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Flow past flapping foils:
Surface texture and unsteadiness effects

by Rodrigo Vilumbrales Garcia

Evolution has lead to extremely efficient biological swimmers and flyers. Animals are
able to use the surrounding flow to obtain performance gains, like in the fish-schooling
operation. Although nowadays their way of travelling is being replicated in mechanical
systems, such as Micro Air Vehicles or energy harvesters, we are still far from achiev-
ing their efficiency. In this thesis we aim to advance towards more efficient propulsive
methods. We mimic the fish-schooling operation by the use of tandem flapping foils,
and we explore real-life aspects that could influence the hydrodynamics performance.
Do animals present surface texture for propulsive performance reasons? How does the
unsteadiness in the surrounding flow affect the performance of a flapping foil? In this
thesis we aim to answer those questions by conducting numerical simulations and ex-
periments. We find that the addition of surface texture (36% and 70% coverage area) is
prejudicial for a pure pitching foil. As for the second question, we explore the impor-
tance of adding physically relevant inputs to recover the dynamics of a flapping foil
submerged inside unsteady incoming flow, and executing transitions in its motion. We
later use the recovered force model to predict the path that maximises its propulsive
performance. We finish by focusing on more efficient ways of developing the tran-
sition motion, finding that the optimal manoeuvre is associated with a more efficient
evolution of the transition velocities.
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1

Chapter 1

Introduction

1.1 Motivation

Life forms optimise gradually their physiology to adapt to their environment Darwin
and Bynum (2009). This gradual evolution has lead to extremely efficient biological
swimmers and flyers, that are nowadays being replicated in mechanical systems, such
as Micro Air Vehicles or energy harvesters.

It is well known that animals need to adapt to its surroundings in order to accom-
plish efficient ways of travelling. An example of this is the fish-schooling organisation,
where several individuals combine their efforts to achieve benefits Weihs (1973). This
arrangement, characterised by high levels of unsteadiness and constantly changing cir-
cumstances, can provide a performance benefit only when the attitude of the individu-
als is properly tuned. If the motion of the fish is not phased accordingly with the sur-
rounding flow, large penalties have been observed Lupandin (2005). Flapping foils in
tandem configuration have been widely used in an effort to understand and replicate
the augmentation effects of fish-schooling. In line with the findings in the biological
field, previous studies have shown a potential benefit if the motion of the foil located
at the back of the configuration is properly tuned to the unsteadiness coming from the
leader Muscutt et al. (2017a). The characteristics of the operation imply that a deeper
knowledge is needed about the mechanisms to maximise the propulsive performance.
The existing tools to model the forces evolution of a flapping foil are either limited
to idealised conditions Garrick (1936); Theodorsen and Mutchler (1935), making them
unrealistic for real life applications.

In this thesis, we aim to progress towards a real-life application of a flapping foil sys-
tem able to maximise its swimming performance. This implies that a closer attention
needs to be paid to the aspects characterising the swimming of real animals. For exam-
ple, a certain degree of roughness is present in every living swimmer. Although some
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efforts have been paid to relate that texture to hydrodinamic benefits, for example by
replicating the well known denticle-like texture of sharks Domel et al. (2018b), the re-
sults are not conclusive. Previous work has shown that a potential drag benefit could
be achieved, but it is still to be seen if the drag reductions are coming from the shape of
the rough element, or just from the rough texture itself.

The second aspect to consider revolves around the high-unsteadiness of real life swim-
mers. As discussed before, the fish schooling is a constantly changing environment,
and any real-life application needs to be able to recognise it, and adapt to it to maintain
gains. Also, the need to adapt to comes associated with a requirement for manoeuvring
motions. We believe that new tools must be developed to better understand the effects
of unsteadiness on the propulsive performance of a foil, and to account for the effects
of manoeuvring kinematics. In this thesis we aim to use state-of-the-art system identifi-
cation tools that could not only produce more realistic force models, but also provide a
better understanding of the mechanisms behind any potential gains. We aim to use the
force model to predict the optimum path that maximises the performance of the foil,
and to execute the required manoeuvre in the most efficient way.

1.2 Aim and objectives

The aim of this thesis can be defined as ”to analyse the effects of surface texture and
flow unsteadiness on the propulsive performance of flapping foils”. The objectives
needed in order to achieve this aim are stated in the next section.

The objectives of this thesis can be summarised as follows:

-Objective one: analysis of the hydrodynamic effects of surface textures on the propul-
sive performance of a flapping foil.

-Objective two: development of force models to predict the performance of a flapping
foil swimming under unsteady incoming conditions, and subjected to manoeuvring
motions.

-Objective three: use of sparse force models to predict the path that maximises the
performance of a flapping foil inside unsteady incoming flow.

-Objective four: optimisation of the manoeuvring motion executed by a flapping foil to
adapt to the incoming flow in order to maximise its propulsive performance.
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1.3 Thesis structure

The present thesis is divided as follows. A general literature review is presented in
Chapter 2 covering the principal literature in the field of flapping foils. Chapter 3
presents the numerical and experimental methodology followed in this thesis.

Chapter 4 analyses the effects of surface roughness on the propulsive performance of a
pure-pitching foil, and compares it with the effects of similar texture on steady wings.

Chapter 5 describes the process followed to develop force models to predict the perfor-
mance of a foil executing manoeuvring motions under unsteady flow conditions. The
force model is later used to estimate the optimum route inside the incoming wake that
maximises the performance of a flapping foil. It also introduces an experimental imple-
mentation of the manoeuvring methodology. We also perform a first analysis focused
on identifying efficient ways of manoeuvring.

Chapter 6 focuses at optimising the transition motion needed by a flapping foil to
maximise its performance. We focus on the hydrodynamic characteristics and forces
productions to understand how can we execute manoeuvring motions in an efficient
manner.

Chapter A presents a first approach conducted to explore ML techniques related to
estimating the performance of flapping foils.

1.4 Results summary

The main findings of this thesis are detailed next:

Chapter 4: ”Effects of surface roughness on the propulsive performance of pitching
foils”. We explored the effects of commercially available rough elements on the propul-
sive performance of a pitching foil. The results suggest that the texture is providing a
mild penalty due to higher drag productions. We compared the flapping case with
steady foils, finding that the first are more robust to roughness. This effect could be ex-
plained by considering the importance that aspects such as the kinematics or Strouhal
value have on the performance of a flapping foil. This two conditions could be neglect-
ing the effect of the rough elements.

This effect is explained by considering the influence that parameters such as the kine-
matics or Strouhal value have on flapping propulsion.

The findings of this chapter focusing on the pitching studies have been accepted for
publication at JFM ( Vilumbrales-Garcia et al. (2023)). Another article, looking at the
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steady foils part of the study is yet to be submitted ”Force generation and flow over
static foils with surface roughness” Bioinspiration and Biommimetics, Kurt et. al.

Chapter 5: in this chapter we used new system-identification tools able to recover the
dynamics of highly unsteady systems. By carefully selecting the inputs associated to
the process we were able to recover a force model able to predict the performance of a
flapping foil subjected to manoeuvres and unsteady inflow conditions. We later used
that model to predict the optimum path for the foil to maximise its performance. We
implemented experimentally the transition manoeuvre needed to maximise the perfor-
mance of the flapping foil. Although the propuslive performance was greatly improved
after the transition, the manoeuvre was associated to large power consumption. We
conducted a first analysis to identify more efficient ways of manoeuvring.

The findings of this chapter are going to be submitted to JFM under the title ”Force
models for a flapping foil under unsteady upstream conditions”, Vilumbrales-Garcia
et. al.

Chapter 6: in this chapter, we focused on optimising the manoeuvring motion needed
to maximise the performance of a flapping foil. By using evolutionary algorithms, we
were able to find a new transition motion able to reduce the overall power consump-
tion, characterised by a more efficient evolution of the accelerations needed to conduct
the manoeuvre.

The findings of this chapter are going to be submitted for publication under the title
”Trajectory optimisation for flapping foils under unsteady inflow conditions”, Vilum-
brales et. al.”, Vilumbrales-Garcia et. al.

Chapter A: in this chapter we developed a first analysis on Machine Learning tools
to predict the performance of a flapping foil. Although the results suggested that a
good accuracy could be achieved, the set up of the method was not suitable for real life
applications. Still, we have used the knowledge gained during this work to conduct
the chapters of this thesis.

Te work presented on this Appendix has been published as conference proceedings.
Vilumbrales-Garcia et al. (2022))
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Chapter 2

Literature Review

2.1 Introduction

This section presents an study of the existing literature in the field of flapping foils. At
section 2.2 we analyse fundamental parameters related to the performance of flapping
foils. A first analysis of the mechanics of flapping foil devices swimming in uniform
upstream flow, also known as solo foils is introduced at section 2.3, were the impact
of aspects such as the wake characteristics, the kinematics or the foil shape and tex-
ture is discussed. Section 2.4 presents the mechanisms behind the tandem flapping
foil operation. We continue by providing an introduction of machine learning and sys-
tem identification tools, such as Deep Reinforcement Learning, that are being used to
recover the dynamics of a flapping foil under unsteady inflow conditions, and to max-
imise the performance of tandem-foil arrangements, and conclude with an analysis of
several applications where flapping foils have been shown to be efficient propulsors
section 2.6. The literature review introduced here will be complemented in each of the
chapters by a more detailed analysis of the state of the art.

2.2 Dimensionless parameters

The use of dimensionless numbers is important to compare findings and systems of
different scales. In this thesis, dimensionless numbers will be used to present final
results, and to validate against existing literature.

In the field of flapping foils, there are two important dimensionless numbers related to
the fluid mechanics of the operation: the Strouhal (St) and the Reynolds number (Re).

StrouhalNumber: St is used to describe oscillating flow mechanisms and can be de-
scribed as follows:
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St =
2A f
U∞

(2.1)

where A is half the amplitude of the motion of the foil, f is the oscillating frequency,
and U∞ is the free-stream velocity of the flow. The effects of St on the swimming and
flying performance of animals have been widely studied in the past. Eloy (2012) found
an optimal St range from 0.15 to 0.8 for animals of different size. Rohr and Fish (2004)
reported that cetaceans efficient swimming is achieved for St values in the range of
0.2-0.4. Rohr et al. (1998) analysed the swimming of dolphins to find an optimum St of
0.25 and 0.27. Similar values were found by Taylor et al. (2003) for fish, bats and insects.
Nudds et al. (2004) discovered that cruising birds achieve high propulsive efficiency
when flying towards the lower end of the St = 0.2 − 0.4 range. Equivalent values have
been discovered in the field of flapping foils, commonly used to replicate the swimming
operation of aquatic animals. A high propulsive efficiency is usually achieved when
the motion of the foils is tuned to the St = 0.2 − 0.4 range (Triantafyllou et al., 1991,
1993, 2000). In line with previous studies and biological findings, the experiments and
simulations conducted in this thesis are limited to the optimum range fund by previous
studies. In an effort to generate efficient swimmers, we will limit the Strouhal range
operation between St = 0.30 and St = 0.40

ReynoldsNumber: Re relates the effects of inertial to viscous forces in a fluid, where
higher values are associated with more turbulent flow. It can be defined as follows:

Re =
LU∞

ν
(2.2)

where L is a characteristic length, usually associated with the chord of the foil, and ν is
the kinematics viscosity.

The swimming Re widely varies depending on the size of the animal. It can be as
low as 10−5 for micro-organism, and as high as 107 for whales (Salta et al., 2010; Eloy,
2012). Several studies have been carried out in the field of flapping foils to analyse
the effects of variations in the Re on the propulsive forces and efficiency. Ol (2007)
found negligible impacts of Re for a high-frequency pitching and plunging aerofoil at
low Re. Medjroubi et al. (2011) conducted simulations for a heaving foil with a Re in
the range of 800 to 104, and reported no major effects neither on the flow structure
nor on the aerodynamical loads. Similar effects were achieved by Ashraf et al. (2011)
for a Re = 2000 − 20000. In line with the previous studies, Baik et al. (2012) reported
negligible effects on the propulsive performance of pitching and heaving foils in the Re
range of 5000-20000.
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2.3 Flapping foils in uniform upstream flow

This sections presents an overview of the existing literature in the field of flapping
foils submerged in uniform upstream conditions, also known as solo foils. We start by
providing an analysis of the mechanisms behind the forces production at section 2.3.2.
Next, we study the impact that parameters such as the kinematics (section 2.3.1) or the
foil shape and texture (section 2.3.3) have on the propulsive performance. We conclude
by providing an analysis of the manoeuvring capabilities of flapping systems. (section
2.3.4) .

2.3.1 Kinematics

The kinematics of a flapping foil play an important role in the force production and
propulsive efficiency. The motion is usually prescribed by a heaving or plunging atti-
tude, consisting of a lateral displacement of the body, a pitching motion, or a combina-
tion of both, usually described as coupled kinematics.

h = Asin(2π f t), θ = θAsin(2π f t + ψ), (2.3)

where A and θA are the heaving and pitching amplitude, f is the oscillating frequency,
and ψ is a delay component between both motions, often used when considering cou-
pled kinematics. Flapping foils following pure pitching kinematics have been usually
found to be inefficient in terms of propulsive efficiency. Mackowski and Williamson
(2015) reported a maximum efficiency near 15% for a NACA0012 oscillating at a Re =

17000 at various St values. Similar efficiency peaks have been found for several Re
(Das et al., 2016) and reduced frequency values (Dewey et al., 2013). For pure heaving
cases, Heathcote et al. (2008) reported a maximum efficiency of 30% for a NACA0012 at
various reduced frequency values. The performance of the foil can be greatly increased
by combining the heaving and pitching motions. Scherer (1968) analysed rectangular
wings with mid aspect ratios and found a peak value in the efficiency of 70%. An-
derson et al. (1998) reported a peak efficiency of 87% for a foil combining sinusoidal
pitching and heaving kinematics, while DeLaurier and Harris (1982) noticed a maxi-
mum η value of 50%. Even when the results vary in terms of maximum efficiency, the
advantage of coupled kinematics with respect to pure pitching or heaving is clear. By
properly combining both motions into what is usually known as flapping kinematics,
more efficient flippers can be designed.

The majority of studies conducted in the field consider only sinusoidal kinematics, but
several other approaches can be noticed. Das et al. (2019) observed high-harmonics in
the effective angle of attack evolution of sinusoidal coupled kinematics, and found that
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a square-shaped waveform can increase the thrust generation when comparing to a si-
nusoidal evolution. Hover et al. (2004) controlled the evolution of the effective angle
of attack (α) experienced by the foil by adjusting the kinematics, finding that a cosine
evolution of α can maintain a stable reverse von Kármán street for a wider St range.
Lu et al. (2013) compared different waveforms and pitching amplitudes to conclude
that both the thrust and the power coefficient increase as the wave progress towards
quadratic, together with a stronger reverse Kármán street. Van Buren et al. (2017) de-
signed, with the use of a Jacobi function, three types of kinematics: triangular, sinu-
soidal, and square. The authors linked the sinusoidal waves to high-efficiency, and the
square-like motions to greater speeds. The authors compared the effects of applying
non-sinusoidal motions to the pitch and heave separately, discovering that an unusual
heave motion has a greater influence on the shape of the wake than the case where the
pitch is modified. Slight changes in the pitch and/or heave evolution can lead to impor-
tant changes in the wake and hence in the forces generated. Perfect sinusoidal waves
are unlikely in nature, and analysing other types of motion could lead to applications
for special cases, such as spontaneous thrust increase or manoeuvring. While the field
of different types kinematics is of great interest, this thesis will contain only sinusoidal
pure-pitching and/or coupled sinusoidal pitch and heave motion. The parameters will
be based on the values reported by other studies, in an effort to generate efficient ways
of propulsion and to validate our results against existing literature.

2.3.2 Forces generation and wake characteristics

Swimming and flying animals have evolved to use their fins or wings to produce effi-
cient thrust or lift. By performing different types of motions, depending on the animal
or the situation, animals can travel efficiently. Although the mechanisms behind the
motion of animals are still not fully understood, a wide range of studies have been
conducted in the last decades using flapping foils. From a biommimetic perspective,
engineers and researchers have been trying to conduct studies using flapping foils in
an effort to answer the remaining questions about why are animals so efficient when
travelling. This section of the literature review aims to present, in a brief way, the main
advancements in that field.

The motion of a flapping foil generates a distinctive feature known as Leading-Edge-
Vortices (LEV) Muscutt et al. (2017a); Akhtar et al. (2007) . The presence of LEV pro-
motes a change in the velocity or pressure fields that result in forces production. The
LEVs create a low-pressure region influenced by the increment of the flow velocity in
this area. The location of the LEV in terms of the foil - inner or outer face - generates a
suction that can lead to a propulsive - horizontal axis - or lift - vertical axis - force. The
existence of this LEV can be related to the physical phenomena known as ”Dynamic
stall”, which occurs when the effective angle of attack of the motion exceeds the stall
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angle of attack of the steady aerofoil (Carr et al., 1977). The effects of the dynamic stall
are maximised when the effective angle of attack of the foil is at its peak (Tuncer et al.,
1998; Rival et al., 2011). At the beginning of the motion, the flow is attached to the sur-
face of the foil. As the effective angle of attack increases, the foil reaches the region of
dynamic stall, causing a sudden increase of the aerodynamic loading. The increment
in the forces occurring during the maximum effective angle part of the flapping cycle
leads to an increment in the forces, while the vortex is attached to the body (Park and
Choi, 2012). Still, the kinematics followed by the object can have a drastic impact on
the development of the dynamic stall. Ol et al. (2010) compared a pure-heaving and
pitching-heaving flapping body, finding that the first leads to a stronger phenomena.
The lower effective angle of attack promoted by the couple kinematics leads to almost
no LEV, reducing the overall dynamic stall strength. Still, this reduction in dynamic
stall is dependent on the pitch-heave combination. Isogai et al. (1999) reported that
a 90 degree phasing between the plunging and the rotating motion leads to efficient
propulsion, why other combinations can lead to large leading-edge separation, dras-
tically reducing the overall efficiency of the motion. The 90 degree heave-pitch lag is
commonly used in flapping studies Kinsey and Dumas (2008); Platzer et al. (2008), and
will be used in this thesis.

When the LEV generated during the flapping cycle are detached, a characteristic wake
can be observed behind the foil. The type of motion followed by the foil can strongly
influence the shape and type of wake developed by the foil, and hence the propulsive
performance. A bluff body immersed in a fluid can promote the formation of vortices
in its wake. This phenomenon is well known for stationary cylinders. A von Kármán
Street is generated by the shedding of counter-rotating vortices from either side of the
body (Zdravkovich, 1996; Gerrard, 1966). The vortices remain on the side where they
were formed, leading to a drag-producing wake caused by a reduction in the velocity
of the flow. For a flapping foil to produce thrust, the detachment of the vortices has
to form what is usually described as a reverse von Kármán Street (Triantafyllou et al.,
1991). In this case, the rotation sense of the vortices detached by the body is reversed
with respect to the cylinder wake, leading to an acceleration of the free-stream flow,
and to a thrust-producing wake.

FIGURE 2.1: Transition from drag producing wake to thrust producing wake.
Lagopoulos et al. (2019)

Figure 2.1 shows the transition from drag-producing wake to thrust-producing wake.

