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Foreword and COVID19 impact statement 

The research in this thesis aims to explore immunodeficiencies using the RNA space as a modality of 

investigation and or diagnosis. It will focus on two specific types of immunodeficiency, one primary 

and one secondary. To explore the primary immunodeficiency space, the research aims to 

characterise the T-cell mediated primary immunodeficiencies from the existing literature first and 

using a variety of techniques propose and test improvements to the current diagnostic pipeline of T-

cell PID using RNA based methods. To explore secondary immunodeficiency space, the research aims 

to characterise and explore age-related immunosenescence from the existing literature, and then 

use similar RNA based methods to explore the transcriptomic profile of immunosenescence in 

cohorts of different models. The investigation then goes on to generate a continuous modelling 

algorithm which associates the biological age with chronological age of these cohorts. 

Of note, it is important to state that the original research project aimed to develop T-cell specific 

diagnostic pipelines after the broader analysis of whole blood investigation. However due to a 

number of logistical issues, arising in part because of the 2020 COVID19 global pandemic, this was 

not possible. The research was significantly impacted by the pandemic, and datasets from COVID19 

and Influenza patients were made available for an alternate approach to immunodeficiencies.   
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Chapter 1 Introduction 

1.1 The human adaptive immune system 

The human immune system is responsible for the detection and removal of toxins, pathogens, 

malignant and senescent cells of the host (1, 2). The immune system can be categorised in a number 

of different ways; humoral and cell mediated (3), innate and adaptive (4), resident and circulating (5) 

 Whilst all these elements are essential for the functioning of the immune system, the research 

described in this thesis will focus mainly on the cell mediated adaptive immune response, with the 

intention of comparing systems of diagnosing immunodeficiencies.  

The defining characteristics of the adaptive immune response is the ability to mount a specific 

response to any of a repertoire of possible threats, to adapt to these and to deliver immunological 

memory. As such the adaptive immune system is able to generate a more rapid and vigorous 

response to a repeated exposure to the same threat.  

 

1.1.1 An introduction to T-cells and humoral and cell-mediated immunity 

The key cell types responsible for adaptive immunity are B and T-cells. B and T- cells are so called 

due to the location of their maturation process, the bone-marrow, and the thymus, respectively (6) 

(7). 

Perhaps the most important secreted element of the adaptive immune system are antibodies, 

produced by plasma cells, which are derived from B-cells and are a key part of humoral adaptive 

immunity (8). Antibodies are the primary mode of defence against extracellular pathogens and their 

associated toxins; binding to each of these elements and assisting in their sequestration and 

elimination (9).  

It is the T-cells which primarily deliver cell-mediated adaptive immunity. T-cells are defined by their 

expression of a surface receptor complex called the T-cell Receptor or TCR. The TCR is comprised of 

an α and β chain, which are associated with the CD3 protein complex, common to all T-cell lineages 
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(10). TCRs bind to cell surface structures known as major histocompatibility complexes (MHCs) (11).  

MHCs present small sections of a protein or ‘antigen’ in the form of peptides for recognition by the 

TCR which are specific to MHC-antigen combination, giving the cells their specificity (11) 

T-cell receptors are made up of two polypeptide chains each having a variable and constant section. 

These receptors are part of the immunoglobulin superfamily. The receptors are comprised of a 

variable α (light) chain and β (heavy) chain. Complete beta chains are comprised of three variable 

sections and one constant, the alpha chains have only two variable sections and one constant. These 

separate sections are denoted as V, D, and J, standing for ‘variable’, ‘diversity’, ‘joining’ segments. 

The alpha chain has only the V and J segments. The genes for these chains contain multiple versions 

of each segment for each of the V, D, and J components (Figure 1-1). These are rearranged during 

recombination to give any one of 1018 possible T-cell receptors.    

 

Figure 1-1 Development of the T-cell receptor repertoire 
A. Representation of the arrangement of the genes for heavy (β) and light (α) chains. B. 
Genes undergo recombination to form complete exons with 1 segment from V, one 
segment from J and one constant region. In heavy chains the D segment is also present. 
C. This produces rearranged DNA sequence, with a small intron between the VJ/VDJ 
sections and the C sections. D. Exons undergo transcription, splicing out of intron and 
translation. E.  Receptor complexes are formed and presented on the T-cell surface.   

T-cells are first produced from haematopoietic stem cells in bone marrow. Immature, 

undifferentiated cells from the lymphoid lineage are known as progenitor cells, and progenitor T-

cells undergo migration from the bone marrow to the thymus. Once in the thymus, the thymocytes 

(as they are then called), will mature into T-cells and undergo selection processes based on their 

individual TCR receptor affinity to self-antigen (12). Initially thymocytes lack the TCR and its co-
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receptors CD8 and CD4. Within the thymus they undergo a maturation process shown in Figure 1.2. 

During this process they sequentially gain key surface receptors, some highlights of which are 

explained in the figure legend.  

 

Figure 1-2 Thymic Maturation of T-cells 
Lymphoid progenitors produced by haematopoietic stem cells exit bone marrow and 
migrate to thymus via the blood. These lack the TCR expression, CD4 and CD8 
expression so are termed double negative (DN). These go through developmental stages 
classified by surface protein expression of CD44 and CD25. DN1 = CD44+CD25-, 
DN2=CD44+CD25+, DN3 =CD44-CD25+, and DN4 =CD44- CD25-, DP = dendritic progenitor. 
Adapted from R.N. Germain, 2002 (12) 

 

The TCR expression begins in DN2-DN4, with a pre-TCR, comprised of a β chain and an α-chain which 

has not yet been re-arranged. This early version of the TCR is known as the pre-TCR. The expression 

of this early version of the TCR in DN4 leads to significant proliferation and production of a mature, 

expressed TCR-α chain and complete αβ-TCR.  

 

The expression of both CD4 and CD8 at this stage alongside the TCR results in the DP (‘double 

positive’) notation of these cells. Through interaction with cortical epithelial cells expressing MHCI or 

MHCII molecules bearing self-peptides the process of selection occurs. If not enough affinity and 
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thus interaction occurs, these DP cells undergo delayed apoptosis (death by neglect) or pass to the 

medulla. In the medulla further interaction occurs between the now, lineage committed thymocytes 

and medullary epithelial cells or haematopoietically derived dendritic cells. If an appropriate 

intermediate level of thymocyte interaction occurs with MHCI complexes, the thymocytes become 

CD8+T-cells. In the case this interaction is with MHCII complexes, the thymocytes become CD4+ T-

cells. Should the interaction affinity be inappropriately high, the thymocytes undergo negative 

selection and acute apoptosis. 

Once mature, they are considered naïve T-cells and can circulate in the body for almost a decade 

(13). T-cells circulate in the blood vessels and lymph vessels until they encounter their cognate 

antigen. When the naïve T-cell encounters its cognate antigen associated with class 1 MHC (CD4 T-

cells) or class 2 MHC (CD8 T-cells) on an antigen presenting cell for the very first time, it becomes 

primed (14). In addition to the professional antigen presenting cells such as dendritic cells, epithelial 

cells can also act as antigen presenting cells or ‘APC’s’ under pathological conditions (15). As such 

priming can take place either in the central lymphoid organs, lymphatic circulation or at the site of 

infection (14) but canonical priming takes place in the T zone of a lymph node (16). 

Priming is precipitated by the formation of an immunological synapse between the T-cell and the 

antigen presenting cells (17). In the immunological synapse, ICAM-1 on the APC binds with LFA-1 on 

the T-cell, and TCR/antigen interaction triggers LFA-1 conformational change. B7.1 and B7.2 on the 

APC bind to CD28 on the T-cell and the T-cell is then effectively primed (18). T-cell priming initiates 

biophysical, biochemical, transcriptomic and proliferative changes, generating expansions of 

differentiated effector cells, some of which go on to become long lived memory T-cells (14). The 

subsequent location of T-cells after priming/stimulation by an antigen presenting cell depends on a 

number of factors which are not yet entirely understood (19). Stimulation by an APC originating at 

any site can cause the T-cells to migrate to almost every other tissue in the organism, and T-cells 

primed in secondary lymphoid organs can end up in non-lymphoid tissues by upregulating respective 

homing receptors (19). Through these methods the adaptive immune system protects the host from 

pathogens which are found anywhere in the body.   

 For previously unstimulated naïve T-cells, costimulation from the CD28 cell surface protein is also 

necessary for the cells to be fully activated (20). Depending on cell type, other co-receptors are also 

involved in the activation process. CD4 for example in CD4+ T-cells and CD8 in CD8+ T-cells (21).   
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 CD4+ and CD8+ are the two major subsets of T-cells. Simplistically, those T-cells expressing the CD4+ 

surface antigen are often described as helper T-cells or Th cells, and those which express the CD8+ 

antigen are cytotoxic T lymphocytes or CTL (22). CD4+ Th cells specifically secrete cytokines to help 

elicit and modulate CTL responses. CD4+ Th cells also help generate and modulate the humoral 

response through their interactions with B cells. The diverse populations and roles of T-cell are 

brought about through complex differentiation and regulation processes which continue to be 

investigated and explored (23).  

1.1.2 The specificity and memory of T-cells in the adaptive immune system 

CD8+ T-cells can become primed by almost any cell in the body, as expression of HLA—1 is almost 

ubiquitous (24). A number of cell types are able to prime CD4+ T-cells by presenting antigen on HLA-

2. These include dendritic cells (DC), macrophages, follicular dendritic cells (FDC), and a range of 

epithelial cells, and even sub-categories of fibroblasts (25). Most typically DC’s or macrophages 

phagocytose pathogens or foreign material, and fragments of these (antigens) are then presented on 

the cell surface via the major histocompatibility complex (25, 26). These dendritic cells or 

macrophages then return to the local lymphoid tissues; lymph nodes or the spleen (26). When a 

lymphocyte recognises the antigen presented on the dendritic cell with sufficiently high affinity, it 

will become activated. The cell adaptive response now begins a process of amplification of response 

(27).  

Naïve CD4+ T-cells interact with the DC and undergo clonal proliferation to produce a greater 

number of antigen-specific cells which are able to interact with CD8 T-cells and B-cells. This allows 

germinal centre formation in the lymphatic tissues (28).  

Upon encountering its cognate antigen, a T-cell becomes activated and forms a large blast-cell which 

proliferates and undergoes the process of clonal expansion. The resulting cells either become short-

lived effector cells or long-lived memory cells (27). Memory T-cells continue to exist as both 

circulating central (TCM), effector memory T-cells, or tissue resident memory T-cells and can persist 

in circulation for 44 to 54 days (29-33). Effector CD4+ T-cells have additional functional subsets 

which are denoted as Th1, Th2, Th17 (34, 35). 

T-cells do not have the ability to hyper-mutate their T-cell receptor variable regions once stimulated. 

However, evidence has shown that T-cells are able to enhance their antigen responsiveness through 

a process termed functional avidity maturation (36). Antigen primed T-cells undergo changes in TCR 
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machinery affecting calcium flux, ERK activation, Vitamin D receptor to increase the responsiveness 

to cognate antigens by as much as 50% in primed T-cells (36). Furthermore, the requirement for 

CD28 co-stimulation at the immunological synapse is only required for naïve cells. Similarly, 

requirement of cytokines as a third activation signal is required for naïve cells but not in primed T-

cell (36).   

Once the pathogen has been cleared, the majority of these, antigen specific effector cells of both 

lineages undergo apoptosis in the interest of maintaining homeostasis, allowing other T-cells to 

expand as required and to limit the chances of autoimmunity (37). The remaining cells which do 

survive are memory T and B cells, able to respond rapidly to instances of re-infection. These cells are 

generated in the germinal centres after stimulation (38) (28). Stimulation by antigen alone is not 

sufficient to instigate the development of memory cells, and factors such as inflammation induced 

maturation of the APC’s is important in determining the cell effector/memory fate (39).  

The interaction strength and duration between the TCR and MHC also contribute to the 

determination of fate. The specifics of factors which induce lymphocytes to become memory cells is 

still being elucidated and varies between cell types. Both the cells expression of factors (e.g. CD127) 

in CD8 T-cells and the external signalling molecules (e.g. IL2) are factors in determining memory cell 

generation (39). These immune cells become either tissue resident or circulating cells. Resident 

memory cells enhance protective immunity through immediate effector function and rapidly 

recruiting other immune cells under reinfection (40) .       

Differentiation to various lineages of T-cells and their specific functions, maturation, differentiation, 

activation and stimulation are initiated through distinct transcriptional programs, and are detectable 

with transcriptomic analysis (41-43). These programs are mediated by changes in gene expression 

(44), changes in the relative abundance of isoforms through alternative splicing, (45-47) and allele 

specific expression changes (48, 49).  These different transcription variables have important roles in 

controlling, modulating and tuning many of these processes and as such the RNA signatures provide 

both quantitative and qualitative data and present a unique opportunity to gain insight into the 

variance in immune system which can be precipitated by genetic variation (50).  

1.1.3 RNA splicing and its role in the immune system. 

Processing of the RNA transcripts provides a critical mechanism to amplified and enhance 

information density of the genome, and this produces a wider range of molecules for greater range 
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of instructions and responses for the cell (51). RNA processing involves the removal of intronic 

nucleotides from pre-mRNA and ligating the ends of exons together. This forms a mature transcript 

for further processing and translation, which is known as  canonical splicing (52). There also exists a 

mechanism for generation of different patterns of exonic nucleotide sequences than is present in 

the main gene sequences; this is termed alternative splicing (52).  

Through this process the cell can produce an array of isoforms from a single gene, or in fact multiple 

genes spliced together; a lesser-known process termed trans-splicing (53, 54). The chemical process 

through which introns are spliced out and exons are either ligated together in different 

combinations is made up of two transesterification reactions. In the first reactions the branchpoint 

reacts with the splice donor site, then the now free 3’ end of the upstream exons reacts with the 

splice acceptor site.  Through this process and other post transcriptional modification steps, the 

preRNA forms a mature mRNA (53).  Importantly, the various species of mRNA brought about by 

alternative splicing, although originating from the same genomic loci, can have differential and even 

antagonistic effects (55).  

The boundaries of exons and introns are marked by specific consensus sequences known as splice 

sites, which are recognised by small nuclear ribonuclear proteins (snRNPs). Once bound, these are 

then joined by further snRNPs which work in a coordinated manner to arrange the intron in a 

manner which facilitates the transesterification process and the introns subsequent excision. Introns 

are categorised as either minor or major introns – depending on the sequences which are found at 

the splice sites and branch point sequences. These classes of introns each have respective 

spliceosome complexes which are dependent upon different snRNP’s (56). 

Deep surveying of alternative splicing has shown that 95% of genes which contain multiple exons 

undergo alternative splicing, and even when only considering moderate to high abundance events, 

there are reportedly 100,000 individual splicing events in major tissues (57). Alternative splicing 

occurs both co-transcriptionally and post-transcriptionally, and the action of transcription factors 

regulates and influences splicing events. This is demonstrated in some of the most crucial 

mechanisms of the adaptive immune system. (58-60). 

Exonic/Intronic splicing enhancers, and exonic/intronic splicing silencers are regions on the 

transcript which are recognised and bound to, by heterogeneous nuclear ribonucleoproteins and 

serine arginine rich proteins. These proteins trigger the formation of the spliceosome consisting of 

U1, U2, U4, U5, U6 and U2af. The intron region is folded back on itself to form a loop (lariat loop) 
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during the first transesterification, the loop is then excised via the second transesterification process 

(53) (Figure 1-3).
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Figure 1-3 the mRNA splicing process
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Figure 1-3 the mRNA splicing process- The polypyrimidine tract is a spliceosome 
assembly promoting element of the intron. Approximately 20 base pairs long and rich in 
pyrimidine nucleotides, this element acts as a binding site for elements of the 
spliceosome. The branch point near the 3’ end of the intron has an adenine nucleotide 
and is necessary for lariat loop formation.  
1. SR proteins bind to ESE’s and ISE to promote splicing, Hn-ribonuclear proteins bind to 
ESSs and ISSs to inhibit the splicing process.  
2. The bound SR proteins promote further binding of snRNPs at splice sites. U2AF binds 
to the polypyrimidine tract, U1 binds to the 5’ss on the exon, and U2 then binds the 
branchpoint and subsequently disrupts binding of U2AF. U4, U5 and U6, enter as a 
complex and bind to the other proteins to form and spliceosome complex. 
3.  Chemical reactions induce steric conformational changes in the spliceosome 
complex, inducing formation of the lariat loop.  
4. Exon ends are ligated, and the spliceosome complex detaches from the exons, taking 
the intron for degradation.  
 
 

Splicing is critical in all tissues, and this is perhaps best demonstrated in the immune system. The 

ImmGen project found that around 60% of genes in mice are expressed as multiple isoforms in T or B 

cells, and 70% of these had an impact on the lineage differentiation (61).  Important examples 

include FOX01 induced Ikaros splicing which is essential for the recombination of immunoglobulin 

genes. This allows the immune system to produce its diverse range of antibodies/immunoglobulins 

(62) . In addition, the alternative splicing of CD45 is necessary for the production of a range of 

tyrosine phosphatases, imperative for the diverse set of lineage and stage-specific receptor signal 

transduction thresholds (63).  This occurs because the cellular control mechanisms of transcription 

and splicing are tightly linked, and RNA-polymerase II is a facilitator of splicing factor recruitment 

(64).  

Activation of lymphocytes is a key component of the adaptive immune response to pathogens (65). 

Part of the central activation of these cells is the degradation of IκBα and release of NF-κB, which 

translocates to the nucleus to initiate maturation and activation of the cell. The “CBM” complex that 

brings about the degradation of IκBα is formed by CARMA1, BCL10 and MALT1 (66). MALT1, a crucial 

component of this complex undergoes alternative splicing of EXON 7. This process produces mRNA 

isoforms with a differential function, and the activation strength of CD4 + T-cells is in fact mediated 

by the relative abundance of the alternatively spliced isoforms of MALT1. The splicing of MALT1 is 

modulated by the molarity of phosphorylated splicing factor hnRNPU in the nucleus (67) . These are 

just some examples which demonstrate the means by which alternative splicing is a key component 

of the normally functioning immune system and how perturbations can lead to pathology.  
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In some instances gene expression level studies neglect the importance of precursor mRNA splicing 

that can precipitate functionally distinct transcriptomes, with differing biological functions (68). 

These different transcriptome profiles have been observed as a critical component of tissue 

differences in the human body (69). Recently studies have extended to highlight transcriptional 

variation through the life course which demonstrated profound change as age progresses (70).  

 

1.1.4 Alternative splicing in T-Cells  

mRNA alternative splicing is known to be inherently utilised in a number of functionally specific 

genes in T-cells, such as CD44, CD45, and CTLA4, for which multiple RNA isoforms are produced in T-

cells (71, 72). These splicing patterns are also known to be altered in response to antigen 

stimulation, and mediate changes in the complement of functional proteins (73). It is important to 

note that the alternative splicing events which occur during T-cell activation have been shown to 

occur in distinct gene sets from those which demonstrate changes in expression (74).  

CD45, a protein tyrosine phosphatase, elicits control of cell cycle progression and thus proliferation 

of T-Cells (73). CTLA-4, which transduces inhibitor signals in T-Cells has two transcripts of 550 and 

650 bp respectively. The shorter isoform, CTLA-4delITM, has a deletion of an exon (literature 

contradictory on exon number 2 or 3) which codes for the transmembrane domain. Anti-CD3 plus 

anti-CD28 stimulation results in the suppression of this isoform, suggesting the shorter, soluble 

version of the signal transducer may be produced via alternative splicing as a means of regulating 

immune activity and homeostasis (75, 76). 
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1.2 Primary immunodeficiencies – T-cell disorders  

Variations in the genome can cause aberrations in the functions or abundance of the transcript. This 

can in turn affect a specific facet or pathway of the immune system. On a cellular level, this can 

result in reduced function rendering the cell inherently unable to react, constantly stimulated, or 

reacting inappropriately (77) (78). Clinical results of these events include disorders of increased 

frequency and severity of infection, autoimmunity, aberrant inflammation and malignancy (79). 

These disorders are termed ‘primary immunodeficiencies’ (78).  

The understanding of the heterogeneity of PIDs has expanded greatly over the last decade, at last 

count on Jan 2020, the list encompassed over 416 distinct disorders arising from 450 genes, 

demonstrative of the complexity of the immune system (78, 80, 81). Reports put the average 

incidence of PID’s in the UK at 7.6 per 100,000 (82). 

The monogenic variants which precipitate the disorders do so through three primary molecular 

modalities; loss of function (LOF) of the protein, gain of function (GOF) of the protein, or changes in  

expression, which can also result from GOF/LOF changes (78) . Monogenic genotypes can manifest 

as homozygous in which the same mutation is present on both alleles, heterozygous in which only a 

single allele is mutated, or biallelic which regards mutations occurring in the same gene, although 

not necessarily the same mutation (compound heterozygotes) (83). Hemizygous patterns of 

inheritance also exist in which a mutation occurs in a chromosomal segment of which the patient 

has only one copy (84). Known examples of gene action for heterozygous mutations include 

dominant gain of function, haploinsufficiency and negative dominance. X-linked recessive traits can 

be caused by hemizygous pathogenic variants in males or homozygous in females. Rarely, X-linked 

dominant traits can also manifest (GOF/LOF) (78).  

This plethora of disorders constituting PIDs has brought about a need to categorise them for 

expedited diagnosis and treatment protocols. Some broader methods simply classified the disorders 

into groups of innate and adaptive immunity (85). The Inborn Errors of Immunity Committee 

(previously the International Union of Immunological Societies PID expert committee or IUIS) has 

now devised a precise system, which classifies disorders by the immunological pathway affected. In 

addition, it now has corresponding phenotypical classification systems for clinicians at the bedside to 

help identify the disorders. These briefly comprise nine categories; 1. Immunodeficiencies affecting 

cellular and humoral immunity, 2. CID with associated or syndromic features, 3. Predominantly 
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antibody deficiencies, 4. Diseases of immune dysregulation, 5. Congenital defects of phagocyte, 6. 

Defects in intrinsic and innate immunity, 7. Auto-inflammatory disorders, 8. Complement 

deficiencies, and 9. Phenocopies of PID (80). The most common form of PID is selective 

immunoglobulin-A deficiency (SIAD), which can manifest with a variety of clinical presentations from 

Type 1 diabetes mellitus, juvenile arthritis, and ankylosing spondylitis. SIAD has an estimated 

prevalence of as high as 1 in 143 persons in some countries (86, 87). Whilst these numbers are linked 

to rates of consanguineous marriage, the discovery of one identical twin with the disorder and other 

evidence suggests an environmental component (88). Other studies show links with epigenetic 

factors, microbiome, age, sex and season (89). Some cases may be linked to physiological stress, as 

seen in elite athletes (90). The genetic origin of SIAD is still unclear, an enrichment of HLA-B8 was 

noted in a small scale study (91), and a genomic locus at the proximal end of the MHC has been 

observed to have increased likelihood of being a predisposing factor in disequilibrium tests  (92, 93).  

SIAD is characterised by decreased or absent levels of IgA, which is the most prevalent form of 

immunoglobin in luminal secretions. Only when these IgA levels are observed in the presence of 

normal levels of IgG and IgM, is a diagnosis of SIAD given (94).  

 Whilst individually rare, the remaining disorders considered in the wider scope of PID together 

represent a significant burden on the health and economy of a nation. Current diagnostic levels 

suggest an incidence of 5.90/100,000 (82), experts suggest however 70%-90% of PID remain 

undiagnosed and true incidence could be as high as 1:250, as no encompassing screening programs 

exist (95). A number of types of T-cell disorder exist and usually arise as a result of specific singe 

gene disorder, resulting in maturational or stimulation response abnormality (96). T-cell primary 

immunodeficiencies make up about 11% of immunodeficiencies, see Figure 1-4 Chart showing 

percentage distribution for groups of primary  
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Figure 1-4 Chart showing percentage distribution for groups of primary 
immunodeficiency. 

 
Currently T-cell deficiencies make up around 11% of primary immunodeficiencies (97). 
By far the largest number of PIDs are antibody disorders. The majority of all PIDs then 
are from the adaptive immune system. 

 

T-cell disorders are often observed to precipitate or be part of developmental syndromes, regularly 

affecting cellular repair (98, 99). Presently characterised T-cell specific primary immunodeficiencies 

consist of severe combined immune deficiency, X linked lymphoproliferative syndrome, X linked 

immune deficiency with associated hyper IgM, The DiGeorge syndrome, Chronic mucocutaneous 

candidiasis, Ataxia telangiectasia, Nijmegen breakage syndrome and other rare T-cell deficiencies  

(96). The various disorders manifest at different stages of the immune systems cytological and 

histological development (Figure 1-5). The differences observed can occasionally help inform 

diagnosis. This will be explored in the coming sections. 
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Figure 1-5 The developmental stages at which T-cell primary immunodeficiencies 

affect function. 
T-cell primary immunodeficiencies elicit their affect a variety of immune cell maturation 
stages from early progenitors to mature T-cells.  This diagram is not exhaustive and was 
adapted from J. Edgar (2008) (96). 

 

1.2.1 Severe combined immunodeficiency 

Severe Combined Immunodeficiency is a heterogeneous subgroup of immunodeficiencies which 

present with severe T, B and NK cell aberrations in development and function. This typically leads to 

a number of opportunistic infections and failure to thrive (96).   A number of molecular genetic 

defects have been identified including those affecting IL2-γc, JAK3, IL-7Rα, ADA, RAG1/2 (100) The 

specific mechanism for development of SCID are explored below.  

These present with different phenotypic aberrations in lymphocyte number and function, the most 

common of which is the X-linked γc form, termed X-SCID.  A clinical investigation may point to this 

disorder when the T-cells and NK cells have low numbers, but B cells appear present at normal levels 

(100). The unique patterns in ratios of cells can often be used to distinguish between the subtypes of 

SCID and inform further diagnostic tests (100). SCID is considered a paediatric emergency and 

immediate priority is to stabilise for bone marrow transplant (96).  

The γc chain (or IL-2 receptor gamma) is a common component of receptors for IL-2, IL-4, IL-7, IL-9, 

IL-15 and IL-21 receptors and has critical roles in the proper functioning for them (101). IL-2/IL-2R 

function is essential for functional maturation of regulatory T cells during development of the 
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thymus (102). Without these signals being interpreted, response to immunological mitogens needed 

for growth and proliferation is reduced and the normal development of the adaptive immune cells is 

impaired (103).  

The mechanism of action for disease causing mutations on γc chain varies; using a cell surface 

staining-based assay one study has shown that 47% of samples had no staining at all, 32% had trace 

amount and 21% had normal staining (104). Examples of mutations in IL2-R γc include point 

mutations to produce premature stop codons in exon 3 and exon 7, and resulting in truncation of 

the transcripts cytoplasmic domain (exon 7 and exon 8) (105).  

JAK3 is an important component of the signal transduction cascade from cytokines, specifically those 

which contain the γc chain. The cytokine receptor proteins are unable to transduce a signal as they 

have no enzymatic activity, so the pathway is dependent upon the JAK3, the cytosolic tyrosine kinase 

which propagates the signal intracellularly (106). Some cytokine receptors (IL-2, IL-4, IL-7, IL-9, IL-15, 

and IL-21) rely on intracellular JAK to initiate signalling as they lack enzymatic activity (107). 

Mutations have been observed in all 7 domains of the gene at various locations on each domain 

(107). Compound heterozygote mutations were observed in one case. c.81T>G, p.H27Q mutation in 

exon 2 came from patients’ father, while c.665G>A, p. R222H in exon 6 from patient’s mother. The 

exact nature of the mutation’s action was not clarified with orthogonal RNA based interpretation. In 

this instance patient presented with chronic active Epstein-Barr virus, decreased T-cells in peripheral 

blood  (107).  

ADA (adenosine deaminase is an enzyme critical in clearing toxic metabolites which accumulate in 

tissues like the lymphoid tissues, which demonstrate a high rate of metabolism and cell turnover 

(108). The autosomal recessive condition leads to the accumulation of these metabolites and results 

in an inability of the cell to conduct normal DNA synthesis and repair (109). As a result, defective 

thymocyte development and increased levels of apoptosis in the thymus are observed (109). 

Biochemical testing and genetic testing are usually able to confirm diagnosis. 

RAG1 and RAG2 are recombinase activating genes. They each produce proteins through which DNA 

doubles stranded break are induced and the antigen receptors undergo V(D) J recombination to 

form their diverse sequences (110). Deficiencies of either RAG gene result in deficiencies in T-cell 

and B-cell number. This occurs due to apoptosis of cells with absent recombination process (111).  

In addition to these and LIG4, splice site disrupting mutations have been found in Artemis, a gene 

integral to the V(D)J recombination and DNA repair pathways. One mutation caused a 5’ splice site 
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dysfunction, resulting in two novel transcripts.  The other caused a novel 3’ splice site, which 

resulted reduced wild-type expression and a transcript with intron inclusion. In each case either low 

activity or low levels of the transcript were seen (112).  

 

1.2.2 X-linked lymphoproliferative disease   

X-linked lymphoproliferative disease or ‘Duncan’s disease’ is a fatal, recessive, lymphoproliferative 

syndrome with pathophysiology leading to lymphomas, dysgammaglobulinemias, and 

lymphohistiocytosis. Usually, the syndrome goes undetected until infection with the Epstein-Barr 

virus (113).  

Once carriers of the mutation are infected however, the normally low impact EBV infection can 

result in severe hepatitis, and bone marrow failure.  The disorder occurs due to recessive mutations 

in BIRC4, XIAP and SH2D1A (96). The majority of the mutations occur in SH2D1A, and the majority of 

these are missense (most frequently appearing in exon2), however, nonsense, frameshift and splice 

site mutations have all been reported (114). In one example a nonsense mutation was observed 

in SH2D1A (c.300T>A). The mutation was present in exon 3 and converts tyrosine to a stop codon 

(TAT>TAA). Truncated transcripts were confirmed via PCR, and inheritance was confirmed as X-

linked as the patient’s mother was identified as a carrier (115). 

Patients with deficiencies in SLAM associated protein (SAP), which is encoded by the SH2D1A gene, 

are observed to have impaired ability to form germinal centres for B-cell affinity maturation and 

memory cell production (116, 117). Consequently they lack the long term antibody responses which 

form part of the adaptive immune system (116). SAP is now known to bind to a series of receptors 

from the SLAM family. Several of the SLAM receptors are known to be cytotoxic receptors in both NK 

and CD8 cells and SAP is most highly expressed in T and NK cells (117). As such cells with deficiencies 

in SAP also exhibit reduced capacity to adhere to and kill pathogens and EBV transformed cells (118). 

Through these mechanisms SAP deficiency reduces lymphocyte proliferation and development, 

whilst also blunting their effects and bringing about immunodeficiency. 

1.2.3 X linked immune deficiency with associated hyper IgM 

X linked immune deficiency with associated hyper IgM (HIGM) is characterised by abnormally low 

IgG and high IgM and is often seen with unaffected lymphocyte numbers. Production of IgA and IgE 
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is also often impaired. This group of disorders also carries with it an increased risk of infection, 

specifically Cryptosporidium, pyogenic infections, or Pneumocystis jiroveci, and a susceptibility to 

lymphoma(96). 

These disorders cause a failure of the humoral response to effectively initiate “class switching”; the 

process of B-cells changing the genomic source of then heavy chain in antibodies whilst maintaining 

the same variable domain (119).  Naïve B cells produce IgM and IgD normally, and will switch to 

other classes of immunoglobulin in the instance of encountering signalling molecules at their CD40 

and cytokine receptors from T-cells (119). 

The genetic causes are varied: the most common results from mutations in CD40LG gene, which 

often results in abnormal amounts or absent production of this gene (120). It is therefore likely that 

the diagnosis will be aided by RNA investigations. Mutations in this gene appear throughout its 

length, and range from non-sense, missense, insertion deletion and splice site mutations (120). The 

CD40 ligand on T-cell surface is required for communication with IgM producing B Cells. Without 

functioning CD40L class switching cannot take place (121). In one example a patient presented with 

recurrent infections throughout life and was misdiagnosed as CVID. After follow-up investigation, 

analysis showed a 6-nucleotide insertion of exon 1 (c.121_122insCAGCAC). The expression of the 

CD40L appeared normal until PBMC stimulation with ionomycin, confirmed a diagnosis of X-HIGM.  

Additional causes of HIGM syndrome include mutations in the IKK-gamma (NEMO) gene which is 

also X-linked, and CD40 activation induced cytidine deaminase (AICDA), and uracil-DNA glycosylase 

(UNG) also can produce autosomal recessive HIGM syndromes. 

 

1.2.4 The DiGeorge syndrome 

DiGeorge syndrome is a developmental disorder which presents with significant abnormalities of 

facies, hypoparathyroidism, congenital heart disease, alongside cellular immune deficiency. The 

severity of the immune deficiency is rarely significant.  It may reflect perturbations in T-cell 

regulatory function and usually improves with time, although thymic hypoplasia is sometimes 

observed (96).  In some cases complete absence of the thymus is present and profound 

immunodeficiency occurs as a consequence (122). The exact molecular causes remain unclear, but 

hematopoietic cell defects leading to failure to develop the third and fourth pharyngeal arch is 

suggested to be a causal factor in thymic development issues (123) (124) (125).  
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This syndrome is one of a group of disorders related to the same  (often de-novo) genetic lesion; a 

deletion at 22q11, with different presentations (122). Affected patients have increased susceptibility 

to viral or fungal infections, lowered T-cell counts and reduced lymphocyte proliferation in response 

to challenges (122).  

Homozygous deletions in TBX-1 have been shown to be lethal and produce and mimic the 

phenotype of DiGeorge syndrome (126). TBX-1 regulates a number of transcription factors and has 

wide reaching downstream effects  In addition a number of other genes have been implicated, 

including CRKL and CHD7, but, as yet, the whole molecular pathology picture remains unclear (122).  

1.2.5 Ataxia Telangiectasia 

This autosomal recessive disorder is progressive and is both neurological and immunological in 

nature (127). Presenting with cerebellar originated ataxia, Telangiectasia, and oculomotor dyspraxia, 

it is caused by mutations in ataxia telangiectasia gene (ATM). ATM is a serine/threonine protein 

kinase involved in DNA damage response (specifically double stranded DNA breaks) in response to 

ionising radiation (128). The ATM gene’s phosphorylation action is also part of the cell cycle 

checkpoint, and its deficiency leads to inappropriate stress response and cell cycle progression (129). 

Molecular modalities for this AR disorder are usually in the form of bi-allelic truncating mutations in 

ATM (130). However, milder forms have been identified in which missense mutations and leaky 

splice site mutations can precipitate the phenotype (130). In one example, aberrant inclusion of a 

cryptic exon was established, with a deletion of 4 nucleotides in intron 20. The deletion was found at 

12 bp downstream and 53 bp upstream from the 5’ and 3’ ends of the cryptic exon respectively 

(131). 

Immunologically, depleted T-cell numbers due to thymic hypoplasia can be observed and T-cell 

toxicity has reduced potency. Usually mild, the immunodeficiency element can ordinarily be treated 

with immunoglobulin replacement and prophylactic antiviral and fungal agent. Patients regularly 

(~15%) develop leukaemia or lymphoma in the second and third decades of life (96).  

Several other T-cell specific immunodeficiencies do exist including Nijmegen breakage syndrome, NK 

cell deficiency (although not a true T-cell disorder), chronic mucocutaneous candidiasis, cartilage 

hair hypoplasia immunodeficiency, centromeric instability and facial anomalies syndrome (ICF).  

Metabolic disorders can also present with some level of immune deficiency, and these include orotic 

aciduria, methionine synthase deficiency and biotin dependant multicarboxylase deficiency. The 



Introduction 

 

20 

various forms of immunodeficiency have a varied and complicated array of phenotypes, due to the 

many stages of development and function which can be affected, and the distinct genes involved in 

each stage (46).   

 

1.2.6 Other types of genetic variant in PID  

There are a number of other mechanisms through which specific genetic variants manifest their 

effects to cause PID disease. Gene expression levels are a powerful indicator of pathogenic events in 

Mendelian disease (132). In the event that a gene expression level is outside of the physiological 

range, it can be identified as an outlier by using methods based on statistical interpretation of 

normal ranges. These effects are often correlated with gain or loss of function, splicing, and 

structural variants (133). 

Some of the variants which bring about PIDs have been covered earlier in 1.2, however a recurrent 

problem is that the causal variant/s are not always obvious. In addition to those variants occurring in 

non-coding segments, a problem facing those seeking diagnoses are variants with unexpected 

consequences. Variants may exist in genes not currently understood to be linked to the disease or 

phenotype, and so can potentially be filtered out in the informatic process (134).   

Disorders falling under the PID umbrella can be a result of quantitative differences in gene 

expression as opposed to qualitative differences in the expressed specific transcripts. Cases of PID 

have been linked to variants which, although not present in putative PID genes, do affect the 

expression of genes or networks of genes implicated in the immune response (135).  

Expression quantitative loci (eQTL), are genomic loci which are demonstrated to affect the 

expression of one or more genes (136). These occur throughout the genome, although the majority, 

surprisingly exist in the noncoding regions of the genome (137, 138). These eQTLs can be tissue 

specific also, so that one locus will only affect the expression of a gene in a particular tissue, but 

does not contribute to the expression profile in alternative tissues (139). 

eQTLs result from genetic variation at the locus including such as single nucleotide polymorphisms. 

SNP’s at eQTL loci have been demonstrated to affect the transcriptional level of other RNA’s, 

modifying protein expression and causing phenotypic changes to the abilities and behaviours of cells 

as demonstrated in some immunological cases (140). These eQTLs explain a fraction of the genetic 
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expression of specific genes, and the vast majority do not exist in the coding regions of genes and 

are predicted to be involved in gene regulation (141). Important recent investigation results reveal 

that these eQTLs have a more pronounced effect on immune regulation than the effects of age and 

sex. Interestingly, immune stimulation exclusive effects have been identified for some of these eQTL 

variants (142).  

1.2.7 Variants affecting alternative splicing and their role in PID. 

Genomic variants which affect splicing patterns can affect splicing in a qualitative fashion (e.g. splice 

site is muted or a new splice site used) and quantitative fashion (splice site has increased or 

decreased affinity and isoform abundance is affected (143). Aberrations in the relative abundance of 

isoforms has been shown to be linked with disease, and these aberrations have been suggested to 

be useful as a predictive biomarker for disease and may present therapeutic targets (70, 144-146). 

Cis-acting mutations pertaining to splicing are those which exist on the RNA molecule and can affect 

splicing primarily through altering the splice site recognition or altering exon splicing enhancer or 

silencer sites (53). Their trans-acting counterparts are those which affect the part of the molecular 

machinery responsible for splicing which binds to the RNA in a “trans” manner (147). Splice sites 

usually comprise GT and AG dinucleotides at 5’ and 3’ sites respectively (148, 149). Additionally, 

mutations in trans-acting splice factors – the splicing machinery of the cell, can also bring about 

disease (53).  

The impact of mutations that affect RNA processing/splicing is currently providing a diagnostic 

revolution. Variants which affect splicing are those which occur in known active splice sites, 

regulatory elements such as exonic splicing enhancers and intronic splicing enhancers or the 

activation of cryptic splice sites (150). It is important to note that existing studies looking at variants 

affecting splicing in PID have determined that the variants which directly influence splice sites are 

more robustly linked to disease phenotypes than those which effect splicing regulatory elements 

(150).  Interest in the detection of activated cryptic splice site has spurred on the development of a 

number of in-silico tools for prediction of splice site usage (150, 151). These tools are often unable to 

discern the resulting transcripts exon use patterns ~4/5 of cases (152). Whilst this is enhanced by 

other orthogonal investigations such as mini-gene assays (150), the multiple facets of splicing control 

involve more than just the sequence of the splice site in question. These include the activation of 

other splice sites within the gene, splicing quantitative trait loci, the relative abundance, 

phosphorylation status and localisation of different and often competing trans-acting factors (153). 
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Further complicating this process, the seemingly benign, synonymous variants which are normally 

removed by bioinformaticians during the filtering process can disrupt splicing (154). Cummings et al. 

evidenced this is the POMGNT1 and RYR1 genes demonstrated to be causative of Mendelian disease 

in muscle (155). This type of splice disrupting mechanism has been observed to be causal in cases of 

PID (156), and in fact, deep learning investigation techniques has shown that between 9%-11% of 

rare genetic disorders are caused by synonymous or intronic splice-altering mutations (157) 

Indeed, much as gene expression can be influenced my multiple loci throughout the genome (eQTLs 

– section 1.2.6) so too can patterns of splicing. Splicing quantitative trait loci (sQTLs), are points 

existing throughout the genome which together determine the genomic contribution to the relative 

usage of splicing events (158). Analysis of sQTLs has been improved by RNAseq methodologies 

however, it remains a difficult affair as the isoform expression must be estimated using statistical 

methods (159). Additionally, these sQTLs are not necessarily in close proximity to the splice junction. 

Characterization of these sites in humans has shown SNPs demonstrating tangible sQTL activity at 

100 kb from the relative splice site (160).  

PID cases can also be caused by multiple variants which affect splicing in different ways. Compound 

heterozygous mutations in the MALT1 were identified as causal in a case of profound combined 

immunodeficiency (161). The MALT1 gene is a protease gene implicated in T-cell activation. The 

causal variants were identified by whole exome sequencing, and consisted of an inherited 

inactivated splice acceptor site, due to a change from the consensus AG to GG, and a de novo 

deletion of c.1059C which led to frameshift and premature termination (161). 

It is important also, to consider that that genetic variation in non-protein-coding genes can cause 

disease (162). Examples within the PID research and diagnosis space include a recently discovered 

variant occurring in coding regions for genes comprising components of the minor spliceosome, 

which is used for the splicing of at least one exon in ~800 genes (163). Specifically, the noncoding 

gene RNU4ATAC that produces a small nuclear RNA (snRNA) termed U4atac was discovered to cause 

Roifman syndrome, by preventing normal minor intron splicing in MAPK1 in B cells, and DIAPH1 and 

HPS1 in megakaryocytes. In the examples of Roifman syndrome seen, the retention of the intron 

introduces a stop codon and consequentially a truncated protein. Resulting imbalances in the 

MAPK1/MAPK3 heterodimer leads to complications in cell morphology and a failure of survival and 

maturation of the cells to naïve B-cell state (164, 165).  
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Compound heterozygous variants in the RNU4ATAC gene, were found to be responsible. They were 

first discovered in an affected family after traditional filtering methods had not detected viable 

variants. The link was confirmed by the detection of intron retention during curated splicing analysis 

of RNAseq data (165).   

1.2.8 Diagnostic challenges in primary immunodeficiencies 

The importance of early diagnosis In PID cases is high, with relation to both the patient’s qualitative 

experience and the economic cost to healthcare services. Sources vary in cost analysis of 

undiagnosed PID, some say that whilst a diagnosed US patient costs healthcare services over 

US$250,000 per annum, largely due to treatment costs, an early diagnosis of the disorder can save 

as much as US$6500 per patient, per annum (166). An alternate source suggests an undiagnosed 

patient might cost the healthcare system US$102,552 annually, once diagnosed these costs may 

drop by as much as $79,942 (167). In a UK patient survey, 45% of patients reported a diagnostic wait 

time of between 1-6 years, around 1/6th reported waiting 10-20 years. Other key findings of the 

same survey confirmed undiagnosed patients bring about a dramatically increased burden on NHS 

resources (168). Identification of the precise molecular origins for each patient’s case of PID leads to 

improved patient care (169), and improved prognosis. The importance of correct genetic cause for a 

PID phenotype is demonstrated by the different treatment preferences, which exist for conditions 

that may present with similar clinical phenotypes (170). Precision diagnostics can help to achieve this 

in part, by allowing targeted intervention to the specific molecular causes (171-173). 

Challenges in diagnosing PID are numerous and diverse. Studies which correlate the phenotype and 

genotype have been useful in diagnostics, developing an understanding of various PID disorders 

(174). Additionally, these correlation studies have been useful for de-convoluting the pleiotropic 

nature of the involved genes, and establishing that a single mutation can bring about a variety of 

clinical phenotypes in people with differing genetic and environmental background although the 

exact mechanisms are not completely understood (175). However the development of a universal 

diagnostic pipeline for PID is hindered by the heterogeneity in presentation of disease, even among 

patients with what appears to be the same pathogenic genetic variant (genetic pleiotropy) (176). 

Conversely, several genotypes can bring about the same phenotype (genetic heterogeneity) (175). 

Once a clinical diagnosis of PID is suspected, mainly based upon a compatible phenotype, a family 

history is usually taken and number of subsequent laboratory tests performed to confirm the type of 

immune mechanism affected can be performed (177). As more causal genes are identified in cases 
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of PID, these can be combined into panels for screening suspected cases of PID as part of a 

diagnostic pipeline (178). With the emergence of targeted sequencing, clinical exomes and complete 

exomes through short read next generation sequencing technologies, the inclusion of genetic testing 

within a PID diagnostic work up has become more widespread. This approach to both adult and 

paediatric onset disease has consolidated the importance of protein based functional immune 

testing (cytokines, antibodies, etc.) for characterising the nature of the phenotypic presentation, but 

furthermore to evaluate candidate genetic variants in such pathways that have been identified 

through parallel germline DNA testing. 

1.2.8.1 DNA in diagnostics  

DNA Sequencing-based genetic testing is often used where possible, as it provides the best 

diagnostic capability of existing clinically adopted methods (167). Whole exome sequencing (WES) 

sequencing currently provides the highest success rate (179, 180), and it achieves this despite the 

exome comprising only ~2% of the human genome (181). Around 85% of currently annotated 

variants exist within this portion of the genome (182). It has been hypothesised that this focus has 

likely led to the underestimation of the contribution to disease of non-coding variants (183). 

Researchers are calling for universal molecular gene testing for the diagnosis of primary immune 

deficiencies (184). Evidence from existing literature, however, suggests that even this may be 

inadequate; currently whole exome sequencing (WES) and whole genome sequencing (WGS) is only 

able to produce reliable diagnosis in 25-60% of cases (185-190) across a variety of disorders. A 

recent systematic review showed even greater range for PID, specifically, a diagnostic yield of 

between 15-79% was observed (191). Whilst these results are encouraging, they also suggest that 

the methods of variant identification and filtering remain in need of refinement. The development of 

WGS as a clinically validated routine testing modality is still in its infancy, although many countries 

have undertaken whole genome sequencing projects to evaluate this approach (192). Within the 

UK’s 100,000 Genomes Project, PID were accepted as an indication for inclusion into the study. Plans 

to incorporate WGS for PID into routine clinical pathways have been approved following the 

transition phase of the 100K project to WGS sequencing in routine NHS care across England.   

Confirmed formal genetic diagnosis of PID currently relies heavily on clinical interpretation of results. 

From understanding the phenotypes and prospective pathogenic mechanisms precipitating these 

features, to understanding of modes of inheritance family history, and understanding consequences 

of variants in relevant genes (193).   
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 Crucial to this process is the ability of bioinformatic tools and databases to predict the significance 

of such variants. WES delivers around 20,000-23,000 variants per individual, and WGS produces 3-5 

million variants per individual (183). This makes the task of identifying a causal Mendelian disease 

variant extremely difficult without a series of bioinformatics filters. The diagnostic process makes 

use of databases which give information, often in the form of scores, about the predicted 

pathogenicity of the many variants in an individual. These can be filtered further using lists of genes 

already known and evidenced to be relevant. The gene panels may be devised based on the genes 

having a known role in the biological system or process, or they may be produced from lists of 

known molecular diagnosis of genetic disease.  By combining results from these different tools with 

clinical knowledge of the patient’s presentation and family history, a causal variant in a known gene, 

implicated in a biological pathway or linked to the disease can be identified. Problems with the 

WGS/WES sequencing diagnostic methods also arise when no variant, identified through patient’s 

genome sequencing, can be reliably linked to the clinical presentation and cytological/molecular 

manifestation of the disorder. Such occurrences include exonic variants of unknown significance, 

variants in intronic and intergenic non-coding RNA (162), variants in the cis-acting regulatory 

elements of transcription (194) imprinting disorders and repeat expansions (183). 

Conventional clinical diagnostics, utilising human phenotype ontology for integration of cases into 

specific diagnostic groups, and traditional genetic sequencing methods for diagnostics then, are still 

currently inadequate, and whilst proteomic diagnostic methods are in development – they exist at a 

relatively early stage of development and can miss the potentially valuable RNA regulatory 

phenomena.  

1.2.8.2 RNA in diagnostics  

RNA investigation technology and literature has experienced great leaps forward in recent years in 

terms of technological advancement and cost reduction (195). RNA sequencing is now the most used 

quantitative method of mapping gene expression profiles (196). The transcriptome – or RNA 

expression profile of a given cell, or tissue can give unparalleled insight into the elegant inner 

workings of the cell. Through capture of all RNA species, it characterises the cytological gene 

transcription architecture and can deliver and instantaneous picture of environment–cell interaction 

or response programme (196, 197) .  

A range of technologies exist for conducting RNA sequencing, each with its own strengths. Long read 

sequencing provides reliable structural information but can have sub-optimal reliability in base 
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calling (198), or is prohibitively expensive for high throughput analysis (199). Short read NGS RNAseq 

involves sonication or enzymatic degradation of RNA into smaller fragments, selection of fragments 

using one of a number of methods, cDNA synthesis, the construction of a library and subsequent 

sequencing (200). 

Currently, this technology generates a mixture of both quantitative and qualitative analysis 

opportunities of RNA species: Qualitative transcriptome profiling outcomes include identification of 

sequence variants at the level of the genome (201), somatic cell mosaics, non-canonical splice 

variants, occurring either due to cis or trans-acting factor aberrations (53). Quantitative outcomes of 

transcriptional profiling include differentially expressed genes, alternative splicing events and allele 

specific expression quantification (200). Previous studies have demonstrated that when compared 

with a large control datasets, identification of expression outliers in peripheral whole blood can 

contribute to the detection of disease causing variants (202, 203),  after WGS/WES has been 

performed (Figure 1-6) 

 

Figure 1-6 The PID patient diagnostic journey 
Fig. 1 depicts the current diagnostic pathway from patient presenting to the clinic to the 
results of the whole genome or whole exome sequencing (blue) and where the RNAseq 
methodology joins the pipeline. 

 



Introduction 

 

27 

Regulation of alternative splicing of transcripts controls the relative abundances of RNA isoforms of 

genes. Gene mRNA Isoforms are often required to be kept at specific ratios as the isoforms can have 

differential function (204), or in some cases, can be antagonistic (55). Through RNAseq or exon 

junction-spanning probe-based capture, changes in isoform balance can also be resolved.  

Perturbations in the relative abundance of these isoforms is a driving force in the genesis of many 

diseases (205, 206). The sensitivity and suitability of RNAseq in transcriptomic investigation  was 

demonstrated in mouse and human models, and has enabled the discovery of ~7600 novel isoforms 

in mouse Immune Cells (61) and detected 100,000 splicing events with at least moderate abundance 

(57). 

In addition, transcriptome profiling can also give insight into control mechanisms exhibited by the 

non-coding RNA species, such as lncRNA, and miRNA, the significance of which is continually being 

elucidated in the molecular pathology of disease (207, 208). Indeed such examples exist in PID; miR-

6891-5p accumulation is demonstrated to contribute to selective IgA deficiency, the most common 

form of PID (209).  Thanks to the increasing ability of technology and steady reduction in costs, 

researchers are also able to cast a wider net.  

DiGeorge’s syndrome mentioned earlier, is an example of this, in which due to a chromosomal 

deletion at position 22q11.2, thymus glands are unusually small or in some cases – absent. 

Alternatively, maturational stages of T-cells can be unaffected but have signalling malfunctions. X-

linked immune deficiency is not a result of maturational abnormalities but instead results from 

abnormal T-cell surface antigen; CD40 ligand. T-cells cannot then signal B-Cells differentiate into IGG 

producing plasma cells, resulting in a class-switching failure and continued or hyper-production of 

IGM (96). Such examples are very likely to be able to have a detectable signal in a transcriptomic 

analysis pipeline through RNAseq. 

Through RNAseq based investigation it is possible to examine all of the mRNA species destined for 

translation in hypothesis free methods and create profiles of normal transcriptomes and pathologic 

transcriptomes in a tissue specific manner (210).  Through applying appropriate bioinformatic 

pipelines and algorithms, this transcriptomic data can be used for biomarker identification (211). It is 

also possible to quantify the relative expression of genes coding for the splice factors themselves, 

which can directly bring about specific pathological processes specific to PID, such as those observed 

in Roifman’s syndrome, mentioned earlier (164, 165). 
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Micro-fluidic technology adaptations have improved the development of robust, single-cell 

transcriptomic profiling.  In combination with NGS based technologies the single cell technology 

provides a method for profiling the transcriptomes of individual cells, giving unparalleled insight into 

the heterogeneity of cell populations and their transcriptional profiles (212). Adaptations such as the 

SMART-seq2 or Fluidigm C1 library preparation methods also now allow the production of full-length 

cDNA’s, giving transcript isoform level resolution. However these methods do not yet allow 

multiplexing, massively increasing overall costs and labour in large cohorts (213).  The ability to 

profile the entire transcriptome of a peripheral blood mononuclear cell (PBMC) culture on a single 

cell basis would give a dramatically increased ability to understand the specific cell populations, sub-

types, and cell-cell interactions taking place in an immune challenge in-vitro, using existing methods 

of immune challenge such as those outlined by Martkamcha et. al. (2016) (214) This approach could 

also then be utilised in those patients who are suspected to be genetic mosaics.  

1.2.8.3 RNAseq parameters  

RNA sequencing using next generation sequencing technologies comes with a wide variety of 

variables in library preparation methods, sequencing parameters and optimisation options. 

Depending on project questions, material qualities and approaches, the pipeline can be quite distinct 

and give varying information specificity and sensitivities.  

Paired end reads provide double the amount of sequence information, without doubling the cost of 

the experiment, by sequencing portions at either end of the same fragment. This method is also 

particularly useful and informative for alternative splicing and novel isoform detection, which are 

part of the parameters of our investigation. In addition, it has been demonstrated that single end 

reads can produce a significant number of false positives and false negatives when assessing 

differential gene expression (215). 

Globin is suggested to make up 80-90% of the transcript species in peripheral whole blood (216). 

Globin depletion methods increase the number of species of detectable transcripts and reduce the 

number of globin mapped reads from ~80% to ~20 % (216). Poly-A enrichment methodologies have 

demonstrated increased read mapping to exons (71%) over ribo-depletion alternatives (22%) and 

have been recommended for alternative splicing investigations (217, 218). This increased read 

mapping provides more usable reads, improving resolution, which allows for better identification of 

differential expression incidences. Whilst neither Poly-A selection methods nor rRNA depletion 

methods are completely free from non-specific effects, poly-A selection methods are preferred for 
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novel isoform detection in non-degraded samples (217). PAXGene stabilisation tubes provide a 

robust nucleic acid capture and storage method. However, when using patient’s peripheral whole 

blood, RNA concentration is relatively low, and this can be exacerbated in PID patients, who may be 

experiencing lymphocytopenia (219). 

1.2.8.4 RNAseq analysis techniques.  

At present the whole genome and whole exome technologies employed for molecular diagnostics 

are an excellent recent addition to the NHS service but have a limited capacity to provide accurate 

diagnosis in cases of PID. Current literature suggests a diagnostic yield of between 15 -79% (191).  

This is in part due to the variant filtering process, which is laborious and limited in its reach.  In other 

clinical areas, RNAseq is demonstrated to enhance diagnostic capacity by informing the variant 

filtering process (220, 221).  

RNA Sequencing can provide insight into several aspects of cellular events. It gives good insight in 

gene expression by assigning and counting all reads to specific loci, strands, genes, alleles, and 

transcripts (200). A range of tools are available for follow up bioinformatic analysis of the data 

generated by RNAseq, which have a variety of functions, strengths and weaknesses. These tools 

utilities are also dependant on the type of question being asked, and the resources available to the 

researcher (200). This project aims to assess the total gene expression, transcript usage and novel 

splicing events.  

Many informative and useful metrics can be extracted from RNAseq data. As a primary example, the 

range of RNA transcripts present can be observed, such as mRNA, miRNA, lncRNA, siRNA, snoRNA, 

piRNA, circRNA, and tRNA (222-224). In addition, expression levels of these RNAs, relative isoform 

abundance, splicing, and expression of specific alleles can all inform research about pathology or 

mechanisms (225). Due to time and funding limitations, this study is aiming to look at protein coding 

genes only. Although data will be retained for future analysis.  

The most straightforward and common way to punctuate and decode the result of variants of 

unknown significance in the genome using RNA, is to look at expression. Gene expression is already 

used to investigate and model immunodeficiencies and generate profiles for diagnostic and 

comprehension purposes using hybridisation based methods (226). RNAseq is already evidenced as 

an extremely valuable tool for generating these profiles in other disorders, and a number of 

methods for detecting changes in gene expression exist (227, 228). Due to the utilisation of 
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sequencing rather than hybridisation methods, it also allows for detection of previously unknown 

splice sites and events (141). As discussed later, the abundance of isoforms and differential 

alternative splicing is intimately tied to T-cell activation (74).  

