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We study the phenomenology of the inverse seesaw mechanism in the scalar-Higgs portal dark matter
model. The model is an extension of the Standard Model including two additional neutrinos, a singlet scalar
and a fermionic dark matter. We consider the inverse seesaw mechanism in which the mass of two
additional neutrinos are made dynamic by the singlet scalar. We found that the natural scale for the scalar
vacuum expectation value is naturally close to the weak scale. Motivated by this fact, we focus on the
possibility of the singlet scalar connecting with dark matter; i.e., the scalar is also the mediator between
dark sector and the Standard Model. We perform a numerical analysis over the parameter space subject to
the indirect and direct detection constraints. The feasible region of the parameter space will be discussed.
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I. INTRODUCTION

The discovery of the Higgs boson in 2012, together with
decades of electroweak precision tests, has been hailed as
the remarkable success of the Standard Model (SM) of
particle physics. However, the existence of neutrino masses
and dark matter (DM) strongly suggests an extension
beyond the Standard Model that requires new degrees of
freedom. The connection between these new physics is
therefore simplistic yet tantalizing.
Seesaw mechanisms are considered the best explanation

for the smallness of the neutrino mass. In the minimal
realization of the seesaw mechanism, a right-handed
neutrino is introduced to SM, in which the active left-
handed neutrino gains its mass from its mixing with the
right-handed neutrino. The mass can be obtained from
the formulamν ¼ m2

D
M , where mD is the Dirac mass andM is

the Majorana mass of the right-handed neutrino. In the
seesaw mechanism, the sub–electron volt neutrino mass
requires M ∼ 1016 GeV. This huge difference between
the electroweak scale and the seesaw scale leads to a
strong suppression for any potential phenomenological
signals from accelerator experiments and astronomical

observations. Although the minimal seesaw mechanism
provides an interesting explanation for neutrino mass, it
certainly lacks the testability and thus diminishes the
chance for connecting the origin of neutrino mass and
DM observables.
To bring the seesaw scale closer to the electroweak scale,

one can employ the so-called inverse seesaw mechanism.
Inspired by string/M theory, the SM is extended by two
sterile neutrinos and an electroweak scalar singlet [1]. It has
been shown that the small neutrino mass can be generated
from new physics around the tera-electron-volt scale. The
connection with DM within the inverse seesaw context has
recently gained interest [2–6]. It is well known that DM
cannot take part directly in the seesaw mechanism [7–11].
If the sterile neutrino is the DM, it would decay into gamma
rays and active neutrino. On the other hand, the option with
the singlet scalar being DM is also limited due to its mixing
with the Higgs, which leads to the shorter lifetime. To avoid
such pitfalls, one can instead utilize the heavy neutrinos or
the singlet scalar field as a mediator to connect with the
dark sector [6,12].
In this paper, we are interested in exploring the pos-

sibilities of connecting DM to the inverse seesaw model.
In particular, we will consider the model in which the Dirac
mass for the additional sterile neutrinosMD is explained by
the dynamic of a scalar field mediator. The mediator is then
connected to the fermionic dark sector via scalar and
pseudoscalar coupling. The paper is organized as follows.
First, we provide the setup of the model in Sec. II. In this
section, the inverse seesaw mechanism in which the lightest
neutrino is identified with the SM active neutrino is
described. The neutrino couplings are derived, and the
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scalar mediator mixing with Higgs is investigated.
Phenomenology and the constraints on the model are
presented in Sec. III. The invisible Z boson decay is
discussed. The indirect detection via the gamma-ray and
neutrino telescope is investigated. Then, the direct detec-
tion via nucleon scattering is studied. The scan of all
parameter space of the model subject to constraints is
shown in Sec. IV. We finally conclude in Sec. V.

II. MODEL

To construct the model with the inverse seesaw mecha-
nism, we extend the SM by adding two additional fermions:
the right-handedN1 and the left-handed N2. We also add an
electroweak singlet scalar Φ of which the vacuum expect-
ation value (vev) is responsible for the Dirac mass for the
new fermions. In addition to the SM gauge groups, the Z2

discrete symmetry in which all the SM fields are even is
imposed, in order to obtain the neutrino mass matrix texture
desired by the model; see Table I.
In a four-component notation, the Lagrangians for the