The dominant parameter to characterise each of the types is U/U∞. This highlights that
a thrust-producing wake develops a jet that increases the velocity of the flow behind
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the foil. If attention is paid to the direction of the vorticity structures, this jet-flow can
be explained. In the case of the reverse Kármán, the velocity between the vortices is
pointing downstream, which is the opposite case to the classical von Kármán Street.
The propulsive force generated by a flapping foil can be related then to the strength of
the reverse Kármán street Lagopoulos et al. (2019); Streitlien and Triantafyllou (1998);
Bohl and Koochesfahani (2009)

The characteristics of the wake developed by a flapping foil can be linked to its kine-
matics. Figure 2.2 (Anderson et al. (1998)) presents a comparison of several types of
wakes produced by a flapping foil under various motion regimes, with a pivot-point
located at one third of the chord.

FIGURE 2.2: Wake shape in terms of the effective angle of attack and St value Anderson
et al. (1998)

Regions A and B: in this area, the motion of the foil is characterised by a low St value,
leading to a low or negative thrust production. The distinct reverse von Kármán street
is not developed, and there are no distinct vorticity structures in the wake of the foil.

Region C: this region, corresponding to the efficient Strouhal range of 0.2-0.4 discussed
before, presents a development of two main vortices per cycle, of opposite rotating sign.
The wake of the foil evolves to a revers von Kármán Street, associated with moderately-
strong LEV and high forces production. As discussed before, this area corresponds to
the St values followed by different animals. The research covered in this thesis will be
restricted to this range.

Region D: the LEV structures interact with trailing edge vorticity to generate four vor-
tices per cycle, or 2P wake. This is characterised by asymmetry on the vorticity struc-
tures of opposite sign, which could lead to wake deflection and high forces.

The optimum St value to achieve maximum efficiency is also linked to the natural vor-
tex shedding frequency of the foil. When the foil flaps around the previous parameter,
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also known as resonance, it can be concluded that the body motion is at optimum St.
Rohr and Fish (2004) Taylor et al. (2003). The resonant frequency achieves maximum
amplitude, which, for example, would be of the greatest importance when flexibility ef-
fects are under consideration. It is then understood that the resonance frequency would
generate maximum amplitude with the minimum energy input, hence increasing the
efficiency. It is important then, before entering any considerations about the kinematics
of the foil, to characterise its frequency, which is known to depend on aspects such as
the length of the foil, its mass distribution, or spring constant.

FIGURE 2.3: Sketch of the forces and induced velocities seen by a flapping foil in
tandem arrangement

The forces produced by a flapping foil can be usually defined as two main components:
the drag force, parallel to the induced flow seen by the aerofoil, or FD, and the lift force,
or FL. The instantaneous forces can be projected onto the thrust and side forces as FX

and FY. The schematics and denomination of forces followed in this study is similar to
Muscutt et al. (2017a)). A detail can be seen at Figure 2.3. In this thesis, we present the
forces evolution on its dimensionless format, as follows:

CD =
FD

1
2 ρU2sc

, CL =
FL

1
2 ρU2sc

(2.4)

where ρ is the density of water and U represents the free-stream flow velocity, s is the
wing span, ρ is the flow density, and c is the wing chord.

as denoted before, the instantaneous CL and CD can be used to obtain the thrust, and
side components CX and CY, as follows:

CX = CLsin(α)− CDcos(α), CY = CLcos(α) + CDsin(α) (2.5)
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where α is the induced velocity angle seen during the flapping motion defined, in line
with Muscutt et al. (2017a), as α = arctan(ḣ/U∞)

The previous components, together with the kinematics of the foil, can be used to obtain
the input power and efficiency:

P = ḣFY + θ̇MZ, CP =
P

1
2 ρU3Sc

, η =
CX

CP
(2.6)

where ρ is the density of water and U represents the free-stream flow velocity. To differ-
entiate between instantaneous, and time-averaged quantities, the latter are presented
with an overline, as CX.

2.3.3 Foil texture and flexibility

Real life swimmers are not rigid or smooth. Every single animal presents a certain de-
gree of surface texture and/or flexibility that can have a major impact on its swimming
performance. In this section, we present briefly the research focused on analysing two
main areas of surface modifications: flexibility and texture.

Flexibility

A certain degree of surface flexibility has been found to influence significantly the per-
formance of flapping wings. It has been widely observed in nature, such as in the flight
of birds or in the swimming of fish, that animals can flex their wings or fins to incre-
ment their forces production or travelling efficiency. Several works have been done in
the field of single flapping foils, involving the analysis of scaling parameters Barenblatt
(2003), Shyy et al. (1999) or the use of Navier Stoke’s Equations to analyse the effects
of flexibility in dipteran flapping flight. Ramananarivo et al. (2011) carried out an ex-
perimental study concluding that the maximum propulsion is achieved at a frequency
slightly lower than the natural frequency of the system. Zhang et al. (2010) improved
the findings of Ramananarivo et al. (2011) finding that, if the flapping frequency is
higher than the natural frequency of the body, the foil would move backwards, high-
lighting the importance of the relation between the flapping frequency and the natural
response of the body. There are two types of flexibility to be analysed, at least in re-
lation to the foil. The first one, the chordwise flexibility, has been found to increase
the thrust production of a flapping foil, under the right conditions, when compared
to a rigid system Iverson et al. (2018), Zhu (2007), Heathcote et al. (2008), Yang et al.
(2012), Jeanmonod and Olivier (2017). A certain degree of flexibility can increase the
propulsion up to two times. The spanwise flexibility, on the other hand, has been less
studied. Xia et al. (2018) applied this type of flexibility to small fish-like robots, finding
that dolphins and other animals can benefit from spanwise flexibility on the caudal fin.
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Heathcote et al. (2008) found that, for low St values, a small degree of spanwise flexibil-
ity could be beneficial, but higher flexibility in the span direction could be detrimental.
Yang et al. (2012) compared both span and chordwise flexibility together finding that
the two phenomena are related, and the right combination of them can lead to an in-
crease in propulsion and efficiency. Finally, the effects of the body deflection, although
can provide crucial in order to achieve performance augmentation, are indubitably go-
ing to alter the flow surrounding the flapper. Although the effects of flexibility can
highly influence the performance of a flapping foil, in this thesis we will limit to a solid
surface, to help with the comparison with existing literature.

Texture

Surface roughness is ever present in swimming animals. With a clear biomimetic in-
spiration, several studies have tried to understand the purpose of the body roughness,
and its relation to swimming performance. The most common approach has been fo-
cused on the well known shark-skin type texture. Although most of the research has
been done for steady bodies in gliding applications, Oeffner and Lauder (2012); Domel
et al. (2018a), reported that adding denticles designed to mimic those of a shark can
reduce the drag of a flapping foil or increase the swimming velocity of self-propelling
bodies. Still, those benefits have only been achieved under certain conditions, such
as the shape of the denticle. Varying this last parameter can lead from a performance
augmentation, to a performance detriment.

Although some benefits have been reported, it is yet to be seen if those arise from the
shape of the denticle, or from the presence of a rough element. To answer that question,
we will conduct in this thesis a study using simple, commercially available elements to
alter the texture of a flapping foil.

2.3.4 Flapping foil manoeuvring

Flapping foils have proven to be excellent manoeuvring bodies. Read et al. (2003) found
that, due to the strong instantaneous lift and side-force production, the manoeuvring
capabilities were ”outstanding”. The author analysed aspects such as the use of pitch
bias to generate those manoeuvring forces, or the impulse starting motion. Similar re-
sults were found by Licht et al. (2004a) when the authors designed an UAV for under-
water purposes. Bandyopadhyay et al. (1997) analysed the manoeuvring capabilities
of several fishes and analysed the gap between the nature world and the engineering
world, finding a close relation between the ability to manoeuvre and the length and
scale of the fins. This ability to manoeuvre will be used in this thesis in order to find
the optimum route that maximises the performance of a flapping foil.
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2.4 Tandem flapping foils

This section provides an introduction of the existing literature in the field of tandem
flapping foils.

The configuration where one foil is placed downstream of the other foil is known as
tandem scenario. In this situation, the front foil, or fore, experiences a uniform in-
coming flow, and its performance is expected to be similar to the single flapping foil
detailed before. On the other hand, the foil placed at the back, or hind, will encounter
the wake produced by the leader. This phenomena implies a higher degree of unsteadi-
ness in the flow experienced by the flipper, and is expected to modify its performance.
The use of tandem flapping foils for propulsive or energy-harvesting applications has
gained relevance in the last years. Its foundations are based on nature, and it is an ide-
alised way of studying the physics behind the flight formation of birds (Lissaman and
Shollenberger, 1970) or fish-schooling arrangements (Weihs, 1973).

The use of flapping foils in group configuration for propulsive applications find its
foundations on nature: from the flight formation of birds (Weimerskirch et al., 2001) to
fish schooling Weihs (1973)). Biological studies have found multiple benefits associated
to fish schooling: Pitcher et al. (1982) reported that fish under school arrangement can
find food faster than isolated individuals. Abrahams and Colgan (1985) found that the
hydrodynamic benefits of the school arrangements could lead a to reduced respiratory
rate and an increase in the swimming efficiency. Weihs (1975) observed that, for an
optimal configuration, a reduction in the swimming effort of up to a factor of 5 could
be achieved. The hydrodynamic benefits achieved from the interactions between two
moving bodies are not necessarily limited to schooling. Several animals have evolve
towards two or more set of flippers. For example, Alexander (1984) and Thomas et al.
(2004) observed that dragonflies can adapt their fore and hind wing motions to adapt
to different flight modes. Fish can combine the motion of their different appendix (dor-
sal fin, tail) to increase their overall thrust (Drucker and Lauder, 2001; Bandyopadhyay
et al., 1997; Akhtar et al., 2007). Other research has been focused on the swimming of
plesiosaur, finding that, if the back flipper is properly tuned to the motion of the front,
a surplus of up to two times in the thrust production can be achieved (Muscutt et al.,
2017b,a). The use of tandem flapping foil configuration closely resembles an effort to
replicate the performance benefits detailed before. Several parameters have been found
to dominate the overall hydrodynamic performance based on the tandem interactions:
the spacing between wings Kumar and Hu (2011), and the phase-lag in the motion
of the moving elements (Rival et al., 2011; Sampath et al., 2020). Several studies have
combined both, finding a strong correlation between the spacing/phasing of the wings,
and its propulsive performance (Geder et al., 2017; Lua et al., 2016; Younsi et al., 2022;
Broering and Lian, 2012; Gravish et al., 2015; Lin et al., 2019). A proper coordination
between the two elements of the arrangement can induce large benefits, but, on the
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other hand, if the phasing/spacing criteria is not tuned, the hind foil can observe a
large performance detriment. Muscutt et al. (2017a) analysed the effects of the men-
tioned phasing/spacing combination at different St values, observing that, as the St
changes, the optimum configuration for the tandem operation changes. The hydrody-
namics observed in the previous studies points towards the interactions between the
hind foil and the incoming vortices as the reason behind the performance augmenta-
tion or detriment. Figure 2.4 (Muscutt et al., 2017a) introduces the jet developed during
a tandem operation for a high-performance and low-performance arrangement. The
high-performance configuration increases the velocity of the flow and the thrust. While
the low-performance foil encounters vortices during its path, leading to low forces pro-
duction, the high-performance case waves between the main vorticity structures of the
wake. By avoiding the vortices, the foil takes advantage of the reverse von Kármán
street, without suffering the penalties of strong foil-wake encounters.

FIGURE 2.4: Wakes of single flapping foil, and a high-performance and low-
performance tandem configuration. Muscutt et al. (2017a)
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The performance benefits of the tandem operation presented in the previous studies
can only be achieved if the optimal conditions are known in advance. If the route
that augments the performance is unknown, the tandem operation could not only not
provide benefits, but add penalties to the performance of the foil. In this thesis, we aim
to develop methods to predict the optimum phasing for a foil, in order to maximise its
performance.

2.5 Machine Learning techniques applied to flapping foils.

As described before, a flapping foil swimming inside a tandem arrangement can dras-
tically increase its swimming performance if its motion is properly tuned to incoming
wake. We have also discussed that the basis behind the tandem arrangement rely on
fish-schooling, which is known to be a highly unsteady scenario. If the upstream con-
ditions change, the foil needs to adjust its trajectory to maintain the performance gains.
We believe that, in order to achieve that capability, first the propulsive performance of
the foil needs to be predicted in real-time. If the foil can detect in advance a change in
the wake conditions, it will be able to adjust accordingly.

Several models have been developed to estimate the performance of a flapping foil.
Theodorsen and Mutchler (1935) derived the first expressions for the forces time evo-
lution to predict aerodynamic flutter. Garrick (1936), used the equations defined by
Theodorsen to approximate the propulsive forces, and Lighthill (1969) completed the
work done by Garrick applying its equations to a lunate tail of a fish. The main dis-
advantage of the previous methods is that they all assume small amplitude kinematic
motions, rectilinear vortex wake and perfect fluid, conditions highly unlikely to be
found in a real-world applications.

Several approaches have been conducted to account for the presence of unsteadiness
in the incoming flow. Muscutt et al. (2017a) developed a quasi-steady model able to
estimate the averaged forces parameters by including the velocity of the wake upstream
of the flow. Still, for a real-time application, the force model has to be able to deal
with instantaneous forces. Kurt et al. (2020) developed a variation of Garrick (1936) to
estimate the performance of the hind foil by including the wake velocity components.

Nowadays, the developments on Machine Learning techniques and system identifica-
tion tools have opened the path to deal with the complex flow dynamics inside the tan-
dem operation or fish-schooling. For example, Li et al. (2022) were able to predict multi-
ple transient physical fields, transient aerodynamic characteristics of a flapping-based
energy extracting device using deep-learning techniques. Zhu et al. (2022a) reported
that a swimmer inside dense-schooling formations could learn to maintain stable for-
mations using Deep Reinforcement Learning. Zhu et al. (2022b) used similar tools to
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train a fish to reach a target destination from random initial locations, by discovering
efficient navigation strategies.

By using DRL techniques, Gunnarson et al. (2021) found that a swimmer could exploit
the unsteadiness in the surrounding flow. Zhu et al. (2021) trained a fish to adapt its
motion to different task, such as prey capture, rheotaxis and Kármán gaiting. Using
complex techniques such as Deep Reinforcement Learning can develop promising re-
sults able to deal with the highly-unsteady scenario of tandem flapping foils. The same
tool was used by Verma et al. (2018), who reported that swimmers can exploit unsteady
flow fields to obtain substantial energetic benefits.Still, those methods are usually cost-
expensive and difficult to generalise.

In recent years, more work has been done to reduce the computational expense of Ma-
chine Learning techniques applied to hydrodynamic scenarios. Weymouth and Yue
(2013) studied the applications of physics-based learning models (PBLM) to ship hydro-
dynamics. By the use of physical knowledge of the system, the authors improved the
predictions obtained by simple regression models at a considerably less expense than
high-resolution numerical predictions. Another approach gaining relevance nowadays
relies on Koopman-Based tools. The Koopman approach aims to represent linearly
complex nonlinear dynamical systems, which could lead to prediction, or control ap-
plications (Brunton et al., 2021). In this line, Brunton et al. (2016b) proposed the ”Sparse
Identification of Nonlinear Dynamics (SINDy) approach. By the use of a generic library
of terms, and properly selected inputs, the approach can recover the dynamics of com-
plex systems. The main advantage relies on the sparsity of the discovered governing
equations, which could lead to a deeper understanding of the physics of the problem
to be studied, as opposed to Machine Learning black-box algorithms, such as LSTM or
NODE (Hochreiter and Schmidhuber, 1997; Chen et al., 2018).

In this thesis, we aim to use user-interpretable system identification tools to recover the
dynamics of the propulsive performance of a flapping foil inside unsteady incoming
flow. By applying physical knowledge to the process, we aim to recover accurate gov-
erning equations able to predict the performance of the foil in real time, which could
lead to control applications, and to a deeper understanding of the physics behind the
performance gains of fish-schooling and tandem operations.

2.6 Applications

The field of application of flapping foils is vast. From energy harvesters to micro-
vehicles, the motion presented in the previous chapter can be adapted to many cir-
cumstances. Although it is still in a theoretical stage, there are some examples where
actual systems have been built. Licht et al. (2004b) designed a vehicle that used flap-
ping foils as a sole source of propulsion. The vehicle was found to be suitable for thrust
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generation under unstable circumstances. Bandyopadhyay et al. (1997) quantified the
gap in manoeuvrability between micro vehicles and fish by the use of a dual flapping
device mimicking the dorsal fins of a fish. Long Jr et al. (2006) developed a robot with
a configuration consisting of four flippers in order to study the phasing between each
of them. The authors found that maximum thrust was achieved when all four flippers
were in motion.

In the field of micro air vehicles, Ratti and Vachtsevanos (2011) analysed dragonfly-
inspired vehicles. The characteristics of those systems allow them to an important
range of applications, such as intelligence and surveillance or border patrol.
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Chapter 3

Methodology

3.1 Computational

Computer Fluid Dynamics (CFD) simulations are useful to researchers to conduct large
parameter sweep studies at a relatively low cost compared to experiments. In this the-
sis, numerical simulations have been conducted to develop the database needed to pro-
duce force-models and/or optimise trajectories (Chapter 5 and Chapter 6), and as the
basis for experiments (Chapter 5). In this section we describe the details of the solver
used, we conduct a sensitivity analysis of the grid, and validate the model against ex-
isting literature.

3.1.1 Solver

In this thesis we have used a FORTRAN-based CFD solver, called Lotus. This solver
has been shown to simulate accurately complex geometries and moving bodies at a
various range of Reynolds numbers, in both 2D and 3D domains. This solver uses the
Boundary Data Immersion Method (BDIM,Weymouth and Yue (2011)) to simulate the
time-evolution of the viscous Navier-Stokes using a convolution over the fluid and any
immersed dynamic geometries. The convergence of this method is quadratic, and has
been previously validated for flapping foil systems in several studies Maertens and
Weymouth (2015); Lagopoulos et al. (2019); Zurman-Nasution et al. (2021a).

3.1.2 Grid analysis

The main characteristics of the grid used in this thesis are similar to the one used by
Lagopoulos et al. (2019). Nevertheless, the Re used in this thesis (Re = 7000) differs
from Lagopoulos et al. (2019) (Re = 1173), hence, a full grid sensitivity analysis will be
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Points per chord CX % Error
64 0.455 14%

128 0.414 3.4%
192 0.412 2.9%
256 0.400 0

TABLE 3.1: Grid density study

conducted in order to ensure a correct balance between simulation accuracy and com-
putational cost. The mesh is made of a rectangular cartesian grid, with a dense uniform
grid for the areas of interest of the study (body and near wake), and exponential grid-
stretching for the far field. The details of the grid are presented at Figure 3.1, extracted
from Lagopoulos (2021). The domain consists of uniform inflow, with free-slip condi-
tions on the lower and upper boundaries.

The first analysis to be conducted to ensure the correct setup of the grid is a grid sen-
sitivity study. The mesh density is defined as points per chord (c/X). A more dense
approach will lead to more resolved simulations, but at a higher computational cost.
To evaluate the optimum balance between accuracy and cost, we perform simulations
of a flapping foil swimming at uniform upstream flow (h/c = 1, St = 0.36, Re = 7000)
at four different resolutions: 64, 128, 192, and 256 points per chord. To evaluate the
sensitivity effects on the resolved forces, we evaluate the CX for all cases and compare
it with the highest-density grid (256 points per chord). Assuming the latter as the truth
value, we evaluate the relative error achieved with the lower-dense resolutions. Table
3.1 introduces the results of the sensitivity analysis.

Based on the results obtained during the grid sensitivity analysis, and to use a grid
configuration that has been validated in previous studies (Lagopoulos et al., 2019), we
select a grid spacing of ∆X = ∆Y = c/192. After selecting the points per chord to be
used in the study, the next step is to evaluate the convergence capabilities of the solver.
Figure 3.2 introduces the CX evolution at different cycles achieved by the solver. In line
with Lagopoulos (2021), a good convergence is achieved after Cycle 5, highlighting the
capabilities of the solver to model moving objects.

