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Even though the Standard Model (SM) of elementary particle physics is very success-
ful in explaining countless microscopic phenomena, it is still not the ultimate theory of
everything we have been seeking for. So far we witness several drawbacks of the SM,
for example, the neutrino masses, Dark Matter (DM), dark energy, Baryon Asymmetry
of the Universe (BAU) and the SM anomalies. Especially, the long standing issue of
DM of the universe which has been well-established by multiple cosmological observa-
tions and constrained by several ground-based experiments. Additionally, the recent
experiment on muon g, — 2 by the Fermilab National Accelerator Laboratory (FNAL)
has precisely measured the anomalous magnetic moment of the muon and implies a 50
tension between SM prediction and experimental results. In this thesis, we have intro-
duced a new mechanism to connect the SM and dark sector through a fermionic portal.
This class of model extends the SM gauge group with a new SU(2)p x U (1)%,12}’&1 group
while all SM particles are neutral with respect to the additional groups. Two of the new
gauge bosons (VL()*)) form a complex gauge boson and carry U (1)%};1031 charge. Thus,
they can play a role as a DM candidate for this class. Moreover, two generic Vector
Like (VL) fermions are introduced to mediate the interaction between the SM and dark
sectors equipping us the opportunity to study the DM dark matter phenomenology at
collider and non-collider environments. The origin of masses for new degrees of freedom
is provided by the interaction with an additional complex scalar doublet (®p) through
the spontaneous breakdown of the SU(2)p x U(l)%}gbal into U(l)ng;bal when the scalar
®p acquires the Vacuum Expectation Value (VEV). The residual symmetry U(l)g(;m1
acts as a stabiliser of the DM candidate of the model. The key feature of this model
is the Higgs portal to dark sector is not necessarily required but the connection to SM
sector is induced by new Yukawa terms between SM and VL fermions, hence the title —
the Vector Dark Mater with Fermionic Portal (FPVDM). The FPVDM model suggests
numerous phenomenological implications for collider and non-collider studies. In this
thesis, we will discuss only two scenarios from this class: the top quark and muonic

portal scenarios, as presented in chapter 3 and 4, respectively.
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In chapter 3, we discuss in detail a realisation with VL top quark partners (TPVDM),
assuming no mixing between the two physical scalars of the theory, the SM Higgs boson
and its counterpart in the dark sector. The material presented in this chapter is based
on the publications [1, 2]. In collider phenomenology point of view, it predicts multiple
interesting signatures that a complete set of signatures is presented in table 3.1. These
are mono-jet from initial state radiation (ISR) or from loop, tt + E%iss, 4-top quarks,
and the production of AV’ and V'V’. The VL Zs-odd partner tp could be long-lived
and leaves a charged track by decaying into the DM and the SM quarks and/or leptons.
In addition, the new gauge boson V' could also be long-lived if its mass is below tt
threshold and decays into a pair of bb via a loop diagram. The cosmological bounds
(relic abundance, direct and indirect detection) play a vital role in constraining the
parameter space of the model. Especially, the direct detection limit which is absent at
tree level. However, at loop level, it leads to a crucial constraint based on the triangle

loop of DM-DM-Z/~. The generic formulas for these triangle loops are present here.

In addition, we also explore the possibility to apply the FPVDM framework to explain
the muon anomalous magnetic moment or the so-called g, — 2 and the DM at the same
time where we assume the existence of VL muons pp and p’. This scenario is referred
to as the MPVDM and will be a topic of chapter 4 which is based on upcoming article
entitled “The muon anomalous magnetic moment g, — 2 from the Fermionic Portal to
Vector Dark Matter” [3]. Like the TPVDM, we are not considering the Higgs portal in
this study. The interplay between cosmological and g, — 2 constraints plays a crucial
role in limiting the parameter space of the MPVDM. We found that the allowed region
appears on the resonance position of new scalar Hp. Moreover, the collider constraints
from LHC data according to pp — putpu~ + E%liss searches set up the lower limits on
the VL muon masses around 700-800 GeV depending on the parameter space. Several
interesting signatures are predicted with 6-10 leptons in the final state. We also provide
benchmarks which are allowed by g, —2, cosmological and collider constraints for testing

the model in future.
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Chapter 1

Introduction

In this chapter, we review a short summary of the Standard Model (SM) in section
1.1. Also, the elementary cosmology is briefly discussed in section 1.2 which includes
the thermodynamics of the early universe and the Boltzmann equation. In section 1.3,
we give a brief introduction to the Dark Matter (DM) of the universe including the
relic density, (in)direct detection and collider constraints. In the last section 1.4, the
anomalous magnetic moment of muon, so-called the muon g, — 2, is considered in both

experimental and theoretical aspects.

1.1 The standard model of particle physics

The Standard Model (SM) of particle physics is one of the most successful theory in
physics which can successfully explain microscopic phenomena at fundamental level.
The theory has been developed based on quantum field theory (QFT) [4, 5, 6] which is
a theoretical framework of physics relying on three principles: 1) theory of classical fields,
2) quantisation and 3) special relativity. According to QFT, a particle is interpreted
as an excited state of the corresponding quantum field. All fundamental particles have

their underlying quantum fields and they interact with each other through force carriers.

Apart from those three principles, the SM is constructed based on the SU(3).xSU(2), x
U(1)y symmetry group which is a very crucial part of the theory because it governs
how particles interact with each other. The elementary particles in the SM contains a
scalar with spin-0 at the Electro-Weak (EW) scale, fermions with spin-1/2 and gauge
bosons with spin-1. At the EW scale, the only one scalar in the SM is called the
Higgs boson which gives masses to other particles through a process of spontaneous
symmetry breaking. The fermions can be divided into leptons and quarks — according to
whether they feel strong interaction or not. Leptons can have electromagnetic and weak

interactions while quarks can additionally interact through strong nuclear force. The
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gauge bosons are also elementary particles that mediate interactions amongst particles,
sometimes we call them the mediators. All interactions have their own mediators or the

corresponding gauge bosons, except for the Yukawa interactions.

The three fundamental forces or interactions such as electromagnetic, weak and strong
forces can successfully explained by the SM theory — except for gravity which is suc-
cessfully explained by Einstein’s general relativity. These forces have their own force
carriers or mediators. The mediator of electromagnetic, weak and strong interactions
are called photons, Z and W bosons and gluons, respectively. Within the framework of
the SM, a minimal set of fermions is comprised of siz leptons (three charged leptons and
three neutrinos) and eighteen quarks (there are six flavours of quarks and each of them
has three colours) which implies six anti-leptons and eighteen anti-quarks. The neutral
leptons only carry weak quantum numbers, while the charged leptons can carry both
electromagnetic and weak quantum numbers. Unlike leptons, quarks and anti-quarks

additionally carry colour charge, a quantum number for strong interaction.

In addition. the symmetry is also a central part of the SM which is intimately related to
a group theory. The most simplest symmetry group is an Abelian group U(1) endowed
with only one generator of identity matrix. A more complicated symmetry group such as
SU(3) and SU(2) is called a non-Abelian group. For any SU(N) group, there are N2 —1
generators. According to gauge theory of particle physics, the number of generators of
a theory corresponds to the number of gauge bosons. A generator of a group can be
represented in various forms but the most familiar one in SM is either the fundamental
or adjoint representations. For gauge field theory, every generator has the corresponding
gauge boson field that plays a role as a mediator of the interaction. Therefore, SU(3).,
SU(2)r, and U(1)y symmetry groups respectively contains eight gluons, three weak and
one hypercharge gauge bosons. The labels ¢ and Y are the corresponding quantum
numbers for colour and hypercharge that identify the particle properties in the SM.
However, the label L on the SU(2) is not the quantum number but it indicates that
the left-handed particles transform as a doublet under SU(2)y.

As mentioned before that there exist six leptons in the SM, three of them are electrically
charged leptons and other three are their corresponding neutrinos. A left-handed charged
lepton and a neutrino form a doublet under SU(2), giving us three left-handed doublets
or three generations of leptons: (ve,e)t, (v,, )T and (v, 7)T. However, right-handed
charged leptons (eg, ur, 7r) transform as a singlet under SU(2);. There are no right-
handed neutrinos in the SM. Since they do not interact via the strong interaction they
have no colour charge. Like leptons, left-handed quarks also transform as a doublet under
SU(2), group and they form three generations or doublets: (u,d)%, (¢,s) and (¢,6)F
whereas all right-handed quarks transform as a singlet. The SM particles, masses and
their corresponding quantum numbers under SU(3). x SU(2)r x U(1)y are succinctly

summarised in table 1.1 for future reference.
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Field Symbol Spin SU(3). SU(2)L Ul)y
v, % 1%
b= .,(™] .| 3 1 2 -3
Leptons ( e i -
L L L
= er, r, TR i 1 1 -1
N c t 1 1
Quarks d L s L b L
Uf = UR, CR, R 3 1 Z
dl, = dr,sg,br i 1 -1
Hypercharge boson B, 1 1 1 0
Weak bosons W,f = I/Vﬁ, W37 I/Vg’ 1 1 3 0
a _ (1 2 8
Gluons G#—GH,GW...,GM 1 8 1 0
+
Higgs boson = ¢ 0 1 2 %
¢1 +ig2

TABLE 1.1: The particles in the SM with their corresponding quantum numbers in
gauge basis.

In addition, one of the most important components in the SM is the Higgs boson which
interacts with all massive particles. When symmetry group of the SM breaks from
SU3)e x SU((2)r, x U(1)y to SU(3). x U(1)g due to the spontaneous symmetry break-
ing [7], Higgs boson will gives masses to other particle. This process is called the Higgs

mechanism [8]. We will discuss this topic to some extent in section 1.1.3.

1.1.1 The SM Lagrangian and its particle content

As mentioned before, QFT relies on three fundamental elements. The first is the theory
of fields which we assume that the universe is filled out with several quantum fields
corresponding to fundamental particles. Thus, instead of finding the equation of mo-
tion of particles here, we consider the equation of motion of fields. The second is the
quantisation principle which we promote a corresponding field to an operator satisfying
the commutation relation between the field ¢;(x) where i = 1,2, ...,n and its associated
momentum conjugate 7(z) = L/ a@(:z;) Here £ is the Lagrangian of a system and
bi = O¢; /Ot. The last one is the principle of special relativity which implies that the
Lagrangian of a system must be invariant under Lorentz transformation — the rotation
and boost transformations. This means that the QFT Lagrangian describing a system
of interest must obey all of these principles. However, some theories can also have gauge
symmetries in addition to the Lorentz symmetry. For example, apart from the Lorentz

invariance, the SM also satisfies the gauge symmetry of SU(3).x SU(2)r, x U(1)y group.
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Quantity

Symbol

Value

Fermi Constant

Gr

1.166 378 7(6) x 1075 GeV—2

weak-mixing angle sin? Oy (MS) 0.231 22(4)
strong couple constant at mz ag(mz) 0.1181(11)
fine-structure constant at myy a(mi,) 1/128
Higgs boson mass my 125.18(0.16) GeV
Higgs decay width Iy 3.21%2 MeV
W* boson mass my 80.377(0.012) GeV
W decay width Ty 2.085(0.042) GeV
Z boson mass myz 91.1876(0.0021) GeV
Z decay width Ty 2.4955(0.023) GeV
top quark mass me 172.69(0.30) GeV
top quark decay width Iy 1427012 GeV
bottom quark mass mp(mp) 4187008 GeV
charm quark mass me(me) 1.27(0.02) GeV
strange quark mass ms(2 GeV) 93.475¢ MeV
up quark mass my(2 GeV) 2.1675:00 MeV
down quark mass mq(2 GeV) 4.677048 MeV
tau mass mr 1776.86(0.12) MeV
muon mass my 105.6583755(0.0000023) MeV
electron mass Me 0.51099895000(0.00000000015) MeV

TABLE 1.2: Some of the measured values of the SM parameters [9]. The number in

the bracket indicates the uncertainty.

For the SM, the Lagrangian invariant under Lorentz symmetry and SU(3). x SU(2)1, %
U(1)y group is given by
1 v 1 7 nz 1 a apy
£SM - — EBNVB - ZWMVW - ZGNVG
+ Ly PLY + iRl +iQ1 QY + iuhPul, + idy Pk
—I —I —I =
—~Y/L, otk - Y7 Q,®d% — VI QLdul + hec.
T (D) (D1 - V(@), (1)

where the indices i, j, £ on the weak gauge bosons running over 1,2,3 corresponding to
the number of SU(2) generators. The indices a, b, ¢ ranges from 1,2,...,8 indicating the
number of SU(3) generators. However, the indices I,.J, K on quarks or leptons also
runs over 1,2,3 but they identify the number of fermion generations which we have three

generations for the SM fermions.
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The first line of Eq.(1.1) describes the kinetic term of U(1)y, SU(2)r, and SU(3). gauge

fields, respectively, and they are defined as follows

By = 8,B, — 8,B,, (1.2)
Wi, = 0,W, — 0,W;, + g * Wiw}, (1.3)
G%, = 9,G% — 9,G% + g, [ GGE. (1.4)

where g and g5 are called the weak and strong coupling constants, respectively. The field
strength tensors in Eqgs.(1.2), (1.3) and (1.4) imply that the non-Abelian gauge fields
are allowed to interact with themselves because they carry their own charges. This does
not hold for B, or an Abelian field. Even though we call them the kinetic terms, they
also describe the interaction amongst themselves. The €% and f%° are the structure
constants of SU(2) and SU (3) group which are defined through the commutation relation

of their generators

[Ti,Tj} = bk, (1.5)

[t9, %] = i fo*ete, (1.6)
and these generators are normalised with respect to
i.J 1 i arb 1 ab
Tr{r'r’} = 5(5], Tr{t"t’} = 55 , (1.7)

where 7! = 0%/2 and t* = \%/2 are the generators of SU(2) and SU(3), respectively. Tr

is a trace. The ¢ and A® are called the Pauli and Gell-man matrices given by

N (I Y
1 0 1 0 0 -1

and

010 0 —i 0 1 0 0
M=1]100], X=]i 0 o], M=|o -1 o],
000 0 0 0 0 0 0
00 1 0 0 —i 000
XM=1loo0 o0, X=]Joo0o o], XN=|o o 1],
1 0 i 0 0 010
00 0 110
M=100 —i|, X\ 7 01 0]. (1.9)
0 i 0 0 0 —2

The second line of Eq.(1.1) contains only the kinetic terms of the SM fermions. Since the
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SM is a chiral theory meaning that the left- and right-handed fields transform differently
under the SM gauge group, we use a symbol L for a collection of three left-handed
lepton doublets and Qi for three left-handed quark doublets. On the other hand, we
use uf% and df,z for a collection of three right-handed up-type and down-type quarks,
respectively. Also, E{% is for a collection of three right-handed charged leptons. There is
no right-handed neutrinos in the SM framework since at the time the electroweak theory
was formulated it was believed that neutrinos are massless particles. However, this is
not the case. Due to observations of neutrino oscillations, it implies that neutrinos are
actually massive. In addition, the symbol 1§ = v#D,, is called the covariant derivative
which is contracted with Dirac gamma matrices v* where p is a spacetime index running

over 0-3. The Dirac gammas in the chiral representation are given by

I 0 0 o 0 I
0 k - 01,23
= ) = , =1 = , 1.10
gl (0 I) g ( ok 0) V5=V (I O) ( )

where [ is a 2 x 2 identity matrix. In principle, a 4-component Dirac spinor can be

separated into two chiral spinors (left- and right-handed components) as

b= <z;> , (1.11)

where left- and right-handed chiral fermions are defined by ¢ = Prv and ¢¥r = Pry)
with P, = (1 —5)/2 and Pg = (1 + 75)/2 where the P;, and Pg are left and right
chirality projection operators. The covariant derivative describes the interaction between
the gauge bosons with other particles if those particles carry charges related to the

corresponding symmetry group. For the SM, the generic covariant derivative reads
Dy = 8, —igst®G% — igr'W), —ig'Y B,1, (1.12)

where 0, = 0/0x* and g’s are the gauge couplings. The Y is called the hypercharge and
1 is the 2 x 2 identity matrix. However, this covariant derivative is not the same for all
SM fields. For example, the explicit form of covariant derivative for the Higgs doublet

can be seen in section 1.1.3.

The third line of Eq.(1.1) is called the Yukawa terms in which they describe the interac-
tion of fermions with the Higgs field where Yy, Yy and Y,, are called the Yukawa couplings
for charged leptons, up-type and down-type quarks, respectively. The Higgs field is the
only scalar in the SM and gives masses to all particles (except for neutrinos) in the SM
the so-called Higgs mechanism which undergoes the spontaneous symmetry breaking
of the SM gauge group. We will discuss the Higgs mechanism and the spontaneous

breakdown of the SM symmetry later in this chapter.

The last line of Eq.(1.1) describes the dynamics of the Higgs fields where the first ex-

pression is the kinetic term (see the explicit form of D,, in section 1.1.3) and the second
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one is called the scalar potential which is given by
V(®) = 120D + A(®TD)?2, (1.13)

where ® is the SM Higgs doublet. p and A are, respectively, the quadratic and quartic
couplings. Also, the quartic coupling has to be positive, otherwise the potential is not

bounded from below at large ®T®.

1.1.2 The quantum chromodynamics (QCD)

In this section, we discuss the theory of strong interaction based on SU(3). which de-
scribes the behaviour of hadrons — particles made up of quarks — and gluons. Both
quarks and gluons carry the quantum number associated with the strong interaction
which is called the colour charge as a label of SU(3). Normally, we use red, green and
blue to distinguish each colour of quarks and anti-red, anti-green and anti-blue for anti-
quarks. Quarks(antiquarks) and gluons transform as a triplet 3 (3) and octet 8 under
this group, respectively. Generically hadrons can be categorised into different groups
depending on a number of particles forming them, for example, mesons (made up of a
pair of a quark and an antiquark) and baryons (made up of three quarks). In the SM,
we have 6 quarks and each quark has 3 colours. This means that we have 18 quarks in
colour space. The gluons are massless particles because the SU(3). is not broken. The

Lagrangian of the quantum chromodynamics is given by
1 a apv ~—7 J
E = —ZGMVG + q IDUCI ) (114)

where G, is defined in Eq.(1.4), ¢ = u,d, ¢, s,t,b, the covariant derivative is (D,)i; =
Oubij—igs(t*)ijGy,. Here the indices i, j, k, ... represents the colour index running over 1-3.
The 6;; is the Kronecker delta function and t* generators in fundamental representation

are given by Eqgs.(1.6) and (1.9). A quark and an antiquark field in colour space can be

written as
qred qanti—red
q= qgreen , q= qantl-green , (115)
qblue qanti—blue

where ¢ stands for a quark flavour u, d, ¢, s, t, b.
The QCD Lagrangian Eq.(1.14) is invariant under the gauge transformation

qi(x) — exp (i0%(z)t3;)q; (),

taGZ(CII) N ei&“(x)tataGZ(:U)efiea(x)ta + * <8,uei0a(:p)t“> efiea(a:)t“7 (116)

s
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where 6% is the parameter corresponding to the SU(3). generators. The generator ¢* in
the first and second line of Eq.(1.16) are in the fundamental and adjoint representation,

respectively.

1.1.3 The EW sector

The Higgs mechanism is used to describe the origin of the particle masses in the SM. It
happens through a process of spontaneously symmetry breaking where the electroweak
(EW) group SU(2), xU(1)y breaks down into U(1)g where @ is the electric charge in the
unit of |e|. The breakdown of the SM symmetry occurs because the Higgs field acquires
the non-zero VEV where the symmetry of the Lagrangian is not that of the vacuum
state of the Higgs field. In the SM, the Higgs is a complex scalar field transforming
as a doublet of SU(2)r, x U(1)y. Generically, we can write it with four real degrees of

ot 1 (o1 +ige
o = = — . 1.17
<¢O> V2 <¢3 + i¢4> (.17)

The superscript on ¢ indicates the electric charge and it is consistently determined by

freedom as

the interaction with other particles. For example, the Yukawa term of a lepton doublet.

By minimising the scalar potential in Eq.(1.13), we found that

2
(@0 = (63 + 63+ 63 + 03) = — - =%, (1.18)

where ®g represents the configuration that minimises the scalar potential and v is the
VEV of SM Higgs. Since ¢; and ¢2 combine to form a charged state and they cannot
acquire the VEV, otherwise they would give mass to photon. In addition, for real v, the
¢4 cannot get the VEV because it would generate the complex masses in Yukawa terms.

With this argument, the ® can be recast into

wE
®= \}5 (U—\i—/fl—i—iz) (1.19)

The h is called the Higgs boson and w® and z are the Goldstone bosons [10, 11, 12]

which describe the longitudinal component of the W+ and Z boson, respectively.

The Lagrangian of Higgs field

As described near the end of section 1.1.1, the dynamics of the scalar field ® can be

explained by the Lagrangian

Locatar = (D, @)1 (DFD) — V(D). (1.20)
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It is also explained that if 2 in Eq.(1.13) is positive the VEV of SM Higgs is zero and
we cannot generate the mass of particles through the spontaneously symmetry breaking
mechanism. To get a non-zero VEV, the p? needs to be negative or equivalently the

potential needs to be rewritten as
V(D) = —p20Td 4+ \(DTd)2, (1.21)
with positive ;2. This scalar Lagrangian is invariant under the gauge transformations:
® — exp (ia'(z)7" +iB(7)Y)® (onfundamentaltransformation),
B, — By - gl/auﬁ(fv),

TZW; N eiai(x)TiTiW/ie—iai(x)Ti + 1 (aueiai(x)ﬂ) e—iai(x)'ri’ (122)
g

where a(z) and §(z) are the parameter of the gauge transformation related to SU(2)r,
and U(1)y. The first term of Eq.(1.20) will provide masses of gauge bosons which we

will discuss later.

Let us minimise the scalar potential by doing derivative of Eq.(1.21) with respect to ®

and set it to be zero

o
Il

= v(—p® + ). (1.23)

wE,z,h=0

QJ‘QJ
& <

There are two solutions corresponding to the above equation

12
v =0 and vy ==+ P (1.24)

For the second derivative of the scalar potential, it implies that

2
(,)ZT‘;P = 12+ 4rdT®. (1.25)

If () = vy, it gives the local maximum and for (®) = vy it gives the local minimum.

With the scalar Lagrangian in terms of component fields

1 1
Lscalar = uw_auw—i_ + 5(%28“2 + iauhﬁuh

+ 2 (wmwT + 0® 4 20k + B 4 22) — MwTwT + 0% 4 20k + h% 4 22)?, (1.26)
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we can find the mass of scalar fields by computing second derivative of the potential

with respective to the corresponding field

, OV

= — = 2)w?
" oh? wE z,h=0 o
0%V
2
= —F =0 1.27
Tt = Gt ow- wE o heo (1:27)
2
m? = —8 v =0.
: 0z? wt,z,h=0

Clearly, the Goldstone bosons for W= and Z bosons are massless particles. The mass
of Higgs boson is given by mpg = vV 2\v2.

FiGURE 1.1: Higgs potential as a function of ®.

Gauge boson mass
Additionally, the masses of weak gauge bosons can also be computed. Let us consider

the kinetic term of the scalar doublet with hypercharge Y = 1/2 in Eq.(1.20) by keeping
only the VEV for simplicity, one has

- 1 1 {0
D,®* = —igr'W? —ig'=B,1 | —
D <a“ T T g ) 2 <v>

p p
1 v?
=57 [92(Wﬁ)2 +92(W3)2 + (_QWj’ +Q/Bu)2] . (1.28)

We see that W' and W? are degenerate in their masses. These particles can be redefine

to form the W= bosons as follows

(WlFiwh. (1.29)



1.1. The standard model of particle physics 11

Notice that in gauge basis W3 and B bosons mix and the mass term is given by
2 2 / W3
=T, = v g —99
cmas — TG =2 <W3 B) . (1.30)
gauge 4 _ggl gl2 B

This mass matrix has two eigen values: A\; = 0 and Ay = v%/g2 + ¢’2/2. To diagonalise

the mass matrix, assume that the relation between the mass and gauge basis reads

G = R(6w)G, (1.31)

where

Z —si ~ 3
G (Z4) . Ry = (0 —sinbw) a (Wi (1.32)
Ay sinfy  cos Oy B,

Here 0y is the so-called Weinberg angle. Thus, the mass term becomes

mass T - ~T
LEss =G MG = GT MaingG = G R(0w)" MR(0w)G, (1.33)

with

2. /g2 2 /4
Mdiag = (U g 0+g / O) . (134)

0
By solving Eq.(1.33), we get the relation between gauge and mass basis given by

ZH gWi _g/BH)7

VP +y

We find the relation between sin Oy (cos ) and gauge coupling as the following:

Ay

L
/gQ+gl2
1
/2(

g W3+ gBy). (1.35)

/

g

g .
cosby = ———, sinfyy = ——. (1.36)
/92 _|_g/2 /92 _|_g/2
By substituting Eqgs.(1.29), (1.35) into (1.28), we have
R KT 2 12\ 2

Now we see that W' and W? fields form a complex vector field W*. Moreover, the B,

and W? are not the mass eigen states and can be rotated to their mass eigen state by
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Eq.(1.31). At the end, the masses of SM gauge bosons read

my+ = %v, (1.38)
2 12

my = gfwv, (1.39)

ma = 0. (1.40)

Also, the covariant derivative can be written in mass eigen basis as follows

. . g + — = . 1 23 12

D,=0,—i1—=—=W/TT+W_ T7)—i Z T° —g°Y
Iz [z \@( M H ) 92—1—9’2 l‘(g 9 )
g9 3
i 99 A (TP Y,
/92 _|_g/2 ®
. 9 — . g . .
= a/‘ — ZE(W;T-F + WH T ) — ZMZN(TE} — Sln2 HWQ) — ZeAuQ, (141)

where TF = 71 + 472, In the last line, we use the fact that

Q=T2+Y, (1.42)
/
e=—99 (1.43)
/92 +g/2
e
= . 1.44
g sin Oy ( )

The electron’s charge e is a well-measured quantity and is related to the fine structure
constant e = v4mwa given in table 1.2. Morever, we can write the mass ratio of W to Z

as

LTS (1.45)

p _—
my cos Oy

This ratio holds at tree level but different from one at the higher order correction [13].

The fermion masses and their interactions

Unlike the Higgs and gauge bosons, the mass term of fermions is originated from the

Yukawa terms given in the third line of Eq.(1.1) which read
Ly = —Y/T, &L — YI7QLod), — VIVQ) dul + hec, (1.46)

where & = igo®' and h.c. stands for the Hermitian conjugate of all previous terms. The
first term describes the charged lepton masses. When the Higgs acquires the VEV, the

Yukawa terms gives masses as follows

Ly D —meérer — mufiLitr — M. TLTR + h.c, (1.47)
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where my = Yyv/v/2 and v = (V2Gr)~'/? = 2My /g. With the Fermi coupling in
table 1.2, the numerical value of the Higgs VEV is equal to 246.22 GeV. For future

reference, we also give the lepton masses in table 1.2.

Unlike the case of leptons, the Yukawa couplings of quarks are 3 x 3 complex matrices

and their mass term read [14]

Yidy— YiJy—
d vl pudy + hee.

vz e

urur + h.c., (1.48)

where d = (d, s,b)" and v = (u,c,t)”. The matrices Y, and Yy can be diagonalised by
changing the basis of left- and right-quark as follows

ur, — ULuL, UR — URUR, dL — VLdL, dR — VRdR. (1.49)

with UTU = UUT = I and VIV = VVT = I . This implies that uy/p and dp p are

rotated independently. With these rotations, the Yukawa terms for quarks become
Ly D —dMydr —ar Myug + h.c., (1.50)

where My = VngVRv /V/2 and M, = U;YUU rv/\/2. Therefore, these rotations affect
the interaction between quark and weak gauge bosons. To explicitly see this, let us go
back to the second line of Eq.(1.1) and rewrite the quarks field in their mass eigenstates.
Here we drop the kinetic terms of the SM fermions and consider only the interaction

terms which read [4]

L fermion D 9 (W;ng+ WA ZMJ§> +eAuJl,, (1.51)
where
1

Jht = 7 (TLy"er +ury"Vokmdyr)

_ 1 -
Ky = g (s + @i V).

JH — 1 T 1 vy, + eyt —1 + sin? Ow | er +ery" (Silfl2 HW) €R
Z 7 cos Oy 2 2

1 2 2
+E’Y'u <2 - g Sin2 9W> ur, ‘l—ﬁ')/'u <—3 Sil’l2 6W> UR

_ 1 1 — 1
+dry* <—2 + 3 sin? 9W> dr, + dgy" <3 sin? 9W> dR] )

2 - 1
Joy =t (—1) e+uy" (3) u+ dy" (—3) d. (1.52)
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The Vokw is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix which describes the
mixing amongst left-handed up and down type quarks. It is a complex 3 x 3 matrix that

can be parameterised by three mixing angles and one CP-violating phase and given by

Vud Vus Vub
Vekm = U£VL = Vea Ves Ve
Via Vis Vi
1 0 0 C13 0 813€_i6 C12 s12 0
=10 co3 S93 0 1 0 —s12 c12 0],
0 —823 (€23 —813€i6 0 C13 0 0 1
C12€13 512€13 size” %
= | —S12€23 — (3128238136“s C12€23 — 812823«'3136“s S23C13 | > (1-53)
S12823 — C12C23513€"0  —C12523 — S12¢23513€"°  Ca3C13

where s;; = sinf);; and ¢;; = cosf);;. The numerical value of each element in CKM

matrix is given by [9, 13]

0.97401 £ 0.00011  0.22560 = 0.00048  0.003617:50009
Vokm = | 0.226360 & 0.00048  0.97320 £ 0.00011  0.04053% 000061 |- (1.54)
0.00023 0.00082 0.000024
0.00854™ ) 50016 0.039781 ) Joose 0-999172F 5000055

One can see that the mixing is strong for quarks in the diagonal terms. Additionally, the

CP-violating part of the CKM matrix can be described by the Jarlskog invariant [15]

(Vi Vi Vi Vis] = 7Y €itm€iin (1.55)

where J = (3.00f8:(1)g) x 107° and €k is the rank-3 anti-symmetry tensor. The quantity
is very crucial when we try to apply the SM to explain the matter anti-matter problem
of the universe. Unfortunately, the SM cannot successfully explain this problem which

one of the reason is the smallness of CP-violating phase.

1.1.4 The cross section and decay rate

A collider is a machine that physicists use to study the properties of particles in labora-
tories. The common procedure of collider starts from accelerating initial state particles
and then speed them up close to the speed of light. Then, they will be sent into a small
tunnel for collision. Normally, we use the stable charged particles because they can be
bent by magnets and do not decay during the course of acceleration and collision. Usu-
ally, we use electrons, positrons, protons and even some heavy ions as the initial particles
for colliding. Properties of some colliders is summarised in table 1.3. Moreover, it is

also possible to build the muon collider as proposed in [16].
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Colliding started/ended Length Max. Luminosity
Name particles ear [km] Energy [1030 em—2s71]
Y [GeV]
LEP-I(IT) ete” 1989/2000 26.66 100-104.6 100
SLAC ete” 1989/1998 1.45 +1.47 50 2.5
e: 0.030
HERA ep 1992/2007 6.336 bt 0.92 75
TEVATRON pp 1987/2011 6.28 0.980 431
RHIC
Brookhaven 2P 2001 /- 3.834 0.255 160
LHC
(CERN) pp 2009/- 26.659 6.5 160

TABLE 1.3: Specification of some colliders including name, colliding particles, start-
ed/ended year, Length, Max. Energy and Luminosity. [9].

The main job of particle theorists is to calculate a scattering cross section o or a decay
rate I' of a particular process. Before we compute those quantities we need to evaluate
what is called the amplitude or matriz element which is related to the probability of a
system in an initial state |i) to be found in a final state |f) or (f|i). For a process of

2 — n scattering, the matrix element [13] is given by

n
(D, Py S = 1lp1,p2) = i(2m)*6* (p1 +p2 — Y p)M(pr.p2; Pl ph, ), (1.56)

i=1
where S is the S-matrix operator that enables the transition from the initial state |p1, p2)
with momenta py, ps and |p}, ph, ..., p},) with momenta p}, pj, ..., p),. The quantity M is
the Lorentz invariant amplitude in momentum space. The Dirac delta function appears

to keep the energy-momentum conserved.

Then, the differential scattering cross section reads

2m)4 M |?
do = ( ) |2 | 3 2dq)n(plap2;p,1,p,27"'ap'ln,)v (157)
4\/(171 - p2)? —mims

where the measure of n-body phase space is given by

n n
d3p!
dd DYy Dy ey D) = 04 — D | Py
n(p17p2ap17p27 apn) (pl + D2 ;pl) 7];[1 (27.‘-)32E7/1

(1.58)

In the case of 2-2 scattering, there are three possible topologies as shown in figure 1.2.
For each diagram, there is a corresponding Mandelstam variable which describes the
momentum transfer of the mediator. Suppose the incoming particles with masses mq, mo

and momenta p1, p2 collider with each other and create particles with masses ms3, m4 and
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/

i Py p1 D

D2 D2 P2 2
D1 ——— Py

P2 —m———— p/2

F1cURE 1.2: Different topologies for 2-2 scattering. The momentum transfer for each
diagram can be identified by Mandelstam variables: s, ¢ and u.

momenta ps, pg in the final state. The corresponding Mandelstam variables are defined

as follows

s = (p1 +P2)2 = (p} +P/2)2
=m? 4+ 2E1Ey — 2p1 - p2 + m2, (1.59)

t=(p1—p3)?® = (p2—ps)?