The use of individual exons provides another useful metric, which has more reliable quantitation in 

short read RNAseq (229). This is because isoform usage essentially relies on algorithms to infer the 

isoform to which a mapped read belongs. In some instances, this is based on probability and as such 

comes with inaccuracies (230). However, the inclusion or not of specific exons is less easily tied to 

function. Specific isoforms and their respective proteins have had many years investigation through 

molecular biology, but these the inclusion or not of single exons cannot always be robustly 

associated with function, as other splicing events within transcripts can cause further functional 

differences. 

1.2.8.5 Considerations in diagnostics  

In order to assess the impact of genomic variation on the unstimulated immune system, the normal 

immune response and the immune-deficient responses, it is important to experimentally ‘tune out’ 

the variations in signal arising from environmental factors. Some of these are outlined below. 

1.2.8.5.1 Tissue selection 

Untreated whole blood is the simplest patient sample to acquire, and as shown in a review of the 

literature, can inform diagnosis of PID in patients around 50-60% of the time using WGS/WES (183, 

220, 221, 231) . It also has the advantage of not requiring a high degree of preparation or technical 

training to produce as a sample. However, in the case that differential expression in a specific cell 

subtype is contributing to the disease progression, this signal may be harder to identify in a mixed 

cell sample, if for example the expression of this gene or isoform is at normal levels in other cell 

types.  

 It has been established that a high degree of the variation in CD8+ cell populations can be attributed 

to environmental factors. These include metrics such as cell population frequencies and signalling 

responses to inflammation driving cytokines such as IL-10 and IL-6 as measured by mass cytometry, 

flow cytometry, and immune signalling experiments (232). This makes them a poor model for 

genetic variant impact. CD4+ T-cells display a large degree of heritability in these assays and as such 

should provide a good level of transcriptomic heritability also, allowing for clearer elucidation of the 

effects of variants on differential gene expression (232). 
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The immune system’s response to pathogen-based challenges is highly dynamic, and observing this 

dynamic response is therefore more informative regarding identification of impaired response (233). 

Indeed, it has been shown in innate immune system studies, that the effects on differential 

expression of some variants can only be observed in a dynamic fashion (140, 234). Similarly, some 

splicing quantitative trail loci have effects only manifest during an immune challenge (235). 

Co-culture of PBMCs provides a greater insight into activation pathways as it allows for the cell – cell 

communication response programs and produces similar results in terms of ranked gene expression 

response networks, with a few notable exceptions (233).  

Studies of dynamic immune responses to challenges, in concert with machine learning can be used 

to identify small groups of stimulation pathway-specific genes (236). Comparing the expression 

profiles of these genes in healthy cohorts with PID patients can potentially be utilised to identify 

candidate genes that may then harbour a disease-causing variant or indicate some anomaly in the 

pathway for further investigation.  

Individuals’ immune responses to pathogenic challenges are exceptionally variable, and the 

variability in these responses is not easily elucidated. As mentioned earlier, age, sex, seasonality, 

nutrition and lifestyle all have effects on the specific response profile exhibited by individuals (142). 

These factors that influence responses have a greater degree of significance in specific cell types. 

CD8+T-cells for example show a high degree of heterogeneity in the context of temporal changes 

through the life course of the individual for example, and CD4+T-cells and monocytes are heavily 

influenced by sex (142). It is therefore useful to be able to discern transcripts from different cell 

types within a culture. Utilising flow cytometry to separate cell types and then multiplexing the 

sequencing runs or utilising single cell RNAseq becomes an attractive option. The most appropriate 

method choice comes down to the number of cell types which need to be analysed, the capacity of 

the flow cell and the required sequencing depth. The transcriptomic landscape provides an excellent 

opportunity for advancement of diagnostic yield, and transcriptional profiling has already begun to 

be utilised across a range of disorders to help build a “molecular fingerprint” of disease. The 

Immunology community has made a case for PID diagnosis to be supported using transcriptional 

profiling using whole transcriptome sequencing (190), and these have begun to be answered with  

examples in primary immunodeficiency cases such as Dock8 CID, GATA2 deficiency, X-linked 

reticulate pigmentary disorder (XLPDR) (237-239).  
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1.2.9 Hypothesis-free approaches in RNAseq diagnostics  

Modern tools such as GWAS and RNAseq allow large scale analysis, without the need for a formal 

scientific hypothesis (200). This avoids much bias and prevents the investigation missing novel or 

unelucidated aspects of the topic. In these instances, comparisons of entire genomes, epigenomes 

and transcriptomes informs novel hypotheses. However reduced sensitivity or specificity can mean 

signals are harder to detect.   

In contrast to the narrower range of proteomic detection mechanisms which also allow for 

quantitative analysis, RNAseq can easily identify new isoforms of transcripts whilst also giving an 

indication to their relative abundances, or indeed their absolute abundances in the cases of the 

Oxford nanopore technology. 

Some studies of transcriptomes in other species have begun combining hypothesis free and 

hypothesis driven analysis, with positive results (240), and the progressive pharmacogenomics field 

of research has also been to employing these techniques using synergistically to discover ‘paradigm 

shifting’ results (241).  

Conventionally, large scale hypothesis free RNAseq analysis has been conducted in a manner which 

compares one set of control data with another set of data which has had some variable altered, and 

then statistical differences are calculated and investigated (242). Known as “differential” comparison 

it can be used for expression, exon usage and isoform abundance.  

One problem with this approach, is that it needs two homogenous datasets to compare, and in 

clinical diagnostics this is not a realistic possibility. What is needed is a method to look for aberrant 

events within a population, or the ability to compare a sample to a sample of healthy controls.  

For RNAseq, this has traditionally been difficult as reference ranges will vary depending upon the 

handling and sequencing method and host of other variables (243). A traditional method for 

identifying outliers in gene expression is to calculate Z-scores and filter out those below a pre-

determined cut-off threshold (210, 244).  Brechtmann et al. have developed a tool which is able to 

control for these variables, known and unknown, correct for batch effect and search for outliers in 

expression using the negative binomial statistical test. The software, known as OUTRIDER, uses a 

machine learning autoencoder to control for the variables and generate an adjusted count matrix. 

The model is then applied and the algorithm outputs gene expression outlier tables with log2 fold 

change, p-values, p-values adjusted for the false discovery rate, Z-scores, and ranking information. 
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OUTRIDER is a hypothesis free analysis tool, developed specifically for RNAseq datasets, and 

compares differences in an intraspecific manner (within a population) as opposed to between 

groups (132). This is particularly important when considering primary immunodeficiencies, given 

rarity, and the heterogeneity in both genetic cause and symptoms mentioned earlier. As such this 

tool presents as an optimal choice for looking for specific changes in rare conditions.  

The degree to which hypothesis free methods such as OUTRIDER and EdgeR can succinctly resolve 

signals, when compared to hypothesis driven methods, is not completely clear, but would be useful 

knowledge for clinical utility.  

 

 

1.3 Secondary Immunodeficiencies – Immunosenescence  

Secondary Immunodeficiencies are those which are acquired, either through drugs, surgery and 

trauma, extreme environmental conditions, chronic infections, or malnutrition (245). A relatively 

newly classified, but ubiquitous example of immune deficiency, is that which occurs as a result of 

changes in the organism during ageing (246). A feature of the human immune system is that cost of 

maintaining memory of pathogens over the course of the lifespan depletes the ability of the immune 

system to respond to novel pathogens in later life, as the cellular compartments numbers shift 

further from recognition to memory. This is just one feature of a phenomenon termed 

immunosenescence, which describes the age-related decline or dysregulation in immune function 

(247, 248).  

 

1.3.1 Epidemiology and Demographics  

Currently, 1 in 11 or 703 million people are above the age of 65 worldwide. By 2050 this is predicted 

to be 1 in 6 or 1.5 billion people (249). Increasing age is positively associated with both morbidity 

and mortality from immune mediated inflammatory disease (250), neurodegenerative disease (251), 

cancer (252) and infectious disease (253). Respiratory tract infections in particular are a major cause 

of death across the world and two of the top ten global causes of death are a direct result of 
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infection (254, 255). This is set to increase dramatically as the population of the world continues to 

age, unless something can be done to improve prognosis of infection in aged individuals.  

 With advancing age of the individual, immunological competence is decreased (immunosenescence) 

(248), and as the annual influenza cases and recent COVID-19 pandemic has demonstrated, this 

leaves the elderly at increased risk of adverse outcomes from infectious disease (256). To further 

exacerbate the problems that communicable pathogens pose to the aged population, the current 

preferred prophylactic treatment for infectious disease; vaccinations, have blunted effects in the 

elderly as a result of immunosenescence (257).  

Age-related decreased immune efficacy is currently the focus of much attention (258). Diseases 

exacerbated by or directly a result of ageing of the immune system are extremely numerous and 

have outcomes which range from frequent pain to profound shortening of life (259-261). Through 

developing a comprehensive understanding of the ageing of the immune systems and subsequently 

restoring its function, the hope is that much of the age-associated morbidity can be compressed into 

the later stages of life (262). Immune-rejuvenation adjunct therapies might precipitate enhanced 

vaccine responses and indeed immune resistance to infectious disease and cancer, and this potential 

is driving investigation into the cellular and molecular features of immunosenescence (248). Drugs 

which now target the core biological mechanisms underlying ageing (geroprotectors) are being 

trialled in this immune arena and show promise in preclinical testing (263).  

 

1.3.2 A general description of Immune senescence  

Immunosenescence is a broad label which refers to the age related changes occurring in the immune 

system, and unlike cellular senescence, the term has neither specific functional nor mechanistic 

designations (262). Whilst the molecular cellular effects of ageing on immune cells and tissues are 

increasingly elucidated, the precise driving mechanisms driving immunosenescence are not certain 

as is the case with the fundamental drivers of ageing itself. Some argue the accumulation of somatic 

cell mutation drives molecular ageing (264). DNA damage is known to be implicated in the induction 

of senescence, and animal models show that when this occurs in the haematopoietic cells, it can 

lead to immunosenescence (258). Recent work has disputed this and suggested that epigenetic 

changes resulting from repair of DNA after mutation is responsible, and not the mutation process 

itself, however this study has limitations and potential conflicts of interest were apparent (265). 
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Stem cell exhaustion, cellular senescence, compromised autophagy, dysregulated nutrient sensing 

dysregulated RNA splicing, are among 14 currently accepted hallmarks of ageing (266). However, as 

these factors all overlap and induce each other, and so discerning the most fundamental has been 

challenging.   Most likely, there are multiple converging molecular basis of cellular ageing, and as 

these affect immune tissues, so too, the immune system ages. The encompassed facets of 

immunosenescence include chronic low-grade inflammation (inflammaging), reduced capacity to 

clear infections and cancerous cells, a reduced ability to respond to novel antigen, impaired wound 

healing and increased autoimmunity incidence (267-269). Inflammaging is connected to various 

features of immunosenescence, age-related chronic disease and is a known contributor to the 

decreased cell-mediated response to pathogens observed with advancing age (270, 271). The link 

between the immune system and neurological function is well established and appropriately 

immunosenescence is also associated with age related neurodegenerative disorders (272).  

Ageing of the hematopoietic system contributes to a decrease in efficacious adaptive immune 

response. Mouse models demonstrate that this comes as a result of genetic up-regulation of 

myeloid lineage specific genes, and down regulation of those genes which garner lymphoid 

specificity in the daughter cells produced (273, 274).  

Individuals have a marked difference in immune responses resulting from both genetics, ageing, and 

environmental factors (268, 275, 276). Immunosenescence is a major axis of variation when 

considering the heterogeneity of immune response in individuals (275). Some literature suggests 

that elements of immunosenescence can be causally decoupled from chronological age and indeed, 

to some degree, the processes of biological ageing too (276). There is a growing body of evidence 

which demonstrates that some aspects of immunosenescence are linked to antigen exposure 

history, cell ontogeny programs and intrinsic cellular defects (276, 277). Indeed in a recent landmark 

study using drosophila Melanogaster as a model, over 70% of gene expression changes previously 

believed to be linked to advancing age in the immune system, were completed decoupled from 

chronological age in flies grown in a germ free environments (278).  

If these mechanisms can be observed further in humans, it opens up the possibility of immune 

regeneration possibilities through targeting expression networks of those 70% of genes decoupled 

from biological ageing and related to antigen exposure. Additionally, this discovery also narrows the 

focus to a much smaller subset for understanding the fundamental mechanisms of immune ageing.  
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1.3.3 The effect of immunosenescence on viral infection and vaccinations 

The demonstrable effect of immunosenescence on pathogen clearance are a primary factor in the 

mortality figures from infection (279, 280). As an example, 80-90% of influenza deaths occur in 

individuals over the age of 65 (281). The effects of immunosenescence are not limited only to 

infections, and a plethora of evidence shows that vaccinations themselves have extremely limited 

efficacy on individuals with high levels of immune senescence (282-285). During the early stages of 

the 2020 global COVID19 global pandemic, data emerging from Wuhan, China  indicated the primary 

risk factor for progression to acute respiratory distress syndrome from COVID19 was indeed, age 

(286). By May 2021, Centres for Disease Control data was indicative of over 80% of death were in 

those aged over 65 (287). Whilst co-morbidities are independently associated with age, age itself 

remains the most significant risk factor for COVID-19 mortality (288). 

Impaired vaccination response in both old and young cohort has been linked to factors such as C-

reactive protein, which mediate the chronic low-grade inflammation that characterizes 

immunosenescence (289, 290). Pre-vaccination levels of systemic IL-6, a known indicator of 

immunosenescence, has been linked with reduced vaccine response in animal models (291). Early 

work on baseline immune signalling was able to use these approaches to predict vaccine response 

with relatively good accuracy (289).  As mentioned previously, modern literature and drug trials now 

set their sights on tackling the fundamental causes of immune ageing as a means to enhance the 

efficacy of vaccinations, and immune response to infections in general. In addition, after the 

association between immunosenescence and COVID19 morbidity and mortality was established, IL-7 

was identified as a potential for adjuvant therapy (292).  

1.3.4 Cellular and molecular drivers and features of Immunosenescence. 

Whilst the fundamental drivers of immunosenescence are not completely understood, some primary 

factors are believed to be cellular senescence within the immune tissues, and chronic aseptic 

inflammation throughout the rest of the body, known as inflammageing, resulting from the 

senescence associated secretory phenotype (SASP). The SASP varies from tissue to tissue, but 

interleukins (commonly IL6, IL8,) matrix-metalloproteins and chemotactic proteins are all known to 

be involved to some degree.  Cellular senescence, whilst semantically discrete from 

immunosenescence, contributes directly to its occurrence by altering production and maturation of 

immune cells, and reducing the efficacy of their ability to clear other ageing cells (293). The effects of 

ageing on the innate immune system remain less well characterised than that of the adaptive 
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immune system, but efforts are increasing in this area (262). Reports around absolute abundance of 

the various cell types seem to suggest that numbers of cells seem to remain fairly constant; primary 

differences appear to be in ratios of subsets of cells. Neutrophils and macrophages both show 

reduced phagocytosis and chemotaxis. Neutrophils have impairments to superoxide production, 

recruitment of molecules onto the lipid rafts, resulting signal transduction and apoptosis (294). 

Macrophage cytokine production is also impaired, along with signal transduction and increased 

PGE2 production (248, 294). Similarly, some populations of dendritic cells suffer an inability to 

release cytokines (248). They also have decreased IFN I/III production, antigen presentation, TLR 

mediated signalling and chemotaxis/endocytosis (294).  

PBMCs demonstrated a delayed and incongruent release of cytokines and chemokines upon 

stimulation by pathogen-associated molecular patterns (PAMP’s) (248). TLR expression appears to 

be unchanged with age, indicating pathways which transduce signals may themselves be responsible 

for the resultant delayed and incongruent cytokine and chemokine release observed (295).  

NK cells undergo shifts in relative numbers of high CD56 expressing ‘bright’ cells which normally 

constitute around 10% of total population and low CD56 expressing ‘dark’ cells which make up the 

remaining 90% (296). NK cells appear to increase in number in individuals who age healthily, whilst 

concurrently losing some function in both oxidative burst and phagocytosis. As immunosenescence 

progresses, NK cells have decreased cytotoxic receptor expression of NKP46, NKP30, DNAM1,  and 

increased KIR, NGK2A and PD-1, inhibitor signals (296).  

One of the best defined features of immunosenescence is a change in relative population numbers 

of memory and naive T-cells (259). In some cases absolute accumulation of memory T-cells can occur 

in people infected with HCMV (297). Additionally reduced numbers of naïve T and B cells are seen. 

This reduction is associated with thymic involution, and a reduction in the IL-7 which stimulates the 

thymus and the lymphoid lineage cells (298). Increases in P16INK4a, and CD57 expression are 

indicators of immunosenescence in T-cells (299) and a reduction in T-cell receptor diversity occurs 

with advancing age (259).  CD28 is known marker for cellular proliferation and enhanced stimulation 

in T-cells, and is observed to have reduced presence on CD4+ and CD8+ T-cell as age progresses 

(259). In late passage cells in in-vitro this can be as much as 50% (300-302). 

Dendritic cells and naïve T-cells appear to have the greatest impact on age related immunity changes 

(303). In studies of vaccination response for yellow fever, reduced numbers of neutralizing 

antibodies, CD8+ T-cells and new CD4+ T-cells (303).  
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Treg cells, which are generally identifiable by the expression of CD25 and FOXP3, are heavily 

implicated in ageing and reviews of available data show they represent an increased proportion of 

the circulating T-cells as age progresses (304). Treg cell suppress T-cells, NK-cells, dendritic cells and 

monocytes. Mouse models suggest Tregs limit final numbers of T-cells as opposed to replicative rate 

or first division time, suggesting the effects are mediated through some concentration gradient. In 

support of this the effects could be mimicked by IL-2 and CTLA-4 gain and loss of function analysis 

(305). This together indicates Tregs ‘mop up’ IL-2 and CTLA-4 prohibiting their promotion of immune 

function in other cell populations (305). T-regs also produce inhibitory cytokines TGF-B, IL-35 (306), 

and IL10 (307). Through these methods they are able to supress immune responses and induce 

apoptosis in effector cells. Aged CD4+ Treg cells appear to have reduced ability to downregulate IL-

17 and IL-2 (304). These changes in Treg cells number and function can lead to both increases in 

autoimmunity or a suppression of the immune systems clearance of pathogens and mutated cells 

(304). IL-6, TNF-α exist as more general markers of immunosenescence in peripheral blood (299). 

This summary is by no means exhaustive, and literature continues to elucidate further changes in 

immune cells and molecular biomarkers. 

1.3.5 Alternative splicing and immunosenescence 

The science of RNA biology and the associated technologies are suitably mature to provide highly 

detailed, quantitative and thorough investigation into a variety of physiological states and 

developmental stages. Transcriptomics shows us that a huge variety of species of RNA transcript are 

able to be produced from comparatively small numbers of genes.  A central mechanism through 

which the genome is able to produce such a varied and plastic transcriptome is through the 

alternative splicing of RNA. Deep sequencing studies have shown that >95% of all human genes are 

alternatively spliced (57).   

Transcriptome studies of gene expression and splicing have started to give unparalleled insight into 

mechanisms of human development, health and disease (155, 308, 309). The association of ageing, 

age related disease and changes in the transcriptome is becoming increasingly well documented and 

maps of changes in gene expression and splicing are being produced to help understand the 

association (70, 310, 311). RNAseq methodologies been used in conjunction with statistical methods 

to quantify the association of expression and splicing changes in each gene with advancing age in a 

variety of tissues (311). One such study found that relative splicing levels were more reliably able to 

predict biological age than gene expression or absolute isoform abundance (70).  
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Attempts at discerning the causality or regulatory mechanisms of these splicing changes has 

revealed promising therapeutic opportunities, and targeting splicing has proven to be a valid method 

of ameliorating the pathogenic changes to cells (312). Using RNAi screens, Georgilis et al. (313), were 

able to show that splicing factors are able to directly mediate the senescence associated secretory 

phenotype; one of the cellular aspects of advancing age. This cellular phenomena is one which has 

been linked to number of age related diseases, including through mechanisms associated with 

dysregulated alternative splicing (314). Splicing factors are expressed at lower levels with advancing 

age, proteomics studies show the spliceosome itself is disrupted (315, 316). Research has shown 

that alternative splicing is highly correlated to ageing and age-related disease across tissues and can 

directly affect aged cell function and phenotype (313, 314, 317).  

Genes essential to immune function and response are alternatively spliced in pathological conditions 

and during inflammation (235, 318). Analysis of splicing in single cell types has also shown the 

stimulation causes remodelling of the transcriptome via splicing (235, 318, 319). These include 

adaptor proteins, (e.g., CD3, CD28, CD8, CTLA-4, MAP4K2, MAP3K7, MAP2K7, CD45, VAV1) 

transcription factors (such as NFKB1 and STAT2) chromatin modifying enzymes and RNA binding 

proteins (235, 318, 319). Disruptions to normal splicing patterns occur in inflammatory disorders and 

autoimmunity (320), both of which are features of age related immunosenescence (289, 290). 

Complicating the picture, viruses themselves also hijack host machinery, which they rely on to create 

proteins from their own genome, and disrupt the hosts cellular processes (321).  Studies using cell 

lines infected with Influenza A virus showed a broad program of changes to host gene alternative 

splicing (322).  Sars-cov-2 proteins bind to U1 and U2 splicing RNAs and suppress global splicing 

activity (323). Alternative splicing patterns then, are affected by individual host differences in 

genetics, age, and environment. Splicing, like gene expression, provides a mechanism for direct 

response to immune challenge but also are disrupted as a result of viral manipulation. It is therefore 

potentially important to explore and map the effects of immunosenescence in various infections to 

identify shared and discrete features.  The stimulated immune system is yet to be investigated in a 

manner which demonstrates the effects of immunosenescence in a human cohort. 

1.3.6 Using transcriptomics to assess immunosenescence in COVID19 and Influenza 

Studies of transcriptomics and ageing have produced hugely useful biomarkers of ageing in specific 

tissues which not only enhance greatly the current understanding of the biological ageing process, 

but also provide an a a-posteriori list of potential therapeutic intervention targets.  
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Observing challenged immune system of an age a stratified cohort, is likely to be highly informative 

and give different indications than baseline immunosenescence studies, eliciting the identification of 

pathways and processes impaired in the immune response (233). Indeed, it has been shown in 

innate immune system studies, that the effects on differential gene expression of some primary 

immunodeficiencies can only be observed in a dynamic fashion (140, 234). In ageing studies 

conducted on human monocytes, only when the cells were stimulated by TLR4 and TLR7 /8 and 

retinoic acid inducible gene 1 agonists were significant differences seen in expressed genes; 

decreases were seen in IFN-α, IFN-γ, IL-1β, CCL20, and CCL8 production whilst increases were seen in 

CX3CR1 (324). It may well be that immunosenescence related changes in other genes may also be 

obscured from view until challenged.  

Because of the age-related mortality profile with infections such as Influenza, they present an 

important and useful opportunity to gain some insight into the effects of immunosenescence during 

an immune challenge.  In accordance with these efforts, the present study aims to characterise the 

effects of ageing on the challenged immune system using the suitably mature RNA space and 

technologies.  

Using SARS-COV-2 and Influenza cohorts we aim to map the changes in whole blood transcriptomes 

of patients and look at the contribution made by changes in gene expression and alternative splicing.  

1.3.6.1 Ageing Clocks to quantify or diagnose immunosenescence. 

Immunosenescence is organism wide and encompasses changes across many tissues and cells (262).  

Investigations must make use of a variety of different techniques and orthogonal approaches. These 

include comparing genomic, metabolomics epigenomics, and transcriptomics (325).  

The ability to tackle age-related causes of disease necessitates the characterisation of ageing in 

tissues as it manifests, particularly because ageing occurs in a heterogeneous manner in different 

individuals, whereby different organs and systems decline at different rates. As with producing 

strategies to tackle disease, identification of biomarkers of ageing has been highlighted as one of the 

most important tasks facing geroscience research and has enormous potential in both fundamental 

and translational biomedical research (326-328).  

In an effort to systematically investigate the molecular changes occurring with age, modern studies 

use machine learning in the form of penalized regression methodologies to identify molecular 

changes most robustly associated with advancing age (329). 
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These models, now termed ‘ageing clocks’, take advantage of the extremely large datasets now 

being created in the areas of epigenomics, transcriptomics, proteomics and metabolomics (330). 

Transcriptome based ageing clocks have been demonstrated to be particularly effective (331) and 

are now approaching the theoretical limit of accuracy, whereby random noise between individuals 

prevents statistical accuracy (332). As such, transcriptomics is a useful modality for mapping and 

understanding mechanisms of ageing, despite the heterogeneity of ageing process.  

Ageing clocks can be used to accurately predict the chronological age of individuals. Consequently, 

they can also be used to quantify the rate of ageing of that individual compared with peers, and this 

can be done in a tissue specific manner. The applications of this are far reaching, from understanding 

and informing biological research, to pharmaceutical and therapeutic developments to comparing 

the physiological effects of lifestyle and environmental factors as disparate as smoking or population 

migration of ageing in specific systems (333).  

While some broader, pan-tissue clocks have great utility, disease specific clocks have been noted to 

be of enormous value as disease specific monitors and risk calculators in the clinic (334).  

The first steps towards immune ageing clocks were made with the development of a multi-omic 

iAGE clock which quantifies systemic age-related inflammation. This ageing clock correlated to 

multimorbidity, immunosenescence, frailty and cardiovascular ageing (335).  

The immune systems primary functions extend beyond its interactions with host tissues however, 

and one of the features most associated with immunosenescence is effective pathogen clearance. 

This feature is of particular interest currently due to the global pandemic and the robust associations 

between advanced age and COVID-19 mortality (336).   

 

 

1.3.7 Summary 

The early and accurate diagnosis of Primary Immuno-deficiencies is important to ensure that positive 

patient outcome is attained, and economic cost is minimised. Diagnosis of the disorders remains 

difficult due to clinical challenges in identifying the presence of a primary immune system disorder, 

stratifying the phenotype to a myriad of overlapping candidate genes and then the laborious task of 

variant filtering, interpretation and lack of knowledge pertaining to variants, especially those 
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residing in the non-coding segments of the DNA.  Functional validation of a candidate variant is 

currently undertaken with protein-based ex vivo tests which are difficult to standardise and mostly 

available in research laboratories. 

Primary Immunodeficiency provides an interesting model for several reasons; the heterogeneity of 

presentation even in patients with the same variants, and similar presentation in patients with 

different variants presents an interesting diagnostic challenge. It is hoped that utilisation of RNAseq 

alongside WGS/WES can help to avoid diagnostic odyssey type eventualities. 

In addition to these interesting challenges, the primary tissue of investigation for PID is usually 

whole blood. This is readily available, easy to isolate, and comes without a great deal of risk, in 

contrast to some other contemporary examples of RNAseq diagnostics.   

RNAseq is an emerging molecular profiling technology which, when combined with WES/WGS 

provides unprecedented insight into differential gene expression, splicing activity, allele specific 

expression and may contribute a further insight into candidate’s variants derived from proband or 

family-based WES/WGS sequencing results.   

Hypothesis free transcriptomic analysis hold promise with relation to both disease mechanism 

elucidation and diagnostics i.e., variant filtering (183, 221).  However, RNAseq remains relatively 

novel as a diagnostic testing tool in rare diseases and the control datasets and cellular contributions 

to complex tissue profiles (i.e., whole blood) will require further dissection. 

Utilising large control datasets for comparison enhances the power of the transcriptional profiling 

through RNAseq and improves resolution for differential gene expression. Existing projects have 

developed these datasets for whole blood and immune cells, which provide a starting point for the 

interrogation of clinical samples for diagnostic research.  

Over the coming years, an extended diagnostic approach to PID testing may develop that builds on a 

clinical module of phenotype, family history and baseline immunological testing. This will be 

complimented by a DNA module of coding and non-coding variant analysis, utilising sophisticated 

bioinformatic pipelines to prioritise candidate genetic variants of new loci that would be consistent 

the clinical phenotype and family segregation. These effects of these candidate variants for 

monogenic disease may then be functionally interrogated via RNAseq. 

In parallel, functional testing of candidate genes through protein-based assays may be undertaken to 

characterise the impact of a putative monogenic pathogenic variant within a reductionist model at 
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the protein level. The sharing of these modular assessments across the international community will 

incrementally improve the standardised analysis of novel variants that will continue to grow over the 

next few years. 

There is still much to be done to improve the current diagnostic yield in PID and RNAseq combined 

with WES/WGS with a large control dataset will expedite the discovery of PID causing variants, in 

tissues with high heritability. The presence of candidate gene lists will further enhance the 

diagnostic capabilities, as filtering and processing of large datasets remains challenging.  

Immunosenescence is a broad process which contributes to many of the leading causes of morbidity 

and mortality. Reviews of the literature show that whilst retrospective analysis out the outcomes of 

immunosenescence has been studied, and baseline biological analysis of healthy individuals of a 

range of ages is now a mainstay approach to this topic, there are very few examples of cohort 

studies of immunosenescence occurring in challenged immune system. Two particular cases of 

immune challenges with age specific outcomes are Influenza and more recently COVID19 (sars-cov-

2). Transcriptomics is a suitably mature modality to use to investigate these models and gene 

expression and alternative splicing has been shown to provide comprehensive insight in other 

examples. Given the competing forces ageing, immune response and viral infection from RNA based 

pathogens, transcription and splicing are of particular interest as metrics to evaluate the effects. It 

has already been established that an immune challenge is required to properly capture and quantify 

problems in immune function (140, 234), and we hypothesised that an ageing clock for infectious 

diseases that have an age related morbidity and mortality profile might provide previously 

undiscovered insight into pathogenicity of such diseases. Moreover, less specific multi-infection 

ageing clocks, derived from mixed cohorts of infected patients might be informative to the more 

general aspects of immunosenescence pertaining specifically to immune challenges as opposed to 

baseline immune activity.  

Reviews of the literature showed also the many transcriptomic ageing clocks were neglecting to 

account for the effect of alternative splicing in the ageing transcriptome. Splicing factors are 

expressed at lower levels with advancing age, proteomics studies show the spliceosome itself is 

disrupted (315, 316). Research has shown that alternative splicing is highly correlated to ageing and 

age related disease across tissues and can directly affect aged cell function and phenotype (313, 314, 

317) and early work on multi tissue age prediction showed that alternative splicing was more 

robustly able to predict age than gene expression or isoform expression level changes (70).  
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1.3.8 Aims of research  

In this section, a brief discussion of the generals aims are presented followed by a concise list of 

formal research questions.  

There exists a gap in PID diagnostics for research specialising in transcriptomic and genomic based 

diagnostic methods for T-cell disorders. This project aims to discern the potential of RNAseq 

technology to enhance this diagnostic ability by informing the variant filtering process. An important 

consideration is the translational capacity of the research – can the diagnostic methods succinctly be 

applied in a clinical setting, and what is the minimum viable complexity of assay implementation? 

Alternatively, what is an acceptable trade-off in sensitivity, when this complexity is reduced? To 

address these questions the project aims to assess the clinical utility of a range of tissues and 

preparation methods with a view to optimise the ability of the technology to achieve diagnosis 

whilst keeping clinical preparation time and skills requisites to a minimum. It is hoped this research 

can provide valuable resource management and efficiency information and contribute to clinical 

pipeline development. 

An additional aim of this project is to use a similar informatics processing pipeline to investigate 

secondary immunodeficiencies. To do this, a large amount of transcriptomic data will be analysed in 

depth. This data captures the whole blood transcriptome of patients across a range of ages, who 

have presented to the clinic with respiratory tract infections. The research will compare the features 

of these datasets to identify key differences and similarities in the transcriptome between infections, 

and to see if these differences remain with advancing age and the onset of immunosenescence and 

associate immunodeficiency. 

The association with age of all transcriptomic features will be quantified to establish which are the 

greatest, and this information will be used to develop the understanding of the biology of 

immunosenescence and potentially identify novel therapeutic targets. 

Lastly, the project aims to develop disease specific ageing clocks. It is hoped that these will deliver 

further insights regarding the most important alterations in immune response which manifest with 

age. In addition, industrial applications of these tools include clinical trials management and 

admissions, personalised medicine, and assessing the efficacy of therapeutic interventions which 

target immunosenescence. 
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1.3.9 Key research questions pertaining to T-cell Primary Immunodeficiencies 

1. Can RNAseq be used to enhance diagnostic capability by using gene expression profiles, 

dysregulated alternative splicing event frequency, allele and isoform expression to inform 

variant filtering and identification?  

 

2. Can unstimulated whole blood act as reliable source of patient sample for identifying 

immunodeficiency expression profiles from the above mentioned 3 metrics? 

 

3. Do PBMCs provide a more robust sample from which to identify changes in these metrics? If 

so, to what degree, and is this clinically important in terms of diagnostic pipeline 

development? 

 

4. Does immune challenge provide a more robust sample from which to identify changes in 

these metrics? If so, to what degree and is this clinically important in terms of diagnostic 

pipeline development?  

 

5. Can these combined methods identify disease causing mutations and provide specific 

diagnosis for currently undiagnosed patients? 

 

 

1.3.10 Key research objectives pertaining to Immunosenescence as a Secondary 

Immunodeficiency  

6. Using the existing transcriptomic dataset, set up an informatics pipeline to generate 

transcriptomics metrics to quantify expression, splicing, and validate the tool/s on other 

datasets.  

 

7. Compare the transcriptomic profiles in whole blood of hospitalised patients with COVID-19 

and Influenza infections at a gene level and isoform level using the tools.  

 



Introduction 

 

46 

 

8. Using the metrics above, combined with statistical machine learning methods, identify 

changes in transcriptomic signatures of patients with these infections which are associated 

with increasing age. Use this information to draw conclusions about the nature of disease 

pathology with age. 

 

9. Find Transcriptomic biomarkers of immunosenescence from current literature and 

investigate their prevalence in the cohort’s whole blood samples to conclude their presence 

in ageing cohort. 

 

 

10. Use lasso regression to identify a core set of biomarkers without collinearity which produce 

a COVID-19 ageing clock and an INFLUENZA ageing clock.  
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Chapter 2 Methods 

2.1 Primary immunodeficiency  

2.1.1 Patient enrolment and patient data collection 

Ethical approval for the project was granted by the University of Southampton Research Ethics 

Committee (UREC). Recruitment to the study was opportunistic at the University Hospital 

Southampton; informed consent for recruitment was obtained when known or suspected PID 

patients were having routine bloods taken on a given day, dependant on presence of participating 

clinicians. The cohort is a mixture of patients and family members of patients from the ‘Deep 

immune phenotyping” study (study number SRB0014; REC reference 12/NW/0794; HTA license no 

12009) ongoing at Southampton General Hospital. The aim of the study is to characterise the 

molecular fingerprints of primary immunodeficiencies and, where possible, identify precision 

medicine targets in patients within the immunodeficiency cohort. The patients that were assessed 

via RNAseq presented with a clinical phenotype of primary immunodeficiency and most did not yet 

have a clinical molecular diagnosis, despite having either WES or WGS performed. Some of the 

patients had been recruited and had genomes sequenced via the 100,000 genomes project. The 

primary researcher of this study had no knowledge regarding which participants had a confirmed 

genetic diagnosis, nor how many this pertains to. 
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2.1.2 PID patient clinical phenotype 

At presentation to the clinic, participating clinicians assessed the patients’ phenotypes the details of 

which are recorded below in Table 2-1. These details were not made available to the investigator 

until after analysis was completed.  

Table 2-1 Clinical phenotype of primary immunodeficiency patients 

Participant 
ID 

Phenotype Molecular Diagnosis IUIS Category 

SRB001 Panhypogammaglobulinaemia 
Recurrent Bacterial Infections 
Recurrent Viral infections 
Recurrent Fungal Infections  
Crohn’s Disease No Diagnosis in GECIP  

Predominantly 
Antibody 
Deficiency 

SRB002 Asthma 
Allergy 
Recurrent Pneumonia 
Recurrent Viral skin infections 
Recurrent Bacterial skin Infections No information 

Undefined 
Immune 
deficiency 

SRB003 Panhypogammaglobulinaemia 
Recurrent Bacterial Infections 
Enterocolitis No Diagnosis in GECIP  

Predominantly 
Antibody 
Deficiency 

SRB004 Panhypogammaglobulinaemia 
Recurrent Bacterial Infections 
ITP No information 

Predominantly 
Antibody 
Deficiency 

SRB005 Asthma 
Allergy 
Recurrent Pneumonia 
Recurrent Viral skin infections 
Recurrent Bacterial skin Infections 
Specific Polysaccharide Antibody 
Deficiency (SPAD) 
Impaired T cell Function CARD 11 A-C @2987250 

Immunodeficiency 
affecting Cellular 
and Humoral 
Immunity 

SRB006 Chronic Mucocutaneous 
Candidiasis 

STAT1 

Defects in Intrinsic 
and Innate 
Immunity 

SRB007 Chronic Mucocutaneous 
Candidiasis 

STAT1 

Defects in Intrinsic 
and Innate 
Immunity 

SRB008 Chronic Mucocutaneous 
Candidiasis 

STAT1 

Defects in Intrinsic 
and Innate 
Immunity 
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SRB009 Panhypogammglobulinaemia 
Recurrent Bacterial Infections 
Autoimmune Haemolytic anaemia 
Autoimmune Neutropenia 
Autoimmune Thrombocytopaenia NKKB1 A>AT @102582929 

Predominantly 
Antibody 
Deficiency 

SRB010 Panhypogammglobulinaemia 
Recurrent Bacterial Infections 
Autoimmune Haemolytic anaemia 
Autoimmune Neutropenia 
Autoimmune Thrombocytopaenia NKKB1 A>AT @102582930 

Predominantly 
Antibody 
Deficiency 

SRB011 Panhypogammaglobulinaemia 
Alopecia 
Severe Viral Infection ILRG;CXorf65;FOXO4 

Predominantly 
Antibody 
Deficiency 

SRB012 Recurrent Fungal Infection 
Recurrent Viral infection 
Decrease in T cell count 
Autoimmunity ILRG;CXorf65;FOXO4 

Immunodeficiency 
affecting Cellular 
and Humoral 
Immunity 

SRB013 Panhypogammaglobulinaemia 
Recurrent Bacterial Infections 
Splenomegaly 
Lymphoid Interstitial Pneumonia No Diagnosis in GECIP  

Predominantly 
Antibody 
Deficiency 

SRB014 Panhypogammaglobulinaemia 
Recurrent Bacterial Infections 
Splenomegaly 
Lymphoid Interstitial Pneumonia 
Autoimmune haemolytic anaemia, 
Enteropathy No information 

Predominantly 
Antibody 
Deficiency 

SRB015 Hydroa Vaccineforme 

No Diagnosis in GECIP 

Defects in Intrinsic 
and Innate 
Immunity 

SRB016 Panhypogammaglobulinaemia 
Recurrent Bacterial Infection 
Impaired T Cell proliferation 
Eczema 
Enteropathy No information 

Combined 
Immunodeficiency 

SRB017 Panhypogammaglobulinaemia 
Recurrent Bacterial Infection 
Absent B cells No information 

Predominantly 
Antibody 
Deficiency 

SRB018 Panhypogammaglobulinaemia 
Recurrent Bacterial Infection 
Bronchiectasis 
Type 2 DM No information 

Predominantly 
Antibody 
Deficiency 

SRB019 Recurrent Abscess with 
Pseudomonas 
Candidal Discitis 
Nephrectomy with Klebsiella 
abscess 
SLE No information 

Disorder of 
Phagocytes 
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SRB020 Panhypogammaglobulinaemia 
Recurrent Bacterial Infection 
Neutropaenia No information 

Predominantly 
Antibody 
Deficiency 

SRB021 Panhypogammaglobulinaemia 
Recurrent Bacterial Infection 
Bronchiectasis No information 

Predominantly 
Antibody 
Deficiency 

 

2.1.3 Whole blood and PBMC collection 

Venepuncture methods and blood collection methods were performed as per manufacturer’s 

guidelines (337). PAXgene™ RNA tubes were utilised for RNA isolation and, and BD Vacutainer® 

Heparin tubes were used for PBMC collection. Tubes were equilibrated to room temperature, and 

‘mid-flow’ peripheral blood samples were taken from participants. The RNA tube vacuum is designed 

specifically to draw 2.5ml blood into the RNA tube, the Vacutainer draws 3ml. The PAXgene tubes 

were inverted 8 to 10 times and left to incubate at room temperature for a maximum of 4 hours 

before transferring to a -800C freezer. All PBMCs were extracted and frozen within 4 hours from 

venepuncture. 

 

2.1.4 Whole blood RNA extraction methods 

Whole blood was sourced from two healthy donors and 21 primary immunodeficiency patients into 

PAXgene tubes as described above. PAXgene tubes were removed from -80oC storage and allowed to 

equilibrate to room temperature for 2 hours before RNA isolation RNA was extracted using 

PreAnalytiX Blood RNA kit by following manufacturer’s instructions, described below. 

1.  Samples contained in PAXGene Blood RNA tubes were the centrifuged in the tubes at max 

speed (3229 x g) for 10 minutes.  

2. Supernatant was decanted off, and rim dried with a clean paper towel. 4ml of RNAase free 

water was added, and tubes were closed with new BD Hemogaurd.  

3. Tubes were then vortexed to dissolve pellet and centrifuged again at 3229 x g for 10 

minutes. Supernatant was discarded. 

4. 350µl of resuspension buffer was added. Tubes were then re-vortexed until all sample was 

dissolved.  
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5. Sample was transferred to a 1.5ml microcentrifuge tube (MCT), and 300µl of binding buffer 

2 was added, before 40 µl of proteinase K. This was mixed by vortexing for 5 seconds and 

incubated at 55oc in a shaker at 250rpm for 10 minutes.  

6. Lysate was then pipetted directly onto PAXGene ‘Shredder’ spin column in 2ml processing 

tube and centrifuged at 1700 x g, for 3 minutes.  

7. Flow through was then transferred to a fresh 1.5ml MCT, without disturbing the pellet.  

8. 350µl ethanol was added to the 1.5ml and sample was then vortexed and briefly centrifuged 

with microfuge for 1-2 seconds to concentrate all fluid in bottom of the tube.  

9. 700µl was pipetted in RNA spin column, and centrifuged for 1min at 17000 x g. Place column 

in new 2ml collection tube and discard the old tube containing flow through,  

10. This step was repeated until all remaining samples was concentrated into RNA spin column. 

The RNA spin column is transferred to a new collection tube.  

11. A wash step was performed by adding 350µl wash buffer to the column and performing 

centrifugation at 17000 x g for 1 minute. Flow through was completely discarded.  

12. 10ul DNAse and 70 DNA digestion buffer was mixed in an MCT, mixed by gently flicking and 

centrifuged to collect residual liquid. 

13. Sample was then transferred to a new processing tube, and pre-mixed 10µl l:70µl per 

sample DNAse/DNA buffer mix was pipetted directly onto the membrane of the RNA spin 

column and this was allowed to sit for 15 minutes on the desktop to facilitate enzymatic 

digestion. 

14.  This solution was washed off using 350µl wash buffer 1, pipetted into the RNA spin column, 

which was then centrifuged at 17000 x g for 1 minute. The spin column was replaced with a 

new and the flow-through was discarded. 

15.  500µl of wash buffer 2 was then added to the PAXgene RNA spin column, which was then 

centrifuged at 17000 x g for 1 minute. The spin column was replaced with a new and the 

flow-through was discarded. 

16. Step 16 was then repeated with a longer, 3-minute centrifugation time. 

17. A Drying step was then performed in which the spin column is transferred to a new 

collection tube, centrifuged for 1 minute at 17000 x g without further substance added.  

18. The processing tube was discarded along with the flow-through. The spin column was 

transferred to a new 1.5ml MCT. To elute the RNA, 40ul of elution solution was pipetted 

directly onto the RNA column membrane and centrifuged for 1 minute at 17000 x g,  

19. This step was then repeated with the same collection tube.  
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20. RNA samples were incubated for 5 mins at 65oC to denature the RNA, optimising the 

molecular conformation for downstream sequencing application.  

21. 4ul was removed for QC, and the remaining samples were immediately frozen at -80oC. 

 J. Lye performed all extractions.   

2.1.5 RNA extraction QC 

Quality control of RNA extractions was performed in two ways.  In the first instance, using a 

Nanodrop ND-1000 to check RNA concentration and yields. The Nanodrop uses spectrophotometry 

to assess purity and concentration of nucleic acids. Briefly, the ratio of the amount of light absorbed 

at specific wavelengths (260/280 and 230/280) is recorded. This ratio is then compared to the 

optimal ratios to discern quality. 

RNA was subsequently assessed for quality and degradation using the Bioanalyser 2100 (Agilent, 

Santa Clara, CA. USA). This is a service offered by within the Human Development and Health 

laboratories at Southampton General Hospital and was performed by Dr Melissa Doherty.  

Using micro-capillary electrophoresis, the fragment sizes of RNA are observed, recorded and 

interpreted to generate an RNA integrity number (RIN score). This score gives an indication of level 

of RNA degradation. 

Key aspects of the trace from the Bioanalyser include the relative abundance of two peaks (18S, 28S) 

and the noise between the peaks, shown on the trace below in Figure 2-1 Agilent 2100 

electropherogram RNA trace. 
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Figure 2-1 Agilent 2100 electropherogram RNA trace 

Observable in the electropherogram is a small amount of noise, displayed as an increase 
in the jagged lined between the two peaks and to the left of the first 18s peak, 
indicative of partial RNA digestion. Also demonstrative of this is decrease in overall size 
of the peaks and the 28S subunit of the ribosomal RNA being smaller, as this often 
degrades first. In the event that the first peak at around 23seconds is accompanied by 
other peaks either side, and the 18S and 28S peaks have shifted to the left, the result 
would be indicative of heavy degradation and probably not be useable.  
 

We considered the following to be threshold for RNA extraction RIN <7, 280/260 <1.8 or >2.3, RNA 

conc. Or RNA concentration <20 ng/µl across both platforms. No threshold for 230/260 ratios was 

applied, as literature did not suggest a lower limit.  
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2.1.6 RNA Sequencing by Novogene 

Frozen RNA was sent to Novogene™ Ltd (Hong Kong) on dry ice for RNA sequencing. Reports from 

Novogene indicate that sample processing was completed as per  Figure 2-2. 

 

Figure 2-2 - Novogene sequencing and QC workflow - received in personal report. 

Quality control steps are represented in green, with procedural steps in blue.  
 

2.1.7 RNA quality control: Novogene 

Samples were checked for quality control by Novogene by an array of methods at different stages of 

the sequencing pipeline (Figure 2-2). Sample quality control was performed by agarose gel 

electrophoresis and providing samples passed further QC was performed as follows. Sample 

quantitation and purity assessment was performed via Nanodrop. Sample integrity was checked 

with Agilent Bioanalyser 2100. Providing samples passed the quality control, the sample library 

preparation and sequencing was then carried out.  

2.1.8 Library construction and sequencing 

Initially, concerns about the ability to recognise differentially expressed genes because of read 

depth, combined with financial constraints meant that library prep strategies were employed to 

maximise coverage over the known, protein coding PID genes mRNA. This included 8 PBMC samples 

and three whole blood RNA samples (one in duplicate). These samples underwent library 

preparation using Novogene’s mRNA library prep, which captures only the RNA species with a poly-A 

tail and is performed using oligo(dT) beads. These samples were also treated with globin-zero, which 

depletes globin transcripts, reducing the reads mapped to these very highly expressed genes. These 

samples were patient SRB0003, and controls SRBC0001 and SRBC0002. These were sequenced at 

minimum of 40M reads per sample using strand specific paired end sequencing, with 150bp read 
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lengths. All PBMC RNA, from each batch were also prepped using the poly-A mRNA isolation 

method.  

However, after discussion, the importance of non-coding RNA was highlighted as an area of 

emerging interest, given how lack of diagnosis using existing clinical approaches was a factor. 

Moving forward the remaining whole blood samples were treated with ribo-zero kit leaving total 

RNA, and then underwent Novogene lncRNA library preparation (Figure 2-3) and were sequenced 

using strand specific paired end sequencing, with 150bp read lengths as before, but to the greater 

depth of 50M reads, to compensate for the lack of targeted sequencing and resulting reduction in 

mapped read to protein coding genes.   
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Figure 2-3 Novogene lncRNA Library Preparation Workflow - Image provided by 
Novogene in email report. (222) 

 

Once the RNA has been selected in one of the above-mentioned methods, it is fragmented using a 

fragmentation buffer, and cDNA is synthesised using RNA template and random hexamer primers. A 

custom, second strand synthesis buffer is added, which is provided by New England Biolabs Ltd. 

(Ipswich, Mass, USA).  To initiate second strand synthesis, dNTPs, RNase H, and DNA polymerase 1 

are added to this mix. After terminal repair, a ligation and sequencing adapter ligation step is 

performed. Finally, the dsDNA library undergoes size selection and PCR enrichment.  Quality control 

is then carried out at this stage by Novogene using Qubit 2.0 for preliminary concentration, the 

Agilent Bioanalyser 2100 which tests insert size, and qPCR which quantifies the library concentration. 
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The quality-controlled libraries are then pooled and fed into Illumina sequencers to effective 

concentration and data volume expectations. 

 

2.1.9 Whole blood control data – The Genome Tissue Expression Consortium 

Acknowledgement Statement:  The Genotype-Tissue Expression (GTEx) Project was supported by 

the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, 

NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this thesis were 

obtained from dbGaP accession number phs000424.v7.p2 on 28/06/2019. 

 

The Genotype-Tissue Expression (GTEx) project  is an established resource database harbouring 

hundreds of volunteers’ samples from a range of tissues, including whole blood (338). Originally 

established to study the effects of genetic variation on gene expression, the transcriptomic data also 

serves as a valuable resource for other studies looking at expression. RNA is isolated and sequenced 

from deceased donors’ tissue with a low-post-mortem interval time. Whole blood transcriptomic 

data from this database served as the control data for novel splicing event discovery.  

To ensure all data was treated in the same manner, the original raw RNAseq data files were 

downloaded from the control data source (GTEx) as described below. 

Once access was formally granted, appropriate licences were configured for use by the SRAconfig 

tool, part of the SRA toolkit available from NCBI. To avoid downloading unhelpful data, records of 

participants’ samples were collated into Excel 365 (Microsoft, Redmond, USA) file, high priority 

samples were identified by being filtered by age (18-49), a Hardy Death Score which indicates the 

duration, if any, of morbidity preceding mortality) (339) and tissue source.  The scores deemed to be 

applicable for analysis were 1 (violent and fast deaths due to accident) and 2 (fast death of natural 

causes). 

Subsequently, parameters were selected to filter out those samples which: 

• Came from people who had complex and chronic diseases, which were also more likely to 

have disruption in immune system transcriptomes. 

• Came from other tissues than whole blood.  

https://commonfund.nih.gov/GTEx
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113 GTEx samples remained after filtering. The results were then amalgamated in a single file. This 

was submitted as a request detailing “unique SRR identifiers” for instructing SRA file downloads. The 

very large quantities of data needed to be downloaded from NCBI and collating the requisite SRA 

files in the “cart function” expedited this process. The access permission only allows downloaded 

files to be worked on at the pre-designated file location, set when configuring the download option 

in SRAConfig. Files were converted to a fastq.gz, achieved by “fastq dump”, an executable file also 

found in the SRA toolkit. This converter component also split paired end reads into separate ‘fastq’ 

format files.  

The SRA toolkit commands were executed using Windows Powershell – an intrinsic, command line-

driven shell, available in Microsoft Windows Desktop.   

This download/filter step was carried out by Dr J Lord.  

 

2.1.10 Whole blood control data - Splicing and Disease Cohort  

The Splicing and Disease cohort are a group of patients which are part of an ongoing study 

investigating suspected Mendelian disorders and variants of unknown significance. The VUSs were 

identified through the Splicing and Disease research study at the University of Southampton.  

Informed consent was obtained for all patients enrolled onto the splicing studies. Ethical approval 

was granted by Health Research Authority (IRAS Project ID 49685, REC 11/SC/0269) and by the 

University of Southampton (ERGO ID 23056).   

At the time of writing the cohort numbered nearly 196 patients. Filtering needed to be applied to 

ensure controls samples and PID patients were of the same age. All samples selected were over the 

age of 18 and under the age of 65 and had already had their peripheral whole blood sequenced for 

efficiency. The samples were also filtered to remove those which had a known VUS occurring in the 

2020 list of known PID genes (See Appendix A.1). This included SOT063 which had a TP53 VUS, and 

SOT158 which had two TERT variants. 23 samples remained. All RNAseq data were processed using 

the same tools with identical syntax to the PID cohort described in section 2.1.11 
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Table 2-2 Splicing and Disease Cohort 

 

ID AGE Variant Sequencing 
Batch  

Processed 
by 

SOT010 22 NF1 c.1158A>C, p.(=), c.1168_1179del12, 
p.Asn390_His393del 3 

Jenny Lord 

SOT017 62 NF1 c.7832A>G, p.Asp2611Gly 3 Jenny Lord 

SOT018 20 NF1 c.5489C>G, p.Pro1830Arg 3 Jenny Lord 

SOT020 18 NF1 c.4122G>T, p.Gln1374His 3 Jenny Lord 

SOT027 46 BRCA2 c.10249 T>C p. (Tyr3417 His) 3 Jenny Lord 

SOT029 54 BRCA2 c.6935 A>T p.(Asp 2312 Val)  3 Jenny Lord 

SOT033 62 SMAD3 c.802C>T, p. (Arg268Cys) 4  

SOT037 45 BRCA1 c.4987-11T>C 3 Jenny Lord 

SOT040 50 BRCA2 c1127T>G heterozygote 3 Jenny Lord 

SOT043 48 BRCA1 c. 1731 A>G p. (=) 3 Jenny Lord 

SOT045 52 BRCA1 c.4676-8C>G 3 Jenny Lord 

SOT049 64 BRCA2 c. 9502-13 C>G 3 Jenny Lord 

SOT058 19 MED13L: c.2570-4_2574del 4 Jenny Lord 

SOT070 40 DKC1 c.915+10 G>A 4 Jenny Lord 

SOT082 22 FOXG1 c.583C>T 5 Jed Lye 

SOT104 62 TMEM127 c.411T>A, AIP c.317G>A_Arg106His and 
WT1 c.871A>T p.(Ser291Cys) 5 

Jed Lye 

SOT117 51 Clinical diagnosis MEN1 but not confirmed 
molecularly 5 

Jed Lye 

SOT123 40 Negative for NF2, SMARCB1, LZTR1 5 Jed Lye 

SOT130 18 No diagnosis - negative 100KGP 5 Jed Lye 

SOT140 21 No diagnosis - negative 100KGP 5 Jed Lye 

SOT152 46 Polyposis but NAD from 100KG.  5 Jed Lye 

SOT175 23 Suspected connective tissue disease. No specific 
variant. 5 

Jed Lye 

SOT189 30 No diagnosis - negative 100KGP 5 Jed Lye 

Error! Reference source not found. provides details for the control samples used including ID, age, 

variant (if known) processing batch number and operator who processed the data.  
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2.1.11 Data processing 

Table 2-3 - Data processing packages 

Software Name Task Reference 

FastQC v.0.11.3  Pre and post trimming quality control (340) 

MultiQC v1.5 Comparison of quality control metrics to identify outliers (341) 

Trimmomatic v0.3.6 Trimming adapters from reads (342) 

STAR aligner software v2.6.1 Aligning to genome/transcriptome and performing counts (343) 

Samtools v1.3.2 Sorting and indexing of Bam files (344) 

Picard v2.8.3 Read groups added and duplicates marked (345) 

RSEM v1.3.1 Generate gene/transcript counts, isoform percentage metrics (346) 

PCAExplorer Exploratory data analaysis (347) 

ComBat-Seq ComBat-seq (348) 

OUTRIDER Gene expression outlier analysis (132) 

Mendelian RNASeq RNA splicing analysis  (155) 

 

All data was stored on a secured shared drive for research or on a password protected external hard 

drive. Most of the files were uploaded to a scratch folder on the University of Southampton's high-

performance computing cluster, IRIDIS 4. At each stage of file transfer, MD5 sums were checked in 

Linux using ‘md5sum’ command to ensure complete and successful file transfer.  

The data processing pipeline for the GTEx raw data, which had previously been obtained and 

processed by Dr J. Lord served as the initial model for processing the PID cohort data. The present 

study replicates these processes from the point at which fastq files are obtained.  



Methods 

 

61 

 

Figure 2-4 Workflow of GTEx data processing. 
GTEx data was downloaded from the sequence read archive and processed as described 
above with quality control steps performed with Fastqc, before and after adapter 
trimming (see 2.1.12). Fragments per kilobase per million, (FPKM) and transcripts per 
million (TPM) reads counts were obtained using the RSEM package, and STAR was set 
up to give absolute read counts. Details of all of these steps are covered in section 
2.1.14. These steps were performed by Dr. Jenny Lord 

 
 

2.1.12 Trimming of reads and Quality control. 

The fastq files were loaded into Trimmomatic v0.3.6 which was obtained via biobuilds/2017.11 for 

adapter trimming. Adapter sequences were obtained from the Novogene reports and loaded into a 

separate .txt file on the IRIDIS 4 workspace. These were then used as templates to search and trim in 

the fastq files in an attempt to remove the any untrimmed adapters.  Trimmomatic shell script can 

be found in the complete processing syntax in Appendix A.2. Sequence data exists in fastq or ‘fq’ file 

format. This consists of read identifiers, nucleotide base calls, and quality scores delivered in a per-
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base metric. Quality “Q” scores are denoted by Phred scores, which represents the likelihood that 

the base has been incorrectly called. This is achieved with the formula.   