neutrino sector and the scalar sector are

LN ¼ −yL̄H̃N1R − gΦN2LN1R

−
μN
2
ðNc

1RN1R þ Nc
2LN2LÞ þ H:c:; ð1Þ

Lscalar ¼ðDμHÞ†ðDμHÞþ1

2
ð∂μΦÞð∂μΦÞ−VðH;ΦÞ; ð2Þ

where

VðH;ΦÞ ¼ −μ2H†H þ λðH†HÞ2 − μ2ϕ
2
Φ2 þ λϕ

4
Φ4

þ λϕH
2

Φ2H†H: ð3Þ

In the above equations, we have H̃ ¼ iσ2H� and
ψc ¼ Cψ̄T , and μN is Majorana mass of the heavy neutrino.
Note the μN term would violate the U(1) lepton number
symmetry. Thus, we expect it to be small. Moreover, the
smallness of μN is technically natural by ’t Hooft’s
naturalness principle. Lastly, we can extend our model
such that small μN is generated in a fashion similar to

models considered in Refs. [2,13]. This model is quite
different than the recent study of Ref. [6], in which the
dynamic part of the inverse seesaw is in the Majorona term.
The potential in Eq. (3) admits nontrivial vevs for the two

scalar fields. We can expand both H and Φ around their
vevs as

H ¼ 1ffiffiffi
2

p
�

wþ

h0 þ izþ v

�
; Φ ¼ ϕ0 þ vϕ; ð4Þ

where wþ and z are the would-be Goldstone bosons eaten
by theWþ and Z gauge bosons. Thus, we see that the scalar
sector contains two real degrees of freedom, denoted by h0
and ϕ0.
Because of the scalar mixing with the Higgs, massive

N1, N2, and ϕ0 are not stable and hence cannot be a good
DM candidate. We assume that DM resides in a separated
sector that is connected to our sector by the scalar Φ. We
will further assume for simplicity that DM is a fermion.
Thus, the Lagrangian for DM is given by

LDM ¼ Φχ̄ðGþ iG̃γ5Þχ þMχ̄χ; ð5Þ

where G is a coupling and G̃ is a pseudoscalar coupling.
Note that this dark sector explicitly breaks the Z2 symmetry
and contains the CP violation, which will be mediated to
the neutrino sector.

A. Neutrino mass

Neutrino masses arise from the Yukawa interactions in
Eq. (1),

LN ⊃ −
1

2
ffiffiffi
2

p yvðνLN1R þ Nc
1Rν

c
LÞ

−
1

2
gvϕðN2LN1R þ Nc

1RN
c
2LÞ

−
μN
2
ðNc

1RN1R þ Nc
2LN2LÞ þ H:c:; ð6Þ

where we used the fact that νLN1R ¼ Nc
1Rν

c
L. The

Lagrangian for the neutrino sector becomes the mass
matrix under the basis ψR ¼ ðνcL; N1; Nc

2Þ,

LMass
N ¼ −

1

2
ψc
RMψR; ð7Þ

where

M ¼

0
BB@

0 yv=
ffiffiffi
2

p
0

yv=
ffiffiffi
2

p
μN gvϕ

0 gvϕ μN

1
CCA: ð8Þ

We can diagonalize the mass matrix by an SOð3Þ rotation
matrix R,

TABLE I. The field contents and their transformation
properties.

SUð2ÞL Uð1ÞY Z2

L 2 −1=2 þ1
H 2 1=2 þ1
N1 1 0 þ1
N2 1 0 −1
Φ 1 0 −1
χ 1 0 −1
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0
B@

νcl
N1R

Nc
2L

1
CA≡ R

0
B@

ψ1R

ψ2R

ψ3R

1
CA≡ RΨR; ð9Þ

where ψ iR’s are the mass eigenstates. Without loss of
generality, we take mψ1

< mψ2
< mψ3

. That is, ψ1R is the
observed light neutrino. To the lowest nontrivial order in
μN , we have

MD ¼ diag

�
y2v2

y2v2þ2g2v2ϕ
μN;

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2v2þ2g2v2ϕ

q
∓ 1

2

y2v2þ4g2v2ϕ
y2v2þ2g2v2ϕ

μN

�
þOðμ2NÞ:

ð10Þ

Notice in the limit μN → 0, mψ1
→ 0 and mψ2

¼ mψ3
. As

an illustrative example, the smallest eigenvalue in the case
y ¼ g ¼ 0.1 is shown in Fig. 1.