=m? — 2E1F3 + 2p; - p3 + m3 (1.60)
u=(p1 —ps)* = (p2 — p3)*

= m% —2E1Ey +2p1 - pa+ mi (1.61)

and the sum of all Mandelstam variables is equal to the sum of all squared masses

s+t+u=mi+m3+m3+mj.

Two body scattering

After integrating the momenta of outgoing particles, the differential cross section in the

centre of mass (CM) frame reads

do _ 1 P1]
dQ 4E1E2 (27T)24Ecm

|M(p1,p2 = ps,pa)l?, (1.62)
with

(1.63)
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The two body decay

For the decay of a particle with mass M and momentum P into particles with masses

mq, me and momenta p1,po, the decay rate reads

1 2 \Pl\
dr = 5| MP e, (1.64)
where
dQ) = d¢1d(cosby),
M? —m3 +m?
El — 2M )
(M2 — (my +ma)®) (M2 — (my — my)?)] "

Ip1| = [p2| = Wi (1.65)

Here df2 is the solid angle of the particle 1. Both Egs.(1.62) and (1.64) are usually
used for calculating theoretical quantities. In experiments at colliders like Large Elec-
tron Positron collider (LEP) and Large Hadron Collider (LHC), physicists measure the
number of events that can be registered by the detectors. The performance of a collider
depends on multiple factors such as the maximum energy per beam, the luminosity of
a particle beam, etc. If the maximum energy per beam is large enough, the collider is
likely to create a heavy particle in the collision. The luminosity of two colliding beams
with number density ni, no, the beam’s cross-sectional area A and they are across each

other in the tunnel with frequency f reads

ninz
A

heexperimentalistsL = f (1.66)

Then, the experimentalists can calculate the number of events for a particular process
by

dN

— =L 1.67

prd (1.67)
or the number of events is given by

N=Lo (1.68)

where L = [ dtL is the integrated luminosity and the integration is performed over the

running time of a collider.

1.2 Particle cosmology

In this section, we summarise some relevant topics of standard cosmology by focusing on

the expansion of the universe based on the Friedman-Robertson-Walker (FRW) metric
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and thermodynamics of the early universe which are crucial for understanding the DM

thermal production which is the key point of section 1.3

1.2.1 The universe in expansion

One of the biggest cosmological discoveries of the 20th century is the expansion of the
universe. In 1929, Edwin Hubble measured the redshift z of galaxies in the constellation
Andromeda versus the luminosity distance dy, where d, = (£/47F)'/2, L is the lumi-
nosity of object and F is the released flux. The redshift is measured from the shifted
spectrum due to Doppler effect and is defined by [17]

)\obs - )\em

— Zobs T Aem 1.
z FY— (1.69)

where Aoy and Agps are the wavelength at the emission point and at the measuring point,
respectively. From observations, he found the relation between the distance and radial
velocity as [18, 19, 20]

v~ Hodp, (1.70)

where Hj is the Hubble’s constant at present time which its numerical value is given in
table 1.4. This equation implies the farther galaxies move away with faster speeds which
means that our universe is expanding with acceleration. If the velocity of galaxies is not
too large, we can use the approximation that z ~ v/c which leads us to the relation

between the redshift and distance
z o~ —d. (1.71)

Notice that the larger distance implies the bigger redshift.

Quantity Symbol Value
Newtonian constant [m? kg=! s72] Gn 6.67430(15) x 10~
Planck mass [kg] Mp 2.176434(24) x 1078
Hubble constant [km s~! Mpc™!] Hy 100h
scaling factor for Hubble constant h 0.674(5)
baryon density o 0.02237(15)h !
dark matter density Qim 0.1200(12)h~*
radiation density Q, 5.38(15) x 107°
dark energy density Qp 0.685(7)

TABLE 1.4: Some of the measured values of the cosmological parameters [9, 13, 21].
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The observations of the galaxy distributions in the universe at the scale about 100 Mpc~!
or so implies that the universe is approximately homogeneous and isotropic. With these

properties, the expanding universe can be well described by the FRW metric [19, 22]

dr?
1 — kr2

ds? = dt* — a*(t) < + r2dh? + r? sin? 0d¢>2> , (1.72)
where k is the spacetime curvature and it can be —1, 0 and +1 representing the close,
flat and open universe. The parameter a(t) is the scale factor which accounts for the
expansion at time t. Here (¢, 7,0, ¢) is called the comoving coordinates which move along
the expansion of the universe or the Hubble flow. If an object is at rest in the comov-
ing coordiates without any external force, it is not moving regardless of the universe

expansion. We define the rate of change of the scale as

a(t)
H(t) = —=<, 1.73
0= (1.73)
where H(t) is the Hubble rate or Hubble parameter at a time ¢. In order to find the
equation of motion that describes the spacetime dynamics, we need to make use of the
Einstein’s equation [22]

1 T (t)

Ry () = 590 (O R(E) + A(t) gy (1) = M3

: (1.74)

where Mp is called the Planck mass. The parameter A is the cosmological constant which
is a vital component in the standard model of cosmology or ACDM. Many models of
cosmology describe the cosmological constant in terms of the Dark Energy (DE) and
it contributes 68% to the total energy density of the universe. The quantities R, and
R = g" R, are the Ricci tensor and scalar, respectively. They are derivatives of g, .
For the metric in Eq.(1.72) they are

Roo(t) = — Rij(t) = 51’]’ (2&(2)2 + a(t)a(t)) . (175)
If we assume the the energy-momentum tensor Tpg = p; and T); = p; where p; is the
total energy density of the universe and p; is the pressure in jth direction. Then, the

Friedmann equation

a(t)? k t
o+ o
2(t) |, a(t)> |k _ p(t) (1.77)
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where pr = pm(t) + pr(t) + pa(t) with py = A(t)M3EZ = 3HZMZQA(t). Combining
Eq.s(1.76) and (1.77) together, we get
a(t) _ pe(t) +3p(t)

e (1.78)

By solving this equation, we can identity the scale factor a(t) evolves with time. To this

end, we make use of the thermodynamics equation of state

0 non-relativistic matter
pi(t) = w;p;(t), with w; =< 1/3 relativistic radiation . (1.79)

—1 vacuum energy

From the conservation law of energy-momentum, dU = —pdV', we can also write
d 3 d 3
5 (Pie®) = —pj @, (1.80)

which is just a relation between work and pressure inside a system with volume a3. By
solving a system of Eqs.(1.79) and (1.80), we find the relation between energy density

and scale factor

a3 non-relativistic matter

pi(a) = Ca=30+4) o { g=1  relativistic radiation (1.81)

const. vacuuuma energy

where C'is a constant. Substituting Eqgs.(1.81) and (1.79) into Eq.(1.78) and writing the
solution in terms of power law solution, a o %, (this power solution can be used only
for w; # —1), one finds that

B 2
N 3+3wj'

8 (1.82)

In the case of cosmological dominated universe, we can find the solution by solving

Eq.(1.76) (ignore p,, and p,)

=2 (1.83)

which the solution is just a(t) ~ eVA®/3)t Thus, the time evoluation of scale factor in

FRW model can be summarised into

t2/3 non-relativistic matter
a(t) ~{ /2 relativistic radiation (1.84)
eWVAD/B vacuum energy.
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Moreover, we can also write the time evolution of the Hubble parameter as in Eq.(1.73)

for each case as the following

non-relativistic matter
H(t) ~ = relativistic radiation (1.85)
A®)

3 vacuum energy.

According to cosmological observations [21, 23, 24], at present, we have a fairly complete
picture of the components of the universe. They can be divided into 1) non-relativistic
matter 2) relativistic radiation and 3) vacuum energy. The fraction of these components
of the universe is characterised by a quantity called the density parameter {2 which is a

ratio of the energy density of ith component p; to the critical energy density perit-

o= (1.86)
Perit
The critical energy density is a measure of total energy density at a stage that the

universe does not expand or collapse. It is defined by
Perit = 3H2M]%7 (187)

where the present Hubble rate and relevant cosmological parameters are summarised in
table 1.4

The non-relativistic matter contains baryon matter which is the visible matter around
us ranging from atoms to clusters of galaxies, and the dark matter which cannot be
understood within the SM framework. We will talk about the the dark matter in some
detail in section 1.3. The radiation mainly consists of photons freely propagating from
the last scattering surface since the matter and radiation decoupled at zgec ~ 1100.
In several models of cosmology, the vacuum energy can be described in form of the

cosmological constant A. However, we are still puzzled why it has a very tiny value.

1.2.2 Thermodynamics of the early universe

To calculate the Hubble rate in terms of the energy density and other quantities in the
early universe, we need to study thermodynamics of particles. The universe at the early
stage contains many particle species which interact with each other in a thermal bath.
At high temperature, the interaction rate of these particles with thermal bath are high
making all particles reach thermal equilibrium. Thus, we can assume that they were in

thermal equilibrium to a good approximation. The number density n, energy density p
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and pressure p for a particle species are given by

3

Neq = g/ (%P,f(ﬁ), (1.88)
3

Peq = g/ (if))?,E(ﬁ)f(ﬁ), (1.89)
3 =2

peq_g/ (;lﬂ_]))ghg. (ﬁ)? (1'90)

where g is the number of internal degrees of freedom for a particle and the energy satisfies
E? = |p|? + m?. The distribution f(|p|?) is given by

ex — —1 for fermions
ﬂm_{<mw w)/T)+ 1)~ for f 1)

| (exp((E — p)/T) —1)"! for bosons

which indicates the occupation number in the phase space. The quantity pu is called the
chemical potential. If we consider a process A + B — C' + D in chemical equilibrium,

the chemical potentials are related through

pA+pUB = pc + pp. (1.92)

After integration of Eq.(1.88) with the distribution function from Eq.(1.91) (assuming

that the chemical potential is small compared to the energy term), the number density

is given by
(”21—7?)3/ 2e=m/T  pon-relativistic particles T <« m
Neq(T) = g%T‘q’ relativistic bosons T > m ) (1.93)
QE%T?’ relativistic fermions 7' > m

where ((3) ~ 1.2 is the Riemann zeta function of 3. Also, the energy density for each

case can be computed similarly and is given by

gm (%?)3/2 e~™/T" non-relativistic particles T < m
peq(T) = gg—;T4 relativistic bosons T > m . (1.94)
g%@—éT‘L relativistic fermions 7T > m

In addition, the pressure is given by

peq(T) relativistic particles

Peq(T) = { (1.95)

neqd'"  mnon-relativistic particles

According to Eq.(1.93), we can calculate the energy density of all species in terms of the

photon temperature T" as follows

7T2 4
pr = =g (T)T*, (1.96)
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with

g(T)=> g (?)4+ 3 ggf (?)4 (1.97)

bosons fermions

We can try to evaluate the total energy density by assuming that there are only the SM
particles in the thermal bath and they are relativistic at the temperature greater than
the EW scale (v = 246.22 GeV). Thus, the effective number of degrees of freedom for

fermion and boson reads

gf = Gquark T Glepton + Yneutrino = 90,
gb = Jgluon T Gweak T Yphoton T JHiggs = 28,

7
g+(T > 246 GeV) = 28 + 290 = 106.75. (1.98)

-]
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FIGURE 1.3: The time dependence of the effective number. Figure from [25, 26]

Figure 1.3 describes the evolution of the effective number of degrees of freedom with
temperature. At the temperature higher than EW scale (T' ~ 246 GeV), g, = 106.75
as in Eq.(1.98). When temperature drops around the top quark mass, the top quark
becomes non-relativistic, the g, is decreasing. It slightly decreases until the temperature
is around the QCD transition scale. The effective degrees of freedom is rapidly dropped
because all quarks are hadronised to pions (ﬂ'i,ﬂo). It is dramatically dropped again
when temperature drops to the mass of electron 0.5 MeV. At present, the effective

degrees for freedom is equal to 3.6 which contains photons and neutrinos.
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At the end, we can find the relation between the time and temperature through the

definition of the Hubble rate for radiation-dominated universe as follows

2 2 7/Ge T? 2
H(t)? = <21t> = 3]\1412330g*(T)T4 = ( \/9%}\@) : (1.99)

In addition to the number, energy density and pressure, another important quantity is
the entropy per comoving volume element which remains unchanged for particle species
with the interaction rate much bigger than the Hubble rate. Due to the second law of
thermodynamics, we can prove that the entropy density in a comoving volume is given
by

S p+p

v T (1.100)

S

where S is the entropy in the volume V = a3. Since the relativistic particles dominantly
contribute to the entropy density so that we can also write
272

== g.¢T3 1.101
8= 59 ( )

where

Ges = > gb<§i’>3+; S g (?)3 (1.102)

b=boson f=fermion

1.3 Dark matter

The dark matter (DM) is one of the long-standing mysteries in cosmology and particle
physics. For the review of history of DM, we recommend the reference [27, 28]. The
existence of DM has been well established by several independent cosmological and

astrophysical observations.

The very first evidence of DM came from the inconsistency between theoretical prediction
and measurement of the velocity distribution of stellar object within nearby galaxies. If
we assume that the total matter of the universe only comes from the visible component,
an object at radius r in a galaxy should orbit around with the rotational velocity v o
/M(r)/r [9] , where M(r) is the total mass of visible objects. If it is outside the visible
part, its velocity should drop like v o< 1/4/r. However, in observations it turns out to
be that at very large r the velocity is surprisingly constant relative to the distance r.
This leads to the idea of dark halo [29] in which the visible parts of universe resides. To
explain the constancy of the velocity distribution, the mass density of the halo should
scale like p(r) o< 1/r2 or M(r) oc r but at some point it has to be rapidly falling down
to make the total mass of the galaxy finite. In addition, DM is also important to

the formation of large scale structure [30, 31], the bullet cluster [32] and gravitational
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lensing [33]. These evidences of DM have been solely detected based on its gravitational
effect. Therefore, it is the big and long quest for physicists to hunt for DM particle.
However, after having been searching for many years, we have not found the direct
evidence of DM in laboratories yet. No information on mass, spin and interaction have

been measured so far.

Collider
production
SM DM 1
-
5|2
o5
=
Ol
o
SM DM
v

Freeze-out,
indirect detection

FIGURE 1.4: The interaction between DMs and SM particles can occur in three di-

rections: 1) DM DM — SM SM stands for DM annihilation or indirect detection; 2)

DM SM — DM SM for the DM direct detection and 3) SM SM — DM DM for DM
production at collider. Figure from [34]

In order to explain the existence of DM in the particle physics point of view, many
DM models have been proposed. For example, the DM candidate as the lightest su-
persymmetric particle (LSP) [35], the sterile neutrinos [36], the axion and axion-like
particles [37], the dark photon [38], extended scalar sector of the SM [39]. Amongst
various types of models, the most favourite one is called the weakly-interacting massive
particle (WIMP) which interacts very weakly with the SM particle and has a mass in a
range of GeV-TeV scale. The interaction between DM and SM particles that leads to ob-
servable signals can be divided into three different types as the following. In a region with
dense DM distribution, the DM can annihilate each other and create a pair of SM parti-
cles, DM+DM — SM+SM. This mechanism is called indirect detection where the DM
signal can be observed via their annihilation products through the gamma-ray telescope
(like Fermi-LAT experiment etc.) [40], the neutrino telescope (like IceCube etc.) [41],
anti-protons [42], the CMB anisotropies [21] etc. Additionally, the relic DM can also
interact with the SM particle through a process of DM+SM — DM+SM which several
experiments such as LUX [43], XENONIT [44], PandaX-II [45] etc. have been trying to
detect the recoil energy of some heavy nuclei like Xenon as a result of DM scattering.
Finally, we can also study phenomenology of DM at colliders like LHC by smashing a
pair of SM particles to create a pair of DMs through a process of SM+SM — DM+DM.
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In figure 1.4, we summarise three different diagrams representing DM and SM particle

interactions.

In this section, we will discuss how to calculate the relic density from theoretical point
of view and review the experimental result of the DM relic density measurement by
PLANCK]|21]. In addition, the direct and indirect searches will be mentioned and the
limits from those searches are present. Finally, we will also discuss possible collider

signatures of DM which different models can predicts different signatures.

1.3.1 Relic density

The relic abundance of DM in the universe has been precisely measured by studying
the temperature fluctuation in the cosmic microwave background (CMB). This CMB
mainly consists of photons decoupled when temperature was around 0.32 eV [20]. After
the matter-radiation decoupled, they freely propagate through the universe and move
towards us which brings very useful information of the universe at early stage. Several
experiments have measured the temperature anisotropies in CMB such as COBE [24],
WMAP [46] and PLANCK [47, 21]. Today, we have a very precise value of DM abun-
dance which is Qpyh? = 0.12 £ 0.0012.

The abundance of relic DM can be understood by two different mechanisms. Firstly, it
is the so-called freeze-out mechanism [48] . Assuming that DM particle was in thermal
equilibrium with the SM particles when the universe temperature is far above the DM
mass. When the universe temperature dropped around the mass of DM, the interaction
rate of DM with SM particle was also decreased so that it was smaller than the Hubble

expansion rate, I'py < H. At this stage, the DM particles started freezing out from

the thermal bath. Typically, the DM mass from thermal production mechanism is
approximately around the EW scale and its couplings to the SM sector was comparable
to the weak coupling, agw. We refer to DM particle with these properties as the WIMP.
The second mechanism does not require the DM candidate to be thermally produced
in the early universe since the interaction between DM and SM particle is so weak that
DM cannot reach thermal equilibrium. The population of DM is essentially generated
by the annihilation or decay of other particles into DM. This is called the freeze-in
mechanism [49]. The typical coupling of DM to SM sector for freeze-in scenario is so
tiny, g ~ 10712 —107%. This kind of DM candidate is called the feebly-interacting massive

particle (FIMP).

1.3.2 The Boltzmann equation

The number density, energy density and pressure in Eq.(1.93), (1.94) and (1.95) can

be applied only for particles in thermal equilibrium. However, when the universe cools
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down, some species decouple from the thermal bath since their interaction rates I' are
not strong enough to keep them in thermal equilibrium against the expansion rate of

the universe H which leads to the condition for decoupling from the thermal bath

I' 2 H coupled,

(1.103)
I' S H decoupled,
where the interaction rate can be calculated from
I' = now, (1.104)

where n is the number density of the particle, o is the scattering cross section of the

particles and v is the relative velocity.

In order to keep track of the number density, we need to solve the Boltzmann equation

for phase space distribution functions
Lif] = clfl, (1.105)

where L is the Liouville operator and C is the collision operator. The relativistic gen-

eralisation of Liouville operator is given by

5~ 0

- 0
L=p"—-T% v 1.106
P g TP P 5 5 ( )
For the FLRW metric in Eq.(1.72), the Liouville operator reads
N of a, 50f
Lif(E,t)| = F— — — — 1.107
/(8,0 = B2~ ZpP ot (1.107)
with the time dependent number density
n(t) = -2 /d3pf(E ) (1.108)
(27_(_)3 ) Y
the Boltzmann equation becomes
dn a g d3p
—+3-n= Clf]—. 1.109
dt * a (277)3/ /] E ( )
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Suppose that we consider the collision term for a process of Y +a+b+--- < i+j+---

is given by

g d®p
(2r)? /C[f]E = —/dedHadHa-..dHide...

x (2m) 6% (py +pa+po+ - —Pi—pj— )

" [|M|12b+a+b+~--—>i+j+~~f¢fafb o (LEf)AE )

_‘M’?+j+...—>1/)+a+b+...fi j"‘(lifw)(lifa)(lifb)”' )

(1.110)
where the phase space integral is defined as

®p
dll = g——%—. 1.111
I 2n)32E (1.111)
The sign in (1 £+ f) is plus for boson while minus for fermion species. Because of the

time reversal or T symmetry, the squared matrix element is given by

2 2 2
’M|1/)+a+b+-~—>i+j+m = |M|i+j+~~—n/;+a+b+m = |M| . (1-112)

This is the averaged squared matrix element over initial and final spins. Also, if there are
n identical particles in the initial or final state, the matrix element needs to be multiplied
by a factor of 1/n!. In addition, if we consider the freeze-out of a massive particle
(assuming that 7" < M), the Fermi-Dirac and Bose-Einstein distribution functions can
be replaced by the Maxwell-Boltzmann distribution function f;(E;) = exp[—(E; —p;)/T]
and (1 £ f) ~ 1. With these changes, the Boltzmann equation for a specific species 1 is
given by

dny,

3ty = — [ dld,di, - Ll 2 AP

X 6 Py +Pat oo+ —pi—pj— ) | fufafo = iy |, (1113)

here we use H = a/a. If the collision term vanishes, the evolution of number density is

inversely proportional to the cubic scale factor (1/a3).

Sometimes it is more convenient to express the Boltzmann equation in terms of the
ratio of number density to entropy density ¥ = n,/s. Since the entropy in a comoving

volume is constant (S = sa® = constany),

d(sa®)
dt

=0 —  §=-3Hs. (1.114)
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Therefore, we can rewrite

dny, dY
— Hny = s—. 1.11
a +3Hny = s 7t ( 5)

With this parametrisation, the Boltzmann equation reads

ay

s = —/dH¢dHade-~'dHide - (2m)MP?

X64(p¢+pa+pb+“’_pi_pj_"')[f¢fafb"‘—fi oo |, (1.116)

Now we are trying to find the standard form of Boltzmann equation that will be used
for calculating the remaining amount of dark matter after decoupling from the thermal
bath in section 1.3.

Let us consider the freeze-out of a massive particle ¥ which is stable or long-lived com-

pared to the age of the universe. The process of ¥ and v with thermal bath reads
Y+ — X+ X, (1.117)

where X is all particles in thermal bath in which ¢ can be annihilate and here X is the
antiparticle of X. The number density density of 1 is changing during the course of
these reactions. We assume that at the time of decoupling of 1) the other particles X are
still in thermal equilibrium with thermal bath. We will further assume that they can
to a good approximation be explained by the Boltzmann statistics with zero chemical
potential for simplicity. Therefore, we can write Eq.(1.113) for a process of 1 <+ XX

as

dy
s = - / dITydTT Iy dll g (27) | M

x 0" (py + vy — px —px) | fofs — fxfx|, (1.118)

with the equilibrium distributions

fx! = exp(—Ex/T),

f5 = exp(=Ex/T). (1.119)

Because of the energy-momentum conservation in the delta function, it implies that

Ey + By = Ex + Ex. This allows us to write
Ixfx =exp[=(Bx + Ex)/T| = exp [=(By + E)/T) = [ [

Therefore, the Boltzmann equation reads

dY
o = 5o xxv) (Y2 -Ya), (1.120)



30 Chapter 1. Introduction

where Y and Y.q are the actual and equilibrium number density over the entropy per
comoving volume. Additionally, we also define the thermally-averaged annihilation cross

section as

<U¢1Z%XXU> = (nZ}q)Q/dﬂwdﬂwdﬂdeX(Qﬂ)4’M|2
x 64(py +pg — px — px) exp (—Ey/T) exp (—Ep/T).  (1.121)
If we include all final states, the Boltzmann equation in terms of the total annihilation

cross section is given by

dy

— = —s{oAv) (Y2 — qu) . (1.122)

This is the Boltzmann equation we need to compute the relic density of dark matter
after freezing out from thermal bath and we will use it to estimate the relic abundance

of DM in the next section.

The freeze-out mechanism

Since the DM candidate discussed in this thesis is a WIMP!, it would be good to review

how one calculates the DM relic abundance from freeze-out mechanism.

As aforementioned in section 1.3.2 that the out-of-equilibrium number density of a par-
ticle species can be evaluated by solving the Boltzmann equation. Let us consider a
reaction of DM (x) and SM (f) particles

X+X = f+ ], (1.123)

where f represents the SM particles that have interaction with DM through some me-
diators. At high temperature, the forward and backward interaction rates are equal in
size or we say that the system is in chemical equilibrium. The decoupling condition for

a generation of a particle species is given by
['(Taec) = H(Taec), (1.124)
with
I' = ny 0y Urel, (1.125)

where oy, is the scattering cross section of DMs into a pair of SM particle and v is

the relative velocity. Since the WIMPs are non-relativistic and their velocities are not

!The DM model presented in chapter 2 can also have a DM candiate as a FIMP if the coupling of
the dark to SM sectors is very tiny. However, the FIMP scenario has not been yet studied and might
be a subject of future study.
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constant during the annihilation processes, we need to thermally average the cross section
multiplied by velocity. The quantity Tyec is the temperature at which the DMs depart
from the thermal bath.

Suppose that the incoming momenta are k, and ky, respectively, for x and . The

individual velocity can be expressed in terms of Mandelstam variable s as

s = (ky + kx)* = 2m} + 2E\ By — 2k, - ky
= 2m} + 2E7 4 2|k, |?
= 4m} + 4k, = 4mi (1 +v3). (1.126)

In the last line, we use EZ = m?2 + |ky|? and [k,| ~ m,v,. Therefore, the velocity of
DM is given by

2 S

K3 = —_—
X 2
4mX

~ 1. (1.127)

It follows that the relative velocity in CM frame is given by

kx k)Z 2“2)(‘
Vel = | = — =X | = ~ 20y (1.128)
RORER

Thus, the relative velocity reads

s — 4m§<
Vet = || 5. (1.129)
my

Now we compute the thermally averaged cross section as defined in Eq.(1.121),
<0_ ~ v 1> — fd3pxd3p>20'>o‘<affv exp [_(EX + E}Z)/T]
I J PpxPpsexp[~(Ex + Ex)/T]
B 22T f::@i dsv/s(s — 4m}) Ky (%) T x—r7(8)
= 2
(4rmi TR (7))

, (1.130)

where K, is the modified Bessel functions of the second kind of order n.

To find the proper solution to the Boltzmann equation, numerical methods are needed.
However, the approximated solution can be obtained analytically [50, 51]. Let us go

back to Eq.(1.122). It can be written in terms of temperature instead of time by using

4y _sm,Hsay dr
dt T2 dx ds’

(1.131)

Eq.(1.122) becomes

av._ my ds
de  3Hx2dT

(oxv) (Y2=Y2). (1.132)
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We assume further that the DM freezing out during the radiation-dominated epoch.

Therefore, the Boltzmann equation can be cast into

ay’ — m g’
= X,/45G (oxzv) (Y2 = Y2, (1.133)

or
day wg' (T)
7=\ g (oxxv) (Y2 = YZ), (1.134)
where
F_9s (1, T dgss 1.135
Y A ] (1.135)
and

4522 f) < )
Y. K. 1.136
= s S (7)o (1.136)

To obtain the present relic abundance of DM, YQ , we have to integrate Eq.(1.133) from
z =0 (T = o) to z = my/Ty. However, micrOMEGAs [52] mainly uses Eq.(1.134)
with the assumption that Y >> Y4 such that

where Yj and Y are the abundance at present Ty = 2.73 K and freeze-out temperatures,
Ty. At high temperature, d(Y — Yoq)/dT is negligible. In addition, at freeze-out, the
Y; = Y (Ty) is very close to Y.q, we can estimate Yy = (1 4 9)Yeq(Ty) where 0 is a

constant. The freeze-out temperature can be estimated from

dinYey |7y (T)
ar 45G

(OyxV)Yeqd (0 +2). (1.138)

This equation is used to calculate the freeze-out temperature in micrOMEGAs. It was
discussed in [52] that the solution to Eq.(1.137) is not significantly sensitive to the ¢ and

it can vary from 1-2.

The relic density of DM can also be written in terms of dimensionless density parameter
Q, = p?c /perit Where peiy = 3H? /87G. Thus, we can write the DM relic abundance as
2

0
Py g Mx
—~—-  =2755x 10 .
Pcrit . GeV 0

Qh? = (1.139)

In figure 1.5, the evolution of the DM relic abundance in terms of Y = n, /s as a function
of x = m, /T is presented. The dashed line indicates the evolution of Yq in Eq.(1.136).
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log1oY
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FIGURE 1.5: The evolution of Y = n,/s as a function of x = m, /T for freeze-out
mechanisms, figure from [53]

The coloured solid lines correspond to the DM abundance due to freeze-out mechanism
as a solution to Eq.(1.133). At high temperature or small z, they follow the equilibrium
abundance line (black) and then they depart from the thermal bath at 2 ~ 20 —30. The

blue, pink and orange colours stand for the small to large scattering cross sections.

1.3.3 Indirect detection

In addition to the relic abundance of DM, the DM properties can also be examined
through the so-called indirect detection where we are seeking for a signal of possible self

annihilation of DM into SM particles as presented by a process of
X+ X — SM + SM. (1.140)

The recent reviews on DM indirect detection can be found in [54, 55, 56]. These self
annihilation of DMs could potentially take place within astronomical environments such
as the sun, stars, neutron stars, the centre of galaxy and dwarf spheroidal galaxies where
the DM is clumpy and dense. The observable products from the DM annihilation could
be photons, electrons, protons, neutrinos and their antiparticles. Then, we are trying
to detect the excess flux of those particles over the astronomical background. One can
expect that the rate of DM annihilation is proportional to the DM density I' oc pd,;.
This means that the flux of annihilation products should be enhanced in a region with
very dense DM population, especially at the centre of galaxy where the DM density is
bigger than the average.
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FIGURE 1.6: The upper limit on the WIMP velocity weighted annihilation cross sec-
tion from various gamma-ray searches. The top(bottom) panel presents a bb (7F77)

annihilation. Figure from [57]

Gamma ray search

We expect to detect a monochromatic line of y-rays with energy equal to or less than

the DM mass. Since the gamma ray can propagate without deflection we can search

for them by pointing detectors to region of dense dark matter such as the galatic centre

and dwarf galaxies. However, the DM annihilation rate into photons is too weak [20]

leaving us a chance to look for secondary photons produced from primary particles
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with a wide energy spectrum. The Fermi-LAT space telescope [40] is able to detect
single photons with energy 10 GeV - 10 TeV. In addtion, the Cherenkov telescope like
MAGIC or H.E.S.S can cover a wider range from 20 GeV to a few hundred TeV [56].
However, searching for gamma-ray excess at the galactic centre is quite challenging
due to the backgrounds from gamma-ray emitting objects. With this reason, the clean
structure of dwarf spheroid galaxies are a more favourite sources of the gamma-ray. The
search results are interpreted in terms of the WIMP annihilation cross section for various
annihilation channels, for example, WTW =, ZZ, qg and ¢7¢~. The most stringent upper
limit in the mass range of 0.1-1 TeV has been placed by Fermi-LAT. However, in the
mass range above 1 TeV, the most stringent upper bound has been placed by H.E.S.S,

as shown in figure 1.6.

Charged cosmic ray search

In addition, the charged cosmic ray — proton, electron, light nuclei and their antiparticles
— could be interpreted as a product of DM annihilation or decays via the hadronisation
of qg or WHTW = [56]. However, the charged cosmic ray can be easily deflected by the
galactic magnetic fields making them travelling to us in a random way. We expect to
measure the excess of cosmic ray spectrum over the SM predicted one. Since the large
background of electron and proton fluxes from numerous astrophysical objects, the more
attractive particles would be positrons and antiprotons. Some positive results on cosmic
ray as a probe of DM have been reported by the PAMELA satellite [58] which detected
the excess of positron spectrum in the energy range of 1.5-100 GeV . In addition, the
ATIC balloon experiment [59] has measured excess of electron flux with energy range of
300-800 GeV. The kind of excess could be generated from the DM annihilation. Later,
this result has been confirmed by the Fermi-LAT and AMS-02 satellites (with energy
range of 0.5-500 GeV). The limits on the velocity weighted DM annihilation cross section
at 95 % confidence level for the bb(W W ™) channels from cosmic ray excess is presented

in figure 1.7.

Neutrino search

Neutrinos can also be used as a probe of DM annihilation. Since they interact only
through the weak interaction, they can propagate through space without deflection from
the centre of stars. Therefore, one can directly point detectors towards the source of
neutrino flux. However, using neutrino as a probe of DM annihilation faces the chal-
lenges because of low scattering cross section with matter. This implies that detecting
single scattering event needs large detector and long exposure time. Unfortunately,

the upper bound on the annihilation cross section is less stringent compared to the
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FIGURE 1.7: The upper bounds on the velocity weighted DM annihilation cross sec-

tion at 95 % confidence level. The top(bottom) panel represent the limits from the

bb(WFW ™) channels derived from the antiproton and B/C data of AMS-02. Figure
from [60]

limits from gamma-ray search. There are several experiments searching for DM anni-
hilation products as neutrinos such as ANTARES [61, 62], IceCube [41, 63, 64], Super-
Kamiokande [65, 66] and etc. The IceCube experiment has detected the very high energy
neutrinos around 60 events with energy from 10-1000 TeV. The detected neutrinos are
too energetic and not compatible with the atmospheric neutrinos produced in the Earth’s
atmosphere by cosmic ray scattering. The summary of the velocity weighted annihila-
tion of DM into neutrinos versus the DM mass from various range of searches in the

range of 1072 — 107 GeV in shown in figure 1.8.

