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Even though the Standard Model (SM) of elementary particle physics is very success-

ful in explaining countless microscopic phenomena, it is still not the ultimate theory of

everything we have been seeking for. So far we witness several drawbacks of the SM,

for example, the neutrino masses, Dark Matter (DM), dark energy, Baryon Asymmetry

of the Universe (BAU) and the SM anomalies. Especially, the long standing issue of

DM of the universe which has been well-established by multiple cosmological observa-

tions and constrained by several ground-based experiments. Additionally, the recent

experiment on muon gµ − 2 by the Fermilab National Accelerator Laboratory (FNAL)

has precisely measured the anomalous magnetic moment of the muon and implies a 5σ

tension between SM prediction and experimental results. In this thesis, we have intro-

duced a new mechanism to connect the SM and dark sector through a fermionic portal.

This class of model extends the SM gauge group with a new SU(2)D ×U(1)globalYD
group

while all SM particles are neutral with respect to the additional groups. Two of the new

gauge bosons (V
(∗)
D ) form a complex gauge boson and carry U(1)globalYD

charge. Thus,

they can play a role as a DM candidate for this class. Moreover, two generic Vector

Like (VL) fermions are introduced to mediate the interaction between the SM and dark

sectors equipping us the opportunity to study the DM dark matter phenomenology at

collider and non-collider environments. The origin of masses for new degrees of freedom

is provided by the interaction with an additional complex scalar doublet (ΦD) through

the spontaneous breakdown of the SU(2)D × U(1)globalYD
into U(1)globalQD

when the scalar

ΦD acquires the Vacuum Expectation Value (VEV). The residual symmetry U(1)globalQD

acts as a stabiliser of the DM candidate of the model. The key feature of this model

is the Higgs portal to dark sector is not necessarily required but the connection to SM

sector is induced by new Yukawa terms between SM and VL fermions, hence the title –

the Vector Dark Mater with Fermionic Portal (FPVDM). The FPVDM model suggests

numerous phenomenological implications for collider and non-collider studies. In this

thesis, we will discuss only two scenarios from this class: the top quark and muonic

portal scenarios, as presented in chapter 3 and 4, respectively.
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In chapter 3, we discuss in detail a realisation with VL top quark partners (TPVDM),

assuming no mixing between the two physical scalars of the theory, the SM Higgs boson

and its counterpart in the dark sector. The material presented in this chapter is based

on the publications [1, 2]. In collider phenomenology point of view, it predicts multiple

interesting signatures that a complete set of signatures is presented in table 3.1. These

are mono-jet from initial state radiation (ISR) or from loop, tt̄ + Emiss
T , 4-top quarks,

and the production of hV ′ and V ′V ′. The VL Z2-odd partner tD could be long-lived

and leaves a charged track by decaying into the DM and the SM quarks and/or leptons.

In addition, the new gauge boson V ′ could also be long-lived if its mass is below tt̄

threshold and decays into a pair of bb̄ via a loop diagram. The cosmological bounds

(relic abundance, direct and indirect detection) play a vital role in constraining the

parameter space of the model. Especially, the direct detection limit which is absent at

tree level. However, at loop level, it leads to a crucial constraint based on the triangle

loop of DM-DM-Z/γ. The generic formulas for these triangle loops are present here.

In addition, we also explore the possibility to apply the FPVDM framework to explain

the muon anomalous magnetic moment or the so-called gµ − 2 and the DM at the same

time where we assume the existence of VL muons µD and µ′. This scenario is referred

to as the MPVDM and will be a topic of chapter 4 which is based on upcoming article

entitled “The muon anomalous magnetic moment gµ − 2 from the Fermionic Portal to

Vector Dark Matter” [3]. Like the TPVDM, we are not considering the Higgs portal in

this study. The interplay between cosmological and gµ − 2 constraints plays a crucial

role in limiting the parameter space of the MPVDM. We found that the allowed region

appears on the resonance position of new scalar HD. Moreover, the collider constraints

from LHC data according to pp → µ+µ− + Emiss
T searches set up the lower limits on

the VL muon masses around 700-800 GeV depending on the parameter space. Several

interesting signatures are predicted with 6-10 leptons in the final state. We also provide

benchmarks which are allowed by gµ−2, cosmological and collider constraints for testing

the model in future.
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The solid cyan line shows the LHC exclusion limit at 95 % C.L. . . . . . . 111



LIST OF FIGURES xiii

4.14 The 2D parameter space of (mµD ,mVD) plane with gD = 0.001, 0.0025,-
0.005, 0.0075, mµ′ = 1000 GeV and mHD = 0.5 GeV. The magenta, or-
ange and red regions are excluded by the perturbativity, DM ID and
relic density constraints, respectively. The solid red line corresponds
to the relic density ΩDMh

2 = 0.12. The solid orange line indicates the
Pann = 3.2 × 10−28 cm3s−1 GeV−1. The dotted, solid and dashed blue
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Chapter 1

Introduction

In this chapter, we review a short summary of the Standard Model (SM) in section

1.1. Also, the elementary cosmology is briefly discussed in section 1.2 which includes

the thermodynamics of the early universe and the Boltzmann equation. In section 1.3,

we give a brief introduction to the Dark Matter (DM) of the universe including the

relic density, (in)direct detection and collider constraints. In the last section 1.4, the

anomalous magnetic moment of muon, so-called the muon gµ − 2, is considered in both

experimental and theoretical aspects.

1.1 The standard model of particle physics

The Standard Model (SM) of particle physics is one of the most successful theory in

physics which can successfully explain microscopic phenomena at fundamental level.

The theory has been developed based on quantum field theory (QFT) [4, 5, 6] which is

a theoretical framework of physics relying on three principles: 1) theory of classical fields,

2) quantisation and 3) special relativity. According to QFT, a particle is interpreted

as an excited state of the corresponding quantum field. All fundamental particles have

their underlying quantum fields and they interact with each other through force carriers.

Apart from those three principles, the SM is constructed based on the SU(3)c×SU(2)L×
U(1)Y symmetry group which is a very crucial part of the theory because it governs

how particles interact with each other. The elementary particles in the SM contains a

scalar with spin-0 at the Electro-Weak (EW) scale, fermions with spin-1/2 and gauge

bosons with spin-1. At the EW scale, the only one scalar in the SM is called the

Higgs boson which gives masses to other particles through a process of spontaneous

symmetry breaking. The fermions can be divided into leptons and quarks – according to

whether they feel strong interaction or not. Leptons can have electromagnetic and weak

interactions while quarks can additionally interact through strong nuclear force. The
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gauge bosons are also elementary particles that mediate interactions amongst particles,

sometimes we call them the mediators. All interactions have their own mediators or the

corresponding gauge bosons, except for the Yukawa interactions.

The three fundamental forces or interactions such as electromagnetic, weak and strong

forces can successfully explained by the SM theory – except for gravity which is suc-

cessfully explained by Einstein’s general relativity. These forces have their own force

carriers or mediators. The mediator of electromagnetic, weak and strong interactions

are called photons, Z and W bosons and gluons, respectively. Within the framework of

the SM, a minimal set of fermions is comprised of six leptons (three charged leptons and

three neutrinos) and eighteen quarks (there are six flavours of quarks and each of them

has three colours) which implies six anti-leptons and eighteen anti-quarks. The neutral

leptons only carry weak quantum numbers, while the charged leptons can carry both

electromagnetic and weak quantum numbers. Unlike leptons, quarks and anti-quarks

additionally carry colour charge, a quantum number for strong interaction.

In addition. the symmetry is also a central part of the SM which is intimately related to

a group theory. The most simplest symmetry group is an Abelian group U(1) endowed

with only one generator of identity matrix. A more complicated symmetry group such as

SU(3) and SU(2) is called a non-Abelian group. For any SU(N) group, there are N2−1
generators. According to gauge theory of particle physics, the number of generators of

a theory corresponds to the number of gauge bosons. A generator of a group can be

represented in various forms but the most familiar one in SM is either the fundamental

or adjoint representations. For gauge field theory, every generator has the corresponding

gauge boson field that plays a role as a mediator of the interaction. Therefore, SU(3)c,

SU(2)L and U(1)Y symmetry groups respectively contains eight gluons, three weak and

one hypercharge gauge bosons. The labels c and Y are the corresponding quantum

numbers for colour and hypercharge that identify the particle properties in the SM.

However, the label L on the SU(2)L is not the quantum number but it indicates that

the left-handed particles transform as a doublet under SU(2)L.

As mentioned before that there exist six leptons in the SM, three of them are electrically

charged leptons and other three are their corresponding neutrinos. A left-handed charged

lepton and a neutrino form a doublet under SU(2)L giving us three left-handed doublets

or three generations of leptons: (νe, e)
T
L, (νµ, µ)

T
L and (ντ , τ)

T
L. However, right-handed

charged leptons (eR, µR, τR) transform as a singlet under SU(2)L. There are no right-

handed neutrinos in the SM. Since they do not interact via the strong interaction they

have no colour charge. Like leptons, left-handed quarks also transform as a doublet under

SU(2)L group and they form three generations or doublets: (u, d)TL, (c, s)
T
L and (t, b)TL

whereas all right-handed quarks transform as a singlet. The SM particles, masses and

their corresponding quantum numbers under SU(3)c × SU(2)L × U(1)Y are succinctly

summarised in table 1.1 for future reference.
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Field Symbol Spin SU(3)c SU(2)L U(1)Y

Leptons
LIL =

⎛⎝νe
e

⎞⎠
L

,

⎛⎝νµ
µ

⎞⎠
L

,

⎛⎝ντ
τ

⎞⎠
L

1
2 1 2 −1

2

ℓIR = eR, µR, τR
1
2 1 1 −1

Quarks

QIL =

⎛⎝u
d

⎞⎠
L

,

⎛⎝c
s

⎞⎠
L

,

⎛⎝t
b

⎞⎠
L

1
2 3 2 1

6

uIR = uR, cR, tR
1
2 3 1 2

3

dIR = dR, sR, bR
1
2 3 1 −1

3

Hypercharge boson Bµ 1 1 1 0

Weak bosons W i
µ =W 1

µ ,W
2
µ ,W

3
µ 1 1 3 0

Gluons Gaµ = G1
µ, G

2
µ, ..., G

8
µ 1 8 1 0

Higgs boson Φ =

⎛⎝ ϕ+

ϕ1 + iϕ2

⎞⎠ 0 1 2 1
2

Table 1.1: The particles in the SM with their corresponding quantum numbers in
gauge basis.

In addition, one of the most important components in the SM is the Higgs boson which

interacts with all massive particles. When symmetry group of the SM breaks from

SU(3)c×SU(2)L×U(1)Y to SU(3)c×U(1)Q due to the spontaneous symmetry break-

ing [7], Higgs boson will gives masses to other particle. This process is called the Higgs

mechanism [8]. We will discuss this topic to some extent in section 1.1.3.