B. Neutrino couplings

First, we consider the neutrino Yukawa couplings. In the
interaction basis, we have

LY ⊃ −
yffiffiffi
2

p h0νLN1R − gϕ0N2LN1R þ H:c:

¼ −
y

2
ffiffiffi
2

p h0ðνLN1R þ νcLN
c
1RÞ

−
g
2
ϕ0ðN2LN1R þ Nc

2LN
c
1RÞ þ H:c:

¼ −
y

2
ffiffiffi
2

p h0R1jR2kðΨc
R þ ΨRÞjðΨR þ Ψc

RÞk

−
g
2
ϕ0R2kR3jðΨc

R þΨRÞjðΨR þ Ψc
RÞk þ H:c: ð11Þ

Introducing Majorana field Ψ ¼ ΨR þΨc
R, the above

interaction can be written as

LY ¼ −
1

2

�
yffiffiffi
2

p h0R1jR2k þ gϕ0R2kR3j

�
Ψ̄jΨk þ H:c: ð12Þ

Note that in the above equation h0 and ϕ0 are not in the mass
basis. They can be rotated to the mass basis by an
orthogonal rotation; see Eq. (16).
Now, we consider the couplings of the neutrino with

gauge bosons. They arise from the kinetic term of the
lepton doublet, l,

il̄=Dl⊃ il̄
�
−i

effiffiffi
2

p
sθW

ð=Wþσþþ=W−σ−Þ

− i
e

2sθWcθW
=Zðc2θWσ3þ s2θW Þ

�
l

⊃
e

2sθW

� ffiffiffi
2

p
ðeL=W−νLþνL=WþeLÞþ

1

cθW
νL=ZνL

�
;

ð13Þ

where cθW ðsθW Þ is the cosine (sine) of the Weinberg angle,
σ� ¼ ðσ1 � iσ2Þ=2, and σi’s are the Pauli matrices. In
terms of the physical basis, we have

Lgauge ⊃
effiffiffi
2

p
sθW

R1jðeL=W−PLΨj þΨj=WþPLeLÞ

þ 1

2

e
cθwsθw

R1jR1kΨk=ZPLΨj: ð14Þ

C. Scalar mixing

Because of the scalar potential in Eq. (3), the field
h0 and ϕ0 are allowed to mix. The mass matrix, in the basis
(h0, ϕ0), is

M2 ¼
�

λv2 λϕHvvϕ

λϕHvvϕ λϕv2ϕ

�
: ð15Þ

We can diagonalize the mass matrix by an orthogonal
rotation to the physical basis,

�
h

ϕ

�
¼
�
cos θ − sin θ

sin θ cos θ

��
h0

ϕ0

�
; ð16Þ

where the mixing angle is determined by

tan 2θ ¼ λϕHvvϕ
λϕv2ϕ − λv2

: ð17Þ

The masses of the two physical states are

FIG. 1. The contour plot showing the value of log10ð mν
1 GeVÞ.
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m2
h;ϕ ¼ λv2 þ λϕv2ϕ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλϕv2ϕ − λv2Þ2 þ λ2ϕHv

2v2ϕ

q
: ð18Þ

The mixing angle θ is constrained by the LHC 125 GeV
Higgs measurements. So far, the measurements have been
consistent with the SM predictions [14–16]. Thus, we
expect the mixing angle θ to be small.
Finally, for later convenience, we give expressions for

the parameters in the scalar potential in terms of physical
masses, vevs, and the mixing angle:

λ ¼ c2θm
2
h þ s2θm

2
ϕ

v2
; ð19Þ

λϕ ¼ s2θm
2
h þ c2θm

2
ϕ

v2ϕ
; ð20Þ

λϕH ¼ cθsθðm2
ϕ −m2

hÞ
vvϕ

: ð21Þ

The scalar potential is bounded from below, provided
λϕH > 0; therefore, we will strictly work in the case in
which mϕ > mh.

D. Dark matter

The coupling of Φ with χ in Eq. (5) gives extra
contributions to the DM mass, mχ . This can be seen by
making a chiral rotation,

χ → χ0 ¼ eiαγ5χ; ð22Þ

where α ¼ 1
2
tan−1ð vϕG̃

MþvϕG
Þ. After chiral rotation, the mass

of χ is

mχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

2
p

M þ vϕGÞ2 þ ðvϕG̃Þ2
2

s
: ð23Þ

The interaction Lagrangian becomes

L ¼ vϕðG2 þ G̃2Þ
mχ

ϕχ0χ0 þ M
mχ

ϕχ0ðGþ iG̃γ5Þχ0: ð24Þ

Notice that if M ¼ 0 the interaction Lagrangian would
contain no pseudoscalar coupling after the chiral trans-
formation. Note also in the limit vϕ ¼ 0, the chiral rotation
leaves the Lagrangian unchanged.