CMB anisotropies

Morever, the CMB anisotropies from the PLANCK collarboration [68, 21] also provides
the alternative way for DM indirect searches. The fact that recombination history can
be affected by the energy injection from DM annihilation [69] gives us the opportunity
to constrain the DM annihilation cross section complementary to other indirect DM
searches as previously discussed. The gaseous background can be heated and ionised by
different DM annihilation products. The energy fraction that is injected into the gas
can be explained by a parameter called the efficiency factor f(z) as a function redshift

which ranges from 0.01-1. The rate of energy release from DM annihilation per unit
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FI1GURE 1.8: The upper bounds on the velocity weighted DM annihilation cross section
from various experiments. Figure from [67].

volume is given by [68]

dE
W(Z) =2 g Pcrit 02 Q2DM (1 + z)6pann(z), (1141)
where
Pann = f(Z) <UU> . (1142)
mpwm

The g is a degeneracy factor equal to 1/2 for Majorana particles and 1/4 for Dirac
particles, Qpyg is the DM relic density. The (ov) is the thermally-averaged annihilation
cross section times the velocity. The f(z) is the efficiency factor depending on the
redshift z and provided in [70] for every possible SM particles in the final states. Since
the CMB data is sensitive to the energy injection in a range of redshift 1000-600 and the
function f(z) peaks at z = 600 [68]. To a good approximation, the redshift dependence
of f(z) can be ignored and replaced by fog = f(z = 600). The Planck 2018 results [21]
gives a constraint on the DM annihilation cross section as shown in figure 1.9. The upper
limits for different DM annihilation channels are derived based on pan, < 3.2 x 10728
cm? s71 GeV L,

1.3.4 Direct detection

The DM direct detection is a powerful way to probe the DM nature by searching for
scattering events of DM off SM particles, DM + SM — DM + SM. Since DM interacts

very weakly with the ordinary matter, the scattering events would occur with very low
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FIGURE 1.9: The upper bounds on the DM annihilation cross section times velocity
from different annihilation channels into a pair of SM particles in the final state. Figure
from [21].

probability and very small energy deposits because of low DM velocity at the Sun’s loca-
tion (v ~ 1073¢). Generally, the scattering process of DM off nucleon can distinguished
into the spin-dependent (SD) and spin-independent (SI) one. The best sensitivity of
SI search is given by heavy nuclei detectors and for SD one it is offered by light nuclei
detectors. However, the most stringent constraint is placed by the SI process. When
DMs scatter off heavy nuclei in the detector, the collision energy is transferred and make
nuclei slightly recoil. We are trying to measure the recoil energy. Suppose the DM mass
is about 100 GeV and the DM velocity at the sun location is estimated to be v ~ 10 3¢.
Then, the maximum recoiling energy of nucleon is given by EB3X = mpyv?/2 ~ 100
keV. This process is very rare. In order to increase the chance to capture DM particles,
the size of detectors needs to be very large to get a more or more stringent searching lim-
its. However, the DM direct detection is challenging because neutrons from radioactive
decays can also produce the similar signal as they are heavy and neutral. The back-
ground signal can be reduced by installing a detector underground or in environment
with low radioactivity. The measurement of the recoil energy faces the challenge because
of some theoretical uncertainties such as the local energy density of DM at the Earth’s

position and the DM velocity distribution.

Experimentally, the DM-nucleon scattering cross section can be divided into two groups
depending on the interaction nature of DM with nucleons. They are called the spin-
dependent and spin-independent ones. However, the spin-dependent cross section is
weaker than the spin-independent one. Thus, we will only discuss the spin-independent
cross section from now on. There are several experiments trying to find DM direct
detection signals which covers a wide range of DM mass from 0.1-1000 GeV as shown in
figure 1.10. For example, NEWS-G [72], CDMSLite [73], DarkSide-50 [74] have placed
the most stringent upper limits covering light DM mass below 5 GeV. For DM mass range
above 5 GeV, the experiments such as PandaX-II [45], LUX [75] and XENONI1T [44]
have been conducted. The most stringent upper limit has been placed by the XENON1T.
However, in 2022, the most stringent upper limit is provided by the LZ experiments [71]
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FIGURE 1.10: The upper bounds on the spin-independent DM-nucleon scattering cross
section as a function of DM mass in range of 0.1-100 GeV from multiple experiments.
Figure from [13].
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FI1GURE 1.11: The upper bounds on the spin-independent DM-nucleon scattering cross
section from LZ experiment. Figure from [71].

which is a successor of LUX as shown in figure 1.11. The most strongest limit is at the

DM mass around 30 GeV with the DM-nucleon scattering cross section ~ 10747 cm?.

1.3.5 Collider searches

The production of DM could be possible at collider environments. Various searches
for DM signals at LHC [76, 77, 78, 79] with the centre of mass energy of 13 GeV
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and the integrated luminosity of 36 fb~! have been conducted by ATLAS and CMS
collaborations. The DM signal can manifest in various forms depending on a DM model.
In general, the interaction between SM and dark sectors can take place in models with
Higgs or Z boson exchange, models with additional mediators and etc. Each model also
needs different search strategy. For example, DM might manifest as invisible particles
produced by a SM Higgs boson or Z boson or by an exotic resonances or the transverse
missing energy produced together with one SM particles or exotic state as a bump in

the dijets or dilepton invariant mass distribution [80].

q

FI1GURE 1.12: The representative Feynman diagrams for mono-X and new mediator
searches. Figure from [80].

The search strategy at LHC can be divided into mono-X and mediator searches as
depicted in figure 1.12. In the former search, a pair of DMs is produced by annihilation
of a pair of SM particles like a pair of gg and a pair of gg. However, since the DM
is blind to the detectors, this kind of signal is not informative as it can be mimicked
by neutrinos. Therefore, we need a detectable SM particle produced along with a pair
of DMs and then measure the missing transverse energy E:,r?iss or missing transverse
momentum p?iss for the event. This search at ATLAS and CMS focus on the properties
of mediator (a scalar, a pseudo-scalar, a vector, or an axial-vector) and couplings to the
SM particles g4 or to DM particle ¢,. The search has placed the upper limits on the
production cross section of DM particles as a function of the mediator or DM masses.
The possible final states could be mono-jet, mono-+, mono-Z, mono-Higgs, mono-top
and tt + Ejniliss. The last two final state particles can occur for some models. In the
latter search, the annihilation of a pair of SM particles can lead to a creation of new
mediator between SM and dark sectors and then it will decay into a pair of SM particles
like gg or ¢*¢~ in the final state. In this search, we look for a bump due to the new
resonance in the invariant mass or angular distribution for the final state particles. The
limits have been presented as ratio of production cross section of new mediator to that

of the SM particle and set the upper bounds on the resonance mass.

Unfortunately, no DM signals have been observed at the LHC experiment [13] so far.
However, the limits have been set on masses, couplings and cross section related to dark
sector. The latter can be complementary to the DM direct detection searches. Anyway,

even though we found a DM signal at LHC but this cannot be a proof of DM discovery.
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The signal has to be consistent with other DM searches like relic abundance, direct and

indirect detections.

1.4 The muon anomalous magnetic moment

The anomalous magnetic moment experiments of muons or the so-called muon g-2 exper-
iments have implies that a new physics beyond the standard model (BSM) is necessary.
The muons are electrically charged particles, like electrons. When entering a region
with external magnetic fields they behave like a small magnet. Typically, the magnetic
moment of an elementary particle like electron or muon is expressed in terms of the spin

magnetic moment which is defined as
i=g—=-, (1.143)

where the dimensionless parameter g is called the g-factor (not the gyromagnetic ratio
v = gq/2m), q is the particle’s charge, m is the mass of a particle and S is its spin
angular momentum. The magnetic moment of a particle tells us how strong the particle
can interact with the external magnetic fields. According to the Dirac equation, the
g-factor of Dirac particles is predicted to exactly be 2 according to their two spin states
— up and down [81]. The magnetic moment is not only a particle’s properties related
to the electromagnetic interaction, but it can also imply the departure from a point-
like nature a particle of interest as predicted by Dirac’s equation. For example, the
g-factor of a single proton has been measured to be 5.585696(50) [82]. However, the
experimental value of the muon magnetic moment is slightly greater than 2. Usually,

the experimentalists report the deviation of g,, from 2 in terms of
a, = “F——, (1.144)

which indicates the anomalous part of the measured value. This deviation cannot be
understoond within the SM framework even though the loop corrections at higher-orders
are included in the theoretical prediction. These precise experiments are not only a

validation of the SM, but also manifest a sign for new physics.

In this section, we discuss the brief account of the g-2 measurements and the SM predic-
tion. We will see later that the comparison between the averaged experimental result at
present and the theoretical prediction within the SM leads to the deviation at the level
of 5.00.
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1.4.1 The g, — 2 measurements

After the discovery of muon by Carl D. Anderson and Seth Neddermeyer at Caltech
in 1936, physicists still wondered if they were just heavier copy of electrons or other
particles. Therefore, the measurement of muon ¢-2 is one of many experiments had

been performed to investigate its properties.

The CERN-I result of muon magnetic moment was published in 1965 [83] with precision
of 0.4 % by using a long dipole magnet of 1.6 T. In 1974, the storage ring technique
was developed and the relativistic muons was used to increase the observation time.
This technique was used in CERN-II and -III experiments with different radii and the
precision was improved to 270ppm and 7.3ppm, respectively. After the end of the
program on muon g-2 experiment at CERN, the Brookhaven National Laboratory (BNL)
was its successor and conducted the g-2 measurement with superconducting storage ring
magnet and more uniform magnetic field. This improved the experimental precision to
the level of 0.54 ppm. Then, the next experiment was built at Fermilab called the
Fermi National Accelerator Laboratory with better precision. The experimental setup

for aforementioned measurements is summarised in table 1.5.

Experiment Magnet Approach T dayu/ay
CERN I (1965) Long dipole magnet, B =1.6 T w injection 1 4000 ppm
CERN II (1974) R = 2.5 m storage ring, B=1.71T p injection 12 270ppm
CERN III (1978) R = 7.1 m storage ring, B=147T 7 injection 29.3 7.3ppm

BNL (2006) R =17.1 m storage ring, B=1.45T 1 injection 29.3 0.54ppm
FNAL Run-1 (2021) R =7.1 m storage ring, B=1.45T 1 injection 29.3 0.46ppm
FNAL Run-2/3 (2023) R = 7.1 m storage ring, B=1.45T 1 injection 29.3 0.21ppm

TABLE 1.5: The summary of various experimental setups for muon g-2. Table from
[84].

The precession measurement of muon g-2

Let us consider a muon which is non-relativistically moving on a plane perpendicular to
the direction of external magnetic field B. Then, the muon’s momentum rotates around
the magnetic field with the cyclotron frequency which is given by

(1.145)

We =

2|5

However, the magnetic moment of the muon is not necessarily aligned with the external

magnetic field, there is a precession of its magnetic moment about the B field with the
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Larmor precession frequency for the muon in its rest frame which is given by

Sr=g (;ﬁ) — (1+a) (f) . (1.146)

If g = 2, these two frequencies are exactly the same. However, from experiment on muon
g-2 this is not the case. For g > 2, the spin of muon turns faster than its momentum.

This difference can be explained by a quantity called the anomalous precession frequency

|

W =W — We = ay (1.147)
The underlying idea behind the experiments is to measure the angle between the spin
and the direction of motion of muon as a function of time [85] while moving in a circular
orbit under the magnetic field. If the anomalous ¢-2 is measured to be 1073, this means
that in one cycle on the orbit the relative spin direction turns a thousand rounds under
the magnetic field. Therefore, to accurately measure the anomaly the muons need to be
stored long enough to make many thousands turns. However, this leads to a problem
because the lifetime of muon at rest is short about 2.2 microsecond. The muon’s lifetime
issue can be leviated by the time dilation effect when it moves with speed close to the
speed of light. This means that Eq.(1.145) has to be modified with the Lorentz factor -y

=

B
Ge= 2, (1.148)
ym

where v = (1 — 52)_1/2 and B is the muon’s velocity in the unit of speed of light.

The motion of the muon on the circular orbit gives rise to a relativistic effect. When

viewing from the laboratory frame, its rest frame appears to precess with the frquency

1\ eB
G = (1 - ) e (1.149)
Yy m

This fact was discovered by Thomas in the context of electron spin in 1926 [86]. Thus,

the total angualar frequency of the spin is given by

o= —r=0tan (B (- (B 2 (DY (B as0)
() (- () =) ()

Eq.(1.150) implies that the relativistic description does not affect the previous conclusion

where
Wo = Ws — e = ay <) , (1.151)

which gives the same result as Eq.(1.147).
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==» High-energy positron
—» Storage orbit

FIGURE 1.13: The schematic setup of the storage ring in FNAL experiment. Figure
from [84].

In the modern muon g-2 experiments like BNL and FNAL, the muon beams with chosen
spin-polarisation are injected into the storage ring through the inflector as depicted in
figure 1.13 and their spin evolution is tracked as they move on the ring. As muons move
in the region with uniform magnetic field B and the electric field is absent, assuming
that they only on a plane perpendicular to the B field B - B ~ 0 where B is the velocity of
muon, the anomalous frequency of muon spin precession is given by Eq.(1.151). However,
if the electric field is turned on and the muon beam is not exactly perpendicular to the
magnetic field, Eq.(1.151) becomes

oo (5) G BYF - (au_ 1)5x B

v+1 72 -1

- - - €
Wg = Wsg — We = —

— . (1.152)

When a positive muon travels on a circular ring for a time equal to its lifetime it will decay
to a positron and corresponding neutrinos. According parity-violating weak decays,
pt — etvuve, the muon will preferably inject a high energy positron in the same
direction of its spin in the muon rest frame. However, in the lab frame, the angle
between muon’s spin and momentum can affect the positron energy spectrum. This
allows us to measure the evolution of positron energy spectrum as muon beams move
around the ring. This energy is measured by many calorimeters placed around the
interior of the ring. The energy of positron is the highest when the muon’s spin and
momentum are pointing in the same direction. Thus, the number of positrons which is

detected at time t is given by

N(t) = Noe /T[1 4+ Acos (wat + ¢)], (1.153)
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where g is the normalisation constant, A is the muon decay asymmetry and 7 is the

lifetime of muon.

The current experimental results from the E821 at BNL for both positive and negative

muons were reported to be [13]

a”PPNY — 116 592 040(60) (50) x 107,
aZ®PNL — 116 592 150(80)(30) x 107, (1.154)

where the numbers in first and second brackets indicate the statistical and systematic

errors. In addition, the result at Fermilab from Run I, II and III is combined to be
aPFNAL = 116 592 055(24) x 1071 (1.155)

Therefore, the averaged value of the muon anomalous magnetic moment from BNL and

FNAL experiments is given by [87]
aS® =116 592 059(22) x 1071, (1.156)

The current status of the experimental findings from BNL and FNAL Run 1-3 is pre-
sented in figure 1.14. The central value for BNL, FNAL Run-1, FNAL Run-2/3 FNAL
Run-1 + Run-2/3 and the current experimental average is indicated by the blue trian-
gle, red hollow square, red dot and purple square, respectively. The uncertainties are
presented as horizontal lines. The statistical uncertainty is labeled by the small tick on

the horizontal lines while the purple band indicates the total uncertainty.

& — BNL
-1 FNAL Run-1
T FNAL Run-2/3
+——+ FNAL Run-1 + Run-2/3
——r Exp. Average
20.0 20.5 21.0 21.5 22.0 22.5

a,x10° - 1165900

FIGURE 1.14: The comparison of experimental fidings from different muon ¢-2 mea-
surements. Figure from [87].
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1.4.2 The standard model prediction of g-2

Classically, the Dirac equation predicts the g-factor (¢ = 2) for any fermions. However,
due to the quantum effect, at higher order correction of pu~y vertex, the vertex function
is modified because muon interacts with virtual particles circulating in the loops at
higher order. In order to determine the quantum effect on the muon magnetic moment,

we need to evaluate the radiative correction of puy vertex.

Generically, the vertex function I'*(p/, p) can be separated into many parts

wohqy, 2 q" 2
I =y"Fi(¢%) + Fy(q”) + ——F3(q7)
2my, my,
q* ioch” #
+ (" - gT)%Gl(q?) + T B G0 (%) + Ly Ga(?). (1.157)
q 2my, My,

where p and p’ represent the momentum of incoming and outgoing muons, respectively.
The momentum q is equal to p — p’. The quantities Fy, Fy, G7 and G4 are called Dirac,
Pauli form factor, Anapole and electric dipole moment (EDM), respectively. The only
form factor contributing to the anomalous magnetic moment is called the Pauli form

factor or F»(0) and is given by

gu_2:

5 F5(0), (1.158)

ay, =
where g, is called the g-factor which tells us how strong the muon can interact with the

magnetic field.

At one loop, the T'#(p/, p) can be computed by evaluating the relavant Feynmann diagram
as shown in figure 1.15. The expression for anomalous magnetic moment of a generic

fermion was computed in [88]. Let us consider a model with Lagrangian

Ling = Y _ A[Cv* + Cav"y|F X, (1.159)
F.X

where F' and X are a generic fermion and vector boson, respectively. Here Cy and Cy

stand for the vector and axial-vector couplings. The result for diagram 1.15(a) and (b)
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FIGURE 1.15: The contributing diagrams to the puy vertex at the leading order from
QED and electroweak sectors. Here X, F' and H represent generic vector, fermion and
scalar fields, respectively.

is given by
a® = —qu‘% 1 de |CES (x —2?) [z + 2ME g
p an? v my

g (et (1))

+ C%{mp — —m }] [m2x2 + M%(1 —z) +x(m% — mQ)}_1 (1.160)
A F F “w X F o ) :
a® = axp’ /1 dz | C? 4mFx2 —22%(1 +2)
H 871'2 0 v m#
™ 2 mr 3 2 mi 2 3
+ 5| —z7(x—1) = —(-22" + 32" — v) — — (22 — 32" + 27)
Mz my my,
m 2 2 2,2 2 2 2 -1
+m—z($—m )| ¢+ Ca{mp — —mp} [mux +(Mx —my)x +mp(l—1z)|

(1.161)

where g is the electric charge of F' in unit of |e|. The m,, mp and My are the mass of
muon, fermion F' and vector boson X, respectively. The term {mpr — —mp} represents
all previous term but with the opposite sign of internal fermion mass. These two results

have been cross-validated with the ones I derived in Appendix F.
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For the scalar contribution with Lagrangian

Lyukawa = »_ #[Cs + Cpy°|FH, (1.162)
F.H

the results for diagrams with scalar propagation as depicted in figure 1.15(c) and (d)

read
1
© _ _ 41 a2 T2 2 _
ay, s ), do |CE{a® — 2% + - (x* —x) p + Cp{mp — —mp}
X {miﬁ + (m¥ —m )a: +mi(1 — az)}, (1.163)
2 1
qgrm mpg
a&d) =— 8772“ /0 dz Cfg{a;Q — 23+ mua,z} + O3 {mp — —mF}]
X [mixQ + (m% — mi)x +m%4(1 — l‘):| , (1.164)

where C's and C'p are the scalar and pseudo-scalar couplings. After integrating over the

Feynman parameter z, the result of a,& ) has been checked against Eq.(F.25).

AN S A

FIGURE 1.16: The SM diagrams contributing to the muon anomalous magnetic moment
at one loop. Figure from [13]

In principle, the SM calculation for the muon anomalous magnetic moment can be
separated into three parts, which are the pure QED, the electroweak and the hadronic
contributions [13]. In the SM, the one loop contributions from QED diagram can be
calculated by Eq.(1.160) and is given by

GSED[I—IOOP] = 2&_ (1.165)
m

This first expression was originally calculated by Julian Schwinger in his 1948 paper [89].
Nowadays, however, we are able to evaluate the pure QED contribution up to five

loops [90] and it reads

QED _ @ a)? o)’
aQFP — L 4 0.765 857 420(13) (W) +24.050 509 85(23) (W)

a4 a\®
+ 130.8782(60) (;) +751.0(9) (;) +oe (1.166)
= 116 584 718.93(0.10) x 10~ (1.167)
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In addition, the one loop results for EW contributions read

8272 |3 3 ME, M%
=194.8 x 1071, (1.169)

G 2 2 2
PV [1oop] = N0 L by ez 40 <m“> o <m“> ] . (1.168)

This result is easily found by substituting the SM couplings into Eq.(1.160), (1.161) and
(1.164) and expanding it in the limit of m2/mg, < 1 and m?/m3; < 1*. Now we have

the EW result up to two loop contribution and it reads
a;, " =153.6(1.0) x 10" (1.170)

Note that errors in QED and EW results are small because the parameters used in those

expressions are very-well measured.

However, this is not the case for the hadronic contribution because of the large uncer-
tainty. The leading order diagrams from hadronic part is depicted in figure 1.16(d).
Traditionally, the data-driven dispersion relation approach is used to compute the lead-
ing order contribution by relying on the data of of eTe™ annihilation cross section into
hadrons. The hadronic vaccuum polarisation contribution at leading order is given
by [91]

(L] = é (O‘)Q/Oo dsK(S)R(O)(S),

s m2 s

= 6 931(40) x 1071, (1.171)
The function K(s) ~ 1/s is called the QED kernel function at low energy and R(©)(s) is
the ratio of cross section of eTe™ annihilation into hadrons to that into muons which is

dominated by the resonance of p(770) — 7w+7~. Recently, the hadronic contribution is
calculated up to next to next to leading order (NNLO) and reads

a?[NNLO] = 6(18) x 1071, (1.172)
Therefore, the sum of all three contributions leads to

ap™ =116 591 810(43) x 107! (1.173)

The large uncertainty appears in the SM results mainly originates from the hadronic vac-
uum polarisation (HVP) contribution [90] based on the data-driven approach. However,
there is a different approach for computing this contribution which relies on the lattice
QCD simulation. This approach has been used by several groups [93, 94, 95, 96, 97].

2The loop function is highly unstable in the region with large mass hierarchy.
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F1GURE 1.17: The comparison between data-driven and lattice QCD approaches as
labelled by red and green, respectively. Figure from [92].

However, the lattice simulation results from these collaborations (labelled by BMW¢’17,
RBC’18, ETM’19, FHM’19, Mainz’'19, BMW¢’20) gave a large uncertainty and are
not comparable to the data-driven or R-ratio results (labelled by CHHKS’19, KNT’19,
DHMZ’19) as indicated by figure 1.17. The no new physics blue region in figure 1.17
corresponds to the value of the leading order HVP contribution that would explain the
g, — 2 experimental result. Recently, the uncertainty from HVP contribution has been
considerably reduced according to the BMW result [92] which relaxes a tension between
the measurement and SM prediction to the 1.50 significance. Nevertheless, this result
leads to another tension with electroweak global fits which changes the running of fine
structure constant Aa}(lz)d [98]. In addition, the latest BMW result has not yet been con-
firmed by other groups. Therefore, it is uncertain whether or not their result is correct.
Until we can confirm their finding, the result from data-driven approach will be used in
this thesis.

When comparing the SM prediction to the experimental result in Eq.(1.156), it follows
that

Aay = ay " — S = 249(48) x 107, (1.174)

which leads to the 50 departure from the SM prediction. This number will be used in
the chapter 4 when we discuss the phenomenology of the muon portal to vector dark

matter scenario.
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Chapter 2

Theoretical setup for Vector Dark

Matter with Fermionic portal

2.1 Introduction

The Standard Model (SM) of particle physics describes fundamental particle fields and
their interactions under strong, Electro-Magnetic (EM) and weak forces using the sym-
metry principle of gauge invariance. Furthermore, through the so-called Higgs mech-
anism, triggering Electro-Weak Symmetry Breaking (EWSB), the last two forces are
actually unified into a single EW force. Given the particle content and charges under
the gauge group of the SM, SU(3)¢c x SU(2), x U(1)y, some of the particles in it are
stable either due to the (unbroken) gauge symmetries themselves (such as the gluons
and photon) or due to the fact that they are the lightest ones obeying a conservation
law (charge or number conservation) such as the electron and its neutrino. The latter
is of some importance here, as the analysis of the gravitational interactions at different
scales in the Universe implies the existence of matter without EM interactions, called
Dark Matter (DM), for which a particle interpretation is a natural possibility in the
framework of the SM. So far, the only viable candidate is the aforementioned neutrino,
alas, it is not compliant with corresponding experimental observations. Hence, leaving

aside other shortcomings of it, there is an obvious need to surpass the SM.

We consider here DM as a vector (spin-1) gauge particle. Such a theoretical construction
is extremely well motivated whilst being constrained in the possible model building
choices. The Higgs portal is the simplest and most favoured mechanism to connect
a dark sector where the DM is represented by a new gauge boson which gets its mass
through a new scalar, that breaks the gauge symmetry through the Higgs mechanism. In
this mechanism the quartic interaction involving two new scalars and two Higgs bosons,
|S|?|H|?, is not protected by any symmetry, and is the minimal way of connecting the

visible with the invisible sector. The Higgs portal, however, might not be the dominant
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connection between the two sectors. It induces a mixing in the scalar sector modifying
the Higgs couplings to the SM particles and generating Higgs-DM interactions, which
are strongly constrained [99]. The size of the dimensionless coupling of the quartic
interaction, which in principle can have any value, is thus constrained to be small to
respect the size of the scalar mixing. This makes the detection of signatures from
the dark sector extremely challenging. For the non-Abelian case it is also possible
to construct kinetic-mixing terms, which are however non-renormalisable and hence
suppressed by the scale of new physics. All these scenarios have been extensively studied
in literature [100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125].

Other mediation mechanisms can however be present in case of vector DM, noticeably in-
volving the fermionic sector [126, 125]. The fermionic mediator which was studied in the
context of scalar DM is well motivated theoretically [127, 128] and provides interesting
phenomenology with well-defined parameter space [129, 130, 131, 132]. The interaction
of vector DM with SM fermions is also well motivated from the phenomenological point
of view: most of the current anomalies observed in SM measurements are associated
with the fermion sector (especially with the lepton one) [133]. Also, the new fermions
might also play a role in the radiative shift of the W boson mass, for which a sizeable
discrepancy with respect to the SM expectation has been recently reported by [134].
Scenarios with Vector-Like (VL) fermion portals, but for scalar DM candidates, have
also been explored in the literature [135, 136]. Some version of a non-Abelian vector
DM scenario connected to the SM through the Higgs portal and the fermionic sector
was suggested in [126], to explore EM multipole interactions of DM candidates, where
the authors introduced two new fermionic multiplets (a doublet ¥, and a singlet W,).
Moreover, they assumed a negligibly small Higgs portal, so that the main connection to
the SM is at one-loop level via the new fermions. In that paper the authors also assumed
vanishing Yukawa terms between new and SM fermions (y¥,(i72®%)¢r) where (g is the
right-handed lepton. However, the new Yukawa terms are introduced due to the mixing

between two new fermion multiplets.

In this chapter, we propose a new minimal framework for Fermion Portal Vector DM
(FPVDM) (albeit closely related to that of [126]) which incorporates just one dark
doublet of VL fermions. The FPVDM scenario relies crucially on the mixing of one of
the fermions from the dark doublet with one or more SM fermions sharing the same
electric charge, and this mixing provides the tree-level portal connecting dark and SM
sectors. Unlike the previous work, we consider the effect of Yukawa terms between new
and SM fermions. Also, we include the results from the Z boson propagating diagrams
which is not considered in [126]. Therefore, our model is more minimal in the theoretical
setup and we further investigate the effect of Z boson propagation together with the
photon. In addition we have formulated the complete Lagrangian for this FPVDM

framework, together with the necessary conditions and dark charge assignments which
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guarantee the stability of vector DM, ensuring the consistency of the new framework
suggested in our approach. In our setup the elements of doublet VL fermions have
different charges under a new “dark” SU(2) group and are singlets under the SU(2)y,
group of the SM. The elements of the fermionic doublet have opposite Zs parity. This
parity emerges as a subgroup of a new global U (1)%/1;)}3&1 symmetry, which has to be
imposed to ensure the stability of the dark sector, and for which different members
of SU(2)p multiplets transform differently depending on the third component of their
dark-isospin (D-isospin). The U(l)%/lgbaLl global symmetry can in principle be promoted
to a local symmetry and gauged, generating a new massless gauge boson besides the
DM candidate.

The plan of this chapter is as follows. In section 2.2 we give a detailed description
of the class of models we propose. In the following section 2.3 we further discuss the
possibility of gauging the U (1)%};‘06‘1 global symmetry of the model which would provide
a natural symmetry behind the stability of DM. In section 3.1 we discuss the case of a
particular realisation of our model, in connection with new interesting collider features.
In this scenario we invoke a top-quark portal and eliminate any mixing between SM
and dark Higgs bosons. We discuss various aspects of phenomenological implications of
this specific top-portal scenario (a selection of such results is presented in Ref. [137]).
Finally, in chapter 5 we summarise our findings on the new FPVDM framework and our

particular realisation of it.

2.2 The dark sector and its interactions with the SM

We start by considering a new dark SU(2) group — the simplest non-Abelian group in
terms of number of generators — which we label as SU(2)p. The gauge bosons associated
T
with the SU(2)p before symmetry breaking are labelled as Vp,, = (ng VB”, Vl;#) ,
where, here and in the following, the superscript identifies the @ p charge (see the discus-
sion about this charge below)!. The full covariant derivative, including the SM terms,
is
. g +t | . 9D 4+ ot |
D, = aﬂ — <ZﬁW‘u T + ZgWSTg + zg,YB'u> — <Z\/§VDMTD + Z.gDVgMTZSD) , (2.1)
where g and ¢’ are, respectively, the weak and hypercharge coupling constants, gp is
the SU(2)p coupling constant, T3 and Y are the weak-isospin and weak-hypercharge,
respectively, while T3p is the dark-isospin third component of SU(2)p. The indices of
the Tp matrices act only on the SU(2)p elements and are diagonal with respect to the

SU(2)r, ones while the indices of the 7" matrices act only on the SU(2) elements and
are diagonal with respect to SU(2)p. The SU(2)p symmetry needs to be spontaneously

'In order to indicate particles carrying the dark Qp charge (a superscript), we use a subscript D on
them.
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broken to generate a mass for its gauge bosons. Two complex scalar doublets are thus
needed for the breaking of SU(2), and SU(2)p, respectively:

o= ) @=L () (breaking SUQ) x U(1)y) (2.2)
H — ¢0 H)— \6 v g L Y), .

o= [ #D — (D >:i 0 (breaking SU(2)p x U(1)8°") . (2.3)
5 <P0D 5 V2 \ vp & P Yo . .

The full scalar potential has the following form:

V(@ ®p) = —pl0l oy —phelop + A@L o)+ Ap()dp)?
+Ap (@) (@Lep) | (2.4)

where the last term provides the interaction between ®; and ®p (the Higgs portal).
In the unbroken phase the Lagrangian of ®p is invariant under a SO(4) ~ SU(2) x
SU(2) global symmetry. One of the two SU(2) is gauged to be SU(2)p. The Vacuum
Expectation Value (VEV) of ®p selects a direction in the scalar field space keeping three
unbroken generators and leaving an unbroken global symmetry, the custodial symmetry
associated with the diagonal SU(2), SO(4) — SO(3) ~ SU(2)diag- In the absence of
new fermions, this custodial symmetry ensures the stability of the new (dark) gauge
bosons [101].

We stress here that the quartic term @L@ H<I>TD§) p is in general not protected by any
symmetry and therefore cannot be removed altogether from the Lagrangian. A key
point of the model, however, is that this portal does not need to play an important role
and can indeed be negligible with respect to the other operators of the potential. The
connection between the dark sector and the SM is realised via two new VL fermions,
singlets of SU(2)y, but with a U(1)y hypercharge identical to one of the corresponding
right-handed SM fermions. These VL fermions form a doublet under SU(2)p, labelled
as ¥ = (¢p, F). The respective mass terms and Yukawa interactions of the new fermion

sector have the following form:
L= MgV + (T OpfIM 4 hec), (2.5)

where fIS,’LM generically denotes a SM right-handed singlet and 3/ is a new Yukawa coupling
connecting the SM fermion with ¥ through the ® p doublet. The absence of an additional
Yukawa term y” U 1, &, I%M, which would violate the stability of DM, is protected by the
presence of the unbroken global U (1)€gbal. Without this symmetry such a term would
be compulsory since the scalar doublet, ® p, is in the pseudo-real representation. Under
this global U (1)%,1;]3&1 = ¢"MYD | the new fields transform non trivially, whilst the SM fields

transform into themselves.
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In analogy with the SM, where the SU(2), x U(1)y symmetry breaks down to the EM
U(1), the vacuum state of ®p is invariant under a residual U(1), which in this case is
global. The invariance of the VEV under the transformation e90%7 YD | ig ensured if
the relations gpas = A and (Tg + YD)<¢D> = 0 are satisfied, leading to the assignment
Yp = 1/2 for ®p. The breaking pattern in the dark sector is therefore SU(2)p x
U (1)%,1[)0})8Ll —U (1)%1(;bal associated with the diagonal generator SU(2)p x U(l)%}gbal with
a conserved quantum number Qp = T3p + Yp, the dark charge of the new particles.
For this reason, different elements of SU(2)p multiplets have different transformation
properties under the residual U (1)%1(;3&1, and with the assignment Yp = 1/2 for doublets

and Yp = 0 for triplets, a Zo subgroup can be defined as
Zo: (~1)0 (2.6)

under which different members of SU(2)p multiplets transform differently, guaranteeing
the stability of the lightest Zy odd state. Specifically, SU(2)p doublets always contain a
Zs-odd and Zs-even component, while SU(2)p triplets have a (— + —) transformation
structure. Clearly, the analogies with the SM EM U(1) can be exploited further by

promoting the global U (1)%/1;ba1 to a local symmetry and gauging it. This leads to the

presence of renormalisable kinetic mixing between the SM and dark U (1)%,1;]031 groups in
the unbroken phase. This aspect will be addressed in section 2.3, but such a construction
and its phenomenological consequences is not part of the FPVDM scenario suggested

here, and therefore will not be explored in detail.
The particle content of the model is summarised in Table 2.1.