1.1.1 The SM Lagrangian and its particle content

As mentioned before, QFT relies on three fundamental elements. The first is the theory

of fields which we assume that the universe is filled out with several quantum fields

corresponding to fundamental particles. Thus, instead of finding the equation of mo-

tion of particles here, we consider the equation of motion of fields. The second is the

quantisation principle which we promote a corresponding field to an operator satisfying

the commutation relation between the field ϕi(x) where i = 1, 2, ..., n and its associated

momentum conjugate πi(x) = ∂L/∂ϕi̇ (x). Here L is the Lagrangian of a system and

ϕi̇ = ∂ϕi/∂t. The last one is the principle of special relativity which implies that the

Lagrangian of a system must be invariant under Lorentz transformation – the rotation

and boost transformations. This means that the QFT Lagrangian describing a system

of interest must obey all of these principles. However, some theories can also have gauge

symmetries in addition to the Lorentz symmetry. For example, apart from the Lorentz

invariance, the SM also satisfies the gauge symmetry of SU(3)c×SU(2)L×U(1)Y group.
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Quantity Symbol Value

Fermi Constant GF 1.166 378 7(6)× 10−5 GeV−2

weak-mixing angle sin2 θW (MS) 0.231 22(4)

strong couple constant at mZ αS(mZ) 0.1181(11)

fine-structure constant at mW α(m2
W ) 1/128

Higgs boson mass mH 125.18(0.16) GeV

Higgs decay width ΓH 3.2+2.4
−1.7 MeV

W± boson mass mW 80.377(0.012) GeV

W± decay width ΓW 2.085(0.042) GeV

Z boson mass mZ 91.1876(0.0021) GeV

Z decay width ΓZ 2.4955(0.023) GeV

top quark mass mt 172.69(0.30) GeV

top quark decay width Γt 1.42+0.19
−0.15 GeV

bottom quark mass mb(mb) 4.18+0.03
−0.02 GeV

charm quark mass mc(mc) 1.27(0.02) GeV

strange quark mass ms(2 GeV) 93.4+8.6
−3.4 MeV

up quark mass mu(2 GeV) 2.16+0.49
−0.26 MeV

down quark mass md(2 GeV) 4.67+0.48
−0.17 MeV

tau mass mτ 1776.86(0.12) MeV

muon mass mµ 105.6583755(0.0000023) MeV

electron mass me 0.51099895000(0.00000000015) MeV

Table 1.2: Some of the measured values of the SM parameters [9]. The number in
the bracket indicates the uncertainty.

For the SM, the Lagrangian invariant under Lorentz symmetry and SU(3)c×SU(2)L×
U(1)Y group is given by

LSM =− 1

4
BµνB

µν − 1

4
W i
µνW

iµν − 1

4
GaµνG

aµν

+ iL
I
L /DL

I
L + iℓ

I
R /Dℓ

I
R + iQ

I
L /DQ

I
L + iuIR /Du

I
R + id

I
R /Dd

I
R

− Y I
ℓ L

I
LΦℓ

I
R − Y IJ

d Q
I
LΦd

J
R − Y IJ

u Q
I
LΦ̃u

J
R + h.c.

+ (DµΦ
†)(DµΦ)− V (Φ), (1.1)

where the indices i, j, k on the weak gauge bosons running over 1,2,3 corresponding to

the number of SU(2) generators. The indices a, b, c ranges from 1,2,...,8 indicating the

number of SU(3) generators. However, the indices I, J,K on quarks or leptons also

runs over 1,2,3 but they identify the number of fermion generations which we have three

generations for the SM fermions.



1.1. The standard model of particle physics 5

The first line of Eq.(1.1) describes the kinetic term of U(1)Y , SU(2)L and SU(3)c gauge

fields, respectively, and they are defined as follows

Bµν = ∂µBν − ∂νBµ, (1.2)

W i
µν = ∂µW

i
ν − ∂νW i

µ + g ϵijkW j
µW

k
ν , (1.3)

Gaµν = ∂µG
a
ν − ∂νGaµ + gs f

abcGbµG
c
ν . (1.4)

where g and gs are called the weak and strong coupling constants, respectively. The field

strength tensors in Eqs.(1.2), (1.3) and (1.4) imply that the non-Abelian gauge fields

are allowed to interact with themselves because they carry their own charges. This does

not hold for Bµ or an Abelian field. Even though we call them the kinetic terms, they

also describe the interaction amongst themselves. The ϵijk and fabc are the structure

constants of SU(2) and SU(3) group which are defined through the commutation relation

of their generators

[τ i, τ j ] = iϵijkτk, (1.5)

[ta, tb] = ifabctc, (1.6)

and these generators are normalised with respect to

Tr{τ iτ j} = 1

2
δij , Tr{tatb} = 1

2
δab, (1.7)

where τ i ≡ σi/2 and ta ≡ λa/2 are the generators of SU(2) and SU(3), respectively. Tr

is a trace. The σi and λa are called the Pauli and Gell-man matrices given by

σ1 =

(︄
0 1

1 0

)︄
, σ2 =

(︄
0 −i
i 0

)︄
, σ3 =

(︄
1 0

0 −1

)︄
, (1.8)

and

λ1 =

⎛⎜⎝0 1 0

1 0 0

0 0 0

⎞⎟⎠ , λ2 =

⎛⎜⎝0 −i 0

i 0 0

0 0 0

⎞⎟⎠ , λ3 =

⎛⎜⎝1 0 0

0 −1 0

0 0 0

⎞⎟⎠ ,

λ4 =

⎛⎜⎝0 0 1

0 0 0

1 0 0

⎞⎟⎠ , λ5 =

⎛⎜⎝0 0 −i
0 0 0

i 0 0

⎞⎟⎠ , λ6 =

⎛⎜⎝0 0 0

0 0 1

0 1 0

⎞⎟⎠ ,

λ7 =

⎛⎜⎝0 0 0

0 0 −i
0 i 0

⎞⎟⎠ , λ8 =
1√
3

⎛⎜⎝1 0 0

0 1 0

0 0 −2

⎞⎟⎠ . (1.9)

The second line of Eq.(1.1) contains only the kinetic terms of the SM fermions. Since the
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SM is a chiral theory meaning that the left- and right-handed fields transform differently

under the SM gauge group, we use a symbol LIL for a collection of three left-handed

lepton doublets and QIL for three left-handed quark doublets. On the other hand, we

use uIR and dIR for a collection of three right-handed up-type and down-type quarks,

respectively. Also, ℓIR is for a collection of three right-handed charged leptons. There is

no right-handed neutrinos in the SM framework since at the time the electroweak theory

was formulated it was believed that neutrinos are massless particles. However, this is

not the case. Due to observations of neutrino oscillations, it implies that neutrinos are

actually massive. In addition, the symbol /D = γµDµ is called the covariant derivative

which is contracted with Dirac gamma matrices γµ where µ is a spacetime index running

over 0-3. The Dirac gammas in the chiral representation are given by

γ0 =

(︄
I 0

0 I

)︄
, γk =

(︄
0 σk

−σk 0

)︄
, γ5 = iγ0γ1γ2γ3 =

(︄
0 I

I 0

)︄
, (1.10)

where I is a 2 × 2 identity matrix. In principle, a 4-component Dirac spinor can be

separated into two chiral spinors (left- and right-handed components) as

ψ =

(︄
ψL

ψR

)︄
, (1.11)

where left- and right-handed chiral fermions are defined by ψL ≡ PLψ and ψR ≡ PRψ

with PL = (1 − γ5)/2 and PR = (1 + γ5)/2 where the PL and PR are left and right

chirality projection operators. The covariant derivative describes the interaction between

the gauge bosons with other particles if those particles carry charges related to the

corresponding symmetry group. For the SM, the generic covariant derivative reads

Dµ = ∂µ − igstaGaµ − igτ iW i
µ − ig′Y Bµ1, (1.12)

where ∂µ = ∂/∂xµ and g’s are the gauge couplings. The Y is called the hypercharge and

1 is the 2× 2 identity matrix. However, this covariant derivative is not the same for all

SM fields. For example, the explicit form of covariant derivative for the Higgs doublet

can be seen in section 1.1.3.

The third line of Eq.(1.1) is called the Yukawa terms in which they describe the interac-

tion of fermions with the Higgs field where Yℓ, Yd and Yu are called the Yukawa couplings

for charged leptons, up-type and down-type quarks, respectively. The Higgs field is the

only scalar in the SM and gives masses to all particles (except for neutrinos) in the SM

the so-called Higgs mechanism which undergoes the spontaneous symmetry breaking

of the SM gauge group. We will discuss the Higgs mechanism and the spontaneous

breakdown of the SM symmetry later in this chapter.

The last line of Eq.(1.1) describes the dynamics of the Higgs fields where the first ex-

pression is the kinetic term (see the explicit form of Dµ in section 1.1.3) and the second
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one is called the scalar potential which is given by

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2, (1.13)

where Φ is the SM Higgs doublet. µ and λ are, respectively, the quadratic and quartic

couplings. Also, the quartic coupling has to be positive, otherwise the potential is not

bounded from below at large Φ†Φ.

1.1.2 The quantum chromodynamics (QCD)

In this section, we discuss the theory of strong interaction based on SU(3)c which de-

scribes the behaviour of hadrons – particles made up of quarks – and gluons. Both

quarks and gluons carry the quantum number associated with the strong interaction

which is called the colour charge as a label of SU(3). Normally, we use red, green and

blue to distinguish each colour of quarks and anti-red, anti-green and anti-blue for anti-

quarks. Quarks(antiquarks) and gluons transform as a triplet 3 (3̄) and octet 8 under

this group, respectively. Generically hadrons can be categorised into different groups

depending on a number of particles forming them, for example, mesons (made up of a

pair of a quark and an antiquark) and baryons (made up of three quarks). In the SM,

we have 6 quarks and each quark has 3 colours. This means that we have 18 quarks in

colour space. The gluons are massless particles because the SU(3)c is not broken. The

Lagrangian of the quantum chromodynamics is given by

L = −1

4
GaµνG

aµν + iqi /Dijq
j , (1.14)

where Gaµν is defined in Eq.(1.4), qi = u, d, c, s, t, b, the covariant derivative is (Dµ)ij =

∂µδij−igs(ta)ijGaµ. Here the indices i, j, k, ... represents the colour index running over 1-3.

The δij is the Kronecker delta function and ta generators in fundamental representation

are given by Eqs.(1.6) and (1.9). A quark and an antiquark field in colour space can be

written as

q =

⎛⎜⎝ qred

qgreen

qblue

⎞⎟⎠ , q̄ =

⎛⎜⎝ q̄anti-red

q̄anti-green

q̄anti-blue

⎞⎟⎠ , (1.15)

where q stands for a quark flavour u, d, c, s, t, b.

The QCD Lagrangian Eq.(1.14) is invariant under the gauge transformation

qi(x)→ exp (iθa(x)taij)qj(x),

taGaµ(x)→ eiθ
a(x)tataGaµ(x)e

−iθa(x)ta +
i

gs

(︂
∂µe

iθa(x)ta
)︂
e−iθ

a(x)ta , (1.16)
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where θa is the parameter corresponding to the SU(3)c generators. The generator ta in

the first and second line of Eq.(1.16) are in the fundamental and adjoint representation,

respectively.