III. PHENOMENOLOGY

A. Invisible decay of Z

The mixing between the neutrinos impacts the coupling
of light neutrinos to the Z boson; see Eq. (14). This results
in a modification to the partial decay width of the Z boson

into neutrinos. The invisible decay width of the Z boson has
been measured very precisely, Γexp

inv ¼ 499.0� 1.5 MeV,
while the SM prediction is ΓSM

inv ¼ 501.66� 0.05 MeV
[17]. If we assume only Z → ψ1ψ1 is kinematically
allowed, we would get

Γinv ¼ R4
11ΓSM

inv ; ð25Þ

where R11 is the 1-1 component of the rotation matrix
defined in Eq. (9). This places a 2σ limit on R11 as

R4
11 ≳ 496

501
⇒ R11 ≳ 0.997: ð26Þ

It translates, in terms of Lagrangian parameters, to the
bound

vϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð yffiffi

2
p

g
Þ2v2 þ v2ϕ

q ≳ 0.997: ð27Þ

To get a feel for this constraint, let us take v ¼ 246 GeV
and vϕ ¼ 1000 GeV; we get y=g≲ 0.43.

B. 125 GeV Higgs data

The mixing angle θ changes the coupling of the 125 GeV
Higgs boson to other SM particles. These couplings have
been measured to about 10% accuracy at the LHC. All the
measurements can be parametrized in terms of a coupling
strength modifier,

μfi ¼ σi

σðSMÞ
i

Brf

Br fðSMÞ
; ð28Þ

where i indicates the production cross section channel
of the 125 Higgs boson and f indicates the branching
ratio channel. Using both LHC Run 1 [14] and Run 2
[15,16] data, we deduce the overall best-fit value
for μ ¼ 1.09� 0.07.
In our model, all the Higgs measurements are modified

by the mixing angle, cos θ. Thus, the predicted value of μ is
μ̂ ¼ cos4 θ. Therefore, consistency with the Higgs data
requires jcos θj ≥ 0.9931 at 95% confidence levels.

C. Indirect detection

DM χ can self-annihilate through its interaction with Φ;
see Eq. (5). We give explicit expressions for all the 2-2
annihilation channels of χ in Appendix A. From there, we
see that the annihilations into the SM gauge bosons and
fermions are suppressed by the scalar mixing angle. Thus,
the main annihilation channels for χ are χχ̄ → ϕϕ;ϕh; hh
and χχ̄ → ψψ̄ . The annihilation into a neutrino can be
looked for at neutrino telescopes such as IceCUBE [18].
For annihilations into h and ϕ, they can subsequently
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decays into photons, which can be looked for with gamma-
ray telescopes such as Fermi-LAT [19].

1. Gamma ray

The gamma-ray flux produced from DM annihilation is
given by

dΦ
dEγ

¼ JRscρ
2
sc

8πm2
dm

X
i;j

hσviiBrij
dNj

dEγ
; ð29Þ

where i runs over different scalar annihilation channels, j
runs over different SM final states, Brij is the branching

ratio from the initial state i into the SM final state j, and dNj

dEγ

gives the gamma-ray spectrum from the SM particle j.
Rsc ¼ 8.5 kpc and ρsc are normalization constants intro-
duced to make J dimensionless. Here, Rsc is the distance
between the Sun and Milky Way’s center, ρsc is the DM
density at position of the Sun. The J factor is the typical
average line of sight integral over the DM halo,

J ¼ 1

2Rscρ
2
sc

Z
1

−1
d cos θ

Z
lmax

0

dlρ2ðxÞ; ð30Þ

where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
sc − 2lRsc cos θ þ l2

p
is the distance from the

Galactic Center to the position along the line of sight and
lmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
halo − R2

scsin2θ
p

þ Rsc cos θ is the distance along
the line of sight to the edge of the Galaxy. The integral over
the line of sight gives the value of J ¼ 3.34 for the Navarro-
Frenk-White profile and J ¼ 1.60 for the Burkert profile. In
our analysis, we use the Navarro-Frenk-White profile. One
can easily translate our result to other DM profiles by an
appropriate rescaling of the J factor.
The gamma-ray spectrum coming from the charged-

particle final states can be obtained through computer
simulations. Since we only need a ballpark estimation in
order to obtain the constraint, the spectrum is assumed
to have a power-law relation. However, in our case, the
SM particles j ¼ b; t; u;W�=Z are produced from the
subsequent decay of scalar particles χχ̄ → ϕϕ; hh;ϕh →
jj̄j0j̄0. In the rest frame of the scalar ϕ, (or h), the
4-momenta of the final-state particles are isotropically
distributed. Boosting back to the DM center-of-mass frame,
the energy of the final states Ej ranges between

Eϕ;h
min ¼

mχ

2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mϕ;h

mχ

�
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mj

mϕ;h

�
2

s !