After imposing the dark charge conservation, ensuring the stability of the lightest particle
in the dark sector which is odd under Zs, the most general Lagrangian for this scenario,
which is composed of field strength tensors for the vectors (SM and dark), the kinetic
and mass terms for the fermions and the scalars, the Yukawa terms and the potential

for & and ®p, takes the following form:

1 2SM . =
Vi i vg g + 5 DM 4 Wi 4D, @n | + D@Dl ~ V (@, @)

— WI e fN + UL fEM 4 he) — My BT (2.7)

ﬁDD

with the covariant derivative and scalar potential given in Eq.(2.1) and Eq.(2.4), respec-

tively.

The lightest Zo-odd particles can be either the VBEM dark gauge bosons, or ¥p. If it is
¥ p, it can be either a partner of a) SM quarks, b) charged leptons or ¢) neutrinos. In
case a) the DM candidate would form a stable bound state with SM quarks, in case b)
the model would be excluded because the DM would be electrically charge, while in case

c¢) the DM would be a neutrino partner. Conversely, if the lightest Zs-odd particle is
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Scalars  [SU(2), U(l)y | Q |SUR2)p Uy, |@p|Z2

+
<I>H—<<ZO> 2 1/2 L 1 0 0 |+
Jr
_ (%D 1 |-
dp = 1 0 0 2 1/2
b ((p%) / 0 |+
Vectors  |SU2), U(l)y | Q |SU©2)p ULy, |Qp|Z:
wr 1
W,=|W; 3 0 0 1 0 [0 |+
W, -1
B, 1 0 0 1 0 o+
vg“ 1| =
Vou=| VB, 1 0 0 3 0o |0 |+
Viu 1| -
Fermions  |SU(2), U(l)y Q |SU@2)p U(l)y,|Qp|Z:
SM " 1 113 0
L —<f%’1\”4> 2 e |y 1 0 10|+
d,.l /r, 3
uM, M 1 %,o %,0 1 0 0 |+
d3M, (5M 1 -3 -1|-3,-1 1 0 0 |+
_(¥p I
q;_(F 1 Q Q 2 12 | o1y

TABLE 2.1: The quantum numbers under the EW and dark gauge group SU(2)p x
U (1)%}2‘“1 of the particles of the model, and their Z, parity.

VDiu, the DM is a massive dark gauge boson. It is this this scenario, labelled as Fermion

Portal Vector Dark Matter (FPVDM), which we discuss in the rest of this paper.

2.2.1 Kinetic mixing in the unbroken EW and dark phases

We discuss here in more detail the origin of the kinetic mixing at loop level. The two
scalar doublets are secluded with respect to one another in the sense that the SM one
has no dark quantum numbers (singlet with respect to SU(2)p) and the SU(2)p one
has no SM quantum numbers (transforming as a singlet with respect to the SM). The
operators giving rise to kinetic mixing in the effective Lagrangian are of dimension-six
for U(1)y and dimension-eight for SU(2)r, and, in our case, have the form

VAR (07 u®p; (%Wlﬁy@}ﬁ(ab)ij@m - %B@ : (2.8)
where 0@ is a Pauli matrix generator of SU(2)p and o? is a generator of SU(2)r. Here,
Vi is the field strength tensor of SU(2)p and WP, and B, are, respectively, the
field strength tensors of SU(2)r and U(1)y. The kinetic mixing term is obtained upon
inserting the VEVs of the Higgs doublets but, as already indicated, the operator is
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suppressed through the fourth power of the large scale A. Concerning the origin of
this effective operator in our model, the suppression can be estimated with a one-loop

two-point function mixing the two types of gauge bosons, SU(2)r, x U(1)y and SU(2)p.

<(I;D>
: (1) ﬁg‘l’tﬁ

)(‘2:,\1

SU2)p SU(2),,

7

¥ k
(‘I’u> <q’11>

X
(®p)

FIGURE 2.1: Loop realisation of the kinetic mixing operators for U(1)y and SU(2)p,
in the unbroken EW and dark symmetry phases.

The fermion loops with VEV insertions allows the two types of gauge bosons to connect,

as shown in figure 2.1, and the interactions are expected to be of order

1 22 i
——~53Y 9 govp (for U(l)y — SU(2)p mixing) (2.9)
16W2M\%m§
and
2 12 2 2 o
Te 2 N2 h for SU(2) — SU(2 2.10
t6n2arzm? ¥ 9900 ep (for SUR)r = SUQ@)p mixing), - (2.10)

where My is the mass of the VL fermion ¥ with both weak hypercharge and SU(2)p
quantum numbers coupling with a Yukawa type term 3/ to the Higgs sector.? A
gauge mixing term is also possible using the quartic term in the scalar potential —
AHD@THQH CIDTD<I>D7 but its contribution is more suppressed as it arises at two-loop
level. In the broken phase, a kinetic mixing arises between the electrically neutral mass
eigenstates [138, 139, 126, 140]. This is described in more detail in section 2.2.3.2 and

has important phenomenological consequences.

2.2.2 Electroweak and dark symmetry breaking

The minimum of the potential reads as

2 7 A A A
V(®H, Pp)min = —%02 - %v% + ZU4 + TDU% + %UQUQD (2.11)

2Notice that the Yukawa parameters determine the masses of both Zj-even fermions, and their ex-
pression is a function of all fermion masses. Therefore, Eq.(2.9),(2.10) are finite in the limit m; — 0:
this can be verified by substituting the explicit expressions of the Yukawa couplings (see Eq.(2.22)) and
consider that, in the the same limit, the two elements of the VL fermion doublet become degenerate.
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and the minimisation conditions are
2 9 1 2 2 2 1 2
v(—p” + Av +§)\HD’UD) =0 and vD(—uD+/\DvD+§)\HDv )=20 (2.12)

whilst the two non-trivial stationary points are

ANpp? — 2Xgppg ANpg, — 2Appp
v = Gl gDMD and wvp = ] ZD'M , (2.13)
AXAp — A p AX\p — A p

where the VEVs are taken to be positive without loss of generality. They are minima
if the corresponding Hessian matrix is positive definite (i.e., if its eigenvalues are both

positive, being a symmetric matrix),

3\ 2 2 AHD ,,2 A
%‘Uminy’UDmin = ! M + 2 UD 2 HD2’U/UD )\HD 2 9 (214)
)\HDU'UD 3)\DUD—MD+TU

which leads to the following conditions for the Lagrangian parameters:

Agp < 0and A >0 and Ap > 0 and /\%ID < 4X)\p
uw#0and up # 0 and ¢ or (2.15)

Agp > 0 and 2/\MZD > )\HDuz and 2/\DM2 > )\HD,u2D

Finally, if the Higgs quartic coupling vanishes, A\gp = 0, the system simply reduces to
two independent potentials, V(®y, Pp) = V(Py) + V(Pp), where the two terms have

identical structure, corresponding to the SM one, and where the minima are simply

defined as:
[ 12 17
v=4y/5 and vp=+ TD (2.16)

2.2.3 Particle spectrum of the model

The model contains new scalar, fermion and vector states. The scalar and fermion ones
can mix with SM objects, while the vectors undergo kinetic and mass mixing in the
broken EW and dark phases, potentially affecting observables primarily sensitive to the

SM itself. In this section, the structure of each particle sector is thus carefully described.

2.2.3.1 Fermions

The fermion component with T3p = +1/2 gets only the VL mass, therefore

My, = My , (2.17)
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whereas the other fermion masses are generated after both scalars acquire a VEV. The

fermionic mass matrix reads as follows:

_ SM v 0
ol = (M FMp | ), with Mp = I : (2.18)
Fr v 5 My

This mass matrix describes the mixing of a VL fermion with a SM fermion but, unlike
in well-known VL scenarios where the new states mix with SM fermions via the Higgs
boson, in this case the mixing is driven by ®p and the non-zero off-diagonal element
is proportional to vp. The mass matrix can be diagonalised by two unitary matrices,
VL ,Rr, leading to the mass eigenstates f and F', where f identifies the SM fermion and

F' its heavier partner:

Ll = (f FL)M$ ( j;’; > = (FLFL)V] MpVir ( ZJ;JZ ) . (2.19)

The two rotation matrices

0 in 6 0 in 6
Vip = OV SRUL) and Vg = | SR SRR ) 9.90)
—sinfly, cosbyp, —sinfygp cosbig

diagonalise the products /\/ldF/\/ljlwT and M?M%, respectively, and the mass eigenvalues

are:

mip = % [ 20% + %0 + 2M3 F \/(y2v2 + y?v% + 2M2)2 — 8y21}2M\%:| . (2.21)
The fermion sector therefore contains the SM fermion with mass my, a Zs-even partner
with mass mp and a Zs-odd partner with mass m,,. The mass hierarchy is my <
My, < mp. This is the choice that we make based on the phenomenological reason
in which vector-like fermion searches provide the lower limits on mass above the SM
partners. Another possible hierarchy is mpr < my < my which is excluded by collider

searches.

It is possible to trade the Yukawa parameters for the masses of the physical fermions

{m¢,my,,mp} as:

(% — 2, Y, — )
y:ﬁmfmF, y,:\@\/ YD YD f . (2.22)

My ¥ MypUD

The mixing angles can also be expressed as function of the masses as:

2 2 2 2 2
mf mF_me : 29 _ mF_me 223
2 2 2 > SHIUfR= "5 2 (2.23)
oD mF—mf mF—mf

sin? Orr, =
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The left-handed mixing angle is suppressed by the mff / mpr ratio. This feature is dif-
ferent from the usual scenarios where a SU(2)-singlet VL fermion is added to the SM
and allowed to mix with SM fermions and where the right-handed mixing angle is sup-
pressed [141]. In this case, despite the fact that ¢ is a singlet under the SM gauge
group, the mixing is driven by the SU(2)p fermion doublet ¥ and the SU(2)p scalar
doublet ®p, the elements of which are also singlets under the EW gauge group and

hence involves a right-handed SM fermion.

Finally, the new fermion sector is completely decoupled in the limit mp = my,, for
which y = ysm = \/5%, y' =0, sinfy;, =sinfrr = 0, so that the pure SM scenario is

restored.

2.2.3.2 Gauge bosons

The kinetic Lagrangian of ® and ®p evaluated at the minimum of the scalar potential

reads as follows:

9b

) 1 1 _
L5 > (V) My Vi + St W+ L (18)2 4 Dadvsvy | (220)

8
where VgMM = (B, Wi’)T At tree level, the SM gauge bosons are not affected by the
new ®p scalar, and therefore their masses correspond to the SM values, while the gauge
bosons of SU(2)p are all degenerate and their masses are

my =myt =myg = %UD . (2.25)

The only electrically neutral massive Zz-odd states of FPVDM scenarios are the SU(2)p
gauge bosons vV, which are thus identified as DM candidates.

The degeneracy in mass is broken at loop level by different effects. In the following, for

making the notation more compact, we will label the two gauge bosons as:

Vsi = Vl()*) with mass my,,
vi=Vv/ with mass my~

First of all, in the broken EW and dark gauge symmetry phases, a kinetic mixing arises
between V’ and both photon and Z boson [138, 139, 126, 140]. Using analogous notation
to [140], and assuming only one VL fermion doublet under SU(2)p exists, the kinetic
mixing parameters €4y and ezy entering the kinetic mixing matrix
1 0 ———ar
Vi€ —e5y
KM _ 0 1 — €ZV

v Vidg | (2.26)

00 —=~L
Vi=€y =y
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%4 V'iZ,y V' V', Z,~

Vb Vb

FIGURE 2.2: The Feynman diagrams contributing to mass corrections and mixing of
SU(2)p vector bosons, V', Z,~ (left) and Vp (right) at one loop level. Zs-odd particles
are highlighted in red.

which rotates the (A, Z, V/j) vector of gauge eigenstates, are determined by loops
involving the only three fermions charged under the SM and dark gauge groups, f, F'
and ¥ p, as shown in figure 2.2. The scalar fields do not contribute due to the fact that
neither @y nor ®p transform under the SM and dark gauge groups at the same time.
These loops can be evaluated separately for the AV and ZV mixings using the general
expression of the gauge boson vacuum polarisation tensor provided in [142]. For the

AV mixing the tensor is purely transverse and in the ¢ — 0 limit reads H?V ~ ¢*eay,

where
QDCQ m2
cav =" LN (VA + VAT In ik
i=f,Fabp H
2 2 2
gpeQy L ; my 1 m my,
=5 [—2(3111 9?,; + sin Q?R) In ? — §(cos Q%L + cos 9]2”3) In 75 +1n ,u2D
4 2,2 2 2
e m — m,em m m e
- o %f 12Z}D 2f 2F ln% +2In YD = 9D QfoAV(rf’er) : (227)
167 (my — mf)m¢D m?, mymp 167

with {c,s,t}w = {cos,sin, tan}by, ry = mys/my, and ry, = my,/mp. The loop

function
r2 — r]% T?p
FW (rp,ry,) = % ln(r?riD) +In —2 (2.28)
T p T

does not depend on the specific fermion flavour but only on the ratios between fermion
masses, and its numerical values are shown in figure 2.3, where it is possible to see that

the contribution of kinetic mixing completely cancels when r¢ = ry, ;.

The vacuum polarisation tensor for the ZV mixing, in contrast, is more involved due
to the non-vector nature of the couplings on both sides of the loop. Its transverse and

longitudinal components in the ¢> — 0 limit read

99D
N7 (¢* = 0) ~ =5 [3m?fﬁv(rfaer)+q2<quTV1(7"f7%)
w

+ QfS%vffTvz(rf,wD)M , (2.29)

99D
6412c,,

va(q2 —0) ~ [3m?c]-",iv(rf,r%) + qQF(ZZLV(rf, er)] , (2.30)
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FIGURE 2.3: Numerical values of the loop function FAY (ry, vy, ), with 7f = my/my,
and ry, = My, /Mmp.

such that the total contribution is

99D
HZV(q2 —0) ~ =y [Gm?cfév(rf,r¢D)
w

AU AL
(P i) + Qe PR e )] 230
where the functions fﬁ}ng +qr.qr2(Tf:Typ) are provided in Appendix B and their nu-

merical values are shown in figure 2.4.
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F1GURE 2.4: Numerical values of the loop function F52T1+qL,qT2 (rg,ryp), with rp =

myg/my, and Ty, = My, /ME.

Besides the kinetic mixing, a mass mixing is thus induced between the SM Z boson and

V', The coefficients of the ZV kinetic and mass mixing read:

99D
ezv = ) ]:qZT‘{—l—qL(va ’I"wD) + Qfs%/quZT‘g(rfv rlbD) ) (232)
6474 ¢y
3
Am2ZV — 299D m?]:nzlv(rf,rd,[)) . (2.33)

3272¢,,
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The adimensional function FZY (r £,Ty,) appearing in the expression of the mass shift
AmQZV is small for ry, ~ 1 (i.e., in the decoupling limit) and rapidly grows as ry,
decreases. The function FqZT‘{ +qu(Tf,Typ) has a similar behaviour but with a milder

dependence on ry,,,. The function F, qZT‘g (rf,7ypp,) has a similar behaviour as F AV FTp)-

The mass matrix of the (Z, Vé) system receives a shift proportional to the mass term

in the vacuum polarisation tensor:

1.2 2Y,,2 1 2 52 1,2
]\7[2ZV = ( ilg* + g% 5AmZy, ) — ( myz SULOA% ) 7 (2.34)

1 A2 12,2 1,.2.m =2
sAmzy 19DVD aMyezy My

where the adimensional parameter €%, = Am%,, /m?c has been introduced, and where
loop contributions to the diagonal terms have been neglected because of the non-zero

tree-level values. This matrix is rotated by VEM into

M = (V)T

2 12y,2 2
1 (g% + g"*)v? (g7 +g v egy —2mieny
1—€2 ., —€2
_ vV Ay —€zv 2.35
4 (gz+g’2)v262V72m?e’Z"V g%v%+(g2+g’2)v262zvf4m?eZVeTZ”V ( )

2 2
\/176124‘/7622‘/ I—e4v—€zy

and diagonalised through a rotation with angle

2 ((92 +g*)vezy — 27”?0572”&/) 1 -y — 5y

tan20zy = £+
(1- EQAV — EQZV)(g2 + g?)v? — ghvd + 4ezve7gvm?c

, (2.36)

which is positive for my > myz and negative otherwise, and in the limit of small €4y, €7y

and €7, becomes:

2m%67znv — (92 + 9,2)1)262\/

tan 207y ~ 207y ~ +2 (2.37)
9pvh — (9% + g?)v?

In the same limit the masses of the Z and V' bosons read:

1 g2 v?

2 1.9 24, 2 2 DVD
my = g Loy (1- 2] (2.38)

1 (92 +gl2)v2
9pVD

The induced modification to the Z boson mass (and an analogous modification to the
W boson mass induced by loops involving F' and a SM particle, potentially contributing
to the W mass anomaly observed by [134])% are constrained by EW precision data and

depend on specific realisations of the model.

3This is not studied yet within our model and it will be done in near future.
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Another source of Vp and V'’ mass split are the different fermionic loop corrections from
f,F and v¢p corresponding to the different Zo parities of the SU(2)p gauge bosons,
as shown in figure 2.2. A detailed discussion of the 1-loop calculations is provided in
Appendix A. The mass splitting Amy = my,, — my’ can be written in a compact form

in terms of the parameters

2 2 2 2
mp—m m m
F YD f Vb
€1 = 2 y €2 — 2 €3 — 3 - (240)
mp mp mep

In the approximation of €1, €2, €5 < 1 one has

1
Ami, = A = ————eghmi [(20 + 3e3 — 15€2 + 20eze:
my = Amy |, e 64072my,, 19D™F [(20 + 3e3 — 1562 + 20€2€3)
+10(3€ — €3 — 2eg€3) log €3] 4+ 0(€2, €9, €3) . (2.41)

For practical purposes, the expression for Amy can be further simplified by neglecting

€2 and €3 and keeping the leading term in ¢;, which leads to the following simple form:

2,2 2,2 m2 — m?2 2
Amy, = AmH IpMp_ 2 _ _IpMF ( a wD) ) (2.42)

= €7 =
€2:=0 " 32m2my,, 1 32m2my, m%

The radiative mass splitting between the Vp and V' bosons plays a very important
role in the determination of relic density and DM Indirect Detection (ID) rates. The
range of validity of the approximations for Amy presented above depends on the specific
realisation of the FPVDM model and its parameter space. A detailed discussion of the

respective numerical results for Amy, is given in section 3.1 for a specific case study.

Finally, it is important to mention that the covariant derivative is modified by the kinetic

mixing as follows:

Dy~ 8, —ieQA, —i [Cg(:r3 —Qsy)) — gDTgezv] Z,

9

—i [gDTfS —eQeay + (T3 - Qsiy)(Ozv — 6Zv)} Vi o (2.43)

where we have included only leading terms in 07y and ezy .

This modification has certain phenomenological consequences. Among the most relevant
ones, the interaction of V/ with all charged SM particles via the mixing parameter €y
allows the direct production of V' at the LHC via Drell-Yan topologies, and is therefore
constrained by direct searches of heavy resonances. Also, the DM candidate Vp can
interact through EM multipoles with atomic matter, contributing to direct detection
observables [126]. In the case where only one VL representation is present, the con-
straints coming from these processes depend only on the fermion charge ) and on the

mass ratios ry and ry,,, but not on the specific flavour of the fermion.
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2.2.3.3 Scalars

The scalar potential of Eq.( 2.4) is constructed starting from the 8 degrees of freedom of
all the scalar fields of the theory: 4 for @ and 4 for ®p. The theory contains 6 massive
gauge bosons: Z, W+, V' and Vp (with two opposite D-isospin values). Therefore 6
Goldstone bosons are needed to give the corresponding longitudinal components. Thus,
2 degrees of freedom are left, which correspond to physical massive scalars: the SM
Higgs boson, h, and a further CP-even scalar, H. Upon expressing the neutral scalars

in the interaction eigenstates in terms of their components in the unitary gauge as

o = \2(@ + h1) (2.44)
o) = —(vp + 1) (2.45)

>

the Lagrangian terms for scalar masses can be written as:

Mw? XD h
L5, =—(he)| § § v;)D e (2.46)
=52vvp  Apvp ®1

The mass eigenvalues are obtained by diagonalising the mass matrix via a rotation

. cosfs sinfg
matrix Vg = . and are
—sinfg cosfg

mj i = M’ + Apvh F \/()\UQ — Apv3)? + A% puud, (2.47)

whilst the mixing angle is

2 2) — 2 2)\
sinfg = \/ngv b D7D (2.48)
mH—mh

Even in the absence of explicit mixing induced by the quadratic term, i.e., even if
Agp = 0, hy and ¢ can mix at one-loop via the their interactions with fermions. The
consequences of this mixing, which can also affect Higgs-related observables, go beyond

the scopes of this analysis, and will be treated in a future work.

2.2.4 Flavour structure and Cabibbo-Kobayashi-Maskawa (CKM) ma-

trix

The previous treatment assumed the presence of one VL SU(2)p doublet interacting
with one SM fermion, without specifying the flavour structure involved. If the full flavour
structure of the SM is considered, different possibilities might arise. A VL fermion can

interact with one or more SM flavours and there can be multiple VL fermions.
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The most general Lagrangian, accounting for the above-mentioned possibilities, is

Ln = MLUU + MyD;D;+ MEEKEK
+ yquL Oy +deCKMQzL Oyd; iR +?JszL Sy + hec.
+ (yu)I]UIL(I)DUjR + (yd>J]DJL(I)Dd]R + (yl)K]EKLQDl + h.c. N (249)

where & = 19 ®%, 1,7 = 1,2,3 are SM flavour indices and I, J, K run over the flavours
of the VL partners. The SM Yukawa couplings have been diagonalised exploiting the
flavour symmetries and the SM CKM matrix (i.e., the CKM matrix if no VL states were
introduced) and VCKM has been introduced to parametrise the misalignment between

the flavour and mass eigenstates in the down sector.

The most generic mass matrices read as follows:

' j i iJ
y@% ‘ 0 chlVCKMT ‘ 0
MU - ( ( Iivp ‘ Mé ’ MD = ’

v (o) "% | Mp
v i K
(im0
Mg = ( ki ‘ E ) (2.50)
Y E

The mass matrices can be diagonalised by two unitary matrices V; and Vg, with dimen-
sion 3+ {1, J, K} depending on the fermion type. If the same VL fermion interacts with
multiple flavours of SM fermions, the most constraining effects are represented by mod-
ifications to SM observables, induced by Flavour Changing Neutral Currents (FCNCs)
[143, 144]. If for each SM fermion there is a VL partner, the matrix proportional to ¢’ is
diagonal as well and no mixing is induced between different SM and VL flavours, thus
fermions from the dark sector only interact with the corresponding SM flavour. In the

following we will limit the analysis to this simpler scenario.

An important property of this construction is that the CKM matrix of the SM receives

contributions from new physics. In fact, the SM charged current is

( M U ) 13><3 03J d%Ml
013 OIJ Di
g i VCKM 03J dz
= E(UL U/I{)’VMVJL ( NE 017 Var d/J ’ (2.51)

such that the entries of the measured CKM matrix are given by

m
Jh

%\

VgKM = (V )ZkVCKMVd,L (2.52)
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2.2.5 FPVDM parameter space

The Lagrangian parameters of the model are the following:

e gauge couplings: ¢,¢, gp;

e Scalar potential parameters: u, A\, up, Ap, Agp;

e Yukawa couplings and VL quark mass: y, vy, my;

° VCKM parameters.
Assuming that the new VL fermion interacts only with one SM flavour, these parameters
can be traded for the masses of all the physical states, the weak coupling constant g (or
equivalently, the fine structure constant agy), the new gauge coupling gp, the mixing

angle between the scalar fields g and the measured CKM parameters. A complete set

of parameters is therefore:

{gamW7mZ}7 {gD7mVD}, {mhamHvsiHQS}a {mfvaame} and VCKM ) (253)

but, since g, my, mz, mp, my and Vokm are precisely measured SM parameters, we are

left with the following six independent new physics parameters, namely:
gp, My, mm,sinfg, mp, my,, . (2.54)

Approximating the CKM as a diagonal matrix for simplicity, the relations between
the Lagrangian parameters connected to the new physics components and the input

parameters take a very simple form:

2 2
S M7 vp = Wb , (2.55)
g 9D
2
A = 8;(7712 (m7 cos® 0 + m7; sin® 0g) , (2.56)
W
2
Ap = 83@2 (m7 sin® 05 + m7; cos? 0g) , (2.57)
Vb
99D 2 AR
Aap = —————(mf —mj)sin20g , (2.58)
Smwmyy,
1 1
p? = = (micos®s+m?sin? g + fi%(m%{ —m3)sin20g | , (2.59)
2 2g9p mw
1 1
ph = = misin®0s +m3 cos® s + ~9p W (m3; —m3)sin20s | , (2.60)
2 2 g my,
gmy mrg
y = : (2.61)
\/imemW
gp\ /(% —m3 )(m3 | —m3)
y, _ YD YD f ) (262)

\/ime mvp
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The minimisation conditions of the scalar potential in Eq.(2.15) are automatically sat-
isfied. If Agp < 0, which corresponds to my; > mpy, the condition )\%{D < 4X)\p

2.2
translates into %ﬁmim%{ > 0, which is always true, whilst, if Agp > 0, the
wVp
2
conditions 2)\;% > )\Hp,u2 and 2)\D,u2 > )\HD,uzD translate into %nf—gwm,zlm% > 0 and

2
%nf%’; mim%{ > 0, respectively, again automatically satisfied.

For a perturbative analysis of the parameter space we need to identify the regions where
coupling parameters do not become too large, in order to make sure that all predictions
on the model are reliable. A complete loop description of all the sectors of the model is
beyond the scope of this analysis and therefore we assume that perturbativity is achieved
by the requirement for all couplings of the FPVDM model to be (optimistically) below
47. For example, the requirement A\ < 47 defines the maximal value of my for a given
value of the scalar mixing angle, fg, as shown by the blue contour in the left panel of
figure 2.5. The same figure presents contours for the gp/my,, ratio in the {my, 65} plane
corresponding to A\p = 4w, which indicates the perturbativity limit on the respective

parameters.

The perturbative constraints on the Yukawa couplings y and g’ imply that the ratio

between the masses of the new fermions F' and v p cannot be too large. The condition

for y reads as m”;‘pF <Ar \/3:;;’" At the same time, the 3’ < 47 condition is defined also
D

by the gp/my,, ratio, as one can see from Eq.2.62. Both constraints from y and y’ per-

turbativity requirements are presented in the right panel of figure 2.5 in the (my,,, &F )
D
plane. In our analysis of the parameter space we indicate the respective regions where

perturbativity constraints are violated.

my=m;, Mx=4N21Tmylg
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FIGURE 2.5: Left: the maximum value of myg and minimum value of fg for A < 4xw
and Ap < 47 as function of nf—f. The regions corresponding to Ap < 47 are to the
D

left of the green lines. Right: the maximum value of the mp/my,, ratio as function of

My, and "f , and under different hypotheses about which SM fermion interacts with
D

the SU(2)p doublet ¥, to satisfy the perturbativity conditions {y,y’'} < 4.
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2.3 On the origin of the global U(1) symmetry

One of the main open questions of the construction presented in this analysis is the
origin of the global U(1 )glgbal symmetry (with its Zg parity subset) which has to be
imposed to avoid the contemporary presence of two Yukawa interactions involving ®p
and @7}, which would explicitly break SU(2)p, and therefore spoil the stability of the
DM candidate. A theoretical origin of the symmetry would provide a robust ground for
the consistency of the model. In this section we explore two options for explaining such

origin. The first involves promoting the global U(1 )glom1

to a local gauge symmetry,
U(1)y,, in the dark sector, which would generate a mirror version of the SM EW sector
in the dark sector, the two of which can be connected by the mixed (@J}IQDH)(@TDQm)
quartic term in the full potential and by the gauge kinetic mixing between U(1)y and
U(1)y,. In this scenario the U(1)q,, local symmetry would be associated to a conserved
dark-charge completely analogous to the EM charge of QED, thus giving literal meaning

to the notation VB and VBE for the SU(2)p gauge bosons in the dark sector.

The second involves the existence of a strongly-coupled sector whose condensates form
the particle in the low energy regime, in particular, a residual parity for the composite
sector is present due to the specific vacuum alignment present in this kind of models
(which would typically also imply an extended Higgs sector). A detailed discussion is
given in [145] and further used in [146] for the case of a scalar DM candidate.

2.3.1 A dark electroweak sector

In this scenario the SM is augmented with a dark sector constructed starting from a
dark gauge group Gp with same structure as the EW gauge group of the SM (in this
scenario the U(1)y,, is promoted to be local.). The gauge group is spontaneously broken

g = QSM X gD = SU(?)L X U(l)y X SU(Q)D X U(l)YD — U(l)Q X U(l)QD . (2.63)

The gauge boson associated to U(1)y,, is labelled as Bp,. The full covariant derivative
is
D, =08, — (szTi +igW3Ts + ig’YBM>
f

( \[VfDTi +igpVipTsp +ingDBD#> : (2.64)
where g and ¢’ are, respectively, the weak and hypercharge coupling constants, gp and
g are the SU(2)p and U(1)y,, coupling constants, 73 and Y are the weak-isospin and
weak-hypercharge, T3p and Yp are the dark-isospin associated with SU(2)p and the
dark-hypercharge associated with U(1)y,, and where the indices of the Tp matrices act
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only on the SU(2)p elements and are diagonal with respect SU(2), while the indices of
the T matrices act only on the SU(2) elements and are diagonal with respect to SU(2)p.

The unbroken U(1)g,, continuous symmetry is associated to a conserved charge, labelled
D-charge, defined as:
Qp=T13p+Yp. (2.65)

Notice that the D-charge is not associated with the electric charge: electrically neutral
particles can be D-charged and vice versa. The only assumption to be made in this
scenario is that all the SM states are neutral under the conserved D-charge Qp. This
however does not necessarily imply that all the states of new physics are charged under

U(1)g, or that they must be neutral under the conserved SM charges.

The fields responsible for the breaking of the gauge symmetry are the two scalar doublets
®y and ®p described in section 2.2. Since ® g is singlet with respect to the dark gauge
group and ®p is singlet with respect to the EW gauge group, given the absence of
gauge kinetic mixing terms at tree level, no mixing is induced between the fully neutral
gauge bosons Wj, B, VB” and Bp,. In complete analogy with the SM, by counting
the number of bosonic degrees of freedom, one massless gauge boson is predicted in the
dark gauge sector and the other dark gauge bosons receive different masses. We can

thus define the mass eigenstates yp, Zp and W§ with values

M,, = 0, (2.66)
1

Mz, = 5\9p+95 vp (2.67)
gD

such that the masses of the DM vector Vg and of the D-charge-neutral gauge boson
VDO receive a splitting proportional to %gva. The particle content of the model is
summarised in Table 2.2. One should note that the presence of the massless dark
radiation from the unbroken U(1)g,, is not necessarily a problem as long as it does not
contribute too much to relativistic degrees of freedom at BBN and allows the formation
of structures as small scales. As shown in [147], for example, it can be achieved when
at the DM decouples from the dark radiation at high redshifts.

The presence of two U(1) gauge groups, however, allows for the existence of a renormal-
isable and gauge-invariant kinetic mixing term already in the unbroken EW and dark

symmetry phases, such that the Lagrangian of the U(1)y x U(1)y,, sector is

1 1 L, € ”
—Lgm = ZB’“’BW + ZBDWB}'“) + §BWB% ) (2.69)
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EW Dark Unbroken
SUR2). U(l)y |[SU@2)p Uy, || Ul U(l)g,

Scalar fields

ot 1 0
dpy = 2 1/2 1
" <¢0 / 0 0 0
+
_ (%D 0 1
Pp = <¢0D ) 1 0 2 1/2 0 0
Fermion fields
fSM
M= <f1§{4> 2 1/6,-1/2| 1 0 |[T5+Yr O
d.l /r,
uPM, M 1 2/3,0 1 0 ||Ts3s+Y; O
diM, (5M 1 -1/3,-1| 1 0 ||Tz3r+Y; O
_ (%o 1
Vector fields
W, 1 0
W, =W} 3 0 1 0 0
W, -1 0
B, |1 0 1 o || o 0
Vo 0 1
0
Vou = | Vb, 1 0 3 0 0 0
Vou 0 ~1
Bpy 1 0o | 1 o || o 0

TABLE 2.2: The quantum numbers under the EW and dark gauge group SU(2)p X
U(1)qg,, of the particles of the model. The charges of the unbroken local groups U(1)g
and U(1)q, are also provided.

where Bp,,, is the field tensor of U(1)y,, and € is the kinetic mixing parameter. The

diagonalisation of the kinetic terms can be obtained through the rotation [148]:

B# 1 0 cosf —sinf B
D ~ = sinf, cosby By

The kinetic-mixing term induces a modification in the mass mixing matrix of the fully

neutral gauge bosons. Upon diagonalisation, two massless eigenstates are obtained,
corresponding to the SM photon and to a massless dark photon, and two massive eigen-
states, corresponding to the Z boson and to a massive Z’ boson. The full expressions
of the mass mixing matrix and of the mass eigenstates can be found in Appendix C.