3.1.3 Validation

In this section, we validate the solver against existing literature data. As discussed be-
fore, LOTUS has been used in multiple studies for different applications. The solver has
been validated for a range of Re = 103 − 104 values, for applications varying from tow-
ing cylinders Weymouth (2014), vorticity shedding of shrinking cylinders (Weymouth
and Triantafyllou, 2012), boundary layer instabilities (Maertens and Weymouth, 2015),
and bodies executing rapid manoeuvres Polet et al. (2015). The same code has been
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FIGURE 3.1: Schematics of the grid used in this thesis. Extracted from Lagopoulos
(2021)

.

FIGURE 3.2: Analysis of the convergence achieved by the lotus simulations for a grid
spacing of 192 points per chord. The figure presents a comparison between the instan-

taneous CX produced at consecutive flapping cycles.

used for flapping foil applications, ranging from 2D to 3D, for solo and tandem flap-
ping foils, and with different kinematics: from coupled motions (Muscutt et al., 2017a;
Lagopoulos et al., 2020, 2019; Zurman-Nasution et al., 2020, 2021a,b).

We introduce at Figure 3.3 a comparison between the results presented at Anderson
et al. (1998) and values obtained using the solver Lotus. We also include at the figure
the validation conducted by Muscutt (2017) with a similar solver. As denoted by Mus-
cutt (2017), a good agreement can be seen between the existing experimental data and
the simulations conducted with our solver, proving the feasibility of the CFD tool for
flapping foil applications.
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FIGURE 3.3: Comparison between the CX values described by Anderson et al. (1998)
for a solo flapping foil (Cases 1-8). Case 9, extracted from Muscutt (2017) follows the

same kinematics as Case 5. Case 10 is equivalent to Case 7.

3.2 Experimental

This section introduces the facilities and tools used to conduct the experiments de-
scribed in this thesis. The experiments have been conducted at the University of Southamp-
ton recirculating water flume. The methodology developed in this thesis includes the
execution of prescribed motions, the acquisition of forces and locations, and Particle
Image Velocimetry (PIV) techniques.

The information presented here will be complemented with the Methodology sections
of Chapters 4 and 5

3.2.1 Recirculating water tunnel

The experiments presented in this thesis are conducted in the recirculating water flume
in the Department of Aerodynamics and Flight Mechanics, at the University of Southamp-
ton. The test section of the flume is 8.1 m length, with a width of 1.2m and a depth of
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FIGURE 3.4: Schematics of the University of Southampton recirculating water flume.

0.9 m. The flow is driven by two parallel axial propeller pumps that can circulate the
water at a maximum velocity of 1m/s.

3.2.1.1 Experimental flapping equipment

The flapping experiments are conducted using a modified version of the ’robotic ple-
siosaur’ designed by Muscutt (2017). The system is installed on top of the recirculating
water flume, and can provide two axes of motions for two different flippers, one for
pitching and one for heaving. The system contains two traverse bars located across
the water flume that execute the heaving motion through the use of a stepper motor
(Applied Motions STM32R) and a belt. The system is designed so that it can hold the
foil, and the equipment needed to execute the pitching motion and acquire forces and
locations. The schematics of the flapping carriage are presented at Figure 3.5.

3.2.1.2 Flapping arm

A flapping arm has been designed and built to execute the pitching motion of the foils,
as depicted at Figure 3.6. The arm is capable of following a prescribed kinematic, and
to record the instantaneous location and forces produced by the foil. Two different sets
of steppers have been used in this thesis. The experiments described at Chapter 4 were
done with an Applied Motions STM23S, while the tandem motion detailed at Chapter
5 is executed with an Applied Motions STM32R. A gear-box (ratio 5:1) is coupled with
the stepper to increase the torque and resolution of the motion. The attitude of the
foil, both the heaving and pitching trajectories, is recorded using encoders, as depicted
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FIGURE 3.5: Schematic of the flapping carriage used to perform the heaving/pitching
motions.

at Figure 3.6. The pitching motion of the foil is captured using a rotary incremental
encoder (US Digital E5) attached to the motor shaft. The resolution of the encoder
is 5000 cycles per revolution. The heaving displacement is acquired using a SoftPot
membrane potentiometer located in a transversal bar, normal to the direction of the
flow. A wiper is placed in the flapping arm to capture the instantaneous lateral location
of the foil.

The forces and moments that act on the foils are measured with a six-axis force sensor
(ATI Gamma IP65). The load-cell provides a resolution of 1/80N in the X, Y axes,
1/40N in the Z axis, 10/13333Nm in the X,Y, Z moments, for a maximum load of 65 N
in the X,Y axis, 200 N in the Z axis, and 5Nm for the X,Y,Z moments. The forces and
moments are calibrated using the calibration file provided by ATI for the specific load
cell utilised. All the experiments are repeated several times to report errors in the data.
Finally, a surface plate is installed at the foil tip and the foil is placed right above the
bottom wall to prevent tip vortex formation and enforce nominally two-dimensional
flow over the foil.

3.2.2 Kinematics control and forces acquisition

The core of the experimental setup relies on the control system used to prescribe and
execute the motion, and to acquire the instantaneous forces and locations. Two different
systems have been used during this thesis to perform such task. For Chapter 4, we have
developed an approach using MATLAB environment. The data described at Chapter 5
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FIGURE 3.6: Schematics of the flapping arm built for this thesis.

has been acquired with a combination of the mentioned new MATLAB code, and the
existing Labview-based cRio environment.

3.2.2.1 cRIO

An existing Labview-based control system, has been adapted to accommodate the re-
quirements of this thesis. The system uses a CompactRIO (cRIO) 9067 chasis (National
Instruments), which comprehends a real-time processor with reconfigurable field pro-
grammable gate array (FPGA). The chasis contains a total of 8 slots that can house
various modules, based on the requirements of the study. The structure of the cRIO is
depicted at Figure 3.7, extracted from Muscutt (2017). The original system was able to
control and execute two axis of motion for a set of two flippers, and to acquire forces
from a gauge-cell. The system was further developed to accommodate linear encoders,
and a six forces and moments ATI load cell. This experimental capability was used to
prescribe the motion of the foils detailed at Chapter 5. The forces and encoders data
were acquired with a MATLAB code that will be introduced next.

3.2.2.2 SCL protocol

The second control system has been developed using a MATLAB environment, and Se-
rial Command Language (SCL) protocol. The SCL is able to control aspects such as the
location of the stepper, or the velocity and acceleration of the motion. The kinematics
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FIGURE 3.7: Schematics of the original labview-based cRio control system, extracted
from (Muscutt, 2017)

FIGURE 3.8: Schematics of the MATLAB-based SCL control protocol.

signal are divided into steps and sent from a host computer (MATLAB code), through
a RS-232 module (ES-U-1002-M) to the driver of the stepper. The MATLAB code com-
municates through a NI-DAQ USB 6210 with the encoders and load cell and records
in real time the forces and locations of the foil. The schematics of the system are pre-
sented at Figure 3.8 This protocol has been used to carry out the experiments (motion
and data acquisition) conducted at Chapter 4 and to acquire the forces and data of the
experiments conducted at Chapter 5.
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3.2.3 PIV techniques

The MATLAB code presented in the previous section was able to communicate with
a PTU LaVision system to perform simultaneous forces acquisition and Particle Image
Velocimetry (PIV) techniques. For the experiments conducted at 4, we conducted flow
measurements using a planar PIV system. The cameras used for the experiments were
two 4-megapixel LaVision MX with 50 mm Nikon lenses ( f = 5.6). Both cameras were
placed underneath the water channel. The distances between the bottom wall of the
channel and the cameras was around 80 cm. The arrangement of the cameras was
side-by-side, in the streamwise direction, to capture a field-of-view of about 2c × 1c
with 0.2c × 1c overlap between the camera frames. The field-of-view was aimed to
obtain images of the entire cross-section of the foil, and an additional 0.5c in the foils’
upstream and downstream regions. The field of view was illuminated using a laser
beam output by a Litron Nano PIV laser head with 200 mJ power output at 532 nm
wavelength, through a set of sheet-forming optics at the foils’ mid-span. The laser
and camera triggers was synchronised using a pulse timing unit (PTU) via DaVis 10
software to record the image pairs. The flow was seeded with polyamide particles with
a nominal diameter of 55 µm. The seeding density was iteratively adjusted to have a
satisfactory number of particles in the field of view. The image pairs were captured
at full resolution (2048 × 2048 pixels) at a frequency of 10 Hz. To cross-correlate the
image pairs, the software DaVis 10 was used, with the final interrogation window size
of 24×24 pixels and 50% overlap. The acquired velocity fields from each camera were
combined and blended using half a Hamming window over the overlapped region.

3.3 Machine learning and System Identification techniques

In this thesis, we will use several system identification and Machine Learning tools in
an effort to better understand the dynamics of a flapping foil under unsteady condi-
tions system. We will explore several approaches, ranging from black-box algorithms
(LSTM, NODE), to user-interpretable approaches (SINDy). The contents detailed in
this section will be used to predict the forces experienced by a flapping foil for a given
route inside the incoming wake (Chapter 5 and Appendix A)

3.3.1 Machine Learning tools

This section introduces the techniques used to recover and predict the forces experi-
enced by a flapping foil immersed inside unsteady incoming flow, and the optimisation
tools selected to find optimum manoeuvring methods.
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The Long Short-Term Memory (LSTM) method, developed by hochreiter1997 is suit-
able for this analysis as it can pass the information obtained at a given state, or x(t)
to the next iteration. By doing so, it can estimate the state of a given parameter at a
(t + ∆(t) time step, what makes the model suitable for predictive - and manoeuvrabil-
ity - applications.

The LSTM model, developed using the package Keras Chollet et al. (2018), is trained
using pieces of the time-signal inputs, also known as windows, where the goal is to
predict the state of the same inputs, but ahead in time.

3.3.1.1 Neural ODE

The Neural Ordinary Differential Equations (NODE) approach, developed by Chen
et al. (2018) obtains an output layer solution by solving an ODE initial value problem
with the use of a black-box differential equation solver.

Neural ODEs are a suitable application for time series prediction, especially when the
data is irregularly sampled or insufficient Rubanova et al. (2019). Although that is not
the case of our study, where all the time signals are made up of equally-spaced time
steps, recent work has proved that it could provide a better estimation to forces signal
than the LSTM. Following the work done by Chen et al. (2018), an encoder-decoder
ODE network has been used in order to predict, like in the LSTM section, the states of
several physical parameters ahead of time. The model has been developed using the
package TorchDiffEq Chen et al. (2018). Due to the approach followed on this research,
most of the characteristics of the network are kept similar to those presented at Chen
et al. (2018). Also, and to keep consistency with the LSTM approach, a sweep in the
ODE layer hidden-units has been made. Finally, no dropout layer has been applied,
as it has been found that it does not adapt properly to neural ODE networks Liu et al.
(2019a).

3.3.2 System identification

3.3.2.1 Sparse Identification of nonlinear Dynamics (SINDy)

The last machine learning method that is going to be used in this study is the Sparse
Identification of Nonlinear Dynamics (SINDy) Brunton et al. (2016b). This approach
aims to discover governing equations from measured data and, by assuming that only
a few important terms govern those dynamics, SINDy uses sparse regression in order
to output user-interpretative models. By doing so, it can overcome one of the main
disadvantages of black box algorithms which, although can provide accurate answers
in terms of controlling and manoeuvring performance estimation, do not provide a
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great amount of physical knowledge in return due to the characteristics of their output
models.

The use of SINDy requires the selection of inputs to recover the governing equations
of the system. In this thesis, we will develop several models to analyse how, by adding
physically-relevant information, the accuracy of the models can increase. The package
PySINDy de Silva et al. (2020) has been used.
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The hydrodynamic influence of surface texture on static surfaces ranges from large
drag penalties (roughness) to potential performance benefits (shark-like skin). Although
it is of wide-ranging research interest, the impact of roughness on flapping systems
has received limited attention. In this work, we explore the effect of roughness on the
unsteady performance of a harmonically pitching foil through experiments using foils
with different surface roughness, at a fixed Strouhal number and within the Reynolds
number (Re) range of 17, 000− 33, 000. The foils’ surface roughness is altered by chang-
ing the distribution of spherical-cap shaped elements over the propulsor area. We find
that the addition of surface roughness does not improve the performance compared to
a smooth surface over the Re range considered. The analysis of the flow fields shows
near identical wakes regardless of the foil’s surface roughness. The performance reduc-
tion mainly occurs due to an increase in profile drag. However, we find that the drag
penalty due to roughness is reduced from 76% for a static foil to 16% for a flapping foil
at the same mean angle of attack, with the strongest decrease measured at the highest
Re. Our findings highlight that the effect of roughness on dynamic systems is very
different than that on static systems, thereby, cannot be estimated by only using infor-
mation obtained from static cases. This also indicates that the performance of unsteady,
flapping systems is more robust to the changes in surface roughness.
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4.1 Introduction

Surface roughness is ever-present in engineering applications, involving complex fluid-
structure interactions. Its implications on the flow and the consequent drag generation
have been widely studied in the related literature. From the influence of roughness in
pipe flow (Achenbach, 1971), to its effects on the trajectory of a golf ball (Chowdhury
et al., 2016), roughness plays a vital role in any application involving fluid-structure in-
teraction considerations. For example, surface roughness can be detrimental to the per-
formance of wind turbines. Sagol et al. (2013) found that the accumulation of contam-
ination agents in the blades leads to a reduction in power extraction, while Ehrmann
et al. (2017) reported a performance decrease linked to an increase in roughness density
and height. On the other hand, the use of roughness elements can lead to a drag reduc-
tion and certain performance gains for unsteady propulsion systems. Previous studies
inspired from swimmers and flyers show that, from shark skin (Dean and Bhushan,
2010) to feathers on a wing of a gliding bird (Van Bokhorst et al., 2015), roughness in
varying shapes and texture modifies the fluid flow over propulsor surfaces, leading to
a reduction in drag or a decrease in flow separation. In engineering applications, Gad-
el Hak and Bushnell (1991) analysed the effects of roughness turbulators and found
an increase in the ratio between the lift and the drag coefficient when compared to a
smooth foil for chord based Reynolds number lower than 100, 000. Also, the use of
surface riblets can lead to a decrease in skin friction when aligned in the flow direction
(Bechert et al., 1997), achieving a drag reduction of up to 8% (Walsh, 1982). An impor-
tant roughness parameter to consider is the roughness Reynolds number H+, defined
as H+ = Huτ/ν where H is the height of the rough element, ν is the kinematic vis-
cosity, and uτ is the friction velocity. For H+ values less than 70, the flow is usually
characterised as transitionally rough. When H+ > 70, the rough elements extend into
the logarithmic region, the smooth-wall viscous sublayer is assumed to have been com-
pletely destroyed and the surface is considered to be fully rough (Bakken et al., 2005).

Recent studies have analysed the effects of superhydrophobic coating on the surface of
pitching foils. Mallah et al. (2021) reported an increase in the lift and thrust production
for a pitching foil at low Strouhal values when compared to a smooth foil, which could
lead to improved manoeuvrability and propulsive efficiency.

When configured properly, surface roughness can be beneficial. It can reduce drag pro-
duction and potentially improve the overall performance. Surface roughness can also
have detrimental effects. Tailoring the surface roughness to have an improved perfor-
mance requires a better understanding of the effect of shape, size, and area distribution
of roughness elements on both the force production and the flow.

The drag-reduction potential of surface roughness on aquatic swimmers have been ex-
plored mainly for static surfaces. For example, sharks can reduce their skin friction
when their riblets are aligned with the flow (Dean and Bhushan, 2010). Bixler and
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Bhushan (2013) pointed out that the riblets lift and pin the vortices generated in the
viscous sublayer, leading to a decrease in drag. Bechert et al. (2000) observed a drag
reduction for interlocking 3D riblets. Afroz et al. (2016) concluded that ’shark-like’ tex-
tures can act like a passive flow separation control mechanism. Du et al. (2022) found
smaller separated regions and adverse pressure gradients for the flow over a foil cov-
ered with tilted biomimetic shark scales. The effect of the shape and size of the rough
elements were analysed by Domel et al. (2018a), highlighting the importance of the den-
ticle shape, as they found a drag reduction only for the smaller of the three considered.
Although surface roughness has shown promising potential for static bodies, its role
in unsteady systems is still not clear. Shark-skin surfaces have been shown to increase
the self-propelled swimming speed and reduce the drag of a flapping foil (Oeffner and
Lauder, 2012; Domel et al., 2018a), but only when small denticles are used, whereas
the larger elements can lead to an increase in drag. Wen et al. (2014) reported a reduc-
tion in energy consumption due to a formation of stronger leading-edge vortices. Guo
et al. (2021) found that, for static foils towed at a constant velocity, the roughness ele-
ments resulted in a considerably thicker boundary layer when compared to the smooth
foil, while, for static foils in acceleration, the changes due to roughness in the wake
characteristics were considerably smaller. Mostly, previous work concludes that shark-
inspired surfaces can improve the performance of an unsteady body, but the potential
benefit is strongly dependent on the shape and size of shark denticles, which often
appear in highly complex geometries. Therefore, it is still to be seen if such perfor-
mance improvement can be achieved with simple, commercially available roughness
elements, located on the surface of an unsteady foil in harmonic motions.

In this study, we analyse experimentally the effects of surface roughness on the propul-
sive performance of a pitching foil by using simple roughness elements. In Section
2, we define the methodology and experimental setup used to actuate three different
foils with varying roughness characteristics. We investigate the effects of chord-based
Reynolds number in the range of 17, 000 ≤ Re ≤ 33, 000 and report the propulsive per-
formance of a pitching hydrofoil in terms of thrust production (CX) and efficiency (η).
In Section 3, we detail the force and flow measurement results obtained for flapping
foils, and draw a comparison between dynamic and static foil cases.

4.2 Experimental setup and methodology

Force and flow measurements are conducted in a recirculating water flume at the Uni-
versity of Southampton, with a test section of 8.1 m length, 1.2m width and 0.9m depth.
A surface plate is installed at the foil tip and the foil is placed right above the bottom
wall to prevent tip vortex formation and enforce nominally two-dimensional flow over
the foil as shown in Figure 4.1A.
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FIGURE 4.1: Schematics of the experimental setup in the water flume (A), the actuation
arm (B), foils with three different roughness area coverage ratio (C), and the forces

acting on the foil (D).

Three foils with a rectangular planform and a NACA0012 cross-section were 3D-printed
using PolyLactic Acid (PLA) filaments with an infill density of 70%, a chord-length of
c = 0.16m and an aspect ratio of AR = 2.5. Spherical-cap shaped roughness elements
with a width (diameter) of W = 0.05c and height of H = 0.01c (Domel et al., 2018b)
were placed on pressure and suction sides of the foils. As shown in Figure 1C, in ad-
dition to the smooth foil, two different roughness levels are considered by varying the
area occupied by the spherical-cap elements to 36% and 70% of the foil planform area.
The rough elements were distributed in uniform streamwise rows on both sides of the
foil to ensure symmetry, with the amount of rough elements designed to achieve the
coverage areas defined before.