1.1.3 The EW sector

The Higgs mechanism is used to describe the origin of the particle masses in the SM. It

happens through a process of spontaneously symmetry breaking where the electroweak

(EW) group SU(2)L×U(1)Y breaks down into U(1)Q whereQ is the electric charge in the

unit of |e|. The breakdown of the SM symmetry occurs because the Higgs field acquires

the non-zero VEV where the symmetry of the Lagrangian is not that of the vacuum

state of the Higgs field. In the SM, the Higgs is a complex scalar field transforming

as a doublet of SU(2)L × U(1)Y . Generically, we can write it with four real degrees of

freedom as

Φ =

(︄
ϕ+

ϕ0

)︄
=

1√
2

(︄
ϕ1 + iϕ2

ϕ3 + iϕ4

)︄
. (1.17)

The superscript on ϕ indicates the electric charge and it is consistently determined by

the interaction with other particles. For example, the Yukawa term of a lepton doublet.

By minimising the scalar potential in Eq.(1.13), we found that

|Φ0|2 = (ϕ21 + ϕ22 + ϕ23 + ϕ24) = −
µ2

λ
≡ v2, (1.18)

where Φ0 represents the configuration that minimises the scalar potential and v is the

VEV of SM Higgs. Since ϕ1 and ϕ2 combine to form a charged state and they cannot

acquire the VEV, otherwise they would give mass to photon. In addition, for real v, the

ϕ4 cannot get the VEV because it would generate the complex masses in Yukawa terms.

With this argument, the Φ can be recast into

Φ =
1√
2

(︄ √
2w±

v + h+ iz

)︄
(1.19)

The h is called the Higgs boson and w± and z are the Goldstone bosons [10, 11, 12]

which describe the longitudinal component of the W± and Z boson, respectively.

The Lagrangian of Higgs field

As described near the end of section 1.1.1, the dynamics of the scalar field Φ can be

explained by the Lagrangian

Lscalar = (DµΦ)
†(DµΦ)− V (Φ). (1.20)
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It is also explained that if µ2 in Eq.(1.13) is positive the VEV of SM Higgs is zero and

we cannot generate the mass of particles through the spontaneously symmetry breaking

mechanism. To get a non-zero VEV, the µ2 needs to be negative or equivalently the

potential needs to be rewritten as

V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2, (1.21)

with positive µ2. This scalar Lagrangian is invariant under the gauge transformations:

Φ→ exp
(︁
iαi(x)τ i + iβ(x)Y

)︁
Φ (onfundamentaltransformation),

Bµ → Bµ −
1

g′
∂µβ(x),

τ iW i
µ → eiα

i(x)τ iτ iW i
µe

−iαi(x)τ i +
i

g

(︂
∂µe

iαi(x)τ i
)︂
e−iα

i(x)τ i , (1.22)

where α(x) and β(x) are the parameter of the gauge transformation related to SU(2)L

and U(1)Y . The first term of Eq.(1.20) will provide masses of gauge bosons which we

will discuss later.

Let us minimise the scalar potential by doing derivative of Eq.(1.21) with respect to Φ

and set it to be zero

0 ≡ ∂V

∂Φ

⃓⃓⃓⃓
w±,z,h=0

= v(−µ2 + λv2). (1.23)

There are two solutions corresponding to the above equation

v1 = 0 and v2 = ±
√︃
µ2

λ
. (1.24)

For the second derivative of the scalar potential, it implies that

∂2V

∂Φ†∂Φ
= −µ2 + 4λΦ†Φ. (1.25)

If ⟨Φ⟩ = v1, it gives the local maximum and for ⟨Φ⟩ = v2 it gives the local minimum.

With the scalar Lagrangian in terms of component fields

Lscalar = ∂µw
−∂µw+ +

1

2
∂µz∂

µz +
1

2
∂µh∂

µh

+ µ2(w−w+ + v2 + 2vh+ h2 + z2)− λ(w−w+ + v2 + 2vh+ h2 + z2)2, (1.26)
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we can find the mass of scalar fields by computing second derivative of the potential

with respective to the corresponding field

m2
h =

∂2V

∂h2

⃓⃓⃓⃓
w±,z,h=0

= 2λv2,

m2
w± =

∂2V

∂w+∂w−

⃓⃓⃓⃓
w±,z,h=0

= 0, (1.27)

m2
z =

∂2V

∂z2

⃓⃓⃓⃓
w±,z,h=0

= 0.

Clearly, the Goldstone bosons for W± and Z bosons are massless particles. The mass

of Higgs boson is given by mH =
√
2λv2.

Figure 1.1: Higgs potential as a function of Φ.

Gauge boson mass

Additionally, the masses of weak gauge bosons can also be computed. Let us consider

the kinetic term of the scalar doublet with hypercharge Y = 1/2 in Eq.(1.20) by keeping

only the VEV for simplicity, one has

|DµΦ|2 =
⃓⃓⃓⃓
⃓
(︃
∂µ − igτ iW i

µ − ig′
1

2
Bµ1

)︃
1√
2

(︄
0

v

)︄⃓⃓⃓⃓
⃓
2

,

=

⃓⃓⃓⃓
⃓
(︄
∂µ − i

(︄
g′

2 Bµ +
g
2W

3
µ

g
2(W

1
µ − iW 2

µ)
g
2(W

1
µ + iW 2

µ)
g′

2 Bµ −
g
2W

3
µ

)︄)︄
1√
2

(︄
0

v

)︄⃓⃓⃓⃓
⃓
2

,

=
1

2

v2

4

[︁
g2(W 1

µ)
2 + g2(W 2

µ)
2 + (−gW 3

µ + g′Bµ)
2
]︁
. (1.28)

We see that W 1 and W 2 are degenerate in their masses. These particles can be redefine

to form the W± bosons as follows

W±
µ =

1√
2
(W 1

µ ∓ iW 1
µ). (1.29)
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Notice that in gauge basis W 3 and B bosons mix and the mass term is given by

Lmass
gauge = G̃

TMG̃ =
v2

4

(︂
W 3 B

)︂(︄ g2 −gg′
−gg′ g′2

)︄(︄
W 3

B

)︄
. (1.30)

This mass matrix has two eigen values: λ1 = 0 and λ2 = v2
√︁
g2 + g′2/2. To diagonalise

the mass matrix, assume that the relation between the mass and gauge basis reads

G = R(θW )G̃, (1.31)

where

G =

(︄
Zµ

Aµ

)︄
, R(θW ) =

(︄
cos θW − sin θW

sin θW cos θW

)︄
, G̃ =

(︄
W 3
µ

Bµ

)︄
. (1.32)

Here θW is the so-called Weinberg angle. Thus, the mass term becomes

Lmass
gauge = G̃

TMG̃ = GTMdiagG = G̃
T
R(θW )TMR(θW )G̃, (1.33)

with

Mdiag =

(︄
v2
√︁
g2 + g′2/4 0

0 0

)︄
. (1.34)

By solving Eq.(1.33), we get the relation between gauge and mass basis given by

Zµ =
1√︁

g2 + g′2
(gW 3

µ − g′Bµ),

Aµ =
1√︁

g2 + g′2
(g′W 3

µ + gBµ). (1.35)

We find the relation between sin θW (cos θW ) and gauge coupling as the following:

cos θW =
g√︁

g2 + g′2
, sin θW =

g′√︁
g2 + g′2

. (1.36)

By substituting Eqs.(1.29), (1.35) into (1.28), we have

|DµΦ|2 =
1

2

v2

4

(︁
2g2W+

µ W
µ− + (g2 + g′2)Z2

)︁
. (1.37)

Now we see that W 1 and W 2 fields form a complex vector field W±. Moreover, the Bµ

and W 3 are not the mass eigen states and can be rotated to their mass eigen state by
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Eq.(1.31). At the end, the masses of SM gauge bosons read

mW± =
g

2
v, (1.38)

mZ =

√︁
g2 + g′2

2
v, (1.39)

mA = 0. (1.40)

Also, the covariant derivative can be written in mass eigen basis as follows

Dµ = ∂µ − i
g√
2
(W+

µ T
+ +W−

µ T
−)− i 1√︁

g2 + g′2
Zµ(g

2T 3 − g′2Y )

− i gg′√︁
g2 + g′2

Aµ(T
3 + Y ),

= ∂µ − i
g√
2
(W+

µ T
+ +W−

µ T
−)− i g

cos θW
Zµ(T

3 − sin2 θWQ)− ieAµQ, (1.41)

where T± = τ1 ± iτ2. In the last line, we use the fact that

Q = T 3 + Y, (1.42)

e =
gg′√︁
g2 + g′2

, (1.43)

g =
e

sin θW
. (1.44)

The electron’s charge e is a well-measured quantity and is related to the fine structure

constant e =
√
4πα given in table 1.2. Morever, we can write the mass ratio of W to Z

as

ρ ≡ mW

mZ cos θW
= 1. (1.45)

This ratio holds at tree level but different from one at the higher order correction [13].

The fermion masses and their interactions

Unlike the Higgs and gauge bosons, the mass term of fermions is originated from the

Yukawa terms given in the third line of Eq.(1.1) which read

LY = −Y I
ℓ L

I
LΦℓ

I
R − Y IJ

d Q
I
LΦd

J
R − Y IJ

u Q
I
LΦ̃u

J
R + h.c, (1.46)

where Φ̃ = iσ2Φ
† and h.c. stands for the Hermitian conjugate of all previous terms. The

first term describes the charged lepton masses. When the Higgs acquires the VEV, the

Yukawa terms gives masses as follows

LY ⊃ −meeLeR −mµµLµR −mττLτR + h.c, (1.47)
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where mℓ = Yℓv/
√
2 and v = (

√
2GF )

−1/2 = 2MW /g. With the Fermi coupling in

table 1.2, the numerical value of the Higgs VEV is equal to 246.22 GeV. For future

reference, we also give the lepton masses in table 1.2.

Unlike the case of leptons, the Yukawa couplings of quarks are 3 × 3 complex matrices

and their mass term read [14]

LY ⊃ −
Y IJ
d v√
2
dILd

J
R −

Y IJ
u v√
2
uILu

J
R + h.c.

= −Ydv√
2
dLdR −

Yuv√
2
uLuR + h.c., (1.48)

where d = (d, s, b)T and u = (u, c, t)T . The matrices Yu and Yd can be diagonalised by

changing the basis of left- and right-quark as follows

uL → ULuL, uR → URuR, dL → VLdL, dR → VRdR. (1.49)

with U †U = UU † = I and V †V = V V † = I . This implies that uL/R and dL/R are

rotated independently. With these rotations, the Yukawa terms for quarks become

LY ⊃ −dLMddR − uLMuuR + h.c., (1.50)

where Md = V †
LYdVRv/

√
2 and Mu = U †

LYuURv/
√
2. Therefore, these rotations affect

the interaction between quark and weak gauge bosons. To explicitly see this, let us go

back to the second line of Eq.(1.1) and rewrite the quarks field in their mass eigenstates.

