treated as an

initial-boundary-value problem with initial data read off from the Euclidean path integral, just as we did in
this work.
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More generally one may hope that the exploration of real-time holography may be fruitful
in both directions of the duality; either for using gravity to gain new insight into dynamical
phenomena in field theory [36], or for motivating the construction of new exotic black holes
as solutions of mixed-signature boundary value problems, as we have done here.
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A Convergence tests

To assess convergence towards the continuum solution we monitor the momentum con-
straint (2.8), which is the only equation not solved directly in our numerical scheme. In
the Euclidean calculation of section 3, we utilise fourth-order finite differences, and the
appropriate rate of convergence to zero is exhibited in the solutions, as demonstrated in
figure 11. For the Lorentzian solutions of section 4, we show convergence of the momentum
constraint in figure 12. The constraint violation grows with time as the black hole settles
down, which can be attributed to large gradients forming in the solution just inside the event
horizon. This scales to zero as the resolution is increased.
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Figure 11. Continuum convergence tests of the maximum violation of the momentum constraint (2.8),
for the Euclidean solutions of section 3. Fourth-order finite differences are used for ρ with N points,
while for t we use spectral methods with a fixed 128 Fourier modes. The dominant truncation error is
due to the finite ρ resolution and the plot shows the correct error scaling towards zero as N is increased.

Figure 12. Continuum convergence test for the Lorentzian evolution of section 4. Left: spacetime
dependence of the momentum constraint (2.8) at N = 2048 showing where the numerical solution
breaks down as gradients become increasingly large in these coordinates at late times near the horizon.
Right: convergence of the maximum violation of the momentum constraint (2.8) on a given timeslice,
as a function of time, for the Lorentzian evolution of section 4. Time step is fixed at ∆t = 10−3 in
RK4 and N is the number of points in a second-order finite difference for spatial derivatives.
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