Each foil was actuated with a stepper motor (Applied Motions STM23S) in sinusoidal
pitching motions, about a point 0.08c distance from the leading edge. The prescribed
motion is defined by θ(t) = θ0sin(2π f0t), where θ0 is the pitching amplitude and f0 is
the flapping frequency. The pitching amplitude θ0, Strouhal number St = 2A f /U∞ =

2csin(θ0) f0/U, where A is half the amplitude of the trailing-edge motion, and reduced
frequency k = 2π f0c/U were fixed all throughout the experiments at θ0 = 7.5◦, St ≈
0.22 and k ≈ 5.2, in line with previous studies (Mackowski and Williamson, 2015; Sen-
turk and Smits, 2019; Kurt and Moored, 2018; Fernandez-Feria and Sanmiguel-Rojas,
2020). A Reynolds number sweep (Re = Uc/ν where ν is the kinematic viscosity) was
conducted within the range of 17, 000 ≤ Re ≤ 33, 000 by varying the flow velocity, U. It



36
Chapter 4. Effects of surface roughness on the propulsive performance of pitching

foils

Re 17,000 22,000 28,000 33,000
U [m/s] 0.12 0.15 0.19 0.23
f0 [Hz] 0.62 0.80 1.00 1.20
θ0 [◦] 7.5 7.5 7.5 7.5

TABLE 4.1: Experimental parameters used in the current study

has been reported in previous studies (Senturk and Smits, 2019) that Re can have a ma-
jor impact on the propulsive performance of a pitching foil, although as Re is increased
over Re = 16, 000 the thrust production appears to reach a constant value. A summary
of the parameters used in this study is given in Table 4.1.

The forces and moments acting on the foils were measured with a six-axis force sensor
(ATI Gamma IP65). The motion was tracked using a rotary, incremental encoder (US
Digital E5) attached to the motor shaft (Figure 4.1 B). Each trial was conducted for a to-
tal of 100 flapping cycles (where t/T = 1 cycle) and repeated five times. The measured
forces were filtered using a Butterworth filter with a low-pass frequency of seven times
the flapping frequency. The power was calculated as a multiplication of the pitching
moment and the angular velocity, which was derived from the measured angular dis-
placement. The instantaneous and time-averaged performance metrics are the average
values from 500 flapping cycles, measured over five trials (N = 5). The confidence
intervals are calculated following a t-distribution with 5 samples, as x ± 4.60σ/

√
N,

where x is the sample mean, σ is the sample standard deviation, and N corresponds
to the number of repetitions (five). To distinguish instantaneous forces from time-
averaged results, the latter is denoted by (.). instantaneous forces meassured by the
load cell (FL and FY) are projected onto the normal and streamwise component (FX, FY),
as defined by 2.5. The reported streamwise force (thrust) (CX) and power (CP) coeffi-
cients, and efficiency (η) are defined as,

CX =
FX

1
2 ρU2sc

, CP =
P

1
2 ρU3sc

, η =
CX

CP
(4.1)

where ρ is the density of water, s is the hydrofoil span, and U represents the free-stream
flow velocity.

The force measurements were synchronised with planar Particle Image Velocimetry
(PIV) measurements (cameras: LaVision MX 4MP, lasers: Litron Nano PIV). The field-
of-view captures the entire foil and up to one chord-length in foil’s wake. The software
Davis 10 was used to cross-correlate the acquired particle image pairs (with 24×24 pix-
els with 50% overlap). The flapping cycle was divided into twenty-two phases, and
twenty-five cycles were acquired per phase. The velocity fields corresponding to each
phase were then averaged over 25 cycles.
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4.3 Results

4.3.1 Flow-field and force production analysis of foils with different rough-
ness area coverage ratios

Figure 4.2 compares the out-of-plane vorticity and the instantaneous performance co-
efficients, CX and CP for all the roughness cases considered at Re = 28, 000. The first
column (A,D), the second column (B,E) and the third column (C,F) present the evo-
lution of the vorticity field around three pitching foils with 0%, 36% and 70% surface
roughness at t/T = 0.15, and t/T = 0.50, respectively. Surprisingly, change in the
roughness does not lead to any significant alteration in the vorticity fields. Regard-
less of the roughness coverage, all foils produce a reverse von Karman-street where
two counter-rotating vortices per flapping cycle are shed from the trailing edge into
the wake, as widely observed in the related literature for smooth foils (Muscutt et al.,
2017a; Kurt and Moored, 2018; Schnipper et al., 2009; Anderson et al., 1998). Figure 4.2
G-H presents the evolution of cycle-averaged thrust and power coefficients over one
flapping cycle. Similar to the flow fields, the performance coefficients show only mi-
nor differences between the smooth foil and the foils with roughness. Although we
have only revealed the analysis associated with a single Re, these results hold across
the Re range considered here. Overall, these results from force and flow field mea-
surements show that incorporating surface roughness does not have a strong influence
on the development of the wake. Other parameters, such as Strouhal number or kine-
matics (Schnipper et al., 2009), are known to significantly affect the evolution of the
vortex structures, which can minimise the adverse effects on performance induced by
the roughness elements.

Figure 4.3 introduces the spectral analysis conducted for the raw, pre-filtered CX forces.
The power spectra of the thrust force at Re = 28, 000 is shown in (A). The crosses in-
dicate the location of the peak frequency for each foil. In (B), we introduce the domi-
nant frequency ratio in the form of f / f0, where f0 is the prescribed pitching frequency
across the Re range considered. This analysis shows that the dominant frequency in
thrust production corresponds to two times the pitching frequency f0 for all the Re val-
ues and contains similar energy density for all the foils. This result, combined with the
similarities observed in both the wake and the instantaneous forces, indicates that the
performance of the foils is highly dominated by f0, hence, by the kinematics. The dom-
inant effects of the frequency and the kinematics on the development of the propulsive
forces have been seen before. For example, Zurman-Nasution et al. (2021b) found that,
compared to the flapping frequency and kinematics, shape-related parameters such as
sweep angle have negligible effects on the propulsive performance. We believe that the
influence of the rough elements is small compared to the effects that the kinematics and
St have on the CX and CP evolution.
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FIGURE 4.2: PIV results for Re = 28, 000. t/T = 0.15 (A,B,C) and t/T = 0.50
(D,E,F) for the Smooth (A,D), 36% (B,E) and 70% (C,F). Instantaneous CX (G) and
instantaneous CP (H). Figure 2 (G,H) contains confidence intervals calculated as

CI = 4.6σ/
√

N.

FIGURE 4.3: (A) Power Spectral Density (PSD) analysis of the instantaneous CX at
Re = 28, 000. The cross indicates the location of the peak for each case. (B) Peak
frequency across the Re values considered. A value of 2 denotes that the thrust force

signal peak f is equal to two times the input pitching frequency f0.
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FIGURE 4.4: A) CX obtained in the current study (red range) and compared with pre-
vious studies against Re: Senturk and Smits (2019) (gray). The data enclosed by the
blue box presents an inset of CX data for the Re range of 17, 000 ≤ Re ≤ 33, 000. B)
CP results (hexagon) and η (cross) for current and previous studies: Mackowski and
Williamson (2017) (dark-gray) for Re = 16, 600, k = 4, PP = 0c and θ0 = 8o. Sen-
turk and Smits (2019) (gray) for 500 ≤ Re ≤ 32, 000, St = 0.2 − 0.4, PP = 0.25c,
θ0 = 8o. Fernandez-Feria and Sanmiguel-Rojas (2020) for Re = 16, 000, k = 4, PP = 0c
and θ0 = 8o. The shadow region introduces the confidence intervals calculated as

CI = 4.6σ/
√

N.

FIGURE 4.5: Averaged CD values obtained for a static smooth foil at θ = 0o. The
shadow region introduces the confidence intervals calculated as CI = 4.6σ/

√
N.

Figure 4.4 presents the change in cycle-averaged performance coefficients for foils with
different roughness coverages against Re. We compare our results with other NACA0012
studies conducted by Mackowski and Williamson (2017) (Re = 16, 600, k = 4), Senturk
and Smits (2019) (500 ≤ Re ≤ 32, 000, 0.2 ≤ St ≤ 0.6), and Fernandez-Feria and
Sanmiguel-Rojas (2020) (Re = 16, 000, 4 ≤ k ≤ 60). The thrust, CX , obtained for the
smooth foil increases in the 17, 000 ≤ Re ≤ 28, 000 range, in line with previous studies
(Senturk and Smits, 2019). The trend then reverses at Re = 33, 000. This change can be
explained by looking at the evolution of the averaged-drag CD calculated for a static
foil at θ = 0 (Figure 4.5), where we observe a similar behaviour. The raise in the av-
eraged CD at Re = 33, 000 explains the decrease in CX reported for the pitching foil at
Figure 4.4. Nevertheless, the thrust values obtained in the current study fall within the
findings by Senturk and Smits (2019) at St = 0.2 and St = 0.4. The main differences in
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the overall thrust production - higher in our study - can be associated with the effects
of the pivot point (PP) location (PP = 0.08c here, and PP = 0.25c at Senturk and Smits
(2019)), since as the PP moves towards the leading edge, a higher thrust production is
expected (Mackowski and Williamson, 2017). Finally, in the inset enclosed by a blue
box, it is shown that CX decreases consistently with the addition of surface roughness
across the Re range. In Figure 4.4B we introduce the averaged power CP and efficiency
η. For each roughness case, CP increases in the 17, 000 ≤ Re ≤ 28, 000 range. The
trend is then reversed, in line with the CX values. Regardless of the Re, we observe
that an increase in roughness causes a decrease in CP. About the efficiency, our results
indicate higher η values than Mackowski and Williamson (2017), Fernandez-Feria and
Sanmiguel-Rojas (2020), and Senturk and Smits (2019), which could be due to differ-
ences in the pivot point location (at x/c = 0.08 distance from the leading edge in our
study, and at x/c = 0.25 distance in Senturk and Smits (2019)), or the reduced fre-
quency k (k = 5.2 here and k = 4 at Mackowski and Williamson (2017) and Fernandez-
Feria and Sanmiguel-Rojas (2020)).We observe that any change in η with Re for the
smooth case fall within the confidence intervals. Although Senturk and Smits (2019)
point to an increase in η against increasing Re for a smooth pitching foil, other studies
have reported a limited impact of Re on the propulsive performance of a pure-pitching
foil for Re ≥ 8, 000 (Deng et al., 2016). It might very well be a limitation of experimental
measurements to delineate the difference in efficiency with increasing Reynolds num-
ber since it is a notoriously difficult quantity to measure accurately.

In relation to the rough foils, the efficiency also decreases as the surface roughness
increases, similar to thrust and power. Although the flow fields show negligible alter-
ations with the change in roughness, the cycle-averaged forces point to a performance
reduction as the roughness increases. The thrust decrease observed for 36% and 70%
roughness coverages compared to smooth foil can be related to an increase in the profile
drag. To further explore this effect, in the next section, we have compared our flapping
foil results with static foil measurements carried out using the same foils within the
same Re range.

4.3.2 Comparison between static and flapping regimes

In this section, we introduce the data collected for static foils and compare it with the
pitching foil results to further explore why there is a change in thrust production with
a change in roughness coverage. The static data was acquired within the same Re
range and roughness coverages as the flapping cases, for an angle of attack (θ) range
of −4◦ ≤ θ ≤ 20◦. To compare both scenarios, we have selected an angle of attack
value equal to the average θ experienced by the foil during half the pitching cycle (red
dashed-line in Figure 4.6A, denoted as θs). Next, we develop a comparison parame-
ter or penalty, that evaluates the change in streamwise force generated by the smooth
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FIGURE 4.6: A) Static CX vs angle of attack Θ measured using static foils at Re =
28, 000. Smooth foil is presented in light blue, 36% in medium blue, and 70% in dark
blue. The red dashed line indicates the θ used to compare with the unsteady regime,
defined as θs = 4.75◦. B) Thrust and drag penalty due to roughness for both the flap-
ping (triangles) and static results (crosses) for the 36% case (medium blue) and the 70%
case (dark blue). The shadow region introduces the confidence intervals calculated as

CI = 4.6σ/
√

N.

and rough foils. Given that static state will produce drag (for all three foils) and the
unsteady scenario will generate thrust, we present the penalty in its absolute value to
help with the comparison. Since we have found surface roughness to be detrimental
for CX for all cases considered, a positive penalty value in the static state indicates
an increase in drag due to roughness elements, while Penalty > 0 in the flapping
regime means a decrease in thrust caused by the roughness elements. Here, Penalty
is defined as the relative change in thrust for a rough foil compared to the smooth,
|(CX,rough − CX,smooth)|/CX,smooth.

The penalty parameter is presented in Figure 4.6 for static foil (crosses) and flapping
foil measurements (triangles). The addition of surface roughness increases the drag
production in the static state across the Re range considered. At Re = 33, 000, it reaches
a 76% drag penalty for the 36% roughness and 43% penalty for the 70% roughness
coverage, compared to the smooth foil. The drag performance of the foils at the static
regime depends not only on the area covered by bumpers but also on the arrangement
of the rough elements. Although the 70% presents more coverage than the 36%, the
interactions between the flow and the intermittent distribution of the spanwise rows
of rough elements at the 36% foil surface are responsible for the higher drag penalty.
On the other hand, the flapping foils with roughness generate less thrust across the
Re range compared to the smooth foil. At Re = 33, 000, the thrust decreases by 35%
and 16% for 70% and 36% roughness coverages, respectively. However, the flapping
state appears to be more robust to Re changes. It reduces the penalty observed for
static foils, especially for the 36% coverage. At Re = 33, 000, foils with 36% coverage
experiences a roughness penalty of 76% in the static state compared to a 16% penalty
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FIGURE 4.7: Pitching cycle-averaged vorticity (A,B,C), pitching instantaneous vortic-
ity at θ = 6◦ degrees (E,F,G) and static PIV results at θ = 6◦ (I,J,K). Smooth foil (A,E,I),
36% (B,F,J), and 70% (C,G,K). The comparison of the wakes generated by the foils at

each of the conditions is presented at (D,H,L). All data obtained at Re = 28, 000.

in the flapping state. Previous work has shown that parameters such as the kinematics
or the Strouhal number have a strong influence on the propulsive performance of an
oscillating foil (Zurman-Nasution et al., 2021b). In line with this, we believe that the
motion characteristics of this study could be minimising the impact of the roughness
elements on both the wake development and force production.

To further analyse the data presented in Figure 4.6, we present the out-of-plane vortic-
ity (ωZ) in Figure 4.7. The first row consists of the cycle-averaged unsteady pitching
ωZ, and the positive vorticity regions are enclosed with isolines. In second and third
rows, we present the flow-field data measured at α = 6◦ for a pitching foil and a static
foil, respectively. The first three columns correspond to 0% (smooth), 36% and 70%
roughness coverages, respectively. The fourth column introduces a comparison be-
tween different roughness cases with overlapped ωZ isolines. The comparison of all
three flapping cases suggests that the addition of surface roughness does not introduce
major changes in shedding shear layers. The mild effects could be explained consider-
ing the fact that the foils are operating at Reynolds numbers where the boundary layer
is transitional (from laminar to turbulent). Adding roughness essentially induces an
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early development of a turbulent boundary layer, and it would be transitionally rough
(if at all) in all these conditions. Hence, we would expect that increasing the size of
the roughness elements could have a major impact on the wake characteristics of the
pitching foil. In contrast, in the static state, foils with 36% and 70% roughness have
thicker shear layer in time-average compared to the smooth case, similar to the find-
ings by Guo et al. (2021). The presence of thicker shear layers, which are caused by the
additional pressure drag incurred by the roughness elements, can be responsible for
the 76% drag penalty shown in Figure 4.6.

4.4 Conclusions

In this study, we have analysed the influence of surface roughness on the propulsive
performance of flapping foils, using force and flow measurements. Three NACA0012
foils with different roughness coverage ratios have been constructed, and tested within
the Reynolds number range of 17, 000 ≤ Re ≤ 33, 000. We have found that the addition
of surface roughness is detrimental to thrust production and efficiency of a pitching foil.
The foils with 36% and 70% roughness produce 16% and 35% less thrust, respectively,
compared to the smooth foil. We have determined that Re does not play an important
role on neither the thrust nor efficiency for the Re range and roughness coverage ratios
considered. Although we have seen no significant change in the wake flow, the foils
with roughness experience a decrease in thrust and efficiency, which can be explained
by an increase in profile drag associated with the roughness elements. We have com-
pared the effects of roughness on static and flapping states, finding that the former is
considerably more sensitive to it. The roughness penalty for 36% roughness coverage is
reduced from 76% in the static state to 16% for flapping. The strongest decrease occurs
at the highest Re, highlighting that the effect of roughness on flapping systems is very
different than on static systems. This shows that the performance of flapping systems
is more robust to the changes in surface roughness.
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Fish can significantly improve their swimming performance if their kinematics are ad-
equately adapted to its surroundings. It is difficult to adapt kinematics in an efficient
way as the manoeuvre required to reach the optimum kinematics is unknown and the
first step to realise this is to accurately predict the performance that could be obtained
for several candidate manoeuvres. In this work, we develop different types of force
models with Koopman-based system identification tools for a foil executing transition
manoeuvres in its kinematics. We show that a first order ODE in force coefficient is
sufficient to capture the dynamics for a single foil in clean flow provided the phase in-
formation is used as an input. We find that such a model is erroneous (up to 25%) when
used in unsteady surroundings since the signals are strongly influenced by vortices in
the oncoming flow. This is overcome by enhancing the model with information about
the surroundings, specifically, by providing the relative location between the foil and
the large-scale vortices in the incoming flow. This improves the predictions highlight-
ing the importance of adding relevant physical information about the surroundings
in these force models. Finally, we use these different models to test different manoe-
vures to identify the the optimum-path at different operating conditions (unseen by the
model during development). The model containing wake information can predict the
optimum path with a Pearson Correlation Coefficient higher than 80% for all the cases
considered. We conducted an experimental implementation of the transition approach.
A good agreement is seen between numerical and experimental data. This highlights
the importance of carefully selecting the inputs to recover accurate governing equa-
tions for a flapping foil operating in an unsteady flow. This also provides a pathway
for developing manoevuring capabilities in control applications.
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5.1 Introduction

Fish can significantly improve their swimming performance if their kinematics and
paths are adequately adapted to the incoming flow. Previous studies have shown that
the endurance of an individual travelling inside a school can increase up to six times
when compared to an animal swimming alone Weihs (1973). Due to the high unsteadi-
ness of the schooling operation, a proper understanding of the surrounding flow is es-
sential. To maintain the performance gains, the swimmers must adapt to any changes in
the incoming flow. The importance of adapting implies that, to replicate this ability of
fish to manoeuvre and extract a performance augmentation of the unsteady upstream
conditions, first we need to be able to predict fluid forces in real-time. Tandem flap-
ping foils have been widely used to replicate the characteristics of fish schooling. By
carefully tuning the motion between the two objects of the arrangement, a large per-
formance benefit can be achieved Akhtar et al. (2007); Kurt and Moored (2018). For
a given longitudinal distance between foils, the phasing between the motions of the
leader and follower, together with the St value, governs whether the hind will achieve
a performance augmentation or detriment Muscutt et al. (2017a).