Expanding the mass eigenstates of Z and Z’ for small €, the lowest order terms assume
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a simple form:

1)2 [ (92_|_g/2) 2 g2 U2
Mz = — |g°+ 4" <1 + DD )} +0(h,  (2.71)
7 4 (2 +92)0% — (g5 + 920D
v7 g*v* — (b + 9p)v7
Z g PP TID (9% + g”)v? (QD + QD)UD SRAN )

which in the e — 0 limit (no kinetic mixing) reduce to the SM value and Eq.2.67, respec-
tively. Of course, analogously to the FPVDM model with the global U (1 )glgbal symmetry,
after spontaneous breaking of EW and dark symmetries, kinetic and mass mixing terms
arise at loop level as illustrated in section 2.2.3.2, involving the four electrically and
D-charge neutral gauge bosons. The implications of this scenario and the derivation of
its experimental bounds are beyond the scope of this analysis and are reserved for future

developments.

2.3.2 A composite origin

In the case of composite models the discrete symmetries allowing the stability of the
DM particle depend on the model building details of the composite sector. However,
this does not mean that the DM candidate and the corresponding discrete symmetries
are an arbitrary choice. The composite effective chiral Lagrangian is invariant under
a parity changing the signs of all the pseudo Nambu-Goldstone Bosons (pNGBs), as
they appear in bilinear terms in the Lagrangian. Furthermore, these models contain by
construction explicit symmetry breaking terms, so more scrutiny is needed to understand
if a pNGB can be stable due to a residual parity and therefore be used as a particle
describing DM. The origin of the non-invariance with respect to parity (and also charge
conjugation) is due to the choice of the vacuum while the strong techni-sector at the
origin of these models is instead parity invariant as it is VL with respect to the composite
gauge dynamics and the SM gauge group. Once possible parities acting on the pNGBs
are identified, these models require a careful check of their invariance, including the
Wess-Zumino-Witten terms. In explicit realisations studied in the literature, e.g., in
[145, 146], a stable pNGB multiplet allowing the description of DM can indeed be found.
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Chapter 3

Phenomenology of the top portal

3.1 A case study: top portal with no mixing between h
and H

This section is dedicated to a specific realisation of the model. It is assumed that only
one VL partner exists, and interacts exclusively with the SM top quark. Moreover it
is further assumed that the Higgs bosons h and H do not mix, i.e., 8g = 0. These
choices significantly simplify the expressions of the Lagrangian parameters (See the full

discussion of the theoretical setup in chapter 2), which read:

9 m2 2,2
v e M’ MQ — 7}17 )\: g 2h7 (31)
g 2 8my;,
2myy, 9 m%{ gQDm%{
v = —= =—= Ap= ;A =0, 3.2
D 9D “p 9 8’m‘2/D Sydp ( )
g my my M T , gD\/(m%—m%D)(thD —mj) (3.3)
Yt Y= =Y s Y= ) .
Vemgmy 7 my, ' V2my,my;,

where the Zs-even(-odd) partner of the top quark has been labelled T'(¢p), the SM Higgs
sector is left unaffected by the new scalar, and ®p has a potential completely analogous
to the Higgs potential. The hierarchy between the masses in the fermion sector is the
same as that discussed in section 2.2.3.1, i.e., my < my, < mg, but H can have any
mass allowed by experimental bounds, including, in principle, being lighter than the SM

Higgs boson.

The new physics parameter space for this model is five-dimensional:

gD, Myy, My, My, MT . (34)

In the following, we will denote this scenario as TPVDM — a specific case of top portal

in the FPVDM framework. We chose this realisation as a case study since, on the
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one hand, it is minimal whilst, on the other hand, it allows us to explore a scenario
where a non-Abelian dark sector is not connected to the SM via a Higgs portal at tree
level. Furthermore, connecting the dark sector only with the SM top quark allows for an
exploration of several interesting collider physics signatures, whilst reducing the impact

of constraints from direct detection.

Many other realisations are also very attractive. For example, the dark sector could
be connected to SM leptons. The collider constraints on new VL leptons would then
be milder, making the scenarios potentially less restricted, but the impact on the cos-

L These kind of realisations are

mological observables would not qualitatively change.
potentially interesting for a study of anomalies in the lepton sector, for example in
connection with the muon anomalous magnetic moment, which is the subject of the

chapter 4.

As anticipated in section 2.2.3.2, the mass splitting between my,, and my,, Amy =
my,, — my, plays an important role for DM phenomenology. First of all, we have
found that Amy > 0 in the whole parameter space of the model, with the approximate
expressions for Amy given by Eq.(2.41) and (2.42). Since my,, > my-, the VpV};, —
V'V’ process for DM annihilation will always take place for any point in the parameter
space to contribute crucially to the list of processes affecting the relic density and to
extend the viable parameter space compatible with constraints imposed by the relic
density. The VpV}, — V'V’ process also contributes to the DM indirect detection

signals.

Numerically, the value of Amy, varies over a very wide range, since it scales as g% and it
is proportional to m% — me. One should also note that Amy does not depend on myy,
as explained in appendix A. In figure 3.1 (left) we present the iso-contours for Amy in
the {my,, my,} plane for gp = 0.1 and mp = 1600 GeV, whilst in figure 3.1 (right) we
show how Amy evolves as function of my,, for the specific value of m;,, = 1590 GeV,
all other parameters being the same. The value of m7 is chosen to be safely above the
current upper limit on VL top partners at the LHC [149]. For our particular choice of
gp and mp, Amy can be as large as 1 GeV, while its minimal value reaches zero for
a vanishing value of mr — my,. In both frames we present a comparison of the exact
one-loop result for Amy and its approximations given by Eq.(2.41) and (2.42). It is
possible to see from figure 3.1 (right) that the approximate formulae are very accurate
for a small m7 —my,, splitting, but break down for my,, close to the m;+m,,, threshold,
where the one-loop corrections are highly non-linear in the expansion parameters used
in approximate expressions for Amy,. Moreover, for small values of my,,, the one-loop
mass corrections can be large, making the evaluation of Amy perturbatively unstable.

Therefore, we indicate by the hatched area the region where one-loop corrections to the

IThis is true except when the mass difference between DM and VL fermion mediator is small. In
that case DM co-annihilation will be less intense in comparison with strong co-annihilation with the tp
quark.
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masses of Vp and/or V/ become larger than 50% of the corresponding tree level masses.

9p=0.1, mr=1600 GeV, my=1000 GeV 9p=0.1, m;,=1590 GeV, m;=1600 GeV

— AmZet (GeV)
1000 amj, (GeV)
—Amj, (GeV)
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FIGURE 3.1: Values of the mass splitting Amy = my,, —my- in the (m;,, my, ) plane

for a specific choice of gp, mr and my (left panel) and as a function of my,, for a specific

value of m;, (right panel). The red, green and blue curves correspond to results from

exact expression, approximated formulae Eq.(2.41) and (2.42), respectively. The region

where one-loop corrections to the masses of Vp or V' become larger than 50%, so that
a perturbative treatment is questionable, is also highlighted.

The lifetime of V' does not directly depend on Amy. However, the Zs-even SU(2)p
gauge boson can also be long lived, if the DM is light enough. The only tree-level
interaction of V’ with SM particles is with top quarks, due to its mixing with 7. If
the mass of V' drops below the ¢t threshold, it can only decay directly to a three-body
or four-body final state with W bosons and b quarks via the off-shell top quarks, or
decay to a bb final state at one-loop, see the Feynman diagrams in figure 3.2 (left). The
latter, although only present at the one-loop level, becomes dominant due to the reduced
phase space for the four-body final state. This is shown in figure 3.2 (centre and right).
These loop-induced diagrams prevent V' from having a sufficiently long lifetime to spoil
Big Bang Nucleosynthesis (BBN). However, when the gp coupling is small, the ¢p mass
approaches the decoupling limit (m;, = m7) and the DM is light, V' becomes long lived
at colliders. Therefore, it could provide a signal for searches of long-lived neutral bosons

decaying into bb pairs.

As mentioned in section 2.2.3.3, even if TPVDM scenario does not contain a tree-level
mixing, a loop-induced mixing between h and H still occurs, via SM top and the Zs-even
top (T') loops. This contribution is eventually suppressed. A scenario with tree-level
scalar mixing is more constrained and can exhibit the following signatures: 1) the heavy
scalar H can decay also to any final state accessible to the Higgs boson, and therefore
the model predicts further signatures at collider; 2) if the mass of the DM is small
enough, the Higgs boson will decay into the DM itself or the Zs-even gauge boson V/,

affecting its width and branching ratios. From the cosmological point of view, additional
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FIGURE 3.2: Left: Tree-level and one-loop diagrams for V' decay. Center and right:
decay width and lifetime of V' at tree and one-loop level for gp = 0.05, my = 1600
GeV and different values of my,,.

interactions from the tree-level scalar mixing will affect the relic density, and direct and

indirect detection observables.

Since there is no h-H mixing in TPVDM scenario, DM scattering off the nuclei is
induced only at loop-level. The Feynman diagrams for DM-gluon interactions with
quark box and triangle topologies are shown in figure 3.3(a) and (b), while the DM-
quark diagrams generated by the loop-induced V' — ~/Z kinetic mixing and triangle
diagrams are shown in figure 3.3(c) and (d), respectively. The detailed evaluation of the
triangle loop of fermions connected to gauge boson propagators is given in appendix D.
As it will become clear in section 3.1.3, the KM and triangle contributions play a crucial
role in constraining the parameter space of the model through Direct Detection (DD)

limits on DM.

VD'\,\/M

t/T,tp

g

(a)

FIGURE 3.3: Representative diagrams for direct detection processes. H is the Zs-even
scalar in the dark sector. Zs-odd particles are highlighted in red.

In the following sections, this model is tested against multiple observables from cosmol-
ogy (relic abundance, direct and indirect DM detection rates) and LHC searches. For
this analysis we implemented the Lagrangian of the model in the LANHEP [150] and
FEYNRULES [151] packages whilst model files have been generated in CALCHEP [152],
FEYNARTS [153] and UFO [154] formats.? We used MICROMEGAS v5.2.7 [51] for
calculating DM observables and for setting the corresponding limits (see section 3.1.1)
as well as for the evaluation of some LHC processes. The model implementation in UFO
format has been used in MG5_AMC [156] for the determination of the complete set of

?The model implementations are available in the HEPMDB [155] repository in CALCHEP (https:
//hepmdb.soton.ac.uk/hepmdb:0322.0335) and UFO (https://hepmdb.soton.ac.uk/hepmdb:0322.
0336) formats.


https://hepmdb.soton.ac.uk/hepmdb:0322.0335
https://hepmdb.soton.ac.uk/hepmdb:0322.0335
https://hepmdb.soton.ac.uk/hepmdb:0322.0336
https://hepmdb.soton.ac.uk/hepmdb:0322.0336
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LHC constraints (see section 3.1.2). The FEYNARTS model files from LANHEP were
used to generated one-loop corrections to masses of SU(2)p gauge bosons by FEYN-
CaLc [157], FEYNHELPERs [158] and PACKAGE-X [159]. A simplified version of the
model has been implemented to calculate cross-sections at one-loop level in MG5_AMC
and FORMCALC9.8 [160].

3.1.1 Cosmological constraints

There are many non-collider experiments dedicated to searching for signals of DM, both
in space and on Earth which play a very important role in limiting the DM parameter
space and in the identification of viable DM models. These experiments are devoted to
the precise determination of the DM relic density as well as to DD and ID of DM.

3.1.1.1 DM relic density

In particular, the PLANCK experiment has measured the relic density with a precision
better than 1% [21]:
Qbnckp? = 0.12 +0.0012. (3.5)

In our analysis, we will select points that satisfy this constraint, bearing in mind that
points which predict a relic density below the PLANCK constraint could still be allowed

if new sources of DM exist besides Vp.

3.1.1.2 DM direct detection

For DM DD we use the limits from XENONI1T [44]. The XENONIT experiment provides
the most stringent upper limit (compared to LUX (2017) and Panda-X (2017), see
figure 5 in the reference [44]). XENONIT provides the limit on DM-nucleon’s cross-
section vs DM mass at 90% C.L. together with the detector’s efficiency as a function
of nuclear recoil energy. We have evaluated the DM-nucleon scattering cross section
and converted it into the number of events by taking in account the efficiency of the
XENONIT detector. This allowed us to find the corresponding p-value for the signal.
The calculation was performed using a modified version of MICROMEGAS package
which allowed us to correctly evaluate DM DD rates from the loop-induced v(Z)-Vp-Vp

interactions.

The modified code of MICROMEGAS

The standard routine CDM_NUCLEON of MICROMEGAS cannot be used to calculate the

DM DD rate for diagrams of virtual photon with zero momentum transfer as it causes
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divergence. To this end, we use the special code implemented by Alexander Pukhov
(one of the authors of MICROMEGAS package).

VD Vf) Vn Vi D VD VD

b, b, Xe Xe Xe Xe
(a) (b) ()
FIGURE 3.4: The diagrams describing the interaction between DM and (a) nucleons

without virtual photon, (b) xenon as point-like and (¢) xenon with virtual photon.

We use the following trick to calculate the DM DD rate. Firstly, we calculate the
spin-independent amplitudes of DM-nucleon scattering excluding the photon propagat-
ing diagrams as depicted in figure 3.4 (a). Then, we implement the 4-point vertex of

Vb, Vp, Xe, Xe with the following effective Lagrangian
I ine = gerXe Xe VE(ps) Vi (pa), (3.6)
where
Gett = dmy;, (54A5 + (130 — 54) A ) gag + 2(54A7 + (130 — 54) A (P, — P,))gas- (3.7)

The factor 54 and (130-54) are the number of protons and neutrons, respectively, inside
xenon nuclei. The quantities Ag (AS) and A;‘(Af) are the symmetric and asymmetric

amplitudes of DM scattering on proton(neutron), respectively. They are defined by

1 *
AF = S(AP + 4,7),
1 Vv
A =S (AP — A7), (3.8)

where AXD is the amplitude of DM and proton and AXB is the amplitude of anti-DM
and proton. After that, we sum the amplitude from diagram 3.4 (b) and (c¢) and then

calculate the scattering cross section for Vp, Xe — Vp, Xe process.

In the code, the differential scattering cross section in terms of the squared matrix

element | M|?, the detector efficiency €. and nuclear form factor F' is given by

dogm . (0 2 9
—— =14 — - 3.9
dsin(0/2) ~ (2 IMI” eer (3:9)
The scattering cross section reads
1 L dogm .
OEM dsin (6/2), (3.10)

~ 327s o dsin(0/2)
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where

Emin
2Pem’

mpwm MmN
=|———— ). 3.11
pon = (N (3.11)

Finally, we calculate the number of events by

PDM VesctVUEarth
Nevent = t NXe OEM / UfMaxwell(v)dvy (312>
mpwMm 0

where ppys is the local DM density, ¢ the exposure time and Nx, the number of xenon
nuclei. The parameter veg is the maximal DM velocity around the sun and vga¢y is the

Earth velocity in the galactic rest frame, respectively.

We have scaled the number of registered events if the corresponding relic density is less

than the measured value as follows:

) M) Novents if Qpagh? < 0.12
Nevent = (leﬁ[ b e R (3.13)

Nevent otherwise

and have defined the p-value, p, as

f) = exp(_Nevent)- (314)

The exclusion of parameter space is imposed on the points where p < 0.1, which corre-

sponds to the exclusion limit at 90% C.L.

3.1.1.3 DM indirect detection

ID DM searches are being performed by many experiments, including Fermi-LAT [161],
IceCube [64], ANTARES [62], etc. However, these experiments rely on the DM local
density and velocity distribution as well as the propagation of the particles in the galactic
plane. Therefore, the respective predictions are affected by various uncertainties of an
astronomical nature. To be independent of these uncertainties, in this study we use the
Cosmic Microwave Background (CMB) limit on DM ID based on PLANCK data. We
consider the product of the DM-self annihilation or the DM decay into SM particles.
By studying the effect of energy injection from DM annihilation products (electrons,
positrons, gamma-ray, neutrinos and anti-protons) on the galactic medium which is
sensitive to the CMB anisotropies, the upper limit on the energy injection measured by
PLANCK is:

3
Pann < 3.2 x 10728 % at 95% C.L., (3.15)
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with

P =500 (B ) ot
J

Planck
Mpy \ QP

where (o) ;s the thermally averaged partial annihilation cross-section for the j channel
whilst fjeff is the energy fraction of DM annihilation transferring to the plasma for the
jth channel. P,,, To construct the quantity Pann, we use MICROMEGAS to calculate
(ov) ; for all possible channels and neglect those that contribute to the total annihilation
cross-section less than 0.1%. The effective fraction of energy fj‘?ﬁ was thoroughly studied
and provided for almost all DM annihilation processes into two SM particles in the
final state in [70, 162]. For non-SM particles in the final state of 2 — 2 processes, for
example Vp, V}y — V', V'/V', H/H, H, we make the approximation feI o ~ f;g . This
approximation is reasonable because each Vp/H eventually decays into 3 pairs of quarks
anti-quarks and the energy fractions stored in each quark anti-quark pair (u,d, s, c,b,t)
are not significantly different. The annihilation cross-section in eq. (3.16) is rescaled by
(Qpa/QBEn99)2 due to the two DM particles in the initial state.

Finally, we have checked that the model does not spoil the predictions from BBN. When
the lifetime of V"’ is too long, such that it decays during or after BBN, it would spoile
the observed neutron to proton density ratio. For my+ < 2myy, the dominant decay to
bb via the loop-induced process discussed above makes V' lifetime much shorter than
the value excluded by BBN. So, in this respect, BBN does not exclude any region of the

parameter space of our model that is allowed by relic density constraints.

3.1.2 Collider constraints

In the scenario under consideration the top quark is the only SM particle which interacts
with the dark sector. Processes involving top quarks in propagators or final states are
therefore affected by new physics contributions. The model contains a complex vector
DM candidate but two different kind of mediators: the VL and Zs-odd top partner tp
and the two Zs-even bosons H and V', which however can only be produced at the LHC

via interactions with the top quark or its Zs-even partner t'.

A list of relevant signatures for the scenario are provided in Table 3.1. A mono-jet
signature can only arise at loop level, while the tt + E%liss and tttt one can receive
both tree- and loop-level contributions, which might be of similar size depending on the
regions of parameter and phase space. Given the preliminary and explorative nature of
this analysis, in the following we perform a recast of current LHC searches only for the

tree-level processes to obtain constraints on the parameter space of the model.

The simulations are performed at Leading Order (LO) with MG5_AMC [156] in the 4-
flavour scheme using the NNPDF3.0 LO set [163] through the LHAPDF 6 library [164]
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Process ‘ Representative diagrams

9
mono-jet (only loop) e

9 o5TTT

T+ Eppiss

. i
9 TETET——T - - - - - h v -

hV' and V'V’ (only loop) o/ /Tt H_,'gi: )
9 TETTT VWMWY G TEETS VWMWY g v

TABLE 3.1: List of relevant processes at the LHC. Zs-odd particles are highlighted in
red. Due to its purely VL nature, tp cannot interact with the scalars.

(LHA index 262400). No resonant propagation of new particles is imposed, to allow for
the inclusion of interference and off-shellness effects when relevant. For the tt + Er_,r?iss
signature, in the region of a small mass gap between tp and Vp, where m;, —my,, < my,
simulations are performed for the 2 — 6 process pp — WTbW ~bVpVp. The recast is
done through the MADANALYSIS 5 framework and the searches considered for the recast

are different depending on the process:

e for the tt + E%liss processes we used a CMS search for top squark pair production
decaying to DM, in final states with opposite sign leptons and missing transverse
energy EXsS [165], recast in [166].

e for the tttt processes we used a CMS search for four top quarks in final states with
either a pair of same-sign leptons or at least three leptons, in addition to multiple
jets [167], recast in [168].

In both cases, the searches target the very same final states predicted by our model, and

are therefore ideal for determining constraints from collider.

The model also predicts a signal from pair production of the Zs-even partners of the
SM top-quark, 7T, which is constrained by ATLAS and CMS searches and only needs
to be rescaled for different branching ratios. However, the T-quark primarily decays
into Wb/Zt/ht final state with a 50%/25%/25% branching ratio pattern, and the con-
tribution of decays to new states is very small in the whole parameter space. Therefore,
current LHC bounds leave the region of parameter space with mpy 2 1.5 TeV uncon-

strained [169, 170]. Bounds from single 7' production are more model-dependent, but

less tight, as the production cross-section is driven by the 7" — ¢ mixing which is small.

The loop-level diagrams can be relevant especially when the particles which decay to the
final states are produced at resonance : in this case the loop suppression can be com-

pensated by the lower multiplicity in the phase space. For the hV’ and V'V’ processes
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we have only computed cross-sections using a simplified version of the model suitable
for one-loop calculations in MG5_AMC, to estimate if they can be tested against data

from current searches.

3.1.3 Combined bounds
3.1.3.1 Full parameter scan

We explore the viable parameter space of our model as well as the effect of the cosmolog-
ical and collider constraints by performing a comprehensive scan over the 5D parameter

space in the following ranges:

1073 < gp < 4m

10 GeV < my,, < my,

1.5 TeV < mg . (3.17)
my < my, < mp <10 TeV

10 GeV < my < 20 TeV

\

In figure 3.5 we present the results of this scan showing projections into various planes:

(mvp,9p) (a), (ma,mvy) (b), (map, myy,) (¢) and (may, gp) (d).

The allowed parameter space is indicated by the green, cyan and blue regions, corre-
sponding to generic DM annihilation (via VpVp — V'V’ and t-channel VpVp — it
processes), resonant (H) annihilation and DM — ¢p co-annihilation regions respectively.

The representative Feynman diagrams for these channels are shown in figure 3.6.

In these regions the relic density constraint from PLANCK is satisfied to within 5%. The
grey colour indicates the under-abundant DM relic density region. From figure 3.5(a)
one can see that the generic DM annihilation (diagrams (a)—(c) of figure 3.6) determines
a narrow strip in the (gp,my,) plane indicating the correlation between gp and my,,
required to arrange the right amount of DM. For values of gp below this band these
processes cannot provide large enough cross-section for DM annihilation and this leads to
the excluded over-abundant DM region indicated by the red colour. One can clearly see
this region in all panels of figure 3.5 for large DM masses. However, there are additional
processes which provide an effective DM annihilation low DM relic density respectively,
consistent with PLANCK data. One of them is VpVp — H resonant annihilation, a
representative diagram of which is shown in figure 3.6(d). This process allows one to
extend the viable parameter space into the lower region of gp (by up to two orders of
magnitude) indicated by the cyan colour. This can be clearly seen in figure 3.5(b), which

presents the cyan H resonant band which goes across the whole parameter space in the

(mp,my,) plane.
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FI1GURE 3.5: Excluded and allowed region of the parameter space of the model from the
full five-dimensional scan of the parameter space projected into (mv,,gp), (mm, mv, ),
(my,,my,) and (m¢,,gp) planes. The white areas represent: top-left corner of panel
(a) and bottom-right corner of panel (c) — non-perturbative region of the parameter
space; upper part of panel (c) — kinematically inaccessible my, > m;, region.
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FIGURE 3.6: Representative contributions to relic density. From left to right: 4-leg;
t-channel DM annihilation; DM annihilation via resonant H (the Zg-even scalar in the
dark sector); DM-mediator co-annihilation. Zs-odd particles are highlighted in red.

Another process, the DM-tp co-annihilation channel (see representative diagram in fig-

ure 3.6(e)), provides viable parameter space even for lower values of gp for my,, > m;
and my,, values below 2 TeV. The respective region is indicated by the blue colour,
which can be clearly seen especially in (my,,my, ) as a narrow resonance band. At the

same time, when my,, is above 2 TeV, neither DM-t{p co-annihilation nor H-resonant

annihilation are effective enough to provide low enough relic density for gp values below

the generic DM annihilation region. Therefore, the region with low gp and large my,,

is excluded due to the over-abundant relic density indicated by the red colour.
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Furthermore, notice that the regions with low my,, and large gp values are partly ex-
cluded by DD and/or ID experiments as indicated by magenta and orange points, re-
spectively. The region of DM masses which can be tested and excluded by the LHC is
presented by the violet region. This parameter space, which can be seen in all panels of
figure 3.5, is related to constraints on the t¢+ EX signal at the LHC coming from tptp
pair production. For masses of tp below about 900 GeV this signal would be observed
if there is enough phase space for tp — Vpt decay. This process is important in setting

one of the main collider constraints on the model under study.

The four projections presented in figure 3.5 reveal the non-trivial shapes of the allowed
and excluded regions over the 5D parameter space of the model. For example, the
orange colour, which presents the DM ID exclusion region, takes place for my,, < 20
GeV (figure 3.5(a,b,c)), gp < 0.06 (figure 3.5(a,d)) and my < 3 TeV(figure 3.5(b)). In
figure 3.5 (b), one can see that DM ID exclusion takes place (besides the low my,, region
discussed above) and also along the very middle of the cyan band, where my,, = mpy/2.
Indeed, in this case, DM effectively annihilates through the H state into tt, V'V’ or
gg, distorting precise CMB data, which therefore also limits the model parameter space.
This region cannot be clearly seen in other panels, where it is presented just by randomly

scattered points.

3.1.3.2 Benchmark analysis

In order to assess the relative role of the different constraints in identifying the allowed
region of parameter space of our model we identify different benchmarks, characterised
by fixed values for the masses of the Zs-even top partner, mp = 1600 GeV, and of
the new scalar, my = 1000 GeV, as well as different values of the new gauge coupling
gp = {0.05,0.1,0.3,0.5}. These choices have the following rationale: 1) the gauge
coupling can either assume a small value for which constraints from over-abundant relic
density only allow tiny regions of the parameter space or a larger value for which such
constraints become weaker; 2) the Zs-even partner of the top (7') is heavy enough to
evade current LHC bounds based on pair production and considering decays into SM
final states; 3) the mass of the H state is large enough for it to decay into a top-quark

pair. This affects the relative contribution of the diagrams mediated by H in table 3.1.

The complementarity of cosmological and collider constraints can be represented in the
{m,,my,} or {my,,1— %} planes. The former, shown in figure 3.7, allows us to
highlight the low my,, region while the latter, shown in figure 3.8, emphasises the small
mass gap region between tp and the DM particle.

The interplay between cosmological and collider bound is largely driven by the relative
roles of relic density and DD bounds as function of the gauge coupling value, while

indirect detection plays a role only for small coupling values.
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Ficure 3.7: Combination of constraints from LHC, relic density, ID and DD in the
{m¢,, my, } plane for my = 1600 GeV, my = 1000 GeV and different values of gp.
The coloured regions are excluded. The measured relic density value is reconstructed
on the borders of the excluded region. When constraints from ID are absent, cross-
sections for hV’ and V'V’ production processes are shown. The non perturbative region
corresponds to corrections to the gauge boson masses larger than 50%. An estimate of
the region of large KM is shown as a hatched area where at least one of the adimensional
KM parameters {eay, ezv,0zv } becomes larger than 10%.

For smaller values of the gauge coupling, gp = 0.05 and gp = 0.1, the measured amount
of relic density is reconstructed only for light DM masses, my,, ~ O(10) GeV, and in
a narrow region where the mass splitting between tp and the DM is small, less than
~ 10% of my,,. In the co-annihilation region, where the mass gap between Vp and tp is
small, as well as in the H-resonant region around my,, = mp /2, where H is produced

near resonance, the relic density is drastically reduced, becoming under-abundant.

The small bell-shaped area visible in the middle of each panel of figure 3.8 with gp < 0.5
corresponds to the process in which T is produced resonantly and decays into SM final
states Wb, Zt or ht, (see figure 3.6). If the gauge coupling becomes large enough, it

eventually becomes impossible to reconstruct the measured value of the relic density and
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FIGURE 3.8: Same as figure 3.7 in the plane {m;,,1 — mYDD }, to highlight the region

where the DM and tp have a small mass splitting. Contours corresponding to the
lifetime of ¢p (in a region where it can be long-lived) are also shown.

the entire allowed parameter space of the model corresponds to an under-abundant relic
density. In this case, the theory would not be able to explain the whole observed DM

content of the universe and other sources of DM would be needed.

In the small my,, region, strong constraints from ID limit the allowed parameter space to
my,, values approaching mr, i.e., the region where the mixing between 7" and ¢ becomes
small. ID constraints however disappear for increasing values of gp, corresponding to a

reduction of relic density values, owing to the scaling reported in eq.(3.16).

However, the constraints from DD always exclude the region with small my,, regardless
of the gauge coupling value. The contribution of DM-gluon topologies is limited to the
region with either minimal or maximal mixing in the fermion sector, corresponding to
dominant contributions of the topologies (a) or (b) of figure 3.3, respectively. These
contributions destructively interfere for generic mixing otherwise, reducing the impact

of this process in driving the DD bounds. But the main contributions to DM DD is
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driven by the topologies with kinetic mixing induced by gauge boson self-energies, see
figure 3.3(c), and by loop-induced effective couplings Vp-Vp-Z/v which lead to DM-
quark interactions through multipole moments, see figure 3.3(d). The evaluation of the
amplitudes for triangle diagrams leading to Vp-Vp-Z/+ multipole interactions is given
in detail in figure D.? For DM masses below about ~400 GeV, the kinetic mixing with
Z-boson plays dominant role for DM DD constraints. In the hatched region of figure 3.7,
one can see that the KM contribution becomes strongest when the DM mass is compara-
ble to the mass of Z boson (i.e., dominated by the mass mixing between Z and V). As
the gauge coupling increases, the effect of KM becomes strong also when the DM mass
is small and the ratio between tp and T is small (compatibly with the behaviour of the
KM functions in figure 2.4. On the other hand, for heavier DM and sufficiently large
y; coupling, triangle diagrams, defining multipole DM interactions with the photon can
play a dominant role. Therefore, taking into account of the complete set of Feynman
diagrams and their interference is an important element for the consistent and correct
estimation of DM DD rates and constraints in the FPVDM framework.

The LHC bound comes exclusively from the tf + EX signature, dominated by the
pair production of tp states. The bound is almost independent of the mass of tp
and constrains the region 250 GeV < my, < 850 GeV, independently of gp, until the
mass difference between tp and the DM becomes small: in this case the missing energy
component of the events decreases and the sensitivity of the relevant CMS search reduces,
allowing the small mass gap region. Effects coming from the width of ¢ are negligible,
as the tp is narrow in the whole parameter space for each choice of gp. The 4-top-quark
search does not show any sensitivity over the whole parameter space, regardless of the
value of gp. The loop processes of hV' associate production and V'V’ pair production
are not testable at current luminosities, as their cross-sections are always well below
o 2 O(10 fb) in the region where the relic density is reproduced. Higher luminosities

and/or higher energies would be needed to be sensitive to such final states.

A very interesting feature of this scenario emerges for small values of gp in the small
region where the DM and ¢p have a small mass gap: the decay width of ¢{p becomes
significantly small, such that ¢tp becomes long-lived (its lifetime in the small mass gap
region is shown in figure 3.8) and can be probed by dedicated searches at the LHC or

future colliders. Different T" or H masses would not modify this qualitative picture.

One should also note that the model predicts that the tth Yukawa coupling, v, is al-
ways bigger than the SM one (see eq. 3.3). This happens due to the the presence
of a non-zero 3’ coupling — the key point of the model, which provides the portal be-
tween the SM and dark sectors. The current direct constraints on y; are quite weak
(of the order of 50%) from pp — ttH production at the LHC. We have checked that

3The role of multipole contributions in DM DD has also been studied in [126]. In our study, however,
we took into account also KM topologies and the interference between them.
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imposing even 10% constraint on y, e.g., requiring dy;/y: < 0.1 does not qualitatively
change our results. On the other hand, the 1 constraint will play a very important role
at future ete™ colliders, which will measure y; to within an accuracy of one percent.

The importance of such a constraint as future colliders is the subject of a separate study.

As a general conclusion, the combination of cosmology and LHC bounds always favours
the region with a small mass splitting between tp and the DM. Other regions can be ac-
cessed depending on the value of other model parameters. This specific realisation of the
model is in any case an example dictated by its simple features. Including mixing in the
scalar sector, further VL partners or further interactions of the same VL representation
would enlarge the possible signatures and change the complementarity between different
observables in constraining the model, potentially opening up further new interesting

signatures.
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Chapter 4

Phenomenology of the muon

portal and muon g, — 2

The precise measurements of the muon anomalous magnetic moment, a, = (g, — 2)/2,
from Brookhaven National Laboratory (BNL) [171, 172, 173] and Fermilab National Ac-
celerator Laboratory (FNAL) [174, 175, 176, 87] implies the departure from the Standard
Model (SM) prediction. Thanks to a more stable beam and improved magnetic field at
Fermilab, the systematic error is decreased by more than a factor of 2 [87]compared to
its previous result [176] which leads to a smaller uncertainty in the combined result from
BNL and FNAL measurements

a, P = 116592059(22) x 1071, (4.1)

In the near future, this error is expected to be further improved by the upcoming Fer-
milab and J-PARC experiments based on a different measurement technique [177, 178].
On the theoretical side, however, the prediction of the SM [179, 180, 181, 182, 183, 184,
185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197] gives

a;M = 116591810(43) x 1071, (4.2)

It is a well-known fact that the contribution from the Leading Order Hadronic Vacuum
Polarisation (LO-HVP) [90] is mainly responsible for the large uncertainty in the SM
prediction which relies on the data-driven dispersion relation approach [186, 187, 198,
199] using data from the ratio of e*e™ annihilation cross section into hadrons to a pair of
muons. Despite, a different approach has been used to compute this contribution which
relies on the lattice QCD simulation. The lattice simulation approach has been applied
by several groups [92, 93, 94, 95, 96, 97]. In the past, the lattice QCD results were not
reliable because of large uncertainty compared to the data-driven approach. However,
the recent result by BMW group in 2020 [92] has considerably reduced this uncertainty.