Here we drop the kinetic terms of the SM fermions and consider only the interaction

terms which read [4]

Lfermion ⊃ g
(︂
W+
µ J

µ+
W +W+

µ J
µ+
W + ZµJ

µ
Z

)︂
+ eAµJ

µ
EM , (1.51)

where

Jµ+W =
1√
2
(νLγ

µeL + uLγ
µVCKMdL) ,

Jµ−W =
1√
2

(︂
eLγ

µνL + dLγ
µV †

CKMuL

)︂
,

JµZ =
1

cos θW

[︄
νLγ

µ

(︃
1

2

)︃
νL + eLγ

µ

(︃
−1

2
+ sin2 θW

)︃
eL + eRγ

µ
(︁
sin2 θW

)︁
eR

+ uLγ
µ

(︃
1

2
− 2

3
sin2 θW

)︃
uL + uRγ

µ

(︃
−2

3
sin2 θW

)︃
uR

+ dLγ
µ

(︃
−1

2
+

1

3
sin2 θW

)︃
dL + dRγ

µ

(︃
1

3
sin2 θW

)︃
dR

]︄
,

JµEM = eγµ (−1) e+ uγµ
(︃
2

3

)︃
u+ dγµ

(︃
−1

3

)︃
d. (1.52)
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The VCKM is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix which describes the

mixing amongst left-handed up and down type quarks. It is a complex 3×3 matrix that

can be parameterised by three mixing angles and one CP-violating phase and given by

VCKM = U †
LVL =

⎛⎜⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎠

=

⎛⎜⎝1 0 0

0 c23 s23

0 −s23 c23

⎞⎟⎠
⎛⎜⎝ c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13

⎞⎟⎠
⎛⎜⎝ c12 s12 0

−s12 c12 0

0 0 1

⎞⎟⎠ ,

=

⎛⎜⎝ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞⎟⎠ , (1.53)

where sij ≡ sin θij and cij ≡ cos θij . The numerical value of each element in CKM

matrix is given by [9, 13]

VCKM =

⎛⎜⎝ 0.97401± 0.00011 0.22560± 0.00048 0.00361+0.00011
−0.00009

0.226360± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.000024
−0.000035

⎞⎟⎠ . (1.54)

One can see that the mixing is strong for quarks in the diagonal terms. Additionally, the

CP-violating part of the CKM matrix can be described by the Jarlskog invariant [15]

Im[VijVklV
∗
ilV

∗
kj ] ≡ J

∑︂
m,n

ϵikmϵjln (1.55)

where J = (3.00+0.15
−0.09)× 10−5 and ϵijk is the rank-3 anti-symmetry tensor. The quantity

is very crucial when we try to apply the SM to explain the matter anti-matter problem

of the universe. Unfortunately, the SM cannot successfully explain this problem which

one of the reason is the smallness of CP-violating phase.

1.1.4 The cross section and decay rate

A collider is a machine that physicists use to study the properties of particles in labora-

tories. The common procedure of collider starts from accelerating initial state particles

and then speed them up close to the speed of light. Then, they will be sent into a small

tunnel for collision. Normally, we use the stable charged particles because they can be

bent by magnets and do not decay during the course of acceleration and collision. Usu-

ally, we use electrons, positrons, protons and even some heavy ions as the initial particles

for colliding. Properties of some colliders is summarised in table 1.3. Moreover, it is

also possible to build the muon collider as proposed in [16].
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Name
Colliding
particles

started/ended
year

Length
[km]

Max.
Energy
[GeV]

Luminosity
[1030 cm−2s−1]

LEP-I(II) e+e− 1989/2000 26.66 100-104.6 100

SLAC e+e− 1989/1998 1.45 +1.47 50 2.5

HERA ep 1992/2007 6.336
e: 0.030
p: 0.92

75

TEVATRON pp̄ 1987/2011 6.28 0.980 431

RHIC
Brookhaven

pp 2001/- 3.834 0.255 160

LHC
(CERN)

pp 2009/- 26.659 6.5 160

Table 1.3: Specification of some colliders including name, colliding particles, start-
ed/ended year, Length, Max. Energy and Luminosity. [9].

The main job of particle theorists is to calculate a scattering cross section σ or a decay

rate Γ of a particular process. Before we compute those quantities we need to evaluate

what is called the amplitude or matrix element which is related to the probability of a

system in an initial state |i⟩ to be found in a final state |f⟩ or ⟨f |i⟩. For a process of

2→ n scattering, the matrix element [13] is given by

⟨p′1, p′2, ...|S − 1|p1, p2⟩ = i(2π)4δ4(p1 + p2 −
n∑︂
i=1

p′i)M(p1, p2; p
′
1, p

′
2, ...), (1.56)

where S is the S-matrix operator that enables the transition from the initial state |p1, p2⟩
with momenta p1, p2 and |p′1, p′2, ..., p′n⟩ with momenta p′1, p

′
2, ..., p

′
n. The quantityM is

the Lorentz invariant amplitude in momentum space. The Dirac delta function appears

to keep the energy-momentum conserved.

Then, the differential scattering cross section reads

dσ =
(2π)4|M|2

4
√︁

(p1 · p2)2 −m2
1m

2
2

dΦn(p1, p2; p
′
1, p

′
2, ..., p

′
n), (1.57)

where the measure of n-body phase space is given by

dΦn(p1, p2; p
′
1, p

′
2, ..., p

′
n) = δ4(p1 + p2 −

n∑︂
i=1

p′i)
n∏︂
i=1

d3p′i
(2π)32E′

n

. (1.58)

In the case of 2-2 scattering, there are three possible topologies as shown in figure 1.2.

For each diagram, there is a corresponding Mandelstam variable which describes the

momentum transfer of the mediator. Suppose the incoming particles with masses m1,m2

and momenta p1, p2 collider with each other and create particles with masses m3,m4 and
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p1

p′2

p′1

p2

s

p1

p′2

p′1

p2

t

p1

p′2

p′1

p2

u

Figure 1.2: Different topologies for 2-2 scattering. The momentum transfer for each
diagram can be identified by Mandelstam variables: s, t and u.

momenta p3, p4 in the final state. The corresponding Mandelstam variables are defined

as follows

s = (p1 + p2)
2 = (p′1 + p′2)

2

= m2
1 + 2E1E2 − 2p1 · p2 +m2

2, (1.59)

t = (p1 − p3)2 = (p2 − p4)2

= m2
1 − 2E1E3 + 2p1 · p3 +m2

3 (1.60)

u = (p1 − p4)2 = (p2 − p3)2

= m2
1 − 2E1E4 + 2p1 · p4 +m2

4 (1.61)

and the sum of all Mandelstam variables is equal to the sum of all squared masses

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4.

Two body scattering

After integrating the momenta of outgoing particles, the differential cross section in the

centre of mass (CM) frame reads

dσ

dΩ
=

1

4E1E2

|p1|
(2π)24Ecm

|M(p1, p2 → p3, p4)|2, (1.62)

with

E1 =
s+m2

1 −m2
2

2
√
2

, E2 =
s+m2

2 −m2
1

2
√
2

. (1.63)
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The two body decay

For the decay of a particle with mass M and momentum P into particles with masses

m1,m2 and momenta p1, p2, the decay rate reads

dΓ =
1

32π2
|M|2 |p1|

M2
dΩ, (1.64)

where

dΩ = dϕ1d(cos θ1),

E1 =
M2 −m2

2 +m2
1

2M
,

|p1| = |p2| =
[︁
(M2 − (m1 +m2)

2)(M2 − (m1 −m2)
2)
]︁1/2

2M
. (1.65)

Here dΩ is the solid angle of the particle 1. Both Eqs.(1.62) and (1.64) are usually

used for calculating theoretical quantities. In experiments at colliders like Large Elec-

tron Positron collider (LEP) and Large Hadron Collider (LHC), physicists measure the

number of events that can be registered by the detectors. The performance of a collider

depends on multiple factors such as the maximum energy per beam, the luminosity of

a particle beam, etc. If the maximum energy per beam is large enough, the collider is

likely to create a heavy particle in the collision. The luminosity of two colliding beams

with number density n1, n2, the beam’s cross-sectional area A and they are across each

other in the tunnel with frequency f reads

heexperimentalistsL = f
n1n2
A

. (1.66)

Then, the experimentalists can calculate the number of events for a particular process

by

dN

dt
= Lσ (1.67)

or the number of events is given by

N = Lσ (1.68)

where L =
∫︁
dtL is the integrated luminosity and the integration is performed over the

running time of a collider.

1.2 Particle cosmology

In this section, we summarise some relevant topics of standard cosmology by focusing on

the expansion of the universe based on the Friedman-Robertson-Walker (FRW) metric
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and thermodynamics of the early universe which are crucial for understanding the DM

thermal production which is the key point of section 1.3

1.2.1 The universe in expansion

One of the biggest cosmological discoveries of the 20th century is the expansion of the

universe. In 1929, Edwin Hubble measured the redshift z of galaxies in the constellation

Andromeda versus the luminosity distance dL where dL = (L/4πF)1/2, L is the lumi-

nosity of object and F is the released flux. The redshift is measured from the shifted

spectrum due to Doppler effect and is defined by [17]

z =
λobs − λem

λem
, (1.69)

where λem and λobs are the wavelength at the emission point and at the measuring point,

respectively. From observations, he found the relation between the distance and radial

velocity as [18, 19, 20]

v ≃ H0dL, (1.70)

where H0 is the Hubble’s constant at present time which its numerical value is given in

table 1.4. This equation implies the farther galaxies move away with faster speeds which

means that our universe is expanding with acceleration. If the velocity of galaxies is not

too large, we can use the approximation that z ≈ v/c which leads us to the relation

between the redshift and distance

z ≃ H0

c
dL. (1.71)

Notice that the larger distance implies the bigger redshift.

Quantity Symbol Value

Newtonian constant [m3 kg−1 s−2] GN 6.67430(15)× 10−11

Planck mass [kg] MP 2.176434(24)× 10−8

Hubble constant [km s−1 Mpc−1] H0 100h

scaling factor for Hubble constant h 0.674(5)

baryon density Ωb 0.02237(15)h−1

dark matter density Ωdm 0.1200(12)h−1

radiation density Ωγ 5.38(15)× 10−5

dark energy density ΩΛ 0.685(7)

Table 1.4: Some of the measured values of the cosmological parameters [9, 13, 21].
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The observations of the galaxy distributions in the universe at the scale about 100 Mpc−1

or so implies that the universe is approximately homogeneous and isotropic. With these

properties, the expanding universe can be well described by the FRW metric [19, 22]

ds2 = dt2 − a2(t)
(︃

dr2

1− kr2 + r2dθ2 + r2 sin2 θdϕ2
)︃
, (1.72)

where k is the spacetime curvature and it can be −1, 0 and +1 representing the close,

flat and open universe. The parameter a(t) is the scale factor which accounts for the

expansion at time t. Here (t, r, θ, ϕ) is called the comoving coordinates which move along

the expansion of the universe or the Hubble flow. If an object is at rest in the comov-

ing coordiates without any external force, it is not moving regardless of the universe

expansion. We define the rate of change of the scale as

H(t) ≡ ȧ(t)

a(t)
, (1.73)

where H(t) is the Hubble rate or Hubble parameter at a time t. In order to find the

equation of motion that describes the spacetime dynamics, we need to make use of the

Einstein’s equation [22]

Rµν(t)−
1

2
gµν(t)R(t) + Λ(t)gµν(t) =

Tµν(t)

M2
P

, (1.74)

whereMP is called the Planck mass. The parameter Λ is the cosmological constant which

is a vital component in the standard model of cosmology or ΛCDM. Many models of

cosmology describe the cosmological constant in terms of the Dark Energy (DE) and

it contributes 68% to the total energy density of the universe. The quantities Rµν and

R = gµνRµν are the Ricci tensor and scalar, respectively. They are derivatives of gµν .