Although the mechanisms behind the performance augmentation of tandem flapping
foils have been widely studied, when the optimum trajectory that maximises the per-
formance inside the wake is unknown, a prediction stage has to be carried out. The
forces that would be produced if the foil were to follow a certain path inside the wake
need to be estimated. If accurate predictions can be made for a set of route candidates,
we can later select the motion that maximises the performance. A first approxima-
tion to model the evolution of the forces generated by a flapping foil can be seen at
Theodorsen and Mutchler (1935) to predict aerodynamic flutter. Garrick (1936), ex-
tended the equations derived by Theodorsen and Mutchler (1935) to approximate the
propulsive forces, and Lighthill (1969) completed the work done by Garrick applying
its equations to a lunate tail of a fish. The main disadvantage of the previous meth-
ods is that they all assume small amplitude kinematic motions, rectilinear vortex wake
and perfect fluid, making them not suitable to predict the forces of a foil inside un-
steady incoming flow. In this study, the foil is not only subjected to unsteadiness but
it needs to adjust its trajectory to reach the optimum route, meaning that a manoeuvre
motion needs to be executed. Flapping foils have been found to execute manoeuvring
motions in an efficient way Read et al. (2003); Schouveiler et al. (2005); Kato (2000);
Ahlborn et al. (1991). The manoeuvring phase of the motion, essential to achieve the
performance augmentation, will induce a rapid change in the forces that will increase
the unsteadiness of the problem, which needs to be taken into account by the force-
prediction models. In the recent years, the use of Machine Learning (ML) for control
applications has greatly improved. Weymouth and Yue (2013) found that the use of
physical knowledge of the system could improve the predictions obtained by simple
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regression models at considerably less expense than high-resolution numerical predic-
tions. Another recent approach is the Sparse Identification of Nonlinear Dynamical
systems (SINDy) Brunton et al. (2016a), where user-interpretable governing equations
can be discovered. This tool has been used for a solo pitching foil, identifying the gov-
erning equations for attached flows and separated flows Sun et al. (2021). Still, it is yet
to be seen if the approach can be used for the considerably more complex system of
tandem foils. By combining physical knowledge and novel system identification tools,
we expect to not only accurately predict the performance of the foil, but also to gain
knowledge about the problem.

In this study, we develop force models to predict the path that maximises the perfor-
mance of a flapping foil swimming inside unsteady incoming flow. In Section 2, the
problem definition is explained. We conduct several simulations of a foil executing
transition motions in its kinematics and record the forces to be used for the construc-
tion of the models. In Section 3, we present the forces predicted for a foil in the solo
scenario. Next, in Section 4, we test the models with different inputs in a tandem ar-
rangement. In Section 5, we test the optimum-path prediction capabilities of the models
at different incoming-wake conditions. The predictive performance, in terms of time-
signal estimation and prediction error is studied, and the limitations of the models dis-
cussed. Finally, we present an experimental implementation of the transition approach
conducted at the University of Southampton recirculating water tunnel.

5.2 Methodology

In this study we consider a set of two NACA0016 flapping foils in tandem configura-
tion. The arrangement consists of one foil at the front, fore (f), and another at the back,
hind (h). The foils are immersed in a flow with free-stream velocity U∞, at a Reynolds
number Re = Uc/ν = 7000, where c is the chord, and ν is the kinematic viscosity. The
foils are separated by a constant longitudinal distance equal to three times the chord.
The motion of the foils is prescribed by sinusoidal heaving (h) and pitching (θ) motions
acting at x/c = 0.25, as defined by Eq. 1

h f = Asin(2π f t), θ f = θAcos(2π f t),

hh = Asin(2π f t + ϕ), θh = θAcos(2π f t + ϕ).
(5.1)

where f is the oscillating frequency, A = c is the heaving amplitude, ϕ is the phasing
between the motions of the fore and hind foil, and θA is the pitching amplitude. The
latter is selected to ensure the maximum effective angle of attack αe = arctan(ḣ/U∞)−
θ = 10◦, in line with previous studies Muscutt et al. (2017a). The Strouhal number
can be defined as St = 2A f /U = 0.36. In this study, the hind foil executes transition
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FIGURE 5.1: Sketch of the tandem arrangement considered in this study. The bottom
part of the figure introduced the manoeuvre motion executed by the hind foil (green)

in its kinematics during cycles 0 to 1.

manoeuvres inside the incoming wake to explore several possible routes. The transient
motion consists of an instantaneous change on the ϕ component denoted at Eq. 2.1. The
motion of the foil can be divided into three parts, as depicted at Figure 5.1. An initial
cycle (t/T =-1 to 0), defined by a constant phasing ϕ0. A transition period (t/T= 0 to 1),
where the foil will adjust its kinematics, and a final new state (t/T= 1 to 2), defined by
a constant ϕ1. The transition motion is defined following a first order logistic function
as follows (Yin et al., 2003):

∆(ϕ(t)) =
ξ

1 + e(−k(t−t0))
(5.2)

where t0 is the midpoint of the functions, ξ is the ϕ increment, and k is the growth
rate. The time (t) used to develop the models is in dimensionless form as t∗ = tU/c,
,where c is a characteristic length, or the chord in this study, but for display purposes,
we present the figures as t∗ = t/T. Figure 5.1 introduces a comparison between the
motions of the fore and hind foil for a case where the latter is subjected to transition
motions. As shown by the evolution of hh, there is an instantaneous adjustment of
kinematics that leads to a different state of ϕ1 between the foils. To further explain this
evolution, we introduce as a parameter the instantaneous frequency fi = 2π f + ˙ϕ(t).
While for the fore this value is constant through the three cycles, the fi,h presents an
acceleration/deceleration period, allowing the foil to change its state with respect to
the wake during the noted transition cycle. To explore several scenarios, we develop a
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database of 64 cases consisting of 8 different ϕ0 and ϕ1, from 0π to 1.75π. The perfor-
mance of the models will be assessed against 150 test cases, not seen during the training
phase, at 10 different ϕ0 and 15 ϕ1, from 0π to 1.75π. In this study, we aim to find the
route that maximises the lift performance of the hind foil, defined as CL = 2FL/ρU2

∞c,
where FL is the instantaneous lift force, as described in Figure 2.3. The precision of
the predictions will be presented based on the normalised root mean square error
(NRMSE = RMSE/(yt,max − yt,min).

An in-house CFD solver is used to generate the benchmark data to study this system.
This solver uses the Boundary Data Immersion Method (BDIM,Weymouth and Yue
(2011)) to simulate the time-evolution of the viscous Navier-Stokes using a convolution
over the fluid and any immersed dynamic geometries. The convergence of this method
is quadratic, and has been previously validated for flapping foil systems in several
studies over a wide range of kinematics Maertens and Weymouth (2015); Polet et al.
(2015). A rectangular Cartesian mesh is used with a grid spacing of ∆X = ∆Y = c/192
near the foils and in the inter-foil region with grid stretching used in the outer fluid
domain Lagopoulos et al. (2019).

To develop force models capable of predicting the optimum path inside the unsteady
wake of the incoming storm, we follow the approach presented by Brunton et al. (2016b).
The method aims to identify sparse nonlinear dynamical systems from measured data.
The system can be defined as follows:

d
dt

X = f (X, U) (5.3)

where X is the state vector and U are the control inputs. The method builds a library
of candidate functions Θ(X, U) to solve Ẋ = Θ(X, U)Ξ, where Ξ is a sparse matrix of
coefficients. Once the Ẋ model is recovered, it can be use to project forward in time the
CL forces, for a given set of initial conditions.

5.3 Force models for a foil immersed in uniform upstream con-
ditions

We start by identifying the governing equations for a solo foil that executes transitions
in its motion. To obtain a first idea of the inputs to include in the library of functions,
we can analyse the equations of a sinusoidal signal with changing phase, Y:

Y = Asin(2π f t + ϕ(t)) (5.4)

dY = (ϕ̇(t) + 2π f )Acos(2π f t + ϕ(t)) (5.5)
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Model State vector Control
Delay raw CL, ĊL (raw) fi , ϕ̇, ϕ̈,

Delay filtered CL, ĊL (filtered) fi , ϕ̇, ϕ̈

Kinematics CL (raw) fi , ϕ̇, ϕ̈, h, ḣ θ, θ̇

TABLE 5.1: Parameters used to recover the force models.

ddY = ¨ϕ(t)cos(2π f t + ϕ(t))− ( ˙ϕ(t) + 2π f )2 Asin(2π f t + ϕ(t)) (5.6)

Based on the terms of previous equations, we define the state vector as X = [CL, ĊL]
, and the control inputs as a combination between ϕ terms and the instantaneous fre-
quency fi. Since the SINDy approach has been found to be sensitive to noise in the
data Fasel et al. (2022), we compare the effects of identifying the system with both
raw and filtered CL. As defined by Eq. 5.3, the system identification will aim to recover
Ẋ = [ĊL, C̈L]. The presence of higher-order terms is expected to maximise the impact of
the noise in the data. Finally, we develop another model that contains as control inputs
the kinematics of the foil (h, θ). The impact of those parameters on the forces evolu-
tion of a flapping foil has been well documented in the past Theodorsen and Mutchler
(1935). Table 5.1 introduces the details of the three models considered.

Figure 5.2 introduces the projections at three selected cases achieved by the Delay
model (filtered -blue- and raw -pink -), and the kinematics model (-red-) (Table 5.1).
We present three cases with increasing transition strength (∆(ϕ)= [0π, 0.5π, and π]).
As insets in the figure, we provide the main coefficients and terms found by each of
the models. The system identification is recovering, for the case of the delay models
(raw and filtered), the main components presented at Eq 5.4-5.6. Still, the effects of the
noise are clear. The model that contains the raw input data is not able to accurately lock
the frequency of the signal, with the discrepancies being maximised as the strength of
the transition increases. On the other hand, and after filtering the data, the accuracy
improves for all the test cases by 33%. The filtering is imposing a slight delay in the
predictions, increasing as ∆(ϕ) is maximised. Nevertheless, we observe that, by care-
fully selecting the inputs used in the system identification process, the robustness of
the model to noise and the predictions accuracy is greatly increased. The kinematics
model overperforms the delay filtered at every case, and, although is not able to cap-
ture the entire peak in the forces generated during the strongest manoeuvre, achieves
an overall error of 9% across all the validation cases.

To better understand the system identified by the kinematics mode, we present at Fig-
ure 5.3 the contribution of each of the parameters recovered by the approach on the
reconstruction of the ĊL signal. The figure introduces at the first row the contribution
of the main component, ḣ3, and compares it with the target (light gray). We observe
that the contribution of this term is equally important in the two phases of the forces
evolution, the transition and the new state. The second row includes the contribution
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FIGURE 5.2: Comparison between the projections for three selected test cases and the
target data. Delay - raw model (pink), delay - filtered (blue) and kinematics model
(red). The insets contain the components recovered for each of the models during the

system identification process.

of the i f term. The new component is slightly modelling the second peak of the tran-
sition, and combines with ḣ to recover the lift produced at the new state. The overall
contribution during the transition is minor when compared to the first term, as can be
seen by comparing the light-yellow and orange contours of Figure 5.3, second row.

The third row adds the contribution of the θ̇CL term. Its impact is major on capturing
the second transition peak, but it loses importance as we progress towards the new
state phase. The contribution of the rest of terms, for this test case is negligible. This
highlights the importance of carefully selecting the inputs to recover the dynamics of a
highly unsteady system.

5.4 Force models for a flapping foil immersed in unsteady up-
stream conditions.

The performance of a foil submerged in an unsteady incoming wake has been studied
in the past. The interactions between its motion and the incoming vortices can lead
to important performance benefits, or to large detriments Kurt and Moored (2018);
Muscutt et al. (2017a); Boschitsch et al. (2014). The reasons behind the performance
detriment/augmentation can be associated to the foil/wake interactions. As seen by
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FIGURE 5.3: Analysis of the components recovered by the kinematics model for the
solo foil scenario. Each row introduces the sum of the contributions of each of the

elements presented at the inset of Figure 5.2.

FIGURE 5.4: Schematics of the virtual simulations used to track the evolution of the
wake. The information is included as a control input in the wake info model.

Muscutt et al. (2017a), when the foil encounters the main incoming vorticity structures,
a performance detriment is achieved. On the other hand, if the hind body is able to
swim in-between the Karman Street, a performance augmentation can be obtained.

Considering the importance of the interactions between the foil and the incoming vor-
tices, we develop a new model that includes in the library of controls the relative dis-
tance between the foil and the main vorticity structures of the flow, as depicted in figure
5.4. To reduce the computational expense of the study, we perform a simulation with
a virtual foil submerged in the unsteady incoming wake at St = 0.36. We then use it
to track the evolution of the vortices and compute the relative distance with the foil as
follows:
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dx(t) = XF(t)− XV(t) (5.7)

dy(t) = YF(t)− YV(t) (5.8)

5.4.1 Force prediction capabilities

Figure 5.5 shows a comparison between the projections achieved by the models for the
solo foil and tandem scenarios at three comparable test cases. The first column presents
the solo foil CL evolution at two different transition cases. The second and third col-
umn introduce the predictions achieved by the kinematics and wake info models. The
first test case, presented in the top row, corresponds to a situation with mild foil-wake
interactions. In this case, the kinematics model is not able to achieve the same level of
accuracy as for the solo foil, the reason being the higher unsteadiness of the problem.
Although the improvement of adding wake information can be seen in this case, the
accuracy augmentation is more evident in the second test case. In this scenario, the
strong interactions between the foil and the vortices are dominating the forces evolu-
tion, and the kinematics model is not able to adapt to it. On the other hand, the wake
info can detect and accommodate for the lower amplitude in the CL evolution.

This increase in the accuracy achieved by the wake info model is highlighted when
comparing the performance for all the test cases. We present the overall error ranked
accordingly to the CL amplitude at the ϕ1 state. For comparison, we include the val-
ues obtained for the solo foil case. The lift amplitude reduces as the interactions with
the incoming vortices become stronger, leading to an important raise in the accuracy
obtained by the wake info model. A similar behaviour is observed as the hind foil CL

production is maximised. Hence, adding relevant wake information is helping with
the predictions. The overall error, calculated as the averaged NRMSE for all test cases,
is reduced from 24% for the kinematics model to 18% for the wake info across the vali-
dation cases.

To better understand the influence of the wake components recovered by the system
identification tool, we present at Figure 5.6 an analysis of the wake info model. First,
we observe that the transition phase is still dominated by the kinematics terms. This
finding can be explained considering that the raise in the CL production is coming from
the accelerations experienced by the foil. On the other hand, the kinematics compo-
nents by itself can not account for the rapid changes in CL once the foil encounters the
vortices at ϕ1. Adding the wake components does not have a major impact on the tran-
sition, but corrects the CL production at ϕ1. This points to the importance of adding
relevant inputs when recovering the dynamics of a highly unsteady system, that con-
tains states with such different dynamics as here.
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FIGURE 5.5: Comparison between target data and projections for the solo and tandem
scenarios. Kinematics solo model (red), kinematics tandem model (green), and wake
info (purple). The bottom figure introduces a comparison of the error achieved for all

the test cases between the wake info and kinematics model.

FIGURE 5.6: Analysis of the components recovered by the wake info model for the
tandem foil scenario. The first row presents the contribution of the kinematic terms,

while the second adds to the previous the wake terms, as seen on the inset.

Figure 5.7 introduces three instantaneous vorticity fields for the test cases introduced
at Figure 5.6. We appreciate three distinctive flow characteristics based on the attitude
between the foil and the incoming wake. At the first instant, corresponding to a high-
lift producing case, we observe the vortex being detached at the peak of the foil motion.
Next, as the foil moves past the transition cycle, the foil shows a large vorticity region
near the leading edge caused by the sudden acceleration needed to reach ϕ1. Another
effect of the mentioned change in motion can be observed by the quasi vertical wake
produced by the foil. Finally, at the last instant, the foil has reached the new delay.
In this cases, it corresponds to a detriment attitude with respect to the wake. We can
observe a large vortex being detached from the bottom surface of the foil caused by the
interactions with the wake vorticity.
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FIGURE 5.7: Instantaneous vorticity at three different time stamps for the test case
presented at Figure 5.6.

5.4.2 Optimum path finding capabilities

The performance of a flapping foil immersed inside unsteady incoming flow is highly
dependant on its interaction with the upstream wake. By correcting its trajectory and
locating itself in the optimum path, the foil can achieve a surplus in its propulsive
performance. After assessing the accuracy in the projections achieved by the models
for St = 0.36, we test the capabilities of selecting the optimum path among several
candidates at different wake conditions. To do so, we predict the CL performance using
the models trained at St = 0.36 for 10 ϕ0 and 15 ϕ1 at St = 0.30, 0.36, 0.40. We rank the
predictions based on the lift amplitude achieved at ϕ1, and compare the performance
of the models against the target data using the Pearsons Correlation Coefficient (PCC).

Figure 5.8 introduces the rankings for the two models at each of the St values.

The incapability of the kinematics-only model to recover the dynamics of the cases with
strong foil-wake interactions is maximised when assessing the ranking of the paths.
The model can not identify the optimum ϕ1 region, and its predictions are biased by
the transition phase. The extrapolation capabilities are also limited, as it is producing
a similar prediction for the three St considered. Adding wake information greatly in-
creases the accuracy of the projections, achieving a PCC higher than 80% for all three
St. By understanding the profile of the incoming wake, the model can identify the
range of paths that maximise the lift production of the foil for all the initial conditions.
As the St changes, the model is being able to notice the new optimum path location.
What these results suggest is that the wake info model recovered for a foil flapping
inside unsteady incoming wake is reliable to discover the path inside the vortices that
maximises its performance. Also, the selection of physically-relevant parameters in the
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FIGURE 5.8: Study of the optimum path selection capabilities of the models. Target
data (black), wake info (purple) and kinematics (green), at three different St values:
0.36 (training), 0.30 and 0.40. Light squares indicate routes with large performance

detriment. Darker squares indicate optimum path inside the wake

system identification process is maximising the extrapolation capabilities, as the model
is able to perform accurate ranking results for St cases not seen during the training
phase.

To further assess the optimum path finding capabilities of the models, and the indepen-
dence of the initial conditions, we prescribe 35 new initial conditions ( ϕ0), and perform
projections for 50 different ϕ1. We then select the path that maximises the lift produc-
tion and perform a CFD simulation. Figure 5.9 presents the results obtained for the
wake info model (top row) and the kinematics model (bottom row). As expected, the
latter is not able to find a consistent optimum path for any of the St. On the other hand,
the wake info model converges, at St = 0.36 and 0.40, to the route that maximises the
lift production. This effect can be seen by observing the coloured lines surrounding
the forces evolution. Although at ϕ0 the variance is large, after the transition, all the
paths converge to a high-performance forces scenario. The same model is not able to
predict with equal level of accuracy the lowest St, which could be due to the differences
between the training and testing conditions.
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FIGURE 5.9: Application of the optimum paths prediction capabilities. Each of the
lines starts at a different ϕ0 and corresponds to a simulation based on the optimum
path found by the models. The top row introduces the wake info, and the bottom the
kinematics. The coloured lines surrounding the forces data highlight the convergence

capabilities of the wake info, specially for St = 0.36 and St = 0.40

5.5 Experimental implementation

After assessing the performance of the models trained with the computational database,
we aim to validate the results experimentally. To do so, force and flow measurements
are conducted in a recirculating water flume at the University of Southampton, with
a test section of 8.1 m length, 1.2m width and 0.9m depth. Two foils with a rectangu-
lar planform and a NACA0016 cross-section were 3D-printed, with a chord-length of
c = 0.10m and an aspect ratio of AR = 4. The arrangement consists of one foil at the
front, fore (f), and another at the back, hind (h). The foils are immersed in a flow with
free-stream velocity U∞, at a Reynolds number Re = Uc/ν = 10, 000, where c is the
chord, and ν is the kinematic viscosity. The foils are separated by a constant longitudi-
nal distance equal to three times the chord. A surface plate is installed at the foil tip and
the foil is placed right above the bottom wall to prevent tip vortex formation and en-
force nominally two-dimensional flow. Each foil was actuated with two stepper motor
(Applied Motions STM24S 3RG), one for the pitch and another for the heaving motion.
The motion is prescribed by sinusoidal heaving (h) and pitching (θ) motions acting at
x/c = 0.25, similar to CFD simulations. The Strouhal is as St = 2A f /U = 0.36. The
forces and moments acting on the hind foil were measured with a six-axis force sen-
sor (ATI Gamma IP65). The pitching attitude was tracked using a rotary, incremental
encoder (US Digital E5) attached on the motor shaft. The heaving kinematics of the
fore and hind foils was recorded using a SoftPot membrane potentiometer, as depicted
in (Figure 5.10). The hind foil executes a transient motion consisting of an instan-
taneous change on the ϕ component denoted at Eq. 5.2, similar to the simulations
conducted at this Chapter. The matrix of cases followed for this study is detailed at
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Foil Re St ϕ0 ϕ1
NACA0016 10, 000 0.36 0π 8 steps from 0 to 1.75π

TABLE 5.2: Experimental parameters used in the current study

Table 5.2. Each trial was conducted for a total of 41 flapping cycles (where t/T = 1
cycle) and repeated five times. 20 cycles correspond to ϕ0, one for the transition, and
the rest for ϕ1. The measured forces were filtered using a Butterworth filter with a
low-pass frequency of ten times the flapping frequency. The power P was calculated
as P = FY(t)ḣ(t) + MZ(t)θ̇(t), where ḣ and θ̇ are the heaving and angular velocity,
which were derived from the measured linear and angular displacement. The instan-
taneous and time-averaged performance metrics are the average values measured over
five trials (N = 5). All the parameters are presented together with confidence intervals
calculated as CI = 2.58σ/

√
N. To distinguish instantaneous forces from time-averaged

results, the latter is denoted by (.). In this section, we compare the computational and
experimental normal and thrust force (CY and CX), as defined by Equation 2.5. The
reported normal force CY, streamwise force (thrust) (CX) and power (CP) coefficients
are defined as,

CY =
FY

1
2 ρU2Sc

, CX =
FX

1
2 ρU2Sc

, CP =
P

1
2 ρU3Sc

(5.9)

where ρ is the density of water, S is the span of the foil, and U represents the free-stream
flow velocity.