Q = 10 x log10 p 

Once this has been calculated, reads with many low-quality base calls can be excluded or the true 

identity of a base can be determined by comparing many reads spanning the same regions. In-house 

QC was performed using FastQC v.0.11.3 on the unprocessed fastq files stored on the IRIDIS 4 high 

performance computer cluster. Explanations of parameters and example of the analysis of FastQC 

can be found in Appendix A.3. The outputs from FASTQC were then compiled into a single report 

using MultiQC and compared.  

 

2.1.13 Alignment of reads. 

Unpaired reads were discarded, fastq files containing 150bp paired-end reads were loaded into 

FastQC v.0.11.3 once again for QC. Reads were then aligned using STAR aligner software (343) 

V2.6.1, in line with the processing performed by Dr. J Lord on the GTEx data. Reads were aligned to 

GRCh38 reference genome and annotated using Gencode GRCH38.p12 Genome v30 annotation file 

in GTF format. STAR alignment was set to ‘two-pass’ mode for allowing for unmapped reads to be 

mapped to the junctions found on the first ‘pass’. Overall, the parameters for the alignment were 

selected to match those of the pre-processed whole blood RNAseq data obtained from the GTEx, 

performed by Dr. J Lord, which also followed the recommendations for the ENCODE project (349) 

found in the manual for the STAR aligner software (350). The specific parameters can be found in the 

syntax provided in the appendix A.2. The data from output log.txt files of these aligned libraries were 

compared using Microsoft Excel for differences in number of aligned reads and splice junctions 

detected.  

 

2.1.14 Read Counts 

Raw read counts for each gene were obtained from STAR during alignment with the quant mode 

setting (see appendix A.2).  Aligned bam files were then sorted and indexed using Samtools v1.3.2 

(344), read groups were added and duplicates marked using Picard v2.8.3 and finally RSEM v1.3.1 
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was used to generate gene counts, transcript counts, and isoform percentage metrics for analysis. 

RSEM is an accurate and fast read counter, which can act with or without a reference genome and 

was selected over other tools as it provides more options for types metrics for analysis: Gene and 

Transcript level FPKM, TPM and isoform percentage (60). The specifics of these parameters can also 

be found in the syntax provided in the appendix A.2. 

2.1.15 Gene panel 

Gene panels are necessary to reduce data to a manageable size and prioritise research time based 

on known gene associations. Two PID specific gene panels were obtained. The first was comprised of 

a panel of genes, curated by the IUIS, known to have variants which have been a demonstrable 

cause of primary immune deficiency (appendix A.1). This gene panel is regularly updated and 

curated and was acquired from the IUIS (78). This panel was obtained to aid in the variant filtering 

process, and also to filter the RNA events which are linked to the PID symptoms specifically during  

The number of known causal genes which produce PID in patients is increasing annually. Methods 

based purely on filtering events and variants using an existing gene panel are likely to miss new not-

yet-linked genes, which reduces the ability of the investigation to generate diagnosis in the cohort. 

To address this and expand the gene panel, two additional gene lists were combined with the IUIS 

panel. These were firstly the Genomics England list of PID associated genes from the PanelApp (351), 

found in the Genomics England portal (Appendix A.4) and  secondly, the HTG EdgeSeq library prep 

platform’s list of T-Cell specific genes from the Immuno-oncology panel. Eventually a final gene 

panel, submitted by Professor Anthony Williams was included for splicing analysis, known 

henceforth as panel ‘AW’. 

The HTG EdgeSeq Immuno-oncology assay panel was originally developed by HTG™ and designed to 

include 549 human RNA transcripts, known or believed to be involved in the innate and adaptive 

response to cancer. It covers the spectrum of activity from infiltrates to activation to checkpoints. In 

the current research this has been repurposed by isolating a single group of protein coding genes on 

this list which, comprise those genes involved with T-cell activity specifically (Appendix A.5).  

These panels were collated into a list in Microsoft Excel. All entries for “unknown origins and large 

multi gene deletions” were removed and 294 duplicates were removed. The final list of 501 genes 

can be found in appendix A.6 In the event that a diagnosis was not reached with the original IUIS PID 

panel, filtering could be expanded to include genes present in this larger, curated list.  
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2.1.16 Exploratory Analysis of RNAseq data 

Initial exploratory data analysis was conducted using the pcaExplorer (347) package in the R 

environment. Raw read counts and meta data were loaded into pcaExplorer. Metadata for the 

samples consisted of origin (GTEx/UHS), disease state (Control/PID), and batch number (1, 2, 3). 

Information pertaining to the donor’s age and sex were not included in initial exploration as this data 

for the patients had not been provided. Count data was log2 transformed, and the pcaExplorer 

program amalgamated the log transformed data and meta-data into a DESeq data set – the 

parameters of which are highlighted below. 

General information, count data and count data statistics were calculated using the pcaExplorer 

functions. The data was colour-coded on all subsequent images by batch number. 135 samples were 

included in total, which comprised 20 PID patient samples, 2 control samples and 113 selected and 

curated GTEx samples. 58825 transcripts were included which included non-coding genes, microRNA 

genes, and pseudo-genes in addition to the protein coding genes.   

Filters were then applied to data as follows; the threshold on the row sums of the counts was set to 

a value of 1, and a threshold row mean value was set as 1. This was to prevent completely 

unexpressed genes from being included, and genes which expression was so low that statistical 

interpretation would have been inaccurate.  

A two-dimensional principal component plot was then produced using the pcaExplorer function, and 

95% confidence interval ellipses were included to demonstrate clustering based on principal 

components.  

A scree plot for the top 8 principal components was produced to demonstrate the contribution of 

each principal component to the overall variance between the samples, and another for the 

cumulative variance explained by the principal components.  

Next the data was explored using the principal component by gene function. A 2D plot showing 

projections of gene abundances onto pairs of components, with samples as biplot variables. This 

allows the identification of genes or groups of genes which have particular impact on the top and 

bottom loading of the principal components investigated. Some of those genes contributing in the 

greatest way to the variability were investigated. Violin or boxplots were produced to visualise the 

differences between batches and help explain the variability between groups.  
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2.1.17 Differential gene expression  

2.1.17.1 Gene expression Z-score calculation 

All patient and GTEx FPKM values were calculated from reads obtained from RSEM (as described 

above). These were compiled into Microsoft excel spreadsheets and then filtered into data for IUIS 

tables of known causal PID genes. The mean, standard deviation and Z-scores were calculated for 

each patient. Z-scores were calculated using the Excel function ‘STANDARDIZE(X, mean, 

standard_dev)’. 

𝑍 =
𝑋 − 𝜇

𝜎
 

Where Z = standard score, 𝑋 = observed score, µ = mean of sample   σ = standard deviation of 

sample.  

Subsequent to this Z-score calculation, the raw reads were corrected using ComBat-seq. The batch 

corrected data was re-visualised using PCaExcplorer. TPM values were used to replace the FPKM 

values, as literature suggested these may provide more robust results.  Z-scores were calculated 

using data for only PID patients and two control samples (SRBC0001 and SRBC0002) with GTEx data 

excluded.  

To visualise results, colour coded conditional formatting of red – green for low to high, was applied 

to the table rows (gene wise) in the case of the TPM values, and sample wise in the case of the Z-

scores. This was to show the spread of the data for each gene and identify gene expression outlier 

candidate genes per sample respectively.  

The resulting tables of Z-scores were collated into a single table, and a conditional formatting 

threshold of Z>3 was applied, to highlight overexpression outliers for each sample.  

These were tallied using the Excel count function and plotted onto a bar chart to show the frequency 

of outliers in each sample, in each scenario: With GTEx or without GTEx as controls.  

2.1.17.2 OUTRIDER 

OUTRIDER provides an outlier gene expression detection platform (352). The OUTRIDER 

environment for the R package was installed on a locally hosted version of R/4.0.0 in the author’s 

local ./scratch drive on the IRIDIS HPCC.  
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To validate the proper functioning of OUTRIDER, the developers test dataset with positive controls 

was used to run the program. The analysis and results from this dataset are demonstrated in the 

user walkthrough. The dataset itself is contained within the program as a system file. The OUTRIDER 

program was run using the standard syntax which can be found in Appendix  A.6 .  The output was 

then cross-referenced with the output found in the manual as positive controls to validate the 

functionality.  

Raw RNAseq count data was combined from the Splicing and Disease Cohort and the Primary 

Immunodeficiency Cohort in the form of a text file. This was uploaded to the remote scratch server 

on Iridis4 HPCC at the University of Southampton. Using the programming language R (version 4.0.0-

cairo) The OUTRIDER software was used to process the data to identify aberrant expression outliers. 

First an OUTRIDER data set (ODS) was created using the count data and meta data which included 

cohort information (Splicing and Disease or PID) and the batch number, of which there were two for 

the PID cohort and 3 for the Splicing and Disease cohort. Using the Gencode v30 annotation dataset, 

FPKM values were calculated, and non-expressed genes were marked in OUTRIDER. The distribution 

of these counts was plotted, and statistics for expressed genes were visualised in a graph using the 

option for this in the OUTRIDER program. Heatmaps were produced to show the level of batch effect 

within the dataset, with the metadata groups marked by colours. Using OUTRIDERS noise correcting 

autoencoder, confounders were then controlled for using the default values of q= 20 and iterations 

=15. After this process the heatmap was re-plotted to demonstrate successful batch correction. The 

negative binomial model is then fitted to the data to identify outliers, p-values are calculated, and 

for reference the program was also instructed to compute Z-scores. The package gives the option to 

rank samples by the number of outliers or aberrantly expressed genes. Outlier samples were 

identified from the dataset and removed. Using the options in OUTRIDER, results were printed to a 

csv file, and Volcano plots were produced for each PID sample. In addition, graphs for expected vs 

observed counts, QQ plots, and ranked expression were produced for genes of interest, based on 

results from the analysis or clinical diagnostic information given to the researcher. Results were 

cross referenced using the IUIS panel of genes known to cause PID, the GECIP panel of genes known 

to cause PID, HTG EdgeSeq Immuno-oncology panel (T-cell specific and in its entirety) and also a 

curated list of genes with statistically significant changes in naïve CD4+ T-cell stimulation, acquired 

from the DICE database and filtered for significance by the researcher. For reference and to give 

context to fold change values extracted from the DICE database, the values of the full curated list of 

these CD4+ T-cell genes were also plotted into a graph using Microsoft Excel. 
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2.1.18 Aberrant splicing - Mendelian RNAseq program  

Cummings et al. developed a novel method for the detection and comparison of alternative splicing 

events using RNAseq data. A description of the code, use case, syntax and file structure were all 

found on the MacArthur laboratory blog (353) and GitHub page (354), although these have since 

been removed. The syntax for the tool requires an input of RNAseq reads in the format of sorted and 

indexed bam files, with read groups added and duplicates marked. Appropriately processed bam 

files were uploaded to the IRIDIS 4 high performance computing cluster at the University of 

Southampton.  

These steps were performed by Dr Jenny Lord on the GTEx data, who kindly forwarded the outputs 

and the necessary syntax to join these with the outputs of the discovery steps from the samples in 

the current study. The Cummings’ syntax also requires a gene list for input which contains the gene 

symbols, gene IDs, strand information, location coordinates, chromosome number and gene type. 

The exact syntax used by Cummings et al. for developing these lists was not made publicly available, 

however results from the control dataset were replicated exactly using an equivalent Python script 

developed by Dr J. Lord. This script stripped the relevant columns from the Gencodev30 annotation 

.gtf file and merged them into the specified format required by the syntax.  

 

Figure 2-5 - Gene list file structure. Columns shown are GeneID, ensemble gene 
identifier, strand information, chromosome number, start position, end 
position, and gene type.  
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2.1.18.1 Splice junction discovery, normalisation and junction filtering  

Discovery 

Reads obtained from the process of RNA sequencing are aligned to a reference genome using 

alignment tools. One such tool, STAR, is a ‘splice-aware’ aligner. This tool compares the continuous 

sequence of a read with that of the genome and matches them based on quality control metrics 

determined by the user.  When this tool finds a sequence for which two sections align to two 

locations in the genome, the aligner identifies this as a splicing event, (with particular quality control 

parameters).  

The Mendelian RNAseq splicing tool acquires and combines the splicing data contained in inputted 

bam files, such as genomic coordinates, gene ID, number of samples in which it was observed, total 

number of reads supporting the junction in all control and patient samples combined and per 

sample, and compiles this into a multi-sample splicing dataset for interrogation.   

Normalisation 

The normalisation step of the workflow is performed by executing a section of syntax comparing the 

read support (number of reads spanning the splicing event) in each sample with the read support for 

the highest shared wild-type annotated junction within the whole dataset. Figure 2-6 demonstrates 

this process. The wild-type splice events are exon junctions A-B, and C-D. An exon skipping event can 

be seen to take place between A-D. The relatively small number of supporting reads for A-E may be 

indicative or this event likely being due to mapping noise, although other explanations exist. The 

exon-exon junction event is normalised by the maximum read support of a shared exon-intron 

junction annotated in Gencode v30. In this example, 200 reads support the exon skipping event, and 

the exon-intron junction, which is annotated and shared, have 100 and 300 support. As the 

maximum is 300, 200/300 gives the normalised value (0.66) which supports the event. The 

normalised read value of A-E = 3/300 = 0.01.  

Filtering 

Due to the extremely high number of events and the low likelihood of pathogenicity, multiple 

filtering steps of those events were conducted based on different strategies. This was performed by 

running the Mendelian RNAseq program filtering syntax (155). The stringency of the various 

strategies could be relatively low, as the events explored would be later filtered by the gene panel. 
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The aim of the filtering process was to reduce the events to a manageable number for follow-up 

analysis using IGV (15 events or less), to identify events which were unique or seen almost nowhere 

else, to identify those that were likely to be pathogenic.  

Filtering was performed and repeated using varying sets of parameters within the program which 

made use of metrics including absolute read support, normalised read support, the number of 

samples in which the events occurred, events which only occurred in a specific sample, read 

support/ normalised read support being highest in a specific sample, and the ratio of normalised 

read support between the highest samples and the next highest sample.   

Results from these filtering steps were downloaded as .txt files, compiled in Microsoft excel and 

cross-referenced with identified gen panels to identify splicing events in gene which may be 

causative of the phenotypes observed. Finally, these events were investigated through manual 

inspection of the aligned transcriptome reads using interactive genome viewer (IGV)(355). 

 

Figure 2-6 - Splice junction normalization visualised.  

 Figure depicting the normalisation process in the case specific to heterozygous exon 
skipping. Figure appears in Cummings et al. 2018 (155) 
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2.2 Immunosenescence investigation 

2.2.1 Patient enrolment and patient data collection 

Ethical approval was granted by South Central Hampshire Research Ethics Committee. COVID-19 

point of care study REC reference was 20/sc/0138, granted March 16th, 2020. Influenza point of care 

study REC reference was 17/sc/0368, granted September 7th, 2017. Written informed consent was 

obtained from patients. Demographic and clinical data were collected at enrolment, outcome data 

was collected from case notes and electronic systems. ALEA and BC platforms were used for data 

capture and management.  

Studies were registered with ISRCTN trial registry.  COV-19POC registration took place on 18th March 

2020; ISRCTN14966673, and the FluPOC registration took place on November 13th, 2017; 

ISRCTN17197293. The COV-19POC study was non-randomised interventional trial in adult patients 

presenting to hospital with suspected COVID-19. The study was to evaluate clinical impact of 

molecular point of care testing using QIAGEN QIAstat-Dx Respiratory SARS-COV-2 Panel on the 

QIAstat-Dc PCR testing platform (356).   The COV-19POC molecular point of care trial took place from 

20th Marc to 29th April 2020. All patients were recruited to acute areas of Southampton General 

Hospital. The FluPOC study was a randomised controlled trial to evaluate clinical impact of molecular 

point of care testing for adults hospitalised with acute respiratory illness, during influenza season. 

Testing was performed with Biofire FilmArray platform with Respiratory panel 2.1 (357). The trial 

was conducted during 2017/18 and 2018/19 during the influenza seasons. The multicentre trial was 

conducted at Southampton General Hospital and Hampshire County Hospital. All participants were 

recruited within the first 24 hours of admission to hospital, and prior to any treatments. 
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2.2.2 Data processing  

Table 2-4 Software packages 

Software Name Task Reference 

FastQC v.0.11.3  Pre and post trimming quality control (340) 

MultiQC v1.5 Comparison of quality control metrics to identify outliers (341) 

Trimmomatic v0.3.6 Trimming adapters from reads (342) 

STAR aligner software v2.6.1 Aligning to genome/transcriptome and performing counts (343) 

Samtools v1.3.2 Sorting and indexing of Bam files (344) 

Picard v2.8.3 Read groups added and duplicates marked (345) 

RSEM v1.3.1 Generate gene/transcript counts, isoform percentage metrics (346) 

PCAExplorer Exploratory data analysis (347) 

PandaOmics Gene expression outlier analysis (132) 

Salmon RNA splicing analysis  (155) 

BANDITS Relative abundance calculation (360) 

ToppGene Pathway and processes (361) 

scikit_learn Data engineering and regression (362) 

Matlab™ R2020b Classification machine learning (363) 

Statsmodels 0.14.0 p-values were determination for regression (364) 

EnhancedVolcano Volcano plot production (365) 

UpSet (366) Upset plot production  (366) 

 

2.2.3 RNA extraction and sequencing 

Peripheral whole blood was collected in PAXgene tubes and total RNA was isolated using the 

PreAnalytix PAXgene Blood RNA kit according to manufacturer’s protocol. Extractions were 

performed in containment level 3 Tripass Class 1 hood, and RNA isolates were stored at -80°C. 

Cytoplasmic, mitochondrial rRNA and globin mRNA were depleted using QIAseq FastSelect-

RNA/Globin kit from Qiagen, with fragmentation interval of 7 or 15 minutes. Library preparation was 
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performed using the NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina® (New England 

Biolabs), with 11 or 13 amplification cycles using AMPure XP beads. Quality control steps were 

performed using the Qubit and 2100 Bioanalyser from Agilent.  

Libraries were then pooled to obtain equimolar ratios. Sequencing was performed using 150bp 

paired end reads on a Illumina®  NovaSeq 6000 (Illumina®, San Diego, USA).This step was performed 

by Centre for Genomic research at the University of Liverpool 

2.2.4 Trimming and Alignment with STAR – Performed by Dr. J. Lord  

Illumina adapter sequences were trimmed using Cutadapt v1.2.1 (358) and reads which matched the 

adapter sequence by 4 or more bp was trimmed off and read sections with minimum window quality 

of 20, any reads left with less than 10bp total were also removed. Read data was then processed 

using FastQC (v0.11.9) and compiled into MultiQC (v1.5)(341). A lower limit on total sample read 

depth filter of 20 million was applied, all samples under this threshold were excluded from further 

analysis. Reads were aligned to the human genome version GRCh38, with Gencode annotation v34, 

using STAR aligner v2.7.6a. Alignment was performed in two pass mode, and according the Encode 

standard setup options in the STAR manual (Dobin and Gingeras, 2015). Resulting Bam files were 

sorted and indexed using Samtools (v1.8) (344). 5 influenza patients did not pass minimum 

sequencing depth thresholds of 20 million reads, 2 COVID-19 patients were excluded due to having 

seasonal Coronavirus and two were excluded due to having underlying chronic lymphocytic 

leukaemia. In total 78 patients with COVID19, and 83 patients with Influenza passed filtering for 

further analysis. Statistical analysis of baseline clinical characteristics was performed, and no 

statistically significant differences exist between the cohorts for age or sex.  

 

2.2.5 PcaExplorer 

Exploratory data analysis was performed to compare the cohorts’ transcriptomes using PCAexplorer. 

Raw gene expression counts were loaded into pcaExplorer and log2 transformation was selected 

before analysis was started. PCAplots with 95% confidence interval circles produced, along with 

scree plots, showing the representative contribution of each principal component. This process was 

the repeated, excluding all participants over the age of 65 years. After top differentially expressed 
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genes were determined using Pandaomics (Paragraph 2.2.6), some of these genes were then 

stratified by age and plotted to show difference in expression between the cohorts, with advancing 

age.  

2.2.6 Pandaomics – Differential Gene expression between infections 

The expression patterns of the host’s genes in the blood were assessed to given insight into 

differences in pathogenicity. Pandaomics software was selected for its easy-to-use end to end 

application, and molecular topology aware algorithms which prioritise upstream changes in gene 

expression, as well as those of greater magnitude (359). The tool uses the “limma” statistical 

software  which incorporates linear modelling and empirical bayes moderation (360) The software 

however is incompatible with ensemble gene id’s with version numbers, and also cannot be used 

with transformed data, and instead requires raw gene count data.  From the STAR outputs 60669 

genes were output, after removing all version numbers from the data, 45 duplicates were also 

identified by the software which were removed before proceeding. Raw counts for 60624 genes 

were loaded into Pandaomics software with associated metadata consisting of sample ID, Infection 

type (Flu/Covid), sex and age. No further data engineering was performed with the Pandaomics 

software. Differential gene expression and associated pathway analysis was conducted automatically 

on the data using PandaOmics tool, and the most differentially expressed genes and associated 

pathways data were downloaded as CSV files.   

2.2.7 Transcript Counts – Salmon Tool 

Transcript counts were generated using the tool, Salmon as this program was isoform aware and not  

computationally intensive (159). Genome build38, and Gencode v.34 annotation. Selective 

alignment method was used for assigning and reads which gives high accuracy without sacrificing 

computational speed. This involves the creation of a combinational genome/transcriptome index file 

referred to as a ‘Gentrome’. This was conducted using the Alevin tool protocol developed by the 

Combine lab (361). Quantification was performed using the script found in appendix A.8. Transcripts 

equivalence classes were used to estimate transcript abundances. Equivalence classes represent the 

number of different transcripts to which fragments in a specific class map. In many cases this allows 

accurate determination of the relative abundance of specific isoform, however with increasing 

isoform complexity, the ability to accurately discern the transcript of origin decreases.  
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This step was subsequently repeated and optimised by Yaron Strauch. Specifically, the results 

henceforth pertain to those obtained using the same methods with Gencode annotation version 39 

which was used whilst packaging the tool as a product for commercial application.  

2.2.8 DTU use between infections – BANDITS Tool 

Salmon transcript counts were loaded into the BANDITS software (362) to compare the relative 

abundance of transcripts between infections. Pre-analysis filtering of data was performed using the 

default BANDITS configuration. Transcripts were excluded if they; a) represented a proportion less 

than 0.01 of total transcripts, b) had less than 10 counts, c) were from a gene which had less than 20 

counts total.  

BANDITS produces two sets of results, those at gene level and those at transcript level. P-values are 

produced and adjusted using Benjamini-Hochberg correction. In addition, inverted p-values are 

provided which vary only when the dominant transcript remains the same in both groups despite 

abundance changes. This is calculated by taking the square root of p-value which results in an 

inflated value. This is performed to give priority ranking in results to those results in which 

differential splicing results in the change of a dominant transcript. The BANDITS software also 

produces a novel metric denoted as ‘DTU measure’. This is intended to measure the intensity of the 

DTU change, similarly, to fold change quantification in differential expression analysis. DTU measure 

represents the sum of absolute difference between two most expressed transcripts between the 

groups. A value of 0 indicates proportions are identical whereas 2 represents different transcripts 

always being used. BANDITS further gives precision information for mean and sd, higher precision 

parameters indicate lower sample to sample variability in these values.  

The results metric Max_Gene_Tr.p-value  and  Max_Gene_Tr.Adj.p-value are conservative hybrid p-

values. These are the maximum between gene and transcript level p-values, adjusted respectively. 

Transcripts are only considered significant if the corresponding gene is also significant. Means and 

standard deviations are also delivered. The full R script for BANDITS appears in appendix A.9. 

Results were filtered by adjusted inverted p-values <0.05 and these values were plotted against the 

BANDITS unique DTU measure using Microsoft Excel.  
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The isoform ratios of the top 20 differentially spliced genes as ranked by DTU measure were then 

plotted in stacked column charts to demonstrate the relative abundance of each isoform irrespective 

of gene expression changes.  

2.2.9 GO analysis of results 

To understand which pathways were differentially expressed and which were alternatively spliced, 

the list of isoforms which experienced differential transcript use was converted to lists of genes from 

which they originate. ENSG id’s from this list and the differentially expressed genes list were pasted 

into ToppGene enrichment analysis online tool (363) with the following parameters. ‘Probability 

density function’ was selected for P-value method, Bonferroni correction was selected, 0.05 p-value 

cut-off and gene limits were 1 and 2000 for lower and upper respectively.   

Go terms were retrieved from the ToppGene output and pasted into Revigo tool (364) version 1.8.1 

to produce graphs of the enriched biological processes. The option for ‘large lists’ (includes a higher 

percentage of results), was selected when using genes, but ‘small lists’ when using isoforms, as some 

filtering was needed on the larger lists of isoforms to make the data manageable. The option to 

remove obsolete terms was set to yes. Semantic similarity for the graph was set to default ‘SimRel’.  

The Revigo tool only allows for a maximum of 2000 GO terms to be input, which was exceeded by 

both sets of isoforms’ associations. Only the top 2000 GO terms were included in the analysis. 

This was repeated for both gene specific pathways and isoforms specific pathways for each 

infection.  

 

2.2.10 Multiple regression performed using Python. 

Feature engineering  

Both gene expression and relative isoform abundance were regressed from age. Initially gene 

expression TPM’s were calculated from raw reads-per-gene values, originally obtained during the 

STAR output files during mapping process. This was performed in Microsoft excel using the formula.  

𝑅𝑃𝐾 𝑜𝑓  𝑖 =
𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝑖

𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒𝑠 𝑜𝑓 𝑖
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𝑇𝑃𝑀 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑖 =
𝑅𝑃𝐾 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑖

(∑ 𝐴𝐿𝐿 𝑅𝑃𝐾𝑆)/1,000,000
 

 

(Where i denotes any gene of interest) 

 

 The relative isoform abundances were calculated by stripping transcript level counts for all 

transcripts from each gene, combining them into a .txt file, and deriving relative abundances in 

Microsoft Excel, by summing all the transcript reads from a gene and dividing this by the value 

assigned to each transcript.  

These two steps were subsequently optimised for commercialisation by Yaron Strauch during 

packaging for commercial applications and now occurs automatically during feature engineering 

using a python script. The TPM values are instead calculated from summing all transcripts reads from 

various equivalence classes from produced by Salmon instead of counting directly to genes using 

Star. All results henceforth are derived using this optimised method. 

Using the python package scikit_learn, data engineering and regression-based ML was performed, 

and p-values were determined using the statsmodels package. Missing CRP-values for 7 patients 

were filled using clinical phenotypes-based regression which included age, white blood cell count, 

neutrophil count, and lymphocyte count trained on the remainder of the influenza cohort. 10-Fold 

cross-validation was used to validate this procedure.  

Filtering was applied for any features with a single value across the dataset. One-hot vector 

encoding was used to represent categorical data. A standardisation step was performed for all 

transcript features by subtracting mean and dividing by standard deviation. 

To identify transcriptome changes associated with advancing age in the two cohorts, multiple linear 

regressions were performed to regress engineered transcriptomic metrics (isoform abundance or 

gene expression TPM) from the confounding factors age, sex, white blood cell count, neutrophil 

count, lymphocyte count, C-reactive protein levels, Diabetes status, immunosuppression status, 

smoking status, presence of cardiovascular disease, and presence of respiratory disease. A total of 

60669 gene and 207749 transcripts were regressed. 
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The alpha intercepts and beta coefficients were extracted using scikit-learn, and ordinary least 

square regression provided by statsmodels was used for P-value quantification. 

Beta coefficients values describe the nature of the relationships between dependent and response 

variables and allow comparison between experiments. The beta coefficient values for gene 

expression and isoform abundance were extracted and printed to .csv.  

The linear regression steps were performed by Yaron Strauch. 

For each infection, features with a beta coefficient value of zero were removed and histograms were 

plotted to show the distribution of beta-coefficients representing association between age and both 

gene expression and relative transcript use. Significant associations were determined and filtered for 

with p-value threshold of 0.05 using Microsoft Excel.   

Beta coefficient values for significant changes in isoform abundance were plotted against the –log10 

P-value, in modified volcano plots. Using the R package EnhancedVolcano (365). This process was 

then repeated for splicing factors. The list of splicing factors was taken from the previous work 

conducted on splicing abundance by Lye et al. 2019 (314).  For each infection, those genes which 

showed statistically significant changes in expression with age were compared with those which 

underwent changes in isoform abundance with age and the results were represented in Venn 

diagrams. 

2.2.11 Classification 

To understand if transcriptomic signatures in peripheral whole blood could be used to automatically 

distinguish between infections, machine learning classification algorithms were employed. The top 

100 most differentially expressed genes between the infections, as identified by Pandaomics, were 

selected as features and classification machine learning was performed using Matlab™ R2020b, with 

the infection type as a response. Multiple types of classification models were used and compared. 

Classification was conducted for the cohort using the follow models: fine tree, medium tree, Coarse 

Tree, Linear discriminant, Logistic Regression, Gaussian Naïve Bayes, Kernel Naïve Bayes, Linear SVM, 

Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse Gaussian, Fine KNN, 

Medium KNN, Coarse KNN, Cosine KNN, Cubic KNN, Weighted KNN, Boosted Trees, Bagged Trees, 

Subspace discriminant, Subspace KNN, RUSBoosted Trees.  To ascertain if the age of the cohort, and 

so the ageing of the immune system, affected the ability of these algorithms to distinguish between 

the transcriptomic profile of those infected a series of repeats were conducted. The classification 
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was conducted for the entire cohort, and then for each of the following age restricted subsets; <81 

years old, <71 years old, <61 years old, less than 51 years old, >30 years old, >40 years old, > 50 

years old and > 60 years old. The peak performance of each model, for each respective cohort was 

recorded. Cumulative peak performance values and mean peak performance values for all models 

for each age restricted cohort was then calculated to show the overall performance of machine 

learning classifier models for each cohort subset to show how infection classification prediction 

performance varies with age of cohort.   

 

 

2.2.12 Lasso Regression for age prediction – Coding performed by Yaron Strauch. 

To produce disease transcriptomic ageing clocks, which are not splicing agnostic but incorporate 

both types of features (gene expression and relative isoform abundance) the gene expression TPM 

data and relative isoform abundance proportion data were used as independent features to predict 

age.  

Further data engineering and Machine Learning was performed with the python package scikit-learn 

(366). Features with one distinct value across the entire dataset were dropped. 200,000 features 

were pre-selected by performing f_regression (f-test) of features and ranking by score. 

All 200,000 features were standardised by subtracting mean and dividing by standard deviation. 

15,000 lasso regressions were fitted for evenly distributed α values between 0 and 4 inclusive; low α 

values select for more features, high α values drive more beta coefficients towards zero. For each α, 

a lasso model was fitted and non-zero values are extracted. 4-fold cross validation was performed 

whereby the model is trained one ¾ of the data and tested on the remaining ¼. The mean and 

standard deviation of the training split was recorded, and the data is standardised using these 

parameters. A model is then fitted, and the mean average error (MAE) root mean squared error 

(RMSE) and R^2 is recorded. The lowest MAE from each set of features was recorded and a linear 

model was then fitted on the corresponding feature set for all data.  

 

To assess the potential overfitting of the best performing model, the mean absolute error values of a 

subset of all the models were plotted. This subset consisted of the best performing algorithm for 
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each set of features. To produce this subset, the alpha with lowest RMSE for each subset of features 

was written to CSV. Graphs were produced to show the numbers of isoforms abundance changes 

and genes expression changes which were most predictive of biological age in the disease cohorts.  

2.2.13 Analysis of features 

We hypothesised features with each individual disease-specific ageing clock might be similar, 

indicative of non-disease related ageing biomarkers, the features of each algorithm were compared 

to identify any similarities and examined to understand contribution of expression changes and of 

splicing changes in the feature list. 
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Chapter 3 Results: Investigation into the transcriptome of 

patients with primary immunodeficiencies –gene expression 

 

3.1 Introduction 

Gene expression outlier identification was investigated as a modality for identifying causal variants 

in the Primary immunodeficiency cohort. Control datasets included the pre-selected, GTEx dataset of 

113 samples, the Splicing and Disease cohort, and the two healthy controls included in the 

sequencing of the PID cohort. Quality control steps were performed as every stage to ensure date 

integrity and reliability as described in the methods chapter. Z-score calculation and subsequently 

the OUTRIDER tool were identified in the literature as potential methods for outlier detection, and 

these were employed to interrogate the datasets as described in the methods sections. This chapter 

presents the results of quality control steps, the exploratory data analysis, and the testing of the 

different methods, with some follow up investigation of results.  

3.2 Result from the quality control steps. 

Quality control steps were performed as every stage to ensure date integrity and reliability as 

described in the methods chapter.  

The quality control steps performed at Southampton General Hospital indicated that the RNA yield 

for sample SBR00001 (19.4 ng. dl-1) appeared to be just below our pre-defined threshold (20ng.dl-1). 

However, this sample was still progressed to sequencing with the caveat that it could be removed 

from analysis steps if it appeared to be an outlier or skewed/affected the latter results. Sample 

SBR0004 failed quality control steps twice by a large amount and was removed from the study. 

Sample SRB0001, along with SRB0013 and SRB0014, were also ‘QC flagged’ for RNA quality and 

amount by Novogene during quality control, as they may produce low quality data due to low yields 
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and RIN values. It was decided the project should proceed with analysis of these samples, but they 

could be excluded from statistical models if necessary. 

MultiQC results from the prepared RNAseq libraries reflected low number of reads in two healthy 

control samples and SRB0003 which is expected due to lower sequencing depth for these first 

samples. However, SRB00014 also flags as having less than 10M reads. It was noted that the earlier 

RIN value for this sample was below acceptable threshold and so this low sample quality probably 

contributed to the low read numbers.  

After adapter trimming, MultiQC analysis highlighted further outlier characteristics with SRB0001, 

which had an 82.3% sequencing duplication percentage, 24% higher than the next highest sample, 

which was at 58%, and was also an outlier for GC content (Figure 3-1). High GC content combined 

with duplication levels is often indicative of adapter contamination (A.3). 

  

 

Figure 3-1 PID patient MultiQC comparisons; GC content vs Duplication percentage 
Duplication percentage along the X axis and GC percentage along the Y axis both shows 
SRB0001 to be an outlier when compared the rest of the samples.  
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Inspection of combined results in MultiQC after trimming of residual adapter presence for all 

samples, however this is not uncommon. The GC content trace for sample SRB00001 had an irregular 

distribution compared with the other samples; specifically, it appeared to have lower percentages of 

samples with 40% GC content, SRB001 also had the highest peak in adapter content. 

3.2.1.1 RNAseq read alignment results. 

Post alignment QC was performed by comparative analysis of log.out.final files created by the STAR 

aligner program. Sample SRB0001 displayed severe lack of quality alignment via a number of 

metrics. Sample SRB0001 had only 27% uniquely mapped reads, about 66% less than the mean, 

compared to ~ 50% for the next lowest sample. SRB0001 also had 10x as many reads mapped to 

multiple loci as some other samples, this equated to 58%. There were no other significant outliers in 

any category. Sample SRB00013 and SRB00020 were flagged as having greater than 1% reads 

mapped to too many loci, however they were only just above threshold for flagging (1%) and did not 

warrant discontinuation of investigation. 
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3.3 Exploratory data analysis  

PcaExplorer is a software package for the programming language R (367). This package was used for 

the exploratory analysis of the RNAseq data and as a first pass to assess the utility of the control 

datasets. Through the quality control and alignment steps, the number of uniquely mapped reads in 

the PID cohort appeared to be between 31M and 63M. After pcaExplorer filtering which removes 

low expressed genes based on thresholds described in the methods section, the total number of 

reads per samples was dramatically reduced. A graphical representation of post-filtering read counts 

can be seen below in Figure 3-2. There were less than half of the original number of reads in some 

cases. The PID group for example appears to have 15-25M reads per sample once lowly expressed 

genes are filtered out. The overall variability in aligned read counts is much higher in the GTEx group 

of 113 samples. Basic statistics for all samples were automatically generated from read count data 

(Table 3-1).  

 

 
Table 3-1 Basic descriptive statistics for read depth. 

Minimum  1st quartile Median Mean 3rd Quartile  Maximum 

7.618  17.729 22.304 22.746 27.405 45.661 

 

The majority of the PID samples were around or below the mean and median values for the reads 

per sample across all groups. There is enormous variability of the GTEx dataset seeming to range 

from <10M to >45M reads. 

Principal component analysis (Figure 3-3) presents the GTEx samples as clustering completely 

separately from the PID or healthy control samples, with no 95% confidence interval overlap 

between datasets. The separation of the data was by a very large margin in terms of principal 

component 1, and there was greater in-group variability in the GTEx data than between the PID data 

and controls, regardless of batch or initial sequencing depth. Principal component 2 displayed 

greater differences within the group in GTEx data than between GTEx and PID/control data. Scree 
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plots (Figure 3-4) show that the variance caused by PC1 is almost 10 times as large as the variance 

caused by PC3.   

 

 

Figure 3-2 Reads per sample: GTEX and PID 
Sequencing depth of the samples, Group 1 (red) comprises the two control samples 
which were produced and extracted internally and patient SRB0003, group 2 (green) 
includes all of the remaining 19 PID patients and group 3 comprises the 113 GTEx 
samples. Few PID samples have more than 20M reads per sample.  
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Figure 3-3 PCA plot of GTEx and PID RNAseq data 
A principal component analysis of filtered and transformed RNAseq data. Group 1 (red) 
comprises the two control samples which were produced and extracted internally and 
patient SRB0003 prepared using Poly-A enrichment library preparation methods, group 
2 (green) includes all of the remaining 19 PID patients using lncRNA library prep 
methods and group 3 comprises the 113 GTEx samples. 95% confidence interval ellipses 
were included to demonstrate clustering based on principal components. 
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Figure 3-4 Scree plot for PCA analysis of GTEx and PID RNAseq data 
The first principal component accounts for over half of all of the variability between 
samples and is almost five times as much as the next largest principal component. PC1 
also contributes double the total variance which is contributed by the next seven 
principal components combined.  
 

3.4 Outliers in gene expression: Using FPKM values and Z-scores. 

Quantifying gene expression for mendelian disease has previously been successfully performed using 

RPKM and Z-score calculation (210). The present analysis uses FPKM (fragments per kilobase per 

million) values, an almost identical metric which takes into account the paired end read sequencing 

method. Outliers in gene expression for FPKM PID data were calculated using Z-scores in Microsoft 

Excel. Conditional formatting was applied to Excel spreadsheets containing the Z-scores for each 

gene, in each PID panel, for each patient. In this intermediate processing stage, each sample was 

represented by a vertical columns, and conditional formatting was applied to each vertical column, 
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where the highest values were green and the lowest values were red. Visual inspection of the PID 

table spreadsheets at this interim stage showed clear and strong systematic effects on Z-scores; for 

some genes all PID samples were statistical outliers (Figure 3-5). The effect of this skewing could also 

be visualised by the FPKM heat-map (before Z-scores were calculated) which included the mean 

values for the GTEx. These horizontal correlations were almost exclusively occurring when the GTEx 

mean was a clear outlier compared with the samples plus controls. In addition, there were a high 

number of outliers (z>3) per sample (Figure 3-6).  

 

Figure 3-5 Example image of Z-score tables (excerpt from table 1 shown) with GTEx as 
controls. 

A) Each column represents a sample. B) Each row represents a gene, the gene which 
arrow B points to shows an example of the horizontal correlations in Z-scores, as all 
samples are highlighted red (low expression) indicative of skewing of PID Z-scores by 
the GTEx. data C) Yellow highlighted boxes represent expression outliers 
(overexpression Z>3). 
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Figure 3-6 Number of overexpression outliers obtained from Z-score calculations with 
the GTEx data included as controls. 

The graph shows the number of outliers (overexpression, z>3) on a sample wise base, 
with all GTEx values included in the calculations but not included in the chart. These are 
calculated from the PID IUIS panel, made up of 413 genes. This indicates that in some 
cases (SRB00002) the outliers make up around 8.7% of genes.  

 

Due to the clear effects on outlier status caused by inclusion of GTEx data, this control data set was 

removed from subsequent Z-score calculation, and the spreadsheets were re-calculated (Figure 3-7). 

The skewing of data was absent, and correcting the systematic bias also resulted in a greatly reduced 

number of gene expression outliers across the PID samples (Figure 3-8), these were now at levels 

which could be investigated individually. SRB003 had unusually high numbers of expression outliers 

(n=26) compared to the other samples. Under-expression outliers were not readily detected in the 

PID datasets, however; Only 1 under-expression outlier was present. This occurred in sample 

SRB0001 (not shown). The Z-score outliers found using this method were presented to the clinician 

responsible, Professor Tony Williams. The results (Table 3-2) did not appear to show changes in 

expected genes in patients with known diagnosis, nor did they reflect any known associations to 

phenotypes in patients with only clinical phenotype data. It was suggested that alternative methods 

should be devised, and an alternative control group should be established if possible. 
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Figure 3-7 FPKM and Z score table except: GTEx data not included in calculation. 
A) Each column represents a sample. B) Each row represents a gene, the gene which 

arrow B points to shows an example of the horizontal correlations in Z-scores, as all 
samples are highlighted red (low expression) indicative of skewing of PID Z-scores 
by the GTEx. data C) Yellow highlighted boxes represent expression outliers 
(overexpression Z>3). 
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Figure 3-8 Over expression outliers present with GTEx control data excluded. 
This graph shows a greatly reduced number of expression outliers per sample, as would 
be expected from a heterogenous population. This is the case with the sole exception of 
SRB003 which has an increased number of expression outliers. 
 

  

Table 3-2 FPKM Z-score outliers from PID cohort 

Sample Genes with 
TPM based 
expression 
outliers  

Z-scores for genes  Diagnosis 

SRB0001 SEMA3E 3.023668 
 

No Diagnosis in GECIP  

CFTR 3.518489 

C7 3.319817 

SRB0002 FOXN1 4.274695 No information 

PSENEN 3.870322 

ALPI 3.435364 

IL36RN 4.18131 

  

SRB0003 Too numerous No Diagnosis in GECIP  

SRB0004 Degraded sample No information 

SRB0005 CCBE1 4.364673 CARD 11 A-C @2987250 

IL2RA 4.118184 
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CEBPE 3.91707 

SRB0006 RNF31 3.105485 STAT1 

NFKB2 3.342633  

TNFSF12 3.486897  

 C9 4.541959  

SRB0007   STAT1 

SRB0008 GINS1 3.138757 STAT1 

IL23R 3.027007 

CFH 3.079085 

CFHR5 4.582576 

SRB0009 IL21 3.91511 NKKB1 A>AT @102582929 

CFI 3.162278 

FANCI 3 

SRB0010   NKKB1 A>AT @102582930 

SRB0011    ILRG;CXorf65;FOXO4 

SRB0012 0 ILRG;CXorf65;FOXO4 

SRB0013 RAG1 3.512267 No Diagnosis in GECIP  

FAT4 3.178482 

IL17F 3.360506 

C4A 3.258921 

C4B 3.208775 

CFHR2 3.524924 

CFHR3 3.41927 

BRIP1 3.097605 

SRB0014 TAP1 3.305794 No information 

NCF1 3.473473 

APOL1 3.319696 

IL17RA 3.206766 

SERPING1 3.167219 

SRB0015 FERMT1 3.592095 No Diagnosis in GECIP 

 CFHR1 4.582576  

SRB0016 C8A 3.775805  

SRB0017 C6 4.582576 No information 

SRB0018 CFI 3.162278 No information 

SRB0019 IL12B 3.66049 No information 

THBD 3.031026 

SRB0020 CD40 3.003646 No information 
 

TTC7A 3.178153 

CARD9 3.310548 

C1QA 3.260571 

C1QB 3.197129 
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FCN3 3.338513 

SRB0021 XRCC2 3.008934 No information 



Results: Investigation into the transcriptome of patients with primary immunodeficiencies –gene 

expression 

 

94 

3.5 Splicing and Disease Cohort  

Due to the need for alternative control groups, the ‘Splicing and Disease’ cohort data, described in  

chapter 2.1.10,  which had been sequenced with the same parameters, was processed identically 

and included in the rest of the analysis, replacing the GTEx data as a control. This was primarily 

because PID patient samples were limited in number potentially reducing statistical power.  

3.5.1 Exploratory data analysis of dataset including ‘Splicing and Disease’ Cohort. 

Exploratory data analysis was conducted using the pcaExplorer tool. The Euclidian distance 

heatmaps shows clear batch difference between GTEx and other groups of data (Figure 3-9). After 

removal of GTEx data, the Euclidean distance heatmaps showed overall reduction in batches in the 

data, although some clustering was still present (Figure 3-10). This was comparatively small 

however, as indicated by the reduced intensity blue colour. The presence of outlier samples was 

observable. Once ComBat-seq was implemented, the batches appeared to partially dissolve, and 

increased interspersion of the samples was apparent (Figure 3-11). Healthy controls remained close 

together, although these has been sequenced together at lower depth. As a further indication of the 

converging of the data after batch correction, the automatically generated scale of the Euclidean 

distance colour key reduces across the three figures from maximum value of 700 with GTEx, to 600 

without the GTEx, and finally 150 after ComBat-seq implementation (arbitrary units).  

Pearson correlation heatmap produced before ComBat-seq application demonstrate, through both 

colouration patterns and dendrogram structure, the presence of a strong, unseen clustering effect 

(Figure 3-12). Investigation showed this to not be resulting from batch, sex, or disease state. After 

the application of ComBat-seq this effect was removed, there was a higher degree of correlation 

overall, demonstrated by the increased red hue overall. Importantly there is a change in the scale 

after batch correction also, which indicates improvement of overall correlation (Figure 3-13). No 

Pearson correlation heatmap could be produced for the combined dataset, the pcaExplorer package 

was unable to display the figure due to the large number of samples. 
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2D PCA plots initially show no overlap between GTEx data and other data in terms of confidence 

intervals, distances between the GTEx and other datasets is approximately 3x size of the variation 

within any group across this axis (Figure 3-14). The scree plot for this pca plot shows principal 

component 1 to be responsible for over 70% of the variation in samples. There is overlapping of 

confidence intervals for the PID and Splicing and Disease cohorts indicative of improved utility as a 

control dataset when compared with the GTEx, as evidenced by the pca plot with the GTEx data 

removed, which showed the PID cohort to exist entirely within the 95%CI for the splicing and disease 

cohort, although the 95%CI for the PID cohort did extend beyond the splicing and disease 

boundaries, indicative datasets not being completely analogous (Figure 3-16). After ComBat-seq was 

implemented the 2D pca plots showed the 95% CI circle to be completely contained within the 95% 

CI boundaries for the splicing and disease patients (Figure 3-18). The number of points not 

completely inside the PID cohort reduced from appx. 13 to appx 5. Scree plots produced from the 

data before and after ComBat-seq was applied demonstrate a more balanced effect from the various 

principal components, indicative of a reduced impact from any batch effect or technical variation 

(Figure 3-15)(Figure 3-17)(Figure 3-19).  

SRB0001 appears to consistently be an outlier sample, likely resulting from the low quality of the 

sample. 3D pca plots were also produced for the combined datasets and the final batch corrected 

dataset to visualise the relationships when considering the top 3 principal components. The clear 

interspersion increase after application of batch correction gives confidence to the utility of the 

splicing and disease dataset after ComBat-seq is implemented to account for surrogate variables.
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Figure 3-9 Euclidean distance heatmap with data from GTEx, PID cohort and splicing and disease cohort. 
Group 1 represents the first batch of RNAseq including SRBC001, SRBC002, and SRB0003. Group 2 represents the PID cohort data, group 3 
represents the large GTEx data set, group 4 represents the Splicing and Disease cohort data. Dendrogram represents hierarchical clustering 
based on Euclidean distance between samples. 
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Figure 3-10 Euclidean distance heatmap with data from healthy controls, PID cohort and splicing and disease cohort. 
Group 1 (green) represents the healthy controls SRBC001, SRBC002. Group 2 (pink) represents the PID cohort data, group 3 (blue) represents 
the large GTEx data set, group 4 represents the Splicing and Disease cohort data. Dendrogram represents hierarchical clustering based on 
Euclidean distance between samples.  
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Figure 3-11 Euclidean distance heatmap with data from healthy controls, PID cohort and splicing and disease cohort after batch correction 
with ComBat-seq. 

Group 1 (green) represents the healthy controls SRBC001, SRBC002. Group 2 (pink) represents the PID cohort data, group 3 (blue) represents 
the large GTEx data set, and group 4 represents the Splicing and Disease cohort data. Dendrogram represents hierarchical clustering based on 
Euclidean distance between samples.  
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Figure 3-12 Pearson correlation heatmap with data from healthy controls, PID cohort and splicing and disease cohort. 
Pearson correlation coefficient map shows the degree of similarity between samples based on gene expression. Scale runs from 0-1. 1 (red) is 
indicative of identical expression and zero is indicative of no similarity.  
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Figure 3-13 Pearson correlation heatmap with data from healthy controls, PID cohort and splicing and disease cohort after batch correction 
with ComBat-seq. 

Pearson correlation coefficient map shows the degree of similarity between samples based on gene expression. Scale runs from 0-1. 1 (red) is 
indicative of identical expression and zero is indicative of no similarity.  
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Figure 3-14 2D PCA plot of PID, Splicing and Disease and GTEx cohorts. 
Red (group 1) represents healthy control samples, green represents PID samples, red 
represents ‘Splicing and Disease’ samples, and aqua represents the GTEx samples. 
Separation around PC2 (Y axis) was determined to be a result of expression of sex-
specific genes. 95% confidence intervals represented by ellipses. 
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Figure 3-15 Scree plot from PCA of PID, Splicing and Disease and GTEx cohorts. 
Each column represents the total proportion of variance which is explained by the 
principal component on the x axis. Principle component 1 is responsible for around 72% 
of the total variance.  

 

Figure 3-16 2D PCAplot of PID, Splicing and Disease cohorts. 
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Red (group 1) represents healthy control samples, green represents PID samples, red 
represents ‘Splicing and Disease’ samples, and aqua represents the GTEx samples. 
Separation around PC2 (Y axis) was determined to be a result of expression of sex-
specific genes. 95% confidence intervals represented by ellipses. 

 

Figure 3-17 Scree plot from PCA of PID, Splicing and Disease cohorts. 
Each column represents the total proportion of variance which is explained by the 
principal component on the x axis. Principle component 1 is responsible for around 51% 
of the total variance. Principle component 2, around 23% 
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Figure 3-18 2D PCAplot of PID, Splicing and Disease cohorts after ComBat-seq batch 
correction. 

Red (group 1) represents healthy control samples, green represents PID samples, blue 
represents ‘Splicing and Disease’ samples. 95% confidence intervals represented by 
ellipses. 
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Figure 3-19 Scree plot from PCA of PID, Splicing and Disease cohorts after ComBat-seq 
batch correction. 

Each column represents the total proportion of variance which is explained by the 
principal component on the x axis. Principle component 1 is responsible for around 21% 
of the total variance, principal component 2, around 17% 

 

Figure 3-20 3D PCAplot of all GTEx PID, Splicing and Disease cohorts. 
GTEx data in teal, healthy controls in red, Splicing and Disease in green, PID data in red. 
Divides within group are a result of sex differences in the transcriptome. The GTEx data 
here is obviously distinct in transcriptome from the other samples.  
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Figure 3-21 3D PCAplot of PID, Splicing and Disease cohorts after ComBat-seq batch 
correction and GTEx data removed. 

Healthy controls in red, Splicing and Disease in green, PID data in blue. The GTEx data 
here is obviously distinct in transcriptome from the other samples. Data shows no clear 
distinction in PCA three-dimensional clustering. 
 
 
 

3.5.2 Z-score results after ComBat-seq Batch correction and TPM calculation. 

Using batch corrected samples with Splicing and Disease samples as controls, with GTEx data 
excluded, the number of Z-scores remained manageable for downstream analysis and interpretation 
in most cases, and also for the first time showed expression outliers in both directs (i.e., over-
expression and under-expression). The presence of outliers in the control sample SRBC001 can also 
be observed, however.  Two patients with a known deleterious variation in NFKB1/NKKB1 were 
present in the cohort. After batch correction and TPM calculation, one of these patients’ results was 
above threshold, and another was approaching threshold for Z-score outlier (Z=+/-3). None of the 
other known diagnosis were captured using this technique. Very large Z-scores were obtained for 
SRB0017 for the IGKC and IGHM genes, both present on B cells, which has some synergy with the 
patient’s clinical phenotype, (Panhypogammaglobulinaemia, Recurrent Bacterial Infection, Absent B 
cells). It is not possible to discern a gene of interest from this data, as the lack of RNA resulting from 
absent B cell expression may be the effect of a variant elsewhere in the genome as opposed to the 
specific genes with reduced expression. Other findings have been examined with the responsible 
clinician (Professor A. Williams) and the evidence to support a clinical diagnosis is too low in this 
case. As such further assessment using alternative methods is recommended.  
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Figure 3-22 PID Z-scores for under expressed Genes 
This graph shows a number of samples with moderate amount (3-6) of under expression 
outliers, some with a low number (0-2) and one control sample with a high number (15) 
of expression outliers. 
 

 

Figure 3-23 PID Z-scores for Overexpressed Genes 
This graph demonstrates very few samples having overexpression outliers. Only four 
samples from the PID cohort have overexpression outliers and a single control sample 
also have two examples.  
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Table 3-3 - TPM Z-score outliers in gene expression 

Sample Genes with TPM 
based 
expression 
outliers  

Z-scores for 
genes  

Diagnosis 

SRB0001 G6PC3  -3.3506 No Diagnosis in GECIP  

MVK  -3.22697 

TRAF3IP2 -4.7455 

BRIP1 3.36824 

SRB0002 0 No information 

SRB0003 0 No Diagnosis in GECIP  

SRB0004 Degraded sample No information 

SRB0005 0 CARD 11 A-C @2987250 

SRB0006 IL2RG  -3.40762 STAT1 

SRB0007 IL10 -3.61385 STAT1 

TP53 -5.17661 

SRB0008 0 STAT1 

SRB0009 NFKB1 -3.05206 NKKB1 A>AT @102582929 

SRB0010 G6PC3  -3.16447 NKKB1 A>AT @102582930 

NFKB1* -2.6* 

SRB550011 RFX5 -3.70562  ILRG;CXorf65;FOXO4 

FAAP24  -4.02424 

FASLG -3.07656 

THBD -3.12753 

SRB0012 CD3E 3.022289 ILRG;CXorf65;FOXO4 

SRB0013 NFE2L2 -3.12145 No Diagnosis in GECIP  

C8B -3.00155 

SRB0014 BLNK -3.61168 No information 

CD19 -3.3991 

SRB0015 0 No Diagnosis in GECIP 

 CD3G -3.03867  

CD81 -3.2711 

CD70 -3.2516 

SRB0017 CD40 -3.30509 No information 

BLNK  -3.31889 

CD19  -3.74433 

CD79A  -3.87160 

IGHM -6.53492 

IGKC -6.31391 
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SRB0018 PLEKHM1 -3.49300 No information 

C1QB -3.28583 

LYST 3.041579 

TNFRSF9 3.117149 

SRB0019 HELLS -3.21443 No information 

TNFRSF13C -4.13524 

TOP2B -3.10538 

IL18BP -4.07737 

CD46 -3.39481 

DKC1 -3.34669 

 NLRP3 3.19988  

SRB0020 XIAP -3.08174 No information 
 ACD -3.13444 

TNFAIP3 3.00717 

SRB0021 0 No information 

 
Table shows patient ID’s and the detected Z-score outliers calculated form TPM data. 
*=sub threshold findings. Clinical diagnosis is also included for reference.  
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3.5.3 OUTRIDER results  

The OUTRIDER program was first validated by downloading the test data used in the OUTRIDER 

manual (352),  to determine utility and ensure proper functioning. The results of the test data set 

were slightly incongruent with those from the manual. P-values deviated in some cases by 

approximately 1x10-13 and 4x10-13. In discussions with the developer, it was clarified that these very 

small deviations were due to using the program on different operating systems and CPU cores and to 

be expected to some degree.  

OUTRIDER observed that several samples had multiple outliers (SOT104=3, SRB0017=4, SOT102=4, 

SOT117=4, SRB0006=5, SOT120=16), and SOT120 had over 300% as many outliers as the previous 

sample (Figure 3-24). As such this sample was excluded from the model to prevent statistical bias. 
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Figure 3-24 OUTRIDER: Detection of outlier samples based on number of outlier 
genes. 

Figure shows the sample rank derived from the number of outliers in the sample. 
SOT120 was the highest ranked sample with 16 outliers, over 300% more than the 
previous sample.  
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3.5.4 Pre-processing using OUTRIDER. 

OUTRIDER uses a neural network for normalisations. Combining two batch correction methods may 

have unintended consequences and therefore the continued use of the ComBat-seq batch-corrected 

reads were not appropriate and raw reads from STAR aligner program were used for OUTRIDER.  