The result massively reduces a tension between the measurement and SM prediction to
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1.50 significance level. However, it is still unclear that this result is correct as it leads
to the tension with electroweak global fits which changes the running of fine structure
constant Aa}(i)d [98] and it has not yet been confirmed by other groups. Therefore, until
the dust settles we will not consider the result from the lattice QCD but adopt the value
from data-driven approach in this thesis. By comparing Eq.(4.1) and (4.2), it leads to

EXP _ EXP _ SM _ —11
Aa, ™" =a, " —ap =249(48) x 1077, (4.3)

which implies the positive excess of experimentally averaged result over the SM predic-
tion at the level of 50 significance. The excess obviously manifests a need for physics
beyond the Standard Model (BSM) to successfully accommodate the deviation. More

precisely, we need new particles that interact with the SM muon and/or photon.

In addition to the g, — 2 anomaly, the existence of DM is also a long-standing and
compelling issue in particle physics since there is no suitable particle in the SM that
can consistently explain its particle nature as a Cold Dark Matter (CDM). Recently,
the dedicated observations of the Cosmic Microwave Backgroud (CMB) anisotropies by
PLANCK measurement implies a large amount of DM about five greater than that of
the baryonic matter [21]. In spite of that, for many years we have been searching for DM
signal in terrestrial laboratories but it still evades our sight. Therefore, the hunting for
DM might be one of the long and biggest quest for particle physicists and cosmologists

nowadays.

The g, — 2 anomaly and DM problem is a sensible motivation for us to seek for beyond
the SM (BSM). Nowadays, there are several models purposed to simultaneously describe
the these issues: the Scalar DM (SDM) models [200, 201, 202, 203, 204], the SDM with
Vector-Like Leptons (VLLs) [205, 206, 207, 208, 209, 210], the Vector Dark Matter
(VDM) with scalar portal [211, 212], the VDM with VLL portal [122].

In the previous chapter, we have thoroughly studied the scenario in which the VL fermion
double is a VL top quarks in both cosmological and collider phenomenology. In this chap-
ter, we study a possibility to explain the DM problem and muon anomalous magnetic
moment at the same time with the MPVDM scenario. The theoretical framework of
the MPVDM is still similar to our previous articles. The connection between SM and D
sectors is established via the Yukawa interaction of SM and VL muons. In additional to
the SM particles in the loop, a, receives contributions from new gauge bosons, scalars
and fermions from MPVDM which we abbreviate as “New Physics” (NP) contribution.
Therefore, the MPVDM has a potential to address the g, —2 and DM problems at the

same time.

This chapter is organised as follows: In section 4.2, we display the relevant expressions
for a, and present the parameter space that is allowed by the existing limits. In sec-

tion 4.3, we consider the DM candidate for our model and the surviving parameter space
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after application of a series of cosmological bounds (relic density, direct and indirect de-
tections). In section 4.4, we discuss the collider limits from pp — ptp™ + EF which is
important to constrain the masses of VL muons. In addition, our model predicts unique
and novel multi-lepton signature. Also, we study the interplay between the (g — 2),,
collider and DM limits that narrows down our parameter space to region where all afore-
mentioned bounds are satisfied at the same time. Finally, we summarise our findings on

the MPVDM scenario in section 5 and propose future outlooks.

4.1 The MPVDM model

In this thesis, we explore the potential of FPVDM to explain the DM observables and
experimental excess of g-2 over the SM prediction [179]. The combined result from BNL
and FNAL experiments indicates the 5o discrepancy from the SM prediction AaEXP =
249(48) x 10711, In order to explain the Muon anomalous magnetic moment we need a
D fermionic doublet which mixes wtih the SM muon and this D fermionic doublet can
naturally be a doublet of VL muon ¥ = (up, u')’. The mixing of SM and D muons is
obviously given by the Yukawa term of y/. Therefore, the additional contributions to

the g, — 2 result from the NP diagrams including Hp , V', ng*) and pp, . !

The most general Lagrangian for this scenario takes the following form

1 2SM =
L D —Z(V;V)QyB,Wi’VE + NP M 4 WiV + | D, Oy |* + |DOp|? — V(Dy, Pp)
— @I Ou R+ y UL ep N 4+ hc) — M, 0 (4.4)

where V(®g, ®p) is the scalar potential and is given by

V(®p, ®p) = —p2®L g — phdh & p + A(@L, 0 )% + Ap(®),0p)?
+ A (@} @) (@], Pp) . (4.5)

The quartic term of @5 and ®p (the Higgs portal) mixes and will play an vital role in
studying the phase transition and gravitational waves. However, we are considering a

mininal scenario in which the quartic coupling Agp is negligibly small.

4.1.1 MPVDM parameter space

Even though there are a number of parameters in the Lagrangian but those are fixed by

the experimental results. In general, the model contains free six parameters.

gDymVDamHDamu/ym,uD>Sin05 . (46)

In this chapter, we change a notation to label scalars. The SM Higgs and new scalar are presented
by H and Hp, respectively.
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However, in this thesis we would like to consider the effect of the fermionic portal to
dark sector without scalar portal at tree level which mean that sin g = 0. Therefore,

the dependent parameters can be written in terms of input parameters as follows

2mW . 2mVD

v o= , Up=-—", (4.7)
g dp
2 92 2m2
A= g’,?,;Ha/\D_gD QHDa)\HD_Oa (48>
8miy, 8mVD
2 2
2 my o _ MHp
= 4 = 4.9
I 5 +HD 5 (4.9)
2
gm, my 9oy lm = mE ) (mi, — )
y = ————— y = (4.10)
\/imW m//fD \/imquVD

4.2 The analytical and numerical results

As we have mentioned at the beginning of the introduction that the averagedly combined
experimental measure of the anomalous magnetic moment of the muon, a, = (g, —
2)/2, from BNL and FNAL leads to a;*" = 116592059(22) x 10~''. However, the
prediction of this quantity within the framework of SM gives aEM = 116591810(43) x

107! provided by the Muon g-2 Theory Initiative in 2020 [179]. In general, the SM
QED _
m

prediction can be divided into 3 catergories: 1) the pure QED contribution a
116 584 718.93(0.10) x 1071, 2) the Electro-Weak (EW) contribution aj"V = 153.6(1.0) x
107! and 3) the Hadronic Vacuumn Polarisation (HVP) contribution agad = 6931(40) x
10~ 2 | The theoretical uncertainties from the QED and EW sectors are negligibly
small. The most difficult part is the hadronic one which is responsible for the large
contribution in uncertainty of the SM prediction. The discrepancy between experimental
results and SM prediction leads to AaBXP = EXP — ¢5M — 249(48) x 10~ which

h 1 [
indicates the 5.2¢ deviation from the SM prediction.

This experimental excess over the theoretical prediction could be explained by the
MPVDM framework. As we mentioned before that the model does not require the
Higgs portol to connect to dark sector. Therefore, we will not consider diagrams with
scalar mixing (sinfg = 0) in this thesis. In the next section, we present the complete

analytical results of g, — 2 for our model.
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FIGURE 4.1: A set of diagrams contributing to the a,, in addition to the pure SM ones.
The pure QED and hadronic diagrams are not represented here.

4.2.1 Analytical results

It has been shown in [88] that analytical expressions for a, for generic diagrams and
internal particles are gauge-independent and divergent free. In order to ensure that
the results in [88] are reliable, we have also calculated the contributions to the a, with
generic couplings and mediators in the limit of R¢ — 0 (in the Unitary gauge) and
cross-validated with their results. We found that our results on a, agree with theirs.
The detail of our calculations can be found in Appendix F. Moreover, our results have
been crossed validated against the pre-existing in [88, 213, 214]. Indeed, the one-loop
results could be extensively complicated and highly unstable. The instability in loop
functions originates from the fact that the mass of muon is much smaller than that
of other particles which means that we cannot naively use the results. Fortunately,
the instability can be coped with the approximation formulae which give us the more
simplified and compact expressions. The loop diagrams from MPVDM at the leading
order are depicted in figure 4.1. Note that we do not present the pure QED and HVP
diagrams here since they are similar to the SM scenario at the leading order. In the
following sections, we discuss the analytical results from diagrams with scalar, vector
with Neutral Current (NC) and Charged Current (CC), respectively.

2We use the result due to a data-driven dispersion relation approach. However, there are several
groups evaluating the HVP contribution using the lattice QCD approach. The recent result from the
BMW collaboration [92] is aEWM = 7075(55) x 107!, The difference between two approaches might be
explained by new physics contributions
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4.2.1.1 The scalar diagram

As aforementioned, the instability in loop functions happens if the mass of muon is
much smaller than that of other particles. Therefore, in order to get a reliable result
we expand the scalar contribution in the limit of m, < mj; where m, and m; are the
mass of muon and VL muons, respectively. After doing expansion and keeping only the

leading order, the analytical result for figure 4.1 (a) reads

2 2 ) )

S _ (Cs - CP) mymyg 4 9 o 4 . m mu

ay, = 1672 (m? - m2)3 my — 4mfm8 + 3ms - 2ms log mié + 0O mi? ’
S

where my is the mass of scalar fields. The Cs and Cp are the scalar and pseudo-scalar
components of a generic coupling of a scalar-fermion-fermion vertex, respectively. The
full analytical expression in terms of integral for scalar case is given by Eq.(F.4). In
addition, in the regime that ms < my and m, < my, the result for figure 4.1 (a) is

much more simplified to

2 2 2
ai_ Mmu +O mp' +O S (412)
167 mpy mf mf

Note these results are evaluated at the leading orders of the expansion. Of course, the

higher order results are much more complicated.

In the case of the internal fermions are SM muons and m, < ms , the result reads

S _ m2 2 2 m2 m4

u s

In our framework after substituting the C's and Cp couplings (see table E.1 and E.2),
the NP contributions from Hp propagating diagrams in figure 4.1(a) and (b) can be

reduced to
2 2 2 2
a@.H o 9w my, AM ms, i 29 ) , My
Na 647‘( mW Mz (mi/ - m%I)3 3mH 4mHm“/ + mul + 4mH log o
(4.14)
2 2 2 9
@i o 9D M |LAMT [ TAM s
g 9671-2 m%/D 4 mi/ mi/
2 2 2 4
oO1HD o 9D M | LMy AMT ) D (4.16)
H 96712 m2,_ | 2m2 1 g ; ,
™ My, My, My my

2 ;2 . One can see that the o' contribution is very

w KD ©
suppressed because of mi /m¥, and AM?/ mi,. The aL WHD and a&b)’HD contribution

respectively, where AM? = m
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obviously depends on three quantities: 1) the squared coupling constant g%, 2) the
square of the ratio of muon’s mass to DM’s mass (m,,/my,,)? and 3) the mass squared
difference between two VL muons over mi,. This fact is also true for the contributions
from NC and CC diagrams as we will see later. More specifically, one can clearly see
that Eq.(4.15) can give a positive contribution if (m,/m,,)? > 7/6 and it is negative if
1 < (my/mu,)?* < 7/6. Eq.(4.16) is positive and negative if my,, > m, and mp,, < m,,,
respectively. The contributions involving the SM-Higgs can be neglected due to the

suppression in the mixing of SM and D fermions.

4.2.1.2 The NC diagram

The contributions from the vector propagating diagrams can be divided into 2 groups:
1) the diagrams with NC and 2) the diagrams with CC. Starting with a contribution
from NC diagram, the result for figure 4.1 (c)-(e) at the leading order of the expansion

in the limit of m, < my is given by

2 2 )
ne (v =Ch)  mumy 6 2 4 6 2 4 m?
T m2(m3 — m2)? my + 3mymy, — 4m, + 6mym, log m?

m2
+ 0 (fj) : (4.17)
m
!

where the Cy and C4 are a vector and axial-vector couplings of a vector-fermion-fermion
vertex. The full analytical integral for NC case is given by Eq.(F.59). Here the m; is the
masses of VL muons (up, ¢’) and m, is the masses of neutral gauge bosons (Z, V', Vp).

When m, < m; and m, < my, the analytical expression reads

C2 — 02y my(m? + 3m? m? 2
aﬁc _ (Cy . %) i (my . ) +o|—L)+0 m; ) (4.18)
167 mym, my my

When the internal fermions are SM muons and if m, < m,, the contribution from NC

diagram reads

2 23 2 4
ne _ (CF —=5C%) my my,
a, - =—~——4 Lo, (4.19)
" 1272 m?2 ma

This result is consistent with the Eq. (2.5) in [215] and we have checked that it can

reproduced the SM prediction found in [13].

Substituting the relevant couplings from tabletable E.1 and E.2, the NP contributions

of new gauge bosons propagating diagrams from figure 4.1(c), (d) and (e) reads
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2 2 [ 2 2
ov . 9 m2 [1AM ( 5AM
alV' ~ D — 1+ 2=, (4.20)
967 my, _4 my, my,
2 2 [ 4
ay, ~ 2.2 T | (4.21)
96T my, | my,
2 m2 [1AM?
o Vp x ID T | 2200 | (4.22)
® 9672 mi,_ |2 m?,
D L 1

respectively. One can clearly see the key features of these results are still similar to what
we have commented for the scalar contribution. The NP contributions from figure 4.1(c),

(d) and (e) give the positive, negative and positive results, respectively.

4.2.1.3 The charged current diagram

The last contribution is originated from the CC diagrams which the result we present
here is from the full integral in Eq.(F.73). Expanding in the limit of m, < m,, the

expression for figure 4.1 (f) is given by

a e
® 2472 m2

CC _ 5(0\2/ + sz) mi +0 (mﬁ> (4'23)
where m, = my. This result is used for the figure 4.1(f) and is always positive. After
substituting the Cy and C4 according to table E.1 and E.2, we numerically found that
the result is equal to that of the pure SM. Notice that this result has been computed
under the assumption that mass of internal fermion is zero which is consistent to the SM
and the MPVDM cases in which the neutrinos are massless. The more general result
can be found in [88], Eq.(4). The extensive detail for one-loop contributions to g-2 from
S, NC and CC digrams are given in the Appendx F. The validation of Eq.(4.19) and
(4.23) can be done by considering the SM results from the Z and W boson diagrams and
we found that they provide the consistent results with Eq.(14) and (15) in [216].

As we see above, the contributions from all NP diagrams can give both positive and
negative results. In order to explain the experimental results we need the total pos-
itive contribution. The MPVDM model has a potential to accommodate the AaEXP
discrepany through new contributions from VL muons (up and p), a dark scalar (Hp)
and two new gauge bosons (Vp and V’). In order to explain this discrepancy, we define
the NP contributions as the difference between MPVDM and SM ones as follows

NP MPVDM _ _SM
Aa," =a, —ay, (4.24)
where a;l\fPVDM is the contributions according to the diagrams (a-f) in figure 4.1 and

aSM

. 1s merely the contributions from diagrams a, ¢ and f with pure SM particles and
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couplings combining the pure QED, EW and Had contribution as mentioned in the
begining of section 4.2. Thus, the Aaﬁp give purely NP contributions.

4.2.2 The g, — 2 results

In order to understand a comprehensive picture of the full 5-Dimensional (5D) parameter
space of {gp, mv;,, My, My, mp,, }, we have scanned over the 5D parameter space with

the following ranges

107* < gp < 4,
0.01 < mVD/GeV < 10000,
100 < mﬂD/GeV < 10000,
100 < mu//GeV < 10000,
0.01 < mp,/GeV < 10000. (4.25)

The upper limit on the coupling is chosen according to the perturbativity condition
while the lower one should not be too small because it will not be relevant to the
collider search for new signature (see the discussion of the multi-leptons signatures in
section 4.4). The maximum values of the masses are limited at 10* GeV whilst the
minimum values of masses are set at 10 MeV. The lower limit on the VL. muons was set
based on the obvious limit from LEP experiment which has searched for exotic unstable
neutral and charged heavy leptons at the L3 detector. We use the results in 2000
which corresponds to the centre of mass energy 200-208 GeV with a total integrated
luminosity 450 pb~!. The heavy charged leptons L* are pair-produced through the
Dell-Yan processes e e~ — v, Z — LT L~ then they can decay into a pair of neutrinos
with W bosons L* — v, W¥ or a pair of SM charged leptons with Z bosons L* — ¢+ Z.
The bovious lower limit on L* is placed around 100 GeV [217]. For the actual limits on
masses of VL muons, we derive in section 4.4.1 by using the data on pu*u~ + ErTniSS from
LHC.

In the 5D scan, we have collected only data that satisfies the perturbativity constraints

which is defined as follows

my, — my

Mg <d4m, Ap <dm, y<d4m, o <dn, < 0.5, (4.26)

mVD
where my,, and my are the renormalised masses at one loop for Vp and V', respectively.

In order to visualise the region of good a, within experimental limits, we have defined
the Aa, which describes the deviation of the NP contributions AaEP from the AaEXP
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pert constraints + a
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FIGURE 4.2: The colour bar plot of Ag, from 5D scan projected on the (gp,my,)

plane. The perturbativity constraints Eq.(4.26) is imposed on the plot. The varying

spectrum illustrates the deviation of the Aaﬁp from AaEXP. The spectrum ranges from

dark blue to dark red which corresponds to —5.0c < Ad, < 5.00. The region with

a, +20 is highlighted by a spectrum from light blue to bright orange which corresponds
to —20 < Aa, < 20.

as follows

A NP N EXP
A&MZ( O ) (4.27)

o

where AaEXP is given by Eq.(4.3) and Aaﬁp by Eq.(4.24), and ¢ = 48 x 10! from the

recent averaged value [87].

The figure 4.2 represents the projection of 5D data onto the (gp,my,) plane. The
colour bar on the right of the plot shows the varying colour sprectrum from dark blue
to dark red for —5.0 < Aa, < 5.0 . The points with a, within 95% C.L. or 20
are highlighted with the spectrum from ligth blue to bright orange. The white region
is excluded by the perturbativity constraint Eq.(4.26). As we have mentioned in the
analytical results sector that the a, is proportional to the squared coupling g% and
inversely proportional to the squared mass of DM m%,D. From figure 4.2, it is obvious
that the greater gp the bigger a, while it is smaller if the DM mass gets heavier. As
we have seen from Egs.(4.15), (4.16), (4.20), (4.21), (4.22), when the ratio AM?/m?, is
small , the contributions from the diagram (a), (c) and (e) are dominant. However, if the
ratio AM?/ mi, is large , the contributions from the diagram (b) and (d) are dominant.
The contributions from other diagrams are highly suppressed by the mixing between SM

and VL muons, especially for the diagram involving SM Higgs, Z and W bosons. Even
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if SM and VL muon mix, the SM-like contributions are very slightly changed compared
to the SM prediction.

In order see clearly in which region we can reproduce the experimental result of g, — 2,
we present the 1 dimensional plots of (my,,, AGEIP) in figure 4.3. In each panel, the mass
of DM varies from 0.01-100 GeV. The dotted, solid and dashed blue lines correspond
to the AagP = AaEXP — 20, Aallfp = AaEXP and AallfP = AaEXP + 20, respectively.
In figure 4.3 (a), we fix m,, = 800 GeV, m, = 850 GeV and mp, = 0.5 GeV and
vary gp € {0.001,0.0025,0.005} which are labeled by the solid red, green and orange
lines, respectively. One can see that the points where the blue line intersects with the
red, green and orange ones can reproduce the experimentally measured value of g, — 2
and correspond to my,, € {0.0475,0.119,0.236} GeV. If gp is large we also need large
my,, to balance the g% /m%/D. However, the a, is not sensitive to mpy,, as one can in
figure 4.3 (b). The curves slightly changes with respect to mp, even though we vary
mp, € {0.01,0.1,1} GeV. This is because, at the leading order of expansion, amongst
the NP contributions the scalar contributions are less relevant compared to the NC and
CC contribution. Numerically, it contributes at most only a few percent to the Aalle.
In figure 4.3 (c), it is obvious that a, is proportional to AM?/ mi,. To get the measured

value of g, — 2a, if AMQ/mi, is large the large my,, is needed to compensate.
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FIGURE 4.3: The 1 dimensional plots of (mv,,Aa,). In each panel, the mass of DM
is varied from 0.01-100 GeV. The dotted, solid and dashed blue lines correspond to the

Aah? = AapXP — 20, Aa)® = Aap*P and Aa)” = AaXF + 20, respectively.
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4.3 Cosmological probes of MPVFM model

4.3.1 The cosmological limits

We have already discussed the cosmological bounds in section 3.1.1. Here we only present

the result for MPVDM scenario after applying those constraints.

@ generic DM annihilation @ overabundant DM region @ generic DM annihilation @ overabundant DM region
Hp resonance region excluded by CMB DM ID Hp resonance region excluded by CMB DM ID

@ Ko co-annihilation region @ excluded by DM DD @ Ko co-annihilation region @ excluded by DM DD

@® underabundant DM region @® underabundant DM region
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FIGURE 4.4: The data from 5D scan projecting on various scatter plots: a) (mvy,, gp),

b) (mu,,9p), ¢) (my,, mu,) and d) (my,, my, ) planes, respectively. The perturba-

tivity and cosmological constraints have been applied on each individual panel. The

cosmological limits contain 1) the DM relic density, 2) the DM DD and 3) the DM ID.

The allowed region are coloured by green, cyan, blue and grey while the excluded ones

are highlighted by dark red, orange and magneta. The white region corresponds to the
perturbativity exclusion region.

In figure 4.4, the allowed regions are coloured by green, cyan, blue and grey while the
excluded ones are labeled by dark red, orange and magenta. The green, cyan and blue
regions are allowed by perturbativity constraint, DD and ID, and they have the relic
density Qgﬁmkfﬂ 4 0.012. The grey region also satisfies the same constraints as green,
cyan and blue ones but has the under-abundant relic density. On the other hand, the
dark red, orange and magenta regions are not allowed by the relic density, CMB ID
and DD limits, respectively. More precisely, the green region as labelled by generic
DM annihilation appears as a small diagonal strip in figure 4.4(a) where the dominant

annihilation channels are Vp V5 — V' V'. However, the generic DM annihilation
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processes are not effective and is excluded by DM ID constraint in a region of small
DM mass below 1 GeV and small coupling gp below 0.02. One can see that the green
strip is not uniform over a range 1 < my, /GeV < 10000, especially in the region with
10 < my,/GeV < 100 in which the DM DD constraint becomes relatively stronger.
The regions above(below) the green one corresponds to the region with under(over) relic
abundance which they are labelled in grey and dark red. The cyan region is identified by
the Hp resonance region where the main annihilation channel is Vp V}, = Hp — V' V',
This can happen when the DM mass gets close to a half of mg,,. One can clearly see a
region of the resonance as a diagonal cyan strip of figure 4.4(c). Finally, the blue region
corresponds to the up co-annihilation region and this happens when the DM mass gets
close to my,,, as in figure 4.4(b) and (d) panels. The co-annihilation process becomes
visible on the parameter space when the DM mass goes to 100 GeV (the lower limit of
VLM from LEP). For small coupling gp < 0.1, the co-annihilation region is effectively
produced by a process of up, up — qq, £ ¢~ , v via photon and Z exchange which does
not depend on the coupling gp and happens in region of 100 < my,, /GeV < 300. When
the coupling gp becomes larger, the dominant process shifts to Vpup — ~yu,yu' via
i, i’ exchange.

4.3.2 The combined bounds: cosmological and q, limits

In previous sections, we have discussed the cosmological and a, constraints seperately.
In this section, we try to combine these bounds together and find a allowed region where

it satisfies the cosmological and a, bounds simultaneously.

In figure 4.5 and 4.6, the grey region is allowed by the perturbativity constraint. The
green(cyan) region is allowed by the DM DD, ID and has the correct(underabundant)
relic density. The dark red labels a region with a, within 20 from the averaged value
Eq.(4.1). The starred magenta and orange indicate a region allowed by a, + 20, DM
DD, ID with the relic density QPlanckp2 and 15%QDankp2  respectively. The white
region in the figure 4.5 (a) panel violates the perturbativity constraint while the white
region in figure 4.6 (b), (c) and (d) panels is excluded by the mass hierarchy condition

myp < My, < my.

In figure 4.5 (a) the (my,, gp) panel, one can clearly see that the dark red and green
bands have different slopes. They intersect in a region of 10™% < gp < 107! and 0.01 <
my,/GeV < 10. However, the CMB ID constraint becomes strong and enormously
excludes a region of 1 < my,,/GeV < 10 and 0.01 < gp < 0.1. At the largest coupling
gp = 4w, the (g, —2)/2 is below Aa;; X" —20 in a region with my;, > 2000, my,, > 3000,
myy > 4000 and mp, > 2000 GeV as one can see clearly from figure 4.5 (a), (b), (c)
and (d) panels, respectively. A region which is allowed by cosmological and g,, —2 limits

corresponds to the Hp resonance region and it appears as a diagonal strip in figure 4.6

(a).
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FIGURE 4.5: The scatter plots from 5D data projected on various planes: (mv,,gp),

(Mup-9p), (M, gp) and (mp,, My, ), respectively. The combined constraints on per-

turbativity (Eq.(4.26)), cosmology, VLM masses and a,, have been applied on each plot.

The VLM search has put a lower limits on m,,, and m, around 600 GeV from LHC
data. The constraint on (g, — 2)/2 is within 20.

In figure 4.7, we consider the 2D plots of (myv,,gp) plane with m,,, = 650,700,750
GeV, m, = 800 GeV, mp, = 0.5 GeV. In figure 4.8, we change m,,, = 700,800,900
GeV and m, = 1000 GeV while keep mp,, = 0.5 GeV. In those plots, the red, orange
and magenta regions are excluded by the DM relic density, DM ID and perturbativity
constraints, respectively. The solid red line corresponds to the PLANCK relic density
Qpwmh? = 0.12. The solid orange one means the Py, = 3.2 x 10728 cm3s™ GeV~!. The
dashed, solid and dotted blue lines indicate the curves with Aa, = —20, Aa, = 0 and
Aa, = +20, respectively. In parameter space we present in figure 4.7 and 4.8, the DM
DD limit is not relevant as the DM mass and coupling gp are too small. The allowed
region by cosmological and g, — 2 limits resides in the white region, and only between
dashed and dotted blue lines. In figure 4.7 (a), the allowed region has 0.21 < my,, < 0.24
GeV and 0.002 < gp < 0.004. As one can see that the a, increases depending on the
larger coupling gp. However, it decreases as DM mass increases. If the mass splitting
of VL muons decreases the slope of the blue lines increases to get the a, with 20 as one
can see from the figure 4.7 (b) and (c). In figure 4.8, the allowed region by cosmological
and g, — 2 resides between 0.0015 < gp < 0.0035 with the same range of my,, as in
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FIGURE 4.6:

(Cont.) The scatter plots from 5D data projected on various planes:

(Mmup,myy ), (Mu,myy), (M, my,) and (my,my,), respectively. The combined

constraints on perturbativity (Eq.(4.26)), cosmology, VLM masses and a, have been

applied on each plot. The VLM search has put a lower limits on m,, and m,s around
600 GeV from LHC data. The constraint on (g, — 2)/2 is within 20.

figure 4.7 because mp,, does not change. However, the allowed range of gp is slightly

smaller compared to those in figure 4.7 because of large mass splitting of VL. masses.

Another 2D plane can be found in figure 4.9. We present the 2D plots on (my,,,, my,,)
plane with gp = 0.001,0.0025,0.005,0.0075, m, = 1000 GeV and mpg, = 0.5 GeV.
According to the combined limits from cosmology and g, — 2, one can see that the

allowed region appears only in figure 4.9 (b) where g, = 0.0025, 0.21 < my,, < 0.24
GeV and 750 < my,, < 800 GeV.
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FIGURE 4.7: The 2D parameter space of (my,,¢gp) plane with m,, = 650,700,750
GeV, my = 800 GeV and mpy,, = 0.5 GeV. The magenta, orange and red regions are
excluded by the perturbativity, DM ID and relic density constraints, respectively. The
solid red line corresponds to the relic density Qpyh? = 0.12. The solid orange line
indicates the Py, = 3.2 x 10728 cm3s™! GeV 1.

The dotted, solid and dashed blue

=700 GeV, m,=800 GeV, my, = 0.5 GeV

lines represent the Aa, = —20, Aa, = 0 and Aa, = 20, respectively.
Inputs/Observables BP1 BP2 BP3
9D 0.0025 0.0025 0.0025
my, [GeV] 0.206 0.206 0.206
My, [GeV] 650 740 850
my [GeV] 800 1000 1000
mp, [GeV] 0.5 0.5 0.5
(9. —2)/2 2.04 x 107 | 2.461 x 107° 1.76 x 1079
QOpmh? (Relic density) 0.105 0.098 0.105
Nevens (DD) 1.016 x 1078 | 2.014 x 1078 | 7.254 x 107
p (DD) 1 1 1
Papn [cm3 s71GeV~!] (ID) | 2.38x 1072 | 3.17x 10728 | 243 x10"%

TABLE 4.1:

The representative benchmark points that are allowed by g, — 2 and

cosmological bounds.
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FIGURE 4.8: The 2D parameter space of (my,,gp) plane with m,,, = 700,800,900

GeV, m, = 1000 GeV and mpg, = 0.5 GeV. The magenta, orange and red regions

are excluded by the perturbativity, DM ID and relic density constraints, respectively.

The solid red line corresponds to the relic density Qpyh? = 0.12. The solid orange line

indicates the Paun = 3.2 x 10728 cm®s™! GeV~!. The dotted, solid and dashed blue
lines represent the Aa, = —20, Aa, = 0 and Aa, = 20, respectively.
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FIGURE 4.9: The 2D parameter space of (m,,,,my, ) plane with gp = 0.001,0.0025,-
0.005,0.0075, m,s = 1000 GeV and mg, = 0.5 GeV. The magenta, orange and red
regions are excluded by the perturbativity, DM ID and relic density constraints, re-
spectively. The solid red line corresponds to the relic density Qpyh? = 0.12. The solid

orange line indicates the P, = 3.2 x 1072% cm3s™! GeV~!.

The dotted, solid and

dashed blue lines represent the Aa, = —20, Aa, = 0 and Aa, = 20, respectively.
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4.4 Collider Constraints

In this section, we discuss collider limits for DM searches from LHC data where the
ATLAS collaboration is looking for a signal of a pair production of sleptons produced in
proton-proton collision and then they finally decay into a pair of SM muons and missing
transverse momentum pp — 00— 00+ EEFiSS. Additionally, we discuss novel signatures
of multi-leptons with at least six muon in the final state predicted by our model. Then,
we provide some benchmark points (BPs) with information of relevant branching ra-
tios, production cross sections of multi-leptons and the corresponding number of events.
These representative BPs are allowed by g, — 2, cosmological bounds and collider lim-
its from pp — #0 + E%ﬁss . Moreover, the parameter space from 5D scan projecting
onto different planes of input parameters are presented after successively applying all

aforementioned limits.
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FIGURE 4.10: The recasting limits on the (my,,my,) plane for pp — phup + EX

based on the combined limits from ALTAS and CMS searches. The recast is simulated

for gp = 0.001,0.005, 0.01, m,» = 800,1000 GeV and mpy, = 0.5 GeV. The orange line

indicates the exclusion limit at 95 % C.L. and the dotted lines show the ratio of the up
decay width over its mass.

4.4.1 The lower masses of VL muons from pp — pu~ + ERss

The production of a pair of VL. muons ,ujSpB can be made through proton-proton col-
lision via v, Z, V' exchange. The first two processes are evidently dominant since pup
carries the same hypercharge as SM muon while the V' involving process is highly sup-
pressed by the KM effect. After the pair production of ME,U,B, a pup will entirely decay
into a Vp and a SM muon due to the mixing between SM and VL muons through the
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FIGURE 4.12: The 2D parameter space of (my,, gp) plane with m,, = 650,700, 750

GeV, my = 800 GeV and mpy, = 0.5 GeV. The magenta, orange, red and cyan

regions are excluded by the perturbativity, DM ID, relic density, collider constraints,

respectively. The solid red line corresponds to the relic density Qpyh? = 0.12. The

solid orange line indicates the Py, = 3.2 x 1072® cm3s™! GeV~!. The dotted, solid

and dashed blue lines represent the Aa, = —20, Aa, = 0 and Aa, = 20, respectively.
The solid cyan line shows the LHC exclusion limit at 95 % C.L.

Yukawa terms. In this section, we use collider limits from the ATLAS and CMS search-
ing for a pair of production of sleptons decaying into two SM muons and transverse
missing energy through the process of pp — 0w — pwrpT + Effniss. In our model, a similar
process can be produced by pp — ,uE,uB — utuT + E%iss. By recasting the limit from
this process, we can derive the exclusion region at 95 % confident level which can be
used to set a lower bound on masses of VL. muons. The list of searches are the following:
atlas-susy-2018-32 [218], cms-sus-16-039 [219] and cms-ex0-19-010 [220]. The recast is
based on these searches can be found in figure 4.10 and the results are presented in the
(mup,my;,) plane with varying parameters: gp = 0.001,0.005,0.01, m,, = 800, 1000
GeV and mpy,, = 0.5 GeV. One can see that in the region of interest where my,, <1
GeV the lower limit on m,,, by recasting is around 700 GeV. In figure 4.11, we apply
this limit on the various projections of 5D scan and one can see that the allowed region

(indicated by red stars) reside exactly in the resonance region of Hp with gp < 0.003,
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FIGURE 4.13: The 2D parameter space of (my,,gp) plane with m,, = 700,800, 900

GeV, my = 1000 GeV and mpg, = 0.5 GeV. The magenta, orange, red and cyan

regions are excluded by the perturbativity, DM ID, relic density, collider constraints,

respectively. The solid red line corresponds to the relic density Qpyh? = 0.12. The

solid orange line indicates the Py, = 3.2 x 1072® cm3s™! GeV~!. The dotted, solid

and dashed blue lines represent the Aa, = —20, Aa, =0 and Aa, = 20, respectively.
The solid cyan line shows the LHC exclusion limit at 95 % C.L.

my, < 0.5 GeV, my, <1 GeV and 700 < m,,,m, <2000 GeV.