5.5.1 Results

In this section we introduce the main results obtained during the experimental im-
plementation of the manoeuvring methodology. First, we replicate the ϕ1 sweep con-
ducted at previous sections, and analyse the optimum route found for the flapping foil.
The experimental forces are compared against the numerical data. Next, we evaluate
different ways of transitioning, in an effort to reduce the power cost associated with the
manoeuvre.

For a given St and longitudinal distance, the performance of a flapping foil immersed in
an unsteady incoming wake is governed by the phasing between its kinematics and the
incoming vorticity structures. In the previous section we have observed an important
difference in terms of propulsive performance based on the mentioned ϕ parameter. To
analyse experimentally the findings of the previous section, we present in Figure 5.11
the projected forces (thrust and normal force) CY (as defined in the amplitude at the
ϕ1 state. In line with previous findings (Muscutt et al., 2017b), a sinusoidal evolution
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FIGURE 5.10: Schematics of the tandem flapping foil experiments. A) depicts the
details of the water tunnel setup. B) Introduces the flapping arm components. C)

Presents the schematics of the forces

is observed, with two distinct ares in terms of forces production. When the foil trajec-
tory is delayed in the range of 0.25π to 0.75π, the CY amplitude drops, corresponding
to a low-performance area. On the other hand, we find in the experimental analysis
an optimum range to maximise the forces production located in-between 1.25π and
1.75π. This result is in line with the analysis presented at Chapter 4, and highlights
the importance of adapting the trajectory to the surrounding flow in order to extract a
performance augmentation from the flow.

Figure 5.12 presents the experimental CX, CY and CP (green) for three selected ϕ1: 0π

(first column), 0.5π (second column) and 1.25π (third column). We compare the forces
obtained experimentally with the simulations carried out in this chapter. First, a good
agreement is observed for all three forces and test cases between the numerical and the
experimental results. The experimental data follows the trend captured by the compu-
tational simulations for all CX, CY, and CP. Both approaches agree well even for the
cases where the thrust production, or CX, is at its minima (second column), caused by
strong foil-wake interactions. Second, the reasons behind the low-performance trajec-
tory can be appreciated by comparing the second and third column of the figure. The
transition from 0to0.5π leads to a state of low forces production, associated to strong
interactions between the foil and the incoming vortices. On the other hand, when the
transition reaches 1.25π, the foil can augment the performance achieved during the
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FIGURE 5.11: Lift amplitude obtained at the ϕ1 state. The blue region correspond
to low-performance kinematics. The green region highlights high-performance situa-

tions.

pre-transition phase. These results validate the computational approach, and further
highlight the importance of adapting to the incoming flow to reach the optimum path
inside the wake.

Although the performance of a flapping foil swimming inside unsteady incoming flow
can be improved by tuning its motion with respect to the incoming wake, the manoeu-
vring trajectory needed to reach the optimum path can come associated with a large
power cost. To analyse this effect, we present at Figure 5.14 a test case where the foil
executes the transition motion during different periods of time. While the increase in
the forces production is clear when reaching ϕ1, it comes associated with a large power
penalty. In all the examples carried out at Chapter 4, and Figure 5.12, the maximum
time to transition was limited to one flapping cycle. This manoeuvre required a fast
acceleration to reach the new state, which increased the ḣ and θ̇ components, leading to
a raise in the power component, as displayed in Figure 5.14. Although this power cost
is unavoidable, we aim to analyse if the transition motion can be executed in a more
efficient way. As a first way of testing this idea, we increase the total transition time
(tT) to 1.5 and 2 cycles. Due to the incapability of performing the one cycle transition
experimentally, we compare the data with the numerical findings of an equivalent case.
The first effect can be seen at the CY forces evolution. The peak generated during the
transition cycle is greatly reduced, which comes associated to a lower maximum CP. If
the transition time is advanced to 2 cycles, the overall power evolution is reduced to
one main peak.
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FIGURE 5.12: Instantaneous CX , CY and CP obtained during the experiments (green)
and simulations (black) for three selected transition cases.

FIGURE 5.13: Instantaneous CY and CP for three selected transition lengths. One cycle
(black, numerical), 1.5 cycles (red, experimental) and 2 cycles (blue, experimental).

To evaluate the power cost associated to the transition phase, we can define a cost
parameter as

∫ tT
0 CP dt. By increasing the transition time to two cycles, the overall cost is

reduced by 18%. A similar decrease is observed for the one and a half cycle manoeuvre.
This finding suggests that a foil can execute a transition to maximise its performance,
but at a lower power cost. In the next chapter we will explore this idea in detail.
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FIGURE 5.14: Analysis of the power cost used during the transitions. One cycle (black,
numerical), 1.5 cycles (red, experimental) and 2 cycles (blue, experimental).

5.6 Conclusions

In this study, we have developed several force models to predict the optimum path
for a flapping foil swimming inside unsteady incoming flow. CFD Simulations of two
NACA0016 foils in tandem arrangement have been carried out, where the hind foil
executes transition manoeuvres in its motion. First, we have analysed the influence
of the control inputs used to recover the models for a solo foil scenario, finding that
by adding the foil kinematics, the models are more accurate and more robust to noise.
Next, we have recovered and tested the model for a tandem arrangement. The lack
of understanding about the unsteadiness in the incoming flow makes the kinematics-
only model unreliable. After including the relative distance between the foil and the
incoming vortices, the error has been reduced by 25%. Finally, we have tested the
optimum route finding capabilities of the models by ranking a set of route candidates,
based on lift production. The model containing wake information has been able to
achieve a correlation coefficient higher than 80%, for St values not seen during the
training phase, highlighting the extrapolation capabilities of the model. Also, we have
implemented experimentally the transition approach, finding a good agreement with
the computational findings. This study highlights the importance of carefully selecting
the inputs to recover accurate governing equations for a flapping foil submerged inside
unsteady flow. Also, the optimal route-finding capabilities open the path for a real-time
control implementation that would maximise the performance of a flapping foil under
unsteady circumstances, and at various flow conditions or flapping regimes.
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Chapter 6

Trajectory optimisation for flapping
foils under unsteady inflow
conditions

6.1 Abstract

Flapping foils submerged inside an upstream incoming flow can greatly improve their
swimming performance if their kinematics are tuned to the incoming wake. Still, when
the foil is not initially located at the best route, a transition manoeuvring needs to be
executed to reach the correct kinematics. Although the benefits are clear once the foil
has reached the optimum kinematics, the manoeuvring motion can come associated to
large power costs. In this Chapter, we use a differential evolution approach to optimise
the transition manoeuvre. We define the phase evolution (ϕ(t)) as a combination of
Hermit splines, and allow the optimiser to modify its characteristics. When the total
transition time is limited to one cycle, the optimiser finds a quasi-linear trajectory, able
to reduce the overall power cost by 12% when compared to a simple logistic function
manoeuvre. After allowing the transition to take place in up to three cycles, we observe
that the optimiser is adapting the accelerations of the manoeuvre to arrive to an overall
benefit of 18%. The characteristics of the new optimised transition are analysed, and
details are given about the physical reasons behind its different stages.

6.2 Introduction

The benefits of fish-schooling on the propulsive performance of its individuals have
been widely documented in the past Weihs (1973). Still, the schooling configuration
is found to be a highly-unsteady, constantly changing environment. Assuming that
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the benefits on the fish swimming performance are coming from adequate interactions
with its surroundings Verma et al. (2018) implies that, if the conditions change, a ma-
noeuvring motion is needed to adapt to the new circumstances. Tandem flapping foils
have been used as a simple way of replicating the fish-schooling arrangements. Im-
portant propulsive benefits have been found, but only if the motion of the hind foil is
properly tuned with the incoming wake Muscutt et al. (2017a), pointing again to the
necessity of adapting to real-time changing conditions. At Chapter 5, we developed
a novel manoeuvring approach that was able to locate a flapping foil in the optimum
route for performance gains. Still, the transition phase was associated with large power
costs, that could reduce, or even neglect, the potential benefits of reaching an optimum
route. In this section we focus on optimising the transition manoeuvre needed to locate
a flapping foil at the route that maximises its propulsive performance.

Several studies have been conducted to optimise the kinematics of a flapping foil: Liu
et al. (2019b) used a multi-fidelity evolutionary algorithm to optimise a flapping-based
power generator. Gehrke et al. (2018) develop a genetic algorithm approach to improve
the efficiency and lift production of wing rotations in hover. Other researches have
utilised Deep Reinforcement Learning techniques to optimise the tandem arrangement
Verma et al. (2018); Zhu et al. (2022a). Soueid et al. (2009) proposed a combination of
CFD and a quasi-Newton approach to optimise the motion of a flapping NACA0012.

Still, some of this techniques require large amounts of data to perform the optimisa-
tion, involving that the use of CFD simulations will induce large computational costs.
To overcome this limitation, we propose the use of a simplified force model able to es-
timate and predict the power produced by the foil for a set of kinematics. With this
approach, we aim to reduce drastically the overall expense of the process.

In this study, we aim to optimise the manoeuvring motion needed to maximise the
performance of a flapping foil. The problem definition and methodology followed is
explained in Section 2. In Section 3, we present the results regarding the optimised
trajectories, and analyse them based on forces evolution and flow characteristics. The
accuracy of the optimiser is validated against CFD, and the overall performance gains
and limitations are discussed.

6.3 Methodology

In this study we consider a set of two NACA0016 flapping foils in tandem configura-
tion. The arrangement consists of one foil at the front, fore (f), and another at the back,
hind (h). The foils are immersed in a flow with free-stream velocity U∞, at a Reynolds
number Re = Uc/ν = 7000, where c is the chord, and ν is the kinematic viscosity. The
foils are separated by a constant longitudinal distance equal to three times the chord.
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The motion of the foils is prescribed by sinusoidal heaving (h) and pitching (θ) motions
acting at x/c = 0.25, as defined by the following equations:

h f = Asin(2π f t), θ f = θAcos(2π f t),

hh = Asin(2π f t + ϕ), θh = θAcos(2π f t + ϕ).
(6.1)

where f is the oscillating frequency, A = c is the heaving amplitude, ϕ is the phasing
between the motions of the fore and hind foil, and θA is the pitching amplitude. The
latter is selected to ensure the maximum effective angle of attack αe = arctan(ḣ/U∞)−
θ = 10◦, in line with previous studies Muscutt et al. (2017a). The Strouhal number is set
as St = 2A f /U = 0.36. The approach followed in this study consists of a foil executing
transition manoeuvres inside the wake generated by another foil. The transient motion
will imply an instantaneous change on the ϕ component, for a given initial ϕ0 and final
ϕ1 delays. In Chapter 5, the transition motion was prescribed by a logistic sigmoid
evolution, controlled by an acceleration rate and a intermediate point. Although that
manoeuvring motion was successful in locating the foil in the optimum propulsion
path, it came associated with large power consumption. Here, we change the approach
in the transition motion by defining the evolution of ϕ as a combination of Hermite
splines:

ϕ(t) = h00(t)ϕk + h10(t)(xk+1 − xk)mk + h01(t)ϕk+1 + h11(t)(xk+1 − xk)mk+1 (6.2)

where:

h00(t) = 2t3 − 3t2 + 1, h10(t) = t3 − 2t2 + t,

h01(t) = −2t3 + 3t2, h11(t) = t3 − t2.
(6.3)

The overall transition phase comprehends the motions executed by the foil in the time
lapse between t = 0 and t = tT, where t = tT corresponds to the instant when the
foil has reached ϕ1. A schematic of the motion is presented at Figure 6.1. The overall
signal is divided into four parts, controlled by five nodes of given time (x) and ϕ values.
The joints between the Hermite splines are controlled by the m values, and defined as:
mk = (1 − c) ϕk+1−ϕk−1

xk+1−xk−1
, where c is a tension parameter. In this section we decided to

explore a transition case associated to a low-performance ϕ0, a strong ∆(ϕ), and a high-
performance ϕ1. To allow the comparison with the results presented at Chapter 5, we
fix the ϕ values of the first and last control nodes to ϕ0 = 0.5π and ϕ1 = 1.5π.

For this study we have selected a Differential Evolution (DE) algorithm, implemented
in the Python package ”Pymoo” Blank and Deb (2020). DE are powerful tools in the
category of evolutionary optimisers Price (2013). A set of candidates is evaluated based
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Node ϕ x c
Node 1 0.5π 0 1
Node 2 [0, 2π] [0, tmax] [0, 1.00]
Node 3 [0, 2π] [0, tmax] [0, 1.00]
Node 4 [0, 2π] [0, tmax] [0, 1.00]
Node 5 1.5π [0, tmax] 1

TABLE 6.1: Table of parameters used in the optimisation. The values are presented in
the bounds allowed to the optimiser. Variables coloured in red are fixed.

FIGURE 6.1: Schematics of the transition phase. The signal is constructed using Hermit
spline, controlled by five nodes of different time (x) and ϕ values.

on a cost function, and the fittest individuals are kept for following iterations. The
candidates are later combined and mutated to generate diversity in the sample and
to explore new possibilities. There are three requirements for the optimiser: a set of
variables to modify, a cost or reward function, and optimisation constrains.

The variables used during the optimisation process are the (xk, ϕk, ck) coordinates of
the nodes, as introduced at Table 6.1. All the components of the initial node, and the
derivatives and ϕ values of the last one are fixed, but the rest of the variables are free to
change. Two different optimisations will be conducted, based on tmax: one where the
foil can take up to one cycle to transition, and a second where tmax = 3t/T, where t is
the time, T is the motion period, and t/T = 3 represents three flapping cycles. Since
we aim to replicate this Chapter experimentally, the maximum accelerations allowed to
the optimiser during the transition manoeuvre are limited to one and a half times the
instantaneous frequency of the foil in the pre-transition phase.
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To continue the analysis conducted on Chapter 5 about the effects of the overall transi-
tion time (tmax), we prescribe two cases: one where tmax is limited to one flapping cycle,
which will allow to a direct comparison with Chapter 5, and a second case where tmax

is opened up to three flapping cycles.

The cost function used by the optimiser is based on the force model developed in Chap-
ter 5. The model with wake information was accurate to estimate the CL evolution of
the foil. Here, the goal is to reduce the overall power used during the transition. For
that purpose, we can use the CL predictions to approximate the power as a combina-
tion of the normal force and the heaving velocity: C∗

P = CLcos(α)ḣ. This simplification
assumes small α values neglecting the contributions of the CDsin(α) and MZ θ̇ to the
overall power. Still, we assume that the qualitative characteristic of the optimisation
will make the C∗

P approximation enough to optimise the kinematics. The cost function
is defined as the overall power consumption during the transition cycle:

∫ t=tT
t=0 CP dt.

The results of the simulation will be validated using the CFD solver LOTUS. All the
results involving CFD simulations present the full power consumption, denoted as
CP = P/(0.5U3c), where P = FY ḣ + MZ θ̇. The grid and characteristics of the solver
are similar to those used at Chapter 5.

6.4 Results

6.4.1 Convergence analysis of the optimisations

To ensure that the optimisations are independent of the initial population, we perform
three trials at random initial values. After receiving the optimal kinematics from the
optimiser, we run a Lotus simulation to obtain the real forces developed by the foils. As
seen at Figure 6.2, limiting the transition time to one cycle provides with an optimum
trajectory almost independent of the initial condition, which could be explained due
to the lack of options considering the constrains. Although the 3 cycles case is more
spread, a good convergence is found. The next section presents a deeper analysis of the
results obtained for each of the cases.

6.4.2 Optimised trajectories for a maximum transition time of one cycle

An evolution of the optimised trajectories obtained for a tT,max = 1t/T are presented
at Figure 6.3. The figure includes the power cost evolution during the iteration pro-
cess normalised with the value at the last iteration: Power cost∗ = 1 + C∗

P(iter)−C∗
P(iterlast)

C∗
P(iterlast)

(grey). We conduct CFD simulations at selected iterations (coloured dots) to validate
the performance of the force model and the optimiser. The figure contains the ϕ,ϕ̇ CL

and CP evolution for each of the simulations. For comparison purposes, we include
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FIGURE 6.2: Instantaneous phasing ϕ, CL and CP results for different trials of the op-
timisation. The results are based on Lotus simulations conducted for the optimum
trajectory recovered by the approach. The dashed-line at the top row presents an
equivalent transition following a sigmoid evolution of ϕ, as described at Chapter 5.
The top row introduces the results for a maximum transition time of one cycle. The

bottom row presents the results for a maximum transition time of three cycles.
.

as dark dashed-line the kinematics and forces for an equivalent case with the transi-
tion motion described at Chapter 5. The validation performed with the CFD solver
for various iterations suggests a good agreement with the optimiser. The force model
used in this study is able to notice the reduction in power expense as the iteration pro-
cess advances. The shape of the transition proposed by the optimiser suggests that,
in order to reduce the power cost during the transition cycle, the foil needs to execute
a quasi-linear manoeuvre. By doing so, the accelerations are spread across the cycle,
reducing the maximum peaks in the forces suffered by the foil. This smoother way
of manoeuvring is leading towards a constant power production across the transition
phase. While the old way of manoeuvring was focusing the efforts towards the mid-
point of the cycle, generating a large CP peak at t/T = 0.5, the optimised trajectory
promotes two power peaks of equal size. Overall, the total transition cost is reduced
by 12%.