For the metric in Eq.(1.72) they are

R00(t) = −
3ä(t)

a(t)
, Rij(t) = δij

(︁
2ȧ(2)2 + a(t)ä(t)

)︁
. (1.75)

If we assume the the energy-momentum tensor T00 = ρt and Tjj = pj where ρt is the

total energy density of the universe and pj is the pressure in jth direction. Then, the

Friedmann equation

ȧ(t)2

a(t)2
+

k

a(t)2
=
ρt(t)

3M2
P

(1.76)

2ä(t)

a(t)
+
ȧ(t)2

a(t)2
+

k

a(t)2
= −p(t)

M2
P

(1.77)
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where ρt = ρm(t) + ρr(t) + ρΛ(t) with ρΛ = Λ(t)M2
P = 3H2

0M
2
PΩΛ(t). Combining

Eq.s(1.76) and (1.77) together, we get

ä(t)

a(t)
= −ρt(t) + 3p(t)

6M2
P

. (1.78)

By solving this equation, we can identity the scale factor a(t) evolves with time. To this

end, we make use of the thermodynamics equation of state

pj(t) = wjρj(t), with wj =

⎧⎪⎨⎪⎩
0 non-relativistic matter

1/3 relativistic radiation

−1 vacuum energy

. (1.79)

From the conservation law of energy-momentum, dU = −pdV , we can also write

d

dt

(︁
ρja

3
)︁
= −pj

d

dt
a3, (1.80)

which is just a relation between work and pressure inside a system with volume a3. By

solving a system of Eqs.(1.79) and (1.80), we find the relation between energy density

and scale factor

ρj(a) = Ca−3(1+wj) ∝

⎧⎪⎨⎪⎩
a−3 non-relativistic matter

a−4 relativistic radiation

const. vacuuuma energy

(1.81)

where C is a constant. Substituting Eqs.(1.81) and (1.79) into Eq.(1.78) and writing the

solution in terms of power law solution, a ∝ tβ , (this power solution can be used only

for wj ̸= −1), one finds that

β =
2

3 + 3wj
. (1.82)

In the case of cosmological dominated universe, we can find the solution by solving

Eq.(1.76) (ignore ρm and ρr)

ȧ(t)2

a(t)2
=

Λ(t)

3
, (1.83)

which the solution is just a(t) ∼ e(
√

Λ(t)/3)t. Thus, the time evoluation of scale factor in

FRW model can be summarised into

a(t) ∼

⎧⎪⎨⎪⎩
t2/3 non-relativistic matter

t1/2 relativistic radiation

e(
√

Λ(t)/3)t vacuum energy.

(1.84)
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Moreover, we can also write the time evolution of the Hubble parameter as in Eq.(1.73)

for each case as the following

H(t) ∼

⎧⎪⎪⎨⎪⎪⎩
2
3t non-relativistic matter
1
2t relativistic radiation√︂

Λ(t)
3 vacuum energy.

(1.85)

According to cosmological observations [21, 23, 24], at present, we have a fairly complete

picture of the components of the universe. They can be divided into 1) non-relativistic

matter 2) relativistic radiation and 3) vacuum energy. The fraction of these components

of the universe is characterised by a quantity called the density parameter Ω which is a

ratio of the energy density of ith component ρi to the critical energy density ρcrit.

Ωi =
ρi
ρcrit

. (1.86)

The critical energy density is a measure of total energy density at a stage that the

universe does not expand or collapse. It is defined by

ρcrit = 3H2M2
P , (1.87)

where the present Hubble rate and relevant cosmological parameters are summarised in

table 1.4

The non-relativistic matter contains baryon matter which is the visible matter around

us ranging from atoms to clusters of galaxies, and the dark matter which cannot be

understood within the SM framework. We will talk about the the dark matter in some

detail in section 1.3. The radiation mainly consists of photons freely propagating from

the last scattering surface since the matter and radiation decoupled at zdec ∼ 1100.

In several models of cosmology, the vacuum energy can be described in form of the

cosmological constant Λ. However, we are still puzzled why it has a very tiny value.

1.2.2 Thermodynamics of the early universe

To calculate the Hubble rate in terms of the energy density and other quantities in the

early universe, we need to study thermodynamics of particles. The universe at the early

stage contains many particle species which interact with each other in a thermal bath.

At high temperature, the interaction rate of these particles with thermal bath are high

making all particles reach thermal equilibrium. Thus, we can assume that they were in

thermal equilibrium to a good approximation. The number density n, energy density ρ
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and pressure p for a particle species are given by

neq = g

∫︂
d3p

(2π)3
f(p⃗), (1.88)

ρeq = g

∫︂
d3p

(2π)3
E(p⃗)f(p⃗), (1.89)

peq = g

∫︂
d3p

(2π)3
|p⃗|2
E

f(p⃗), (1.90)

where g is the number of internal degrees of freedom for a particle and the energy satisfies

E2 = |p⃗|2 +m2. The distribution f(|p⃗|2) is given by

f(p⃗) =

{︄
(exp((E − µ)/T ) + 1)−1 for fermions

(exp((E − µ)/T )− 1)−1 for bosons
, (1.91)

which indicates the occupation number in the phase space. The quantity µ is called the

chemical potential. If we consider a process A + B → C + D in chemical equilibrium,

the chemical potentials are related through

µA + µB = µC + µD. (1.92)

After integration of Eq.(1.88) with the distribution function from Eq.(1.91) (assuming

that the chemical potential is small compared to the energy term), the number density

is given by

neq(T ) =

⎧⎪⎨⎪⎩
g
(︁
mT
2π

)︁3/2
e−m/T non-relativistic particles T ≪ m

g ζ(3)
π2 T

3 relativistic bosons T ≫ m

g 3
4
ζ(3)
π2 T

3 relativistic fermions T ≫ m

, (1.93)

where ζ(3) ≃ 1.2 is the Riemann zeta function of 3. Also, the energy density for each

case can be computed similarly and is given by

ρeq(T ) =

⎧⎪⎨⎪⎩
gm
(︁
mT
2π

)︁3/2
e−m/T non-relativistic particles T ≪ m

g π
2

30T
4 relativistic bosons T ≫ m

g 7
8
π2

30T
4 relativistic fermions T ≫ m

. (1.94)

In addition, the pressure is given by

peq(T ) =

{︄
ρeq(T ) relativistic particles

neqT non-relativistic particles
. (1.95)

According to Eq.(1.93), we can calculate the energy density of all species in terms of the

photon temperature T as follows

ρr =
π2

30
g∗(T )T

4, (1.96)
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with

g∗(T ) =
∑︂

bosons

gb

(︃
Tb
T

)︃4

+
∑︂

fermions

7

8
gf

(︃
Tf
T

)︃4

. (1.97)

We can try to evaluate the total energy density by assuming that there are only the SM

particles in the thermal bath and they are relativistic at the temperature greater than

the EW scale (v = 246.22 GeV). Thus, the effective number of degrees of freedom for

fermion and boson reads

gf = gquark + glepton + gneutrino = 90,

gb = ggluon + gweak + gphoton + gHiggs = 28,

g∗(T > 246 GeV) = 28 +
7

8
90 = 106.75. (1.98)

Figure 1.3: The time dependence of the effective number. Figure from [25, 26]

Figure 1.3 describes the evolution of the effective number of degrees of freedom with

temperature. At the temperature higher than EW scale (T ≈ 246 GeV), g∗ = 106.75

as in Eq.(1.98). When temperature drops around the top quark mass, the top quark

becomes non-relativistic, the g∗ is decreasing. It slightly decreases until the temperature

is around the QCD transition scale. The effective degrees of freedom is rapidly dropped

because all quarks are hadronised to pions (π±, π0). It is dramatically dropped again

when temperature drops to the mass of electron 0.5 MeV. At present, the effective

degrees for freedom is equal to 3.6 which contains photons and neutrinos.
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At the end, we can find the relation between the time and temperature through the

definition of the Hubble rate for radiation-dominated universe as follows

H(t)2 =

(︃
1

2t

)︃2

=
1

3M2
P

π2

30
g∗(T )T

4 =

(︃
π
√
g∗√
90

T 2

MP

)︃2

. (1.99)

In addition to the number, energy density and pressure, another important quantity is

the entropy per comoving volume element which remains unchanged for particle species

with the interaction rate much bigger than the Hubble rate. Due to the second law of

thermodynamics, we can prove that the entropy density in a comoving volume is given

by

s ≡ S

V
=
ρ+ p

T
(1.100)

where S is the entropy in the volume V = a3. Since the relativistic particles dominantly

contribute to the entropy density so that we can also write

s =
2π2

45
g∗ST

3 (1.101)

where

g∗S =
∑︂

b=boson

gb

(︃
Tb
T

)︃3

+
7

8

∑︂
f=fermion

gf

(︃
Tf
T

)︃3

. (1.102)

1.3 Dark matter

The dark matter (DM) is one of the long-standing mysteries in cosmology and particle

physics. For the review of history of DM, we recommend the reference [27, 28]. The

existence of DM has been well established by several independent cosmological and

astrophysical observations.

The very first evidence of DM came from the inconsistency between theoretical prediction

and measurement of the velocity distribution of stellar object within nearby galaxies. If

we assume that the total matter of the universe only comes from the visible component,

an object at radius r in a galaxy should orbit around with the rotational velocity v ∝√︁
M(r)/r [9] , where M(r) is the total mass of visible objects. If it is outside the visible

part, its velocity should drop like v ∝ 1/
√
r. However, in observations it turns out to

be that at very large r the velocity is surprisingly constant relative to the distance r.

This leads to the idea of dark halo [29] in which the visible parts of universe resides. To

explain the constancy of the velocity distribution, the mass density of the halo should

scale like ρ(r) ∝ 1/r2 or M(r) ∝ r but at some point it has to be rapidly falling down

to make the total mass of the galaxy finite. In addition, DM is also important to

the formation of large scale structure [30, 31], the bullet cluster [32] and gravitational
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lensing [33]. These evidences of DM have been solely detected based on its gravitational

effect. Therefore, it is the big and long quest for physicists to hunt for DM particle.