Eϕ;h
max ¼ mχ

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mϕ;h

mχ

�
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mj

mϕ;h

�
2

s !
:

Averaging all possible directions, the differential probability
of finding the SM particle with energy Ej is

�
dP
dEj

�
ϕ;h

¼ 4

πmχ

1

ð1−m2
ϕ;h

m2
χ
Þð1− 4m2

j

m2
ϕ;h
Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−

m2
ϕ;h

m2
χ

��
1−

4m2
j

m2
ϕ;h

�
−
�
1−

2Ej

mχ

�
2

s
:

ð31Þ
Finally, the gamma-ray spectrum in the center-of-mass
frame of the annihilating DM can be written as

�
dNj

dEγ

�
ϕϕ

¼
Z

Eϕ
max

Eϕ
min

dEj

ajE
1=2
j

E3=2
γ

e−bjEγ=Ej2

�
dP
dEj

�
ϕ

;

�
dNj

dEγ

�
hh

¼
Z

Eh
max

Eh
min

dEj

ajE
1=2
j

E3=2
γ

e−bjEγ=Ej2

�
dP
dEj

�
h

;

�
dNj

dEγ

�
ϕh

¼
Z

Eϕ
max

Eϕ
min

dEj

ajE
1=2
j

E3=2
γ

e−bjEγ=Ej

×

��
dP
dEj

�
ϕ

þ
�
dP
dEj

�
h

�
; ð32Þ

where ðaj; bjÞ are power-law parameters, the values of
which can be obtained from the simulation [20,21]. The
values of the parameters are shown to be

ðaj;bjÞ¼ ð1.0;10.7Þ;ð1.1;15.1Þ;ð0.95;6.5Þ;ð0.73;7.76Þ

for bottom quarks, top quarks, up quarks, and gauge bosons
final states.
In the case of light mediator mϕ < mj and mϕ < 2mh,

where ϕ cannot decay into particles outside the SM, the
branching ratios of ϕ is similar to those of the Higgs boson
since ϕ decays through its mixing with the Higgs boson. In
a general case, the ϕ branching ratios can be determined
from its partial decay widths given in Appendix B.
Although sterile neutrinos are unstable and subsequently
decay into SM particles via off-shell ϕ, such decay involves
three-particle final states, at least one of which is a neutrino,
ϕ → νþ SMþ SM. Similarly, the two Higgs final states
subsequently decay into multiple SM particles. The electro-
magnetic showering energy from these channels is there-
fore assumed to be subdominant and irrelevant to our study.
We will further approximate that for each mass range of the
scalar particle the decay is 100% into the largest contri-
bution to the decay width. Therefore, the power spectrum is
chosen according to the final states as

ða;bÞ¼
�ð0.73;7.76Þ; 160GeV≤mϕ;

ð1.0;10.7Þ; 125GeV<mϕ< 160GeV:
ð33Þ

For an illustrative example, let us investigate the gamma-
ray flux from DM annihilation in Eq. (32). For simplicity,
we consider then extreme case in which DM annihilates
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through a single channel and its annihilation cross section is
equal to the thermal relic value. In the case in which DM
annihilates into a pair of h, the gamma-ray flux is shown in
the top pane of Fig. 2. The bottom panel shows the gamma-
ray flux in the case in which DM annihilates into ϕϕ with
mϕ ¼ 500 GeV. We see that for these two extreme cases
the fluxes differ by less than an order of magnitude.
However, in computing the gamma-ray flux for a particular
model parameter point, collectively represented by
(hσviscalar; mχ ; mϕ), one needs to take into account annihi-
lation through all three channels in Eq. (32). We perform
such a computation in Sec. IV.
Let us end this subsection with a remark regarding the

Fermi excess. Because of the high tail behavior of the
excess from the Fermi telescope, the flux from DM
annihilation cannot possibly explain all bins of the excess.
It is possible that some part of the energy range might
originate from other astrophysical sources. In this project,
we will use the excess as the upper limit on the model-
generating flux.

2. Neutrino telescope

The neutrino produced from DM annihilation carries a
definite energy depending on the decay channel,

Eν ¼
(
mχ χχ̄ → νν

4m2
χ−m2

ψ

4mχ
χχ̄ → νψ2; νψ3

; ð34Þ

where we have used ν≡ ψ1 for the lightest neutrino. The
flux is therefore written as

dΦ
dEν

¼ 1

3

JRscρ
2
sc

8πm2
χ

�
hσviννδðEν −mχÞ

þ
X3
i¼2

hσviνψ i
δ

�
Eν −

4m2
χ −m2

ψ i

4mχ

��
; ð35Þ

where we have focused on the electron-neutrino flux only.
The 1=3 factor in the above equation arises from the
assumption that the flavor ratio of neutrinos arriving at
Earth is νe∶νμ∶ντ ≃ 1∶1∶1.
In our analysis, we have reinterpreted the IceCUBE data

for the DM search in our scenario. It turns out that the
annihilation cross section into neutrinos from our model is
less than 10−31 cm3=s, which is well below the recast
IceCUBE limit (approximately 10−24 cm3=s).