While the overall optimisation process has been validated against Lotus simulations,
we still need to look into the performance of the force model. As described before, we
are using an idealised version of the power cost, based on predictions performed for the
CL force. Figure 6.4 presents a comparison between the estimations developed by the
force model (purple) and CFD data, for both CL and CP. Chapter 5 already discussed
the performance of the force model for the instantaneous lift coefficient, but it is still
interesting to see how the model can extrapolate to a different set of kinematics. While
some of the CL peaks are underestimated, the trend of the predictions agrees well with
the simulation data. A higher difference can be appreciated at the CP components. As
described at the methodology region, the optimiser is using an idealised version of the
CP. The lack of the drag component and the large effective angle of attack seen by the
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FIGURE 6.3: Optimised trajectories and forces for a maximum transition time of one
cycle. Top-left compares the convergence process found by the optimiser (grey dots)
against validation at selected iterations using Lotus (coloured dots). Top-right intro-
duces the optimised transition kinematics (ϕ) and the instantaneous frequency ϕ̇. The
trajectory is compared with a sigmoid evolution, as described at Chapter 5. The CL

and CP evolution are shown at bottom-left and bottom-right sub-figures.

foil during the acceleration periods leads to an underestimation of the power cost when
compared to the full CP obtained with Lotus. Still, considering that the purpose of this
study is to perform an optimisation, the idealised CP projection, although with smaller
absolute values, is able to reduce the power cost as the iteration process advances.

Overall, the optimisation process conducted for a maximum transition time of one flap-
ping cycle has been able to reduce the overall power cost by 12%. Even when the
optimisation has been conducted using an approximate version of the power, the ap-
proach is able to converge towards a minimum value. To evaluate the reasons behind
the power reduction, we present at Figure 6.5 a comparison between the old kinemat-
ics and the optimised trajectory. The quasi-linear evolution of ϕ prescribed by the DE
algorithm reduces the overall accelerations of the manoeuvre, leading to a lower CP

production during t/T = 0.5. At that time instant, the foil following a sigmoid evolu-
tion presents a large concentration on vorticity near the surface, leading to a large force
production. As the foil is about to reach ϕ1, the new trajectory induces a larger power
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FIGURE 6.4: Comparison between the force model estimations for CL and C∗
P (purple)

and Lotus results (coloured lines) for CL and CP at different iterations.
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FIGURE 6.5: Instantaneous vorticity at two selected time instants for the transitions
presented at Chapter 5 (green) and the optimised kinematics (Red)

consumption, but, as denoted before, a reduction of up to 12% in the overall expense is
achieved.

6.4.3 Optimised trajectories for a maximum transition time of three cycles

An optimisation for a maximum transition time of one cycle has reduced the power
cost for the transition motions prescribed at Chapter 5. In this section we allow the foil
to take up to three cycles to reach the ϕ1 state. In line with the previous section, we
present at Figure 6.6 the convergence process of the optimiser, and we validate it with
numerical data.

In line with the results for tT,max = 1t/T, a good agreement can be appreciated between
the optimiser convergence trajectory and the CFD validations. The main differences
arise when analysing the optimised trajectory. First, it has to be noticed that the foil is
not taking all the available time to transition, and is finding a tT = 2.65t/T. The overall
transition cost is penalised and, although slower manoeuvres could lead to smaller
force peaks, they could involve a higher overall power expenditure. Second, while
the previous section pointed out to a quasi-linear evolution of the ϕ component, when
the maximum transition time is increased, the best trajectory recovered follows three
distinctive stages: first, the foil starts a deceleration phase (t/T = 0 to t/T = 1.3).
This is usually associated with negative power generation, which could minimise the
overall cost Bluman et al. (2018). Next, the trajectory presents two acceleration parts
separated by a second deceleration stage at t/T = 2.3.

To analyse the reasons behind the division in the acceleration stage, we compare at
Figure 6.7 the optimised kinematics with an equivalent signal that reaches ϕ1 in one
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FIGURE 6.6: Optimised trajectories and forces for a maximum transition time of three
cycles. Top-left compares the convergence process found by the optimiser (grey dots)
against validation at selected iterations using Lotus (coloured dots). Top-right intro-
duces the optimised transition kinematics (ϕ) and the instantaneous frequency ϕ̇. The
trajectory is compared with a sigmoid evolution, as described at Chapter 5. The CL

and CP evolution are shown at bottom-left and bottom-right sub-figures.

step. The CP evolution shows that, at t/T = 2.03, executing a deceleration in the motion
can reduce the maximum CP production. At that time step, the foils are at maximum
effective angle of attack (α), corresponding to maximum forces production. By slightly
reducing the transition frequency, the 5 control case can limit the accelerations in the
motion at that instant, leading to a lower power consumption. A stronger LEV for the
3 control, still attached to the surface of the foil, can be observed at the instantaneous
t/T = 2.03, promoting the stronger forces suffered by the body. On the other hand, and
to recover for the time used to decelerate, after t/T = 2.4, the 5 control case needs to
perform a second acceleration, generating a higher CP than the 3 control case. A mild
reduction of 2.5% in the overall CP cost is observed for the 5 control case across the
presented ϕ evolution.

In the following section, we focus on understanding the overall shape of the optimised
kinematics by slightly modifying the coordinates of the control points found by the
optimiser.
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FIGURE 6.7: Comparison of the forces and flow fields for equivalent transition cases
with 3 control points (green), and 5 control points (red). Top left figure introduces
the ϕ and ϕ̇ evolution. Bottom left introduces the CP evolution. The instantaneous

vorticity is shown at the time steps denoted by vertical dashed lines.

6.4.4 Sensitivity analysis of the trajectory control points

As described before, the optimiser is finding for a tT,max = 3t/T a trajectory signal with
three distinctive phases. A first stage when the foil decelerates, followed by two accel-
eration parts. In this section we aim to analyse the importance of those stages for the
power reduction of the manoeuvre. Figure 6.8 introduces variations performed in the
control points. By slightly modifying the x and ϕ values of the control points that pre-
scribe the three distinctive stages of the cycle, we aim to understand the reasons behind
the parameters found by the optimisation. The first row presents the modifications in
the parameters of the control point that establishes the intermediate stage between ac-
celerations. The black line corresponds to the optimised trajectory, while each of the
coloured lines introduces a new transition based on a modification of the control point
coordinates. We have changed both the location at which the crank appear, and the
ϕ value of the stopping point. At the second row we perform a similar analysis, but
focused on the control point that dominates the deceleration part of the cycle. In a sim-
ilar manner as before, we vary the coordinates of the control points, and perform a CFD
simulation for each of the new trajectories.

Figure 6.9 introduces the results for the first sensitivity analysis. The first row shows
the x component variations, with the ϕ changes presented at the second row. The sec-
ond column introduces the CP signal for the transition period, and the third column
compares the new trajectories against the optimised manoeuvre. Values below 1 indi-
cate a better performance than the kinematics found by the optimiser.



76
Chapter 6. Trajectory optimisation for flapping foils under unsteady inflow

conditions

FIGURE 6.8: Sensitivity analysis conducted for the optimised trajectory. The first row
presents the modifications on the coordinates of the fourth control node. The second
row introduces the changes done on the coordinates of the third control node. Each of

the new cases is run using the CFD solver

Advancing the time at which the transition crank occurs leads to a higher power con-
sumption during the second cycle of the manoeuvre. By advancing the control point
(green), the overall acceleration of the foil increases between t/T = 1.3 and t/T = 2.3.
This effect leads to higher peaks before the crank. Although after the control point
the instantaneous power is reduced (lower accelerations), the overall power cost C∗

P

suggest that this case doesn’t improve the performance of the optimised trajectory. By
delaying the control point (blue), the foil is first reducing the accelerations, to then exe-
cute a faster motion. This effect leads to the opposite of the previous case. Lower initial
peaks, and higher power consumption after the crank. The C∗

P value points towards a
slight reduction in the overall power cost. Still, the accelerations of the new manoeu-
vre are beyond the threshold defined to the optimiser, which could explain why the
optimiser didn’t find a trajectory that appears to reduce even further the power cost.

Figure 6.10 introduces the sensitivity analysis for the control point that separates the
deceleration/acceleration phases of the transition. In a similar manner, we introduces
first the x variations, to conclude with the ϕ changes.

Varying the x location of the separation between acceleration/deceleration phases dras-
tically modifies the shape of the transition signal. Instead of waiting until t/T = 1.3 to
initiate the acceleration phase, now the foil is allowed to do it earlier. The first effect
is clear at the instantaneous frequency evolution. The new cases are able to spread the
motion across a longer period of time, reducing the maximum velocity prescribed to
the foil. Still, the overall C∗

P appears to hold constant, pointing towards a different CP

distribution, but at the same overall cost. The last sensitivity study is conducted for
ϕ variations in the control point. A small improvement of 2.5% is observed when the
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FIGURE 6.9: Results for the sensitivity analysis conducted at the node that controls
the division in the acceleration stage. The black lines represent the base trajectory and
forces. Each of the trajectories is run in Lotus, and the resultant CP is presented here.
The first column introduces the optimised and modified ϕ (continuous line) and ϕ̇
(dashed) evolution. The last column compares the obtained power cost compared to
the optimum trajectory. The last column compares the obtained power cost compared
to the optimum trajectory. Values below 1 represent an improvement in the power

expense.

FIGURE 6.10: Results for the sensitivity analysis conducted at the node that controls
the deceleration part of the trajectory. The black lines represent the base trajectory
and forces. Each of the motions is run in Lotus, and the resultant CP is presented
here. The first column introduces the optimised and modified ϕ (continuous line) and
ϕ̇ (dashed) evolution. The last column compares the obtained power cost compared
to the optimum trajectory. Values below 1 represent an improvement in the power

expense.
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deceleration period is decreased (grey), which could suggest that, due to the underes-
timation of the large force peaks, the force model used by the optimiser is artificially
augmenting the contribution of the negative ϕ̇ phase.

This section has analysed the optimum transition kinematics found by the optimiser
for a maximum transition period of three cycles. By comparing the results with CFD
simulations, it has been observed that the force model used during the process can
generalise to different of kinematics, and still arrive to a decrease in the power used
during the transition. This opens the path to future experimental implementations of
real-life flapping control systems, able to maximise its propulsive performance, at the
lowest power penalty.

6.5 Conclusions

In this study, we have optimised the manoeuvring motion executed by a flapping
foil submerged in unsteady incoming flow. The study has been prescribed as two
NACA0016 foils in tandem arrangement, where the hind foil executes a manoeuvring
motion to maximise its propulsive performance. The manoeuvring motion has been
defined as a variation of the phasing between the motion of the foil and the incoming
wake. The evolution of ϕ has been prescribed as combination of Hermit splines, and
a Differential Evolution approach has been used during the optimisation process. The
cost function has been set as an approximation of the power, estimated using the force
models developed at Chapter 5. When the maximum transition time is limited to one
cycle, the optimiser recovers a trajectory characterised by a quasi-linear ϕ evolution,
which controls the accelerations in the manoeuvre, and reduces the overall power con-
sumption by 12% when compared to the equivalent case described at Chapter 5. The
power reduction can be increased to 18% if the foil is allowed to take a maximum of
three cycles to transition. The optimised trajectory contained three distinctive stages:
a deceleration part, where negative power is recovered, followed by two acceleration
steps. Finally, a sensitivity analysis of the optimum trajectory has been conducted,
finding that the main reason behind the cost savings is linked to a more efficient dis-
tribution of the accelerations needed to perform the manoeuvre .This study provides a
first insight into efficient ways of maximising the propulsive performance of flapping
foils. As future work, we aim to implement this results experimentally, in an effort to
develop real-time control applications based on efficient flapping foils.
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7.1 Conclusions

The aim of this thesis was defined as ”to analyse the effects of surface texture and flow
unsteadiness on the propulsive performance of flapping foils”. During this research,
we conducted numerical simulations and experiments aimed to provide a better un-
derstanding on the hydrodynamics of flapping foil, and to advance towards real-life
control mechanisms able to maximise its performance under unsteady inflow condi-
tions.

In Chapter 4 we analysed the influence of surface roughness on the propulsive perfor-
mance of flapping foils. The use of bioinspired approaches to develop more efficient
ways of propulsion has lead to several studies analysing the use of shark-skin textures
for drag reduction purposes. Still, any potential benefit is highly dependent on the
swimming conditions, or texture shape. To overcome these limitations, we selected a
simplified denticle to generate the rough surfaces. We found that the addition of surface
roughness was detrimental to thrust production and efficiency of a pitching foil, but we
didn’t observe major changes in the flow fields. We believe that the thrust reduction
can be associated to an increase in the profile drag. To better analyse this effect, we con-
ducted experiments of steady foils at various Re with the same roughness distribution.
We observed that the unsteady regime is more robust to the effects of roughness across
the Re range considered, which could be explained considering that other parameters
like the kinematics or St might be neglecting the effects of the rough elements.

In Chapter 5 we studied the effects of incoming flow unsteadiness on the performance
of a flapping foil. It is well known that the way the foil interacts with the incoming
wake is strongly related to its propulsive performance. Swimming between vortices
can lead to important performance benefits, but encountering those structures can be
associated to large penalties. When the optimum path is unknown, we believe a recog-
nition stage, where the foil explores several routes, is needed. To do so, we need rapid
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tools able to predict the forces evolution of a foil inside unsteady inflow conditions. In
this chapter, we developed sparse force models using the approach SINDy. We found
that the best accuracy in the models can be achieved by including relevant information,
such as the foil kinematics or the location of the major vorticity structures. Also, incor-
porating physically-relevant inputs can lead to a better understanding of the physics of
the problem. After constructing the force models, we tested the optimum route finding
capabilities of the models by ranking a set of route candidates, based on lift production.
We found that the model containing information about the wake was able to select the
optimum path to follow with a correlation higher than 80% when compared to target
data. Finally, we implemented experimentally the approach, finding a good correla-
tion between the computational and experimental results. This study highlights the
importance of carefully selecting the inputs to recover accurate governing equations
for a flapping foil submerged inside unsteady flow. Also, the optimal route-finding
capabilities open the path for a real-time control implementation that would maximise
the performance of a flapping foil under unsteady circumstances, and at various flow
conditions or flapping regimes.

In Chapter 6 we optimised the manoeuvring motion executed by a flapping foil sub-
merged in unsteady incoming flow. Previous findings showed that a foil can maximise
its propulsive performance by carefully manoeuvring towards optimum paths inside
the unsteady incoming flow. Also, we analysed that those manoeuvrings could be
highly-expensive in terms of power consumption. This increased cost effect can drasti-
cally impact, or even neglect, the potential benefits associated with the after-transition
state, and, in this chapter, we analysed more efficient ways of executing the manoeu-
vre. To do so, we combine the use of a sparse force model with a Differential Evolution
approach. The use of the force model was aimed to reduce the overall computational
expense of the optimisation process. We find that the new manoeuvre can reduce the
power consumption by 18% when compared to the original Chapter 5 reference case.
To do so, the new transition comprehends a more efficient evolution of the accelera-
tions, leading towards less cost manoeuvres.

In this thesis, we have focused on analysing the hydrodynamic effects of surface texture
and unsteadiness on flapping foils. We have seen how those two conditions can affect
the performance of a flapping foil, and we have advanced towards more efficient ways
of swimming. We believe the results presented here provide an advancement about the
knowledge behind tandem operations, and could serve towards real-life applications
of flapping foils for propulsive augmentation, or control tools.

7.2 Future work

The main potential lines of investigation associated with this thesis are presented next:
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- Real-time wake estimation tool: in this thesis, we found that providing information
about the wake is essential to develop an accurate force model for a flapping foil inside
unsteady conditions. Still, we provided the wake information as ’a-priori’ data. A real-
time recognition tool to estimate the location of the main vorticities with respect to the
foil would be needed for a closed-loop implementation of the control approach.

- Experimental validation of the optimised kinematics: Chapter 6 presents a important
improvement in the power cost of the manoeuvre required to maximise the perfor-
mance of a flapping foil. Still, we believe that an experimental implementation would
advance the research towards a real-life implementation of the procedure.
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Appendix A

Physics-based and Machine learning
predictions of maneuvering forces
in unsteady inflow conditions

A.1 Introduction

Multi-vessel coordination and controlled maneuvering through upstream wakes is im-
portant to a wide range of marine applications; from surface ships to autonomous un-
derwater vehicles. A proper understanding of the unsteadiness of the surrounding
flow is essential, and it is a requirement for safety aspects or to develop operations
involving several unmanned vehicles. Previous work has been done in the field of un-
derwater vehicles manoeuvrability Kim et al. (2015) and ship-to-ship interactions Yu
et al. (2019). In the biological area, studies have found important benefits in terms of
travel performance in the case of fish-schooling Weihs (1973). What all the previous
studies have in common is the importance of properly adapting to the surrounding
environment in order to maximise the performance gains and to ensure a safe opera-
tion. To replicate this ability of fish to maneuver and take advantage of their unsteady
upstream conditions, our engineered vessels need to be able to predict fluid forces in
real-time.

As a model problem to study high-speed force predictions, we will investigate the un-
steady forces on the back foil of a tandem flapping foil pair. In addition, tandem foils
have been suggested for use in vessel manoeuvring because of their high force produc-
tion capabilities Read et al. (2003). Several models have been developed to estimate
the performance of a flapping foil. theodorsen1935 derived the first expressions for the
forces time evolution to predict aerodynamic flutter. Garrick (1936), used the equations
defined by Theodorsen to approximate the propulsive forces, and Lighthill (1969) com-
pleted the work done by Garrick applying its equations to a lunate tail of a fish. The
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main disadvantage of the previous methods is that they all assume small amplitude
kinematic motions, rectilinear vortex wake and perfect fluid, conditions highly unlikely
to be found in a real-world applications. A more complex scenario can be found in the
tandem flapping foil operation, as one of those two objects is interacting with the wake
of the other. If the motion of both bodies is properly tuned, the one in the back can
achieve important performance gains. Muscutt et al. (2017a) Kurt and Moored (2018).
muscutt2017performance predicted the performance of the mentioned hind foil by us-
ing a quasi-steady approach, providing accurate results in the cycle-averaged thrust
production estimation, but not considering the real-time force signal prediction.

In the recent years, the use of Machine Learning (ML) for control, maneuvering and
marine applications has greatly improved. Weymouth2013JOSR studied the applica-
tions of physics-based learning models (PBLM) to ship hydrodynamics. By the use
of physical knowledge of the system, the authors improved the predictions obtained
by simple regression models at a considerably less expense than high-resolution nu-
merical predictions. Also, several ML tools have been developed for a vast range of
applications, from text or image recognition, to forces prediction. Of especial interest
for this study are two black-box approaches - where the output is complex and difficult
to understand by the user -. The first one is the long short-term memory neural net-
work (LSTM), able to interpret data in a temporal context Hochreiter and Schmidhuber
(1997). By the use of previous system data, LSTM models can predict future states
Chollet et al. (2018) Marban et al. (2019). The second approach is the Neural Ordinary
Differential Equations (NODE) Chen et al. (2018), that can provide time-series approx-
imation and predictions when the data is irregularly sampled or insufficient Rubanova
et al. (2019). Another ML approach, this time in the “physics-based” ML group, is the
Sparse Identification of Nonlinear Dynamical systems (SINDy) Brunton et al. (2016a),
where user-interpretable governing equations can be prescribed.