However, after having been searching for many years, we have not found the direct

evidence of DM in laboratories yet. No information on mass, spin and interaction have

been measured so far.

Figure 1.4: The interaction between DMs and SM particles can occur in three di-
rections: 1) DM DM → SM SM stands for DM annihilation or indirect detection; 2)
DM SM → DM SM for the DM direct detection and 3) SM SM → DM DM for DM

production at collider. Figure from [34]

In order to explain the existence of DM in the particle physics point of view, many

DM models have been proposed. For example, the DM candidate as the lightest su-

persymmetric particle (LSP) [35], the sterile neutrinos [36], the axion and axion-like

particles [37], the dark photon [38], extended scalar sector of the SM [39]. Amongst

various types of models, the most favourite one is called the weakly-interacting massive

particle (WIMP) which interacts very weakly with the SM particle and has a mass in a

range of GeV-TeV scale. The interaction between DM and SM particles that leads to ob-

servable signals can be divided into three different types as the following. In a region with

dense DM distribution, the DM can annihilate each other and create a pair of SM parti-

cles, DM+DM → SM+SM. This mechanism is called indirect detection where the DM

signal can be observed via their annihilation products through the gamma-ray telescope

(like Fermi-LAT experiment etc.) [40], the neutrino telescope (like IceCube etc.) [41],

anti-protons [42], the CMB anisotropies [21] etc. Additionally, the relic DM can also

interact with the SM particle through a process of DM+SM → DM+SM which several

experiments such as LUX [43], XENON1T [44], PandaX-II [45] etc. have been trying to

detect the recoil energy of some heavy nuclei like Xenon as a result of DM scattering.

Finally, we can also study phenomenology of DM at colliders like LHC by smashing a

pair of SM particles to create a pair of DMs through a process of SM+SM → DM+DM.
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In figure 1.4, we summarise three different diagrams representing DM and SM particle

interactions.

In this section, we will discuss how to calculate the relic density from theoretical point

of view and review the experimental result of the DM relic density measurement by

PLANCK[21]. In addition, the direct and indirect searches will be mentioned and the

limits from those searches are present. Finally, we will also discuss possible collider

signatures of DM which different models can predicts different signatures.

1.3.1 Relic density

The relic abundance of DM in the universe has been precisely measured by studying

the temperature fluctuation in the cosmic microwave background (CMB). This CMB

mainly consists of photons decoupled when temperature was around 0.32 eV [20]. After

the matter-radiation decoupled, they freely propagate through the universe and move

towards us which brings very useful information of the universe at early stage. Several

experiments have measured the temperature anisotropies in CMB such as COBE [24],

WMAP [46] and PLANCK [47, 21]. Today, we have a very precise value of DM abun-

dance which is ΩDMh
2 = 0.12± 0.0012.

The abundance of relic DM can be understood by two different mechanisms. Firstly, it

is the so-called freeze-out mechanism [48] . Assuming that DM particle was in thermal

equilibrium with the SM particles when the universe temperature is far above the DM

mass. When the universe temperature dropped around the mass of DM, the interaction

rate of DM with SM particle was also decreased so that it was smaller than the Hubble

expansion rate, ΓDM ≲ H. At this stage, the DM particles started freezing out from

the thermal bath. Typically, the DM mass from thermal production mechanism is

approximately around the EW scale and its couplings to the SM sector was comparable

to the weak coupling, αEW. We refer to DM particle with these properties as the WIMP.

The second mechanism does not require the DM candidate to be thermally produced

in the early universe since the interaction between DM and SM particle is so weak that

DM cannot reach thermal equilibrium. The population of DM is essentially generated

by the annihilation or decay of other particles into DM. This is called the freeze-in

mechanism [49]. The typical coupling of DM to SM sector for freeze-in scenario is so

tiny, g ∼ 10−12−10−8. This kind of DM candidate is called the feebly-interacting massive

particle (FIMP).

1.3.2 The Boltzmann equation

The number density, energy density and pressure in Eq.(1.93), (1.94) and (1.95) can

be applied only for particles in thermal equilibrium. However, when the universe cools
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down, some species decouple from the thermal bath since their interaction rates Γ are

not strong enough to keep them in thermal equilibrium against the expansion rate of

the universe H which leads to the condition for decoupling from the thermal bath

Γ ≳ H coupled,

Γ ≲ H decoupled,
(1.103)

where the interaction rate can be calculated from

Γ = nσv, (1.104)

where n is the number density of the particle, σ is the scattering cross section of the

particles and v is the relative velocity.

In order to keep track of the number density, we need to solve the Boltzmann equation

for phase space distribution functions

L̂[f ] = C[f ], (1.105)

where L̂ is the Liouville operator and C is the collision operator. The relativistic gen-

eralisation of Liouville operator is given by

L̂ = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
. (1.106)

For the FLRW metric in Eq.(1.72), the Liouville operator reads

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
|p|2 ∂f

∂E
, (1.107)

with the time dependent number density

n(t) =
g

(2π)3

∫︂
d3pf(E, t), (1.108)

the Boltzmann equation becomes

dn

dt
+ 3

ȧ

a
n =

g

(2π)3

∫︂
C[f ]

d3p

E
. (1.109)
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Suppose that we consider the collision term for a process of ψ+ a+ b+ · · · ↔ i+ j+ · · ·
is given by

g

(2π)3

∫︂
C[f ]

d3p

E
= −

∫︂
dΠψdΠadΠa · · · dΠidΠj · · ·

× (2π)4δ4(pψ + pa + pb + · · · − pi − pj − · · · )

×
[︄
|M|2ψ+a+b+···→i+j+···fψfafb · · · (1± fi)(1± fj) · · ·

− |M|2i+j+···→ψ+a+b+···fifj · · · (1± fψ)(1± fa)(1± fb) · · ·
]︄
,

(1.110)

where the phase space integral is defined as

dΠ = g
d3p

(2π)32E
. (1.111)

The sign in (1 ± f) is plus for boson while minus for fermion species. Because of the

time reversal or T symmetry, the squared matrix element is given by

|M|2ψ+a+b+···→i+j+··· = |M|2i+j+···→ψ+a+b+··· = |M|2. (1.112)

This is the averaged squared matrix element over initial and final spins. Also, if there are

n identical particles in the initial or final state, the matrix element needs to be multiplied

by a factor of 1/n!. In addition, if we consider the freeze-out of a massive particle

(assuming that T < M), the Fermi-Dirac and Bose-Einstein distribution functions can

be replaced by the Maxwell-Boltzmann distribution function fi(Ei) = exp[−(Ei−µi)/T ]
and (1± f) ≃ 1. With these changes, the Boltzmann equation for a specific species ψ is

given by

dnψ
dt

+ 3Hnψ = −
∫︂
dΠψdΠadΠb · · · dΠidΠj · · · (2π)4|M|2

× δ4(pψ + pa + pb + · · · − pi − pj − · · · )
[︂
fψfafb · · · − fifj · · ·

]︂
, (1.113)

here we use H = ȧ/a. If the collision term vanishes, the evolution of number density is

inversely proportional to the cubic scale factor (1/a3).

Sometimes it is more convenient to express the Boltzmann equation in terms of the

ratio of number density to entropy density Y ≡ nψ/s. Since the entropy in a comoving

volume is constant (S = sa3 = constany),

d(sa3)

dt
= 0 −→ ṡ = −3Hs. (1.114)
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Therefore, we can rewrite

dnψ
dt

+ 3Hnψ = s
dY

dt
. (1.115)

With this parametrisation, the Boltzmann equation reads

s
dY

dt
= −

∫︂
dΠψdΠadΠb · · · dΠidΠj · · · (2π)4|M|2

× δ4(pψ + pa + pb + · · · − pi − pj − · · · )
[︂
fψfafb · · · − fifj · · ·

]︂
, . (1.116)

Now we are trying to find the standard form of Boltzmann equation that will be used

for calculating the remaining amount of dark matter after decoupling from the thermal

bath in section 1.3.

Let us consider the freeze-out of a massive particle ψ which is stable or long-lived com-

pared to the age of the universe. The process of ψ and ψ̄ with thermal bath reads

ψ + ψ̄ ←→ X + X̄, (1.117)

where X is all particles in thermal bath in which ψ can be annihilate and here X̄ is the

antiparticle of X. The number density density of ψ is changing during the course of

these reactions. We assume that at the time of decoupling of ψ the other particles X are

still in thermal equilibrium with thermal bath. We will further assume that they can

to a good approximation be explained by the Boltzmann statistics with zero chemical

potential for simplicity. Therefore, we can write Eq.(1.113) for a process of ψψ̄ ↔ XX̄

as

s
dY

dt
= −

∫︂
dΠψdΠψ̄dΠXdΠX̄(2π)

4|M|2

× δ4(pψ + pψ̄ − pX − pX̄)
[︂
fψfψ̄ − fXfX̄

]︂
, (1.118)

with the equilibrium distributions

f eqX = exp(−EX/T ),
f eq
X̄

= exp(−EX̄/T ). (1.119)

Because of the energy-momentum conservation in the delta function, it implies that

Eψ + Eψ̄ = EX + EX̄ . This allows us to write

fXfX̄ = exp [−(EX + EX̄)/T ] = exp [−(Eψ + Eψ̄)/T ] = f eqψ f
eq

ψ̄

Therefore, the Boltzmann equation reads

dY

dt
= −s⟨σψψ̄→XX̄v⟩

(︁
Y 2 − Y 2

eq

)︁
, (1.120)
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where Y and Yeq are the actual and equilibrium number density over the entropy per

comoving volume. Additionally, we also define the thermally-averaged annihilation cross

section as

⟨σψψ̄→XX̄v⟩ ≡ (neqψ )−2

∫︂
dΠψdΠψ̄dΠXdΠX̄(2π)

4|M|2

× δ4(pψ + pψ̄ − pX − pX̄) exp (−Eψ/T ) exp (−Eψ̄/T ). (1.121)

If we include all final states, the Boltzmann equation in terms of the total annihilation

cross section is given by

dY

dt
= −s⟨σAv⟩

(︁
Y 2 − Y 2

eq

)︁
. (1.122)

This is the Boltzmann equation we need to compute the relic density of dark matter

after freezing out from thermal bath and we will use it to estimate the relic abundance

of DM in the next section.

The freeze-out mechanism

Since the DM candidate discussed in this thesis is a WIMP1, it would be good to review

how one calculates the DM relic abundance from freeze-out mechanism.

As aforementioned in section 1.3.2 that the out-of-equilibrium number density of a par-

ticle species can be evaluated by solving the Boltzmann equation. Let us consider a

reaction of DM (χ) and SM (f) particles

χ+ χ̄←→ f + f̄ , (1.123)

where f represents the SM particles that have interaction with DM through some me-

diators. At high temperature, the forward and backward interaction rates are equal in

size or we say that the system is in chemical equilibrium. The decoupling condition for

a generation of a particle species is given by

Γ(Tdec) = H(Tdec), (1.124)

with

Γ ≡ nχσχχvrel, (1.125)

where σχχ is the scattering cross section of DMs into a pair of SM particle and v is

the relative velocity. Since the WIMPs are non-relativistic and their velocities are not

1The DM model presented in chapter 2 can also have a DM candiate as a FIMP if the coupling of
the dark to SM sectors is very tiny. However, the FIMP scenario has not been yet studied and might
be a subject of future study.
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constant during the annihilation processes, we need to thermally average the cross section

multiplied by velocity. The quantity Tdec is the temperature at which the DMs depart

from the thermal bath.