D. Direct detection

In the direct detection experiment, the momentum
exchanged between the DM and nucleon is typically much
smaller than the mass of the scalar mediator. Thus, it is
convenient to describe DM-nucleon interaction with the
effective operator. In our model, the effective operator for
DM-nucleon interaction reads

LχN ¼ s2θ

�
1

m2
ϕ

−
1

m2
h

�
χ̄ðGþ iG̃γ5ÞχSq; ð36Þ

where Sq is the scalar current representing the interaction
between the mediator and the quarks inside the nucleon. In
the case in which the momentum exchanged is smaller than
the heavy quarks, the scalar current is given by

Sq ¼
X

q¼u;d;s

mq

v
q̄q −

αs
4πv

Ga
μνGaμν; ð37Þ

where the gluonic term arises from integrating out the
heavy quarks. In the case of heavy DM (mχ ≥ 1 TeV), the
momentum exchanged can be comparable to the charm
mass. For such a case, one needs to take into account the
charm mass threshold effect. However, we will ignore the
charm mass effect in the rest of this work.

FIG. 2. Gamma-ray flux from DM annihilation into hh (above)
and ϕϕ (below).
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The amplitude for DM-nucleon scattering depends on
the Sq nucleon matrix elements. They are conventionally
parametized in terms of the quark and the gluonic form
factors [22]

hNjmqq̄qjNi ¼ mNf
ðNÞ
Tq ;

hNj αs
4π

Ga
μνGaμνjNi ¼ −

2

9
mNf

ðNÞ
TG : ð38Þ

The gluonic form factor is related to the quark form factors
by the QCD trace anomaly in the heavy quark limit [23]

fðNÞ
TG ¼ 1 −

X
q¼u;d;s

fðNÞ
Tq : ð39Þ

Thus, the nucleon matrix element of the scalar current is

fN ≡ hNjSqjNi ¼ 2

9

mN

v

�
1þ 7

2

X
q¼u;d;s

fðNÞ
Tq

�
: ð40Þ

For numerical analysis, we take the strange quark form

factor to be fðpÞTs ¼ fðnÞTs ¼ 0.043� 0.011 [24]. We extract
the up and the down quark form factors from the
pion-nucleon sigma term, σπN , using the relations
provided by Ref. [25]. However, there is a discrepancy
between the values of σπN extracted from the scattering data
using baryon chiral effective theory and the lattice compu-
tation. We follow Ref. [26] and conservatively take
σπN ¼ 50� 15 MeV. Thus, we determine the u and d
quark form factors to be

fðpÞTu ¼ð1.8�0.5Þ×10−2; fðnÞTu ¼ð1.6�0.5Þ×10−2;

fðpÞTd ¼ð3.4�1.1Þ×10−2; fðnÞTd ¼ð3.8�1.1Þ×10−2:

ð41Þ

Therefore, to a good approximation, the nucleon matrix
elements, Eq. (40), for the proton and the neutron are the
same hpjSjpi ≃ hnjSjni.
Armed with the DM-nucleon matrix element, we deter-

mine the spin-average DM-nucleon scattering amplitude
squared, in the zero momentum transferred limit, to be

jMj2 ¼ 4f2NðG2 þ G̃2Þs22θm2
Nm

2
χ

�
1

m2
ϕ

−
1

m2
h

�
2

: ð42Þ

Finally, we determine the DM-nucleon scattering cross
section to be

σχN ¼ f2NðG2 þ G̃2Þs22θ
4π

m2
χm2

N

ðmχ þmNÞ2
�

1

m2
ϕ

−
1

m2
h

�
2

: ð43Þ

The current upper limit is reported by the XENON1T
Collaboration [27].

IV. RESULTS

We approach the phenomenology of the model by
scanning parameter space subjected to all constraints.
We first consider the mass scale from the following
random sets:

M;mϕ;vϕ ∈ ½102;106�GeV; jcosθj∈ ½0.9931;1�: ð44Þ

Then, we calculate the couplings in the scalar sector using
Eq. (21). Demanding that all couplings are perturbative, we
apply the constraints on λϕ; λh; λϕh < 4π. The next step in
generating a set of parameters is to consider the neutrino
sector. The set of parameters ðy; gÞ is generated from the
following range:

y; g ∈ ½10−3;
ffiffiffiffiffiffi
4π

p
�: ð45Þ

The constraint on the Z invisible decay width from Eq. (27)
is then applied to the parameter set. Finally, the rest of
parameters are chosen as follows:

G; G̃ ∈ ½10−3;
ffiffiffiffiffiffi
4π

p
�; μN ∈ ½10−10; 10−7� GeV: ð46Þ

After we obtain the complete set of model parameter
space, the mass spectrum of the theory is then calculated
from Eqs. (8), (18), and (23). The DM annihilation cross
sections are computed using the expression given in
Appendix A. Then, the neutrino mass limit is applied
(mν < 0.2 eV). Next, we use Eq. (29) to produce gamma-
ray flux for each point of the set. Then, we impose the
excess reported by Fermi-LAT Collaboration as the upper
limit for the flux from DM annihilation [19]. Note that from
Fig. 3 the gamma-ray constraint has a clear impact on the

FIG. 3. Cross section for DM annihilation into a pair of Higgs
bosons consistent with constraints from the light neutrino mass
limit, the invisible Z decay width, the 125 GeV Higgs data, and
the Fermi gamma-ray excess.
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annihilation cross section into two Higgs final states as
expected since the branching ratio of the scalar mediator to
the SM particles is often found to be too small.
The total DM annihilation cross section of the remain-

ing parameter points are shown in Fig. 4, in which the
thermal relic density hσvitotal ¼ 2.5 × 10−26 cm3=s is
shown as the red line. To prevent the Universe from
being overclosed, we impose the constraint hσvitotal >
2.5 × 10−26 cm3=s. Finally, we calculate the DM-nucleon
scattering cross section on the remaining parameter
points using Eq. (43). In Fig. 5, the result is shown
together with the upper limit reported by the XENON1T
Collaboration.

V. SUMMARY AND OUTLOOK

In this work, we consider a class of models in which the
neutrino mass can be explained by the inverse seesaw
mechanism. The smallness of the active neutrino mass is
achieved through the dynamical Majorana mass of two
additional sterile neutrinos. The extra scalar field is con-
nected to the DM sector, giving a strong connection
between the neutrino and DM.
We have identified the viable parameter space of the

model consistent with constraints from the light neutrino
mass limit, the invisible Z decay width, the 125 GeV Higgs
measurements, and the Fermi gamma-ray excess. We find
that the Fermi gamma-ray excess places a strong constraint
on the DM annihilation to a pair of Higgs bosons. However,
a large chunk of parameter space still remains open, as can
be seen in Fig. 5. These parts of parameter space could be
probed by the next generation of direct and indirect
detection experiments. It is interesting to study the sensi-
tivities of the upcoming direct detection experiments such
as LZ and XENONnT as well as indirect detection experi-
ment such as the Cherenkov Telescope Array on this
model. We leave such study for possible future work.
Finally, we want to remark that our model is not yet fully

realistic in the sense that it only contains one massive light
neutrino. However, one can easily extend the model by
introducing an additional pair of sterile neutrinos and a
flavor symmetry. We do not expect it to have a significant
impact on DM phenomenology, which is the main goal of
the paper.
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APPENDIX A: ANNIHILATION
CROSS SECTION

The DM annihilation cross section into a pair of SM
fermions and gauge bosons is

hσviWW ¼ ðG2β2χ þ G̃2Þs22θ
64πv2

�
1 − rW þ 3

4
r2W

�

× βW

�
s

s −m2
h

−
s

s −m2
ϕ

�
2

; ðA1Þ

FIG. 4. Total DM annihilation cross section consistent with
constraints from the light neutrino mass limit, the invisible Z
decay width, the 125 GeV Higgs data, and the Fermi gamma-ray
excess. The red line is the thermal relic annihilation cross section.

FIG. 5. DM-nucleon scattering cross section consistent with
constraints from the light neutrino mass limit, the invisible Z
decay width, the 125 GeV Higgs data, the Fermi gamma-ray
excess, and freeze-out production. The red line is the upper bound
from XENON1T.
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hσviZZ ¼ ðG2β2χ þ G̃2Þs22θ
128πv2