OURTIRDER’s stringent filtering process removed 25643 genes or 43.6% of the total genes. A graph 

representing the filtering process and the statistics derived from gene expression values was 

produced (Figure 3-25). The graphs show a generally linear and regular increase in number of genes 

until the last 10 samples which seem to have improved overall gene expression detection, likely due 

to some unseen batch effect.  Also visible is the union of expressed genes, which shows the 

cumulative total of expressed genes with each additional ranked sample. The variance between 

these two trends is indicative of variance in specific genes detected. The number of genes which 

pass filtering as each additional sample is a clear increasing trend, is representative of total number 

of mean expressions being above threshold increasing, a feature of the ranking system. This data has 

two ‘steps’, indicative of drops in number of genes passing threshold, suggesting that some batches, 

whilst having increased total detection, actually have lower expression of groups of genes, thus 

reducing the mean below expression threshold for inclusion. 

To observe the effect of seen variables including batch effect, OUTRIDER produces a count 

correlation heatmap. Clusters are apparent for batches and disease states and the overall 

differences in gene expression are apparent from the large amount of red-blue hue in the figure 

overall.  By comparing the heatmaps before and after the normalisation process (Figure 3-26) it can 

be seen that some of the batches have dissolved and the impact of the new/remaining batches is 

very much reduced, although not eliminated.  Whilst the separation between the two cohorts is 

gradual there does still appear to be a gradient. The sequencing batches (1-5) are also reduced in 

this manner. Overall, there is less hue, indicative of decreased expression changes overall.
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Figure 3-25 OUTRIDER FPKM data in a mixed Primary Immunodeficiency and Splicing and Disease Cohort 
FPKM distribution (left) represent gene-sample combinations. Those which will be removed in subsequent steps are represented by the grey 
shaded area. Statistics of expressed genes (right) represents the samples, ranked by number total number of detected genes expressed in the 
samples. The red points number of expressed genes in each sample.  The blue points represent the cumulative total of expressed genes with 
each additional ranked sample. The purple points indicate the number of genes which pass filtering as each additional sample is added.  
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Figure 3-26 Heatmap of Primary Immunodeficiency and Splicing and Disease Samples before and after batch correction. 
Figure shows the sample relationships based on count correlation and hierarchical clustering of the samples via dendrogram on the left Y axis. 
Differences in expression are indicated by the blue to red colouring, with solid red diagonal line indicating samples are the same.  
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3.5.5 Results for OUTRIDER analysis of outlier gene expression 

SOT120 was removed from the analysis due to it being an outlier sample (Figure 3-24). A total of 40 

gene expression outliers were present from the total dataset of 59 samples (appendix A.10). 28 of 

these were discovered in the 39 Splicing and Disease cohort samples. 12 were found in the PID 

cohort (Table 3-5).  OCLNP1, an unprocessed pseudogene had aberrant expression detected in both 

direction across 11 of the Splicing and Disease cohort control samples, and 3 samples in the PID 

cohort, SRB0006, SRB0011, and SRB0013. Notably expression was completely ablated in SRB006.  

However, the “aberrant by gene” column indicates OCLNP1 is an outlier in 14 samples. A look at the 

complete results dataset (appendix A.10) shows us that in total, three samples have completely 

ablated or very low expression of OCLNP1. Further exploring this by plotting the raw counts vs the 

expected counts, shows many samples had undetectable expression of the pseudogene, whilst 

others seemed to follow a clear trend (Figure 3-27), This followed no discernible phenotype or 

characteristic, from age, sex, disease state or batch. Therefore, this result was excluded. Comparing 

the OUTRIDER results for the Splicing and Disease control group cohort and their known molecular 

diagnosis (Table 3-4), demonstrated that no diagnosis was resolved using this algorithm. This 

removes credibility from any results obtained from the OUTRIDER tool, and additional follow-up up 

using alternative methods is likely to be necessary for validating findings.  
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Table 3-4 Comparing OUTRIDER results from the Splicing and Disease control cohort 
with known molecular diagnosis. 

OUTRIDER 
RESULT 

SAMPLE 
ID 

P-
VALUE 

MOLECULAR DIAGNOSIS 

OCLNP1 SOT058 2.02E-
20 

MED13L: c.2570-4_2574del 

OCLNP1 SOT019 1.11E-
17 

No diagnosis 

OCLNP1 SOT017 8.19E-
14 

NF1 c.7832A>G, p.Asp2611Gly 

OCLNP1 SOT045 1.78E-
13 

BRCA1 c.4676-8C>G 

OCLNP1 SOT049 5.61E-
10 

BRCA2 c. 9502-13 C>G 

OCLNP1 SOT018 7.29E-
10 

NF1 c.5489C>G, p.Pro1830Arg 

OCLNP1 SOT020 1.21E-
09 

NF1 c.4122G>T, p.Gln1374His 

NIPA2 SOT117 2.07E-
09 

Clinical diagnosis MEN1 but not confirmed 
molecularly 

SFT2D1 SOT102 2.18E-
09 

UBF4 c.8488+3A>G Class 3 VUS 

KIDINS220 SOT018 8.1E-
09 

NF1 c.5489C>G, p.Pro1830Arg 

PALM SOT104 1.33E-
08 

TMEM127 c.411T>A, AIP c.317G>A_Arg106His and 
WT1 c.871A>T p.(Ser291Cys) 

PRDM16 SOT104 1.09E-
08 

TMEM127 c.411T>A, AIP c.317G>A_Arg106His and 
WT1 c.871A>T p.(Ser291Cys) 

OCLNP1 SOT069 7.62E-
09 

No diagnosis 

OCLNP1 SOT152 7.9E-
09 

polyposis  but NAD from 100KG.  

USP9Y SOT033 1.88E-
08 

SMAD3 c.802C>T, p. (Arg268Cys) 

OCLNP1 SOT130 2.52E- No diagnosis - negative 100KGP 
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08 

ESYT2 SOT019 6.7E-
08 

No diagnosis 

PRDM13 SOT104 1.26E-
07 

TMEM127 c.411T>A, AIP c.317G>A_Arg106His and 
WT1 c.871A>T p.(Ser291Cys) 

CYFIP1 SOT117 1.08E-
07 

Clinical diagnosis MEN1 but not confirmed 
molecularly 

TUBGCP5 SOT117 1.69E-
07 

Clinical diagnosis MEN1 but not confirmed 
molecularly 

AGBL5 SOT102 1.24E-
07 

UBF4 c.8488+3A>G Class 3 VUS 

SHROOM1 SOT102 1.75E-
07 

UBF4 c.8488+3A>G Class 3 VUS 

SLC39A11 SOT018 2.31E-
07 

NF1 c.5489C>G, p.Pro1830Arg 

OCLNP1 SOT038 8.22E-
08 

BRCA2 c.1480 G>A heterozygote 

NIPA1 SOT117 3.59E-
07 

Clinical diagnosis MEN1 but not confirmed 
molecularly 

SNX17 SOT010 9.21E-
08 

NF1 c.1158A>C, p.(=), c.1168_1179del12, 
p.Asn390_His393del 

SCTR SOT140 1.09E-
07 

No diagnosis - negative 100KGP 

GPATCH2 SOT038 2.51E-
07 

BRCA2 c.1480 G>A heterozygote 

OUTRIDER results column represents expression outliers. Known molecular diagnosis are also 
included for comparison. In the Splicing and Disease cohort, none of the known molecular 
diagnosis could be resolved using the OUTRIDER program.  

 

3.5.5.1 Gene expression outlier results for patient SRB0017 

SRB0017 has a collection of genes which are aberrantly expressed, with large Z-scores, large log2 

fold changes, and completely ablated IGKC expression. IGKC is known to be a causative PID gene in 

both GeCIP and IUIS gene panels, specifically for Immunoglobulin Kappa light chain deficiency.  PAX5 
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did not appear on the IUIS or GECIP panels but was present in the T-cell panel of the HTG-Edgeseq. 

SRB0017 Also has reduced expression of IGHM, CD22, MS4A1, FCRL2. 

3.5.5.2 Gene expression outlier results for patient SRB0012 

ACOT9 was an extreme outlier in SRB0012, demonstrating less than 10% the mean expression of the 

group. ACOT9, a mitochondrial acyl-CoA thioesterase, did not appear on any PID gene panels, and is 

only linked to syndromic X-linked intellectual disability turner type (368), and Mental Retardation, X-

Linked, Syndromic, Claes-Jensen Type (369). There was little evidence linking the gene to immune 

disorders.  

3.5.5.3 Gene expression outlier results for patient SRB0006 

SRB0006 also harboured aberrant under-expression of RRP8 (Chr 11p15.4) and RRP1B (Chr 21q22.3), 

both of which are ribosomal processing proteins.  Expression of both was lower than expected 

(Figure 3-28, Figure 3-29) these genes were not present in the IUIS, GeCIP or HTG gene panels (Table 

3-6).  
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Figure 3-27 Expected vs actual expression of OCLNP1. 
Points in grey are non-significant, points in red are significant P<0.05. All counts are 
given +1 to mitigate effects of zero values on statistical models. 
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Table 3-5 OUTRIDER results for Primary Immunodeficiency Samples 

  
sampleID p-value padjust zScore l2fc Raw 

counts 
Norm 
counts 

Mean 
Corrected 

theta Aberrant 
By 
Sample 

Aberrant 
By 
Gene 

Padj 
rank 

1 OCLNP1 SRB0006 1.86E-25 6.8E-20 -3.27 -6.25 0 0 13.41 1539.82 3 14 1 

3 OCLNP1 SRB0011 2.53E-19 9.25E-14 1.44 1.79 55 41.56 13.41 1539.82 1 14 1 

7 ACOT9 SRB0012 1E-11 3.66E-06 -7.09 -4.09 33 62.34 1071.99 13.63 1 1 1 

9 OCLNP1 SRB0013 5.74E-10 0.00021 1.3 1.56 31 35.99 13.41 1539.82 1 14 1 

11 PAX5 SRB0017 8.41E-10 0.000307 -6.51 -3 5 52.29 475.58 49.53 6 1 1 

13 IGHM SRB0017 2.84E-09 0.000519 -6.53 -3.67 19 227.34 3109.13 12.89 6 1 2 

21 RRP8 SRB0006 3.29E-08 0.006004 -5.93 -1.95 141 174.26 672.04 27.65 3 1 2 

23 RRP1B SRB0006 5.85E-08 0.007118 -5.77 -1.47 241 240.76 647.03 42.98 3 1 3 

24 CD22 SRB0017 7.47E-08 0.009097 -6.12 -2.26 11 124.93 639.68 45.43 6 1 3 

27 MS4A1 SRB0017 1.44E-07 0.013149 -5.92 -2.76 26 252.66 1735.64 16.04 6 1 4 

38 FCRL2 SRB0017 6.02E-07 0.043928 -5.79 -2.38 12 103.59 567.25 25.66 6 1 5 

40 IGKC SRB0017 8.15E-07 0.049605 -6.31 -5.98 0 0 1226.38 6.08 6 1 6 

 Table shows OUTRIDER results from the PID samples.  Adjusted P-value (padjust) cut off was 0.05, l2fc represents the log to base2 fold change, 
Norm counts indicates the counts for that sample after the de-noising auto-encoder (Ae) removes the outliers. Mean corrected represents the 
mean value for that gene across the dataset after Ae normalisation.  Theta value represents the distribution. Aberrant by sample indicates how 
many aberrant genes the sample in question has, aberrant by gene represents the number of times a specific gene is seen to be aberrantly 
expressed.  Padj rank is a significance associated ranking system for the detected outliers. 
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Table 3-6 Genes from OUTRIDER results cross referenced with pre-identified gene 

panels. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table shows the presence of the OUTRIDER results on existing panels of genes,  
Including the GECIP 100,000 genomes PID panel, the IUIS PID panel, the HTG T-cell 
panel, and the HTG Immunooncology panel.

 GECIP IUIS 
HTG -T-cell 
panel 

HTG Immunooncology panel 

OCLNP1  -- -- -- -- 

ACOT9  -- -- -- -- 

PAX5 -- -- -- 
 

✓   
(B-cell function subset) 

IGHM 
 

✓  
-- -- -- 

RRP8  -- -- -- -- 

RRP1B  -- -- -- -- 

CD22  -- -- -- -- 

MS4A1 
 

✓  
-- -- -- 

FCRL2  -- -- -- -- 

IGKC 
 

✓  

 

✓  
-- -- 
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Figure 3-28 Predicted Expression vs Actual expression for RRP1B and RRP8 
Predicted expression of RRP1B (ENSG00000160208.13) and RRP8 (ENSG000000132275.11) respectively. Expected counts and raw counts both 
have pseudo count of 1 added to account for any genes lacking expression completely. SRB0006 Is highlighted in red. 
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Figure 3-29  Rank vs normalised counts for RRP1B and RRP8 
Rank based on gene expression versus the value of expression with plus 1 pseudo-count of RRP1B (ENSG00000160208.13) and RRP8 
(ENSG000000132275.11) respectively. SRB0006 is highlighted in red.   
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3.6 Summary Table  

 

Table 3-7 Summary table of all results from gene expression outlier detection 
methods 

Sample FPKM Z-Score TPM Z-score  OUTRIDER  

SRB0001 SEMA3E, CFTR, C7 G6PC3, TRAF3IP2, MVK, 
BRIP1 

 

SRB0002 FOXN1, PSENEN, ALPI, IL36RN, 
SAMD9L 

  

SRB0003    

SRB0004    

SRB0005 CCBE1, IL2RA, CEBPE   

SRB0006 RNF31, NRKB2, TNFSF12, C9, IL2RG OCLNP1, RRP8, RRP1B 

SRB0007  IL10, TP53  

SRB0008 GINS1, IL23R, CFH, CFHR5,   

SRB0009 IL21, CFI, FANCI NFKB1 OCLNP1 

SRB0010  G6PC3, NFKB1*  

SRB0011  RFX5, FAPP24, FASLG, THBD OCLNP1,  

SRB0012  CD3E ACOT9 

SRB0013 RAG1, FAT4, IL17F, C4A, C4B, 
CFHR2, CFHR3, BRIP1 

NFE2L2, C8B  

SRB0014 TAP1, NCF1, APOL1, IL17RA, 
SERPING1 

BLNK, CD19, CD79A, 
POLR3F, 

 

SRB0015 FERMT1, CFHR1,   
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3.7 Discussion 

The aims of this chapter were to conduct quality control of the data, use exploratory data analysis to 

identify appropriate control sets, and finally generate a bioinformatic pipeline for processing and 

interrogation of the transcriptome of PID patients using gene expression. This was to be conducted 

with the aim of enhancing diagnostic ability and variant filtering. We aimed to utilise multiple tissues 

to find novel signals which inform diagnosis.  

The project progress in the primary immunodeficiency investigation was hindered by several factors. 

In the first instance that assumption that an externally produced dataset could serve as a control 

group was incorrect, and this proved to be a significant obstacle. Even utilising purpose-built tools 

for batch correction could not mitigate the large differences which resulted from different cohort 

capture (deceased in the case of GTEx), different sample acquisition methods and sequencing 

methods. Based on PCA, the differences in expression between the GTEx group and other samples 

were larger even than the differences between the most different samples within the non-GTEx 

group. Whilst some degree of batch correction is possible using tools like ComBat-seq, the greater 

these differences are at the outset, the more correction has to be done, and therefore the more 

SRB0016 C8A,  CD3G, CD81, CDE70  

SRB0017 C6 CD40, BLNK, CD19, CD79A, 
IGHM, IGKC 

PAX5, IGHM, CD22, 
MS4A1, FCRL2, IGKC 

SRB0018 CFI PLEKHM1, C1QB, LYST,  
TNFRSF9, 

 

SRB0019 IL12B, THBD HELLS, TNFRSF13C, TOP2B, 
IL18BP, CD46, DKC1, NLRP3 

 

SRB0020 CD40, TTC7A, CARD9, C1QA, 
C1QB FCN3, 

XIAP, ACD, TNFAIP3  

SRB0021 XRCC2   
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blunted any biological outlier signals become. It was therefore decided that the results from 

correction of such large differences would render data unreliable afterwards. Indeed, even after the 

batch correction has taken place within samples which are more analogous, there is still concern 

that some outliers will become sub-threshold after algorithmic batch correction. 

It may be that the batch effect is made worse by using whole blood, which is subject to a number of 

other pressures, and that by reducing the number of cell types and thus the effects of other 

variables, signals from immune disorders may be able to be resolved using RNAseq approaches with 

standard batch-correction tools. In addition, alternative methods of quantification, which compare 

RNA abundance to housekeeping genes, or relative amounts of immune gene expression, might 

make RNAseq quantitative approaches more viable. 

 It was also discovered that methods used by other groups, such as the Z-score methods to detect 

outliers, were now being replaced by alternatives which are designed for outlier detection in such 

datasets (352, 370). Using differential expression tools such as EdgeR, which are designed for 

comparing groups of samples with each other, as opposed to outlier detection, were also not 

suitable. The identification of appropriate methods, development of a modern and suitable 

bioinformatic pipeline, learning and training around implementing such a pipeline was not a trivial 

task, and significant delays occurred.  

The most suitable tool for outlier detection of gene expression (OUTRIDER) required a large (>50) 

sample number for its statistical analysis, which was not met by the PID cohort alone. This meant a 

second dataset needed to be sourced, processed and batch-corrected. In addition to these 

challenges, the OUTRIDER tool itself proved challenging to set up and validate leading to further 

resources being spent on training and familiarisation. 

Once operational the OUTRIDER tool did demonstrate comprehensive analysis features, and quickly 

identified the loss of expression of IGKC, and nominal expression of IGHM in patient SRB0017. These 

are both predominantly expressed in B-cells. However, a genome sequence for the patient was not 

present in this instance and so no causal variant could be identified. Clinical consultation with 

Professor A. Williams was sought, and it was advised that patient phenotype was not completely 

typical for IGKC knockout, but that this lack of expression could have caused the observed 

phenotype. Confirmation of this finding using targeted PCR and whole exome sequencing is 

necessary for diagnosis confirmation, which has since been scheduled by the clinician.   
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**Clinical information for this patient has since been obtained and it is noted the 
patients has no B-cells and as such the expression loss can be explained without IGKC 
involvement. 

IGKC appeared first in the 2017 IUIS table of genes which can cause primary immunodeficiencies, 

although it was highlighted as often asymptomatic. At the project outset IGKC was not a gene which 

appeared on the GECIP gene panel, although it has since been added. This is an important 

consideration and evidence of the requirement to include hypothesis-free approaches to outlier 

detection in Mendelian disease molecular diagnostics.  Whilst panel-based approaches are 

extremely useful for first pass diagnostic investigation, whole transcriptome approaches are where 

many new discoveries are likely to be found and, in previously undiagnosed patients, it is likely to 

provide a rich reservoir of data which has been overlooked in early clinical investigation.  

In the case of SRB007, the effective total loss of expression in this patient was conspicuous, and as 

such detection should have been possible using less-complex methods. Given either a suitably sized 

healthy control group or alternative more homogenous tissues (i.e., PBMC/T-cells), this tool may 

have been able to identify more potential causal genes via expression changes. Since this sample 

showed complete loss of expression of IGKC, a critical component of immunoglobulin, sequence 

information was not available to determine any potential causal variants within the gene. 

No discernible RNA signal linked to known causative variants in PID positive controls was able to be 

identified, and no other significant events which could be linked clinically to the symptoms were 

found.   The project was not able to compare multiple tissues types due to technical and logistical 

challenges in the early stages. Nor was the project able isolate T-cells and stimulate these specifically 

for diagnosis uplift.  This meant that questions around the optimal complexity / sensitivity ratio 

could not be explored and developing a robust and effective bioinformatic pipeline even at the 

minimum viable complexity did not achieve a level of success comparable to other examples from 

the literature.   

In addition, the known molecular diagnosis for the ‘Splicing and Disease’ cohort data was compared 

with the result from this control data obtained using the OUTRIDER program, in an attempt to 

validate the OUTRIDER program. None of the genes known to have causative variants appeared in 

the OUTRIDER results from the Splicing and Disease control data. 
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It cannot be ruled out that the same approaches applied to alternative tissues, (PBMC’s or 

stimulated T-cells for example) might produce stronger signals in the transcriptome, leading to 

diagnosis. In a sample which had immune cells only, more reads would be applied to the cells of 

interest potentially raising the chances of detecting aberrant expression of genes or splicing. Other 

examples of RNAseq in Mendelian diagnostics have used a much more homogenous samples than 

whole blood or smaller gene panels due to the simpler system (210). It is not possible however to 

rule out that improved bioinformatic pipeline design might produce higher rates of diagnostic uplift 

in whole blood.  

 

3.8 Conclusion 

RNA sequencing as a diagnostic tool has had some success and been demonstrated to validate 

existing molecular diagnosis and inform new diagnosis where previously one has not been present; 

25-40% success rate is found in literature. In the current study, one family (SRB10 and SRB11) had 

the gene of interest NFKB identified in one member with Z-scores above threshold and another just 

below, and a third patient appeared to have a novel diagnosis, although this has not yet been 

validated. This represents a diagnostic yield of around 9% although no uplift itself was had as these 

patients were already found to have molecular diagnosis.  The current study has had limited success, 

and this is most likely due to experimental design, primarily inadequate controls, and use of whole 

blood as a tissue.  

Inherent limitations in this project included significant batch effect and the use of ‘unhealthy’ 

controls. The current approach is does not have adequate sensitivity, as patients with a known 

diagnosis which affects expression levels were not consistently outside of confidence thresholds for 

Z-scores. Although wider gene panels devised, these were not used due to time constraints around 

planning and implementations. The method also does not capture non-coding and intronic regions 

which can affect expression levels. There exists potential for causative variants outside of the panels 

to be missed, and therefore this hypothesis-based approach is inherently limiting.   



Results: Investigation into the transcriptome of patients with primary immunodeficiencies –gene 

expression 

 

129 

 

 



Results of Splicing Analysis of Primary Immunodeficiency Patients 

 

130 

Chapter 4 Results of Splicing Analysis of Primary 

Immunodeficiency Patients 

4.1 Introduction 

Alternative splicing outlier identification was investigated as a modality for identifying causal 

variants in the Primary immunodeficiency cohort. Control datasets included the pre-selected, GTEx 

dataset of 113 samples, the Splicing and Disease cohort, and the two healthy controls included in the 

sequencing of the PID cohort. Alternative splicing was mapped using STAR aligner first and compared 

with ‘Mendelian RNAseq’ tool. This chapter presents the results of validation steps, PID 

investigation, and follow-up analysis with Interactive Genome Viewer.  

 

4.2 Validation of the ‘Mendelian RNAseq’ splicing detection program 

using sample SOT58 

As a positive control step for the Mendelian RNAseq splice detection tool developed by Dr. Beryl 

Cummings, a pathogenic event already seen and validated in a previous publication was used to 

ensure the syntax and data structure was properly operational. RNAseq data obtained from the 

‘Splicing and Disease’ cohort patient SOT58 and was used as a positive control.  The patient has 

previously had the disease causing mutation event identified; a small, 8 nucleotide deletion in the 

MED13L gene which exists on chromosome 12 (NM_015335.4:c.2570-4_2574del) and the 

subsequent use of an alternate 3’ splice site (152). This variant has been successfully identified using 

the proposed ‘Mendelian RNAseq’ splicing assessment method in another study from our group and 

so serves as a useful positive control. 

Fastq files were processed in the same manner as described in section 2.1.11 and resulting bam files 

were merged with bam files from the GTEx data set. These all underwent splice event discovery and 

normalisation. The events found were then filtered specifically for those which only appeared in the 

sample SOT58 and had a read support greater than 5. This returned 1270 events in a text file. 

Further filtering was necessary to make this number manageable, so the data was then transferred 
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to Microsoft Excel, and a further filter was applied which retained only events which had at least one 

junction already annotated as these were more likely to be “real events” events and not artefacts 

from the programs algorithm, or a result of inappropriate read splitting.  

Inappropriate read splitting is a common complication and occurs when the STAR aligner program 

incorrectly aligns part of a read to one location on the genome, and the other part to a different 

location which has a short, similar sequence to the gene in questions. The read has then been split, 

and indicates splicing has taken place, when in fact it has not. This returned 72 junctions. These were 

sorted by the highest amount of normalised read support, and only those with a normalised read 

support value greater than 1 was retained to make the number manageable and increase likelihood 

of significant events being kept.  The known pathogenic variant was identified in the ranked output 

as number 10 of 15 events which then remained (Table 4-1).  This indicated that the tool was 

sensitive to identify positive controls but lacked specificity to resolve this from other outliers without 

clinical information. It also demonstrated that multiple filtering steps would need to be applied in an 

iterative fashion, often ad-hoc as the results were different each time and changes in filtering 

strategy may have been required based on the number of events found.  
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Table 4-1 SOT58 splice analysis outputs ranked by normalised read support. 

Gene Locus Anno status sample 
support 

Normalised 
read support 

NBPF26 chr1:120834546-
120836569 

One 
annotated 

8:SOT058 8.0:SOT058 

MYL12A chr18:3255838-3277858 One 
annotated 

57:SOT058 57*:SOT058 

GSE1 chr16:85634132-86561671 One 
annotated 

6:SOT058 3.0:SOT058 

LPAR1 chr9:110973558-
111005465 

One 
annotated 

6:SOT058 2.0:SOT058 

TMEM64 chr8:90684030-90685005 One 
annotated 

12:SOT058 12*:SOT058 

AC093668.3 chr7:102541662-
102640204 

Both 
annotated 

20:SOT058 1.538:SOT058 

POLR2J3 chr7:102541662-
102640204 

Both 
annotated 

20:SOT058 1.538:SOT058 

AC093668.2 chr7:102541662-
102640204 

Both 
annotated 

20:SOT058 1.538:SOT058 

AC093668.1 chr7:102541662-
102640204 

Both 
annotated 

20:SOT058 1.538:SOT058 

MED13L chr12:115997221-
116003003 

One 
annotated 

41:SOT058 1.281:SOT058 

HIRA chr22:19447545-19447665 Both 
annotated 

20:SOT058 1.0:SOT058 

TTN chr2:178779118-
178779229 

Both 
annotated 

12:SOT058 1.0:SOT058 

PDE4B chr1:65793248-65913245 Both 
annotated 

8:SOT058 1.0:SOT058 

CCDC175 chr14:59561228-59563737 Both 
annotated 

6:SOT058 1.0:SOT058 

 
Table displaying the novel splicing events in SOT58. Anno status indicates which if any of 
the junctions were annotated, sample support indicates the total number of reads in 
each sample which span the event. Normalised read support is the ratio of reads 
supporting this event, compared with the other splicing patterns using the exons.  
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4.3 Testing the Mendelian RNAseq tool on the first patient sample 

To further test the developed splicing analysis informatics pipeline, patient SRB0003 which was 

sequenced in a first, separate batch to the other PID patients underwent whole blood RNA splicing 

analysis. This step was performed using the ‘Mendelian RNAseq’ program developed by Cummings 

et al., (155). SRBC0001, SRBC0002 and GTEx data served as controls for this analysis step. The use of 

GTEx data was appropriate in this instance as controls served only to identify existing splice sites, 

and not as a quantitative measure to draw conclusion from. Bam files of aligned reads were sorted 

and indexed, with read groups assigned and duplicates marked were loaded into the Mendelian 

RNAseq splice discovery file architecture on IRIDIS4, the high-performance computer cluster at the 

University of Southampton.  

 The program was executed, and the SRB003 patient output file which contained 1384287 detected 

splice junctions in the first instance, underwent normalisation by comparing the read support for 

each splice event to read support for surrounding splice patterns as described in the methods 

section. The list of junctions with their normalised read support values was then written to a new 

text file by the program. This file was subsequently filtered in two separate manners, the syntax for 

which is contained in the following sections. 

 

4.3.1 Results from SRB003 Splicing analysis.  

4.3.1.1 Results of filter 1  

“python "/scratch/jl5e18/RNA_SEQ/Cummings/analysis/FilterSpliceJunctions.py" -splice_file 

"/scratch/jl5e18/RNA_SEQ/Cummings/analysis/All.genelist.normalized.splicingJLL.txt" -

include_normalized -sample_with_highest_normalized_read_support ID003 -n_samples 3 -

print_simple” 

This syntax version for the filter script selects all events in which SBR0003 had the highest 

normalised number of reads supporting it, providing the event is not seen in more than 3 samples. 

This returned 744 hits. Further filtering steps were performed manually as follows. Junctions must 

have greater read support than 10 – to help distinguish from background noise. This left 11 genes 
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remaining. Junctions should not be present in only the patient and the non-GTEx controls, as this 

may be an artefact of the different sample processing and sequencing methods.  

These were then cross referenced with the genes from the immune panel, giving only one candidate. 

The normalised read support of this was too low to be considered “real” or potentially pathogenic, 

and as such it was not investigated further.  

 

Table 4-2 Splicing analysis results from SRB0003 :Filter 1 

Gene Location Total reads 
supporting event 

Junctions 
known 

Samples 
observed 

in 

Reads in 
samples 

Normalised 
read support. 

ATM chr11: 
108256340-
108257500 

13 One 
annotated 

2 4:IDC001, 
9:ID003 

0.038:IDC001, 
0.138:ID003 

 

4.3.1.2 Results of filter 2 

“python "/scratch/jl5e18/RNA_SEQ/Cummings/analysis/FilterSpliceJunctions.py" -splice_file 

"/scratch/jl5e18/RNA_SEQ/Cummings/analysis/All.genelist.normalized.splicingJLL.txt" -

include_normalized -n_read_support 20 -n_samples 3 -print_simple” 

This broader filter selected events which has read support greater than 20 overall and was seen in 

no more than 3 samples. This returned 11,686 splice junctions, these were then re-filtered using the 

term “ID003” in Microsoft Excel; this was the term given for SRB0003. This returned 138 splice 

junctions. These were then again negatively filtered for all those events only seen in the three non-

GTEx groups and not in the GTEx, as these had a high probability of being an artefact of the 

processing steps. These were then negatively selected for all those which had less than 10 read 

support in ID003 specifically. In addition, globin genes were also filtered out, due to the highly 

repetitive nature and the inherent unreliability of the outcomes. 121 events remained. These were 

cross referenced using the gene panel, after which 7 events remained.  
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Table 4-3 Splicing analysis results from SRB0003 : filter 2 

Gene Location Total Read 
support 

Annotation 
status  

Number of 
samples  

Read support: Sample name 

RAC2 chr22:37232702-
37232819 

113 Neither 
annotated 

2 27:SRR810945_MD.bam, 

86:ID003 

NCF1 chr7:74778233-
74778371 

48 Neither 
annotated 

1 48:ID003 

ADAR chr1:154583095-
154583140 

42 Neither 
annotated 

3 8:SRR661553_MD.bam, 

12:ID003, 

22:SRR656445_MD.bam 

SH3BP2 chr4:2794407-
2794432 

38 Neither 
annotated 

3 4:SRR1328407_MD.bam, 

11:ID003,23:IDC001 

RIPK1 chr6:3092443-
3093219 

31 Neither 
annotated 

3 3:IDC001,6:IDC002,22:ID003 

B2M chr15:44711578-
44711604 

28 Neither 
annotated 

3 6:IDC002,11:ID003, 

11:SRR1414559_MD.bam 

STAT1 chr2:190966551-
190966576 

24 Neither 
annotated 

2 4:SRR657468_MD.bam,20:ID003 

4.3.2 Interrogation of events with IGV 

The patients’ sorted and indexed bam file was imported to the IGV (Interactive Genome Viewer) 

software for the visual inspection of the junction’s results. RAC2 was first investigated, and indeed 

there appears to be a splicing anomaly in the mapping occurring just after the 3rd exon (Figure 4-1) 

(gene is in reverse orientation).   

From the third exon in the reverse orientation a small splicing event can be visualised which begins 

at the end of the third exon and ends part way into the intron. Generation of a sashimi plot shows an 

alternate view of this event.  A small arch, representing the end of one aligned part of the read and 

the beginning of the next part of the aligned read can be seen, with the number 90 representing the 

overall read support for the small splicing event (Figure 4-2). Under close inspection, this event 

appears to be an alignment artefact.; specifically, the reads have been inappropriately split where 
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sequence homology exists in two areas, one of which being the mis-aligned site. This event can 

therefore be discounted.  The sequence homology is highlighted Figure 4-3 and Figure 4-4
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Figure 4-1 IGV alignment and splicing of RAC2. 
A screenshot from IGV. The grey peaks represent read coverage, the splicing track consisting of blue and red arches. The rows of red bands 
underneath demonstrate the aligned location of the reads on the genomes.   

. 
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Figure 4-2 - Sashimi plot for RAC2, exons 3, 4, 5 and 6. 
The event in question can be seen in the sashimi plot above the blue exon (track along the bottom) which is first from the left. At this stage it 
looks like a real event with good read support. 
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Evidence of reads being inappropriately split.  RAC2 sequence and alignment. 

 
Figure 4-3 RAC2 sequence and alignment 
 
Red arrows indicate the section of intronic region which has a sequence matching that of the end of the previous intron. Some shorter reads 
have mis-aligned this exon tail, causing an apparent aberration. Underlined sequence matches that in Figure 4-4. 
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Figure 4-4 RAC2 sequence and alignment 2. 
Red arrow indicates the exonic sequence which 90 reads should have continued their mapping to. 
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Each event remaining after filtering in SRB003 was investigated with IGV using the same methods as 

described in 4.3.2, and the results are collated in Table 4-4 - Outcome of IGV investigation.  

 

Table 4-4 - Outcome of IGV investigation 

Gene Splice event Investigation outcome summary 

RIPK1 chr6:3092443-3093219 This event appears to just be the result of background noise as 

no exons are mapped to this location.   

RAC2  chr22:37232702-37232819  Inappropriate read splitting.  

NCF1 chr7:74778233-74778371 No reads linked the sites which were spliced to the rest of the 

transcripts, and there existed a very high degree of sequence 

homology between the sites immediately after the splicing. 

CGCCCTCC – TACCCTCT – Likely inappropriate read splitting 

ADAR chr1:154583095-154583140 Read support too small to be significant considering 

surrounding read support. 12 reads in downstream 

untranslated region. 315 reads between the previous exon and 

UTR.  

SH3BP2 chr4:2794407-2794432 Inappropriate reads splitting  

B2M chr15:44711578-44711604 Read support too low. 9 reads for this junction vs 5400 for the 

nearest other junction 

STAT1 chr2:190966551-

190966576 

Inappropriate read splitting.  
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4.4 PID cohort splicing analysis.  

Following these investigatory analysis steps and further review of the literature, the 20 PID samples 

RNAseq data underwent splicing discovery, normalisation and finally filtering using the methods 

described in section 2.1.18.  

Filters were developed to that event had to be unique, have read support greater than 5 and at least 

one half of the junction needed be annotated.  The total number of unique-to-sample events which 

had read support greater than 5 and at least one annotated splice site varied from 5 in SRB0003 to 

41 in SRB0006 (Figure 4-5). Very low numbers were obtained in samples SRB0001, which was noted 

to be of low quality in QC stages, and SRB0003 which alongside negative controls SRBC001 and 

SRBC002 was sequenced to a lower depth than the other samples. Events where both splice sites are 

annotated are those which do not involve the creation or activation of cryptic splice sites, this again 

adds a further amount of confidence that they might be real, and the result of events such as exon 

skipping. There are fewer events which can occur uniquely in a sample whilst still utilising two 

annotated splice sites. This is demonstrated by there being fewer events of this nature recorded 

(blue sections of split bars). Total number of events range from 5 to 41; a maximum difference of 

273% 
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Figure 4-5 Per-sample unique splicing events in WB RNAseq data 
 The range of per sample unique events spans 5 (SRB00003) to 41 (SRB0006). 
Regarding events with two annotated splice sites, many samples have no junctions 
which have both splice sites annotated. The greatest number is 5, appearing in SBR0015 
and SRB0005 SRB0019. These make up a maximum fraction of the total event of ¼ in 
SBR0001.   
 
 

At this stage the number of events is still too high to investigate manually through IGV and as such 

alternative filtering is needed. To reduce the number of events to a manageable amount for 

investigation, the following parameters were employed for event filtering:   

• Novel splicing events in globin genes are not included, due to the extremely complex splicing 

patterns and lack of association with PID.  

• At least one of the junctions for the splice site must be annotated. 

• Any events which have less than 0.1 normalised read support are filtered; this value was 

chosen as it produced a manageable number of events for manual inspection.  

• Events which appear in the table in green have read support > 1 meaning they became the 

dominant splicing pattern involving the neighbouring exons.  

• The events were cross referenced with the three PID gene panels.   
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This filtering strategy will not capture some possible events in which the transcripts produce non-

functional transcripts which are subsequently broken down in a mechanism known as nonsense 

mediated decay (NMD). However, reducing the number of events being investigated manually to 

manageable numbers is important, as such the filtering method is designed to strategically prioritise 

those events which are more likely to be real and not a result of aberrant alignment.  It will also not 

capture events in non-protein coding genes. Finally, the method is blind to events where both 

junctions are unannotated. Even in the case of cryptic exons the final reads should have one known 

exon binding to one cryptic exon so these should not be missed. In the event of complex splicing 

changes, for example where one exon has a new end point and the following exon is an activated 

cryptic exon, the event will likely be missed. Additionally, the program cannot detect events where 

splicing canonically takes place, but does not, such as with abnormal intron retention. 

Colour coding of results is systematic based on normalised read support: Green = Dominant, Yellow 

= read support (RS) >0.25, Orange = read support (RS)>.1 Clinical features of the patients were only 

present for some of the samples. It was not possible therefore to always determine if the results 

seen could be linked to the patient. Clinical features are stated when known. 
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4.4.1 Investigation of events in sample SRB0002 

Patient SRB0002 presented with Asthma, Allergy, Recurrent Pneumonia, Recurrent Viral skin 

infections, Recurrent Bacterial skin Infections in what was considered and undefined immune 

deficiency.  

 

Gene Location RS Annotation Norm.R.S Panel 

TRIM22 chr11:5698417-5698502 21 One annotated 0.636:SRB0002 GECIP 

SRB0002 has 334 total events before filtering for annotation status. After filtering for annotation 

status, read support and globin genes 10 events remained. Of these only TRIM22 appeared in the 

GECIP PID panel. TRIM22 had 21 total reads supporting and normalised read support of 0.636 

suggesting a high number of the total reads used this splicing pattern. However, it was noted that 

this statistic was derived from the other intra-exon splicing event within exon 4, and not the total 

number of reads of the exon, highlighting a weakness in the algorithm used in the tool. The IUIS 

gene list describes TRIM22 related PID as manifesting with Granulomatous colitis.  

RNAseq alignment was investigated using Integrative genome viewer. An event could be seen where 

a portion of exon 4 of 8 is spliced out at some level for all samples (Figure 4-6). The read support for 

this event is low across all samples – around 5% of the total reads. In addition to this, for SRB002 

only there is an alternative splicing pattern in which a larger portion of the exon is spliced out. This 

has a read support of 42, or about 2% of the total reads. This event is 727 base pairs in length, 

indicating the induction of a frameshift and consequently indication of nonsense mediated decay, 

which could explain the low read support for the event.  While this is significant within the context 

of intra-exon splicing event seen across all samples, it is extremely low in read support compared to 

the reads across surrounding junctions, which number around 1880 (Figure 4-7). TRIM22 associated 

primary immunodeficiencies have been primarily associated with gastrointestinal symptoms 

manifesting 
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Figure 4-6 SRB002 Alternative Splicing Event TRIM22 
Image shows the read coverage track for 4 samples of gene TRIM22, the bottom of 
which is SRB002. The blue arc upside down represents the novel splicing event which is 
not present in any other samples.  
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Figure 4-7 Sashimi plot of SRB002 TRIM22 Alternative Splicing Event 
Four tracks represent coverage and splicing within four samples. Brown sample represents SRB002, and the half loop represents the novel splicing 
event, 42 represents the number of reads on the event. 
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4.4.2 Investigation of events in sample SRB0005 

 

Gene Location RS Annotation Norm.R.S Panel 

FCGR1A chr1:149783260-149886264 21 One annotated 7.0:SRB0005 A.W. 

 

In total 300 events were present in SRB0005 before filtering for annotation status and normalised 

read support. 10 remained after second round filtering was performed. Of these, one appeared in 

known PID panels when cross referenced FCGR1A. Read support for this event was moderate at 21.   

Investigation using IGV revealed that this event spanned a from a portion of the FCGR1A gene which 

overlapped the H2BC1A histone gene and another high correlated sequence in another histone gene 

a considerable distance away. It therefore appears that this event is an artefact of alignment and not 

related to the FCGR1A gene.  No further investigation of this event was conducted.  

Addendum note: GECIP has since updated their Panelapp database to include FCGR1A in PID 

associated genes, although no details on phenotype of pathology is available. From the OMIM 

database, patients with deleterious mutations in the FCGR1A gene appear to be unable to activate 

anti-CD3 induced T-cell mitogenesis. This occurs through lack of CD64 expression on monocytes and 

Clinical Features Cellular Molecular Features Sample 

Asthma 

Allergy 

Recurrent Pneumonia 

Recurrent Viral skin infections 

Recurrent Bacterial skin Infections 

Specific Polysaccharide Antibody 
Deficiency (SPAD) 

Impaired T cell Function 

Immunodeficiency affecting Cellular and 
Humoral Immunity 

005 
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dendritic cells, although linked literature suggests patients can appear otherwise healthy (371). It is 

therefore unlikely to be the causal variant, but further investigation is warranted.
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Figure 4-8 Sashimi plot of SRB005 event spanning multiple genes 
The figure above highlights splicing events and respective coverage. The green sample represents SRB0005. The second blue cluster on the 
bottom map of exons represents both FCGR1A (arrows pointing right) and H2BC1A (arrows pointing left). Other clusters represent other 
histone genes. One highlighted gene H2BC21 is selected so only splicing events related to that gene are present as the event spans the distance 
from the FCGR1A gene and the H2BC21 gene with a total of 21 reads. 
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4.4.3 Investigation of events in sample SRB006 

 

Gene Location RS Annotation Norm.R.S Panel 

TFRC chr3:196075360-196075728 16 One annotated 0.128:SRB0006 IUIS Table 1 

 

SRB0006 had 404 events before second round filtering. 14 remained after filtering for both 

annotation status and normalised read support > 0.1. Of these events, only one appeared in a gene 

which also featured in cross referencing panels; TFRC. The features of TFRC related PID were 

recurrent infections, thrombocytopenia, and low neutrophil count (372).  However, as this event was 

not present in the other members of the family trio, it therefore was be ruled out as the causative 

variant. No follow up required. 

 

 

 

 

 

Clinical Features Cellular Molecular Features Sample 

Chronic Mucocutaneous 

Candidiasis 

Defects in Intrinsic and Innate 

Immunity 

SRB006/7/8 
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4.4.4 Investigation of events in sample SRB0013 

 

Gene Location RS Annotation Norm.R.S Panel 

IL16 chr15:81306545-81306611 22 One annotated 0.129:SRB0013 A.W. 

In total 183 events were present in SRB00013 before filtering for annotation status and normalised 

read support. 5 remained after second round filtering was performed. One of the events appeared in 

a gene (IL16) found in the PID cross-referencing panels. Read support was low at 22, and this 

comprised only .13 of the normalised read support around this junction.  

Genetic disease involving IL16 is not recognised as a primary immunodeficiency. A number of 

phenotypes which IL16 is associated with include, Graves’ disease – an auto immune disorder. 

Sarcoidosis, susceptibility to common cold lymphocyte count and monocyte count. Other non- 

immune phenotypes include: height, pro‐interleukin‐16 measurement, blood protein measurement, 

hair colour measurement, obesity coronary artery disease, drug use measurement, aspirin use 

measurement, NSAID use measurement, colorectal cancer, primary biliary cirrhosis, body mass 

index, myocardial infarction, ocular sarcoidosis, peripheral arterial disease, behaviour (373). Graves’ 

disease does not follow a clear inheritance pattern, and is instead a multifactorial condition as 

demonstrated by twin studies (374). Some examples of Graves’ disease have presented with 

splenomegaly (375) and also can mimic B-cell lymphoproliferative disorders, which manifest with 

symptoms such as this patient is experiencing (375). 

Under inspection with IGV the event is appears to be a case of partial intron retention between exon 

18 and 19 (Figure 4-9). In about 10% of the transcripts a small subsection of the intron is spliced out, 

but the majority remains. Interestingly, a great deal more read support is present in the IGV analysis 

that that produced by the Mendelian RNAseq tool. There also appears to be a heterozygous A-G 

mutation in the following terminal exon of IL16, at Ch15:81,308,981 which produces a sequence of 

Clinical Features Cellular Molecular Features Sample 

Predominantly Antibody Deficiency 

Recurrent Bacterial Infections 

Splenomegaly 

Lymphoid Interstitial Pneumonia 

Predominantly Antibody 
Deficiency 

013 
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AGTA, potentially creating a new splice site (Figure 4-10). There is some overlap or prospective links 

between conditions associated with IL16 and those seen in the patient; biliary cirrhosis 

complications often include splenomegaly. Moreover, elevated liver enzymes can be present in cases 

of infection which might mean liver involvement in this patient’s condition could have been 

overlooked and not reported. It is possible that this variant may be directly related to the patient 

symptoms; further clinical investigation will be required.  
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Figure 4-9 SRB0013 IL16 Sashimi Plot 
 
Sashimi plot shows the splicing events around exon 19 of IL16. The red sample represents SRB0013, and the extra event can clearly be seen. 
With a read coverage of around 10% of that of the neighbouring junctions. 
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Figure 4-10 Variant SRB0013 FOR IL16 
Image shows the A to G variant in IL16 in patient SRB0013. The yellow popup box indicates that approximately half of the read contain this 
variant, and the consensus sequence along the bottom of the image shows the resultant sequence at the variant point would be AG-TA
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4.4.5 Investigation of events in sample SRB0014  

 

Clinical features Cellular Molecular features 

Panhypogammaglobulinaemia  

Recurrent Bacterial Infections  

Splenomegaly  

Lymphoid Interstitial Pneumonia  

AIHA Enteropathy 

Predominantly Antibody Deficiency 

 

Results from Mendelian RNAseq tool for SRB0014  

Gene Location RS Annotation Norm.R.S Panel 

CD59 chr11:33706201-33710206 14 One annotated 14*:SRB0014 IUIS Table 8 

In total 224 events were present in SRB00014 before filtering for annotation status and normalised 

read support. 5 remained after second round filtering was performed. One of the events appeared in 

a gene (CD59) found in the PID cross-referencing panels. IUIS Table 8, describes CD59 associated PID 

features as: Haemolytic anaemia, polyneuropathy, thrombosis. 

Read support was low at 14. Normalised read support values suggest that this became the only 

splicing pattern around this junction.  IGV investigation was carried out on this sample. Read support 

appeared higher at 32 for this event, and this represents about 10% of the reads which cover the 

canonical junctions across neighbouring exons, contrary to the results indicated by the Mendelian 

RNAseq tool.  

This region of the genome appears to be ‘noisy’ in all the samples which were investigated, with 

variants appearing in this first exon for all samples, including CD59 (Figure 4-11). The splicing event 

covers a fairly substantial section of 4005 bases (Figure 4-12).  As this value is a multiple of 3, a 

frameshift does not occur and instead a mis-sense outcome is expected.  
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CD59 is a cell surface molecule which inhibits the formation of the terminal attack complex (376), 

and leads to complement overactivation . The molecule is expressed on tissues which come into 

contact with the immune system to prevent autoimmunity, including those of the nervous system 

(376). In the event that this molecule is not expressed, or functional autoimmunity can ensue. 

Common effects include autoimmune haemolytic anaemia, and neuropathy (377). Examples of CD59 

related  pathology usually involve both copies of the gene (377). With the high number of variants 

around CD59, it may be that two of these are working in parallel to produce compound 

heterozygous mutations, and as such DNA sequencing and analysis may be necessary.  
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Figure 4-11 Coverage plot for SRB0014 for CD59 
Coverage plot shots some noisy data for patient SRB0014 around CD59. This substitutions and deletions at various points in the CD59 first 
exon. 
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Figure 4-12 Sashimi plot sample SRB0014 CD59 splicing. 
Image represents the splicing patterns around exon 1 of CD59, with SRB0014 highlighted in red. The upside-down arch with bisects the first 
exon with 32 reads is the event in question which spans a significant 4005 bases in the patient, accounting for approximately 10% of all reads 
across neighbouring exon junctions. 
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4.4.6 Investigation of events in sample SRB0018 

Clinical features Cellular Molecular features 

Panhypogammaglobulinaemia  

Recurrent Bacterial Infection  

Bronchiectasis  

Type 2 Diabetes mellitus 

Predominantly Antibody 
Deficiency 

 

 

Gene Location RS Annotation Norm.R. S Panel 

S1PR1 chr1:101236991-101236993 23 One annotated 1.769: SRB0018 A.W. 

252 events were present in SRB00018 before filtering for annotation status and normalised read 

support. 7 remained after second round filtering was performed. One of the events appeared in a 

gene (S1PR1) found in the PID cross-referencing panels. Read support was low at 23. This transcript 

appears to have become the dominant transcript around the neighbouring junctions with a 

normalised read support of 1.77. This event was investigated using IGV. It was quickly established 

that this was not a true splicing event, but rather a heterozygous point deletion in the patient’s 

genome. Indeed, the event table shows the splicing only spanning a single base (Figure 4-13) (Figure 

4-14). The variant in question is at the exact point of a splice site, and so would result in a non-sense 

mutation. Of the two canonical splicing patterns around the site, both use alterative starting exons. 

Whilst the use of the exon which does not rely on the splice site which was affected has read 

support levels which are approximately average when considering the other samples, the read 

support for the splicing pattern which does rely on the affected exon is 50% that of the next sample. 

The isoform which uses this splicing pattern is lower across all samples and represent around 1/5 of 

the reads, in the affected sample SRB0018 this splicing pattern represents around 1/20 of the reads 

from this sample, supporting the notion of nonsense mediated decay occurring as a result of this 

frameshift inducing mutation.  
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S1P is protective against Type 2 Diabetes Mellitus, indicating a link between a variant in the receptor 

and the patients’ symptoms (378). S1P is expressed on lymphocytes and promotes egress from 

lymph nodes. S1P1R is also responsible for egress of mature T-cells from the thymus (379) and 

ultimately their phenotypes also. A body of literature now suggests that S1P1R may also be 

responsible for the fate and function of T regulatory cells T helper type 17 cells and memory T-cells 

(380). Similarly, this signalling pathway also plays an important role in mature B-cell egress from the 

bone marrow (381). The variant in question (rs3835397) has previously been discovered, in a study 

looking at variants which much be linked to asthma (382), which is elsewhere linked to 

bronchiectasis (383). Taken together, it is probable this this variant is causative.  

 

 

 

Figure 4-13 SRB0018 Variant 
Imagine shows the deletion of a G from the splice site of exon 1 in SIPR1 gene at 
Chr1:101,236,992. 
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Figure 4-14 Sashimi plot of SRB0018 SIP1R splicing. 
Figure shows splicing patterns of SIP1R gene around exon 1, and alternative exon 1. 
SRB0018 is shown in green and the reduced ratio of use of exon 1 and exon 2 as start 
sites is reduced, 253:1465 and 181:865 in controls vs 86:1312 (arcs flipped) in SRB0018. 
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4.4.7 Investigation of events in sample SRB0019 

Clinical features Cellular Molecular features 

Recurrent Abscess with Pseudomonas 

Candidal Discitis 

Nephrectomy with Klebsiella abscess 

Systemic lupus erythematosus 

Disorder of Phagocytes 

 

Gene Location RS Annotation Norm.R.S Panel 

TLR1 chr4:38791231-38845830 9 One annotated 0.409:SRB0019 A.W. 

POLE2 chr14:49668445-49669524 7 One annotated 0.233:SRB0019 IUIS Table 2 

IFI44L chr1:78628393-78629809 11 One annotated 0.229:SRB0019 A.W. 

274 events were present in SRB00019 before filtering for annotation status and normalised read 

support. 13 remained after second round filtering was performed. Three of the events appeared in 

genes (TLR1, POLE2, IFI44L) found in the PID cross-referencing panels, one of which is a known 

causal gene in PID. 

Read support was low in all cases, at the event in TLR1 =9. Normalised read support of 0.409 

indicating a high relative use of the novel splicing pattern.  POLE2 has very low read support (7). The 

gene is found in the IUIS gene panel, contained in Table 2; Combined immunodeficiencies with 

associated or syndromic features. The phenotypes associated in the IUIS table include: Recurrent 

infections, disseminated BCG infections, autoimmunity, type 1 diabetes, hypothyroidism, facial 

dysmorphism (372).  The event in IFI44L, another gene from the list provided by Professor A. 

Williams, has read support 11. 
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 These events were investigated with IGV. The first event, which occurred in TLR1 was found to be a 

case of inappropriate read splitting in which the latter part of the read was mapped to another 

similar part of the genome as where it normally would have been and so this dismissed and not 

investigated further.  

The second event was found to be a case of partial intron retention, in which exon 6 of POLE2 gains 

1079 extra bases of the subsequent intron (Figure 4-15). There was some evidence that there were 

variants nearby in the intron, but the read support was very low (1-2 reads). There is possibility that 

if the patient undergoes WGS, a variant may be discovered in the intron, which activated a cryptic 

exon. Read support for this splicing event was about 20% of that which supported the normal 

canonical splicing junction. The retained intron is of length 1079, which would cause frameshift and 

nonsense mediated decay.  

POLE2 is a subunit of a multi-subunit DNA polymerase (384). Deleterious variants in POLE2 lead to 

autoimmunity, combined immunodeficiency, reduced proliferative capacity of lymphocytes and 

resulting recurrent infections. In addition, facial dysmorphism and short stature are recorded effects 

(384). Whilst some of the symptoms meet the description of POLE2 related pathology, it’s unclear 

without further clinical investigation if this can be the molecular cause of all the symptoms.  

IFI44L is a type I interferon-stimulated gene involved in antiviral and antibacterial activity. It 

promotes macrophage differentiation and inflammatory cytokine secretion (385). And importantly is 

regarded as a biomarker for systemic lupus erythematosus (386) . 
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*

 

Figure 4-15 Sashimi plot of SRB0019 POLE2 splicing. 
Plot shows splicing patterns present in POLE2 of patient SRB0019 shown in red, versus 
controls, shown in blue and green. 8 reads, or around 10% of the total read around the 
nearest exons indicate significant intron retention.  

 

The final event was a case of exon skipping in the IFI44L gene. In canonical expression, exon 3 is only 

included if exon 4 is present also, also the converse is not always true. However, in patient SRB0019 

a splicing pattern suggests exon 3 is present, but exon 4 and half of exon 5 is spliced out (Figure 

4-16). A great many splicing patterns are present for the IFI44L gene in the samples examined and 

read support for canonical junction in the SRB0019 sample can be as high as 1500. The dominant 

splicing pattern in the most proximal exons have a read support of 123, and the event in questions 
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has a read support of 16, or around 10% of the closest alternative. However, the 123 reads 

supporting this event, are only around 10% of the reads across other exons which are present in the 

dominant transcript. Therefore, withing the wider context of all the isoforms of the gene, this is a 

very low abundance transcript and unlikely to be causative. In addition, no variant could be observed 

in the sequence for this gene, although the low coverage of RNAseq does not form reliable variant 

identification data, and intronic variants may be missed entirely. 

 

 

Figure 4-16 Sashimi plot of SRB0019 IFI44L splicing. 
Figure shows the splicing of IFI44L gene of exons 3, 4 and 5 from right to left with 
patient (green) versus controls (blue and red).  
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4.5 Summary tables of results 

 

Table 4-5 Summary Table of Candidate Splicing Events 

Patient  Gene Event Known molecular 
diagnosis 

Causal 

SRB0002 TRIM22 chr11:5698417-5698502 No information Unlikely 

SRB0005 
FCGR1A 

chr1:149783260-
149886264 

CARD-11 A-C 
@2987250 

Unlikely 

SRB0006 
TFRC 

chr3:196075360-
196075728 

STAT1 Unlikely 

SRB0013 
IL16 

chr15:81306545-
81306611 

No Diagnosis in GECIP Unlikely 

SRB0014 CD59  No information Possible 

SRB0018 
S1PR1 

chr1:101236991-
101236993 

No Diagnosis in GECIP Likely  

SRB0019 TLR1 chr4:38791231-
38845830 

No information Unlikely 

SRB0019 POLE2 chr14:49668445-
49669524 

No information Unlikely 

SRB0019 IFI44L chr1:78628393-
78629809 

No information Unlikely 

Table shows the gene, event and the diagnosis and the determination on causality of 
phenotype for the patients for which splicing events were found using the filtering 
strategy adopted and after being cross-referenced with the panels. 
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Table 4-6 Comparing Results of Methods to Detect Gene Expression Outliers for PID 
Patients 

Sample Splicing  FPKM Z-Score TPM Z-score  OUTRIDER  Overlap 

SRB0001  SEMA3E, CFTR, C7 G6PC3, TRAF3IP2, 
MVK, BRIP1 

  

SRB0002 TRIM22 FOXN1, PSENEN, 
ALPI, IL36RN, 
SAMD9L 

   

SRB0003 ATM     

SRB0004      

SRB0005 FCGR1A CCBE1, IL2RA, CEBPE    

SRB0006 TFRC RNF31, NRKB2, 
TNFSF12, C9, 

IL2RG OCLNP1, 
RRP8,RRP1B 

 

SRB0007   IL10, TP53   

SRB0008  GINS1, IL23R, CFH, 
CFHR5, 

   

SRB0009  IL21, CFI, FANCI NFKB1 OCLNP1  

SRB0010   G6PC3   

SRB0011   RFX5, FAPP24, 
FASLG, THBD 

OCLNP1,   

SRB0012    ACOT9  

SRB0013 IL16 RAG1, FAT4, IL17F, 
C4A, C4B, CFHR2, 
CFHR3, BRIP1 

NFE2L2, C8B   

SRB0014 CD59 TAP1, NCF1, APOL1, 
IL17RA, SERPING1 

BLNK, CD19, 
CD79A, POLR3F, 

  

SRB0015  FERMT1, CFHR1,    

SRB0016  C8A,  CD3G, CD81, 
CDE70 

  

SRB0017  C6 CD40, BLNK, CD19, 
CD79A, IGHM, IGKC 

PAX5, IGHM, 
CD22, MS4A1, 
FCRL2, IGKC 

IGKC, 
IGHM 

SRB0018 S1PR1 CFI PLEKHM1, C1QB   

SRB0019 TLR1, IL12B, THBD HELLS, TNFRSF13C,   
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POLE2, 
IFI44L 

TOP2B, IL18BP, 
CD46, DKC1 

SRB0020  CD40,TTC7A, CARD9, 
C1QA, C1QB FCN3, 

XIAP, ACD   

SRB0021  XRCC2    

Table represents findings from the various methods of outlier detection, with the final 
column showing any overlaps using these methods. Only overlap found was for the B-
cell genes IGKC and IGHM in SRB0017, a patient without B-cells. This is expected due to 
the strong signal such a loss of expression would produce.  