Suppose that the incoming momenta are kχ and kχ̄, respectively, for χ and χ̄. The

individual velocity can be expressed in terms of Mandelstam variable s as

s = (kχ + kχ̄)
2 = 2m2

χ + 2EχEχ̄ − 2kχ · kχ̄
= 2m2

χ + 2E2
χ + 2|kχ|2

= 4m2
χ + 4|kχ|2 = 4m2

χ(1 + v2χ). (1.126)

In the last line, we use E2
χ = m2

χ + |kχ|2 and |kχ| ≃ mχvχ. Therefore, the velocity of

DM is given by

v2χ =
s

4m2
χ

− 1. (1.127)

It follows that the relative velocity in CM frame is given by

vrel =

⃓⃓⃓⃓
kχ
k0χ
− kχ̄
k0χ̄

⃓⃓⃓⃓
=

2|k⃗χ|
k0χ
≃ 2vχ. (1.128)

Thus, the relative velocity reads

vrel =

√︄
s− 4m2

χ

m2
χ

. (1.129)

Now we compute the thermally averaged cross section as defined in Eq.(1.121),

⟨σχχ̄→ff̄vrel⟩ =
∫︁
d3pχd

3pχ̄σχχ̄→ff̄v exp [−(Eχ + Eχ̄)/T ]∫︁
d3pχd3pχ̄ exp [−(Eχ + Eχ̄)/T ]

,

=
2π2T

∫︁∞
4m2

χ
ds
√
s(s− 4m2

χ)K1

(︂√
s
T

)︂
σχχ̄→ff̄ (s)(︁

4πm2
χTK2

(︁mχ
T

)︁)︁2 , (1.130)

where Kn is the modified Bessel functions of the second kind of order n.

To find the proper solution to the Boltzmann equation, numerical methods are needed.

However, the approximated solution can be obtained analytically [50, 51]. Let us go

back to Eq.(1.122). It can be written in terms of temperature instead of time by using

dY

dt
=

3mχHs

T 2

dY

dx

dT

ds
, (1.131)

Eq.(1.122) becomes

dY

dx
= − mχ

3Hx2
ds

dT
⟨σχχ̄v⟩

(︁
Y 2 − Y 2

eq

)︁
. (1.132)
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We assume further that the DM freezing out during the radiation-dominated epoch.

Therefore, the Boltzmann equation can be cast into

dY

dx
= −mχ

x2

√︃
πg′

45G
⟨σχχ̄v⟩

(︁
Y 2 − Y 2

eq

)︁
, (1.133)

or

dY

dT
=

√︃
πg′(T )

45G
⟨σχχ̄v⟩

(︁
Y 2 − Y 2

eq

)︁
, (1.134)

where √︁
g′ =

g∗S√
g∗

(︃
1 +

T

3g∗S

dg∗S
dT

)︃
, (1.135)

and

Yeq =
45x2

4π2g∗S

∑︂
f

gf

(︃
mf

mχ

)︃2

K2

(︃
x
mf

mχ

)︃
. (1.136)

To obtain the present relic abundance of DM, Y 0
χ , we have to integrate Eq.(1.133) from

x = 0 (T = ∞) to x = mχ/T0. However, micrOMEGAs [52] mainly uses Eq.(1.134)

with the assumption that Y ≫ Yeq such that

1

Y0
=

1

Yf
+

√︃
π

45G

∫︂ Tf

T0

√︁
g′(T )⟨σχχ̄v⟩dT, (1.137)

where Y0 and Yf are the abundance at present T0 = 2.73 K and freeze-out temperatures,

Tf . At high temperature, d(Y − Yeq)/dT is negligible. In addition, at freeze-out, the

Yf = Y (Tf ) is very close to Yeq, we can estimate Yf = (1 + δ)Yeq(Tf ) where δ is a

constant. The freeze-out temperature can be estimated from

d lnYeq
dT

=

√︃
πg′(T )

45G
⟨σχχ̄v⟩Yeqδ(δ + 2). (1.138)

This equation is used to calculate the freeze-out temperature in micrOMEGAs. It was

discussed in [52] that the solution to Eq.(1.137) is not significantly sensitive to the δ and

it can vary from 1-2.

The relic density of DM can also be written in terms of dimensionless density parameter

Ωχ = ρ0χ/ρcrit where ρcrit = 3H2/8πG. Thus, we can write the DM relic abundance as

Ωχh
2 =

ρ0χmχh
2

ρcrit
= 2.755× 108

mχ

GeV
Y0. (1.139)

In figure 1.5, the evolution of the DM relic abundance in terms of Y = nχ/s as a function

of x = mχ/T is presented. The dashed line indicates the evolution of Yeq in Eq.(1.136).
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Figure 1.5: The evolution of Y = nχ/s as a function of x = mχ/T for freeze-out
mechanisms, figure from [53]

.

The coloured solid lines correspond to the DM abundance due to freeze-out mechanism

as a solution to Eq.(1.133). At high temperature or small x, they follow the equilibrium

abundance line (black) and then they depart from the thermal bath at x ∼ 20−30. The

blue, pink and orange colours stand for the small to large scattering cross sections.

1.3.3 Indirect detection

In addition to the relic abundance of DM, the DM properties can also be examined

through the so-called indirect detection where we are seeking for a signal of possible self

annihilation of DM into SM particles as presented by a process of

χ+ χ̄→ SM+ SM. (1.140)

The recent reviews on DM indirect detection can be found in [54, 55, 56]. These self

annihilation of DMs could potentially take place within astronomical environments such

as the sun, stars, neutron stars, the centre of galaxy and dwarf spheroidal galaxies where

the DM is clumpy and dense. The observable products from the DM annihilation could

be photons, electrons, protons, neutrinos and their antiparticles. Then, we are trying

to detect the excess flux of those particles over the astronomical background. One can

expect that the rate of DM annihilation is proportional to the DM density Γ ∝ ρ2DM.

This means that the flux of annihilation products should be enhanced in a region with

very dense DM population, especially at the centre of galaxy where the DM density is

bigger than the average.
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Figure 1.6: The upper limit on the WIMP velocity weighted annihilation cross sec-
tion from various gamma-ray searches. The top(bottom) panel presents a bb̄ (τ+τ−)

annihilation. Figure from [57]

Gamma ray search

We expect to detect a monochromatic line of γ-rays with energy equal to or less than

the DM mass. Since the gamma ray can propagate without deflection we can search

for them by pointing detectors to region of dense dark matter such as the galatic centre

and dwarf galaxies. However, the DM annihilation rate into photons is too weak [20]

leaving us a chance to look for secondary photons produced from primary particles
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with a wide energy spectrum. The Fermi-LAT space telescope [40] is able to detect

single photons with energy 10 GeV - 10 TeV. In addtion, the Cherenkov telescope like

MAGIC or H.E.S.S can cover a wider range from 20 GeV to a few hundred TeV [56].

However, searching for gamma-ray excess at the galactic centre is quite challenging

due to the backgrounds from gamma-ray emitting objects. With this reason, the clean

structure of dwarf spheroid galaxies are a more favourite sources of the gamma-ray. The

search results are interpreted in terms of the WIMP annihilation cross section for various

annihilation channels, for example,W+W−, ZZ, qq̄ and ℓ+ℓ−. The most stringent upper

limit in the mass range of 0.1-1 TeV has been placed by Fermi-LAT. However, in the

mass range above 1 TeV, the most stringent upper bound has been placed by H.E.S.S,

as shown in figure 1.6.

Charged cosmic ray search

In addition, the charged cosmic ray – proton, electron, light nuclei and their antiparticles

– could be interpreted as a product of DM annihilation or decays via the hadronisation

of qq̄ or W+W− [56]. However, the charged cosmic ray can be easily deflected by the

galactic magnetic fields making them travelling to us in a random way. We expect to

measure the excess of cosmic ray spectrum over the SM predicted one. Since the large

background of electron and proton fluxes from numerous astrophysical objects, the more

attractive particles would be positrons and antiprotons. Some positive results on cosmic

ray as a probe of DM have been reported by the PAMELA satellite [58] which detected

the excess of positron spectrum in the energy range of 1.5-100 GeV . In addition, the

ATIC balloon experiment [59] has measured excess of electron flux with energy range of

300-800 GeV. The kind of excess could be generated from the DM annihilation. Later,

this result has been confirmed by the Fermi-LAT and AMS-02 satellites (with energy

range of 0.5-500 GeV). The limits on the velocity weighted DM annihilation cross section

at 95 % confidence level for the bb̄(W+W−) channels from cosmic ray excess is presented

in figure 1.7.

Neutrino search

Neutrinos can also be used as a probe of DM annihilation. Since they interact only

through the weak interaction, they can propagate through space without deflection from

the centre of stars. Therefore, one can directly point detectors towards the source of

neutrino flux. However, using neutrino as a probe of DM annihilation faces the chal-

lenges because of low scattering cross section with matter. This implies that detecting

single scattering event needs large detector and long exposure time. Unfortunately,

the upper bound on the annihilation cross section is less stringent compared to the
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Figure 1.7: The upper bounds on the velocity weighted DM annihilation cross sec-
tion at 95 % confidence level. The top(bottom) panel represent the limits from the
bb̄(W+W−) channels derived from the antiproton and B/C data of AMS-02. Figure

from [60]

limits from gamma-ray search. There are several experiments searching for DM anni-

hilation products as neutrinos such as ANTARES [61, 62], IceCube [41, 63, 64], Super-

Kamiokande [65, 66] and etc. The IceCube experiment has detected the very high energy

neutrinos around 60 events with energy from 10-1000 TeV. The detected neutrinos are

too energetic and not compatible with the atmospheric neutrinos produced in the Earth’s

atmosphere by cosmic ray scattering. The summary of the velocity weighted annihila-

tion of DM into neutrinos versus the DM mass from various range of searches in the

range of 10−2 − 107 GeV in shown in figure 1.8.