�
1 − rZ þ 3

4
r2Z

�

× βZ

�
s

s −m2
h

−
s

s −m2
ϕ

�
2

; ðA2Þ

hσviψ̄ψ ¼ ðG2β2χ þ G̃2Þs22θ
32π

m2
ψsβ3ψ
v2

×

�
1

s −m2
h

−
1

s −m2
ϕ

�
2

; ðA3Þ

where rx ¼ m2
x=s and βχ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

χ

s

q
. The cross

section for DM annihilating into a pair of scalar bosons
is given by

hσvihh ¼
β2χG2 þ G̃2

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
h

m2
χ

s �
4mχGs2θ
2m2

χ −m2
h

−
sθλhhh

4m2
χ −m2

h

−
cθλϕhh

4m2
χ −m2

ϕ

�
2

; ðA4Þ

hσviϕϕ ¼ β2χG2 þ G̃2

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
ϕ

m2
χ

s �
4mχGs2θ
2m2

χ −m2
ϕ

−
sθλϕhh

4m2
χ −m2

h

−
cθλhhh

4m2
χ −m2

ϕ

�
2

; ðA5Þ

hσvihϕ¼
β2χG2þ G̃2

16πm2
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

�
m2

h

4m2
χ
;
m2

ϕ

4m2
χ

�s

×

�
8mχGsθcθ

4m2
χ −m2

h−m2
ϕ

−
sθλϕhh

4m2
χ −m2

h

−
cθλhϕϕ

4m2
χ −m2

ϕ

�
2

;

ðA6Þ

where λðx; yÞ ¼ 1þ x2 þ y2 − 2x − 2y − 2xy is the phase
space factor and

λhhh ¼ −
6s3θðm2

ϕc
2
θ þm2

hs
2
θÞ

vϕ
−
6c3θðm2

hc
2
θ þm2

ϕs
2
θÞ

v

−
ðm2

ϕ −m2
hÞcθsθ

vvϕ
ð3vϕc2θsθ þ 3vcθs2θÞ; ðA7Þ

λϕhh ¼−3s2θ
�
m2

ϕ

�
cθs2θ
vϕ

þc2θsθ
v

�
þm2

h

�
c3θ
vϕ

þ s3θ
v

��

−
ðm2

ϕ−m2
hÞcθsθ

vvϕ
ðvϕc3θþ2vc2θsθ−2vϕcθs2θ−vs3θÞ;

ðA8Þ

λhϕϕ ¼ −3s2θ
�
m2

ϕ

�
c3θ
vϕ

þ s3θ
v

�
þm2

h

�
cθs2θ
vϕ

þ c2θsθ
v

��

−
ðm2

ϕ −m2
hÞcθsθ

vvϕ
ðvϕs3θ − 2vcθs2θ − 2vϕc2θsθ þ vc3θÞ;

ðA9Þ

λϕϕϕ ¼ −
6c3θðm2

ϕc
2
θ þm2

hs
2
θÞ

vϕ
þ 6s3θðm2

hc
2
θ þm2

ϕs
2
θÞ

v

−
ðm2

ϕ −m2
hÞcθsθ

vvϕ
ð3vϕcθs2θ − 3vc2θsθÞ: ðA10Þ

Finally, the annihilation cross sections into neutrinos are
given by

hσviψ iψj
¼ β2χG2 þ G̃2

16π

�
sθyhij
s −M2

h

þ cθyϕij
s −M2

ϕ

�
2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ðmi þmjÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

�
m2

i

s
;
m2

j

s

�s
; ðA11Þ

where

yhii ¼
yffiffiffi
2

p cθR1iR2i þ gsθR2iR3i; ðA12Þ

yϕii ¼
−yffiffiffi
2

p sθR1iR2i þ gcθR2iR3i; ðA13Þ

yhij ¼−
1ffiffiffi
2

p ycθðR1iR2jþR1jR2iÞ−gsθðR2iR3jþR2jR3iÞ;

ðA14Þ

yϕij¼þ 1ffiffiffi
2

p ysθðR1iR2jþR1jR2iÞ−gcθðR2iR3jþR2jR3iÞ:

ðA15Þ

APPENDIX B: DECAY WIDTH

We discuss the decay width of the scalar mediator in this
section. Because of mixing in the scalar sector, the decay
width of ϕ into the SM particles takes the form

Γðϕ→VVÞ¼ sin2θ
32π

m3
ϕ

v2
δV

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4x

p
ð1−4xþ12x2Þ; ðB1Þ

Γðϕ → f̄fÞ ¼ Ncsin2θ
8π

mϕm2
f

v2
β3f; ðB2Þ
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where V ¼ W, Z, δW ¼ 2, δZ ¼ 1, x ¼ m2
V=m

2
ϕ, and

βf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

m2
ϕ

r
. The decay width to neutrinos can be

obtained straightforwardly:

Γðϕ → ψ iψ jÞ ¼
1

32π
y2ϕij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ðmi −mjÞ2
q

λ

�
m2

i

s
;
m2

j

s

�3=2
:

ðB3Þ

Finally, for a sufficiently heavy ϕ, it can decay into two
Higgs bosons,

Γðϕ → hhÞ ¼ 1

32π

λ2ϕhh
mϕ

�
1 −

4m2
h

m2
ϕ

�
1=2

: ðB4Þ
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