In addition, we also apply the recast results at 95% to the 2D plots as in figures 4.12, 4.13
and 4.14. In figure 4.12 (c), the parameter space is not excluded by LHC constraint and
the allowed region for m,,, = 750 GeV, m,, = 800 GeV and mpg,, = 0.5 GeV is in range
of 0.005 < gp < 0.003 and 0.21 < my,, < 0.24 GeV, while parameter space in figure 4.12
(a) and (b) is not survived by the LHC constraint. In figure 4.13, the parameter space
in panel (a) is excluded by LHC constraint. The allowed region by cosmological, g,, — 2
and LHC constraints for m,, = 800 GeV, m, = 1000 GeV and mg, = 0.5 GeV
has 0.002 < gp < 0.003 (panel (b)) while for m,,, = 900 GeV, m,, = 1000 GeV and
mp, = 0.5 GeV the region with 0.0025 < gp < 0.004 is allowed (panel (c)).

The 2D parameter space of (my,,,, my, ) plane is shown in figure 4.14. One can see that
the allowed region is depicted by figure 4.14 (b) where gp = 0.0025, m,,, = 1000 GeV,



112 Chapter 4. Phenomenology of the muon portal and muon g, — 2

gp=0.001, m,=1000 GeV, my,=0.5 GeV gp =0.0025, m,=1000 GeV, my,=0.5 GeV

0.50 0.50
0.45 r 0.45 4 r
0.40 - L 0.40 Over-abundant|
— 0.354 Over-abundant L — 035
3 3
O 0307 O 300
E e EEuu
025 025 Aa, *+20
€ (204 T
0.15 1 r 0.15 1
0.10 4 0.10
0.05 T T T T - 0.05 -
500 600 700 800 900 1000 500 600 700 800 900 1000
my, [GeV] my, [GeV]
(a) (b)
gp =0.005, m,=1000 GeV, my,=0.5 GeV gp =0.0075, m,=1000 GeV, my,=0.5 GeV
0.50 . . - . 0.50 4 ’ : < N
0.45 - Over-apundant | 0.45
0.40 ’ 0.40
—o3s] T TTTme—a__ — 0.35
o D s o
8 0.30 - M p 8 0.30
S 0.25 2o 0.25
E 0.20 E 0.20
0.15 0.15
0.10 0.10
0.05 - 0.05
500 600 700 800 900 1000 500 700 800 900
my, [GeV] my, [GeV]
() (d)

FIGURE 4.14: The 2D parameter space of (m,,, mv,, ) plane with gp = 0.001, 0.0025,-
0.005,0.0075, m,s = 1000 GeV and mg, = 0.5 GeV. The magenta, orange and red
regions are excluded by the perturbativity, DM ID and relic density constraints, re-
spectively. The solid red line corresponds to the relic density Qpyh? = 0.12. The solid
orange line indicates the P,,, = 3.2 x 1072 cm3s™! GeV~'. The dotted, solid and
dashed blue lines represent the Aa, = —20, Aa, = 0 and Aa, = 20, respectively.

mp, = 0.5 GeV and 750 < m,,, < 800 GeV.

4.4.2 The signatures: multilepton in final states

In this section, we discuss the novel and characteristic collider signatures predicted by

the MPVDM. In our model, the multi-lepton processes can be produced by proton-

proton collisions through a pair production of p/* '~ and then a p’ will decay into one

of these channels: 1) upVp, 2) pHp and 3) uV’. One Hp decays into VpV}, V'V’ and
pwp~ and then V' decays into a pair of two muons which the decay rate and branching

ratios of Hp is determined by gp, mp,, and the mass splitting ratio of two VL fermions,
2
w
ratios for relevant particles is given in table 4.2. Therefore, a process of pair production

(m2, — mZD) / mi,. The information about decay channels and corresponding branching

of p/Tp/~ ends up with at least six muons in the final state. In table 4.2, we provide a
few Benchmark Points (BPs) that produce the measured relic density and passed DM
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| Inputs/Observables | BP1 BP2 BP3
gD 0.0025 0.0025 0.0025

my,, [GeV] 0.22 0.22 0.22

My, [GeV] 600 600 600

my [GeV] 650 850 1000

mi,, [GeV] 0.5 0.5 0.5

Br(p — V') 0.48 0.3 0.22

Br(p' — Hpp) 0.48 0.28 0.2
Br(i — Viup) 0.045 0.43 0.59
Br(Hp — VpV}) 0.66 0.608 0.551
Br(Hp — V'V’ 0.334 0.36 0.402
Br(Hp — ptu~) 0.003 0.032 0.047

| Br(V' — ptu™) | ~1 ~1 ~1
Br(p = V'u— 3u) 0.48 0.3 0.22
Br(y' — Hpp — 5u) 0.16 0.1 0.076
oot (pp — 1) 0.85 0.22 0.088
Nevent(pp — 611) 58.75 5.94 1.28
Nevent (pp — 811) 19.58 1.98 0.44
Nevent (pp — 104) 6.53 0.66 0.15

TABLE 4.2: The decay channels and corresponding branching ratios of u’, V’ and
Hp for three representative BPs. The number of events is computed assuming that

the integrated luminosity is equal to 300 fb~!. Here the branching ratios of Hp is

: ; 2 2 2
determined by gp, Hp and the ratio (m“/ - mHD)/mu,.

DD and ID constraints, and have (g, —2) £20. For the representative BPs, we evaluate
the production cross section at /s = 13.6 TeV and 300 fb~! integrated luminosity for
six, eight and ten muons in the final state, and corresponding number of events for each
BP.

One can see that probability for having six, eight and ten muons from p/* '~ production
is in the range of 5-20%, 2-8%, and 1-3%, respectively. This spectacular signature would
give between 60 (for m,, = 650 GeV) and 1 (for m, = 1000 GeV) events. Since
Hp and its respective decay products Hp — V'V’ will be boosted, it will give four
merged boosted muons, which requires a dedicated study. For very heavy p/, however,
for example m,, > 1 TeV and m,,, = 600 GeV, the radiative corrections bring down
the mass of V' below twice the mass of muon, my+» < 2m,,, so V' becomes long-lived
and decays to eTe™ and three pairs of 147, almost equally in branchings providing even
more intriguing signature, which looks like the flavour violation one — more precisely,
the lepton flavour violation occurs because of KM effect. In general, the model exhibits

the following unique signatures

1) one isolated prompt muon + four merged boosted muons
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2) pair of isolated muons + pair of four merged boosted muons

3) one isolated muon + four merged electrons from displaced vertex (10 muons in
total)

4) pair of isolated muons + pair of four merged boosted displaced electrons (2 muons+8

electrons in total)

These novel signatures are very characteristic for this model.

Finally, the parameter space from 5D scan are present in figure 4.11 after sequentially
applying the g, — 2, cosmological and collider constraints, respectively. After imposing
the LHC costraint, one can see from (gp,my,,) panel that the DM mass and gp are
limited in a range of 0.01 < my, /GeV < 4 and 10~* < gp < 5x1073. In the (gp, mu,)
panel, the Hp mass consistently varies from 0.001-4 GeV. The my,, and mpy, masses
are constrained to the region of Hp resonance in (my,, mm, ) panel. According to the
(9D, Mup), (gp, my) and (mpp,m,) panels, the mass of up and p’ are allowed by LHC
bounds within 600-2500 and 650-300 GeV, respectively.
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Chapter 5

Conclusions

In this thesis, we explore a new class of models which is proposed in the publications [1,
2]. This framework relies on the new mechanism that connects the SM and dark sector
together called the Fermionic Portal to Vector Dark Matter (FPVDM). The model has
an additional SU(2)p gauge group and U(1)y,, global symmetry. Two of the new gauge
bosons from SU(2)p group play a role as a DM candidate while global U(1)y,, symmetry
is introduced to stabilise the DM. The portal to the SM sector is constructed by the
Yukawa term between the SM and its VL partners. As such, this scenario does not
necessarily require a Higgs portal mediating the interactions between the dark sector
and the standard one. This framework has a rich phenomenology which depends on the

nature of VL partners and the form of the scalar potential.

Here we investigated the DM phenomenology based on a simple scenario of FPVDM
models where the SM and dark scalars do not mix and the portal is purely from the
Yukawa. Therefore, only five parameters are needed to define the model. In addition,
the VL fermions mix with only one SM flavour. Our first study is called the Top Portal
to Vector Dark Matter (TPVDM) where the VL top quarks (tp and T) are added
and mix with the SM top quark. Since this scenario does not provide the interaction
between DM and nucleons at tree level, we calculated the loop-induced vertices of DM-
DM-Z/~ and provided the generic expressions in terms of vector (v) and axial-vector
(a) couplings. This is a very crucial result for evaluating the DM DD rate. We applied
the DM ID constraint from CMB anisotropies observation which has less uncertainty
than conventional measurements. For collider limits, we used the LHC bound for VL
top search which does not allow the mass of T below 1.5 TeV. We also used the LHC
constraint for tf + E%’iss searches by recasting which excludes the parameter space with
225 < my, < 825 GeV and my,, < 500 GeV. The interplay between cosmological and
collider limits play a crucial role in constraining the parameter space of the model. Here
we presented the 5D scatter plots after applying those bounds and clearly showed the
allowed regions with different mechanisms of generic, co-annihilating and Hp resonant

DM annihilation. We also gave the 2D plots to highlight the specific region where the
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Hp resonance and co-annihilation regions happen. In addition, More importantly, this
specific scenario predicts two long-lived particles (tp and V') which makes this class of

model is more attractive and is possible to test it in the current and future colliders.

The second study is based on the Muonic Portal to Vector Dark Matter (MPVDM)
where we have, instead of VL top quark, the VL muons (up and p'). In this scenario,
we have a possibility to describe the muon anomalous magnetic moment g, —2 and DM
issue simultaneously. We also rederived the generic expressions of g, —2 contribution and
crossed-validated against the existing results. Here we still used the same cosmological
constraints as in the case of TPVDM. However, for collider constraint, we did recasting
for utpu~ + EXSS based on the ATLAS and CMS searches for a pair of sleptons. We
used this result to set up the lower limit on the VL muons where it is slightly above 700
GeV. Applying the combined limits from cosmology, g, —2 and collider on the parameter
space, we found that the allowed region is clearly on the resonance region of new scalar
Hp. Moreover, we presented the 5D scatter and 2D plots which showed the allowed
parameter space. The key feature of this scenario is that it predicts the multi-leptons
signatures with 6-10 muons in the final state which makes this scenario very interesting

to experimentalists to test it.

The material that I presented in this thesis is based on my publications [1, 2] discussed in
chapter 2 and 3 and upcoming article entitled “the muon anomalous magnetic moment

gu — 2 from Fermionic Portal to Vector Dark Matter” [3] discussed in chapter 4.

The studies in this thesis are only two realisations of the FPVDM framework which
can be extended to explain many problems in the SM, not only the DM and g, — 2.
Here I will give an outline for future studies that can be explored. For example, if the
Yukawa coupling and new gauge coupling are so tiny that DM cannot be in thermal
bath with SM particles. It allows us to study the another DM production mechanism
called the freeze-in scenario. Instead of VL top quarks and muons, we can introduce
the VL neutrinos which mix with the SM neutrinos. This scenario could explain the
smallness of SM neutrino masses and also provide the fermionic DM instead of Vector
DM which makes really intriguing. Moreover, a recent anomaly on W boson mass could
be explained by new VL states propagating in the loop. The first order phase transition
(FOPT) can be created in SU(2)p breaking and leads to the gravitational waves (GW).
Another interesting scenario can happen with a non-zero scalar mixing (Agp # 0). This
setup modifies the scalar potential and gives an crucial ingredient to create the FOPT
at the early universe which is very important to baryogenesis. In addition, if we have
both non-zero scalar mixing and VL neutrinos in the same scenario. It could lead to
a model of leptogenesis which is another way to explain to the baryon asymmetry of
the universe (BAU) apart from the baryogenesis. In the framwork we presented here, it
is assumed that VL fermions mix with only one SM particle. So if we allow these VL
fermions mix with more than one SM fermions this could explain the flavour anomalies
in the SM. Now one can see a big picture of the FPVDM framework that it does not



117

only explain the DM problem but many problems in the SM could be explained by this

framework and it needs further studies in future.
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Appendix A

Mass splitting at one loop

h Hp Vi
/N / N\
[ | | |
AN 2 AN /
|41 VAVAVAVAVAVANY) |4 TAVAVAVAVAVAVANY! Vb Vb
V! Yp VD
Vb Vb Vb Vb
Vb Vb f f
Vb Vb 174
Vb /\/\m\/\/VD Vb ’\/\m\/\/vn Vb Vb
N s N
h Hp D

FIGURE A.1: The complete set of Feynman diagams contributing to the mass correction
of the Vp.

At tree level, the neutral and charged components of SU(2)p gauge triplet are degenerate
in mass as one can see in eq. (2.25). Nevertheless, the radiative correction at one-loop
level obviously breaks their mass degeneracy. The difference between my,, and my-
takes place due to the F-f mixing and the different Zy parities of the members of the
SU(2)p fermion doublet, which results in distinct particles circling in the loops. In
figure A.1 and A.2, the complete contributions to the mass correction of Vp and V' are
depicted. In the limit of mp — my,, Eq.(2.23) implies no mixing mixing between the
F-f fermions. Thus, the mass degeneracy of Vp and V' is still not broken. The mass
splitting occurs when mp is different from m,,,. The scalar contributions from h and
Hp mediation are non-zero separately. However, they are identical for Vp and V' and

will play any role in the mass difference.
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h Hp Vi
7/ \ 7/ \
( | ( ]
AN / AN /
VI ANANATNNNANY VI ANANATNNANANY % %
f ¥p F
V/ V/ V/ V/ V’/ V/
f ¥p F
F V/ V/
V! 1 Vv’ /\/\m‘/’ Vv’ ’\/\m\/\/\/’
N N s
F h Hp
Vb
1% 1%
Vb

FIGURE A.2: The complete set of Feynman diagams contributing to the mass correction
of the V.

Self-energy diagrams with fermionic loops for Vp and V' are shown in figure 2.2. Gener-

ally, the self-energy function of a vector boson can be decomposed into two components:

LoV MV
T (%) = (g“”—ppf )iﬂ$<p2>+ (ppé’ )iﬂ%@?), (A1)

where H$ and H{“/ are the transverse and longitudinal amplitudes, respectively. Here
we use a symbol V' to indicate either Vp or V’. To get the transverse and longitudinal
components of the self-energy amplitude, we extract each part by using the following

operators

1 Pup
H‘T/(p2) = 3 2¢ <guu ;2V>Hl‘ju(p2)7

PuPv v
Iy (r*) = ;2 Iy (p%). (A.2)

We work in d-dimensions where d = g,,,g"” = 4 — 2e. The physical mass, my, is defined

as the position of the propagator’s pole and is given by
2 _ ley2 2 T
my = (mg/o e) = MY tree + Re(HV) ) (AS)

where my iree is the bare mass at tree level, which is the same for both Vp and V', and

Re(II{) stands for the real part of IT{ function. We use the physical (one-loop corrected)
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mass of DM (Vp) as an input parameter of the model. The mass of V' is given by

m%// = m%/D — H‘T// —+ H$D’
T T
=
my: = myp\|ll - —m—"
my,
(E, -1, )
_ _ ) Ad
mVD 2va ( )

We have expanded the square root assuming that AIl = (I}, — H‘T/D) / m‘Q/D < 1. After

cutting the expansion up to the g% order, the Vp — V'’ mass splitting at one-loop reads:

Iy, — 107,
mVD

1

Amy = my, —my = = ( (A.5)

2

The sign of mass splitting is very important to the calculation of relic density and DM
annihilation rate. If it is positive the cross section of VpVp — V'V’ is enhanced and

vice versa.
The transverse component of the self-energy function H‘T,(pQ) of gauge bosons with

fermion F} and F5 in the loop is given by

% 2(v%y 4+ a25)(Ag(m?) + Ag(m3))

T 2
HFl,Fg (p°) = 167

— 8(vis + aia) Boo(p, m¥, m3) + 2(viay(m1 — ma)? + afy(mi + m3)
2,2 2 2 92 2
— p*(vig + ais))Bo(p®, mi,m3) |, (A.6)
where the v15 and a1 are the vector and axial-vector couplings of FjFbV vertices,

respectively. The Ay, By and By are the standard one- and two-point Veltman-Passarino

functions. The one-loop function for V’ and Vp are defined as

T _ T T
My, = Hpyp +lEyp,
]._.[T/ — H}‘,f + ]._.[;7}7‘ + H;F + HiDﬂ/)D’ (A?)

where HZTJl F, 18 the transverse component of self-energy function in which the fermions

F1 and F5 are circulating.

We have evaluated Eq.(A.5) by using Eq. (A.6), the expressions for couplings from
table E.1 and E.2, and then set the square incoming momentum and the renormalisation

scale equal to the mass of DM, p? = p? = m%/D, which leads to the following simple
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expression
/ g%) m% 2
Amv :64071'2 My €71 (20 + 363 - 1562 + 206263)
+ 10(362 — €3 — 26263) log 63] . (A8)
where ) ) )

mp —m m m2
€1 = 5 ij 62:%, 63:7;/. (Ag)

mF mF mF

This formula was derived in the approximation €1, €2, €3 < 1. Keeping only the leading

term of €; provides the following very simple expression for the Vp-V’ mass splitting:

2
2 2 2 2 2 _ 2

VT 32r2my, T 3202 my, m2,

(A.10)
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Appendix B

Kinetic mixing functions

Yp F
Vi Vo  V.Z V. Z

f7l//‘DaF f~F f

F1GURE B.1: The complete set of Feynman diagams contributing to the mass correction
of the Vp.

The neutral gauge bosons like v, Z and V' cannot mix at tree level. However, this is not
the case at one loop or higher order loops. They do mix via the fermionic propagation

in the loop as one can in figure B.1.

The kinetic mixing (KM) is thoroughly explained in section 2.2.3.2 and the KM functions
for the Z-V mixing are given by
C20rF -1y, - 1)

A% 6 .6 6 4 4 4
Frriqr(Tsmyp) = 52 a5 T — Oy — 21Ty,
3(rirg, — 1)

4.2 2.2 2
+ 22rf7“¢D — 21rfr¢D — 57"f +3

8,.6 6,.4 4,..4 4,2 2
(Tf%g = 3Ty, H 120y, — 3y, + Tf)

+6 r2r2 1 log (rfTwD):|’ (B'l)
f ¥p
2 2
r (ri, —r3)log (rery,)
FqZT‘g(T’f,h/,D) = 8|:10g (T / > + YD 7’27]‘02 1 D :|, (BQ)
YD Yo

2 2 2 2.2
re—1)(r5 —1) |1 —4r5 +rir
Fiv(rfaer) _ ( f )( Yp ) [ YD f ¥p

3, - 1P
4(7"]207"12@ — r]% +1)log (rfer)]

(TJQ”T?#D -1)

+ (B.3)

where rf = my/my,, and 1y, = my, /mp.
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Appendix C

Mixing structure in the dark EW

sector

Defining V]%OM = (B, W/?’B%Ou’ VBO#)T and using analogous notation as Eq.(2.24) for
the fully neutral gauge boson Lagrangian term after EW and dark symmetry breaking,

£1§§0‘U7UD ) (V%O)TM%%OV%O ’ (Cl)

the entries of the mass mixing matrix in the gauge sector are:

1 T .
M%%Ohl = m |:(g/2U2 + gg’UQDEQ) COS2 9k‘ - gge 1 — €2sin 29kU2D
+ 93 (1- 62) sin? Hkv%] (C.2)
2
9 B 9 __gg'v*cos by
MV%()’u = MV%O\m ST e (C.3)
1
2 _ 2 _ 2.2 2\
MV%Ohg = MV%O\gl = m [gDUD ((1 — 2¢ ) sin 205, — 2ev/1 — €2 C0829k>
—g¢"?sin 29k02] (C.4)
1 € cos
2 _ 2 L9 ko
MV%0|14 = MV%O‘M = 8ngDUD <m 51n9k> (C5)
2,2
v
My |22 = 98 (C.6)
1032 o3
9 _ 9 _ggv sin 4y,
MV%0|23 = MV%O\gg = e A (C.7)
M%%O|24 = M?;%th =0 (C.8)
1 .
M]Qj%0|33 = s [gg (1- 62) cos? 0,03 + gBeV/ 1 — €2 sin 20,05,
+ (g"v* + givi€®) sin® O] (C.9)

1 € sin 6y,
M%%O|34 = M%%O‘ZL:; = —énglD’UzD (COSgk + m) (C]_O)
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2,2
2 _ 9D%
MV%0|44 = g (C.11)
where € is the KM parameter defined in Eq.(2.69). The mass eigenstates corresponding
to the eigenvalues of the mixing matrix are 7, vp, Z and Z’. Their masses do not depend

on the rotation angle 85 and read:

My = My, =0 (C.12)
1
Mz = glo*v*+gbvb
1
ti = <g’2v2 + g20h T VKo + Ko + IC464>] (C.13)

where the K functions are defined as:

Ko = ((6*+9?)v*— (9B +b)vh)” (C.14)
K2 = —2[¢%(¢° + ¢ + gbl9p + 9B)vD

— (9° (29D + 9B) + 97 (9B + 29B)) v*v})] (C.15)
Ky = (9%*—gbvd)” (C.16)

and the sign in front of the square root is chosen to reconstruct the SM value of the Z

mass for € — 0 and (g% + ¢'?) v* > (973 + g3) v%.



127

Appendix D

Fermion loop contributions to
DM DD

In micrOMEGASs package [51], the computation of the direct detection rate is usually
done at tree level. However, in the case that the interaction between nucleons and DM
does not exist at tree level. The one loop box and triangle (scalar propagating) diagrams
in figure 3.3 (c) and (d) will be evaluated. These contributions only give a mild effect
on the parameter space where the mixing between F' and f is optimum at mp — my,,
or my, — my. In addition to those diagrams, there are also two additional vertices,
VDO +V8_'y and VLO) +V[0)_Z , which can also contribute to the direct detection limit. In
figure D.1, additional contributions of the fermionic triangle diagrams are shown. Here
the momenta for VDO o VB? 3 and V, are p1, p2 and g, respectively. They are all pointing
towards the vertex and satisfy 0 = ¢ + p1 + p2. The figure D.1 (a) and (b) describe the

clockwise (CW) directions of fermionic lines but with interchange of mgo and ms.

0 0 0 0
Vbia kv, mq Vo_s  Vbia k1, mq Vb5

FIGURE D.1: The generic triangle diagrams for V3, VP _ 5V, where V,, stands for

either photon and Z-boson. The ingoing momenta for V3 +,V87 are pi,p2 and g,

respectively, and they safisfy 0 = ¢ + p; + p2. Diagrams (a) and (b) represent the
clockwise directions of fermionic lines with interchange of ms and msg.
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The most general (CP conserving) effective Lagrangian [126, 221] for on-shell DM V3,

interacting with neutral vector bosons v/Z is given by

L8 ey = M |@uVBay = AV IVEEVY = (BuVB, — 0V )V V"]
A VD VDo (0" VY — 9" VY)

)\V 124 12
M2 (OAVD 4 — OuVD ) (O*VD_, — 0, VD _ )07V = 0MVY)
—z/\},/e“”P"(VDO OV, = VD L0V )V
—i\y eWU(ngapvg_y — Vg_yapvgw)aAag(a?)—lvA, (D.1)

where V can be either v or Z and As are the effective couplings. The DM vector particles
VBi are taken to be on-shell with mass My +. Since in the direct detection process, the
momentum transferred from DM particles to nucleons is much smaller than the masses

of the DM particles, the form factors can be estimated in limit of ¢> — 0.

The effective Lagrangian (in momentum space) Eq.(D.1) can be expressed in terms of

the vertex function V' (p1,p2,q) which is a function of all incoming momenta

L vg v = V0 01,02, VB0 (P)VD_5(p2) Vi), (D.2)

where the vertex function reads

3

Ve (p1,pa,q) = fY (o1 — p2)g? + MZ, (p1 — p2)"q“q°
+13 (¢"g" = ¢° ") +ify €7 (p1 — pa),
+i ]\§—82 (1 — P2)po ("7 " — P77 ¢P). (D.3)

The CP-conserving! form factors, f;, are related to the couplings \; of Eq.(D.1) by

= N gV (D.4)
o= =\, (D.5)
= )\Y+)\¥+%)\¥, (D.6)
o= N =AY (D.7)
o= ]\f AL (D.8)

We explicitly calculate the form-factors of the VIO) +V8_V vertex according to the dia-
grams in figure D.1 where p1, ps and ¢ are the momenta of VB 4 VB? and V), respectively.

!The more general vertex function found in appendix A of [221] includes additional CP-violating
form-factors f4, f6, fr and f9. However, these are irrelevant for direct detection of DM in this model,
and are therefore omitted.
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The vector and axial coupling constants for the vertex between a vector particle and

fermions F; annd F; (with masses m; and m;) are denoted by v;; and a;j, respectively.

For the diagrams in figure D.1 (a) and (b), the corresponding amplitudes read

-y o3 _ — 7 ddk N&O)[ﬁ
W =V [ G G e )
7 pafB _ — 3 i 3 ddk N(/;)?B
= 0 | G e e ey O

where the factor (—1) is the Feynman rules for the fermion loop. The factor (—i)3 for
three vertices and ()2 for three fermion propagator factor. The numerators of these

integrals are defined by

N, =Tr [7"(1)23 — as3s) (K +p, + m3)v” (v13 — a1375)

- (F 4 m1)y*(vig — ar2s) (- P+ mz)}, (D.11)
Ny =Tr [7“(1)23 — ag3s)(k + p, + ma)y’ (012 — a1275)
(k4 ma)y* (vis — ar3ys) (F — p, + mg)] (D.12)

We compute the loop integrals by using the Package-X [159] and use a set of appropriate

Schouten identities.

pgevwﬂ = pgeapuﬂ + pgevauﬂ + pgel/paﬂ + pg erpne (D.13)
pfe”p“a = plfeﬁp“a +p§e”ﬁ“a +p’56”pﬁa +p§‘e”"’“ﬂ. (D.14)

Then, we use the on-shell condition
P1-p1=Dp2-P2= m%/, (D.15)
and the zero momentum transfer
(p+p2)?=¢"=0 — pi-ps=-—my. (D.16)

Since the VB 4o and VD(L 5 are external particles so that the polarisation vectors are

orthogonal to their momenta
p1-€(p1) =0 and po2-€e(p2) =0, (D.17)
this is equivalent to imposing

pf =0 and pg = 0. (D.18)
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After doing Feynman integrals and matching the coefficients of Eq.(D.3), we find the

following expressions for the form-factors:

v (v23viaviz + vazaizais + agzvizaiz + agzaizviy)
f1 = 472
v
X [1 — (m% + m%)@l — (m?)) — m%)ACl + 86001]

(0237}12'013 — 123012013 + G23V120Q13 — a23a121)13)

mims [Co + 201}

472
(v23v12013 — V23a12a13 — G23V12a13 + G23G12V13) = -
5 mims [C’o + 201]
47
(v23012V13 + V2312013 — A23V12a13 — A23012V13) ~
- 2 maoms [201] s (D.19)
47
% (v23v12013 + V23@12a13 + A23V12G13 + A23G12V13) | o ~ ~
fy =— yPe; My [8C112 +4C12] , (D.20)
v (va3viaviz + vazaizais + agzvizaiz + agzaizvia) 2, =

+(m;2), + m%)él + (m% — m%)AC’l +8Cqo + 86’001]

_ (v2gvi2v13 — vaza12a13 + a2gvi2a13 — A23a12V13)
472
(v23v12013 — V23a12a13 — G23V12a13 + A23G12V13)
472
V23V12V13 + V23012013 — A23V12013 — (23012V13 =
( 3 )m2m3 [201] s (D.Ql)
A7
fv _ (a23a12a13 + a23v12V13 + V23a12013 + V23V12a13)
5 4Am?
2 2\ 7~ 2 2

_ (agza12a13 — a3v12013 + V23012013 — V23V12013)
472
(@23G12a13 — A23V12V13 — V23012013 + V23V12a13) ~ ~
- 3 mimg [Co + 2C1]
47
(23012013 + A23V12V13 — ¥23G12013 — V23012013 =
- ( )m2m3 2C1 (D.22)
2 b
47
v (@23a12a13 + a23v12V13 + V23012013 + V23V12a13)
f8 - 47'('2

mi1ms [C’o + QACl]

mims [2AC1 - Co]

+

mime [C'o + 201}

MZ.[2C10) . (D.23)

The average and difference of three-point Passarino-Veltman C-functions are defined as

A L) A
Clp =3 (C{z} + C{z}) :
_ 1/ (b)
Ach =5 (Cf - ) (D.24)
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where C’Ei}, (r = a,b) are given in terms of to one-loop triangle Feynman integrals

2'7%2 d'k Dl(r) = (ST) )

— [tk o = el el

m% e ’g (]ff)/ = g Oy + PIPECLY + phpsCly) — (Wips + piph) CF)
m% A kif(ifp = — (P}'g" + Py g + pg™) Cin

+ (Phg"” + p3g"* + phg™) C it
+ (Dl + piphpl + pipih) L)
— (pl'psph + Yol + piphpy) CLo)

PPYRCI) + PhpspiCss). (D.25)
The denominators of the Feynman integrals are

D@ = (k2 —m3) ((k—p1)? — m3) ((k+pa)® —m3).
DO = (k2 —m3) ((k — p1)® — m3) ((k +p2)* — m3) . (D.26)

Both the graphs in figure D.1, have the fermion direction in the clockwise (CW) direction.
Diagrams for which the fermion line is in the counter-clockwise direction (CCW) give
contributions to the the form-factors, which are related to the clockwise form-factor

contributions by

CCW _ _ CW
1 - 1 >
N = g
FEOW — oW
FEOW — W
§NV = gV (D.27)

For the direct detection calculation, we need to evaluate the triangle integrals that
correspond to the Feynman diagrams shown in figure D.2. The vertex VB +VB_7 receives
the contributions from figure D.2 (a)-(d), while The vertex V3, VJ_Z from figure D.2
(a)-(f). The complete set vertex couplings required to evaluate these triangle graphs is
provided in table E.1 and E.2 in section E.

For the numerical evaluation of triangle loops, we have created our own code written
in C and PYTHON for computing the necessary Passarino-Veltman (PV) functions, as

LoopTooLs [222] does not provide stable and reliable results for small momentum
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0 / 0 0 " 0 0 : 70
VDia Yp Vbs  Vpia YD Vbs Viia I Vb

F F
Vs Z m
(b)
VD0+a F Vg— B VD0+a 7&‘“‘"17 VDU— B VB-H! L' D VDO -3
f F F f
Zy Z,

() (f)

FIGURE D.2: The complete set of Feynman graphs for V3 +V8_'y and V) +VB_Z form
factor calculations. The diagram (a)-(d) contribute to the V3, V] _~ vertex and (a)-(f)
to the V3, V] _Z vertex.

¢ — 0.2

2These codes are available together with the model files in the HEPMDB [155] repository at the
following link https://hepmdb.soton.ac.uk/hepmdb:0322.0335


https://hepmdb.soton.ac.uk/hepmdb:0322.0335
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Appendix E

The relevant Feynman rules for
FPVDM

Here we have summarised all vertices relevant for the calculation of the KM, fermionic
triangle contributions and new physics contributions of g-2. For a generic scalar-fermion-
fermion vertex, we separate couplings into C's—~5C'p where the C's and Cp are the scalar
and pseudo-scalar components. Similarly, a generic vector-fermion-fermion coupling
can be divided to v*(Cy — v5C4) where Cy and C4 are the vector and axial-vector
components. The spacetime index p must be contracted with the Lorentz index on a

vector field.