4.6 Discussion 

The aims of this piece of research were to generate a bioinformatic pipeline for processing and 

interrogation of splicing of the transcriptome of PID patients to enhance diagnostic ability and 

variant filtering. We aimed to utilise multiple tissues to find novel signals which inform diagnosis. 

This section discusses the results of the assessment of alternative splicing within the cohort.  

The approach to resolving aberrant splicing occurring in individuals employed (Mendelian RNAseq 

tool) was extremely sensitive, and able to detect positive controls. It was not however able to 

specifically identify the positive control as causal and clinical interpretation and follow up alternative 

investigation is still critical in interpreting the findings from this tool. As a result, further disease 

causing aberrant splicing events may have been detected, but lost in the lengthy, suboptimal 

filtering process. This component was a significant constraint, and filters had to be designed and 

optimised multiple times, with event types in mind, adding bias. Yet many event types would not 

have been identified.  A number of events have been identified which will need further clinical 

interpretation and orthogonal experiments but due to time constraints, this has not occurred. 

Access to the genomes of these patients is not available currently and they will need to be recalled 

for WES/WGS. It is possible that as many as 6 causal splicing events may have been discovered. 

Based on the strong sequencing evidence, and the biological data surrounding the patterns on 

inheritance and the link between the S1P1R gene and the clinical phenotype, it seems likely that the 

deletion event found for patient SRB0018 in gene S1P1R, which represents a deletion of a G 

nucleotide from the splice donor site of exon 1 in SIPR1 gene (g.128delG, Chr1:101236992) is directly 

responsible for the phenotype. The CD59 splicing abnormality, could be contributing to the patients’ 

phenotype, although a causative variant isn’t clear. If another is present. Further investigation is 

needed for this, including DNA sequencing and variant interpretation.  
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Only whole blood, bulk RNAseq was conducted. PBMC and activated T-cell analysis was not 

conducted and furthermore, incorporation of allele specific expression as a metric into the analytic 

pipeline was not completed. By concentrating the work on PBMC’s or T-cells, it is likely further 

diagnostic uplift will be achieved, due to the reduced noise and enhanced read depth on tissues or 

importance. 

Other bioinformatic tools such as FRASER (387) now exist for assessing alternative splicing outliers. 

Although we were not able to test these alternative methods, the single package approach will likely 

expedite the process, although each package will have different benefits and drawbacks. It’s likely 

that combination of multiple tools is likely to be more reliable in producing robust findings. 

Implementation of end-to-end tool which combines RNAseq data and genomic data to identify 

causal variants should be prioritised as a first pass in future work. 

Assessment of alternative splicing using the syntax generated by Beryl Cummings proved to be 

sensitive enough to detect alternative splicing aberrations which cause disease. It however was not 

specific enough to be able to accurately determine which event was causal when using an example 

candidate with known causal variant. Furthermore, the filtering steps mean that it was likely that 

disease causing events would be lost in the process, and certain events such as intron inclusion, 

would not be identified at all.  

This is due to the nature of the tool; the utilised algorithm can detect when a splice event takes 

place, but not when an annotated event does not take place. Due to this limitation and others, the 

authors put the overall diagnostic rate of disease in their own cohort, for splice altering variants at 

35% (155). 

 

4.7 Conclusion 

The area of transcriptomics in Mendelian disease is evolving and tools are being generated which 

take into account many of the nuances of this process. However significant challenges remain, and 

at best 25-40% success rate is found in literature for uplift of undiagnosed patients using RNASeq. 

Diagnostic uplift was had for a single sample using this splicing specific approach and experimental 

design, and critical information gained about other samples. This work also highlighted the 

importance of experimental design, process optimisation and tissue selection. It is likely that the 
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success rate cited in the literature was improved by selection of candidates with likely chance of 

success and the use of tissues with lower heterogeneity of cell type than whole blood. 

Experimental design is critical and this process, including generation of an adequate control group, 

should be conducted with the limitations of the informatic tools in mind. The tool utilised is 

extremely sensitive, but lacks specificity, and is subject to false positives for inappropriate read 

splitting. A less sensitive approach or further fine tuning of filtering and alignment parameters is 

needed. In the case of PID, alternate tissue selection, and even immune challenge may be necessary 

to identify the causative variant, as splicing changes are an important component of immune 

response, and not always discernible at baseline status. 

Inherent limitations in this project included significant batch effect and the use of ‘unhealthy’ 

controls. The tools are also unable to resolve variants which might not affect expression levels, 

splicing or allelic imbalance, but instead have deleterious effects on the gene product. Moreover, the 

limitations of the statistical model must be considered. If genes are low expressed, the changes may 

not be statistically significant. The approaches used for splicing also rely on complicated filtering 

strategies, none of which can capture all types of effect which have the potential to cause disease. 

This process is also then subject to cross-referencing of known PID genes or panels and as such, is 

limited in efficacy.  
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Chapter 5  Understanding transcriptomic differences in 

COVID-19 and Influenza: Results 

5.1 Introduction 

Infectious diseases elicit distinct and specific responses from the host immune system. The ability to 

response to various pathogens relies on the ability of the cell to manage the production of RNA and 

proteins. To this end, the cell can produce a huge variety of proteins and control them within strict 

ranges. This is mediated in part by changes in gene expression and isoform abundance. To explore 

this further, the transcriptomic differences and congruence between the whole blood patients with 

COVID19 and Influenza was investigated. Exploratory data analysis was carried out initially, followed 

by investigation of differences in gene expression and alternative splicing. Tools for assessing gene 

expression are more mature and have a greater range of utilities as evidenced. However, differences 

in splicing may be more reliable, and robust, as well as being relatively untapped for therapeutic and 

diagnostic potential. 

5.2  Aims 

The aims of this work were to quantitate these differences in transcriptome through both gene 

expression and differential isoform abundance metrics. This was performed in order to create a 

dataset for further analysis of age-related changes in host response between infections. 

 

5.3 Cohort analysis  

We aimed to first asses the transcriptomic differences between the cohorts of patients admitted to 

hospital with either Influenza or Covid19. This analysis does not benefit from the presence of a 

control data set of patients without infection. Basic statistics were calculated for each cohort using 

R. This included the mean, median, variance, standard deviation, Shapiro-Wilk test for normality and 

t-test to compare the means (Table 5-1, Figure 5-1, Figure 5-2).   
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Both groups were similar in terms of the age of the patients, Covid19 patients were slightly older on 

average, but had less variance, standard deviation about the mean indicating the cohort followed a 

slightly more centralised distribution. Shapiro-Wilk W test for normality showed good evidence that 

both were normally distributed. Covid19 patients age may follow a slightly more normal distribution 

and the cohort is slightly older in general. Both groups have a slight preponderance of males 

compared with females (Figure 5-3, Figure 5-4), this increased proportion was also more prevalent in 

the Covid19 cohort compared with the influenza cohort. Other clinical differences include a slightly 

higher proportion of white British participants in influenza patients, (p-value 1.12x10-05), COVID19 

patients had a higher prevalence of hypertension (p-value 1.42x10-02) and liver disease (p-value 

3.63x10-02). COVID19 patients also had a longer symptom duration, higher respiration rate on 

admission (p-value 2.79x10-02), administration of supplementary oxygen (p-value 6.81x10-03), CRP 

levels (p-value 1.73x10-03), and lymphocyte numbers (p-value 2.76x10-02) , they also had a longer 

duration of stay (p-value 5.51x10-10) , and increased 30 day mortality (p-value 4.42x10-05) (388).  

 

 

Table 5-1 Covid and Influenza demographic analysis 

Statistic Covid19  Influenza 

Mean age, trimmed mean (0.1) 61.381 (61.265) 57.843 (57.970) 

Median age  61.5 59 

Variance in age 308.1905 337.890 

Standard deviation of age 17.555 18.382 

Mean absolute deviation in age 20.239 22.239 

Age range  97-27 (70) 93-19 (74) 

Age quartiles 47.75, 61.50, 73.25 42, 59, 73 

Shapiro-Wilk W test for normality (0.9793, 0.01949) (0.97052,0.0497) 
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(W, p-val, α=0.05) 

T-test  T=2716, df=164.45, p-value=0.2053,  

Accept alternate hypothesis: true difference in means of 

age is not equal to 0.  
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Figure 5-1 Histogram of patient ages in Covid19 cohort 
Histogram of distribution of age for Covid19 patients, intervals for the histogram are 5-
year sections. Peak frequency is N=9 for found in 4 demographic age categories and are 
concentrated in the central 50% of the distribution curve. The lowest frequencies exist 
at either of the approximate tails of the distributions.  
 

 

Figure 5-2 Histogram of patient ages in the Influenza cohort 
Histogram of distribution of age for Influenza patients, intervals for the histogram are 5-
year sections. Peak frequency is N=11 for found in 1 demographic age category (64-69), 
which is near the centre of the distribution curve. The lowest frequencies exist at either 
of the approximate tails of the distributions.  
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Figure 5-3 Bar chart representing the sex distribution of the Covid19 cohort. 
The cohort is comprised of a minority of females and a majority of males with males 
almost representing twice as much of the cohort as females. 
 
 

 

Figure 5-4 Bar chart representing the sex distribution of the Influenza cohort. 
The cohort is comprised of a minority of females and a majority of males. In this cohort, 
the majority which males represent is comparatively small. 
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5.4 Exploratory Data Analysis with PcaExplorer 

Raw gene expression reads were used for exploratory data analysis. This analysis revealed similar 

distributions of numbers of aligned reads between the COVID19 and Influenza infected patients. The 

mean reads were around 19M after low abundance reads were filtered, although there were outliers 

in both groups, in either direction, with lows of around 10M reads and highs of around 30M reads.  

Principal component analysis showed shows clear grouping of patients about principal component 1 

(PC1). After investigation in the genes which most heavily weighted PC1 this was determined to be a 

result of sex specific differences in gene expression, and so the two groups, separated by horizontal 

space on the X axis, (PC1) were understood to represent the males and females of the groups.  

There also exists clustering of the two cohorts, with an incomplete separation of the groups whereby 

Influenza patients are primarily above Y axis point 0, and the Covid19 patients are primarily below Y 

axis point 0. 95% confidence intervals have a significant overlap between the groups. In addition, 

whilst there were general trends of separation about principal component 2, there was significant 

overlap of 95% C.I. circles indicating that statistically discerning between the two groups using 

principal components was not possible. There was however observed a general trend in the 

datapoints around PC2 which showed the Influenza patients tended to cluster higher of PC2 and 

Covid19 datapoints tended to cluster lower on the axis of principle component 2. 
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Figure 5-5 Exploratory data analysis: total aligned reads per samples for Covid19 and Influenza samples 
The table displays total aligned reads per sample after the data was cleaned using the pcaExplorer tool as per the parameters in methods 
section, the data appears to be consistent across both samples.  
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Figure 5-6 Principal component analysis of Covid19 and Influenza cohort 
Principle component plot. Red points are COVID19 patients, blue points are Influenza 
patients. Circles indicate 95% confidence intervals. X axis is principal component 1, y 
axis is principal component 2.  
 
 
 
 

5.5 Comparing and contrasting gene expression between COVID-19 and 

Influenza 

Differential gene expression between the two cohorts was conducted using Pandaomics software. 

This software was chosen because of the comprehensive downstream analysis for target ID, and 

ease of use. The results were plotted in the diagram below (Figure 5-7). When considering genes 

which are differentially expressed, Pandaomics thresholds for magnitude are automatically assigned 

as 0.3-fold change, and an FDR-adjusted statistical significance level of 0.05. Top results in terms of 

magnitude were shown in the diagram on the left and right, for Influenza and Covid19 respectively. 
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Of the differentially expressed genes, the majority where higher in the COVID19 patients, moreover, 

those which had the greatest differences in expression were also expressed at higher levels in the 

COVID19 patients. It cannot be determined from these results alone if these expression changes 

were as a result of upregulation in one infection, or downregulation in another, only that they were 

significantly different and in which cohort expression was higher.  
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Figure 5-7 Differentially expressed genes between Covid 19 and Influenza as determined by Pandaomics software. 
Genes which were not significantly different between the two infections are represented in grey. Those genes for which expression was 
significantly higher in COVID19 patients are shown in green. Those genes for which expression was significantly higher in Influenza patients are 
represented in red.  At either side of the diagram, there exists the list of those genes which had the highest fold change, in some cases these 
were not statistically significant
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The most differentially expressed genes were those related to immunoglobulins and therefore 

related to the adaptive immune response. It was noted that some of those genes which had the 

greatest magnitude of change, were not reaching statistical significance.  

To enhance stringency, Bonferroni correction test was performed, where error rate (E) x test 

number (N) = p-value threshold. The acceptable error rate was set as 0.05, the number of genes 

which remained after Pandaomics filtering for low expression was 37794, and the calculated 

Bonferroni critical Value was determined to be 1.32296E-06. The results from Pandaomics were 

printed to a CSV file and then filtered for p-values less than 1.32296E-06 to give a list of the most 

differentially expressed genes. 

The top differentially expressed genes from this list, ordered by magnitude after Bonferroni 

correction for both infections are displayed in the table below (Table 5-2). This process was then 

repeated using the P-value significance as the metric for ordering. The top genes from this method 

for both Covid19 and Influenza are found in the second table. Of note, when ordering by P-values, 

the top 220 genes all had logFC values which were positive, indicated that these were all genes 

which were expressed at higher levels in Covid19 patients (Table 5-3). To find the genes differentially 

expressed, which were higher in Influenza samples, and which were statistically significant the genes 

list was cleared of all positive values and ordered by P-value inversely.   
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Table 5-2 Differentially expressed genes which are more highly expressed in Covid19. 

Higher in Covid19  Higher in Influenza 

Gene logFC P-value  Gene logFC P-value 

IGHV1-24 3.035589645 5.32E-16  PDZK1IP1 -1.14418544 1.04E-06 

IGHG1 2.991176278 9.40E-13  CD163 -1.086176454 1.63E-07 

IGLV3-25 2.685154012 2.73E-13  TTC26 -0.992097771 1.03E-07 

IGLV3-19 2.609259377 1.01E-16  SLC5A9 -0.970985937 1.77E-07 

IGLV3-10 2.545445307 1.54E-11  OR9A2 -0.940140998 1.78E-07 

IGHV4-34 2.388716259 2.44E-16  RPS28P1 -0.930112334 7.31E-08 

IGHG3 2.384071424 3.25E-14  GPER1 -0.875533008 1.22E-06 

IGLV3-1 2.291400869 9.92E-13  CPM -0.800626927 1.69E-07 

IGLV6-57 2.222716359 1.68E-11  TAGLN -0.648318141 3.77E-07 

IGHV5-51 2.08596257 5.57E-13  NUDT16 -0.618920455 1.44E-07 

IGLV3-27 2.07332268 1.05E-10  DLEU7 -0.616446217 5.67E-08 

IGHV1-46 2.035594432 3.81E-12  GIMAP8 -0.565445981 3.81E-07 

IGHV3-33 2.033336754 2.98E-12  SMIM25 -0.523051552 1.06E-06 

IGLV4-69 2.020974723 1.29E-11  SIRPB2 -0.450439926 1.21E-06 

IGHA1 1.995244843 1.09E-11  C1ORF162 -0.447344044 4.17E-08 

JCHAIN 1.966384828 1.94E-11  MINDY3 0.336067471 5.03E-07 

IGHV3-30 1.943436086 3.02E-11  ARF4 0.340013552 9.97E-08 

IGKV1-27 1.884704333 2.81E-11  ARL15 0.352548509 5.17E-07 

IGLV3-21 1.86772077 1.05E-09  PRUNE1 0.361338574 7.86E-07 

IGHV2-5 1.860441631 2.54E-10  LINC01003 0.367876437 7.87E-07 
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Table 5-3 Differentially expressed genes in Covid and Influenza, ordered by P-value. 

Covid   Flu 

Gene logFC P-value 

 

Gene logFC P-value 

IGLV3-19 2.609259 1.01E-16 

 

C1ORF162 -0.44734 4.17E-08 

IGHV4-34 2.388716 2.44E-16 

 

DLEU7 -0.61645 5.67E-08 

IGHV1-24 3.03559 5.32E-16 

 

RPS28P1 -0.93011 7.31E-08 

IGHG3 2.384071 3.25E-14 

 

TTC26 -0.9921 1.03E-07 

JUN 1.074533 4.07E-14 

 

NUDT16 -0.61892 1.44E-07 

LAPTM4B 1.013699 9.22E-14 

 

CD163 -1.08618 1.63E-07 

LETM2 0.93946 1.56E-13 

 

CPM -0.80063 1.69E-07 

HIST1H2BD 0.798397 2.72E-13 

 

SLC5A9 -0.97099 1.77E-07 

IGLV3-25 2.685154 2.73E-13 

 

OR9A2 -0.94014 1.78E-07 

RGS16 1.135616 4.55E-13 

 

TAGLN -0.64832 3.77E-07 

IGHV5-51 2.085963 5.57E-13 

 

GIMAP8 -0.56545 3.81E-07 

CDC6 0.946548 7.87E-13 

 

PDZK1IP1 -1.14419 1.04E-06 

IGHG1 2.991176 9.40E-13 

 

SMIM25 -0.52305 1.08E-06 

HIST1H4H 0.726816 9.66E-13 

 

SIRPB2 -0.45044 1.21E-06 

IGLV3-1 2.291401 9.92E-13 

 

GPER1 -0.87553 1.22E-06 

HIST1H2BG 1.04129 1.21E-12 

 

ZNF366 -0.60365 1.42E-06 

CYP27A1 1.436561 1.64E-12 

 

OR52N1 -1.21331 1.46E-06 

IGHV3-33 2.033337 2.98E-12 

 

RNASE6 -0.55935 1.64E-06 

SLC44A1 0.545948 3.11E-12 

 

MEF2A -0.43806 1.7E-06 

ISYNA1 0.723301 3.13E-12 

 

PFKFB2 -1.13615 1.88E-06 
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The top gene which was not directly a part of the humoral adaptive immune response was JUN. JUN 

(c-JUN) is extensively documented to be important in viral replication and mediating host 

inflammatory responses (389, 390), and has been implicated in cytokine storm (391).  C-JUN N 

terminals kinase (JNK) and C-JUN are implicated in formation of inflammasomes by inducing 

transcription faction NF-Kb (392). The gene which was the most differentially expressed while having 

the highest expression in Influenza was PDZK1IP1, a gene encoding a cargo protein which carries 

membrane proteins from the endoplasmic reticulum. When overexpressed inflammation is triggered 

(393).  When expression of c-JUN is compared between the cohorts, there is again, a large amount of 

overlap (Figure 5-8) despite this being a gene with a high degree of differential expression.  
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Figure 5-8 - Expression of c-JUN in Covid19 and Influenza cohorts 
Figure shows box-and-whisker plots produced by pcaExplorer looking specifically at the differences in expression with Covid and Influenza 
cohorts. The majority of Covid cohort have between 150-300 counts on this scale, with influenza patients having between 70 and 150 reads 
mapped to the JUN gene.  
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Automatic Pathway analysis was produced using the Pandaomics software. The analysis showed that 

5 of the top 6 highest ranked pathways by iPanda score, in Covid19 cohort were involved in 

Synthesis of phosphatidylinositol-phosphates or ‘PIPs’ (Table 5-4). Pandaomics was also able to 

produce a visualisation of the most upregulated node within that pathway (Figure 5-9).  

The pathways most highly expressed in Influenza cohort when compared with the Covid19 cohort 

was the disease-associated ‘CD163 mediating an anti-inflammatory response’. CD163 has been 

previously associated with negative outcomes and hospitalization in Influenza patients (394).  

The nodes organization and upregulation intensity were shown (Figure 5-10). IL-6 and IL-10 trigger 

CD163 re-localisation from the nucleolus to the plasma membrane. At this point CD163 can be 

cleaved and become soluble during macrophage activation. High levels of soluble CD163 (sCD163 

)are associated with inflammatory disease (395). CD163 expression was also plotted in box-and-

whisker plots for the two cohorts to visualize the expression differences (Figure 5-11 
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Table 5-4 Table of most highly expressed pathways in Covid19 cohort compared with 
Influenza pathways. 

Pathway Main cellular 
process 

iPanda 
activation 

p-value 
(FDR 
corrected) 

Database Genes 
number 

Synthesis of PIPs at the Golgi 
membrane 

Metabolism 1.289  3.78E-06 Reactome 18 

Synthesis of PIPs at the late 
endosome membrane 

Metabolism 1.206  5.78E-06 Reactome 11 

PI Metabolism Metabolism 1.200  5.01E-06 Reactome 84 

Synthesis of PIPs at the plasma 
membrane 

Metabolism 1.163  8.37E-06 Reactome 53 

Mtb iron assimilation by 
chelation 

Disease 1.120  2.21E-06 Reactome 1 

Synthesis of PIPs at the early 
endosome membrane 

Metabolism 1.114  7.36E-06 Reactome 16 

FCGR activation Immune 
System 

1.084  1.32E-06 Reactome 92 

Classical antibody-mediated 
complement activation 

Immune 
System 

1.034  1.13E-06 Reactome 86 

CDK-mediated phosphorylation 
and removal of Cdc6 

Cell Cycle, DNA 
Replication 

0.947  7.87E-13 Reactome 73 

Role of phospholipids in 
phagocytosis 

Immune 
System 

0.941  5.69E-06 Reactome 105 

G2-M DNA replication 
checkpoint 

Cell Cycle 0.895  1.97E-07 Reactome 5 

Events associated with 
phagocytolytic activity of PMN 
cells 

Immune 
System 

0.820  1.60E-06 Reactome 2 

Fcgamma receptor (FCGR) 
dependent phagocytosis 

Immune 
System 

0.794  2.13E-05 Reactome 166 

Scavenging of heme from 
plasma 

Vesicle-
mediated 
transport 

0.758  3.03E-05 Reactome 90 

Latent infection - Other Disease 0.672  3.10E-04 Reactome 4 



Understanding transcriptomic differences in COVID-19 and Influenza: Results 

 

189 

responses of Mtb to 
phagocytosis 

CD22 mediated BCR regulation Immune 
System 

0.670  9.44E-05 Reactome 68 

Creation of C4 and C2 activators Immune 
System 

0.659  1.22E-04 Reactome 94 

Phosphorylation of Emi1 Cell Cycle 0.617  1.25E-05 Reactome 6 

Synthesis of PIPs at the ER 
membrane 

Metabolism 0.606  3.76E-05 Reactome 5 

Mitotic Metaphase-Anaphase 
Transition 

Cell Cycle 0.578  2.13E-06 Reactome 2 

HDACs deacetylate histones Chromatin 
organization 

0.559  1.68E-06 Reactome 60 

p53-Independent DNA Damage 
Response 

Cell Cycle 0.555  1.00E-06 Reactome 52 

p53-Independent G1-S DNA 
damage checkpoint 

Cell Cycle 0.555  1.00E-06 Reactome 52 

Ubiquitin Mediated 
Degradation of Phosphorylated 
Cdc25A 

Cell Cycle 0.555  1.00E-06 Reactome 52 

Antigen activates B Cell 
Receptor (BCR) leading to 
generation of second 
messengers 

Immune 
System 

0.545  2.95E-04 Reactome 93 
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Figure 5-9 The most upregulated molecular expression node in the Covid19 cohort 
Figure shows the individual genes which are upregulated, their location, and amount of 
upregulation along with the direction of influence of expression. Green arrows indicate 
a downstream process regulated by the previous gene. Colour of the gene circle 
indicates fold change of expression in the gene. 
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Table 5-5 -Pathways with most upregulation in Influenza cohort when compared with 

Covid19 cohort. 

Pathway Main cellular 
process 

iPanda 
activation 

p-value 
(FDR 
corrected) 

Database Genes 
number 

CD163 mediating an anti-
inflammatory response 

Disease -0.866  2.85E-06 Reactome 9 

Interleukin-18 signaling Immune System -0.104  2.68E-03 Reactome 8 

Interleukin-33 signaling Immune System -0.080  0.042 Reactome 3 

Inactivation of CDC42 and 
RAC1 

Developmental 
Biology 

-0.057  9.71E-03 Reactome 8 

Xenobiotics Metabolism -0.044  0.09 Reactome 24 

Interleukin-36 pathway Immune System -0.041  0.145 Reactome 7 

PAOs oxidise polyamines to 
amines 

Metabolism -0.029  4.35E-03 Reactome 2 

Activated NTRK2 signals 
through FYN 

Signal 
Transduction 

-0.029  0.077 Reactome 7 

LTC4-CYSLTR mediated IL4 
production 

Disease -0.027  0.042 Reactome 7 

Apoptotic cleavage of cell 
adhesion proteins 

Programmed Cell 
Death 

-0.026  0.286 Reactome 11 

Interconversion of polyamines Metabolism -0.026  5.26E-03 Reactome 3 

Collagen degradation Extracellular 
matrix 
organization 

-0.024  0.116 Reactome 64 

The AIM2 inflammasome Immune System -0.023  0.086 Reactome 3 

Negative regulation of TCF-
dependent signaling by WNT 
ligand antagonists 

Signal 
Transduction 

-0.022  0.154 Reactome 15 

ERK-MAPK targets Immune System, 
Signal 
Transduction 

-0.021  0.094 Reactome 22 

The IPAF inflammasome Immune System -0.021  0.038 Reactome 2 
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Amine Oxidase reactions Metabolism -0.018  0.022 Reactome 4 

Relaxin receptors Signal 
Transduction 

-0.016  0.087 Reactome 8 

cGMP effects Hemostasis -0.012  0.077 Reactome 16 

Nuclear Events (kinase and 
transcription factor activation) 

Signal 
Transduction 

-0.012  0.05 Reactome 61 

Scavenging by Class A 
Receptors 

Vesicle-mediated 
transport 

-0.011  0.026 Reactome 19 

Interleukin-27 signaling Immune System -0.010  0.048 Reactome 11 

      

Metallothioneins bind metals Cellular responses 
to external stimuli 

-8.33E-03 0.228 Reactome 11 

Phase 2 - plateau phase Muscle 
contraction 

-8.15E-03 0.14 Reactome 25 

Inhibition of nitric oxide 
production 

Disease -7.23E-03 9.43E-03 Reactome 3 
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Figure 5-10 The most highly expressed molecular node in the Influenza cohort when 
compared to the Covid19 cohort 

Figure shows the individual genes which are upregulated, their location, and amount of 
upregulation along with the direction of influence of expression. Green arrows indicate 
a downstream process regulated by the previous gene. Colour of the gene circle 
indicates fold change of expression in the gene, colour coding is reversed here, i.e., 
magenta indicates expression is higher as the colour coding is comparative to the 
Covid19 cohort. 
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Figure 5-11 CD163 expression in Covid19 and Influenza patients 
Figure shows box-and-whisker plots produced by pcaExplorer looking specifically at the 
differences in expression with Covid and Influenza cohorts. The majority of Covid cohort 
have between 400-1000 counts on this scale, with influenza patients having between 
700 and 3000 reads mapped to the CD163 gene. 
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5.6 Comparing and contrasting isoform expression between COVID-19 

and Influenza 

BANDITS is a software package which performs differential splicing analysis between groups. This 

statistical utility makes it suitable for cohort studies, unlike the tools used in the PID groups, which 

are aimed at outlier detection and aren’t equipped with the same statistical tools. For group 

comparison, BANDITS outperforms alternative packages in terms of true positives vs false discovery 

rate, and gives transcript and gene level results, useful for follow up pathway analysis which other 

packages do not. BANDITS produces two sets of results, those at gene level and those at transcript 

level, and both are output to .txt. format. For differences in expression, p-values are produced, and 

adjusted using Benjamini-Hochberg correction. In addition, inverted p-values are provided which 

vary only when the dominant transcript remains the same in both groups despite abundance 

changes. This is calculated by taking the square root of p-value which results in an inflated value. 

This is performed to give priority ranking in results to those results in which differential splicing 

results in the change of a dominant transcript.  

Sample 26 was unsuccessful during alignment stage for isoform abundance and excluded from 

further study.  Initially the output file contains read counts for 207,749 possible transcripts. Many of 

these transcripts have none, or very few reads assigned. When filtering was performed for those 

transcripts which had more than or equal to 80 reads total across all samples there were 123,782 

remaining. This step was performed separately from downstream analysis. 

In total 1694 genes experienced statistically significant (adjusted p-value < 0.05) changes in isoform 

abundance. Of These 1475 experiences a change in the dominant isoform between Covid and 

Influenza groups, and 219 did not. When adjusting p-values for inversion based on dominant 

transcript changes, 843 genes had statistically significant changes in isoform abundance. 

DTU change is a metric created by the BANDITS software which is similar to fold change in 

differential expression analysis. The DTU measure represent the sum of absolute difference between 

two transcripts between the groups. A value of zero represents proportions are statistically identical 

in each group, whereas a value of represents different transcripts are always used between the 

groups. Those results which had an adjusted, inverted P-value of less than 0.05 are plotted in Figure 

5-12. Most transcripts which had a significant alteration in abundance had relatively low change in 
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DTU – under 0.2 The highest value was for the AMBN gene which had a DTU score of 1.403375. The 

relative abundances of isoforms in the top 20 genes were displayed in stacked bar plots (Figure 5-14, 

Figure 5-15, Figure 5-16, Figure 5-17). The precision of the outputs is calculated by modelling the 

degree of over dispersion or variation beyond what would be expected by the model. To do this the 

tool uses a Dirichlet-multinomial model to give a mean precision value, derived from precision 

values of each sample for that gene which are bases on the levels of overdispersion, and this is 

complemented by a standard deviation about the mean. As would be expected the high mean 

accuracy is met with low standard deviation, however when the overdispersion is higher, leading to 

less mean accuracy overall there is an increase in standard deviation about the mean (Figure 5-13).   
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Figure 5-12 Genes with the greatest change in transcript use between Covid19 and Influenza 
Figure displays all the genes (green circles) which had statistically significant (adjusted p-value inverted < 0.05) changes in isoform abundance. 
The top 20 genes are identified in the table to the right of the diagram. AMBN has the highest DTU value and so is the gene which has the most 
robust changes of transcript use when comparing the transcriptomes of the two cohorts.  
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Figure 5-13 Precision of the model in determining differential transcript use. 
Figure shows the precision of the model in estimating differential transcript use. The genes with the greatest level, and therefore more robustly 
discernible instances of differential transcript use, predictably produced more accurate results. Less robust changes appeared further down the 
ranking of genes as overdispersion caused reduced accuracy and increased standard deviation for both infection types.  
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Figure 5-14 Genes with top DTU 1-5 
Figure shows mean differential transcript use depicted as abundance for genes ranked 1-5, being AMBN, FAM19A3, AC048338.2, lnc-POU5F1B-
6, PRKAA2. The Primary isoform is altered in all examples. Most of the genes have only 2 isoforms which have appeared at detectable levels 
after filtering was performed, this is with the exception of AC048338.2, which had three isoforms, although the third isoform had relatively 
constant expression through both examples, each colour represents a different isoform for which the identity is present in the key.  
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Figure 5-15 Genes with top DTU 6-10 
Figure shows mean differential transcript use depicted as abundance for genes ranked 6-10, being CCL13, OR10N1P, LINC00616, NRG2, GCSIR. 
The Primary isoform is altered in all examples. CCL13, OR10N1P, LINC00616 have only 2 isoforms which have appeared at detectable levels 
after filtering was performed. NRG2, GCSIR had MULTIPLE isoforms, with levels varying significantly, each colour represents a different isoform 
for which the identity is present in the key.  
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Figure 5-16 Genes with top DTU 11-15 
Figure shows mean differential transcript use depicted as abundance for genes ranked 6-10, being CYP2A7, Lnc-LRRC3C-1, IL-4, lnc-TTPA-1, and 
BAAT. The Primary isoform is altered in all examples. IL-4, lnc-TTPA-1, and BAAT have only 2 isoforms which have appeared at detectable levels 
after filtering was performed. CYP2A7, Lnc-LRRC3C-1 have 3 isoforms, each colour represents a different isoform for which the identity is 
present in the key.  
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Figure 5-17 Genes with top DTU 16-20 
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Figure shows mean differential transcript use depicted as abundance for genes ranked 6-10, being CYP2A7, Lnc-LRRC3C-1, IL-4, lnc-TTPA-1, and 
BAAT. The Primary isoform is altered in all examples. IL-4, lnc-TTPA-1, and BAAT have only 2 isoforms which have appeared at detectable levels 
after filtering was performed. CYP2A7, Lnc-LRRC3C-1 have 3 isoforms, each colour represents a different isoform for which the identity is 
present in the key.  
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5.7 Analysis of differential gene expression and differential transcript use 

in Covid19 and Influenza 

The list of genes which underwent statistically significant differential transcript use as determined by 

BANDITS were compared with the genes which underwent statistically significant differential gene 

expression as determined by Pandaomics. Genes were loaded into ToppGene software, as the free 

online tool requires no setup or associated code, and outputs gene lists for functional enrichment.  

and analysis was conducted to ascertain the pathways and biological processes which were 

enriched. The lists of genes, pathways, and processes for both were saved to a .txt file and Venn 

diagrams were produced to visualise the comparison. 

 In total 843 genes identified as undergoing differential transcript use from BANDITS program were 

loaded into the ToppGene software, of which a majority of 820 were recognised within the 

ToppGene database and were included in subsequent analysis. 436 of 472 of the differentially 

expressed gene list produced by the Pandaomics software were recognised for ToppGene. Venn 

diagrams were produced to compare the lists of genes, pathways and processes. The ToppGene 

software used Bonferroni correction with threshold of 0.05 to calculate enrichment in biological 

processes and pathways analysis.   

Around 63%, or 2/3 of all the genes had differential transcript use only and around 34% experienced 

changes only in gene expression (Figure 5-18). 33 genes, or a tiny 2.57% of the genes experienced 

both differential transcript use and differences in gene expression. Conversely, the pathway analysis 

showed that a greater number of pathways were affected by the gene expression changes, whereas 

the large number of changes as a result of alternative splicing were concentrated in fewer pathways 

(Figure 5-19). 47 pathways were enriched for the differential gene expression and 14 for the 

differential transcript use.  Therefore, around 3/4 of all genes affected, were affected by splicing 

changes and these were concentrated in only 1/4 of the pathways affected. Some of the top 

pathways affected were those of the innate immune system.  126 biological processes were 

enriched in the list of differential gene expression between the two infections, and 93 biological 

processes were enriched in the list of genes affected by alternative splicing. Only 10, or 4.37% were 

affected by both (Figure 5-20). However, this still strongly supports the notion that alternative 

splicing and differential gene expression affect separate cellular processes. To visually represent the 
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biological processes which were enriched in the two processes, DGE and DTU, the gene ontology or 

‘GO’ terms were copied into REVIGO software and Tree Maps were produced for both DTU and DEG 

which show and group the biological processes affected. Data shown in the image reflects strong 

differences in humoral immunity, B-cell involvement and complement activation (orange sections). 

There are also strong signals apparent in processes involved in cell cycle control(purple), implicated 

in mitosis and clonal expansion, this is also reflected in DNA replication signals, which are also 

enriched (bright orange).  The red and blue section of the Tree Map show strong enrichment of 

pathway involved with endocytosis, exocytosis, organelle fission and vesicle budding.  

The biological processes associated with changes in alternative splicing and as such, differential 

transcript use, actually show less alignment with those processes canonically considered to be part 

of the immune process. The large blue section is heavily implicated in cell regulatory processes, 

including cellular metabolism, subcellular localisation, molecular metabolism and molecular 

catabolism and anabolism. The aqua sections highlight strong enrichment biological processes which 

are involved with the physical structure of the cells, cytoskeletal organisations, protein assembly, 

actin formation, vesicle and chromatin organisation. Light blue sections show enrichment for 

processes involved with cellular secretions and exports, and the green sections catabolism and 

autophagy. Some canonical immune processes are shown to be enriched, red and purple sections, 

but these appear to be a minority. 
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Figure 5-18 Genes affected by changes in expression and splicing. 
Venn Diagram showing the number of genes which have significant differences in 
transcript use (peach) which number 810 after Bonferroni correction, and those which 
have significant differences in gene expression (mint) 440 after Bonferroni correction. 
Very few genes (33 or 2.57%) have both differences in transcript use as a result of 
splicing, and gene expression changes. 
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Figure 5-19 Pathways enriched for differential expression and differential transcript 
use. 

Venn Diagram showing the number of pathways which are enriched for differences in 
transcript use (peach) which number 14 (Bonferroni correction threshold = 0.5 %) after, 
and those which have significant differences in gene expression (mint) 47 (Bonferroni 
correction threshold = 0.5 %). Only 1 pathway (cell cycle) or 1.61% is found in both 
datasets. 
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Figure 5-20 Biological processes enriched for differential gene expression and 
differential transcript use. 

Venn Diagram showing the number of biological processes which are enriched for 
differences in transcript use (peach) which number 93 (Bonferroni correction threshold 
= 0.5 %), and those which have significant differences in gene expression (mint) 126 
(Bonferroni correction threshold = 0.5 %). Only 10 pathways (or 4.37%) are found in 
both datasets.
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Figure 5-21 Biological processes which experience enrichment from DEG between Infectious disease. 
Tree Map showing biological processes enriched in lists of DEG between infections and how they cluster, each colour represents groups of 
processes which cluster under general terms.  
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Figure 5-22 Biological processes which experience enrichment from DTU between Infectious disease. 
Tree Map showing biological processes enriched in lists of DEG between infections and how they cluster, each colour represents groups of 
processes which cluster under general terms.  
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5.8 Discussion 

5.8.1 Findings 

The work has shown the major differences in the transcriptome of infected patients are a result of 

differential splicing, gene expression is affected to a lesser degree. This work also demonstrates that 

the pathways affected by the two processes are also predominantly discrete. 

The aims of this chapter were to build a transcriptomic profile of patients who were infected with 

influenza and SARS-CoV-2 and begin to characterise the differences between these infections. It also 

aimed to demonstrate the importance and utility of alternative splicing in the immune system 

response. In order to do this, changes in isoform abundance or ‘differential transcript use’ were 

quantified to capture the often-unseen changes in the transcriptome.   

The cohorts were statistically very similar in age and sex, with the SARS-CoV-2 cohort being slightly 

older and marginally less dispersed. Exploratory data analysis using PCA showed that the groups 

were divergent but had overlapping dispersions and confidence intervals around the principal 

components by which the most differed. This indicates that whilst the immune responses to viral 

infections are distinct, as the literature suggests, personal genetics and environmental factors likely 

play a role in determining the response and as such PCA analysis can completely deconvolute which 

cohort the data comes from.  

In addition to this, the transcriptome is affected by several factors including the direct effects of the 

pathogen on cellular RNA production, but also the innate and subsequent adaptive immune 

response and finally the pathological progress of resulting disease. As cohort recruitment was 

opportunistic, the total time between first infection and immune response cannot be accurately 

determined. Symptom presentation time is not uniform. It is not possible to know at which stage of 

the immune response the patients were at when the sample was taken, and so the transcriptomes 

will reflect different degrees of influence from the innate and the adaptive immune response. 

Moreover, the hospitalisation of these patients means there are likely both seen and unseen factors 

contributing to their clinical presentation including co-morbidities.  

Notwithstanding these design limitations, results in differential gene expression which were both 

statistically robust and biologically sensible were obtained. Consistent with other literature, the 
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immunoglobulin genes appeared at much higher expression levels in patients harbouring SARS-CoV-

2 infections.   This is a significant finding as it demonstrates that the B-cell response in SARS-CoV-2 is 

vigorous even compared with other infectious disease models. The very high expression of a number 

of immune related genes in the SARS-CoV-2 cohort could be a result of the relative novelty of the 

infection to the immune system of the cohort. Over time, many viruses tend to become less virulent 

to hosts due to selection pressures (396) and thus stimulate a less robust immune response.  

Although slightly different methods were utilised for the differential gene expression, work 

published by Legebeke J et al., had striking similarity in the lists of differentially expressed genes as a 

result the GO terms from gene expression data (388). However, a vast amount of response to 

infection is mediated by splicing and resulting the isoform abundance changes, which are rarely 

explored as a way to understand host responses to infection, or indeed infection pathophysiology. 

Certainly, the software, databases and online date infrastructure is less well developed and 

therefore some interoperability is lost when trying to compare findings between these methods.  

Also seen was a much greater expression of genes involved in synthesis of PIPs in the SARS-CoV-2 

cohort. The data from the REVIGO Tree Maps for DEG is concordant with the Pandaomics analysis 

which shows enrichment signals involved in phosphatidylinositol-phosphate pathways. This 

biological process is crucial in viral propagation, some RNA viruses manipulate the 

phosphatidylinositol-phosphate pathways to generate distinct RNA replication organelles (397). This 

observation was not found in the Legebeke et al data analysis of gene expression differences (388). 

Despite similarities in gene expression changes themselves. This suggests differences in the TopMD 

and PandaOmics molecular topographical analysis.  

Downregulation of this leads to apoptosis and effectively prevents viruses from surviving by 

destroying host cells and preventing replication and budding of viral particles (398). Since 

upregulation of this has not been seen in the SARS-CoV-2 literature, this difference may be the result 

of the influenza virus having been present in the population at more consistent rates and host 

responses have adapted to sequester more effectively the influenza virus processes. Perhaps casting 

doubt on this hypothesis is the observation that both cohorts were hospitalised and so differences in 

transcriptome might be more likely to reflect successful pathogen processes as opposed to 

successful host responses. The biological truth is likely to be some combination of these factors, 

unable to be ascertained or elucidated without a robust control group. The enrichment of genes 

associated with CD163 mediated anti-inflammatory response in the infleunza cohort is perhaps 

puzzling as CD163 positive macrophages/monocytes have been heavily implicated in both influenza 
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and Sars-Cov-2 virulence (399). However it seems that circulating levels of cd163+ M1 inflammatory 

type monocytes have been robustly correlated with severe and deleterious outcomes in humans 

with influenza (400) as has been observed in non-human primates (401). The higher levels observed 

then may be a result of correlation whereby hospitalised influenza patients have higher levels of M1 

monocytes to start with. Interleukins 18, 33 and 36 also were upregulated in influenza compared 

with SARS-CoV-2. IL-18 is strongly pro-inflammatory and released by monocytes and macrophages in 

response infection indicating innate immune responses are present and active. IL-33 is an alarmin, 

triggering an immune response in the event of cells death and also is heavily pro-inflammatory (402) 

along with IL-36 (403). The strong pro-inflammatory signals being found primarily in influenza 

patients and contrasted by what appears to be primarily adaptive immune responses in the SARS-

CoV-2 cohort. Recent literature suggests that the latency period between symptomatic infection is 

longer with SARS-CoV-2 than with Influenza however, and this might account for some of the 

differences here (404, 405).  

Within this piece of work, differential transcript use has proven to be a remarkably successful and 

informative approach to understanding differences in the transcriptome which result from 

alternative splicing. The approach was able to reliably infer which isoform a read was generated 

from oftentimes, without needing to defer to the use of equivalence classes because specific 

isoforms were unable to be determined. Despite the conservative model, a very high number of 

genes which had DTU between the cohorts were identified with clear changes which oftentimes 

resulted in a change in the dominant isoform. Given that differing isoforms often have antagonistic 

functions, this finding is significant and affirms the importance of quantifying changes in splicing 

which occur in disease states.  

The majority of these genes did not experience DGE, and so may not have been linked to these 

infections had this analysis not been done. It could be surmised that because these two models 

represent similar disease states, that is URTI resulting from RNA virus, that a case/control study for 

these infections which uses the same metrics and methods may find differences in isoform 

abundance which are even more profound.  

Alternative splicing of the AMBN gene is known to produce isoforms which either promote or 

supress mesenchymal stem cells proliferation and osteogenesis (406). MSC’s are anti-inflammatory 

and drive other immune cells such as monocytes and macrophages to an anti-

inflammatory/immunoregulatory type 2 state (407). AMBNWT 

(ENST00000613447.4/ENST00000322937.10/NM_016519.6/AMBN-201) was expressed as the 
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dominant transcript in SARS-CoV-2, whereas the truncated version AMBN∆6 1-15 was the primarily 

expressed transcript in the Influenza cohort. This suggests that MSC proliferation was suppressed or 

less upregulated in the Influenza cohort. FAM19A3 or TAFA3 encodes a small secreted protein, 

expressed primarily in the brain and testis, which functions as a chemokine or neurokine regulating 

immune and nerve cells (408). FAM19A3 or Tafa3 was also alternatively spliced to produce different 

dominant transcripts between the cohorts. This gene is associated with M2 polarisation in microglia 

and monocytes (408), specifics around isoform function are yet to be elucidated, however it could 

be hypothesised that the dominant transcript in the Influenza cohort, is likely to also function in the 

same type 1, inflammatory manner as the previous AMBN examples.  

AMPK or PRKAA2 is also well known to be alternatively spliced with the ENST0000610361.1 isoform 

having exon 2 included, and ENST00000371244.9/NM_006252.4/AMPK_201 isoform having this 

exon skipped (409). Both isoforms are present canonically, however imbalances are associated with 

development of Alzheimer’s (410) and AMPKa2 protein subunit is imperative in cone survival and 

function and so the development of new neural connections (411). Olfactory receptor genes also 

had differential transcript abundances between the cohorts. It’s therefore possible that the clinical 

feature of anosmia, now synonymous with COVID19, may well be a result of alternative splicing in 

the olfactory receptors resulting from SARS-CoV-2 infection. These examples of results from the 

research represent just a handful of important transcriptomic evidence which supports the parallel 

investigation of both alternative splicing and gene expression in infectious disease. Using these 

parallel lenses, it was evident that there were very significant differences in the transcriptomes of 

the cohorts both in terms of gene expression and isoform abundance. What was extremely 

surprising is that the number of alternative splicing differences greatly outnumber those arising from 

differential gene expression, despite the extremely conservative statistical model used to infer DTU.   

These two discreet mechanisms of producing transcriptome diversity, seem to regulate entirely 

different processes and cellular functions without much overlap. Given the extremely strong signals 

found, is it highly unlikely that this might be a feature of statistical bias.  

 

Whilst the data is clear that the distinct viral infections produce very different transcriptomic 

profiles, further unpicking which aspects pertain to either the viral effects directly, the immune 

response or disease progression will be complicated and time intensive, likely needing further 

experimentation. Given sufficient resources and time a transcript specific investigation would be 
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useful to identify potential biomarkers or therapeutic targets within the cohorts. Moreover, 

intentional immune challenge would likely allow for a greater degree of control of variables 

surrounding timing of infection. A longitudinal approach to each patient, allowing the mapping of 

the immune response through initial inflammation, innate immune and transition to adaptive 

immune responses would also be deeply informative. However even within these parameters there 

are still inherent limitations which arise from using bulk, whole blood RNA modalities. Multi-omics 

approaches would likely be extremely beneficial and help understand the effects of disrupted 

transcription and more specifically translation.  
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Chapter 6 The Effect of Ageing on Host Transcriptomic 

Profiles during Viral Infection 

6.1 Introduction 

The transcriptomic profiles of hosts with infections are pathogen specific (412). Genetic 

heterogeneity and a lifetime of environmental differences will cause variation within these pathogen 

specific responses (413) and therefore individual profiles within these pathogen specific responses 

are seen (414). It is possible that the overlap in the principal component analysis in section 5.4 

Figure 5-6 of the transcriptomes of patients with COVID19 and influenza, could result from 

influences at the individual level. Other sources of variation could be the specific strain of the virus 

with which the patient was infected (415, 416), or the different health states of the hosts. There is 

an established correlation between poorer outcomes and advancing age in the majority of infectious 

diseases (279, 280). Immunosenescence, inflammageing and chronic systemic inflammation is 

known to have deleterious effects on the hosts’ immune response efficacy (246). The hypothesis was 

made, that the age of the patient might cause changes in the immune response; individual genes 

may have less significant changes in expression in aged individuals and the distinctive nature of the 

response may be lost to a more ‘communal’ immune response. Therefore, advanced age and 

immunosenescence may be a major contributor to some of the lack of differentiation between 

patient cohorts for these two distinct infections.  This chapter presents the results of an 

investigation into the differences in transcriptome of patients with upper respiratory tract infections 

which occur with advancing age. First through exploratory data analysis of cohorts at different age 

ranges. This is followed with the use of linear regression to identify the relationship of all 

transcriptomic features with age. The work then aims to identify any loss of distinctness of 

transcriptome between infections which occurs with age to evaluate the impact of ageing on the 

immune response to infection, and the relative contribution of gene expression and splicing to this 

process. Finally, the research takes advantage of machine learning classification models to see if 

gene expression or splicing performs better for discerning infection from the transcriptome in young 

and old patients. 
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6.1.1 Aims 

The aims of this chapter were exploring the hypothesis that decreases in the distinctness of the 

immune response was occurring with advancing age, and therefore contributing, in-part, to the 

overlap in principal component analysis of transcriptomes of cohorts with different infections.  

To explore the effects of advancing age and immunosenescence on the gene expression and isoform 

abundance profile of patients with infectious disease and identify opportunities for therapeutic 

intervention.  
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6.2 Methods 

We analysed the expression data following the curation of the raw data as described in Chapter 5. To 

first visualise the effect of ageing on the transcriptomic response to viral infection we removed 

participants over 65 years of age from the cohort and the principal component analysis was 

repeated. The 65 year cut-off was based on previous evidence of decreased immune response to 

pathogen in cohort over 65 (248).To explore this at a more granular level, the expression of some of 

the top differentially expressed genes were then viewed individually, stratified by decade of life to 

see the effect on these profiles over time.  

An informatic pipeline was developed to produce gene counts and relative isoform abundances, 

which used STAR and Salmon to perform the alignments, counts and differential transcript use 

values. This was designed in light of the requirement for Salmon-produced transcripts for the 

downstream implementation of BANDITS, and the high processing speed and low computational 

demands of the Salmon program. The counts were extracted and combined with clinical meta data 

into a data table. Meta data included patient ID, age, sex, white blood cell count, neutrophil count, 

lymphocyte count, C-reactive protein levels, Diabetes status, immunosuppression status, smoking 

status, presence of cardiovascular disease, and presence of respiratory disease. Patient age was then 

regressed from each individual feature from the entire transcriptome in a series of single, multiple 

regressions, with meta-data included as cofactors. This included 305,165 features, of which 267,543 

were transcript abundances, measured in values from 0 to 1, representing the proportion of total 

transcripts from the gene, each transcript represented. 61,587 features were gene expression 

features measured in TPM. Beta-coefficients and p-values were calculated for each of these features 

when age was regressed.  

Results from the linear regressions had ‘x=zero’ beta values removed, and histograms were plotted 

of beta coefficient distribution using Microsoft Excel, in which groupings were automatically 

assigned. The values of groupings were rounded to 2 decimal places. Using this data from the linear 

regression, volcano plots were generated using the EnhancedVolcano package in R. The volcano 

plots represented the gene expression or relative isoform abundance changes with age in each 

cohort.  
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Beta coefficients impute the scale of effect on the response variable in machine learning regression 

and can be compared across experiments. P-values are not often included in the ML packages, due 

to the lack of utility in ML applications. Despite the beta coefficient values being generally accepted 

in machine learning communities without the need for p-values as a proxy for statistical significance 

due to the lack of hypothesis testing (417), additional steps were taken to calculate p-values from 

the package and the results from the gene expression and relative isoform abundance regression 

were filtered with pre-determined alpha, set at 0.05 and beta VALUE OF 0.1 to ensure a conservative 

method.  

To compare and contrast how the processes of differential gene expression and differential 

transcript usage affected the two infections, cross-referencing of the outputs from the previous 

steps was conducted. Genes which underwent differential expression (Pandaomics results), 

differential transcript use (BANDITS, gene-level results) and those genes and isoforms which were 

differentially expressed with age within the two cohorts were then combined into a .txt file via the 

list function in R. The file with the 6 respective lists of genes were compared and contrasted using 

the UpSet (418) program in R to understand the overlap in genes which experienced differential 

gene expression and splicing and how this was related to genes which experience differential 

expression and splicing with age. 

In order to quantitate any convergence of transcriptomes at the gene and isoform level the following 

approaches were taken. The list of genes which were differentially expressed between COVID19, and 

influenza cohorts identified in section 5.5 were compared with the list of genes and isoforms which 

had contrasting beta coefficient values (positive and negative) using the ‘vlookup’ function in 

Microsoft Excel. Identification of contrasting beta values was achieved by filtering the beta values 

from one infection for positive values, the beta values in the opposite infection for negative values, 

performing a vlookup in Microsoft Excel to identify genes which appeared in both lists. These were 

filtered for significance using Bonferroni correction. The features were only counted if the 

contrasting expression changes, represented by the beta values were opposed to the initial direction 

of differential expression or differential isoform usage between the infections. For instance, if a 

differentially expressed gene was originally identified as having higher expression in COVI19 patients 

than in influenza, then the beta coefficient values would need to be a) in opposing directions (i.e., 

positive and negative), and b) with COVID19 expression trending in the opposite direction to the 

original differential expression, (in this example negative beta in COVID19 and a positive beta in 

influenza). This is to ensure convergence and not greater divergence was occurring. The resulting 
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gene lists were compiled into text files and loaded into the TOPPGENE online software (363) for gene 

set enrichment analysis. 

To determine the value of gene expression changes and isoform abundance changes in diagnostics 

and investigation, classification machine learning was performed. Using the dataset obtained from 

the Pandaomics software, the top 100 differentially expressed genes were extracted to a separate 

text file along with the ages of the patients. This data was loaded into the MATLAB program and the 

gene expression data were used as independent variables or features to perform a series of 

classification exercises using the modelling tools available in MATLAB. All available models (n= 24) 

were used for the exercise to avoid any bias in user selection. Five-fold cross validation was used to 

evaluate the utility of the features and the models in diagnosing infection. The age of the group was 

systematically reduced by sequentially removing people at the highest decade of life, over 80, over 

70, over 60, over 50, leaving groups of people under 81, under 71, under 61, and under 51. To avoid 

statistical bias from shrinking groups, the process was then repeated with the cohort using the same 

approach reversed, systematically making the group older for 5 groups. The performance of the 

models training was recorded in a table to demonstrate how the training performance changed with 

age, and to select the best model moving forwards. These results were also plotted to a graph to 

show how overall performance changed with age when training ML models. 

SVM was identified as the best performing model on average for predicting the infection based on 

100 top differentially expressed genes across all ages. The 77 COVID patients and 83 flu patients 

were separated into a test and training dataset. To partition roughly 20% of the cohort as a test 

dataset, but still have a representative spread of data, the two infection datasets were individually 

ranked by age and every 6th person was transferred to the test dataset. The two cohorts were then 

further divided into those which were above and below the median age: Group 1 where age >60, 

Group 2 where age is <61. This cut-off was applied after more recent literature suggests 

immunosenescence can be detected at around 60+ (419, 420). The elderly cohorts and young 

cohorts from each infection were then merged with each other so the resulting groups were as 

follows. 
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Table 6-1 Cohort grouping for machine learning application. 

Training set 1  

Appx 80% of samples from COVID19 and 

influenza cohorts under the age of 61 

Test set 1 

Appx 20% of samples from COVID19 and 

influenza cohorts under the age of 61 

Training set 2  

Appx 80% of samples from COVID19 and 

influenza cohorts over the age of 60 

Test set 2 

Appx 20% of samples from COVID19 and 

influenza cohorts under the age of 60 

 

Using MATLAB (421), support vector machine learning models were then applied to the training 

datasets first, using a 5-fold cross validation for model production within the training dataset only to 

prevent data leak. Support Vector machine learning models were used as they were demonstrated 

to be the most accurate in the previous testing phase. The model’s performance on the training 

dataset and test dataset were compared. This was repeated for using the top 100 differentially 

expressed isoforms with the differential transcript use metrics derived earlier.   