In this study, we analyse several methods in order to develop a model able to estimate
the performance of a flapping foil under unsteady upstream conditions. In Section 2,
the problem definition is explained. Several flapping foil tandem configurations have
been simulated, and the forces and flow conditions faced by the hind foil recorded, to
later serve both as inputs for the models and as target. In Section 3, two physics-based
approaches, the quasi-steady and Theodorsen models, are adapted in order to include
the effects of the unsteadiness of the upstream flow. Next, in Section 4, we develop
three Machine Learning models, LSTM, NODE and SINDy. In section 5, we study
the capabilities of all five models and evaluate them against data obtained with an in-
house CFD software. The predictive performance, in terms of time-signal estimation
and prediction error is studied, and the limitations of the models discussed.
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A.2 Problem definition and data generation

Our model problem for maneuvering in unsteady inflow conditions is a tandem foil
configuration, as described at Figure 2.3. We define c as the chord length of the foil,
a = c/4 is the pivoting point location for the pitching motion, b = c/2 is half the chord
of the foil, U∞ is the free-stream velocity and h(t), θ(t) are the heave and pitch of the
foil, defined as

h(t) = A sin(2π f t + ϕ) (A.1)

θ(t) = θmax cos(2π f t + ϕ) (A.2)

where A = c is the heaving amplitude, f is the flapping frequency, and ϕ represents
the phasing in the motion between the two foils. Finally, two other parameters need to
be introduced. The first one is the Strouhal number St = 2A f /U∞ and the Reynolds
number Rec = U∞c/v,where v is the fluid kinematic viscosity. In this work we use
Rec = 7000 and St = 0.3 − 0.5 to match previous tandem foil studies Muscutt et al.
(2017a).

The effective angle of attack of the back foil α depends on the uniform flow, the heave
velocity and on the unsteady inflow conditions produced by the motion of the front foil

α = arctan

(
−ḣ − vγ

U∞ + uγ

)
+ θ (A.3)

where uγ and vγ are the horizontal and vertical velocity components induced by the
vorticity of the upstream wake.

A range of tandem configurations are tested in order to study the effectiveness of the
prediction methods for different foil-wake interactions. The varied parameters are the
foils relative phase ϕ and their longitudinal spacing S. As discovered by Muscutt et al.
(2017a), the combination of the previous parameters will have a strong influence in
the performance of the hind foil and two specific setups have been selected as a test
cases for the different force prediction approaches. The first one corresponds to a High-
Performance hind foil (St=0.3, ϕ=1π, S=c), or a foil able to extract energy from the
wake of the leader, and hence to achieve a performance augmentation. The hind foil
has minimal interaction with the vortex structures of the fore-foil in this case. The
second case is Low-Performance hind foil (St=0.3, ϕ=π, S=2.5c), where much less thrust
is generated because the flow is strongly disrupted by the upstream vortex structures.

An in-house CFD solver is used to generate the benchmark data to study this system.
This solver uses the Boundary Data Immersion Method (BDIM,Weymouth and Yue
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TABLE A.1: Numerical cases

St value 0.3, 0.4, 0.5
Spacing 0.5, 1 ,1.5 ,2 ,2.5 ,3 ,3.5 ,4 ,4.5 ,5
Phasing 0π, 0.25π ,0.50π ,0.75π ,0π ,1.25π ,1.5π ,1.750π

Number of simulations 240 tandem cases

(2011)) to simulate the time-evolution of the viscous Navier-Stokes using a convolution
over the fluid and any immersed dynamic geometries. The convergence of this method
is quadratic, and has been previously validated for flapping foil systems in several
studies Maertens and Weymouth (2015); Lagopoulos et al. (2019); Zurman-Nasution
et al. (2021a). A rectangular Cartesian mesh is used with a grid spacing of ∆X = ∆Y =

c/192 near the foils and in the inter-foil region with grid stretching used in the outer
fluid domain. This is the same gird used and validated in Lagopoulos et al. (2019).

The CFD method was used to simulate a broad range of test conditions for the model
problem defined above, Table A.1. For each of the tandem cases, the performance of the
hind foil, in terms of the time histories of the force along the x-axis CX=2FX/(ρU2

∞c) and
the transverse force CY=2FY/(ρU2

∞c), are recorded and used to assess the performance
estimation models. In addition, the unsteady ”inflow” velocity conditions uγ, vγ to the
downstream foil are recorded for use in some the maneuvering force models.

A.3 Physics-based performance estimation approaches

This section covers two theoretical estimations, starting with a simple quasi-steady ap-
proach, and progressing towards a more complex model with foundations in Garrick
and Theodorsen’s analysis. In both methods, the effects of the flow unsteadiness has
been introduced via the information gathered about the foil surroundings.

A.3.1 Quasi-steady model

Following Muscutt et al. (2017a), a baseline quasi-steady model for the instantaneous
lift on the downstream flapping foil is defined as

CL = −2πα (A.4)

where the local α is defined in Equation (A.3). Projecting this into the horizontal and
vertical axis, CY and CX are obtained as

CY = CLcos(θ − α) (A.5)

CX = CLsin(θ − α) (A.6)
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A.3.2 Adapted Theodorsen model

The second physics-based approach is developed from the work of Theodorsen and
Mutchler (1935) and Garrick et al. (1937) for small amplitude unsteady foil motions.
The unsteady lift force a foil in a uniform inflow (such as the upstream foil) is modelled
as

L = −ρb2(Uπθ̇ + πḧ − πbaθ̈)− 2πρUbC(k)
[
Uθ + ḣ + b(1/2 − a)θ̇

]
(A.7)

where Theodorsen’s function C(k) is a transfer function relating sinusoidal inputs of re-
duced frequency to their aerodynamic response Brunton and Rowley (2009) Theodorsen
and Mutchler (1935).

To modify this function for unsteady inflow, we augment the vertical velocity produced
by the heaving motion of the body ḣ with the velocity induced by the wake along the
transverse direction vγ, and augment the horizontal inflow velocity U with the wake
induced velocity uγ. Combining this with the appropriate values of a, b and using
our definition of the effective back foil angle of attack α gives the adapted version of
equation A.7 for the back foil as

CL = − cπ

2U

(
α̇ +

cθ̈

4U

)
− 2π

(
α +

cθ̇

2U

)
(A.8)

This value of CL can then be used to obtain the transverse force using,

CY = CLcos(θ − α) (A.9)

The propulsive force can be obtained using Garrick (1936),

CX = CLθ +
πS2

x
U2 (A.10)

Here Sx is the leading-edge suction component developed in Garrick (1936):

Sx =

√
2

2

[
2C(k)Q − cθ̇

2

]
, where, Q = Uα +

cθ̇

2
(A.11)

To perform the predictions based on the equations presented before, an approach based
on the work done by Muscutt et al. (2017a) has been carried out. It can be appreciated
that all the parameters are in relation either to the kinematics of the foil, or to the up-
stream flow. And it is of special relevance that the second group can be defined by
the velocity components, uγ, vγ, imposed by the wake on the foil, and the motion of
the same body. In a normal approach, it would require of n-number of simulations to
record the information needed for n-tandem cases, which would be computationally
expensive. Instead, here we present what we have called ”virtual probes simulation”,
presented schematically at Fig. A.1
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FIGURE A.1: Sketch and comparison of the virtual probes method and the tandem
simulations. The red and green dots indicate virtual probes acting and moving as
virtual hind foils. The red dot in the left hand size of the figure helps to represent that

the virtual dots are place at the LE of their equivalent foil.

The left part of Fig. A.1 presents the classical disposition of a tandem simulation, where
both the hind and fore foil are physically modelled. The right part of Fig. A.1 intro-
duces the equivalent to the mentioned tandem. First, a virtual probe - in order to avoid
disturbances to the flow - is placed in the location where the hind foil would have
been (see green dot at Fig. A.1). Next, this probe is configured with the same kine-
matics as its equivalent in the tandem configuration. Finally, the powerful part of the
method relies in the fact that not only, but multiple, virtual hind foils can be set-up in
just one simulation. If each of the red dots of Fig. A.1, is prescribed with a different
Spacing/Phasing with respect to the leader foil, in just one simulation, it is possible to
acquire information for n hind foils, making the physics based models presented in this
section computationally cheap.

A.4 Machine Learning performance estimation approaches

In this section, we study the use of three machine learning models predictions, LSTM,
ODE and SINDy, for the CX and CY force coefficients to complement the approximate
physical models described above.

Note that the physical parameters used to predict the forces are: the effective angle
of attack of the foil, α, the local pitch angle with respect to the x-axis, θ, U, and the
derivatives α̇, θ̇ and θ̈. In order to keep simplicity in the ML model, and due to its small
contribution to the total forces, the term θ̈ has been discarded as an input, but the rest,
together with CX and CY are used to to define the state vector Z for the ML models, see
Table A.2. Choosing physically-relevant instantaneous flow metrics as the inputs for
the ML models should help them generalize to the unseen test cases Weymouth and
Yue (2013).
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TABLE A.2: Machine Learning models: state vector

Z(t) = [U(t) , α(t) , α̇(t) , θ(t) , θ̇(t) , CX(t) , CY(t)]

TABLE A.3: LSTM parametric study

Input Layer Z(t0), Table A.2
LSTM layer Hidden Units [16,32,64,128,256]

Drop Out layer DR [0.2,0.5,0.8,No DO]
Output Layer Z(t0 + ∆t), Table A.2

A.4.1 LSTM

The Long Short-Term Memory (LSTM) method, developed by Hochreiter and Schmid-
huber (1997) is suitable for this analysis as it can pass the information obtained at a
given state, or x(t) to the next iteration. By doing so, it can estimate the state of a given
parameter at a (t + ∆(t) time step, what makes the model suitable for predictive - and
maneuverability - applications.

The LSTM model, developed using the package Keras Chollet et al. (2018), is trained
using pieces of the time-signal inputs, also known as windows, where the goal is to pre-
dict the state of the same inputs, but ahead in time. In this study, 10 time step involving
roughly a cycle period t/T = 0.1 have been used as an input in order to predict the
next t/T = 0.1 of the cycle, in a moving prediction until the full cycle is covered. Due
to the characteristics of this study, where the goal is to achieve a first approximation
to ML for manoeuvring applications, no other windows shapes have been considered.
Finally, the model takes into account all the variables and combines them in order to
obtain the output layer but, as this is essentially a black-box model, the interpretation
of the resulting model is not straightforward. Nevertheless, it is important that the net-
work is provided with useful and physics-meaningful data, in order to achieve a result
suitable for real applications.

The aim of this part of the study is not to obtain the best-fitted LSTM model with respect
to the target data, but to perform a characterisation and sensitivity analysis of the main
model parameters. Considering that the number of aspects that can be varied in a
LSTM model is vast, only the key ones have been selected: first, the Hidden Units (HU),
and second, the Dropout Rate (DR). Both have been used in other LSTM applications as
the network varying parameters Chollet et al. (2018) Marban et al. (2019). To maintain
the model as simple as possible, only one LSTM layer has been used. A summary of
the whole model can be see in the table below:
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TABLE A.4: Neural ODE parametric study

Input Layer Z(t0), Table A.2
RNN layer (encoder) Hidden Layer [1], Hidden Units [25]

Latent ODE layer Hidden Layer [1], Hidden Units [16,32,64,128,256]
Decoder layer Hidden Layer [1], Hidden Units [20]
Output Layer Z(t0 + ∆t), Table A.2

The combination of the drop out rates and Hidden Unites evolves to a total of 20 cases.
All of them will be analysed later in the discussion of results, and the best of those
in terms of accuracy, will be compared with the findings obtained with the theoretical
approach explained earlier in this section. The model has been trained with 160 cases,
and tested with two selected cases not seen by the model during the training. All the
models use an ”adam” optimizer.

A.4.2 Neural ODE

The Neural Ordinary Differential Equations (NODE) approach, developed by chen2018
obtains an output layer solution by solving an ODE initial value problem with the use
of a black-box differential equation solver. The details of the approach are described at
Chapter 3.

A.4.3 SINDy

The last machine learning method that is going to be used in this study is the Sparse
Identification of Nonlinear Dynamics (SINDy) Brunton and Rowley (2009). The details
of the approach are described at Chapter 3

In this study, the package PySINDy de Silva et al. (2020) has been used. As part of the
definition of the model, a second-degree differentiation has been established, together
with a third-degree polynomial order as the feature library. In terms of the optimiser,
and considering that it is this part where the interpretability of the output models is
going to be defined, two different options have been applied. The first one, where the
optimizer is a simple Ordinary Least Squares (OLS), and the second one, that uses a
LASSO regression (α = 2). The next table details both model conditions. The main dif-
ference is going to rely in the amount of parameters that conform the model equations,
and will be explained in the results sections.
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FIGURE A.2: Time signal prediction comparison for the HP case. HP test case at the
left column and LP test case at the right column. LSTM results (A and B), NODE

results (C and D) and SINDy (LASSO) results (E and F).

A.5 Results

This section introduces the results obtained with the methods presented in the previous
chapter. As explained in the methodology, the models have been tested against two
test cases, one corresponding to a High-Performance hind foil, in which the level of
unsteadiness is reasonably low, and another one, a Low-Performance foil where, due to
the strong body-wake interactions, the unsteadiness of the flow is considerably higher.

First, the time signal estimation for a full flapping cycle is presented. Due to the pre-
dictive approach followed for the LSTM, SINDy and ODE methods, a rolling average
has been computed with the evaluations at each of the data points, and is introduced
together with the standard deviation. Like so, it can be possible to appreciate whether
the average estimation is accurate, but also to ascertain its stability over time. The real
- and target - data obtained with Lotus is presented together with the quasi-steady and
adapted Theodorsen models, and selected cases of the LSTM, Neural ODE and SINDy
parametric sweep.

It is clear from Figure A.2 that the quasi-steady approach does not fit properly the
evolution of the CX obtained by Lotus. It is surprising how, even when the time signal
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clearly differs, the cycle-averaged thrust value would be close to the real estimation,
which proves that a correct modelling of cycle-averaged quantities is not sufficient for
a manoeuvring model. The adapted Theodorsen, on the other hand, seems to collapse
between with the CFD results, although it can not model properly the areas of the cycle
where the thrust production is negative. As expected, the prediction is considerably
more accurate for the HP case than for the LP, as will be seen later in this section.

The LSTM model, Fig A.2 a) and b) appears to capture properly the peak thrust value
of the HP test case and the drag-generating parts of the cycle. Although LSTM does not
augment the accuracy of the Adapted Theodorsen, the results presented here have to
be understood as a first approach to ML techniques. It will be the aim of further work to
develop a more consistent method. About the LP test case, the LSTM method appears
to capture better the sudden peaks appearing in the CFD signal, caused due to the high
unsteady interactions between the foil and the upstream flow, improving the predic-
tions of the Adapted Theodorsen. The second conclusion that can be extracted from
the LSTM figure is that the stability of the predictions, represented by the confidence
intervals, is in line with the mean thrust estimation, and decreases as the complexity of
the model increases.

About the Neural ODE model, part c) and d) of Fig. A.2, it can be seen how, for the HP
and LP case, the NODE approach appears to collapse better with the target data than
the quasi-steady approach, and is close to the Theodorsen predictions, although it has
not been able to improve the predictions of the LSTM network. In line with the results
presented above, the complexity of the LP test case falls outside of what this Neural
ODE model can achieve. On the other hand, the stability of the predictions is higher
than the LSTM result, especially at the LP test case.

The SINDy output where a LASSO optimizer has been defined is presented at Fig. A.2
e) and f). Following the trend of the previous LSTM and Neural ODE, the approach
performs considerably better than the quasi-steady model, but does not augment the
prediction of the adapted Theodorsen, at least for the HP case. The size of the errorbars,
indicator of the stability of the predictions, is in line with the LSTM results, and bigger
than for the Neural ODE case, especially at the LP case.

Next, in order to evaluate all the methods together, the Normalised Root-Mean-Square
Error (NRMSE) is presented:

NRMSE =
RMSE

ymax − ymin
(A.12)

Where ymax and ymin correspond to the maximum and minimum of the Lotus test case
CX and CY predictions. The data presented here is the NRMSE result for a full flapping
cycle.
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FIGURE A.3: NRMSE comparison. HP test case at the left column and LP test case at
the right column. CX (A and B) and CY (C and D)

As explained before, the methods developed in this study are compared against two
test cases, one involving a High-Performance Hind foil, and another representing a
Low-Performance scenario. Figure A.3 introduces the NRMSE comparison for both
cases.

About the quasi-steady and Adapted Theodorsen models, It can be seen in the previous
figure how both are obtaining a lower NRMSE for the HP test case than for the LP test.
Considering that both theoretical approaches were limited in their original design to
a tight range of parameters, especially quasi-steady flow conditions Theodorsen and
Mutchler (1935) Garrick (1936), the mentioned result does not come as a surprise. The
adapted Theodorsen has been able to obtain, for all the cases but the LP CY, a better
prediction than the simple quasi steady, especially at the thrust estimation (9% NRMSE
error the first one and 20% the second at the HP CX).

About the LSTM results, and starting with the sensitivity analysis, the amount of Hid-
den Units (HU) does not appear to have a strong influence in the overall result, al-
though for most of the cases, there is a slight trend indicating that networks with few
HU could be beneficial, which could be due to a better dealing with overfitting in the
training phase. The Neural ODE approach appears to be less sensitive to the variation
of the hidden units than the LSTM.
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For the HP test cases, neither the LSTM or the Neural ODE models can increase the
accuracy of the adapted Theodorsen. About the LP case, the situation is the opposite,
as both LSTM and Neural ODE methods are improving the accuracy of the adapted
Theodorsen (originally around 27% error against around 20% for the LSTM and 22%
for NODE). Although the ML approaches are not better than the theoretical models -
in terms of prediction accuracy - for all scenarios, they can be more stable for a wider
range of cases, especially when the unsteadiness increases, what highlights the poten-
tial of these methods.

Although it may appear that the OLS SINDy obtains the best prediction, especially
at the LP test case (near 21% error), a simple look at the output model can reject it’s
application. It was explained in the methodology section that the purpose of SINDy
was to obtain an interpretable output model, that could lead to knowledge gain about
the physics behind the foil-wake interactions but, when using an OLS optimiser, SINDy
outputs a C′

X equation with more than 91 parameters. On the other hand, if a LASSO
optimizer is applied, the second SINDy model, the decrease in accuracy is considerably
high (especially at the HP), but the amount of terms in the C′

X model goes down to 8.

A.6 Conclusions

In this study, several methods have been analysed to develop a high-speed maneuver-
ing model able to estimate the performance of a flapping foil under unsteady upstream
conditions. Two physics-based approaches, a simple quasi-steady and a Theodorsen
and Garrick approach have been adapted in order to account for the upstream flow un-
steadiness. Three machine learning models have been designed and trained, an LSTM,
a Neural ODE, and a SINDy model. The physic-based and ML models have been com-
pared against two test cases obtained using full CFD simulations.

While the quasi-steady approach has not provided accurate outputs, the adapted Theodorsen
equation has achieved an error of around 9% with respect to the CFD data in the less-
complex test case. On the other hand, as the unsteadiness increases, the accuracy
quickly goes down, reaching an error of almost 26% for the low performance case.

It was found that both the LSTM and SINDy machine learning could match the the
accuracy of the adapted Theodorsen for the less-complex test case, the SINDY with
91 parameters achieving 8% error and LSTM achieving around 9% in its best attempt.
On the other hand, all the ML models can improve on the accuracy of the adapted
Theodorsen in the more unsteady test case, with a best case 20% and 25% error for the
LSTM and NODE respectively. The SINDy model is able to reduce the error to only 20%
when allowed to use 91 parameters. However, when SINDy with LASSO optimization
is used to produce an human-interpretable 8-parameter model, the error jumps up to
27%.
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In conclusion, the potential of ML techniques to predict the forces on manoeuvring ve-
hicles in unsteady inflow conditions has been demonstrated , especially when the un-
steadiness is strong enough to make simple theory-based approaches unreliable. The
ML models have proven to be more suitable to be applied for a wider range of con-
ditions than the adapted theoretical approaches, which highlights their potential for
manoeuvrability applications.
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