In table E.1 and E.2, we present Feynman rules for some relevant vertices which are
necessary to calculation of KM, fermionic triangle and g-2 contributions. Here @) is the
electric charge of the SM partner which mixes with F fermion. The coupling gw = e/sw
and sy are the weak coupling and sine of weak mixing angle, respectively. The T3f is
the isospin of third component for the SM partner. The fermionic mixing angles (sin 6,
and sinf¢p) are defined in Eq.(2.23).
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Vertices Vector couplings (Cy) Axial couplings (C4)
Aﬂff eQy 0
A pYp eQy 0
A,LFF eQy 0
_ 1
Z.ff w ( cos29fLT3f—QfsW> gﬂ*COSQGfLTg
Sw sw 2
- aw
Zybpp 2= Qrsiv 0
cw
_ 1
Z,FF w sm26’fLT;fo9W g—WfsiHQHfLTL{
cw \2 cw 2
_ 1 1
ZHfF g—WfsintLcosefLTéf gfwfsinafLCOSQfLTgf
Ccw 2 X cw 2 J
- gp , . . ap . .
V ——— (sinf;r, + sinf ——— (sinf;;, —sinf
pu¥nf V3 (sinfyr 7R) 23 (sinfyp, fR)
- gD gD
Vi F —~—— (cos ¢, + cos —~— (cos ¢y, — cosf
DD 25 (cos bz R) 23 (cosOpr, R)
Vlﬁf —gTD (sin2 Orr + sin? G.fL) gTD (sin2 Orr — sin? GfL)
VIZFF ngD (COS2 9f3+cos2 0s1) 9D (0052 GfR—0082 0sr)
17 gp , . . gp , . .
VLIF I(SlnefRCOSQfR+Sln09fLCOSQfL) —I(smeRcostR—smeLcostL)
— D
Viptp z 0

TaBLE E.1: The vector (Cy) and axial-vector (C4) components of a coupling in the

form of v*(Cy — Ca7s5) and p is the Lorentz index of a vector field.

Vertices Scalar couplings Cg Pseudo-scalar couplings Cp
hff —% cosfyr cosOr 0
Hpff —’isiHGchosﬁfR 0
V2
WFF fﬁ(sinéfgcoseﬂ+sin9chos0fR) f%(sinﬁfgcoséﬂfsin€chosefR)
HpFF —%(COSQfLCOSGfR—SinefLSinefR) —%(cosﬁﬂcosﬁﬂa+sianLsin9fR)
hEf —2%(si119chos€fL+sin9chos9fR) %(SinefRCOS‘)fL—SintLCOSQfR)
HpFf f%(coséﬂcosaﬂzfsinOfLsiné)fR) T\éﬁ(sin@ﬂsin&f}g+cosﬁfL0030fR)

TABLE E.2: The scalar and pseudo-scalar components of a coupling in the form of

Cs — Cp7s.
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Appendix F

The g-2 calculation

The general vertex function for a F-F-v vertex is given by

leind
T =By (%) +

+ (v - ﬁqq:)%Gl(f) +

qt 2
F(?) + —F
2(q)+m 3(q%)

10 a5

Go(¢®) + LsGs(?). (F.1)
2m m

where Fy, F5, G1 and G5 are called Dirac, Pauli form factor, Anapole and electric dipole
moment (EDM), respectively. The only form factor that is relevant to the anomalous
magnetic moment is the Pauli one F»(0). It is defined by

qg—2

@ =0 = F5(0), (F.2)

where ¢ is the g-factor which tells us how strong the lepton interact with the external
electromagnetic field. In quantum mechanics, the g-factor is the magnetic moment
measured in unit of eh/2my
. e =
M=g—>=,. F.3
Iome (F.3)

At one loop, there are kinds of diagrams that contribute to the vertex function T'#(p', p).
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Vertices Vector couplings (v;;) Axial couplings (ai;)
yutpT —e 0
YHHD —e 0
yM+TM~ —e 0
2 2
_ gw ([ cos® 0 9 gw cos” 0r,
Zut _gw _ _Iw
i () e
ZM+/L7 _gﬂsiHQLcosﬁL _gﬂsiHOLcosﬁL
Ccw 4 Cw 4
- 2 9
B gw [ sin“ 0 9 gw sin® 0p,
ZM*+M _w - _w
Cw ( 4 8W> Cw 4
2
_ gWSW
VA + - W 0
HpHp ow
Vot u~ fg—D(sinQ 01, + sin”Og) ngD(siHQ 01, —sin”0g)
4+, — gp , . . gp , . .
VoMt Z(SIHGLCOSQL—I—SIHHRCOSQR) Z(smeLcoseL—smHRcosGR)
_ gp , . . gD , . .
Vpuh — 2= (sinf, +sin6 —~2—_(sinf;, — sin6
DHpH 2\/5( L R) 2\/5( L R)
_ 9o gD
Vput M ——(cos 8, + cos ——(cos 8, — cos B
DID 2\/5( L R) 2\/5( L R)
_ gw gw
W-utv 2= cosd 2= cos @
! o2 ok o2 ok
Y,
Hutu~ ——E cos @, cos O 0
Y V2 L R
!
Hputp~ —£ sin 6, cos @ 0
DI [ V2 L R
HM*TM~ —i(siHHR cos O, + sinfy, cosOR) —i(sinag cosfr, —sinfr, cosOR)
2v/2 2v/2
Y, Y,
HpM+tM~ ——*# (cosf cosOp — sin by, sin @ ——*# (cosf cosOp + sin b, sin @
D 2\/5( L R sinfr) 2\/5( L R Lsinfr)
Y, Y,
HM*u~ ——t _(sinfp cos Oy, + sin O, cos 6 —+_(sin g cos Oy, — sin O, cos @
u 2\@( R L L R) 2\/5( R L L R)
! !
HpM+tu~ ——* (cos Oy, cosOp — sin O, sin 0 —2 (sin @y sinOp + cos Oy, cos O
oM™ 2\/5( L R L sindp) 2\/5( L sindg L R)

TABLE F.1: The vector and axial part of coupling in the form of v* (v — ays) where v
is the vector part, a the axial part and p is the Lorentz index of a vector field. Here

we suppress the SU(2)p charge of V*/V ™~ and write them as V.
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F.1 The scalar diagram

1

FIGURE F.1: The scalar diagram contributing to the g, — 2 calculation. The generic
internal fermion and scalar are labelled by F' and S.

Let us start with the simplest calculation, the diagram with scalar propagation, fig. F.1

in which the general vertex function is given by!

u(p)Thu(p) =
. Ak ,
1/(27T)du(p)

:i/ d'k a( /) 1
Cm T = k2 = mi] [ — k)2 = m3] [ = m3]
vy (F —k+mp)y" (p—k+mp) +YvYays (p —k+mp) " (p — K +mp)

YW +Yays)(p —E+me)y(p— § +mp)(Yv — Yays)

R e A I R N Rk

~WYa (p' — K+ mp) o (p— K +mr)

—Yivs (f — k+mp) " (p— k+mp) ’75] u(p), (F.4)
where
den = [(p' — k‘)2 — m%] [(p — k‘)2 — mQF] [kQ — m?g]
M=YZ (@ —k+mp)y" (p—Fk+mp),
No =Yy Yavys (p — k4 mp) (P — k+mp),
Ny ==Yy Ya (f — K+ mp) " (p— F+mr) 75,
Ni==Yiv (f —k+mp)y" (p—K+mp) s (F.5)

!Notice that the coupling at ZF'S has the opposite sign to the coupling at FuS.
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Using the Dirac equation and the relation between Dirac matrices
pu(p) = myu(p),  w@)p =a@)m,, Y+ = 29", (F.6)

we can simplify the numerator as

a(p)Nu(p) =a(p') | YF{ (my +mp)*y# + by K = 24 (m, +mip) |

+ YVYA{2(mi — mE)yys — 267" Fys + dmyktys — 4mu%7”75}

_ Yj{ — (my — mp)?yH — FyE + 2k (my, — mp)}] u(p). (F.7)

Consider the integral denominator. Having used the Feynman parameters, it followds
that

1 1 11—z 1
(= k2 = mi][(p— )? —mp]R2 —miZ] 2 [ gy E
where
D =z[(p) — k)> —mp] + yllp — k)* — mF] + 2[k* — m) (F.9)

2

The denominator can be simplified further by using on-shell condition p-p = p'-p' = m "

and the fact that z 4+ y + z = 1. Thus, it is reduced to
D=k —2p kx—2p-ky+ (mi —m%)(z+y) —mi(1 -z —1y). (F.10)

In order to make the integral possible to integrate, we want to get rid of the scalar
product, p - k and p’ - k, by shifting the integration variable k* — ¢ + xph + ypl'. It
follows that

D=0 —p?2® —2p - pluy — p*y* + (m), —mi)(z +y) —mz(l —z —y),

=0 —m(x +y)* + (m}, —mi)(z +y) —mG(l -z —y) + zyq’,

=7 - A, (F.11)

2
“w

p-p =mZ — ¢*/2 in the second line.

where A = nﬂbi(:v—ky)2 —(m% —m%)(z+y) + m%(1—x —y) — xyq®. Note that we replace

Now let us go back to the numerator of the integral eq. (F.7). After replacing k* —
H + xp'* 4 yp*, we found that

u(p") Nu(p) =u(p’)

YE{ (my -+ me)y + (£ + Yo+ py)r (L + P + py)

= 200" + p"a + pMy) (my + mF)} + YVYA{ e }75

= VE{ = (my =m0 = (L P+ pyr (L + P+ py)



F.1. The scalar diagram 139

26+ P+ py) (m — me) | u(p),

=u(p’)

YV (my + me )2+ ff + (e + py)y* (e + py)

— 2(p™"x + pty)(my, + mp)} + YVYA{ . }75

= V3{ = (my =m0 = ", = (Pt py)y (e + py)

+2(p"x 4 pty) (my, — mF)}] u(p). (F.12)

Notice that we wrote --- as the coefficient 5 because it is not related to the magnetic
moment. Thus, we do not need to write it explicitly. However, this term contribute to
the electric dipole moment (EDM) of muon. In the second line, we have dropped the

terms proportional to £* because

die o
e = 0. F.13
| (119)
We can simplify it further by using
/ die e / di 19" 0°
(2m)d D3 | (2m)d D3
d d
/MW B WA
(2m)d D3 (2m)d D3\ 2
a(p ) + Py (P + py)ulp) = alp') | = mi (@ + y)>" + 2mp(z + )"

—2myuy(x +y)g" + xquv“} u(p). (F.14)

Then, eq. (F.12), after doing a bit of maths, becomes

u(p')Nu(p) =u(p’)

YVZ{’V” (—f + (my +mp)? —mi(z+y)* + xy(f)

+2my,(x +y)?*p™ — 2muy(x + y)g" — 200"z + pry) (my + mF)}

+ YVYA{ e } — Yj{fy“ (E; — (my —mp)® +mi(z +y)* - xyqz)

— 2my,(z +y)*p" + 2muy(x + y)g" + 20w + p'y) (my, — mp) }] u(p),

=u(p’)

62
Y&{fy“ <—2 + (my +mp)? — mi(:r +y)2 + xyq2>

PH+q*
+ 2my,(z + y)? <2> —2muy(z +y)q"



140 Chapter F. The g-2 calculation

_2{<P“;q%>x+(PW;qM)ﬂ(mﬂ+nuﬂ}+yym%.”}

[2
- X{W(z—%mu—mﬂ2+mﬁw+w2—mmﬁ

—%W@+yﬁ<Ptrﬂ>+%wmx+wW
o KP“;‘—’“) - (P”;q”)y] <mu—mF>}]u<p>. (F.15)

We have replaced p'* = (P* + ¢/)/2 and p* = (P* — ¢")/2 in the last line.
Let us recall the Gordon identity which states that

PH 1ot q,

2my, 2my,

a0 u(p) = a(y) [ } u(p). (F.16)

So we can write P* in terms of v* and ¢"” by using eq. (F.16). Finally, the integral

numerator for the scalar diagram is given by

o q,

(P )Nu(p) =a(@) |7 () + @ () + S22, (V2 [(my + m) (@ + )

my,

—my(z + y)Q] + Y} [(my —mp)(z+y) —myu(z+ y)z] )]u(p) (F.17)

Comparing with
it q,

TH(p,p) = v Fi(q®) + F(q?), (F.18)

2my,
the Pauli form factor F5(0) for the scalar diagram reads
dy 1 1-z 1
E =1 | - —=2/ d dy————=2 Y
20 =i [ a2 [ [ vt (2 (ot me) e +)
—mu(z +y)?] + Y3 [(my —mr)(z +y) — mu(z +y)?] ),
1 1-z
= 22’/ dz / dy 2mM(Y‘§ [((my, +mp)(z+y) —mu(gg+y)2]
0 0

de 1
(27T)d (62 _ A)g

+ Y} [(mu —mp)(z+y) —mu(r + y)2] ) / (F.19)
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Now A = m2(z+y)*— (m2 —m3)(z+y)+mE(1—z—y). The integration over spacetime

i
is referred to eq.(A.44) in Peskin book where
(2m)d (2 — A)"  (4m)2/2 T(n) A ’ '
d

1\* 2 d
- —1-(2-¢ F.21
(A> 1 (2 2>1ogA+ (F.21)

1

I(x) = ~ B+ O(z) (F.22)

In the case that n = 3, we found

dde 1 —i 1
/ 2m)d (2 — A)3 - 2(4m)2 A (F-23)

Therefore, we arrive at

11—z
-1
F»(0) = 16772 dm / dy m (z +y)? (mi —m%)(z +v) +m%(1 —x—y)}

X 2m,, (YV [(my, +mp)(z +y) — mu(z +y)?]

+ Y3 [(mu —mp)(z+y) —mu(r + y)2] ) (F.24)

2V + Y)mE + 2(Y3 — Yi)mump — (Y + Y3)(mj, + 2m3)
167T2ml%

F5(0) =
1
— e (O YDmb + (O = YDmumi + (F + Ym}
“w
m2
— (V7 = YX)(mpmp + mumpmg) — (Vi + Vi) (mimE + 2m%m§)) log [mg]

+ gz (07 + YD (02 = Ymumdy + (1 + Ymim}, = m3)
—2(Y{ - Yj)mum%(mz +m%) — (Y2 + Yj)m}%@mi + 3m3%)
+ (V2 = Y3 mump(mg +m) + (VF + YE)m (mf + mim3 + 3mb) )

1
X — log

VA

V= m2 4+ mi, +mg
2mpmg

(F.25)
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where A = mﬁ + m‘}? + m‘é — QmZm% — QmZm% — Qm%m% In order to get the result,

these identities have been applied

F.2

tan~! (iz) = i tanh ™! (2), (F.26)
tanh™! (z) — tanh™! (y) = tanh ™! LY , (F.27)
11—y
1 1
tanh ™! (z) = - log <1 i i) (F.28)

The NC diagram

0

FI1GURE F.2: The NC diagram contributing to the g, — 2 calculation. The generic

internal fermion and vector are labelled by F' and V.

For vector diagram, fig. F.2, the loop integral is given by

a(p")Tyu(p) =
[ dPk (¢ —k+mp) |, (p—F+mp)
=i [ G = e R
(gllp - kn,;l;p)
x v (v — G’Y5)k2_m€} u(p) (F.29)

Let us separate the numerator as

) = =1 | G )

dPk _ [Nl + NQ]
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where

Ny =~"(v — G’YB)(JZ}I —F+ mF)7M<p —F+ mp) Yy (v — avys), (F.31)

Ny = _mgv (0 — ays) (' — K +mp)y(p— k +mp)kv — ays). (F.32)

Consider u(p’) N1iu(p)

u(p') N1u(p) =u(p’) [vzvy(zﬁ' — 4+ mp)y(p— Kk +mp)w
@y s (f — K me)y (P — k- me)ys + ()35 ulp)
=a(p!)[0®7 (f = k+me)y(p— K+ me)y,
a2y s — b= me)y (P — k= me)ss + () 3 |ul)
=a(p) [0 + ) = " (p— By + (0 = aDmey” (F — B

+ (02 = @) mey (P = B + 0 + 0 mba s + () 35 ul)

(F.33)
eq. (F.33) can be simplified by using these identities
VA = =29 A, (F.34)
VA = 49, (F.35)
NI (F.36)

It follows that

u(p') Nru(p) =u(p) [ =20 +a®)(p — By (P — K) + dmp(0® — a®) (p* + p* — 2k*)
— 2m%(v2 + a4 (- ) s u(p). (F.37)

The above equation can be further simplified by replacing p* = p’* —¢* and p'* = pt+q*

and using Dirac equation. With these, we get

a(p ) Nuu(p) =u(p') | = 207 + a)(my — g = 07" (m + 4 — K)
+4mp(v? = @) (" + ¥ = 20) — 2mB (07 + a2y + () 35 (),
()| — 2007 + @) {m2y" + mu (34 — ") — mu (Y + *) - g
+ gy — kg + %’Y”k} +4mp(v® — a®) (p* + p'* — 2k")

= 2mF (W + @)y () s (). (F.38)
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The second and third terms are written by using anti-commutation and commutation

properties of Dirac matrices.

Py =4yt = 20“”7
1

VY At = 2" (F.39)
eq. (F.38) becomes

a(p! ) Nyeu(p) =u(p')| = 2007 + a*){  2myio?™ g, — 2m b
— g "+ B R dmp (02 — 0?) (0 + P - 2K)

()P ()@ (o) s ulp) (F.40)

Notice that we have written terms proportional to v*, ¢* and -5 implicitly because they
do not contribute to the Pauli form factor. We also need the following results. Their

derivations are quite straightforward. So I claim that

u(p') [kgy" — gkr"] u(p) = a(p’) [—4kp" + (- ) "] ulp),

u(p') [fy" K u(p) = a(p') [mu(z +9)* (0" + ") + () " + (- )] ulp)
(F.41)

eq. (F.40) becomes
a(p) Nu(p) =a(p) | - 2(0% + a){ = 2myic™ g, — 2m, "
— 4"+ my(z + y)? (p* +p’“)} + dmp(v? — a®) (p* + p'* — 2k*)

+(...)7ﬂ+(...)qujL(...)%]u(p), (F.42)

Now we shift the momentum k* — ¢* + p'Fz + pHy together with rewriting p* =
(PH + ¢) /2 and p* = (P* — ¢*) /2. We get
(@ )Niu(p) =u(p)| = 207 + a){ = 2myi0™ g, + (~3mu(@ + ) + my(x +y)?) P* |

amp(0? = ) (1= = g) PU () () g+ () 35 ulp).
(F.43)
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By using the Gordon’s identity eq. (F.16), We can write
— w/ 2 2 2
u(p')Niu(p) =u(p')2m,, [mu(v +a*) (4—6(z+y)+2(z+1y)?)
u(p),

=u(p)2m, [vz{(élmu —4dmp) + (4mp — 6my)(xz +y) + 2my(z + y)2}

+mp(v? —a®) (—4+4(z + y))] oG

2my,

ichqy

+amp = —mr | (). (.44)
Now let us turn back to the No part
) Nulp) = (0 ) — K ey -+ me)k(w a5 ulo)
= [ ke ek

+ a2 (p — -+ m)y (p— k4 me)ys + () s u(p)

= O [PR — Eme) ko mk
+ k(P — k= me)y (p— K= me)k+ () 3 |up)
= [ 024 ) K B = Bk (0 =) mek( —

+ (v* = a®) meky(p — B+ (0% + ) mBEy K+ () 75} u(p) (F.45)

In the third line, we have swapped 75 through all v* from the left to the right with the
use of {y5,7*} = 0, until it meets with another 5 then we used 72 = I. Next, we can

move the exterior § into the bracket and use ff = k2. As a result, we get

u(p')Nau(p) = — ml%/ﬂ(p’) [ (v* + a?) (kp' — B )" (pk — k) + (v° — a®) mp (B’ — K )" F
+ (02 = a®) mpky (9 — k) + (0% + a) mipky "k + () 35 | u(p),
== leVU(p’) [ (02 + a®) { Iyl — K2R — Pl + k)
+(v* —a?) {mFWV“% — mpk* "+ mpkytpE — mpk? iy }
+ (v + @) miky e+ () 3 (). (F.46)

We would like to move p’ and p to the very left and right side, respectively, so we can

use Dirac equation. It follows that

u(p")Nau(p) = — miﬂ(p’) [ (v* + a?) { (2k-p' — P k) (2k - p— kp) — K> (2k - p' — p'K)
174

— k2 (2l<: -p— %p) + k4'y“}

+ (v = a?) {mF (2k - ' = PR) K — mpk® (Y E + Fy")
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+mky (2% p — kp) |
(0% + ) mby o+ ()35 (),

= () (02 a) { (20 = muk) " (k- p— k) = K2 (2K ' = k) 7

my,
— K% 2k - p— my) + K}
+ (v = a®) {mp (2K 9 = my k) 7K - 2mp kR
+mpk” (2k-p—mb) |
+ (v + a®) mpEy 4 () 75} u(p),
1

=— m—Qﬂ(p’) [ (1)2 + a2) {4l<: -pk - p'AF — 2m,,k p PR — 2myk - pky* + mi}éfy“}é
Vv

— 20k Iy mk? (B yE) — 2067k py” o+ R |
+ (v* = a?) {QWFk AR = 2mmp Ry E — 2mpkPkP + 2mpk -pkv"}

+ (V2 + a®) mp kg () 75} u(p). (F.47)

On the sixth term, we can use fy* + y*§ = 2k* and write the terms proportional to *

implicitly because they do not contribute to a,. We have

1
a(p)Nou(p) = = —u(p)) | (v +a?) { = 2m, k- p/y" = 2myk - py? + (m] + mi) ok
v
o+ 2my k2 |
+ (v* — a?) {2mpk pE = 2mymp P — 2mpktkt + 2mpk -p}é’y“}

()7 () s ulp),

=- miza(p’) (0] (=2my, + 2mp) (- o/ + k- k)
|4

+ (2my, — 2mp)k* k" + (my, — mp)?fy E + o {mp — —mp} }] (F.48)

Having shifted the momentum k* — ¢ + p!z + pty, we found that

u(p")(k - pP'y" K+ k- pky™) (p) = u(p’) Efz(p“ +p™) 4 2mi (x + ) (P w + pry) + (- )ﬂ u(p),
a(p ) k2kPu(p) = a(p') [(1 + %)62(1)’% + ')+ m2 (2 + y)* (e + p“y)} u(p),

u(p") k" fu(p) = a(p') F

dﬁgfy’“‘ + my(z +y) "z + pty) [u(p) (F.49)
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On substituting eq. (F.49) into eq. (F.48), we get

B0 ) Nou(p) = — —yuilp) [02{ (=2 2m) (S0 + ) + 22+ ) (0 + )
\%4

2
+ (2my, — 2mp) ((1 + E)W(p'“:c +p'y) + mi(w +y)?(ptx —l—p”y))
1
+ (my —mp)? (gﬁ’y” +my(z +y) (e + p“y)>
+a® {mp — —mp} H (F.50)
In the above results, we have dropped the term proportional to ¢#, v* and ¢*. Those

terms do not contribute to g — 2. By substituting p* = (P* —g¢*)/2 and p* =
(PH + ¢*) /2, we arrive at

1 2

a(p')Nou(p) = — m—%a(p’) [vz{(mu —mp)((d+2)(@+y) —4) =

2y = me) (@ -+ y)* + my(md —ml) (@ + y)? |

+a?{mp — —mp} | P u(p). (F.51)

Now we use the Gordon identity eq. (F.16) to write P* in terms of v* and ic"”q,. We

get
— ! 2m# — ! 2 62
u(p’) Nau(p) :WU(P ) [U {(m” —mp)((d+2)(z +y) - 4)3
v
2y, = me) (@ + y)* + my(md — m2) (@ + y)? |
+a® {mp — —mp} (i;qu>u(p). (F.52)
o

At this point, we are done with the numerator part. The denominator part is given by

1 1 1—z 1
(& — R~ m3p— k2 — w2 — ] [ [ ags  ws)

where

D=—A, A=md(a+y)— (mi—m)(e+y)+mi(l—z—y)—ayg (F.54)

Notice that we have terms proportional to £2 in eq. (F.52). Let us consider this integral
first.

@md(2— A (dm)d2 2 T(n)

/ a2 (—)"tidT(n—§—1) <i>"gl‘ (F.55)
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Here we use d = 4 — 2¢. In the case of n = 3, the integral becomes

ae e i d, . (4r\°
/ Gl (@ —AP ~ Tox2d (A) ' (E-56)

Now we can do the momentum integration as follow

/ A ((d+2)(z+y)—4) 2

(2m)d d (12— A)3
(42t 2;(93 +y)—4) 1627r2 Z (1 —log (47“?_%) + 0(6))
- 161772 { (3(1: +2y) - 2) % - (3($ +2y) - 2> log <47reA’YE) - ; d }

The divergent term is vanishing because of

/ dx/l z 16; ( (z +2y)—2>1 N (F58)

Thus, the F»(0) is free from divergent. From egs. (F.44), (F.52) and (F.57), the Pauli
form factor F5(0) is given by

871'2/ dx/l Idy[ {( 4mﬂ_4mF)+(4mF_Gmu)($+y)+2mu(:v+y)2>A10

# o (= i) (3o + ) - Dlog Ao +24)

my
+ (mi(mu—mF)(w+y)3+m“(m% )@+ ) )Al())}
e _mF}] (F.59)
where

Ag=A(¢—0) = mi(x + )% — (mi —mZ)(z+y)+mb(l—z—y) (F.60)
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0

W= W

ZAEEEEEERN

Fi1GUuRE F.3: The CC diagram contributing to the g, — 2 calculation. The generic
internal fermion and vector are labelled by F' and V.

n

F.3 The CC diagram

Now let us consider fig. F.3. We can write the vertex function as?

u(p')Thu(p) =
—k —k o ' —k '—k)u
g T L S Ui ) | U
") mp TN T A e T T T e 2 (0 — k)2 —m2,
X [g“ﬁ(% —p—p )+ g2 —p— k) + g2 -1 — k‘)ﬁ} }U(p)- (F.61)

The denominator can be rewritten in terms of Feynman parameters

1 / 1
=2 [ dv dy —, (F.62)
[/ =12 = ] [0 — 12— i, ] ] D
where
D=0Fr_-A A= (m%v—mi)(:c—l—y)—i—mi(a:—i—y)Q—myqz. (F.63)

We have shifted the momentum k* — ¢#+p'Pa+pty. Now let us consider the numerator
of eq. (F.61).

u(p")Nu(p) = u(p) [v" (v - a%)%v (v —ans)]
k)p(p = k)a (P =k = k)
( m3, ) (gﬂ” mi, )
[ 2k —p—p)+ g2 —p—k)*+g"2p—p — k)ﬁ} u(p).

(F.64)

2Please pay attention to the sign of W~ vW™ vertex. For the standard Feynman rules for loop
calculation we need to go against the fermion line in fig. F.3 we will first encounter W~ that is why we
use the Feynman rule of W™ yW ™ vertex, not the WT~4W ™ one.
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In order to make our calculation less complicated. We can split the numerator into 3

parts.

a(p' ) N1u(p) = a(p) [ (v — avs)ky" (v — av5)] Gpalpy
[ (2k —p —p )"+ g°"(2p —p — k)* +g““(2p—p’—k)ﬁ} u(p),

u(p") Nau(p) = u(p’) h (v - a%)kw (v —ans)]
< p —k)y _gﬁy(p—kligp—k)a>
W -
X |9°%(2k —p—p )’“‘ + 972 —p—B)* + ¢ (2p — 1 — k)| ulp),
u(p")Nau(p) = a(p’) [V (v — ays)fy’ (v — ars)] b ki’;g: —Ba = kirﬂbéf/ e
X :gaﬁ(% —p—p)+ g2 —p— k) +g"(2p—p - k)B: u(p).

We start with the Ny

u(p")Nyu(p) = u(p') [v" (v — avs) kv" (v — a5)] gpagpo
9% 2k —p =P + g2 —p— k)" + ¢"*(2p — 1 = k)’ | u(p),

X

u(p') [v*7" Bv* + >y 1587 V5] Gpagsn

X :gaﬂ(% —p—p)+ g% —p— k)" +g"(2p -1 — k)ﬁ: u(p),

= a(p')(v* + a®)7 kv gpagpu

97 @k —p =DV + g2 —p— k) + g (2p — '~ F)° | ulp),

w(p')(v® + a®) [(2k — p — PV v Fra + " H2P —p— K) + (2P — p — k"] ulp),

W(p) (0% + a)| (2 = p = V(2 — D + 2muk — A"+ PR+ ()7 ulp),
W(p) (0% + a)[ (2 = d)(2(0 + pw + ply) — p — )+ 2m, (0 + P + ply)

— A"+ )+ P+ p)|ul),

= a(p')(v* + a®) [(2 — d) (2mu(x +y)(p"z + py) — mu(z +y) (0" + "))

+ 2my, (P e + p'y) — Amy (0" +p") (@ +y) + (- )ﬂ u(p), (F.66)

X

As we see that there is no % term contributing to ¢ — 2, we can simply take d — 4.

u(p')Niu(p) = u(p') (v* + a®) [ — dmy(z + ) (PP x + p'y) — 2mu(z +y) (P + p™)

+ 2my (0 + ) + (0" |ulp). (.67)
Replacing p'* = (P* + ¢*)/2 and p* = (P* — ¢*)/2, we arrive at

a(p)Nuu(p) = a(p) (0* + a?) | = mu(a + y) P = 2my (o +y) P u(p).  (F.68)
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Let us turn to the second terms of the numerator

u(p') Nau(p) = u(p [7 (v - a%)%’v (v —ays)]
< ) _gﬁu(p_kzzgp_k)a>
w
{ 2k —p—p) “+gﬂ“(2 —p- k)a+9“a(2p—p’—k)ﬁ} u(p),
- ”m*;W“ Lala 18 Tt — 050~ Kl + 9500 — K)o~ K)o
x (978 (k = p =)+ (20 —p— 1) + 92— — )] u(p),
D [~ R~ K2k~ 3
w

+ 0 =R =K —p— k) + () k) 2o —p — k)P — k)0,
+ (0= k)p(p—k)u(2k —p =)'+ (p—k)plp — k) - (2p —p — k)3

+ (p = k)plp = ) (2p = p' = k)" |ulp),
_ (v* +a )

)
myy

— QmZ}ék“ + 2m, k2 kH — 2muk“ + 2my, (k - pky* + k -p”y“k)} u(p). (F.69)

(P) [F°RP" + m?fPH — 2m, k> PF — 2k> ek

We also need the following

) Hu) = o) | (14 5) mule 40 + e+ 7] uio),
a(p')k*u(p) = a(p’) [¢% +mj,(z +y)*] ulp),
a(p' )k kM u(p) = a(p) [(- O+ (1 + %)mu(l‘ +y) (" + pty)
+mi (x4 y)P (e + p“y)] u(p),
W) = ) [ S + mula + )@ + )| ). (F.70)
Substituting eqs. (F.49) and (F.70) into eq. (F.69), we arrive at

£2

Uz a2
Vo) = ) [ {4 = 2 2 mfo ) = (4 o+ 0
+{ = mi @+ )? + 2md (@ + ) = i@+ y)* | Prulp). (F.71)

Consider the term proportional to ¢2

d 2
/ (;Zﬂid (2 —1A)3 %{(4 —2d)my, + (2d + 4)mu(x +y) — (d+4)my(x + y)2}

7 1
=161 [{4mu —4dmy(x +y) + 2my(x + y)2}

—logA{ —4dmy, + 12m,(z + y) —SmM(x+y)2}}. (F.72)
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The Pauli form factor for the diagram fig. F.3 is given by

F5(0) =2: /01 dx /01—58 dy(v2 + az) [Qm#{mu(l‘ +y)+2m,(x + y)2} (2127#50)

— Z% [{ —m(z+y)? +2m(x +y)* —md(z + y)4} (2;;2;)
+ 161?3 {{4mu —dmy(z +y) +2my(z + y)2}
— log Ao{ —4my, + 12my(x +y) — 8my,(z + y)2}H] (F.73)

F.4 Results

Iz

I iz

FIGURE F.4: The NP diagrams contributing to g-2 of muon.
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We have expanded the contribution to the g-2 of muon from each diagram in the limit

that mi < m%,m%}),m%,m%,, m%/D,m%,V.

1 m2 m2 m2
(@) — _ —4 7+ 6log —= F.74
e 4872 (m%) (7)2> ( +0log mfb ( )

1 mi(m% —m3))
b) _ u\"D M 6 4,2 2.4 6
aL ) = — 9672 %, (7 — 2 )02 ( — 16my, + 45mymy, — 36mimy, + Tmy,
m2
+6(2m8 — 3mim2,) log mTh) (F.75)
M
1 m2 m2 m2 - m2 2 m2
al(f) = — o9 2“ Tﬂ M 7 —+ Glog 2“ (F76)
48m= \ my; v iy My,
1 m?2(m% —m3),)
(d _ p\"'p M (( 2 2
ay " = my,, —miy)
# 9672 m32, (m%[D —m32,)v? b
X ( — TmHmi, + 6mS, + Qm%]D(—Sm% +9m3,) + m%{D(QQm%m?V[ - 24m§1\4)>
2
2 mHD
+ 6my, (— SmDmM—l—QmM—i-QmHD(mD miy)) log —2 me, ) (F.77)
2 m2
al® = 5 (=1 — 253, + 4sy) (F.78)

U 487r2 C%sz

4002 2
(f) _ 9iv my, (mp —miy) 5m8 . — 14m8 . m2 + 39m4 mA
ez 38472 c%,VmQZmQDm?w(m?w —m2)* "y MMz & 9y
m2
— 38m3,m% + 8m%, + 18mf,;m% log mTZ (F.79)
M
2 202 2 2
(5 _ _ _9p_Mulmp = my) (F.80)
H 4872 mf,i\é,m%/,
(h) 9,23 mi(m% - m?w) ( 9 9 )
U 3842 m2,, (m3, —marmi,)* T = My
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— G(mM + 3mMmV/ 4mMmV/))
m2
— 18miymi(m% — 2m3, + 2mi,) log mM (F.81)
V/
2 2(,2 2
@ __9D my, (my, — mp) < 8 L smbm2 — 2lmimd
Ho192r myymi, (mi, —my, )4 "D MDY, DT
2
m
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D
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