6.3 Results 

6.3.1 Exploratory data analysis 

The Shapiro wilk test for normality shows that the groups are normally distributed, although the 

infleunza cohort was approaching statistical significance alpha value of 0.05 indicating the influenza 

data came from a group whose ages were less well distributed. The T-test test statistic is extremely 

low, and as the p-value from the T-test is not below 0.05, we conclude the means between the 

groups are not significantly different.  

PCA analysis shows clear grouping of patients about principal component 1 (PC1) in both principal 

component plots (Figure 6-1, Figure 6-2). After investigation in the genes which most heavily 

weighted PC1 this was determined to be a result of sex specific differences in gene expression, as 

such the two vertical clusters represent male and females. There also exists an incomplete 

separation of the groups whereby Influenza patients are primarily above Y axis point 0, and the 

COVID19 patients are primarily below Y axis point 0. 95% confidence intervals have a significant 
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amount of overlap between the groups.  Although modest, there was a more significant separation 

of the groups and less significant overlap in the 95% confidence intervals about PC2 once the elderly 

(>65 years) individuals were removed. Aligned reads for groups once elderly individuals had been 

removed (Figure 6-3) carried a similar profile as seen previously (Figure 5-5), with an average count 

after filtering for low expressed genes of around 19-20 million reads per sample. 

In order to increase the resolution of analysis to the gene level, we looked at some of the most 

significantly differentially expressed genes and stratified the expression by both decade of life and 

by infection type. As observed in chapter 4, one of the most significantly differentially expressed 

genes between the infections that was a non-immunoglobulin gene was JUN. Figure 6-4 shows that 

the expression of JUN is different between the cohorts in the early to middle decades. In the later 

decades these expression profiles appear to converge. Similar expression profiles were also seen for 

many of the immunoglobulin genes which were the most differentially expressed (Figure 

6-5)(Appendix A.11). This convergence was not present for all the differentially expressed genes, 

however.  CD163 was one of the most differentially expressed genes, with higher expression in 

influenza, and is an example of a differentially expressed gene between the infections which did not 

show this converging pattern of expression between the groups in any significant way (Figure 6-6). 

 

Table 6-2 The distribution of ages for entire Influenza and COVID19 cohorts 

Influenza Mean 57.84 

 Standard deviation 18.381 

 Median 59 

 Quartiles 42,59,73 

 Shapiro-Wilk normality W=0.97052 

p =0.05327 

COVID19 Mean 61.38095 

 Standard deviation 17.555 

 Median 61.5 

 Quartiles 47.75, 61.50,73.25 

 Shapiro-Wilk normality W=0.9793 
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p=0.1949 

T-test for 
normality  

T = -1.2716, 

p = 0.2053 

Degrees of freedom = 164.45, 

95% C.I =-9.030 and 1.955 

Interpretation T-test P >0.05  accept the null hypothesis; there is no evidence the mean age 
between groups are significantly different.  

Shapiro-Wilk results indicate both groups are normally distributed. 

Statistical testing for normal distribution within groups and normality between groups. 

 

Figure 6-1 Principal component analysis of Covid19 and Influenza cohort 
Principal component plot derived using COVID19 and Influenza cohort. Red points are 
COVID19 patients, blue points are Influenza patients. Circles indicate 95% confidence 
intervals. X axis represents principal component 1, Y axis represents principal 
component 2. 
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Figure 6-2 Principal component analysis of Covid19 and Influenza cohort 
Principal component plot derived using COVID19 and Influenza cohort after removing 
those members of the cohort who were above the age of 65, of which there were a 
combined number of 62 patients. Red points are COVID19 patients, blue points are 
Influenza patients. Circles indicate 95% confidence intervals. X axis represents principal 
component 1, y axis represents principal component 2.  
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Figure 6-3 Exploratory data analysis: total aligned reads per samples for Covid19 and Influenza samples only patients under 65 years of age 
The matrix displays total aligned reads per sample, after the data was cleaned using the pcaExplorer tool as per the parameters in methods 
section, the aligned reads appear to be approximately consistent across both data sets. 
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Figure 6-4 JUN expression in the COVID19 and Influenza cohorts stratified by age. 
Figure shows box and whisker plot of the expression difference in normalised counts between the cohorts for each decade of life. Each single 
digit number represents a decade i.e., Flu.2 represent Influenza patients of ages from 20 to 29.  log base2 Normalised read counts represented 
on the Y axis, and the cohort groups, stratified by infection and decade of life are represented on the X-axis.  
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Figure 6-5 Differential gene expression for IGHG1 in COVID and Influenza cohorts 
stratified by decade of life.  

Figure shows box and whisker plot of the expression difference in normalised counts 
between the cohorts for each decade of life. Logbase2 transformed read counts 
represented on the Y axis, and the cohort groups, stratified by infection and decade of 
life are represented on the X-axis.  
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Figure 6-6 CD163 expression in Covid19 and Influenza patients stratified by decade of 
life. 

Figure 5-6 shows box and whisker plot of the expression difference in normalised 
counts between the cohorts for each decade of life for CD163. Of all the most 
differentially expressed genes which had higher expression in COVID19, this was the 
most significant. Normalised read counts represented on the Y axis, and the cohort 
groups, stratified by infection and decade of life are represented on the X-axis.  
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6.3.2 Results from multiple regression performed using Python. 

In total there were 2609 genes which has association (Beta >0.1/Beta <-0.1 + p<0.05) with advancing 

age in the COVID19 cohort, and 2524 genes which has association (Beta >0.1/Beta <-0.1 + p<0.05) 

with advancing age in the Influenza cohort.  

Tables were produced so show this data, results for most differentially expressed genes with age. 

Beta values are ranked by scalar quantity and are vector agnostic (Table 6-3, 

Table 6-4, Table 6-5, Table 6-6). 

Within the COVID19 cohort, some extremely strong negative associations were seen with NT5E, WLS 

and PSMB5. NT5E otherwise known as CD73 is an ectonucleotidase, already linked to COVID19 

pathogenesis (422). WLS or the WNT Ligand Secretion Mediator is responsible for all WNT secretion 

and also linked to the orchestration of immune response through its function on dendritic cells 

(423). PSMB5 is an essential subunit of the 20S proteosome used for substrate degradation and is 

one of the subunits not found to be downregulated in COVID19 patients compared with healthy 

controls in other literature (424) However with advancing age, the expression of this proteosome 

decreased indicating a potential mechanism for loss of function.  A number of other genes were 

upregulated in COVID19 with advancing age including CNTNAP3, a neurexin associated with neural-

glial cell interaction, and was also recently discovered elsewhere as a key differentially expressed 

gene when comparing viral infections, although the nature of its involvement remains unclear (425). 

CCDC170 was the most upregulated gene with age in the COVID19 cohort, and its relationship with 

the infection is somewhat enigmatic for now. The gene can increase oestrogen receptor α 

expression (286), and oestrogen production has been linked to positive outcomes in COVID19 

Otherwise, no obvious link is evident (426).  

Within the Influenza cohort CD248 was found as the most downregulated gene with age, as 

described elsewhere in a healthy ageing cohort (310). It is also associated with naïve T-cell number 

proliferation and as such might be an effective marker for immunosenescence in future (427). 

The TBCK gene experiences the greatest change in isoform abundance associated with age in 

influenza patients. Known to have isoforms with differing function (428), TBCK encodes a protein 

kinase involved in proteostasis and lysosomal activity (429). It is also shown to be closely linked with 
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the MTOR pathway (430), generally accepted to be directly related to ageing, and indeed TOR has 

been identified as a potential target for immunosenescence therapeutic intervention (431, 432).  

CDK6-AS1 was the gene with the most differentially expressed isoform in COVID19 with age, and is 

an antisense regulatory RNA for CDK6 and has increased expression in ageing COVID19 patients 

(433). CDK6 is required for early thymocyte development (434), crucial for adaptive immune 

response (435)and known to be affected in immunosenescence (436). Moreover the CDK4/6 axis 

effects P21, a known induced of cellular and immunosenescence (437).  CDK6-AS1 has also been 

identified in work looking into respiratory virus’ as a risk factor for COVID19 via its effect on CCL3 

(438).  
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Table 6-3 Top 20 genes with expression associated with age in COVID19 patients. 
COVID FEATURE   BETA P-VALUE 

ENSG00000120262.10 CCDC170 0.676949 7.9E-06 

ENSG00000250158.1 Unknown 0.666418 6.5E-05 

ENSG00000106714.18 CNTNAP3 0.665596 1.43E-05 

ENSG00000226394.2 NDUFA4 Pseudogene 0.649011 0.000323 

ENSG00000135318.12 NT5E -0.64413 1.17E-05 

ENSG00000248936.1 Lnc-RELL1-1 0.64054 7.65E-05 

ENSG00000224335.2 NBPF4 Pseudogene 0.639547 0.000357 

ENSG00000235040.1 MTCO3P1 0.637415 0.000268 

ENSG00000078053.17 AMPH 0.630936 0.000146 

ENSG00000183631.5 PRR32 0.616167 0.000256 

ENSG00000231136.1 IBRDC3 Pseudogene 0.602903 0.000487 

ENSG00000100804.19 PSMB5 -0.59943 0.00029 

ENSG00000243658.1 MTND5P16 0.59871 0.000217 

ENSG00000224986.2 PPP1R8P1 0.595046 0.000424 

ENSG00000102174.10 PHEX 0.593466 0.000441 

ENSG00000213390.11 ARHGAP19 0.591521 0.000191 

ENSG00000279550.1 TEC 0.589743 0.000852 

ENSG00000214190.2 RNF152P1 -0.58646 0.000513 

ENSG00000206724.1 RNU6-756P 0.584907 0.000561 

ENSG00000110079.19 MS4A4A 0.584122 0.000586 

 
Table 6-4 Top 20 genes with expression associated with age in influenza patients. 

INFLUENZA GENE NAME BETA P-VALUE 

ENSG00000174807.4 CD248 -0.53585 2.50E-07 

ENSG00000232460.4 BMPR1AP2 Pseudogene -0.50943 0.000201 

ENSG00000228909.2 LINC01803 0.497777 0.000323 

ENSG00000251616.1 Lnc-FSTL4-1 0.481547 0.00026 

ENSG00000228814.4 HNRNPA1 Pseudogene 0.464068 0.000607 

ENSG00000255078.1 OR4A6P 0.463631 0.000384 

ENSG00000183239.5 RPL29 Pseudogene -0.46297 7.61E-05 

ENSG00000258469.1 CHMP4BP1 0.460285 0.000778 

ENSG00000207965.1 MIR629 0.444408 0.00057 

ENSG00000154143.3 PANX3 0.444394 0.001597 

ENSG00000248293.1 SIN3A Pseudogene -0.44267 0.017139 

ENSG00000207946.3 MIR516B1 0.442186 0.000482 

ENSG00000261395.3 Hsp10 Member 1 Pseudogene 5 0.437477 0.000382 

ENSG00000276639.1 MIR7154 0.435973 0.001117 

ENSG00000253678.3 PRSS52P 0.435764 0.002248 

ENSG00000255606.1 LINC02952 0.434828 0.001766 

ENSG00000234604.2 MTATP6 Pseudogene -0.43178 0.000337 

ENSG00000237446.1 RHEBP3 -0.43169 0.001709 

ENSG00000236124.1 MGN2P23 0.431521 0.001336 
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ENSG00000227945.1 PTPRK Antisense RNA 1 -0.42969 8.32E-05 

Table 6-5 Top 20 Isoform abundance changes associated with age in influenza. 

FEATURE GENE   FLU_BETA FLU_P-VALUE 

ENST00000503832.1 ENSG00000145348.17  TBCK -0.580749575 0.000669 

ENST00000682417.1 ENSG00000172469.17  MANEA -0.559995822 0.001606 

ENST00000477751.1 ENSG00000151655.19  ITIH2 0.553075751 5.56E-06 

ENST00000462464.1 ENSG00000174953.14  DHX36 -0.550575569 1.8E-05 

ENST00000529543.5 ENSG00000154144.13  TBRG1 0.548267286 8.54E-06 

ENST00000425828.1 ENSG00000205090.9  TMEM240 0.527267718 1.51E-05 

ENST00000545746.5 ENSG00000047621.12  C12orf4 -0.518079068 0.017747 

ENST00000435762.2 ENSG00000168461.13  RAB31 -0.516935081 0.007526 

ENST00000483448.1 ENSG00000008282.9  SYPL1 0.511282562 5.24E-05 

ENST00000507416.1 ENSG00000188725.8  SMIM15 0.504294663 0.000514 

ENST00000339020.8 ENSG00000188725.8  SMIM15 -0.504294663 0.000514 

ENST00000648560.1 ENSG00000119979.18  DENND10 0.503883873 1.13E-05 

ENST00000649932.1 ENSG00000023839.12  ABCC2 -0.49768411 0.000235 

ENST00000589946.1 ENSG00000198046.13  ZNF667 -0.495295154 0.006003 

ENST00000265827.8 ENSG00000048405.11  ZNF800 -0.494110142 7.02E-05 

ENST00000231061.9 ENSG00000113140.11  SPARC -0.494002057 0.000568 

ENST00000557881.1 ENSG00000225151.10  GOLGA2P7 -0.491334652 0.002774 

ENST00000664206.1 ENSG00000287888.1  Unknown 0.489489795 0.000124 

ENST00000489476.5 ENSG00000144034.16  TPRKB 0.485958118 0.00065 
 
Table 6-6 Top Isoform abundance changes associated with age in COVID19.  

FEATURE GENE  GENE NAME COV_BETA COV_P-VALUE 

ENST00000653602.1 ENSG00000286742.1  CDK6-AS1 0.733381932 1.5E-05 

ENST00000394777.8 ENSG00000165181.17  SHOC1 0.7330571 6.9E-05 

ENST00000456262.5 ENSG00000170264.13  FAM161A 0.729869138 3.8E-05 

ENST00000585229.1 ENSG00000101596.17  SMCHD1 0.708467549 3.9E-05 

ENST00000456665.6 ENSG00000177192.14  PUS1 0.697090972 3.65E-05 

ENST00000529884.1 ENSG00000255506.1  SNODB794 0.696609179 0.000102 

ENST00000344624.8 ENSG00000113360.17  DROSHA 0.696075354 6.03E-05 

ENST00000373626.4 ENSG00000198034.11  RPS4X -0.693706514 5.19E-05 

ENST00000611306.1 ENSG00000148655.15  LRMDA -0.691598478 0.000112 

ENST00000509903.5 ENSG00000153113.24  CAST 0.683844526 8.09E-05 

ENST00000483146.1 ENSG00000114744.9  COMMD2 -0.683471865 3.55E-05 

ENST00000567879.5 ENSG00000187741.15  FANCA 0.681986388 0.000268 

ENST00000484194.1 ENSG00000204592.9  HLA-E 0.678849207 0.000184 

ENST00000543697.5 ENSG00000127314.18  RAP1B 0.678182079 0.000176 

ENST00000423231.1 ENSG00000232037.3  RPL21P29 0.673554533 0.000254 

ENST00000397588.8 ENSG00000153046.18  CDYL -0.671209616 0.000183 

ENST00000518260.1 ENSG00000253628.2  Lnc-ERGIC1-1 0.670695185 6.86E-05 

ENST00000483749.1 ENSG00000157036.13  EXOG -0.670471833 0.000197 

ENST00000578490.2 ENSG00000265485.8  LINC01915 0.669557621 0.000111 
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ENST00000689492.1 ENSG00000163913.14  IFT122 0.66682713 0.00035 

6.3.3 Volcano plots of transcrtipome features association with age 

Volcano plots were produced to visualise distribution of transcriptomic features association with age 

(Figure 6-7, Figure 6-8, Figure 6-9, Figure 6-10). Volcano plots of all gene expression features 

association with age show a large number of genes to be significantly associated with age. Volcano 

plots for isoform abundance follow a similar distribution pattern as with gene expression in so far as 

the COVID19 associations appear to follow a stricter pattern of association that with gene 

expression. This effect is seen across all genes and isoforms, and so is unlikely to be a direct result of 

any biological phenomenon and instead an unknown technical artifact.  

Splicing factors or trans acting RNA-binding proteins which regulate the process of alternative 

splicing (439). To understand the cause of changes in isoform abundance observed with age, 

investigation was performed into the expression levels of splicing factors with advancing age. For 

both cohorts, the decrease in expression of splicing factors associated with age was clear and 

profound (Figure 6-11, Figure 6-12). There was some difference around which were the most 

downregulated, but for both cohorts, the factors which regulate alternative splicing were almost 

ubiquitously downregulated with only the degree of severity and significance differing between 

splicing factors. Some of the most downregulated were HNRNPF for COVID19 patients and LSM8 for 

Influenza patients. HNRNPF has been robustly associated with advancing age and associated age 

related inflammatory conditions previously (440, 441) and interacts with FOXP3 to modulate 

alternative splicing, T-reg cell function and immunosenescence (442).  
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Figure 6-7 Volcano plot for ageing gene expression in COVID19 patients 
The transverse volcano plot shows the gene expression changes in COVID19 patients 
which are associated with advancing age. Grey points represent non-significant 
changes. Green points represent a change in beta value of at least 0.1 or -0.1, red points 
represent genes which have a change in beta of at least 0.1/-0.1 but also statistically 
significant (p<0.05).  
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Figure 6-8 Volcano plot for ageing gene expression in Influenza patients 
The transverse volcano plot shows the gene expression changes in Influenza patients 
which are associated with advancing age. Grey points represent non-significant 
changes. Green points represent a change in beta value of at least 0.1 or -0.1, red points 
represent genes which have a change in beta of at least 0.1/-0.1 but also statistically 
significant (p<0.05).  
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Figure 6-9 COVID19 isoform association with age volcano plot 
This figure shows the association between changes in relative isoform abundance and 
advancing age in patients with COVID19. Grey dots represent non-significant changes 
below 0.10, the beta coefficient threshold value. All changes larger than this are shown 
in green. The p-value threshold value was set at 0.05, and all associations larger than 
this are shown in blue. If associations are above p-value and beta thresholds, they are 
shown in red. X axis is log10 p-value. Y axis is beta coefficient.   
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Figure 6-10 Influenza isoform association with age volcano plot 
This figure shows the association between changes in relative isoform abundance and 
advancing age in patients with Influenza. Grey dots represent non-significant changes 
below 0.10, the beta coefficient threshold value. All changes larger than this are shown 
in green. The p-value threshold value was set at 0.05, and all associations larger than 
this are shown in blue. If associations are above p-value and beta thresholds, they are 
shown in red. X axis is log10 p-value. Y axis is beta coefficient.   
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Figure 6-11 Volcano plot for ageing splicing factor expression in Covid19 patients. 
The transverse volcano plot shows the splicing factor gene expression changes in 
Covid19 patients which are associated with advancing age. Grey points represent non-
significant changes. Green points represent a change in beta value of at least 0.1 or -0.1, 
red points represent genes which have a change in beta of at least 0.1/-0.1 but also 
statistically significant (p<0.05).  
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Figure 6-12 Volcano plot for ageing splicing factor expression in Influenza. 
The transverse volcano plot shows the gene expression changes in Influenza patients 
which are associated with advancing age. Grey points represent non-significant 
changes. Green points represent a change in beta value of at least 0.1 or -0.1, red points 
represent genes which have a change in beta of at least 0.1/-0.1 but also statistically 
significant (p<0.05).  
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6.3.4 Beta-coefficient distribution with age 

For datasets of over 5000 samples, visual interpretation of distribution is recommended. Many of 

the tools for distribution quantitation including the Shapiro-Wilk test in R, cannot be applied data 

with over 5000 samples (443).   

For the purposes of initial exploratory data analysis, the beta coefficients of all features were first 

divided into groups based on value and plotted on a bar chart to understand the overall association 

of gene and isoform transcripts with age in these cohorts. For COVID19, the associations of gene 

expression and relative isoform abundance with age appear to follow a normal distribution with 

little weighting in either direction. This data shows a peak at around 2100 genes which have a beta-

coefficient value between -0.03 and -0.04. For relative isoform abundance, the peak was around 

4600 isoforms which had a beta coefficient between 0.03 and 0.04. There was a greater degree of 

variation about the normal distribution for isoform abundance than there was for gene expression, 

despite a greater number of features.  

For influenza the distribution of betas for genes specifically was less representative of a normal 

distribution; there appeared to be skew in the data whereby slightly more genes were negatively 

associated with age than were positive. The number of genes which had negative beta coefficient 

values decreased slightly more linearly rather than exponentially as such there appeared to be a 

small majority of genes which had a negative beta coefficient value and therefore had a decreased 

expression with age. Influenza genes’ betas peaked at 0.05-0.06 with around 2100 genes in this 

category Isoforms in influenza followed a more normal distribution, but similar to the transcripts in 

COVID19 there was more deviation from the normal distribution curve, with staggered faces rather 

than a smooth curve. Peak around 4600 genes for the group -0.1 – 0.0. 

The normal distribution of features did not provide significant new insight and suggests that while 

there may be some specific features and processes or pathways associated with ageing and 

immunosenescence to a greater degree, largely the molecular drivers of the process are related to 

general wholistic processes leading to dysfunction and information loss, as opposed to a specific 

ageing program as some have hypothesised. This highlights the importance or targeting the macro-

processes such and transcriptional regulation and splicing as whole and suggests that the more 

reductionist strategies and approaches aimed at specific pathways will continue to have limited 

success in the field of immunosenescence and ageing as a whole. This information comes with the 
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caveat, that whole blood is being for this investigation, and immune only tissues might have a more 

nuanced profile.  

 

Figure 6-13 Histogram of Beta-coefficients for genes in Covid19 
Figure shows histogram representing the number of genes which reside in each beta-
coefficient interval grouping when regressed against age in Covid19 patients.  
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Figure 6-14 Histogram of Beta-coefficients for genes in Covid19 
Figure shows the number of isoforms for which the relative abundance beta coefficient 
value corresponding to each group when regressed against age in Covid19 patients. 
 

 

Figure 6-15 Histogram of Beta-coefficients for genes in Influenza 
Figure shows the number of genes for each beta-coefficient value grouping when 
regressed against age in Covid19 patients. 

 
Figure 6-16 Histogram of Beta-coefficients for transcripts in Influenza 
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Figure shows the number of isoforms for which the relative abundance beta coefficient 
value corresponding to each group when regressed against age in Influenza patients. 

6.3.5  Quantifying the groups of genes associated with ageing in the cohorts. 

The R package ‘UpSet plot’ was used to visualise where the lists of genes from the different 

conditions had shared values. UpSet plot acts as a scalable alternative to Venn diagrams and as such 

can visually demonstrate the overlap between the DEG/DTU between infections, but also compare 

the age associated DEG/DTU with those which make the infections responses distinct, showing the 

proportion of genes and isoforms which make up the distinct responses but are then affected by 

age. This plot also allows us to compare the proportions of information in the transcriptome which 

are related to gene expression and alternative splicing and the effect ageing has on these processes.  

Around one third as many genes are associated with ageing as transcripts, speaking to the 

importance of splicing regulation and age-related disease (COVID19 AA-DTU = 7879, Influenza AA-

DTU = 7377 compared with COVID19 DEG = 2609, Influenza DEG = 2524).  

There were a high number of genes unique to these categories (COVID19 DTU = 4516, Influenza DTU 

= 4051) than gene expression (COVID19 =1662, Influenza =1720).  Around 25% (2094) of the genes 

which underwent differential transcript use were, shared between the cohorts demonstrating that 

splicing underpins specific immune response processes, but that these processes are also extremely 

nuanced and infection specific.  

In patients with COVID19, 338 genes underwent alternative splicing and differential transcript use 

with age. In Influenza patients 294 genes were both expressed and spliced differently with age,  

There were 212 genes which exhibited both differential transcripts use between the infections, but 

also were affected by age and saw those same differentially expressed transcripts change with age.  

Only one differentially expressed gene between the cohorts was also seen to undergo differential 

expression with advancing age in both cohorts. This was SATB2, a gene which produces a nuclear 

matrix protein and an important regulator of epigenetic chromatin remodelling
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Figure 6-17 Upset plot - Matrix Based Comparison of Gene Expression Panel Data Sets 
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UPSET PLOT LEGEND 
COV-FLU_DGE = DEG between Covid and Influenza, COV_FLU_DTU= Genes with differential transcript use between infections. AA DEG = Age 
associated differentially expressed genes. AA-DTU Age associated Differential transcript usage. Left bars indicate size of the set. Top bars 
indicate size of subset/set overlap, bottom right point matrix indicates which sets (points joined by bars) are included in the analysis. 
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6.3.6 Analysis of transcriptomic convergence results 

To gain further insight into the age-related changes in the transcriptomes, a conservative analysis 

was performed to allow identification of converging expression with age in genes and transcripts 

which were differentially expressed between cohorts and gene set enrichment analysis was 

performed. 

PANDOMICS calculated 25778 genes which were differentially expressed had higher expression in 

COVID19, and 10995 had higher expression in influenza. These genes were cross referenced with the 

9658 (COVID19) and 12037 (influenza) genes which showed beta values indicating a change in the 

opposite direction to which they started so were converging (e.g., genes originally up in Covid19 

would have a negative beta, and vice versa). Only those genes with an absolute difference in betas 

greater than 0.25 were selected for. This is to represent the 0.1 beta association previous used, in 

both directions plus a further 25% change in betas for stringency. This yielded a list of 1456 genes for 

COVID19 and 937 genes for influenza. This process is represented in Table 6-7.   

These gene sets were entered into the TOPPGENE online tool (363) with no further statistical 

filtering for gene set enrichment analysis. Over 200 processes were enriched for.  The top 20 

biological processes which were enriched for are shown in Table 6-9 and Table 6-10. 

For those gene which were initially expressed higher in COVDI19 but then converged with age, there 

was a strong enrichment of processes related to mitotic processes, cell cycle control and host 

immune adaptive response. Among the biological processes which were initially expressed high in 

influenza but converged with age, were regulatory genes involved in gene silencing, and microRNA 

genes, Toll like receptor 9, bioenergetic processes, including regulation of glucose transmembrane 

transport, negative regulation of cAMP-dependent protein kinase activity, and fatty acid derivative 

metabolic process. This process was repeated for the isoforms with differential transcript usage 

however the BANDITS software automatically adjusts the p-values with Bonferroni correction 

method, and so this analysis was completed with enhanced stringency. There were 2045 isoforms 

differentially expressed after correction, of these 1021, or almost exactly 50% had a higher relative 

abundance in COVID19 and 1024 had a higher relative abundance in influenza.   

After comparing these with the isoforms which showed contrasting expression profiles with age in 

the two infections, 182 isoforms were present which started up in COVID19 patients and converged 



The Effect of Ageing on Host Transcriptomic Profiles during Viral Infection 

 

247 

with age and 176 isoforms were present which started with higher expression in influenza and 

converged with age. The respective genes from which the isoforms originated were entered into the 

TOPPGENE online tool with no further statistical filtering, for gene set enrichment analysis. Over 200 

processes were enriched for in both COVID19, and influenza sets.  The top 20 biological processes 

which were enriched for in converging splicing patterns for each cohort are shown in tables Table 

6-11 and Table 6-12. For COVID19 the biological processes which were enriched in the gene set were 

related to phagocytosis, antibody dependant cytotoxicity, hypersensitivity reactions inflammation 

and protein stability, representing the macro-processes of innate and adaptive immune responses. 

Interestingly, the biological processes which were initially higher in influenza but converged with age 

also represented hypersensitivity reactions, inflammatory responses, antibody mediated 

cytotoxicity, hemopoiesis, and leukocyte differentiation.  
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Table 6-7 Cross referencing and comparison of gene list to establish evidence of 
convergence. 

Genes which were differentially expressed and 

initially up in Covid = 25788 

Genes with change in beta > 0.25 =1936 

Genes which were differentially expressed and 

initially up in Influenza =10995 

Genes with change in beta > 0.25 =2412 

Genes which had negative beta values for 

COVID19 and positive beta values for influenza 

= 9658 

Genes which had positive beta values for 

COVID19 and negative beta values for influenza 

= 12037 

Number of genes which were initially 

significantly higher in COVID19 then displayed 

expression convergence =1456 

Number of genes which were initially 

significantly higher in influenza then displayed 

expression convergence =937 

 

Table 6-8 Cross referencing and comparison of isoform list to establish evidence of 
convergence. 

Isoforms with significant differential isoform 

abundance, initially up in Covid =1021 

 

Isoforms with significant differential isoform 

abundance, initially up in Influenza =1024 

 

Isoforms which had negative beta values for 

COVID19 and positive beta values for influenza 

= 49582 

Isoforms which had positive beta values for 

COVID19 and negative beta values for influenza 

= 48252 

Number of isoforms which were initially 

significantly higher in COVID19 then displayed 

expression convergence =182 

Number of isoforms which were initially 

significantly higher in influenza then displayed 

expression convergence = 176 
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Table 6-9 GO analysis for list of ‘COVID19 genes’ which showed converging 

expression.  

 

 

 

 

 

 

 

 
ID Name Source p-value 

1 GO:0002250 adaptive immune response 8.43E-10 

2 GO:1903047 mitotic cell cycle process 6.72E-08 

3 GO:0000278 mitotic cell cycle 9.67E-08 

4 GO:0002377 immunoglobulin production 9.99E-07 

5 GO:0140014 mitotic nuclear division 2.21E-06 

6 GO:0002440 production of molecular mediator of immune response 2.50E-06 

7 GO:0010948 negative regulation of cell cycle process 3.04E-06 

8 GO:0002449 lymphocyte mediated immunity 3.19E-06 

9 GO:0007346 regulation of mitotic cell cycle 8.30E-06 

10 GO:0044772 mitotic cell cycle phase transition 8.42E-06 

11 GO:0002684 positive regulation of immune system process 8.56E-06 

12 GO:0000070 mitotic sister chromatid segregation 8.59E-06 

13 GO:0007093 mitotic cell cycle checkpoint signalling 8.59E-06 

14 GO:0010564 regulation of cell cycle process 8.98E-06 

15 GO:0000075 cell cycle checkpoint signalling 9.33E-06 

16 GO:0022402 cell cycle process 1.13E-05 

17 GO:1901990 regulation of mitotic cell cycle phase transition 1.14E-05 

18 GO:1901991 negative regulation of mitotic cell cycle phase transition 1.19E-05 

19 GO:0006260 DNA replication 1.60E-05 

20 GO:0000819 sister chromatid segregation 1.75E-05 
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Table 6-10 GO analysis for list of ‘Influenza genes’ which showed converging 
expression.  

ID Name Source p-value 

1 GO:0046324 regulation of glucose import 1.18E-04 

2 GO:0010827 regulation of glucose transmembrane transport 1.22E-04 

3 GO:0002320 lymphoid progenitor cell differentiation 1.25E-04 

4 GO:1904659 glucose transmembrane transport 2.53E-04 

5 GO:0048771 tissue remodelling 2.65E-04 

6 GO:0008645 hexose transmembrane transport 2.97E-04 

7 
GO:0021816 

extension of a leading process involved in cell motility in cerebral 
cortex radial glia guided migration 3.01E-04 

8 GO:0015749 monosaccharide transmembrane transport 3.66E-04 

9 GO:0097581 lamellipodium organization 3.86E-04 

10 GO:0071345 cellular response to cytokine stimulus 4.24E-04 

11 GO:0046323 glucose import 4.69E-04 

12 GO:0034097 response to cytokine 5.73E-04 

13 GO:0002682 regulation of immune system process 6.78E-04 

14 GO:0034219 carbohydrate transmembrane transport 8.27E-04 

15 GO:0002764 immune response-regulating signalling pathway 8.50E-04 

16 GO:2001222 regulation of neuron migration 8.81E-04 

17 GO:0033133 positive regulation of glucokinase activity 9.94E-04 

18 GO:0070782 phosphatidylserine exposure on apoptotic cell surface 9.94E-04 

19 GO:0045588 positive regulation of gamma-delta T cell differentiation 9.94E-04 

20 GO:0007135 meiosis II 1.11E-03 
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Table 6-11 GO analysis: isoforms which were initially higher COVID19.   
ID Name p-value 

1 GO:0006909 phagocytosis 1.37E-06 

2 GO:0001812 positive regulation of type I hypersensitivity 3.06E-06 

3 GO:0001810 regulation of type I hypersensitivity 4.58E-06 

4 GO:0016068 type I hypersensitivity 4.58E-06 

5 GO:0007005 mitochondrion organization 2.77E-05 

6 GO:0001798 positive regulation of type IIa hypersensitivity 2.99E-05 

7 GO:0002894 positive regulation of type II hypersensitivity 2.99E-05 

8 GO:0001796 regulation of type IIa hypersensitivity 3.63E-05 

9 GO:0001788 antibody-dependent cellular cytotoxicity 3.63E-05 

10 GO:0002892 regulation of type II hypersensitivity 3.63E-05 

11 GO:0001794 type IIa hypersensitivity 5.14E-05 

12 GO:0002445 type II hypersensitivity 5.14E-05 

13 GO:0050766 positive regulation of phagocytosis 5.40E-05 

14 GO:0031648 protein destabilization 6.05E-05 

15 GO:0002885 positive regulation of hypersensitivity 7.01E-05 

16 GO:0031647 regulation of protein stability 7.94E-05 

17 GO:0002866 positive regulation of acute inflammatory response to antigenic stimulus 9.28E-05 

18 GO:0097278 complement-dependent cytotoxicity 1.06E-04 

19 GO:0030100 regulation of endocytosis 1.09E-04 

20 GO:0002883 regulation of hypersensitivity 1.20E-04 
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Table 6-12 GO analysis: isoforms which were initially higher Influenza.   
ID Name p-value 

1 GO:0001812 positive regulation of type I hypersensitivity 1.71E-06 

2 GO:0001810 regulation of type I hypersensitivity 2.56E-06 

3 GO:0016068 type I hypersensitivity 2.56E-06 

4 GO:0001798 positive regulation of type IIa hypersensitivity 1.68E-05 

5 GO:0002894 positive regulation of type II hypersensitivity 1.68E-05 

6 GO:0001796 regulation of type IIa hypersensitivity 2.03E-05 

7 GO:0001788 antibody-dependent cellular cytotoxicity 2.03E-05 

8 GO:0002892 regulation of type II hypersensitivity 2.03E-05 

9 GO:0001794 type IIa hypersensitivity 2.88E-05 

10 GO:0002445 type II hypersensitivity 2.88E-05 

11 GO:0002885 positive regulation of hypersensitivity 3.94E-05 

12 GO:0050729 positive regulation of inflammatory response 4.58E-05 

13 GO:0002521 leukocyte differentiation 4.90E-05 

14 GO:0002866 positive regulation of acute inflammatory response to antigenic stimulus 5.22E-05 

15 GO:0097278 complement-dependent cytotoxicity 5.96E-05 

16 GO:0030097 hemopoiesis 6.14E-05 

17 GO:0002861 regulation of inflammatory response to antigenic stimulus 6.19E-05 

18 GO:0002883 regulation of hypersensitivity 6.75E-05 

19 GO:0048534 hematopoietic or lymphoid organ development 9.42E-05 

20 GO:0002863 positive regulation of inflammatory response to antigenic stimulus 1.06E-04 
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6.3.7 Classification of infection based on gene expression. 

The classification using the top 100 differentially expressed genes as features in MATLAB showed 

that the combined and mean accuracies of all available models increased sequentially (Table 6-13), 

when the group was made younger by removing the eldest, despite the group becoming smaller 

(and so being more likely to be affected by stochasticity and having less data to train models on). 

When this process was reversed, the opposite was seen, and decreased accuracy was observed. The 

totals, the mean values and peak performance all followed the same trends. Linear support vector 

machines appeared to be the best performing classification model, and so were used in downstream 

analysis, no hyperparameter tuning was used in this classification experiment.  

When the performance (measured by overall accuracy %) of these models was plotted on graphs, 

the classification performance percentage clearly showed a positive association with advancing age 

(Figure 6-18) which tended to start between 70-80% for most models and climb to between 80 and 

90% when only patients under 51 were considered.  Likewise, a negative association was also visible 

when the group became older (Figure 6-19), with most performance percentages starting at 

between 70-80% and falling to between 60 and 70% as the group became only populated by people 

of 60 years of age.  

 



The Effect of Ageing on Host Transcriptomic Profiles during Viral Infection 

 

254 

Table 6-13 -Classification Machine Learning Model Performance 

Model subtype  all <81 <71 <61 <51 all >30 >40 >50 >60 

fine tree 75.2 74.1 81.1 84.6 78.8 75.2 68.8 68.9 70 62.2 

medium tree 75.2 74.1 81.1 84.6 78.8 75.2 68.8 68.9 70.6 62.2 

Coarse Tree 73.9 75.6 80.2 84.6 78.8 73.9 72.7 69.7 67 64.6 
Linear 
discriminant 62.1 59.3 72.6 73.1 86.5 62.1 61.7 56.8 58.7 61 
Logistic 
Regression 60.2 58.5 55.7 56.4 46.2 60.2 77.3 56.8 60.6 54.9 
Gaussian Naïve 
Bayes 77 81.5 86.8 88.5 82.7 77 77.3 76.5 73.4 69.5 
Kernel Naïve 
Bayes 75.8 79.3 82.1 82.1 82.7 75.8 79.2 75.8 73.4 67.1 

Linear SVM 81.4 88.1 88.7 84.6 90.4 81.4 74 78.8 76.1 78 

Quadratic SVM 74.5 77.8 79.2 76.9 88.5 74.5 73.4 69.7 70.6 64.6 

Cubic SVM 74.5 79.3 84 79.5 90.4 74.5 76.6 69.7 67.9 68.3 
Fine Gaussian 
SVM 77.6 77.8 81.1 82.1 82.7 77.6 77.9 75 73.4 68.3 
Medium 
Gaussian SVM 80.1 82.2 84.9 85.9 84.6 80.1 76 79.5 74.3 70.7 

Coarse Gaussian 76.4 80.7 86.8 84.6 84.6 76.4 72.7 75.8 71.6 68.3 

Fine KNN 77 82.2 86.8 83.3 84.6 77 77.3 79.5 75.2 68.3 

Medium KNN 78.3 83.7 84 84.6 86.5 78.3 64.3 75 71.6 68.3 

Coarse KNN 67.7 58.5 53.8 53.8 53.8 67.7 76.6 62.9 49.5 51.2 

Cosine KNN 77 82.2 86.8 87.2 86.5 77 77.9 74.2 68.8 72 

Cubic KNN 77 81.5 84 87.2 53.8 77 77.9 78.8 71.6 68.3 

Weighted KNN 77 83 83 85.9 86.5 77 74 76.5 71.6 70.7 

Boosted Trees 51.6 52.6 53.8 53.8 88.5 51.6 48.7 51.5 79.5 51.2 

Bagged Trees 77.6 82.2 85.8 88.5 88.5 77.6 78.6 77.3 74.3 69.5 
Subspace 
discriminant 75.2 79.3 81.1 73.1 84.6 75.2 81.2 80.3 73.4 68.3 

Subspace KNN 75.2 77.8 83 82.1 82.7 75.2 75.3 75.8 7.6 69.5 
RUSBoosted 
Trees 67.1 74.8 61.3 78.2 78.8 67.1 61.7 70.5 61.5 58.5 

           

TOTALS 1764.6 1826.1 1887.7 1905.2 1930.5 1764.6 1749.9 1724.2 1612.2 1575.5 

Mean 73.5 76.1 78.7 79.4 80.4 73.5 72.9 71.8 67.2 65.6 

Mode 77 82.2 81.1 84.6 78.8 77 77.3 69.7 73.4 68.3 

Median 75.5 79.3 82.55 83.95 84.6 75.5 75.65 75 71.6 68.3 

min 51.6 52.6 53.8 53.8 46.2 51.6 48.7 51.5 7.6 51.2 

max 81.4 88.1 88.7 88.5 90.4 81.4 81.2 80.3 79.5 78 

range 29.8 35.5 34.9 34.7 44.2 29.8 32.5 28.8 71.9 26.8 

Performance of the classifier models. Conditional formatting is applied to vertical 
columns, with green indicating highest performance and red indicating lowest 
performance. For totals, means and max conditional formatting is applied horizontally. 
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Figure 6-18 Machine Learning Classification Performance Using All Models: Decreasing Age 
Figure shows performance trends for applied models. Cohort age decreases from left to right, performance of model is along Y axis. 



The Effect of Ageing on Host Transcriptomic Profiles during Viral Infection 

 

256 

 

Figure 6-19 Machine Learning Classification Performance Using All Models: Increasing Age 
Figure shows performance trends for applied models. Cohort age increases from left to right, performance of model is along Y axis. 
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6.3.8 Application of classification learner linear support vector machine to split cohort. 

The results showed that models using isoform abundance as features always performed better than 

their gene expression trained counterparts. When considering the differential transcript use, the 

accuracy of the training models was higher in the young, as expected. However, this pattern was not 

observed in the results from the test cohort. When considering gene expression, the training models 

performed similarly but the test models were marginally (~7%) worse in the younger cohort. The 

performance plots can be found in appendix A.12. 

 
Table 6-14 Performance of classification learning machine learning models on 

transcriptomic data. 

Gene expression Differential transcript use 

Cohort subset Overall classification 

accuracy 

Cohort subset Overall classification 

accuracy 

Old Training 82.6% Old Training 85.5% 

Old Test  83.3% Old Test  91.7% 

Young Training 82.6% Young Training 91% 

Young Test  75% Young Test  91.7% 

This table represents the performance of the models applied to transcriptomic data 
from the Influenza and COVID19 cohorts. Models were trained and tested on the top 
100 features from either differential gene expression or differential transcript usage.  
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6.4 Discussion 

6.4.1 Significance 

With advancing age, chronic systemic inflammation becomes ubiquitous, which blunts the 

detectable response of the immune system to challenges due to the chronic low-level stimulation 

and also masks inflammation caused by infectious disease (444, 445). The transcriptomic profiles 

between COVID19 and Influenza patients have a high degree of overlap in 95% confidence interval 

ellipses when assessed through a PCA plot. In an attempt to explain some of this overlap, those over 

the age of 65 years were removed, and a reduction which can be visually observed in the overlap of 

95% confidence intervals occurs. This suggests that the transcriptomic profiles of people with these 

two viral infections are more distinct in the young. These transcriptomic profiles of the groups are 

not, however, able to be completely separated in the PCA plot, despite the exclusion of the elderly in 

the existing cohort. This could be partially a result of the cohort still having some ‘older’ individuals 

for whom the process of immunosenescence has already begun. As such, the limited effects seen in 

the PCA may be in part still be reflecting the impact of age on the immune response. Age continues 

to be a factor, but the transcriptomes are also likely to be influenced by individual factors, technical 

and statistical artefacts, and limitations. 

There has been some observation of gene expression profiles from different tissues converging with 

age and specific cellular genes are down regulated and generic genes are upregulated. In addition, 

immunosenescence delivers a blunted immune response with advancing age. We hypothesised that 

some of the convergence in gene expression with age may be a result of the loss of specific immune 

gene expression, leading to a loss of specificity in the response to the two infections. We further 

hypothesised that as alternative splicing and thus isoform abundance was demonstrated to be a 

large portion of the specific transcriptomic response to infection, there may be a loss in distinct 

profiles of isoform abundance with age in the immune genes as dysregulation sets in.  

Individual gene level investigation showed that some of the most differentially expressed genes 

between infection cohorts had an expression profile which appeared to converge with advancing 

age (JUN/IGHG1), however this appear to be the result of changes only in the gene expression in 

COVID19.  To investigate this further, genes and isoforms which had differential expression overall 

were cross referenced with those which had contrasting expression changes with age as determined 

by beta coefficient values from linear regression.  Our methods were extremely conservative and 
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used robust P-value adjustment methods for differential expression and stringent beta value cut-offs 

for age association. Despite this we found many genes converged with age.  

It is interesting that despite this apparent convergence with age, these genes remained some of the 

most differentially expressed. The statistical corollary of which is that there is some likelihood that 

other genes may have been significantly differentially expressed in the younger population, but lost 

significance with the addition of the older individuals and so have not been detected. This is 

supported by the finding that only a single differentially expressed gene of 472 (Bonferroni adjusted 

p<0.05) between the infections was shown to have changes in expression related to age, despite 

visible associations with age in many differentially expressed genes. Those genes which experienced 

the most robust age-related changes would likely have lost some of their statistical significance if 

differentially expressed in the non-aged group. It would be of interest to compare genes 

differentially expressed between the cohorts in the various decades of life to see how profound the 

loss of differentially expressed genes is in infectious disease with age.  

Volcano plots of the genes undergoing differential gene expression showed strong association of 

NT5E with advancing age in COVID19.  NT5E (AKA CD73) is generally accepted to be 

immunosuppressive (446). It is expressed on the surface of CD8+ T lymphocytes, whose numbers 

decline with age. NT5E dephosphorylates AMP into adenosine and organic phosphate. Adenosine 

acts through G-protein coupled receptor mediated signalling from the cell surface to regulate 

intracellular cyclic AMP levels,  which mediates immunosuppression (447).  Therefore, it’s decreased 

presence in an ageing cohort, especially one which is harbouring an infection associated with 

cytokine storm, is not surprising. This could represent the loss of the immunosuppressive 

mechanisms which prevent chronic inflammation, or it might be a result of the inappropriate hyper-

inflammatory response seen in hospitalised COVID19 patients, or some combination of the two. 

Literature demonstrates that the NT5E levels are associated with mild and severe COVID19, and that 

blood from these patients is actually able to deplete NT5E levels in health controls (447). Therefore, 

the negative association of NT5E with advancing age in this cohort might be a feature of 

immunosenescence/inflammageing. Moreover, in combatting cytokine storm, mesenchymal stem 

cells and extracellular vesicles which harbour NT5E have been investigated and so there is a good 

chance that this molecule might represent an interesting therapeutic target (448, 449).  

The strong negative association of WLS with advancing age in the cohort is also linked to these 

processes and NT5E also appears to be tightly associated with the WLS/WNT axis responsible for 

maintenance of telomeres and implicated in immunosenescence (450, 451). Overexpressed gene 
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CNTNAP3 has been implicated in some viral infections, but interesting associations are also found in 

conditions which bridge the immune/neurological axis. The gene which mediates neuron to glial cell 

communications is overexpressed in PTSD with immune involvement (452), pre-eclampsia (453), 

autism spectrum disorder (454), major depressive disorder (455), Crohn’s disease (456). This gene 

and its associated pathway or process may therefore be part of the way in which COVID19 elicits its 

effect on the neurological system.  

The decrease in splicing factor expression with advancing age echoes work performed in other 

tissues which shows that splicing factors directly correlate to age (457), and that long lived species 

such as the naked mole rat have very high splicing factor expression throughout life (458). As splicing 

contributes to the diversity of eukaryotes by increasing number of possible of RNA species, a loss of 

splicing through the decline in these factors will lead to a convergence of RNA isoform 

transcriptome, much as we have observed the same phenomenon in the expression of key genes 

which mediate specific function in the immune system. These findings suggest that a pivotal event in 

the process of ageing is the loss of biological information through convergence of the transcriptome. 

The strict adherence to normal distribution of beta-coefficients appears to support the hypothesis 

that through ageing, transcriptomes undergo a loss of information. One would expect that as the 

stochastic nature of the accumulated genetic and epigenetic lesions which lead to changes in 

expression with age would produce a pattern of distribution which resembles a normal distribution. 

Encouragingly, the isoform abundance histograms also follow this normal distribution when 

correlated to age. This might indicate that the loss of information and subsequent convergence of 

isoform level information in the transcriptomes follows this pattern. For example, if all the molecular 

mechanisms of regulation of gene expression, both up and down, were to be slowly lost, one would 

expect to see this normal distribution pattern. Whereas if specific transcriptional programs were 

activated during ageing and others were deactivated, the transcriptional association values would be 

less likely to be so representative of a normal distribution.  

The UpSet matrix shows more genes experiencing age associated DTU compared to the number of 

genes experiencing age associated DEG in both infections. This suggests that dysregulation of the 

alternative splicing process may have more impact on age related decline in immune function, than 

does gene expression. Consequently, alternative splicing may hold more promise for developing 

therapeutics which mitigate the effects of ageing in the immune system. Interestingly, the majority 

of these changes seem to be also infection specific, as only around 20-25% of these are shared 

between infections (N= 2094).  
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The three classical forces acting on a transcriptome during infection are a) the direct effect of the 

virus on the host cell, b) the host immune response to the virus, c) the progression of disease in the 

host.   As age progresses, and the immune response is blunted, a fourth pressure comes into effect. 

Deconvoluting which changes are a result of which process, and therefore identifying targets for 

therapeutics intervention is not an easy process, complicated by the lack of a control group in this 

setup. However, by regressing the features to age and comparing them between infections, it has 

been possible to identify sets of genes which are affected by age and may represent useful 

important novel targets in immunosenescence. An important next step to resolve targets and 

pathways of the highest priority would be to compare DEG and DTU in young vs older patients with 

infections. This approach would mitigate some of the lost signal.  

Only a single gene was differentially expressed between infections but also had significant age-

related changes in both infections and thus likely represents an important target in 

immunosenescence. This was SATB2; a gene which produces a nuclear matrix protein and an 

important regulator of epigenetic chromatin remodelling. In congruence with our findings, 

overexpression of this product is able to rejuvenate bone mesenchymal stem cells and regenerate 

the skeleton to improve bone mineral density in animal models and prevents stem cell senescence 

by maintaining NANOG expression (459). 

On the splicing side, the 212 genes which experienced DTU between infections, but also experienced 

DTU with age, are also likely to be low hanging fruit in terms of pathways which are disease specific 

and also age-associated. It may therefore be possible to target these by upregulating specific splicing 

factors and ameliorate some of the age associated effects of the infections, especially if these genes 

represent immune processes.  

Convergence of the transcriptome at the gene expression level has been reported for the first time 

in publication this year (2022). The seminal work demonstrates that different tissues in the body 

experience convergence towards a common transcriptome with ageing which overexpress 

ubiquitous genes and have reduced expression of cell specific genes. (460). This is opposed to the 

divergence to many distinct transcriptomes for varying cell types seen during development (460). 

This process is termed DiCo (divergence – convergence) by the authors who discovered it. Unlike this 

research, our work was able to characterise the convergence in transcriptomes of host immune 

response; that is the lack of ability of the immune system to launch a distinct response to specific 

pathogens with advancing age. We found evidence of convergence of the transcriptomes through 

gene expression levels, and also relative isoform abundance levels. At the gene expression level 
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there was a preponderance of genes involved in cell cycle control and mitosis which were initially 

higher in COVDI19 patients. Greatly increased cellular division occurs during the acute phase of 

infection (461), although why this is greater in one infection than the other remains unclear. 

Convergence of cell cycle genes could be a result of decreased overall cellular division occurring 

because of increasing senescence, a blunted immune response, or indeed general convergence of 

ubiquitously expressed genes as outlined in the literature pertaining to DiCo. Converging gene 

expression also occurred in genes which showed enrichment of T-cell mediated immunity, T-cell 

extravasation, NK T-cell activation, B-cell mediated immunity and interestingly – olfactory learning, 

known to be a symptom in COVID19 (462). The COVID19 induced hypoxia, has been suggested to 

cause changes in the glycolytic processes of the cell, disrupting the metabolic controls. The 

upregulation of these genes in COVID19 is likely a response to this, and our results show that over 

time, these responses are lost, which likely contributes to the increased morbidity and mortality 

from COVID19 with advancing age.  

The greatest enrichment at the relative isoform abundance level, was seen in genes which 

contribute to hypersensitivity reactions. Specifically, type I which are mediated by IgE, and type II 

which are mediated by IgG and IgM.  These genes were present in lists for converging isoform 

expression from both infections suggesting that the elements of the pathways comprised the 

immune response for each infection, but with time, this was lost and the delicate balance of 

isoforms which were needed for the immune response deregulated in old age. Overall, the results 

demonstrate that age has a profound effect on the immune systems regulation and specificity, and 

host responses in general to infection.  

This information offers important opportunities for therapeutic development. If immunosenescence 

is partly a result of the loss of regulation of key processes, such as transcription and splicing, re-

regulation becomes a therapeutic target. If regulation is lost due to declining expression of key genes 

involved in the process, such as splicing factors, then upregulation of these genes through 

therapeutic intervention may help protect the immune system from immunosenescence. Indeed, 

some master regulators of splicing have already been identified as potential therapeutic targets in 

other literature (463). In addition to endogenous age related convergence of splicing which is a 

consequence of loss of splicing factors with age, the viruses themselves may also contribute to the 

convergence of the transcriptome as it is well established that they directly modulate splicing (322). 

It has also been shown than the NSP16 binds to the domains of U1 and U2 small nucleolar RNA 

element of the ribonucleoproteins which catalyse splicing leading to global suppression of splicing 
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(323).  The convergence seen then is a result of ageing of the cell, but also the process of infection 

itself. As the immune system ages, infections will be more successful at compromising host cell 

machinery, they which will in turn cause further convergence of the transcriptome, resulting in 

synergistic effects and a loss of information in the RNA of the cell, leading to increased morbidity 

and mortality.  

The machine learning classification models training also supported the idea that specificity of 

immune response was lost with advancing age. Significant improvements with decreasing age of 

cohort, and loss in performance with increasing age, were seen regardless of reduction in sample 

size. This was both for peak performance of any model, but also averaging across all models; an 

analysis which limits any algorithm specific changes in performance that might be related to the 

sample number, or any user selections bias. This gives robust support to the hypothesis that 

transcriptomic profiles converge with age and highlights the importance of targeting 

immunosenescence in the elderly to rejuvenate immune function. However, immune responses are 

multifactorial and heterogeneous from person to person, and this is reflected in the inability of the 

classification models to determine which infection an individual is suffering from with 100% accuracy 

at any age during model training. Although the possibility of this being possible with a larger cohort 

of patients with fully mature but not yet aged immune systems is not able to be ruled out.  Due to 

time limitations, it was not possible to repeat this training step optimisation process using the 

splicing related differential transcript abundance data. Therefore, the work rests on the assumption 

that performance of the linear support vector machines would be good enough to conduct a fair 

assessment on both data types.  

Once the optimal model was identified by performance metrics in training (linear support vector 

machines), the data was re-partitioned to prevent information leak, and tests were conducted for 

classification ability for both gene expression and differential transcript use.  

The results showed that despite picking the model type best suited to gene expression data, isoform 

abundance data was better suited to determine the infection status of the individuals at any age. It 

performed equally well on the test data at both ages, despite the trained dataset yielding better 

results in the younger cohort. For gene expression data the results indicated the metric resulted in 

less reliable classification of disease. Surprisingly this seemed to be worse in the younger cohort. 

Unfortunately, the datasets were still relatively low in number, and test datasets were as small as 

n=6. Further work on larger datasets and other infections would be needed to validate these results, 

but it does give encouraging evidence that isoform abundance is an extremely useful metric in 
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determining infection type and that splicing is a critical modality for host immune response, which is 

underutilised and poorly understood.  

6.4.2 Limitations 

Factors hampering the interrogation of the transcriptomes includes the cohort being opportunistic 

and the study not being a controlled infection model. Only patients presenting to the clinic could be 

assessed and therefore already have a suboptimal immune response. The exact point of infection 

also cannot be determined. The data is increasingly likely to be ‘noisy’ as it does not necessarily 

reflect the exact same point in the immune response and thus innate adaptive immune responses 

may be at slightly different stages.  

When considering the splicing changes or DTU, the genes in which the change took place were used 

for analysis. This means the nature of those changes cannot be fully represented. An increase in one 

transcript can, sometimes but not always, result in the decrease of another transcript and it is not 

easy to know from this type of analysis which type of change is occurring.  

 A more granular approach would need to be adopted as the investigation continues to identify the 

transcript in question, it’s function and the type of approach which would be useful. 

There are three pressures on the immune system transcriptome; the pathogen; the host, and the 

disease progression. It requires a more complex analysis to tease out which changes should be 

prioritised as therapeutic opportunities and which are just downstream effect. Analysis techniques 

which take advantage of molecular topography, pathway analysis and validation experiments are 

required. This work however could produce exciting and useful results with far reaching benefits, 

and the approach could be deployed to numerous age-related diseases.  

 

6.5 Conclusion 

Immunosenescence is at least in part mediated by transcriptomic convergence. It can be detected in 

transcriptomes of patients with infectious disease and is represented in gene expression and isoform 

abundance.  This research has demonstrated that these two upper respiratory tract infections elicit 

host responses which differ in both gene expression and splicing mediated ways.  We have also 

shown that these differences decrease with advancing age. It’s likely that much of the loss of distinct 
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signal for each infection results from the a few master regulators, which could be targeted to 

maintain regulation.  This is despite the inherent limitations of using a cohort which are 

immunologically sub-optimal and at different stages of immune activation indicating the features are 

robust and conspicuous. Whilst the pathways observed may be affected by the sample, the 

underlying processes which we have observed and documented will be common in individuals 

healthy and otherwise. The work shows that studying a stimulated immune system will allow unique 

insights depending on the stimulation and in order to fully understand the effects of 

immunosenescence, activation may be necessary. This work showed that there are many processes 

which change with age which are largely infection specific.  While common features exist between 

the ageing transcriptomes of these two infections, the differences are more numerous.  This is the 

case even between viral infections of relatively similar outcomes when considered in the wider 

context of infectious disease. It is therefore important to consider both shared pathways and 

individual responses in context of immunosenescence and its treatment to mitigate infection.  This 

approach has helped identify a number of potential therapeutic targets, and importantly developed 

a bioinformatic pipeline which can be redeployed to other bulk RNAseq dataset to identify targets of 

aging within those tissues. 

 

6.5.1 ‘DiCo’ occurs at the level of immune response to infection also. 

 

This work has shown that with advancing age some key differentially expressed genes responsible 

for responding to infection stop being differentially expressed. Much like different tissue gene 

expression profiles converging, the specificity of the immune responses also seems to do so adding 

another dimension to the DiCo hypothesis.  The loss in specificity of the immune response to 

infection may help to explain the age associated increase in morbidity and mortality in infection with 

age. We have re-iterated existing evidence which provides some mechanistic insights into how 

isoform abundance is affected by age, namely a loss in expression of splicing factors with age.  

6.6 Statement of contributions  

This chapter is a collaborative effort between Yaron Strauch, a PhD student in the same group, and I. 

The gene expression data and isoform abundance data had been created during the previous 
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chapters, and so ‘feature engineering’ for machine learning was already complete. The concept of 

using gene expression and isoform abundance to quantify and characterise age-related changes in 

the transcriptome of a given pathology or disease came in part from my previous work of a similar 

nature (314) but also from the work of Wang et al., (70). The exploratory data analysis was my own 

work, the machine learning classification work was my own work. Yaron and I helped each other to 

understand the multi-regression work by Wang et al. Yaron created a Python script to replicate this 

multi-regression machine learning and create the beta-coefficients. The creation of volcano plots, 

histograms, UpSet plots, pathway analysis, comparisons, and matrices which compare the regression 

results to that obtained through the earlier chapters is my own work.  
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Chapter 7 Results: Immune ageing and infection specific 

ageing clocks – machine learning application 

7.1 Introduction 

The effect of ageing on human health is profound, and only just now being understood in a way 

which allows any meaningful intervention. The ageing of the immune system is a process to which 

much morbidity and mortality has been attributed (259-261). The consequences of 

immunosenescence include inflammatory disease, cancer, neurodegenerative disease and 

cardiovascular disease, and poor outcomes from infectious disease. The unchallenged immune 

system does not always provide enough functional information for understanding discrepancies in 

immune function, baseline signals may not accurately reflect the problems in tacking an immune 

challenge. In order to understand and measure the decline in tissue function with age, ageing clocks 

have been developed. These are a combination of ‘features’, and an associated algorithm which 

incorporate patient age to generate a mathematical model which shows how those features change 

with advancing age. This has a range of functionality including identifying the best predictive factors 

of advancing age in a patient’s tissue, predicting a patient’s age based on their features and 

comparing this to chronological age to see if they are age faster and slower than average in this 

tissue. These can be compared with chronological age to find out if someone is ageing in a manner 

which is unhealthy or likely to cause age related disease faster than would be expected. They can 

also be used to measure the effectiveness of treatments for this age-related disease or be used to 

determine clinical action on a personalised basis (330). Above all they aid in the understanding of 

age-related disease and help to develop therapeutic approaches. We hypothesised that an ageing 

clock for a challenged immune system would give a new insight into immunosenescence. The novel 

outputs from the previous chapters suggested than gene expression based ageing clocks are likely 

sub-optimal and those which incorporated splicing data would prove to be more accurate and give a 

wider range of targets. Some earlier work examined the possibility of predicting age using just splice 

site usage or isoform abundance (70). Our previous work demonstrated that the pathways affected 

by ageing tend to be either occurring through gene expression changes OR splicing changes, but 

rarely is a gene affected by both (See section 5.7) As such, we hypothesised that a combination of 

gene expression and isoform abundance would provide the optimal transcriptomic ageing clock.  
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7.1.1  Aims  

• To use the transcriptomic data obtained from the RNAseq of whole blood in these cohorts to 

build two ‘disease-specific, challenged-system immune ageing clocks’ to map how 

transcriptome changes with advancing age; one for COVID19 patients and one for Influenza 

patients. These will be the first of their kind, being both disease-specific and looking at a 

challenged immune system, but also combining gene expression and splicing based metrics 

which could be used for a variety of research and industrial applications.  

• To compare these and find the contribution of splicing based and gene expression-based 

metrics to derive some insight into the importance of these features in immunosenescence. 

7.2 Methods  

Cohorts used were identical to the previous chapter. The final bioinformatic program was produced 

entirely using Python. fq files of patients with either COVID19 or influenza and these were trimmed 

using trimmomatic (342). Using the STAR aligner (343), these reads were then aligned to the human 

reference genome version GRCh38, using the GENCODE V39 annotation. STAR generates raw gene 

counts, which are converted to TPM values in python using the formula found in 2.4.2. 

For the transcript abundance, the same informatic pipeline was used as previously whereby Salmon 

was utilised using the selective alignment method found in the previous section (2.4.1.1.6). Briefly, 

first the Salmon program builds a reference file comprising the human genome (version GRCh38) 

and all known transcripts are known as the ‘Gentrome’. Reads are then aligned to this reference file, 

first to the transcripts and then to the genome if no match is found. This provides fast and accurate 

alignment, which is isoform aware, but also able to align reads which span non-annotated junctions. 

The relative isoform abundances were then calculated by comparing the total number of reads 

aligned to each gene, and all the isoforms it has produced. 

In each case these were combined into a single dataset which also included the phenotype to be 

predicted (patient age). Feature reduction was then implemented, first all features which only have 

a single value across all samples were filtered out. After this, Spearman’s correlation was applied to 

the complete set of features (305,165 features, of which 267,543 were transcript abundances and 

61,587 were gene expression values), to reduce the set to a number which lasso regression could 

comfortably manage. This was set as 200,000 features based on preliminary data generated by our 
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group (and the experience of Yaron Strauch). The data was first standardised by subtracting the 

mean and dividing by the standard deviation. The resulting matrix of feature quantifications was 

used to regress age using a series of alpha values representing the hyperparameters for tuning 

model performance and using 4-fold cross validation to assess overfitting. The mean absolute 

expression, R-values, p-values and beta coefficients were calculated and output. The alpha value 

with the lowest mean absolute expression was extracted and this model was fitted to the whole 

dataset, as the final model. The mean absolute error is an indicator of the accuracy of the model, 

which is agnostic of the direction of error (i.e. +/- 5). This metric is most used when comparing the 

accuracy of ageing clocks (332). R squared values represent the amount of variation in the 

dependant variable, which can be explained by the independent variable. In this case age will not 

change as a direct result of changes in the transcriptome, so rather this is a measure of how well the 

cohorts’ age can be predicted by the variation differential gene expression and differential transcript 

use.  
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7.3 Results Iteration 1 

7.3.1 Results: First iteration  

The first iteration of the ageing clocks showed performance in prediction of age superior to any 

currently available ageing clocks (332). For the COVID19 cohort the MAE of 1.34 years was achieved 

with an alpha value of 0.44 (Figure 7-1), producing 75 features (Figure 7-2) and R2 of 98% (Figure 

7-3). The Influenza ageing clock was equally high performing, reaching a MAE of 1.59 years (Figure 

7-4), using an alpha value of 0.55 Figure 7-5 producing 82 features and an R2 value of 98% (Figure 

7-6). These two clocks shared one (1) feature; ENST00000308873.10 an isoform of the RUNX3 gene 

(mRNA-RUNX family transcription factor 3, transcript variant 2, from RefSeq NM_004350) (464). The 

percentages of features which were isoforms and genes were 93-7% COVID19, 91-9% Influenza and 

86.6 -13.4% for combined (Figure 7-11).  The peak MAE for the combined cohort was 1.32 years 

(Figure 7-7), with a slightly less more conservative alpha value of 0.25 giving 157 features (Figure 

7-8) and an R2 value of 98% (Figure 7-9) . Only a small number of features were shared with the 

infection specific clocks. This may mean that more of these features are linked to ageing in general 

and may not be disease or ageing specific (Figure 7-11).  

 

Figure 7-1 MAE for a range of alpha values in the COVID19 cohort 
MAE represents the mean average error, this is calculated based on error for each 
predicted age and actual chronological age for each individual, across all four data 
partitions within cross validation for the cohort. Peak performance was at alpha = 0.44 
with and MAE of 1.34. 
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Figure 7-2 Number of features for a range of alphas in the COVID19 cohort 
Plot of the number of features for a range of alpha values within the cohort. The peak 
performance was observed with 75 features at an alpha of 0.44. 

 

Figure 7-3 R-squared values for a range of alphas in the COVID19 cohort 
Plot represents that the total amount of variability in age which can be predicted by the 
model across the range of hyperparameter values. Most of the variability (around 98%) 
was predicted by the model. 
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Figure 7-4 MAE for a range of alphas in the Influenza cohort 
MAE represents the mean average error, this is calculated based on error for each 
predicted age and actual chronological age for each individual, across all four data 
partitions within cross validation for the cohort. Peak performance was at alpha = 0.55 
with and MAE of 1.59. 

 

Figure 7-5 Number of features for a range of alphas in the Influenza cohort 
Plot of the number of features for a range of alpha values within the cohort. The peak 
performance was observed with 82 features at an alpha of 0.55. 
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Figure 7-6 R-square values for a range of alphas in the Influenza cohort 
Plot represents that the total amount of variability in age which can be predicted by the 
model across the range of hyperparameter values. Most of the variability (around 97%) 
was predicted by the model. 

 

Figure 7-7 MAE for a range of alphas in the combined cohort 
MAE represents the mean average error, this is calculated based on error for each 
predicted age and actual chronological age for each individual, across all four data 
partitions within cross validation for the cohort. Peak performance was at alpha = 0.25 
with and MAE of 1.32. 
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Figure 7-8 Number of features for a range of alphas in the combined cohort 
Plot of the number of features for a range of alpha values within the cohort. The peak 
performance was observed with 157 features at an alpha of 0.25. 

 

Figure 7-9 R-squared valued for a range of alphas in the combined cohort 
Plot represents that the total amount of variability in age which can be predicted by the 
model across the range of hyperparameter values. Most of the variability (around 98%) 
was predicted by the model. 
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Figure 7-10 Feature type for ageing clocks 
Features for each clock which were either genes (in blue) or isoform abundances (in 
orange). The COVID19 = 75 features, 5 genes, 70 Isoform abundances (93.3% splicing). 
Influenza = 81 features, 8 genes, 73 Isoform abundances (90.1% Splicing. 

 

Figure 7-11 Features shared between the infection specific and combined clock. 
Combined clock has 158 features, 16 genes and 140 isoform abundances (88.6%). A 
total of 4 features were shared with individual infection specific clocks when RUNX3 
isoform duplication is considered. The combined clock of immunosenescence – shared 2 
isoform abundances with COVID19 and 3 with Influenza. 
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7.3.2 Results: Second Iteration 

The early accuracy seen in the ageing clocks’ ability to predict the age of a patient based on a small 

set of features from their transcriptome was lost after changes to the model were made. In this 

iteration, the model was trained only on a subset of the data and not the entirety before testing. 

Accuracy of prediction as measure by mean absolute error in years, dropped from around 1.3-1.7 

years across all models, to 11.67 years for COVID19 (Figure 7-15), 12.21 years for Influenza (Figure 

7-12), and 11.53 years for both (Figure 7-18). In addition, the peak performances obtained were now 

with very large numbers of features (Figure 7-16, Figure 7-13, Figure 7-19).  

The peak performing clock for the influenza cohort had 1133 features (cf 82 in iteration 1), and a 

mean R2 value 29.9% (Figure 7-14) indicating the majority of the variance in age was not able to be 

predicted based on the available features. The best performing betas from the influenza clock 

regression were from 1129 transcript abundances and 4 gene expression values. 

The COVID19 ageing clock and the dual clock both used 100% of the 200,000 (Figure 7-16, Figure 

7-19) features in order to obtain peak predictive accuracy of the clock. The peak performing 

COVID19 clock had an alpha value of 0 (Figure 7-15), – meaning no hyperparameter tuning was 

beneficial and 100% of the 200,000 features (cf 157 features in iteration 1)  were used in order to 

obtain peak predictive accuracy of the clock. It had an R value of 38.2% (Figure 7-17) which was 

slightly better than the Influenza iteration, however there was still a majority of variance in age 

which could not be predicted by the transcriptome of hospitalised patients.  

Finally, the combined clock had a peak performance at alpha value of 0 also – meaning no 

hyperparameter tuning was beneficial and 100% of the 200,000 features were used in order to 

obtain peak predictive accuracy of the clock (Figure 7-19). It had a mean R2 value of 40.3% (Figure 

7-20) suggesting the clock was able to explain more variance than the other two models, but the 

majority of the variance in age could not be explained by the transcriptomics ageing clock.  The data 

supporting figures for the second iteration of ageing clocks is seen in Tables 23-25 which show the 

optimum models for the 3 cohorts. 
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Figure 7-12 MAE scores for a range of alpha values in Influenza 
MAE represents the mean average error, this is calculated based on error for each 
predicted age and actual chronological age for each individual, across all four data 
partitions within cross validation for the influenza cohort. Peak performance was at 
alpha = 0.00133 with and MAE of 12.21. 

 

 

Figure 7-13 Number of features for a range of alpha values in Influenza 
Plot of the number of features for a range of alpha values within the Influenza cohort. 
The peak performance was observed with 1133 features at an alpha of 0.00133. 
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Figure 7-14 R-squared values for range of alpha values in Influenza 
Plot represents that the total amount of variability in age which can be predicted by the 
model (29.9%) across the range of hyperparameter values. Most of the variability 
(around 70%) was not able to be predicted by the model. 

 

Figure 7-15 MAE scores across a range of alpha values for COVID19 
MAE represents the mean average error, this is calculated based on error for each 
predicted age and actual chronological age for each individual, across all four data 
partitions within cross validation for the COVID19 cohort. Peak performance was at 
alpha = 0 with and MAE of 11.67. 
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Figure 7-16 Number of features across a range of alpha values for COVID19 
Plot of the number of features for a range of alpha values within the COVID19 cohort. 
The peak performance was observed with 200,000 features at an alpha of 0.0. 

 

Figure 7-17 R-squared scores across a range of alpha values for COVID19 
Plot represents that the total amount of variability in age which can be predicted by the 
model across the range of hyperparameter values. Most of the variability (around 62%) 
was not able to be predicted by the model. 
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Figure 7-18 MAE scores across a range of alpha values for combined infections 
MAE represents the mean average error, this is calculated based on error for each 
predicted age and actual chronological age for each individual, across all four data 
partitions within cross validation for the combined cohort. Peak performance was at 
alpha = 0 with and MAE of 11.53. 

 

Figure 7-19 Number of features across a range of alpha values for combined infections 
Plot of the number of features for a range of alpha values within the COVID19 cohort. 
The peak performance was observed with 200,000 features at an alpha of 0.0. 
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Figure 7-20 R-squared values across a range of alpha values for combined infections 
Plot represents that the total amount of variability in age which can be predicted by the 
model across the range of hyperparameter values. Most of the variability (around 60%) 
was not able to be predicted by the model. 
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Table 7-1 Top 10 models for ageing clock in Influenza 
Alpha n_features mae_mean mae_min mae_max mae_std rsquared_mean rsquared_min rsquared_max rsquared_std 

0.000133 1133 12.2088256 10.877702 14.7006948 1.48017839 0.298584369 0.214986111 0.43421095 0.083244749 

0 200000 12.4033159 10.980112 13.9463526 1.27718588 0.324907046 0.213343192 0.415471754 0.072562027 

0.471898 60 14.7502691 13.497359 15.6008059 0.83621751 -0.049441823 -0.391781158 0.259293965 0.279314833 

1.624375 46 14.8702514 13.708255 15.4632184 0.69991041 -0.04210791 -0.38658232 0.268218518 0.27020365 

1.641576 46 14.883233 13.708255 15.5151448 0.71117894 -0.046517208 -0.404219512 0.268218518 0.275873375 

1.697713 45 14.8881331 13.708255 15.6423977 0.77374619 -0.048254477 -0.404219512 0.287038906 0.276627502 

0.487366 60 14.8953251 13.497359 15.6008059 0.82906431 -0.063206561 -0.391781158 0.204235012 0.264737314 

0.498167 60 14.9017975 13.497359 15.6266954 0.83462899 -0.066405739 -0.404577869 0.204235012 0.268735719 

1.812254 43 14.9116811 13.708255 15.4929733 0.71599711 -0.038765779 -0.365620084 0.273916834 0.262719374 

1.933729 42 14.9138751 13.67641 15.4206802 0.71767698 -0.049476552 -0.364194848 0.255770223 0.259253511 

 
Top 10 ranked models when considering the mean performance (MAE) and power (R2) of the ageing clock for the influenza cohort in  
determining the age of the test subset.  
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Table 7-2 Top 10 models for ageing clock in COVID-19 
alpha n_features mae_mean mae_min mae_max mae_std rsquared_mean rsquared_min rsquared_max rsquared_std 

0 200000 11.6676597 10.159177 13.5569883 1.46850689 0.382863339 0.325014013 0.437259281 0.041573537 

0.000133 1193 12.1102777 10.454885 13.3460715 1.091312 0.284376446 0.145798821 0.44499227 0.111079754 

0.0044 90 14.478736 13.077998 15.9622397 1.1820894 0.012853769 -0.078399651 0.216937324 0.118731272 

0.005334 86 14.4834942 13.692714 15.9531459 0.90464554 0.02685906 -0.082685611 0.202758621 0.109932749 

0.0052 90 14.5053799 13.65123 15.9622397 0.89618527 0.032064377 -0.062013313 0.216937324 0.113544848 

0.005467 90 14.5058915 13.692714 15.9622397 0.91298235 0.02773507 -0.082685611 0.216937324 0.116294139 

0.004667 90 14.5152301 13.251324 15.9622397 1.13604248 0.010791159 -0.080390143 0.216937324 0.119812879 

0.005067 90 14.519617 13.638773 15.9622397 0.88807116 0.031944601 -0.099179585 0.216937324 0.116736771 

0.004534 90 14.5285099 13.345597 15.9622397 1.12108206 0.010784688 -0.107589707 0.216937324 0.123317423 

0.006 86 14.6164535 13.757725 15.9531459 0.82721785 0.019803962 -0.075588123 0.202758621 0.113603689 

 
Top 10 ranked models when considering the mean performance (MAE) and power (R2) of the ageing clock for the COVID19 cohort in 
determining the age of the test subset.  

 

 

 

 

 



Results: Immune ageing and infection specific ageing clocks – machine learning application 

 

284 

 

Table 7-3 Top 10 models for ageing clock in combined cohort. 
alpha n_features mae_mean mae_min mae_max mae_std rsquared_mean rsquared_min rsquared_max rsquared_std 

0 200000 11.5336049 10.260289 12.2323261 0.75441238 0.402519114 0.346200614 0.472430029 0.05219312 

0.000133 1351 11.9099036 8.8225854 13.1571951 1.78805031 0.365150285 0.281222081 0.545974679 0.105873615 

0.014001 150 13.3865583 12.153879 14.2974122 0.93268278 0.131369512 -0.004789411 0.319834305 0.119786418 

0.014268 149 13.4164727 12.153879 14.4358126 0.9707133 0.127999833 -0.004789411 0.320911312 0.120225461 

0.014134 150 13.4211584 12.153879 14.4358126 0.96773962 0.127730581 -0.004789411 0.319834305 0.119793554 

0.042536 135 13.4288925 12.576552 14.4000225 0.6936905 0.118367525 -0.011936385 0.307905802 0.126995641 

0.030669 139 13.4323984 12.329998 14.3824056 0.78393118 0.121444068 -0.013108513 0.301807678 0.117459866 

0.030802 139 13.4379763 12.329998 14.4047172 0.79072089 0.121809033 -0.011648656 0.301807678 0.117042753 

0.044803 134 13.4489484 12.576552 14.4359749 0.72118828 0.117677311 -0.019496988 0.313665955 0.131031378 

0.04267 135 13.4492208 12.576552 14.4000225 0.70310288 0.118127424 -0.011936385 0.307905802 0.12691959 

 
Top 10 ranked models when considering the mean performance (MAE) and power (R2) of the ageing clock for the combined cohort in 
determining the age of the test subset.  
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7.4 Discussion 

We aimed to create infection specific ageing clocks that had research and industrial utility by 

profiling the ageing whole blood transcriptomes of people suffering with an upper respiratory tract 

infection; either COVDI19 or Influenza. 

 Whilst our first iterations appeared extremely accurate, when attempting to perform optimisation 

the realisation was made that the lasso-based feature selection step took place using the entire 

dataset, before a 4-fold cross validation step was completed. This likely led to what is described as 

‘information leakage’ (332), where information about the test dataset leaks into the training dataset 

and biases the parameters to have increased accuracy, a type of model overfitting.  There are, 

nonetheless, useful elements of the results. There exists a preponderance of isoform abundance 

features in all the models, compared with gene expression changes. Notwithstanding the accuracy 

overestimation, this is still important information and demonstrates that the process of alternative 

splicing is intimately linked to the immunosenescence phenomena in an infection specific manner.  

When considering differences between the results from the combined clock versus the disease 

specific clock, there are more features which are related to gene expression. This difference is small, 

but the slightly higher percentage of gene expression-based features (13.4%) could suggest that 

gene expression changes represent a slightly larger portion of the age-related changes in 

immunosenescence. This however would need to be validated by comparing the findings to a cohort 

of non-infected, age matched controls, to unpick those features directly linked to infection response. 

It is encouraging to find that very few of the features are shared between the ageing clocks. If all 

features were shared, it would not be possible to discern if what was observed was simple ageing of 

the organism or was linked to the immune response to infection.  This lack of shared features likely 

means that whilst the accuracy is overstated, the models are indeed comprised of disease specific 

features, related to the host immune response and are not simply picking up on transcriptomic 

features which are involved in generic ageing process. A disease-specific ageing clock can help 

identify key pathways which lead to increased susceptibility or deleterious outcomes and as such 

help find disease specific treatments.    

The lack of shared features between the clocks is with the exception only of differential transcript 

use of the RUNX3 gene. This strongly suggests that this age-related change is likely to be an 
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important part of the immune response to viral infections and this factor may be a therapeutic 

target for immunosenescence. Interestingly, RUNX3 has been previously highlighted as a critical 

component of the shift from lymphoid to myeloid lineages of cells produced from stem cells in the 

ageing process, something known to be a high critical factor in the immunosenescence process (465, 

466). In support of this, RUNX3 loss is associated with increased oxidative DNA damage, TGF-β 

signalling and cellular senescence (467). 

The much lower accuracy of the second iteration of ageing clocks is more likely to represent the true 

biological difference in transcriptomes which results from the complex interplay between the 

heterogenous ageing process, immunosenescence and host response to infection. These models 

must be considered in the context of the opportunistic data acquisition process, the heterogeneity 

of the immune response acting in concert with heterogeneous ageing process, genetic and 

environmental differences, and not least the varying times before attendance to the clinic and 

sample capture which likely means different stages of immune activation. This last variable is likely 

adding a high degree of noise to the immune transcriptomic profile and reduced accuracy 

significantly. So even using a feature engineering process which is more accurately able to capture 

the biological age of the individuals, the likelihood is low of outperforming the other ageing clocks 

based on baseline whole blood gene expression. Our later models are approximately half as accurate 

as other in the literature which are developed on baseline signals (332). This raises an important 

question, if the feature engineering and machine learning process we have developed were to be 

deployed on a cohort at baseline, and then after immune stimulation, how accurate could the ageing 

clocks which the tool outputs be? Would the model have similar accuracy at both points for the 

cohort, or does ageing cause greater dysregulation in immune response, when the system is working 

harder than at baseline. It is not possible to accurately infer this between studies and instead a cross 

sectional cohort study in which immune systems are measured before and after stimulation would 

be needed.  

The large error rates observed in the second iteration of the disease-specific, challenged-system 

immune ageing clocks likely more accurately represent the very large differences in the immune 

responses. The differences between the predicted and the actual chronological age also represent 

the scale of the opportunity for improvement of immune response via therapeutic intervention; if 

some people have an immune response which appears prematurely aged by a decade, there’s lots of 

improvements to be made and our results can be further interrogated to discern what these 

differences are, which pathways are involved and how to modulate them. These models have given 
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a first pass look at some of the key features of the immune response which change with age and 

found that changes in isoform abundance, which is a result of dysregulated splicing, is a key factor 

and comprises a majority of the data which machine learning models identify as associated with 

increased age. Further investigation into these may yield some targets for therapeutic intervention. 

These models can also now be used to show the efficacy of interventions by comparing test and 

control sets for significant difference in response with therapeutics targeted at immunosenescence.  

To further optimise these models and explore methods to improve their performance, it would be 

useful to repartition data so that a test set was isolated, before lasso regression and cross validation 

are performed within an initial data set. This would eliminate the information leak element and still 

prevent overfitting. Furthermore, the tool would likely demonstrate significant improvements in 

performance in a controlled infection or immunisation model, in which it could be applied at the 

same time for all samples, reducing the exposure time variable to enhance accuracy. In this example 

it could be used to measure the early, innate immune response or track the late adaptive immune 

response.  Tracking immune responses to vaccination in the elderly or ageing also presents as an 

important space which specific challenged immune system again clocks can be of great use.  

Examples of blunted effects in the elderly in response to vaccinations are frequent (468) and 

vaccination specific effects of immunosenescence have been observed (469). Understanding these 

differences and testing adjuvant therapies to support vaccination or immune rejuvenation strategies 

are both potential applications of the tool we have developed.  

This tool is tissue agnostic, and so could also be applied to a number of other tissues to develop 

similar models for various age-related diseases.  For example, if the desire were to measure ageing 

in another tissue or organ (muscle, brain, lung etc.), the developed tool is able to identify the 

association of all transcriptomic features with age and identify those most closely linked to 

advancing age. The tool can then identify how important alternative splicing is to this ageing process 

in a specific tissue. Then an ageing clock would be developed which could serve to identify the most 

important pathways, or to measure the efficacy of treatment in those tissues aimed at restoring 

transcriptome to and earlier state.  

After consultation with industry leaders in drug discovery, some early plans for enhancement of 

functionality of the tool have also been developed. These involve target prioritisation, and de-risking 

based a number of accepted factors which can be converted to metrics. These range from molecule 

type (kinase, GPRC etc.) level of neglect in the literature, clinical trials involving the feature or 

pathway, and gene co-expression analysis. We also aim to link the genome wide isoform abundance 
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changes with expression changes of specific splicing factors using a combination of correlation 

analysis and software which maps protein binding to RNA sequences (470). 

7.5 Conclusion 

The ageing clocks we have produced suffer from either over-fitting or low accuracy. The over fitting 

can be outengineered with more time and/or access to other datasets. The low accuracy will likely 

be improved by using a controlled infection model and further model optimisation. The informatic 

tool itself, however, represents the foundation to a useful research / industrial pipeline for target 

identification, prioritisation and therapeutic validation. Our unique approach of combining the gene 

expression abundance and isoform abundance is derived from the understanding of contribution of 

splicing to the complexity of the organism, and the important interplay between gene expression 

and splicing and separate processes in often separate pathways.  Our results show that both isoform 

abundance and gene expression are critical in understanding the ageing process, and that isoform 

abundance is considerably over-represented in age related changes in the transcriptome during 

immunosenescence. Whilst individual targets worth of exploration such as RUNX3 and those in the 

previous chapter have been identified, our results also highlight the distinctiveness of alternative 

splicing as a variable category when investigating disease, especially with regards to age-related 

disease.  

7.6 Statement of contributions  

This chapter is a collaborative effort between Yaron Strauch, a PhD student in the same group, and I. 

The concept of building an ageing clock for a challenged immune system which incorporated relative 

isoform abundance mixed with gene expression data was my own. First iterations of the 

bioinformatic pipeline for feature engineering was created by myself using various bioinformatic 

tools, Microsoft excel and manual steps. Yaron much improved this using a complete end-to-end 

Python script. Yaron wrote the code for this, and the machine learning steps himself with some high-

level input from myself regarding what the tool should do at each step (align reads, calculate isoform 

abundance or TPM, combine these, perform feature reduction/selection, be able to take an 

individual sample and output its age based on the model). Yaron designed the regression models, 

incorporated an early feature selection step to optimise performance and more.  

We have agreed on a contribution of 75% Myself /25% Yaron.  



Discussion 

 

289 

Chapter 8 Discussion 

The primary objectives of this research were to explore the utility of RNAseq based approaches to 

Immunodeficiency diagnostics and investigations. This was in the context of primary and secondary 

immunodeficiencies, that is, Mendelian and specifically acquired immunodeficiency as a result of 

ageing. Whilst many of the results of the research have been informative and helped understand 

immune deficiencies and the importance of the contribution of these features to immunity, many of 

the aims of this project were not met. 

For primary immunodeficiencies, the research aimed to show the benefit of RNAseq approaches in 

identifying causal variants for Mendelian disease, which was to be achieved through the study of 

gene expression, alternative splicing and allelic imbalance, this returned mixed results.  

The single patient for whom a potential cause was identified through gene expression outlier 

detection appeared to have complete ablation of expression. With a logical gene panel design this 

expression loss could have been detected with a cheaper and simpler approach, such as a microarray 

or multiplexed PCR platform. It is therefore suggested that the benefits of the RNAseq approach 

have not been realised in this instance, and no advantage was had. The work demonstrated that the 

batch effect is challenging to overcome if an identical protocol is not followed. It may also be true 

that the batch correction step has also prevented detection of the outlier genes.  

Despite fruitful investigation using the technique, it has been highlighted by the literature that FPKM 

or TPM values are not interoperable metrics between samples, even if sequenced on the same run. 

As such in approaching differential expression as a metric for diagnosis, calculating the TPM’s of a 

gene relative to other gene expression within the individual – such as housekeeping genes or a 

general geomean of gene expression might provide more reliable and robust metrics for 

interpretation.  

A more optimal approach might be to measure the expression change of genes before and after an 

in-vitro immune challenge, as was part of the original planned work. The utility of control datasets 

would then be measuring a normal immune response as fold changes in expression from baseline 

within a sample, as opposed to compared to alternative samples. This would alleviate the need for 

batch effect correction and a blunted immune response would be observable and statistically 

discernible.   
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When considering the investigation into splicing, there were a number of events discovered which 

may well have been causative. However clinical phenotypes were not present for those with 

potentially causative splicing events and I some other cases, genomes also were not present. With 

incomplete complimentary data, it was not possible to complete an evaluation of the ability of 

splicing analysis using the Mendelian RNAseq tool to support or inform diagnosis in this instance. 

However, alternative splicing data is more interoperable, and the fidelity or homogeneity of control 

datasets are less critical. The methods were able to identify aberrant splicing patterns in genes which 

were in close proximity to variants which would likely cause changes in the gene function such as 

with patient SRB0013 (Section 4.4.4), in genes which may produce the expected phenotype. As a 

result of this work, some patients have been recalled for genomic sequencing, which will allow 

validation of the results via alternate approach.  

RNAseq certainly has potential to aid in clinical diagnostics of T-cell specific primary 

immunodeficiency, and whilst that potential has begun to be illuminated through this work, it has 

not been completely realised. Challenges with using gene expression at a metric come from 

sequencing batch effects, and interoperable metrics and quantitative methods. These are likely to be 

mitigated in part by selecting for PBMC’s at earlier stages or conducting T-cell activation assay and 

comparing baseline to activated signals in dynamic RNAseq.  Alternative splicing changes do not 

suffer from the same interoperability issues and gene expression, and the methods were arguably 

more successful in detecting potential causative events, however this awaits further validation. The 

filtering process is however a complicated one, and different types of events are missed. An 

automated series of filters which are specific to certain types of events would be useful. This 

approach is applicable then but remains overcomplicated for clinical application.  There is also 

possibility that certain types of splicing event, which occur in response to t-cell activation, may also 

not be detectable until an immune challenge is present. Therefore, it is likely that some genetic 

variants will remain undiagnosed unless splicing analysis is also used in conjunction with dynamic 

RNAseq. 

 

 

 

 



Discussion 

 

291 

The immunosenescence related secondary immunodeficiency results required complex 

interpretation. The major transcriptomic differences between infectious disease, for both gene and 

isoform level were identified and explored to some degree, illuminating some of the biological 

processes affected. This produced new insight into how alternative splicing and gene expression are 

used as cellular mechanisms to respond to infection, and better established the importance of 

alternative splicing in host response to infection.  

The majority of studies, bioinformatic tools and therapeutic interventions are designed around 

expression changes, and isoform abundance is often overlooked.  Perhaps most interestingly, this 

work has shown that the vast majority of splicing changes in response to infection are not in the 

same genes which have expression changes, even in similar upper respiratory tract infections. The 

processes themselves are used to regulate distinct molecular programs, and it is likely that both will 

yield interesting therapeutic targets.  

Multiple orthogonal investigations conducted during this project showed that these transcriptomic 

differences vary significantly with age: 95% confidence interval ellipse overlap on principal 

component plots was reduced when the cohort became younger, suggesting the older 

transcriptomes are more similar, or lose some distinct features. Some of the most differentially 

expressed genes between infections appear to converge when viewed individually. Indeed, many of 

the differentially expressed genes, and differential transcript abundances also have coefficients of 

expression which suggest convergence with advancing age, even with the most stringent filtering 

applied. The classification machine learning models gave the best performance when being trained 

on younger cohorts (although the testing results were not congruent with this, this was probably a 

result of the very small test data).  This work perhaps supports the recent finding the there is a loss 

of transcriptomic identity with age in bodily tissues, contrasting the increase in tissue diversity which 

happens in development. However, we believe this is the first time that a convergence in 

transcriptome has been observed and can be distinguished specifically as convergence in host 

immune response. This aspect of immunosenescence has not been documented before. These 

processes present new opportunity for therapeutic intervention in immunosenescence driven 

immunodeficiency. 
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The lack of overlap between infections for differentially expressed genes with age and differential 

transcript use with age, supports the notion that the distinct responses to different infections 

themselves are also subject to a loss of fidelity with advancing age. As the majority of this loss occurs 

in differential transcript abundance, it could be argued that re-regulating splicing process may 

represent a key therapeutic target for combatting immunosenescence, over targeting gene 

expression. Whilst it is hard to deconvolute key cellular pathways or processes from bulk RNAseq 

data, the additional information that splicing factors themselves decrease with age as we have 

demonstrated, harmonises with this evidence to suggest that upregulation of splicing factors may 

lead to re-regulation of splicing in aged immune systems, rejuvenating the responses by allowing the 

transcriptional programs to once again produce distinct, infection specific responses.  The research 

was also able to identify some more specific novel targets for immune senescence. As an example, 

SATB2 was identified as a potential target for immunosenescence modulation and interestingly had 

already been identified as a potential regeneration triggering molecule for the skeleton.  

The production of ageing clocks also presented unforeseen challenges in managing data partitioning. 

This needed to be completed in a manner which allowed a set of features to be identified and 

validated. In each of the two approaches taken we faced trade-offs. These were between accuracy 

and robust feature selection. A next iteration would benefit from having a subset of data removed in 

the first instance, before lasso is conducted and cross-validation on the majority of the data. Once 

this optimisation step has been completed, comparing this tool to other transcriptomic ageing clocks 

is required. For this to be reliably done, the tool would require re-deployment on the same dataset 

as an existing model. This would provide strong evidence that the combined features provide 

superior insight that gene expression alone. Nonetheless, the existing results strongly suggest that 

the process of alternative splicing is a predominant feature in the ageing immune system and 

mediate its blunted response to viral infection.  The tool itself can now be redeployed to large 

datasets to extract 1important information about tracking ageing in tissues with novel ageing clocks, 

whilst also mapping the association of every feature individually to advancing age.  

 

8.1.1 Limitations 

Many of the limitations have been discussed earlier. This work does not benefit from a multi-omic 

lens. Whilst RNA modalities are the most mature and arguably the most sensitive, phenotypes 

observed in the clinic are a result of proteome. Whilst the transcriptome is the greatest contributing 
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factor, the correlation is not always accurate, and many other factors contribute to the translation 

and protein abundance.  The mendelian work on PID was limited primarily by not have genomes 

present. When these are acquired, they may well demonstrate no variants were present to 

precipitate these effects. Having only two healthy controls also presents as a potential source of 

error. A larger control group could demonstrate large effects across all PID patients. This lack of 

healthy controls was also a pervasive problem for the infectious disease cohorts. Comparing only 

one with the other meant it was not possible to discern if a gene was truly upregulated in one 

infection or down in another, and as such the evaluation could only give relative conclusions. We 

attempted to overcome this with linear regression comparisons and observing a loss in distinct 

signals but comparing both infections with control data would have been optimal and allowed 

complete separation if host response data with systemic inflammageing data and general ageing 

transcriptome features.  Finally, the ageing clocks would have benefitted from having other sets or 

larger sets of data for redeployment and validation, which could have demonstrated the accuracy of 

the clock. The cohort was at the lower threshold for machine learning approaches, and whilst the 

tool developed is robust and agile, the conclusions from the dataset may be subject to errors 

resulting from a small sample size.  
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Appendix A  

A.1 IUIS PID gene list. 

IL2RG, JAK3, IL7R, PTPRC, CD3D, CD3E , CD247, CORO1A , LAT, RAG1, RAG2, DCLRE1C, PRKDC 

, NHEJ1, LIG4 , AK2, ADA, DOCK2 , CD40LG (TNFSF5), CD40 (TNFRSF5) , ICOS, CD3G , CD8A , 

ZAP70 , TAP1, TAP2  , TAPBP , B2M , CIITA  , RFXANK , RFX5, RFXAP , DOCK8 , RHOH , STK4 , 

TRAC , LCK , MALT1 , CARD11 , BCL10 , BCL11B, IL21 , IL21R , TNFRSF4, IKBKB, MAP3K14, 

RELB, MSN, TFRC, WAS, WIPF1, ARPC1B, ATM, NBS1, BLM (RECQL3), DNMT3B, ZBTB24, 

CDCA7, HELLS, PMS2, RNF168, MCM4 , POLE, POLE2, LIG1, NSMCE3, ERCC6L2, GINS1, TBX1, 

CHD7 , SEMA3E, FOXN1, Del10p13-p14, RMRP  , SMARCAL1, MYSM1, RNU4ATAC, EXTL3, 

STAT3, SPINK5 , PGM3, CARD11, DKC1 , NHP2, NOP10, RTEL1 , TERC , TERT , TINF2 , TPP1 , 

DCLRE1B/ SNM1/APOLLO:, PARN, WRAP53, STN1, CTC1, SAMD9, SAMD9L, TCN2, SLC46A1, 

MTHFD1, NEMO (IKBKG), IKBA (NFKBIA) , ORAI1 , STIM1, PNP , TTC7A , SP110, EPG5 , HOIL1 

(RBCK1), HOIP1 (RNF31), CCBE1, FAT4, STAT5B , KMT2D (MLL2), KDM6A, BTK , IGHM , IGLL1, 

CD79A, CD79B, BLNK, PIK3R1, TCF3 ,  Unknown, PIK3CD GOF, PIK3R1, PTEN, CD19, CD81, 

MS4A1, CR2, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF12, MOGS (GCS1), TRNT1, 

TTC37 , NFKB1, NFKB2, IKZF1, IRF2BP2, ATP6AP1, AICDA , UNG , INO80 , MSH6 , Mutation or 

chromosomal deletion at 14q32, IGKC, CARD11,   PRF1, UNC13D, STX11, STXBP2, FAAP24, 

LYST, RAB27A , AP3B1 , AP3D1, FOXP3, IL2RA, CTLA4, LRBA, STAT3, BACH2, AIRE, ITCH, 

ZAP70 , TPP2 , JAK1, PEPD, DNASE1L3, TNFRSF6 , FASLG, CASP10, CASP8, FADD , IL10 , 

IL10RA , IL10RB , NFAT5, SH2D1A , XIAP , CD27 , CTPS1, RASGRP1, CD70 (TNFSF7), RLTPR, ITK 

, MAGT1, PRKCD, ELANE, GFI1, HAX1, G6PC3, VPS45 , G6PT1, WAS, LAMTOR2,  TAZ, VPS13B, 
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USB1, JAGN1, CLPB, CSF3R, SMARCD2, HYOU1, ITGB2, SLC35C1, FERMT3, RAC2, ACTB, FPR1, 

CTSC, CEBPE, SBDS, WDR1, CFTR, DNAJC21, SRP54, MKL1,  CYBB,  CYBA,  NCF1,  NCF2,  NCF4, 

G6PD, GATA2: loss of stem cells , CSF2RB, CSF2RA, IL12RB1, IL12B , IFNGR1, IFNGR2, STAT1 , 

CYBB, IRF8, IRF8, TYK2, ISG15, RORC, JAK1, TMC6, TMC8, CXCR4, STAT1, STAT2, IRF7, 

IFNAR2, FCGR3A, IFIH1, TLR3, UNC93B1, TRAF3, TICAM1, TBK1, IRF3, CARD9, IL17RA, IL17RC, 

IL17F, STAT1, TRAF3IP2, IRAK4, MYD88, IRAK1, TIRAP, RPSA, HMOX, APOL1, NBAS, RANBP2, 

CLCN7, SNX10, OSTM1, PLEKHM1, TCIRG1, TNFRSF11A, TNFSF11, NCSTN, PSEN, PSENEN, 

TREX1 , RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, ADAR1, IFIH1 (GOF), ACP5, TMEM173 

, POLA1, USP18, PSMB8* , DNASE2, MEFV , MVK , NLRP3 (also called NALP3 CIAS1 or 

PYPAF1), NLRP3, NLRP12, NLRP3, NLRC4 , PLCG2 , NLRP1, TNFRSF1A , PSTPIP1 (also called 

C2BP1) , NOD2 (also called CARD15) , ADAM17 , LPIN2 , IL1RN , IL36RN , SLC29A3 , CARD14 , 

SH3BP2 , COPA, OTULIN, TNFAIP3, CECR1, AP1S3, C1QA, C1QB, C1QC, C1R, C1S, C4A+C4B, 

C2, C3, C3, C5, C6, C7, C8A, C8G, C8B:, C9, MASP2, FCN3, SERPING1, CFB, CFB, CFD, CFP:, 

CFI:, CFH, CFHR1-5, THBD, CD46, CD59, CD55 
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A.2 Whole blood RNAseq data processing syntax 

#!/bin/bash 
#PBS -N WholeBloodProcessing 
#PBS -l walltime=15:00:00 
#PBS -l nodes=1:ppn=16 
#PBS -l mem=40000m 
#PBS -e stderr-$PBS_JOBID.$PBS_ARRAYID.log 
#PBS -o stdout-$PBS_JOBID.$PBS_ARRAYID.log 
#PBS -t 2 
cd $PBS_O_WORKDIR/$PBS_ARRAYID 
module load biobuilds/2017.11 
## Names of fastq files and location in filestore 
fq1="/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID"/"$PBS
_ARRAYID"_1.fq.gz" 
fq2="/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID"/"$PBS
_ARRAYID"_2.fq.gz" 
O1="/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID"/"$PBS
_ARRAYID"_1.Ptrim.fq.gz" 
O2="/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID"/"$PBS
_ARRAYID"_1.Utrim.fq.gz" 
O3="/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID"/"$PBS
_ARRAYID"_2.Ptrim.fq.gz" 
O4="/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID"/"$PBS
_ARRAYID"_2.Utrim.fq.gz" 
## Trimmomatic v0.3.6 via biobuilds/2017.11 
trimmomatic PE $fq1 $fq2 $O1 $O2 $O3 $O4 
ILLUMINACLIP:"/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/Novoadap.fa":2:30:10 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 
## Make output directory structure to put results into 
outdir="/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID"/" 
fastqc_out_T="/scratch/jl5e18/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAY
ID"/fastqc_trim/" 
STAR_out="/scratch/*username*/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_AR
RAYID"/STAR/" 
mkdir $outdir 
 
## run fastqc (v0.11.3) 
mkdir $fastqc_out_T 
module load fastqc/0.11.3 
fastqc $O1 $O3 --threads 16 --outdir $fastqc_out_T 
 
## STAR alignment (STAR v2.6.1c)  
mkdir $STAR_out 
cd $STAR_out 
/scratch/*username*/RNA_SEQ/Tools/Star/STAR-2.6.1c/bin/Linux_x86_64_static/STAR --genomeDir 
/scratch/*username*/RNA_SEQ/Tools/genomedirgencodev30/ --readFilesCommand zcat --readFilesIn $O1 $O3 
--runThreadN 16 --twopassMode Basic \ 
--twopass1readsN -1 --outSAMmapqUnique 60 --outFilterType BySJout --outFilterMultimapNmax 20 --
alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 \ 
--outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 
1000000 \ 
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--quantMode TranscriptomeSAM GeneCounts --outReadsUnmapped Fastx --outSAMtype BAM Unsorted 
 
 
##Samtools (v1.3.2) Sort and Index  
module load samtools/1.3.2 
bamfile="/scratch/*username*/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRA
YID"/STAR/Aligned.out.bam" 
sorted="/scratch/*username*/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAY
ID"/STAR/"$PBS_ARRAYID"_sorted.bam" 
samtools sort -@ 4 $bamfile > $sorted 
samtools index $sorted 
## Unload everything that's currently loaded and re-add as necesssary 
module purge 
 
## Picard (v2.8.3) - AddOrReplaceReadGroups + MarkDuplicates 
module load jdk/1.8.0 
module load picard/2.8.3 
module load samtools/1.3.2 
RG="/scratch/*username*/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID"/
STAR/"$PBS_ARRAYID"_RG.bam" 
dups="/scratch/*username*/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARRAYID
"/STAR/"$PBS_ARRAYID"_MD.bam" 
java -jar /local/software/picard-tools/2.8.3/jarlib/picard.jar AddOrReplaceReadGroups I=$sorted O=$RG 
SO=coordinate RGID="$PBS_ARRAYID" RGLB="$PBS_ARRAYID" RGPL=illumina RGPU=machine 
RGSM="$PBS_ARRAYID"  TMP_DIR=/scratch/jle18 
samtools index $RG 
java -jar /local/software/picard-tools/2.8.3/jarlib/picard.jar MarkDuplicates I=$RG O=$dups CREATE_INDEX=true 
VALIDATION_STRINGENCY=SILENT M=output.metrics TMP_DIR=/scratch/*username* 
samtools index $MD 
 
## RSEM (v1.3.1) 
trans_bam="/scratch/*username*/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_AR
RAYID"/STAR/Aligned.toTranscriptome.out.bam" 
RSEMout="/scratch/*username*/RNA_SEQ/PIDproject/Novogene/WholeBlood/raw_data/raw_data/"$PBS_ARR
AYID"/RSEM/" 
mkdir $RSEMout 
/scratch/*username*/RNA_SEQ/Tools/RSEM-1.3.2/rsem-calculate-expression --paired-end --alignments --num-
threads 16 \ 
$trans_bam /scratch/*username*/RNA_SEQ/Tools/RSEM-1.3.2/human_gencode $RSEMout 
Fi 



Discussion 

 

299 

A.3 Novogene RNAseq QC methods 

Novogene next generation RNAseq QC 

The sequencing quality is calculated as the sequencing takes place in the Illumina next generation 

sequencing platform.  These are denoted as follows. “e” is representative of the sequencing error 

rate. Qphred is indicative of the base quality value. Qphred =-10LOG10(e). These distribution of quality 

scores are then plotted against base position for each sample in the report to the user (Figure 8-1) 

for the user to identify any overarching problems with the sequence quality. It is normal so see a 

slight gradual reduction in quality; the product of the increasing likelihood of error due to stochastic 

error rates increasing as reagents are consumed within the platform. Phred score cut-offs are 

commonly deemed as acceptable at around 30, giving a 99.9% confidence score.   

The distribution of error rate can also be observed to increase as the fragment sequencing 

progresses for the same reasons. The error rate percentage and position data are also visualised on 

a graph (Figure 8-2) by Novogene in the reports. There is an initial high error rate in the first six 

bases, as the random hex primers bind incompletely to the RNA template during cDNA synthesis. 

Distribution of bases graphs are included (Figure 8-3) as GC rich and GC-poor fragments are under-

represented in RNAseq, affecting the ability to perform DGE and outlier detection (471).  

A final data filtering step is then conducted to remove those reads which: contain adapters, have 

more than 10% of bases with undetermined identity, or Q score less than 5 across 50% of the total 

base number. The pre-filtering statistics are presented in the Novogene report (Figure 8-4). 
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Figure 8-1 - Novogene Q-score distribution 

 

Figure 8-2 Error rate distribution: Novogene 
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Figure 8-3 GC content distribution: Novogene 

 

Figure 8-4 Raw read classification QC: Novogene 
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A brief explanation of the fastQC outputs with examples can be found in Table 8-1 

Table 8-1 FastQC output explanation 

Novogene Visualisation example Name  Description 

 

Per base 

sequence 

quality 

A plot of total number of reads vs average 

quality score over full length. Distribution 

should have little variance and be high 

scoring, as seen in this example. 

 

Per 

sequence 

quality 

score 

The distribution of quality scores over all 

sequences. Ideally, one tight peak at the 

upper range of quality is desirable. 

 

Per base 

sequence 

content 

The sequence content in terms of base 

identity across all bases. As little deviation 

from the expected is ideal. FastQC will 

often assign a warning flag or fail to 

RNAseq data here as expression is not 

consistent across the genome. 

 

Per 

sequence 

GC content 

A specific look at the GC content 

distribution over all sequences. Spikes, as 

seen on the right-hand side of the red 

curve at this location are often indicative of 
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adapter contamination. 

 

Per base N 

content 

The distribution of N across all bases. N 

being an unidentified base.  

 

Sequence 

Length 

distribution 

Distribution of sequence lengths over all 

sequences. 

 

Sequence 

Duplication 

levels 

Percent of sequences which are remaining 

if all sequences are de-duplicated. Not as 

helpful with RNAseq data as very abundant 

transcripts can be overrepresented. 

 

Adapter 

Content 

Percentage of sequences which were found 

to be an adapter. 
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Kmer 

Content 

Visualisation of values Log2 of observed 

over expected Kmer content. RNAseq 

libraries often contain highly represented 

kmers, derived from highly expressed 

sequences. Those biased kmers at the start 

are likely a result of random priming. 
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A.4 – Genomics England PID gene list 

 ACP5, ADA, ADA2, ADAR, AICDA, AIRE, AK2, AP3B1, ARPC1B, ATM, B2M, BLM, BLNK, BTK, C1QA, 

C1QB, C1QC, C1R, C1S, C2, C4A, C4B, C5, C6, C7, C8A, C8B, C9, CARD9, CARMIL2, CASP10, CASP8, 

CCBE1, CD19, CD27, CD3D, CD3E, CD3G, CD40, CD40LG, CD46, CD55, CD59, CD70, CD79A, CD79B, 

CDCA7, CFD, CFH, CFI, CFP, CHD7, CIITA, CLPB, COPA, CORO1A, CSF2RA, CSF3R, CTLA4, CTPS1, CXCR4, 

CYBA, DCLRE1B, DCLRE1C, DNMT3B, DOCK2, DOCK8, ELANE, EPG5, EXTL3, FADD, FAS, FASLG, 

FERMT3, FOXN1, FOXP3, G6PC3, G6PD, GATA2, GFI1, GINS1, HAX1, HELLS, HTRA2, ICOS, IFNGR1, 

IFNGR2, IGHM, IGLL1, IKBKB, IKBKG, IKZF1, IL10, IL10RA, IL10RB, IL12B, IL12RB1, IL17RA, IL17RC, 

IL1RN, IL21R, IL2RA, IL2RG, IL36RN, IL7R, INO80, IRAK4, IRF8, ISG15, ITCH, ITGB2, ITK, JAGN1, JAK3, 

LAMTOR2, LCK, LIG4, LPIN2, LRBA, LYST, MAGT1, MALT1, MAP3K14, MCM4, MEFV, MOGS, MSN, 

MTHFD1, MVK, MYD88, MYSM1, NBN, NCF1, NCF2, NFKB1, NFKB2, NFKBIA, NHEJ1, NLRC4, NLRP12, 

NLRP3, NOD2, ORAI1, OTULIN, PARN, PGM3, PIK3CD, PIK3R1, PLCG2, PNP, PRF1, PRKCD, PRKDC, 

PSMB8, PSTPIP1, PTPRC, RAB27A, RAG1, RAG2, RFX5, RFXANK, RFXAP, RMRP, RNASEH2A, 

RNASEH2B, RNASEH2C, RNF168, RORC, RPSA, RTEL1, SAMHD1, SBDS, SERPING1, SGPL1, SH2D1A, 

SLC29A3, SLC35C1, SLC37A4, SLC46A1, SMARCAL1, SP110, SPINK5, STAT1, STAT2, STAT3, STAT5B, 

STIM1, STK4, STX11, STXBP2, TAP1, TAP2, TAZ, TBK1, TCF3, TCN2, TICAM1, TLR3, TMC6, TMC8, 

TNFAIP3, TNFRSF1A, TPP2, TREX1, TRNT1, TTC37, TTC7A, TYK2, UNC13D, UNC93B1, UNG, USB1, 

VPS13B, VPS45, WAS, XIAP, ZAP70, ZBTB24, ACD, ATP6AP1, BACH2, C3, CARD11, CEBPE, CSF2RB, 

CTSC, CYBB, DKC1, DNAJC21, DNASE2, ERCC6L2, F12, FAT4, GATA1, IFIH1, LAT, MYO5B, NCF4, NHP2, 

NSMCE3, PEPD, POLA1, RASGRP1, RBCK1, RIPK1, SKIV2L, SPPL2A, TMEM173, TRAC, WIPF1, ADAM17, 

AP1S3, BCL10, CARD14, CD247, CD81, CD8A, CFB, CFHR1, CFHR3, CFHR4, CFHR5, CFTR, CR2, 

DNASE1L3, FCGR3A, FPR1, IGKC, IL17F, IL21, IRF3, IRF7, KRAS, MBL2, NCSTN, NOP10, NRAS, PMS2, 

POLE, PSENEN, RAC2, RHOH, SAMD9, TAPBP, TBX1, TERC, TERT, TINF2, TNFRSF13C, ACTB, AP3D1, 

APOL1, BCL11B, BLOC1S6, C8G, CD4, CFHR2, CLCN7, CNBP, COLEC11, CTC1, ELF4, EPCAM, ERCC2, 
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ERCC3, FAAP24, FBF1, FCGR1A, FCGR2A, FCGR2B, FCGR3B, FCGRT, FCN3, FPR2, FPR3, GAD1, GTF2H5, 

GUCY2C, HMOX1, HPS1, HPS4, HPS6, HYOU1, ICOSLG, IFNAR2, IGHG2, IL17A, IL18, IL22, IL23A, IRAK1, 

IRF2BP2, ITGAM, JAK1, KDM6A, KMT2A, KMT2D, LIG1, LRRC8A, MASP1, MASP2, MKL1, MPI, MPO, 

MRE11, MS4A1, MSH6, NBAS, NFAT5, NFKBID, NLRP1, OSTM1, PLEKHM1, POLE2, PSEN1, PSMA3, 

PSMB4, PSMB9, PTEN, RANBP2, RECQL4, RELB, RET, RNF31, RNU4ATAC, SAMD9L, SART3, SEMA3E, 

SH3BP2, SMARCD2, SNX10, SRP54, STAT5A, STN1, TCIRG1, TFRC, THBD, TIRAP, TNFRSF11A, 

TNFRSF13B, TNFRSF4, TNFSF11, TNFSF12, TRAF3, TRAF3IP2, UNC119, USP18, WDR1, WRAP53, ISCA-

37433-Loss, ISCA-37446-Loss 
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A.5 HTG T-Cell gene list. 

Table 8-2 HTG T-Cell gene list. 

Gene 

name 

Gene stable ID Gene type Gene description 

PTPRC ENSG00000081237 protein_coding protein tyrosine phosphatase receptor type C [Source:HGNC 

Symbol;Acc:HGNC:9666] 

CD1A ENSG00000158477 protein_coding CD1a molecule [Source:HGNC Symbol;Acc:HGNC:1634] 

PDCD1LG2 ENSG00000197646 protein_coding programmed cell death 1 ligand 2 [Source:HGNC 

Symbol;Acc:HGNC:18731] 

CD274 ENSG00000120217 protein_coding CD274 molecule [Source:HGNC Symbol;Acc:HGNC:17635] 

NFATC1 ENSG00000131196 protein_coding nuclear factor of activated T-cells 1 [Source:HGNC 

Symbol;Acc:HGNC:7775] 

GATA3 ENSG00000107485 protein_coding GATA binding protein 3 [Source:HGNC 

Symbol;Acc:HGNC:4172] 

NFATC3 ENSG00000072736 protein_coding nuclear factor of activated T-cells 3 [Source:HGNC 

Symbol;Acc:HGNC:7777] 

BTLA ENSG00000186265 protein_coding B and T lymphocyte associated [Source:HGNC 

Symbol;Acc:HGNC:21087] 

CD28 ENSG00000178562 protein_coding CD28 molecule [Source:HGNC Symbol;Acc:HGNC:1653] 

CTLA4 ENSG00000163599 protein_coding cytotoxic T-lymphocyte associated protein 4 [Source:HGNC 

Symbol;Acc:HGNC:2505] 

CD40 ENSG00000101017 protein_coding CD40 molecule [Source:HGNC Symbol;Acc:HGNC:11919] 
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GNLY ENSG00000115523 protein_coding granulysin [Source:HGNC Symbol;Acc:HGNC:4414] 

PDCD1 ENSG00000188389 protein_coding programmed cell death 1 [Source:HGNC 

Symbol;Acc:HGNC:8760] 

ICOS ENSG00000163600 protein_coding inducible T-cell costimulator [Source:HGNC 

Symbol;Acc:HGNC:5351] 

ICOSLG ENSG00000160223 protein_coding inducible T-cell costimulator ligand [Source:HGNC 

Symbol;Acc:HGNC:17087] 

FOXP3 ENSG00000049768 protein_coding forkhead box P3 [Source:HGNC Symbol;Acc:HGNC:6106] 

CD99 ENSG00000002586 protein_coding CD99 molecule (Xg blood group) [Source:HGNC 

Symbol;Acc:HGNC:7082] 

CD80 ENSG00000121594 protein_coding CD80 molecule [Source:HGNC Symbol;Acc:HGNC:1700] 

LAG3 ENSG00000089692 protein_coding lymphocyte activating 3 [Source:HGNC 

Symbol;Acc:HGNC:6476] 

SLAMF6 ENSG00000162739 protein_coding SLAM family member 6 [Source:HGNC 

Symbol;Acc:HGNC:21392] 

SLAMF1 ENSG00000117090 protein_coding signaling lymphocytic activation molecule family member 1 

[Source:HGNC Symbol;Acc:HGNC:10903] 

CD4 ENSG00000010610 protein_coding CD4 molecule [Source:HGNC Symbol;Acc:HGNC:1678] 

SLAMF7 ENSG00000026751 protein_coding SLAM family member 7 [Source:HGNC 

Symbol;Acc:HGNC:21394] 

CD276 ENSG00000103855 protein_coding CD276 molecule [Source:HGNC Symbol;Acc:HGNC:19137] 

CD40LG ENSG00000102245 protein_coding CD40 ligand [Source:HGNC Symbol;Acc:HGNC:11935] 

DPP4 ENSG00000197635 protein_coding dipeptidyl peptidase 4 [Source:HGNC 
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Symbol;Acc:HGNC:3009] 

TCF7 ENSG00000081059 protein_coding transcription factor 7 [Source:HGNC 

Symbol;Acc:HGNC:11639] 

CD70 ENSG00000125726 protein_coding CD70 molecule [Source:HGNC Symbol;Acc:HGNC:11937] 

NFATC4 ENSG00000100968 protein_coding nuclear factor of activated T-cells 4 [Source:HGNC 

Symbol;Acc:HGNC:7778] 

LAT ENSG00000213658 protein_coding linker for activation of T-cells [Source:HGNC 

Symbol;Acc:HGNC:18874] 

RAG1 ENSG00000166349 protein_coding recombination activating 1 [Source:HGNC 

Symbol;Acc:HGNC:9831] 

CD3D ENSG00000167286 protein_coding CD3d molecule [Source:HGNC Symbol;Acc:HGNC:1673] 

SPN ENSG00000197471 protein_coding sialophorin [Source:HGNC Symbol;Acc:HGNC:11249] 

TCL1B ENSG00000213231 protein_coding T-cell leukemia/lymphoma 1B [Source:HGNC 

Symbol;Acc:HGNC:11649] 

CD8A ENSG00000153563 protein_coding CD8a molecule [Source:HGNC Symbol;Acc:HGNC:1706] 

CD86 ENSG00000114013 protein_coding CD86 molecule [Source:HGNC Symbol;Acc:HGNC:1705] 

CD27 ENSG00000139193 protein_coding CD27 molecule [Source:HGNC Symbol;Acc:HGNC:11922] 

CD2 ENSG00000116824 protein_coding CD2 molecule [Source:HGNC Symbol;Acc:HGNC:1639] 

CD69 ENSG00000110848 protein_coding CD69 molecule [Source:HGNC Symbol;Acc:HGNC:1694] 

SUSD3 ENSG00000157303 protein_coding sushi domain containing 3 [Source:HGNC 

Symbol;Acc:HGNC:28391] 

EOMES ENSG00000163508 protein_coding eomesodermin [Source:HGNC Symbol;Acc:HGNC:3372] 
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A.6 Combined IUIS, GeCIP, T-cell panel from HTG EdgeSeq panel  

BTLA, CD1A, CD2, CD27, CD274, CD276, CD28, CD3D, CD4, CD40, CD40LG, CD69, CD70, CD80, CD86, 

CD8A, CD99, CTLA4, DPP4, EOMES, FOXP3, GATA3, GNLY, ICOS, ICOSLG, LAG3, LAT, NFATC1, NFATC3, 

NFATC4, PDCD1, PDCD1LG2, PTPRC, RAG1, SLAMF1, SLAMF6, SLAMF7, SPN, SUSD3, TCF7, TCL1B, 

CD3E, CD3Z, CORO1A, IL2RG, IL7R, JAK3, ADA, AK2, DCLRE1C, LIG4, NHEJ1, PRKDC, RAC2, RAG2, 

B2M, BCL10, CARD11, CD3G, TNFRSF5, TNFSF5, CIITA, DOCK2, DOCK8, FCHO1, IKBKB, IKZF1, IL21, 

IL21R, ITK, LCK, MALT1, MAP3K14, MSN, POLD1, POLD2, REL, RELA, RELB, RFX5, RFXANK, RFXAP, 

RHOH, STK4, TAP1, TAP2, TAPBP, TFRC, TNFRSF4, TRAC, ZAP70, ARPC1B, WAS, WIPF1, ATM, BLM, 

RECQL3, CDCA7, DNMT3B, GINS1, HELLS, LIG1, MCM4, NBS1, NSMCE3, PMS2, POLE1, POLE2, 

RNF168, ZBTB24, CHD7, FOXN1, SEMA3E, TBX1, EXTL3, MYSM1, RMRP, RNU4ATAC, SMARCAL1, 

ERBB21P, IL6R, IL6ST, PGM3, SPINK5, STAT3, TGFBR1, TGFBR2, ZNF341, MTHFD1, SLC46A1, TCN2, 

IKBKG, NFKBIA, ORAI1, STIM1, BCL11B, CCBE1, EPG5, FAT4, KDM6A, KMT2A, KMT2D, MLL2, NFE2L2, 

PNP, RBCK1, RNF31, SKIV2L, SP110, STAT5B, TTC37, TTC7A, BLNK, BTK, CD79A, CD79B, IGHM, IGLL1, 

PIK3CD, PIK3R1, SLC39A7, TCF3, TOP2B, ARHGEF1, ATP6AP1, CD19, CD20, CD21, CD81, IRF2BP2, 

MOGS, GCS1, NFKB1, NFKB2, PIK3CD, PTEN, SEC61A1, SH3KBP1, TNFRSF13B, TNFRSF13C, TNFSF12, 

TRNT1, AICDA, INO80, MSH6, UNG, IGKC, FAAP24, PRF1, SLC7A7, STX11, STXBP2, UNC13D, AP3B1, 

AP3D1, LYST, RAB27A, BACH2, DEF6, FERMT1, IL2RA, IL2RB, LRBA, AIRE, ITCH, JAK1, PEPD, TPP2, 

IL10, IL10RA, IL10RB, NFAT5, RIPK1, TGFB1, CASP10, CASP8, FADD, TNFRSF6, TNFSF6, CARMIL2, 

CTPS1, MAGT1, PRKCD, RASGRP1, SH2D1A, TNFRSF9, XIAP, CEBPE, CLPB, CSF3R, DNAJC21, EFL1, 

ELANE, G6PC3, G6PT1, GFI1, HAX1, HYOU1, JAGN1, LAMTOR2, SBDS, SMARCD2, SRP54, TAZ, USB1, 

VPS13B, VPS45, ACTB, CFTR, CTSC, FERMT3, FPR1, ITGB2, MKL1, SLC35C1, WDR1, CYBA, CYBB, NCF1, 

NCF2, NCF4, CYBC1, G6PD, GATA2, CSF2RA, CSF2RB, IFNGR1, IFNGR2, IL12B , IL12RB1, IL12RB2, 

IL23R, IRF8, ISG15, RORC, SPPL2A, STAT1, TYK2, CIB1, CXCR4, TMC6, TMC8, FCGR3A, IFIH1, IFNAR1, 

IFNAR2, IRF7, IRF9, POLR3A, POLR3C, POLR3F, STAT2, DBR1, IRF3, TBK1, TICAM1, TLR3, TRAF3, 
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UNC93B1, CARD9, IL17F, IL17RA, IL17RC, TRAF3IP2, IRAK1, IRAK4, MYD88, TIRAP, APOL1, CLCN7, 

HMOX, NBAS, NCSTN, OSTM1, PLEKHM1, PSEN, PSENEN, RANBP2, RPSA, SNX10, TCIRG1, 

TNFRSF11A, TNFSF11, IL18BP, IRF4, ACP5, ADA2, ADAR1, DNASE1L3, DNASE2, OAS1, RNASEH2A, 

RNASEH2B, RNASEH2C, SAMHD1, TMEM173, TREX1, USP18, POLA1, MEFV, MVK, NLRC4, NLRP1, 

NLRP12, NLRP3, PLCG2, ADAM17, ALPI, AP1S3, CARD14, COPA, HAVCR2, IL1RN, IL36RN, LPIN2, 

NOD2, OTULIN, PSMB8, PSMG2, PSTPIP1, SH3BP2, SLC29A3, TNFAIP3, TNFRSF1A, TRIM22, C1QA, 

C1QB, C1QC, C1R, C1S, C2, C3, C4A, C4B, C5, C6, C7, C8A, C8B, C8G, C9, CD46, CD55, CD59, CFB, CFD, 

CFH, CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, CFI, CFP, FCN3, MASP2, SERPING1, THBD, ACD, BRCA1, 

BRCA2, BRIP1, CTC1, DKC1, ERCC4, ERCC6L2, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCI, 

FANCL, FANCM, MAD2L2, NOLA2, NOLA3, PALB2, PARN, RAD51, RAD51C, RFWD3, RTEL1, SAMD9, 

SAMD9L, SLX4, SRP72, STN1, TERC, TERT, TINF2, TP53, UBE2T, WRAP53, XRCC2, XRCC9, ADAR, 

DCLRE1B, FAS, FASLG, HTRA2, IL12B, NBN, SGPL1, SLC37A4, F12, GATA1, MYO5B, NHP2, CD247, CR2, 

KRAS, MBL2, NOP10, NRAS, POLE, BLOC1S6, CNBP, COLEC11, ELF4, EPCAM, ERCC2, ERCC3, FBF1, 

FCGR1A, FCGR2A, FCGR2B, FCGR3B, FCGRT, FPR2, FPR3, GAD1, GTF2H5, GUCY2C, HMOX1, HPS1, 

HPS4, HPS6, IGHG2, IL17A, IL18, IL22, IL23A, ITGAM, LRRC8A, MASP1, MPI, MPO, MRE11, MS4A1, 

NFKBID, PSEN1, PSMA3, PSMB4, PSMB9, RECQL4, RET, SART3, STAT5A, UNC119,  
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A.7 OUTRIDER syntax 

Library (OUTRIDER) 
# small testing data set 
odsSmall <- makeExampleOutriderDataSet(dataset="Kremer") 
# full data set from Kremer et al. 
baseURL <- paste0("https://static-content.springer.com/esm/", 
"art%3A10.1038%2Fncomms15824/MediaObjects/") 
count_URL <- paste0(baseURL, "41467_2017_BFncomms15824_MOESM390_ESM.txt") 
anno_URL <- paste0(baseURL, "41467_2017_BFncomms15824_MOESM397_ESM.txt") 
ctsTable <- read.table(count_URL, sep="\t") 
annoTable <- read.table(anno_URL, sep="\t", header=TRUE) 
annoTable$sampleID <- annoTable$RNA_ID 
 
# create OutriderDataSet object 
ods <- OutriderDataSet(countData=ctsTable, colData=annoTable) 
library(TxDb.Hsapiens.UCSC.hg19.knownGene) 
library(org.Hs.eg.db) 
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene 
map <- select(org.Hs.eg.db, keys=keys(txdb, keytype = "GENEID"), 
keytype="ENTREZID", columns=c("SYMBOL")) 
try({ 
library(RMariaDB) 
library(AnnotationDbi) 
con <- dbConnect(MariaDB(), host='genome-mysql.cse.ucsc.edu', 
dbname="hg19", user='genome') 
map <- dbGetQuery(con, 'select kgId AS TXNAME, geneSymbol from kgXref') 
txdbUrl <- paste0("https://cmm.in.tum.de/public/", 
"paper/mitoMultiOmics/ucsc.knownGenes.db") 
download.file(txdbUrl, "ucsc.knownGenes.db") 
txdb <- loadDb("ucsc.knownGenes.db") 
}) 
 
# calculate FPKM values and label not expressed genes 
ods <- filterExpression(ods, txdb, mapping=map, 
filterGenes=FALSE, savefpkm=TRUE) 
 
# display the FPKM distribution of counts. 
plotFPKM(ods) 
 
# do the actual subsetting based on the filtering labels 
ods <- ods[mcols(ods)$passedFilter,] 
ods <- estimateSizeFactors(ods) 
ods <- controlForConfounders(ods, q=21, iterations=3) 
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ods <- fit(ods) 
hist(theta(ods)) 
 
# compute P-values (nominal and adjusted) 
ods <- computeP-values(ods, alternative="two.sided", method="BY") 
# compute the Z-scores 
ods <- computeZscores(ods) 
 
res <- results(ods) 
head(res) 
 

A.8 Salmon Script  

#!/bin/bash 
#PBS -N Salmon index creation 
#PBS -l walltime=15:00:00 
#PBS -l nodes=1:ppn=16 
#PBS -l mem=40000m 
#PBS -t 1,2,5,6,7,8,9,10,11,12 
 
module load conda/4.4.0 
source activate salmon 
 
cd /scratch/jl5e18/RNA_SEQ/build38/Build38 
 
fastq_files="/scratch/jl5e18/RNA_SEQ/build38/Build38/FASTQ" 
idx="/scratch/jl5e18/RNA_SEQ/build38/Build38/salmon_index/" 
 
## Names of fq files and location in filestore 
fq1="/scratch/jl5e18/RNA_SEQ/build38/Build38/FASTQ/"$PBS_ARRAYID"_1.fq.gz" 
fq2="/scratch/jl5e18/RNA_SEQ/build38/Build38/FASTQ/"$PBS_ARRAYID"_2.fq.gz" 
OUT="/scratch/jl5e18/RNA_SEQ/build38/Build38/Salmon_Out/"$PBS_ARRAYID"" 
 
##salmon index -t "/scratch/jl5e18/RNA_SEQ/build38/Build38/gentrome.fa" -d 
"/scratch/jl5e18/RNA_SEQ/build38/Build38/decoys.txt" -p 12 -i salmon_index --gencode 
 
salmon quant -i $idx -l A -1 $fq1 -2 $fq2 \ 
-p 4 -o $OUT --seqBias --gcBias --dumpEq 
 
fi 
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A.9 BANDITS R script. 

setwd("/scratch/jl5e18/R/x86_64-pc-linux-gnu-library/4.0.0-cairo/BANDITS/extdata/") 
library(BANDITS) 
library(parallel) 
library(MASS) 
data_dir = system.file("extdata", package = "BANDITS") 
id_matching_file<-"/scratch/jl5e18/R/x86_64-pc-linux-gnu-library/4.0.0-
cairo/BANDITS/extdata/gene_to_transcript.txt" 
id_table<-read.delim(id_matching_file, header=TRUE, sep= "\t") 
head(id_table) 
listofnames <- c(1 ,  2 ,  3 ,  5 ,  7 ,  8 ,  9 ,  10 ,  13 ,  14 ,  15 ,  16 ,  17 ,  18 ,  19 ,  20 ,  22 ,  23 ,  24 ,  
25 ,  27 ,  28 ,  29 ,  31 ,  33 ,  35 ,  39 ,  40 ,  42 ,  43 ,  44 ,  45 ,  46 ,  51 ,  52 ,  53 ,  57 ,  60 ,  63 ,  64 ,  
65 ,  66 ,  67 ,  69 ,  70 ,  71 ,  72 ,  76 ,  78 ,  79 ,  80 ,  81 ,  85 ,  88 ,  89 ,  90 ,  91 ,  92 ,  93 ,  94 ,  95 ,  
97 ,  98 ,  99 ,  100 ,  102 ,  104 ,  105 ,  106 ,  107 ,  108 ,  109 ,  110 ,  111 ,  112 ,  113 ,  114 ,  115 ,  
116 ,  117 ,  118 ,  119 ,  120 ,  121 ,  122 ,  124 ,  125 ,  126 ,  127 ,  128 ,  129 ,  130 ,  131 ,  132 ,  133 
,  134 ,  135 ,  136 ,  137 ,  138 ,  139 ,  141 ,  142 ,  143 ,  144 ,  145 ,  146 ,  147 ,  148 ,  149 ,  150 ,  
151 ,  152 ,  153 ,  154 ,  155 ,  156 ,  157 ,  158 ,  159 ,  160 ,  161 ,  162 ,  163 ,  164 ,  165 ,  166 ,  167 
,  168 ,  169 ,  170 ,  171 ,  172 ,  173 ,  174 ,  175 ,  176 ,  177 ,  178 ,  179 ,  180 ,  181 ,  183 ,  184 ,  
185 ,  186 ,  187 ,  188 ,  190 ,  193 ,  194 ,  195 ,  198 ,  200 ,  201 ,  202 ,  203 ,  204 ,  205 ,  206 ,  207 
,  209 ,  211 ,  213 ,  217 ,  218 ,  219 ) 
sample_names = paste0(listofnames) 
quant_files = file.path(data_dir, "STAR-salmon2", sample_names, "quant.sf") 
file.exists(quant_files) 
library(tximport) 
txi = tximport(files = quant_files, type = "salmon", txOut = TRUE) 
counts = txi$counts 
head(counts) 
samples_design = data.frame(sample_id = sample_names, group = c("COVID", "COVID", "COVID", 
"COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", 
"COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", 
"COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", 
"COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", 
"COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", 
"COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", 
"COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", 
"COVID", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", 
"Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", 
"Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", 
"Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", 
"Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "Flu", "COVID", "COVID", 
"COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "COVID", "Flu", "Flu", "Flu", "Flu", 
"Flu", "Flu", "Flu", "Flu", "Flu")) 
samples_design 
levels(samples_design$group) 
eff_len = eff_len_compute(x_eff_len = txi$length) 
head(eff_len) 
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write.table(counts, file = "counts.txt", sep = "\t", 
            row.names = TRUE) 
 
transcripts_to_keep = filter_transcripts(gene_to_transcript = id_table, transcript_counts = counts, 
min_transcript_proportion = 0.01, min_transcript_counts = 10, min_gene_counts = 20) 
head(transcripts_to_keep) 
equiv_classes_files = file.path(data_dir, "STAR-salmon2", sample_names, "aux_info", 
"eq_classes.txt") 
file.exists(equiv_classes_files) 
equiv_classes_files 
samples_design$sample_idhead 
 
input_data = create_data(salmon_or_kallisto = "salmon", 
                         gene_to_transcript = id_table, 
                         salmon_path_to_eq_classes = equiv_classes_files, 
                         eff_len = eff_len, 
                         n_cores =120, 
                         transcripts_to_keep = transcripts_to_keep) 
##input filter 
input_data = filter_genes(input_data, min_counts_per_gene = 20) 
 
set.seed(61217) 
precision = prior_precision(gene_to_transcript = id_table, 
                            transcript_counts = counts, 
                            n_cores =120, 
                            transcripts_to_keep = transcripts_to_keep) 
precision$prior 
 
 
png(filename="precision.png") 
plot_precision(precision) 
dev.off() 
set.seed(61217) 
results = test_DTU(BANDITS_data = input_data, precision = precision$prior, samples_design = 
samples_design, group_col_name = "group", R = 10^4, burn_in = 2*10^3, gene_to_transcript = 
gene_tr_id) 
results 
write.table(results, file = "covid_vs_flu_DTU.txt", sep = "\t", row.names = TRUE, col.names = TRUE) 
 
write.table(top_genes(results), file = "covid_vs_flu_DTU.txt", sep = "\t", row.names = TRUE, 
col.names = TRUE) 
 
write.table(convergence(results), file = "covid_vs_flu_DTU.txt", sep = "\t", row.names = TRUE, 
col.names = TRUE) 
 
write.table(top_transcripts(results, sort_by ="transcript"), file = "covid_vs_flu_DTU.txt", sep = "\t", 
row.names = TRUE, col.names = TRUE 
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head(top_genes(results)) 
head(top_genes(results, sort_by = "DTU_measure")) 
head(top_transcripts(results, sort_by = "transcript")) 
head(convergence(results)) 
top_gene = top_genes(results, n = 1) 
gene(results, top_gene$Gene_id) 
 
top_transcript = top_transcripts(results, n = 1) 
transcript(results, top_transcript$Transcript_id) 
 
png(filename="proportions.png") 
plot_proportions(results, top_gene$Gene_id, CI = TRUE, CI_level = 0.95) 
dev.off() 
 

 

 

 



Discussion 

 

319 

A.10 OUTRIDER results, in full  

geneID  sampleID P 
adjust 

Z 
Score 

l2fc Norm 
counts 

Aberrant 
sample 

Aberrant 
Gene 

ENSG00000012124.17 CD22 SRB0017 0.009097 -6.12 -2.26 124.93 6 1 

ENSG00000080293.9 SCTR SOT140 0.039617 3.89 2.56 50.01 1 1 

ENSG00000084693.16 AGBL5 SOT102 0.021283 5.02 0.65 1057.59 3 1 

ENSG00000092978.11 GPATCH2 SOT38 0.04585 -5.12 -0.64 347.7 2 1 

ENSG00000099864.18 PALM SOT104 0.002437 2.41 1.69 54.72 3 1 

ENSG00000112238.11 PRDM13 SOT104 0.015301 3.21 2.39 57.78 3 1 

ENSG00000114374.13 USP9Y SOT33 0.006873 2.5 1.58 73.95 1 1 

ENSG00000115234.11 SNX17 SOT10 0.033616 -5.46 -0.57 1327.15 1 1 

ENSG00000117868.16 ESYT2 SOT19 0.012232 5.09 0.78 6405.29 2 1 

ENSG00000123130.17 ACOT9 SRB0012 3.66E-06 -7.09 -4.09 62.34 1 1 

ENSG00000132275.11 RRP8 SRB0006 0.006004 -5.93 -1.95 174.26 3 1 

ENSG00000132704.16 FCRL2 SRB0017 0.043928 -5.79 -2.38 103.59 6 1 

ENSG00000133195.11 SLC39A11 SOT18 0.028063 4.81 0.65 723.54 3 1 

ENSG00000134313.15 KIDINS220 SOT18 0.001479 -5.87 -0.5 3419.64 3 1 

ENSG00000140157.14 NIPA2 SOT117 0.000754 -6.13 -0.93 417.19 4 1 

ENSG00000142611.17 PRDM16 SOT104 0.002437 3.3 2.15 109.54 3 1 

ENSG00000156738.17 MS4A1 SRB0017 0.013149 -5.92 -2.76 252.66 6 1 

ENSG00000160208.13 RRP1B SRB0006 0.007118 -5.77 -1.47 240.76 3 1 

ENSG00000164403.14 SHROOM1 SOT102 0.021283 -6.15 -3.93 4.54 3 1 

ENSG00000170113.16 NIPA1 SOT117 0.032775 -5.31 -1.01 222.06 4 1 

ENSG00000196092.13 PAX5 SRB0017 0.000307 -6.51 -3 52.29 6 1 

ENSG00000198818.10 SFT2D1 SOT102 0.000794 -6.19 -1.18 412.4 3 1 

ENSG00000211592.8 IGKC SRB0017 0.049605 -6.31 -5.98 0 6 1 

ENSG00000211899.10 IGHM SRB0017 0.000519 -6.53 -3.67 227.34 6 1 

ENSG00000230847.4 OCLNP1 SOT130 0.009216 1.21 1.4 32.06 1 14 

ENSG00000230847.4 OCLNP1 SOT152 0.002884 -2.36 -4.69 0 1 14 

ENSG00000230847.4 OCLNP1 SOT17 2.99E-08 -0.99 -2.35 2.15 1 14 

ENSG00000230847.4 OCLNP1 SOT18 0.000266 0.93 0.92 21.95 3 14 

ENSG00000230847.4 OCLNP1 SOT19 4.04E-12 -1 -2.38 2.13 2 14 

ENSG00000230847.4 OCLNP1 SOT20 0.000441 0.89 0.85 20.91 1 14 

ENSG00000230847.4 OCLNP1 SOT38 0.029999 0.85 0.78 19.98 2 14 

ENSG00000230847.4 OCLNP1 SOT45 6.49E-08 -0.68 -1.82 3.17 1 14 

ENSG00000230847.4 OCLNP1 SOT49 0.000205 0.81 0.72 18.98 1 14 

ENSG00000230847.4 OCLNP1 SOT58 7.37E-15 -2.56 -5.04 0.18 1 14 

ENSG00000230847.4 OCLNP1 SOT69 0.002781 1.06 1.14 26.07 1 14 

ENSG00000230847.4 OCLNP1 SRB0006 6.80E-20 -3.27 -6.25 0 3 14 

ENSG00000230847.4 OCLNP1 SRB0011 9.25E-14 1.44 1.79 41.56 1 14 

ENSG00000230847.4 OCLNP1 SRB0013 0.00021 1.3 1.56 35.99 1 14 

ENSG00000273749.5 CYFIP1 SOT117 0.019793 -5.56 -1 433.15 4 1 
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ENSG00000275835.5 TUBGCP5 SOT117 0.020515 -5.39 -0.97 217.67 4 1 

 

A.11 Differentially Expressed Gene graphs from Covid19 and Influenza 

cohorts stratified by age from pcaExplorer 

 

 

Figure 8-5 Differential gene expression for IGHG 1-24 in Covid and Influenza cohorts 
stratified by decade of life 
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Figure 8-6 Differential gene expression for IGLV 3-19 in Covid and Influenza cohorts 
stratified by decade of life. 
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Figure 8-7 Differential gene expression for IGHA1 in Covid and Influenza cohorts 
stratified by decade of life
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A.12  Machine Learning Classification Performance Plots 

 

Figure 8-8 Classification matrix for old cohort, using gene expression. 

 

 

Figure 8-9 Classification matrix for young cohort, using gene expression. 
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Figure 8-10 ROC plot - old test cohort, using gene expression to predict COVID19 
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Figure 8-11 ROC plot - old test cohort, using gene expression to predict Influenza 
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Figure 8-12 ROC plot - young test cohort, using gene expression to predict COVID19 
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Figure 8-13 ROC plot - young test cohort, using gene expression to predict Influenza 

] 
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Figure 8-14 Classification matrix for old cohort, using isoform abundance. 

 

Figure 8-15 Classification matrix for young cohort, using isoform abundance. 
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Figure 8-16 ROC plot - old test cohort, using Isoform expression to predict COVID19 
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Figure 8-17 ROC plot - old test cohort, using Isoform expression to predict Influenza 
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Figure 8-18 ROC plot - young test cohort, using Isoform expression to predict COVID19 
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Figure 8-19 ROC plot - young test cohort, using Isoform expression to predict Influenza 
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Processes which showed converging gene expression, originally higher in influenza 

 ID Name p-value 

1 GO:0046324 regulation of glucose import 1.18E-04 

2 GO:0010827 regulation of glucose transmembrane transport 1.22E-04 

3 GO:0002320 lymphoid progenitor cell differentiation 1.25E-04 

4 GO:1904659 glucose transmembrane transport 2.53E-04 

5 GO:0048771 tissue remodeling 2.65E-04 

6 GO:0008645 hexose transmembrane transport 2.97E-04 

7 GO:0021816 
extension of a leading process involved in cell motility in 
cerebral cortex radial glia guided migration 3.01E-04 

8 GO:0015749 monosaccharide transmembrane transport 3.66E-04 

9 GO:0097581 lamellipodium organization 3.86E-04 

10 GO:0071345 cellular response to cytokine stimulus 4.24E-04 

11 GO:0046323 glucose import 4.69E-04 

12 GO:0034097 response to cytokine 5.73E-04 

13 GO:0002682 regulation of immune system process 6.78E-04 

14 GO:0034219 carbohydrate transmembrane transport 8.27E-04 

15 GO:0002764 immune response-regulating signaling pathway 8.50E-04 

16 GO:2001222 regulation of neuron migration 8.81E-04 

17 GO:0033133 positive regulation of glucokinase activity 9.94E-04 

18 GO:0070782 phosphatidylserine exposure on apoptotic cell surface 9.94E-04 

19 GO:0045588 positive regulation of gamma-delta T cell differentiation 9.94E-04 

20 GO:0007135 meiosis II 1.11E-03 

21 GO:0061983 meiosis II cell cycle process 1.11E-03 

22 GO:0050776 regulation of immune response 1.21E-03 

23 GO:0002328 pro-B cell differentiation 1.28E-03 

24 GO:1903301 positive regulation of hexokinase activity 1.28E-03 

25 GO:0046645 positive regulation of gamma-delta T cell activation 1.60E-03 

26 GO:0061754 negative regulation of circulating fibrinogen levels 1.74E-03 

27 GO:0045586 regulation of gamma-delta T cell differentiation 1.98E-03 

28 GO:0002521 leukocyte differentiation 2.04E-03 

29 GO:0019886 
antigen processing and presentation of exogenous 
peptide antigen via MHC class II 2.13E-03 

30 GO:0042551 neuron maturation 2.27E-03 

31 GO:0008643 carbohydrate transport 2.28E-03 

32 GO:0033131 regulation of glucokinase activity 2.40E-03 

33 GO:1903131 mononuclear cell differentiation 2.61E-03 

34 GO:0002221 pattern recognition receptor signaling pathway 2.65E-03 

35 GO:1990830 cellular response to leukemia inhibitory factor 2.81E-03 

36 GO:1905605 positive regulation of blood-brain barrier permeability 2.86E-03 

37 GO:1904347 regulation of small intestine smooth muscle contraction 2.86E-03 

38 GO:1990770 small intestine smooth muscle contraction 2.86E-03 

39 GO:0021815 
modulation of microtubule cytoskeleton involved in 
cerebral cortex radial glia guided migration 2.86E-03 

40 GO:0044537 regulation of circulating fibrinogen levels 2.86E-03 

41 GO:0046643 regulation of gamma-delta T cell activation 2.88E-03 

42 GO:1903299 regulation of hexokinase activity 2.88E-03 
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43 GO:1990823 response to leukemia inhibitory factor 2.90E-03 

44 GO:0062207 
regulation of pattern recognition receptor signaling 
pathway 3.13E-03 

45 GO:0002495 
antigen processing and presentation of peptide antigen 
via MHC class II 3.30E-03 

46 GO:0002460 

adaptive immune response based on somatic 
recombination of immune receptors built from 
immunoglobulin superfamily domains 3.37E-03 

47 GO:0071514 genomic imprinting 3.42E-03 

48 GO:0035195 miRNA-mediated gene silencing 3.84E-03 

49 GO:0030098 lymphocyte differentiation 3.95E-03 

50 GO:0042415 norepinephrine metabolic process 4.00E-03 

51 GO:0031269 pseudopodium assembly 4.00E-03 

52 GO:0002504 
antigen processing and presentation of peptide or 
polysaccharide antigen via MHC class II 4.03E-03 

53 GO:0032765 positive regulation of mast cell cytokine production 4.24E-03 

54 GO:0051490 negative regulation of filopodium assembly 4.24E-03 

55 GO:0046951 ketone body biosynthetic process 4.24E-03 

56 GO:0034121 regulation of toll-like receptor signaling pathway 4.39E-03 

57 GO:0034505 tooth mineralization 4.43E-03 

58 GO:0042492 gamma-delta T cell differentiation 4.65E-03 

59 GO:0035194 post-transcriptional gene silencing by RNA 4.74E-03 

60 GO:0055075 potassium ion homeostasis 4.86E-03 

61 GO:0016441 post-transcriptional gene silencing 5.16E-03 

62 GO:0035234 ectopic germ cell programmed cell death 5.36E-03 

63 GO:0031268 pseudopodium organization 5.36E-03 

64 GO:0034162 toll-like receptor 9 signaling pathway 5.36E-03 

65 GO:0007186 G protein-coupled receptor signaling pathway 5.60E-03 

66 GO:0002238 response to molecule of fungal origin 5.87E-03 

67 GO:1902463 protein localization to cell leading edge 5.87E-03 

68 GO:2000405 negative regulation of T cell migration 5.87E-03 

69 GO:0070167 regulation of biomineral tissue development 6.25E-03 

70 GO:0002684 positive regulation of immune system process 6.32E-03 

71 GO:1902622 regulation of neutrophil migration 6.74E-03 

72 GO:0110149 regulation of biomineralization 6.79E-03 

73 GO:0001764 neuron migration 7.19E-03 

74 GO:0048871 multicellular organismal homeostasis 7.33E-03 

75 GO:0034763 negative regulation of transmembrane transport 7.33E-03 

76 GO:0097009 energy homeostasis 7.71E-03 

77 GO:1905603 regulation of blood-brain barrier permeability 7.74E-03 

78 GO:0021814 
cell motility involved in cerebral cortex radial glia guided 
migration 7.74E-03 

79 GO:0010562 positive regulation of phosphorus metabolic process 7.86E-03 

80 GO:0045937 positive regulation of phosphate metabolic process 7.86E-03 

81 GO:0045321 leukocyte activation 7.92E-03 

82 GO:0030183 B cell differentiation 8.06E-03 

83 GO:0090022 regulation of neutrophil chemotaxis 8.63E-03 

84 GO:1902624 positive regulation of neutrophil migration 8.63E-03 

85 GO:0009617 response to bacterium 9.10E-03 
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86 GO:0097529 myeloid leukocyte migration 9.26E-03 

87 GO:0008038 neuron recognition 9.53E-03 

88 GO:0002683 negative regulation of immune system process 9.72E-03 

89 GO:0017121 plasma membrane phospholipid scrambling 9.83E-03 

90 GO:0046325 negative regulation of glucose import 9.83E-03 

91 GO:1904304 
regulation of gastro-intestinal system smooth muscle 
contraction 9.84E-03 

92 GO:0003315 heart rudiment formation 9.84E-03 

93 GO:0032763 regulation of mast cell cytokine production 9.84E-03 

94 GO:0014827 intestine smooth muscle contraction 9.84E-03 

95 GO:0051712 positive regulation of killing of cells of another organism 9.84E-03 

96 GO:0039023 pronephric duct morphogenesis 9.84E-03 

97 GO:0010288 response to lead ion 9.98E-03 

98 GO:0002478 
antigen processing and presentation of exogenous 
peptide antigen 9.98E-03 

99 GO:0034122 negative regulation of toll-like receptor signaling pathway 9.98E-03 

100 GO:0034762 regulation of transmembrane transport 1.05E-02 

 

Processes which showed converging gene expression, originally higher in COVID19 

 ID Name Source p-value 

1 GO:0002250 adaptive immune response 3.22E-10 

2 GO:1903047 mitotic cell cycle process 1.01E-08 

3 GO:0000278 mitotic cell cycle  1.40E-08 

4 GO:0002449 lymphocyte mediated immunity 5.58E-07 

5 GO:0140014 mitotic nuclear division 5.80E-07 

6 GO:0000070 mitotic sister chromatid segregation 7.26E-07 

7 GO:0007093 mitotic cell cycle checkpoint signaling 9.60E-07 

8 GO:0000819 sister chromatid segregation 1.36E-06 

9 GO:0022402 cell cycle process  1.39E-06 

10 GO:0002377 immunoglobulin production 1.42E-06 

11 GO:0010948 negative regulation of cell cycle process 2.13E-06 

12 GO:0006275 regulation of DNA replication 2.43E-06 

13 GO:0006260 DNA replication  2.58E-06 

14 GO:0010564 regulation of cell cycle process 2.58E-06 

15 GO:0044772 mitotic cell cycle phase transition 2.64E-06 

16 GO:0000075 cell cycle checkpoint signaling 2.64E-06 

17 GO:1901990 regulation of mitotic cell cycle phase transition 3.01E-06 

18 GO:1901991 negative regulation of mitotic cell cycle phase transition 3.38E-06 

19 GO:0007346 regulation of mitotic cell cycle 3.97E-06 

20 GO:0051983 regulation of chromosome segregation 4.58E-06 

21 GO:0007059 chromosome segregation 5.29E-06 

22 GO:0000280 nuclear division  1.03E-05 

23 GO:0044770 cell cycle phase transition 1.16E-05 

24 GO:0051276 chromosome organization 1.22E-05 

25 GO:0098749 cerebellar neuron development 1.24E-05 
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26 GO:1905784 
regulation of anaphase-promoting complex-dependent catabolic 
process 1.24E-05 

27 GO:0051726 regulation of cell cycle 1.25E-05 

28 GO:0051301 cell division  1.54E-05 

29 GO:0006259 DNA metabolic process 1.76E-05 

30 GO:1905818 regulation of chromosome separation 2.20E-05 

31 GO:0098813 nuclear chromosome segregation 2.90E-05 

32 GO:0002460 

adaptive immune response based on somatic recombination of 
immune receptors built from immunoglobulin superfamily 
domains 3.44E-05 

33 GO:0002443 leukocyte mediated immunity 3.55E-05 

34 GO:1901987 regulation of cell cycle phase transition 3.84E-05 

35 GO:0033045 regulation of sister chromatid segregation 4.12E-05 

36 GO:0042770 signal transduction in response to DNA damage 5.71E-05 

37 GO:0044784 metaphase/anaphase transition of cell cycle 6.25E-05 

38 GO:0010965 regulation of mitotic sister chromatid separation 6.25E-05 

39 GO:1904668 positive regulation of ubiquitin protein ligase activity 6.42E-05 

40 GO:0045786 negative regulation of cell cycle 6.45E-05 

41 GO:0035685 helper T cell diapedesis 6.71E-05 

42 GO:1901988 negative regulation of cell cycle phase transition 8.47E-05 

43 GO:0051306 mitotic sister chromatid separation 8.60E-05 

44 GO:0002440 production of molecular mediator of immune response 9.14E-05 

45 GO:0002684 positive regulation of immune system process 9.99E-05 

46 GO:0048285 organelle fission  1.01E-04 

47 GO:0051052 regulation of DNA metabolic process 1.19E-04 

48 GO:0006974 cellular response to DNA damage stimulus 1.21E-04 

49 GO:0042267 natural killer cell mediated cytotoxicity 1.29E-04 

50 GO:0033043 regulation of organelle organization 1.30E-04 

51 GO:0006270 DNA replication initiation 1.32E-04 

52 GO:0044774 mitotic DNA integrity checkpoint signaling 1.46E-04 

53 GO:0010972 negative regulation of G2/M transition of mitotic cell cycle 1.48E-04 

54 GO:0044839 cell cycle G2/M phase transition 1.55E-04 

55 GO:1902099 regulation of metaphase/anaphase transition of cell cycle 1.62E-04 

56 GO:0002228 natural killer cell mediated immunity 1.72E-04 

57 GO:0007091 metaphase/anaphase transition of mitotic cell cycle 1.79E-04 

58 GO:0010389 regulation of G2/M transition of mitotic cell cycle 1.89E-04 

59 GO:0090329 regulation of DNA-templated DNA replication 1.90E-04 

60 GO:1902750 negative regulation of cell cycle G2/M phase transition 1.90E-04 

61 GO:0030174 regulation of DNA-templated DNA replication initiation 2.20E-04 

62 GO:0072683 T cell extravasation  2.20E-04 

63 GO:0002287 alpha-beta T cell activation involved in immune response 2.22E-04 

64 GO:0031570 DNA integrity checkpoint signaling 2.40E-04 

65 GO:0051304 chromosome separation 2.40E-04 

66 GO:0000086 G2/M transition of mitotic cell cycle 2.45E-04 

67 GO:0035684 helper T cell extravasation 2.50E-04 

68 GO:0002488 
antigen processing and presentation of endogenous peptide 
antigen via MHC class Ib via ER pathway 2.50E-04 

69 GO:0002489 
antigen processing and presentation of endogenous peptide 
antigen via MHC class Ib via ER pathway, TAP-dependent 2.50E-04 
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70 GO:0050778 positive regulation of immune response 2.69E-04 

71 GO:0045930 negative regulation of mitotic cell cycle 2.74E-04 

72 GO:0031343 positive regulation of cell killing 2.75E-04 

73 GO:0072540 T-helper 17 cell lineage commitment 3.10E-04 

74 GO:0002711 positive regulation of T cell mediated immunity 3.19E-04 

75 GO:0006261 DNA-templated DNA replication 3.23E-04 

76 GO:1902749 regulation of cell cycle G2/M phase transition 3.27E-04 

77 GO:0002708 positive regulation of lymphocyte mediated immunity 3.27E-04 

78 GO:0002456 T cell mediated immunity 3.29E-04 

79 GO:0031577 spindle checkpoint signaling 3.58E-04 

80 GO:0044773 mitotic DNA damage checkpoint signaling 3.73E-04 

81 GO:0019724 B cell mediated immunity 4.06E-04 

82 GO:0044818 mitotic G2/M transition checkpoint 4.10E-04 

83 GO:0046649 lymphocyte activation  4.20E-04 

84 GO:0030071 regulation of mitotic metaphase/anaphase transition 4.53E-04 

85 GO:1905819 negative regulation of chromosome separation 4.69E-04 

86 GO:0033044 regulation of chromosome organization 5.29E-04 

87 GO:0050776 regulation of immune response 5.33E-04 

88 GO:0051985 negative regulation of chromosome segregation 5.34E-04 

89 GO:0045740 positive regulation of DNA replication 5.34E-04 

90 GO:0050871 positive regulation of B cell activation 5.35E-04 

91 GO:0016064 immunoglobulin mediated immune response 5.50E-04 

92 GO:0048635 negative regulation of muscle organ development 5.68E-04 

93 GO:0051132 NK T cell activation  5.68E-04 

94 GO:0051251 positive regulation of lymphocyte activation 5.78E-04 

95 GO:0009298 GDP-mannose biosynthetic process 6.05E-04 

96 GO:0008355 olfactory learning  6.05E-04 

97 GO:0002481 
antigen processing and presentation of exogenous protein antigen 
via MHC class Ib, TAP-dependent 6.05E-04 

98 GO:0070309 lens fiber cell morphogenesis 6.76E-04 

99 GO:0072539 T-helper 17 cell differentiation 6.92E-04 

100 GO:0050650 chondroitin sulfate proteoglycan biosynthetic process 7.22E-04 

Processes which showed converging isoform abundance, originally higher in influenza 

 ID Name p-value 

    

1 GO:0001812 positive regulation of type I hypersensitivity 1.71E-06 

2 GO:0001810 regulation of type I hypersensitivity 2.56E-06 

3 GO:0016068 type I hypersensitivity 2.56E-06 

4 GO:0001798 positive regulation of type IIa hypersensitivity 1.68E-05 

5 GO:0002894 positive regulation of type II hypersensitivity 1.68E-05 

6 GO:0001796 regulation of type IIa hypersensitivity 2.03E-05 

7 GO:0001788 antibody-dependent cellular cytotoxicity 2.03E-05 

8 GO:0002892 regulation of type II hypersensitivity 2.03E-05 

9 GO:0001794 type IIa hypersensitivity 2.88E-05 

10 GO:0002445 type II hypersensitivity 2.88E-05 

11 GO:0002885 positive regulation of hypersensitivity 3.94E-05 

12 GO:0050729 positive regulation of inflammatory response 4.58E-05 
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13 GO:0002521 leukocyte differentiation 4.90E-05 

14 GO:0002866 
positive regulation of acute inflammatory response to 
antigenic stimulus 5.22E-05 

15 GO:0097278 complement-dependent cytotoxicity 5.96E-05 

16 GO:0030097 hemopoiesis 6.14E-05 

17 GO:0002861 regulation of inflammatory response to antigenic stimulus 6.19E-05 

18 GO:0002883 regulation of hypersensitivity 6.75E-05 

19 GO:0048534 hematopoietic or lymphoid organ development 9.42E-05 

20 GO:0002863 
positive regulation of inflammatory response to antigenic 
stimulus 1.06E-04 

21 GO:0031016 pancreas development 1.10E-04 

22 GO:0002524 hypersensitivity 1.18E-04 

23 GO:0002864 
regulation of acute inflammatory response to antigenic 
stimulus 1.43E-04 

24 GO:1903131 mononuclear cell differentiation 1.45E-04 

25 GO:0042904 9-cis-retinoic acid biosynthetic process 1.49E-04 

26 GO:0042905 9-cis-retinoic acid metabolic process 1.49E-04 

27 GO:0002520 immune system development 1.55E-04 

28 GO:0002888 positive regulation of myeloid leukocyte mediated immunity 2.41E-04 

29 GO:0030098 lymphocyte differentiation 3.83E-04 

30 GO:0002437 inflammatory response to antigenic stimulus 4.82E-04 

31 GO:0002682 regulation of immune system process 4.93E-04 

32 GO:0048703 embryonic viscerocranium morphogenesis 4.98E-04 

33 GO:0007389 pattern specification process 5.41E-04 

34 GO:1903432 regulation of TORC1 signaling 5.44E-04 

35 GO:0032008 positive regulation of TOR signaling 5.44E-04 

36 GO:0032103 positive regulation of response to external stimulus 5.60E-04 

37 GO:0001819 positive regulation of cytokine production 5.72E-04 

38 GO:0045022 early endosome to late endosome transport 5.76E-04 

39 GO:0002438 acute inflammatory response to antigenic stimulus 5.76E-04 

40 GO:0002675 positive regulation of acute inflammatory response 6.45E-04 

41 GO:0032006 regulation of TOR signaling 6.61E-04 

42 GO:0098927 
vesicle-mediated transport between endosomal 
compartments 6.82E-04 

43 GO:0031017 exocrine pancreas development 7.19E-04 

44 GO:0038202 TORC1 signaling 9.74E-04 

45 GO:0045807 positive regulation of endocytosis 1.04E-03 

46 GO:0001935 endothelial cell proliferation 1.04E-03 

47 GO:0046822 regulation of nucleocytoplasmic transport 1.07E-03 

48 GO:0002714 positive regulation of B cell mediated immunity 1.07E-03 

49 GO:0002891 
positive regulation of immunoglobulin mediated immune 
response 1.07E-03 

50 GO:0080134 regulation of response to stress 1.08E-03 

51 GO:0031929 TOR signaling 1.28E-03 

52 GO:0009952 anterior/posterior pattern specification 1.35E-03 

53 GO:0050727 regulation of inflammatory response 1.39E-03 

54 GO:0031349 positive regulation of defense response 1.44E-03 

55 GO:0048732 gland development 1.45E-03 

56 GO:0090090 negative regulation of canonical Wnt signaling pathway 1.74E-03 
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57 GO:0009617 response to bacterium 1.76E-03 

58 GO:0002138 retinoic acid biosynthetic process 1.83E-03 

59 GO:0043009 chordate embryonic development 1.93E-03 

60 GO:0046824 positive regulation of nucleocytoplasmic transport 1.98E-03 

61 GO:0048010 vascular endothelial growth factor receptor signaling pathway 2.05E-03 

62 GO:0002673 regulation of acute inflammatory response 2.05E-03 

63 GO:0010171 body morphogenesis 2.05E-03 

64 GO:0002377 immunoglobulin production 2.11E-03 

65 GO:0050871 positive regulation of B cell activation 2.17E-03 

66 GO:0045598 regulation of fat cell differentiation 2.17E-03 

67 GO:0045600 positive regulation of fat cell differentiation 2.21E-03 

68 GO:0045087 innate immune response 2.21E-03 

69 GO:0016102 diterpenoid biosynthetic process 2.22E-03 

70 GO:0009792 embryo development ending in birth or egg hatching 2.24E-03 

71 GO:0008333 endosome to lysosome transport 2.37E-03 

72 GO:1904263 positive regulation of TORC1 signaling 2.42E-03 

73 GO:0002440 production of molecular mediator of immune response 2.69E-03 

74 GO:0002712 regulation of B cell mediated immunity 2.70E-03 

75 GO:0002889 regulation of immunoglobulin mediated immune response 2.70E-03 

76 GO:1901679 nucleotide transmembrane transport 2.86E-03 

77 GO:0042574 retinal metabolic process 2.86E-03 

78 GO:0090316 positive regulation of intracellular protein transport 2.94E-03 

79 GO:0048705 skeletal system morphogenesis 2.97E-03 

80 GO:0048546 digestive tract morphogenesis 2.98E-03 

81 GO:0055123 digestive system development 3.12E-03 

82 GO:0048706 embryonic skeletal system development 3.17E-03 

83 GO:0051622 negative regulation of norepinephrine uptake 3.20E-03 

84 GO:0035543 positive regulation of SNARE complex assembly 3.20E-03 

85 GO:1904609 cellular response to monosodium L-glutamate 3.20E-03 

86 GO:1904608 response to monosodium L-glutamate 3.20E-03 

87 GO:0060691 
epithelial cell maturation involved in salivary gland 
development 3.20E-03 

88 GO:1903284 positive regulation of glutathione peroxidase activity 3.20E-03 

89 GO:0002014 
vasoconstriction of artery involved in ischemic response to 
lowering of systemic arterial blood pressure 3.20E-03 

90 GO:0015779 glucuronoside transport 3.20E-03 

91 GO:0060096 serotonin secretion, neurotransmission 3.20E-03 

92 GO:0051585 
negative regulation of dopamine uptake involved in synaptic 
transmission 3.20E-03 

93 GO:0002509 central tolerance induction to self-antigen 3.20E-03 

94 GO:0051945 
negative regulation of catecholamine uptake involved in 
synaptic transmission 3.20E-03 

95 GO:0002886 regulation of myeloid leukocyte mediated immunity 3.27E-03 

96 GO:0009894 regulation of catabolic process 3.30E-03 

97 GO:0019731 antibacterial humoral response 3.37E-03 

98 GO:0016114 terpenoid biosynthetic process 3.58E-03 

99 GO:0006837 serotonin transport 3.58E-03 
10

0 GO:0001502 cartilage condensation 3.58E-03 
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Processes which showed converging isoform abundance, originally higher in COVID19 

 ID Name p-value 

1 GO:0006909 phagocytosis 1.37E-06 

2 GO:0001812 positive regulation of type I hypersensitivity 3.06E-06 

3 GO:0001810 regulation of type I hypersensitivity 4.58E-06 

4 GO:0016068 type I hypersensitivity 4.58E-06 

5 GO:0007005 mitochondrion organization 2.77E-05 

6 GO:0001798 positive regulation of type IIa hypersensitivity 2.99E-05 

7 GO:0002894 positive regulation of type II hypersensitivity 2.99E-05 

8 GO:0001796 regulation of type IIa hypersensitivity 3.63E-05 

9 GO:0001788 antibody-dependent cellular cytotoxicity 3.63E-05 

10 GO:0002892 regulation of type II hypersensitivity 3.63E-05 

11 GO:0001794 type IIa hypersensitivity 5.14E-05 

12 GO:0002445 type II hypersensitivity 5.14E-05 

13 GO:0050766 positive regulation of phagocytosis 5.40E-05 

14 GO:0031648 protein destabilization 6.05E-05 

15 GO:0002885 positive regulation of hypersensitivity 7.01E-05 

16 GO:0031647 regulation of protein stability 7.94E-05 

17 GO:0002866 
positive regulation of acute inflammatory response to 
antigenic stimulus 9.28E-05 

18 GO:0097278 complement-dependent cytotoxicity 1.06E-04 

19 GO:0030100 regulation of endocytosis 1.09E-04 

20 GO:0002883 regulation of hypersensitivity 1.20E-04 

21 GO:0002863 
positive regulation of inflammatory response to antigenic 
stimulus 1.88E-04 

22 GO:0019882 antigen processing and presentation 1.90E-04 

23 GO:0002524 hypersensitivity 2.09E-04 

24 GO:0045807 positive regulation of endocytosis 2.10E-04 

25 GO:0010639 negative regulation of organelle organization 2.53E-04 

26 GO:0001919 regulation of receptor recycling 2.54E-04 

27 GO:0002864 
regulation of acute inflammatory response to antigenic 
stimulus 2.54E-04 

28 GO:0006911 phagocytosis, engulfment 2.63E-04 

29 GO:0050764 regulation of phagocytosis 2.72E-04 

30 GO:0045321 leukocyte activation 3.48E-04 

31 GO:1903421 regulation of synaptic vesicle recycling 3.61E-04 

32 GO:0099024 plasma membrane invagination 3.78E-04 

33 GO:0002888 positive regulation of myeloid leukocyte mediated immunity 4.24E-04 

34 GO:0001775 cell activation 4.29E-04 

35 GO:0031397 negative regulation of protein ubiquitination 4.45E-04 

36 GO:0061024 membrane organization 4.54E-04 

37 GO:0010324 membrane invagination 4.86E-04 

38 GO:0021543 pallium development 5.10E-04 

39 GO:0060627 regulation of vesicle-mediated transport 5.14E-04 

40 GO:1901137 carbohydrate derivative biosynthetic process 5.77E-04 

41 GO:0001881 receptor recycling 7.00E-04 

42 GO:0046649 lymphocyte activation 7.17E-04 

43 GO:1903321 negative regulation of protein modification by small protein 7.33E-04 
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conjugation or removal 

44 GO:0031349 positive regulation of defense response 7.40E-04 

45 GO:0090324 negative regulation of oxidative phosphorylation 7.92E-04 

46 GO:0090527 actin filament reorganization 7.92E-04 

47 GO:1905232 cellular response to L-glutamate 7.92E-04 

48 GO:0031400 negative regulation of protein modification process 8.40E-04 

49 GO:0046785 microtubule polymerization 8.43E-04 

50 GO:0009617 response to bacterium 8.93E-04 

51 GO:1901135 carbohydrate derivative metabolic process 9.90E-04 

52 GO:0045022 early endosome to late endosome transport 1.01E-03 

53 GO:0002438 acute inflammatory response to antigenic stimulus 1.01E-03 

54 GO:1904667 negative regulation of ubiquitin protein ligase activity 1.12E-03 

55 GO:1901856 negative regulation of cellular respiration 1.12E-03 

56 GO:0010040 response to iron (II) ion 1.12E-03 

57 GO:0002675 positive regulation of acute inflammatory response 1.13E-03 

58 GO:0050729 positive regulation of inflammatory response 1.14E-03 

59 GO:0051345 positive regulation of hydrolase activity 1.19E-03 

60 GO:0098927 
vesicle-mediated transport between endosomal 
compartments 1.19E-03 

61 GO:0002694 regulation of leukocyte activation 1.21E-03 

62 GO:0010942 positive regulation of cell death 1.27E-03 

63 GO:0006910 phagocytosis, recognition 1.28E-03 

64 GO:0010950 positive regulation of endopeptidase activity 1.47E-03 

65 GO:0021766 hippocampus development 1.53E-03 

66 GO:0010752 regulation of cGMP-mediated signaling 1.71E-03 

67 GO:0001961 positive regulation of cytokine-mediated signaling pathway 1.78E-03 

68 GO:0019220 regulation of phosphate metabolic process 1.79E-03 

69 GO:0043524 negative regulation of neuron apoptotic process 1.79E-03 

70 GO:0051174 regulation of phosphorus metabolic process 1.80E-03 

71 GO:0043523 regulation of neuron apoptotic process 1.83E-03 

72 GO:0002714 positive regulation of B cell mediated immunity 1.86E-03 

73 GO:0002891 
positive regulation of immunoglobulin mediated immune 
response 1.86E-03 

74 GO:0034097 response to cytokine 1.89E-03 

75 GO:0016192 vesicle-mediated transport 1.89E-03 

76 GO:0043065 positive regulation of apoptotic process 1.93E-03 

77 GO:0001921 positive regulation of receptor recycling 1.93E-03 

78 GO:0032103 positive regulation of response to external stimulus 2.00E-03 

79 GO:0030162 regulation of proteolysis 2.03E-03 

80 GO:0031399 regulation of protein modification process 2.05E-03 

81 GO:0006956 complement activation 2.07E-03 

82 GO:0050865 regulation of cell activation 2.11E-03 

83 GO:0010952 positive regulation of peptidase activity 2.13E-03 

84 GO:0043068 positive regulation of programmed cell death 2.19E-03 

85 GO:0002861 regulation of inflammatory response to antigenic stimulus 2.22E-03 

86 GO:1901216 positive regulation of neuron death 2.29E-03 

87 GO:0060760 positive regulation of response to cytokine stimulus 2.42E-03 

88 GO:0055086 nucleobase-containing small molecule metabolic process 2.88E-03 
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89 GO:0006897 endocytosis 2.96E-03 

90 GO:0010035 response to inorganic substance 3.02E-03 

91 GO:0051701 biological process involved in interaction with host 3.08E-03 

92 GO:0016079 synaptic vesicle exocytosis 3.21E-03 

93 GO:0031109 microtubule polymerization or depolymerization 3.28E-03 

94 GO:0051402 neuron apoptotic process 3.29E-03 

95 GO:0043112 receptor metabolic process 3.30E-03 

96 GO:0060456 positive regulation of digestive system process 3.53E-03 

97 GO:0002673 regulation of acute inflammatory response 3.55E-03 

98 GO:0006487 protein N-linked glycosylation 3.55E-03 

99 GO:0051648 vesicle localization 3.81E-03 

100 GO:1902065 response to L-glutamate 3.85E-03 
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