CMB anisotropies

Morever, the CMB anisotropies from the PLANCK collarboration [68, 21] also provides

the alternative way for DM indirect searches. The fact that recombination history can

be affected by the energy injection from DM annihilation [69] gives us the opportunity

to constrain the DM annihilation cross section complementary to other indirect DM

searches as previously discussed. The gaseous background can be heated and ionised by

different DM annihilation products. The energy fraction that is injected into the gas

can be explained by a parameter called the efficiency factor f(z) as a function redshift

which ranges from 0.01-1. The rate of energy release from DM annihilation per unit
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Figure 1.8: The upper bounds on the velocity weighted DM annihilation cross section
from various experiments. Figure from [67].

volume is given by [68]

dE

dtdV
(z) = 2 g ρcrit c

2Ω2
DM (1 + z)6 pann(z), (1.141)

where

pann ≡ f(z)
⟨σv⟩
mDM

. (1.142)

The g is a degeneracy factor equal to 1/2 for Majorana particles and 1/4 for Dirac

particles, ΩDM is the DM relic density. The ⟨σv⟩ is the thermally-averaged annihilation

cross section times the velocity. The f(z) is the efficiency factor depending on the

redshift z and provided in [70] for every possible SM particles in the final states. Since

the CMB data is sensitive to the energy injection in a range of redshift 1000-600 and the

function f(z) peaks at z ≈ 600 [68]. To a good approximation, the redshift dependence

of f(z) can be ignored and replaced by feff = f(z = 600). The Planck 2018 results [21]

gives a constraint on the DM annihilation cross section as shown in figure 1.9. The upper

limits for different DM annihilation channels are derived based on pann < 3.2 × 10−28

cm3 s−1 GeV−1.

1.3.4 Direct detection

The DM direct detection is a powerful way to probe the DM nature by searching for

scattering events of DM off SM particles, DM + SM → DM+ SM. Since DM interacts

very weakly with the ordinary matter, the scattering events would occur with very low
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Figure 1.9: The upper bounds on the DM annihilation cross section times velocity
from different annihilation channels into a pair of SM particles in the final state. Figure

from [21].

probability and very small energy deposits because of low DM velocity at the Sun’s loca-

tion (v ∼ 10−3c). Generally, the scattering process of DM off nucleon can distinguished

into the spin-dependent (SD) and spin-independent (SI) one. The best sensitivity of

SI search is given by heavy nuclei detectors and for SD one it is offered by light nuclei

detectors. However, the most stringent constraint is placed by the SI process. When

DMs scatter off heavy nuclei in the detector, the collision energy is transferred and make

nuclei slightly recoil. We are trying to measure the recoil energy. Suppose the DM mass

is about 100 GeV and the DM velocity at the sun location is estimated to be v ∼ 10−3c.

Then, the maximum recoiling energy of nucleon is given by Emax
DM = mDMv

2/2 ∼ 100

keV. This process is very rare. In order to increase the chance to capture DM particles,

the size of detectors needs to be very large to get a more or more stringent searching lim-

its. However, the DM direct detection is challenging because neutrons from radioactive

decays can also produce the similar signal as they are heavy and neutral. The back-

ground signal can be reduced by installing a detector underground or in environment

with low radioactivity. The measurement of the recoil energy faces the challenge because

of some theoretical uncertainties such as the local energy density of DM at the Earth’s

position and the DM velocity distribution.

Experimentally, the DM-nucleon scattering cross section can be divided into two groups

depending on the interaction nature of DM with nucleons. They are called the spin-

dependent and spin-independent ones. However, the spin-dependent cross section is

weaker than the spin-independent one. Thus, we will only discuss the spin-independent

cross section from now on. There are several experiments trying to find DM direct

detection signals which covers a wide range of DM mass from 0.1-1000 GeV as shown in

figure 1.10. For example, NEWS-G [72], CDMSLite [73], DarkSide-50 [74] have placed

the most stringent upper limits covering light DMmass below 5 GeV. For DMmass range

above 5 GeV, the experiments such as PandaX-II [45], LUX [75] and XENON1T [44]

have been conducted. The most stringent upper limit has been placed by the XENON1T.

However, in 2022, the most stringent upper limit is provided by the LZ experiments [71]



1.3. Dark matter 39

Figure 1.10: The upper bounds on the spin-independent DM-nucleon scattering cross
section as a function of DM mass in range of 0.1-100 GeV from multiple experiments.

Figure from [13].

Figure 1.11: The upper bounds on the spin-independent DM-nucleon scattering cross
section from LZ experiment. Figure from [71].

which is a successor of LUX as shown in figure 1.11. The most strongest limit is at the

DM mass around 30 GeV with the DM-nucleon scattering cross section ∼ 10−47 cm2.

1.3.5 Collider searches

The production of DM could be possible at collider environments. Various searches

for DM signals at LHC [76, 77, 78, 79] with the centre of mass energy of 13 GeV



40 Chapter 1. Introduction

and the integrated luminosity of 36 fb−1 have been conducted by ATLAS and CMS

collaborations. The DM signal can manifest in various forms depending on a DM model.

In general, the interaction between SM and dark sectors can take place in models with

Higgs or Z boson exchange, models with additional mediators and etc. Each model also

needs different search strategy. For example, DM might manifest as invisible particles

produced by a SM Higgs boson or Z boson or by an exotic resonances or the transverse

missing energy produced together with one SM particles or exotic state as a bump in

the dijets or dilepton invariant mass distribution [80].

Figure 1.12: The representative Feynman diagrams for mono-X and new mediator
searches. Figure from [80].

The search strategy at LHC can be divided into mono-X and mediator searches as

depicted in figure 1.12. In the former search, a pair of DMs is produced by annihilation

of a pair of SM particles like a pair of qq̄ and a pair of gg. However, since the DM

is blind to the detectors, this kind of signal is not informative as it can be mimicked

by neutrinos. Therefore, we need a detectable SM particle produced along with a pair

of DMs and then measure the missing transverse energy Emiss
T or missing transverse

momentum pmiss
T for the event. This search at ATLAS and CMS focus on the properties

of mediator (a scalar, a pseudo-scalar, a vector, or an axial-vector) and couplings to the

SM particles gq or to DM particle qχ. The search has placed the upper limits on the

production cross section of DM particles as a function of the mediator or DM masses.

The possible final states could be mono-jet, mono-γ, mono-Z, mono-Higgs, mono-top

and tt̄ + Emiss
T . The last two final state particles can occur for some models. In the

latter search, the annihilation of a pair of SM particles can lead to a creation of new

mediator between SM and dark sectors and then it will decay into a pair of SM particles

like qq̄ or ℓ+ℓ− in the final state. In this search, we look for a bump due to the new

resonance in the invariant mass or angular distribution for the final state particles. The

limits have been presented as ratio of production cross section of new mediator to that

of the SM particle and set the upper bounds on the resonance mass.

Unfortunately, no DM signals have been observed at the LHC experiment [13] so far.

However, the limits have been set on masses, couplings and cross section related to dark

sector. The latter can be complementary to the DM direct detection searches. Anyway,

even though we found a DM signal at LHC but this cannot be a proof of DM discovery.
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The signal has to be consistent with other DM searches like relic abundance, direct and

indirect detections.

1.4 The muon anomalous magnetic moment

The anomalous magnetic moment experiments of muons or the so-called muon g-2 exper-

iments have implies that a new physics beyond the standard model (BSM) is necessary.

The muons are electrically charged particles, like electrons. When entering a region

with external magnetic fields they behave like a small magnet. Typically, the magnetic

moment of an elementary particle like electron or muon is expressed in terms of the spin

magnetic moment which is defined as

µ⃗ = g
q

2m
S⃗, (1.143)

where the dimensionless parameter g is called the g-factor (not the gyromagnetic ratio

γ = gq/2m), q is the particle’s charge, m is the mass of a particle and S⃗ is its spin

angular momentum. The magnetic moment of a particle tells us how strong the particle

can interact with the external magnetic fields. According to the Dirac equation, the

g-factor of Dirac particles is predicted to exactly be 2 according to their two spin states

– up and down [81]. The magnetic moment is not only a particle’s properties related

to the electromagnetic interaction, but it can also imply the departure from a point-

like nature a particle of interest as predicted by Dirac’s equation. For example, the

g-factor of a single proton has been measured to be 5.585 696(50) [82]. However, the

experimental value of the muon magnetic moment is slightly greater than 2. Usually,

the experimentalists report the deviation of gµ from 2 in terms of

aµ ≡
gµ − 2

2
, (1.144)

which indicates the anomalous part of the measured value. This deviation cannot be

understoond within the SM framework even though the loop corrections at higher-orders

are included in the theoretical prediction. These precise experiments are not only a

validation of the SM, but also manifest a sign for new physics.

In this section, we discuss the brief account of the g-2 measurements and the SM predic-

tion. We will see later that the comparison between the averaged experimental result at

present and the theoretical prediction within the SM leads to the deviation at the level

of 5.0σ.
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1.4.1 The gµ − 2 measurements

After the discovery of muon by Carl D. Anderson and Seth Neddermeyer at Caltech

in 1936, physicists still wondered if they were just heavier copy of electrons or other

particles. Therefore, the measurement of muon g-2 is one of many experiments had

been performed to investigate its properties.

The CERN-I result of muon magnetic moment was published in 1965 [83] with precision

of 0.4 % by using a long dipole magnet of 1.6 T. In 1974, the storage ring technique

was developed and the relativistic muons was used to increase the observation time.

This technique was used in CERN-II and -III experiments with different radii and the

precision was improved to 270ppm and 7.3ppm, respectively. After the end of the

program on muon g-2 experiment at CERN, the Brookhaven National Laboratory (BNL)

was its successor and conducted the g-2 measurement with superconducting storage ring

magnet and more uniform magnetic field. This improved the experimental precision to

the level of 0.54 ppm. Then, the next experiment was built at Fermilab called the

Fermi National Accelerator Laboratory with better precision. The experimental setup

for aforementioned measurements is summarised in table 1.5.

Experiment Magnet Approach γµ δaµ/aµ

CERN I (1965) Long dipole magnet, B = 1.6 T µ injection 1 4000 ppm

CERN II (1974) R = 2.5 m storage ring, B = 1.71 T p injection 12 270ppm

CERN III (1978) R = 7.1 m storage ring, B = 1.47 T π injection 29.3 7.3ppm

BNL (2006) R = 7.1 m storage ring, B = 1.45 T µ injection 29.3 0.54ppm

FNAL Run-1 (2021) R = 7.1 m storage ring, B = 1.45 T µ injection 29.3 0.46ppm

FNAL Run-2/3 (2023) R = 7.1 m storage ring, B = 1.45 T µ injection 29.3 0.21ppm

Table 1.5: The summary of various experimental setups for muon g-2. Table from
[84].

The precession measurement of muon g-2

Let us consider a muon which is non-relativistically moving on a plane perpendicular to

the direction of external magnetic field B⃗. Then, the muon’s momentum rotates around

the magnetic field with the cyclotron frequency which is given by

ω⃗c =
eB⃗

m
. (1.145)

However, the magnetic moment of the muon is not necessarily aligned with the external

magnetic field, there is a precession of its magnetic moment about the B⃗ field with the
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Larmor precession frequency for the muon in its rest frame which is given by

ω⃗L = g

(︄
eB⃗

2m

)︄
= (1 + aµ)

(︄
eB⃗

m

)︄
. (1.146)

If g = 2, these two frequencies are exactly the same. However, from experiment on muon

g-2 this is not the case. For g > 2, the spin of muon turns faster than its momentum.

This difference can be explained by a quantity called the anomalous precession frequency

ω⃗a = ω⃗L − ω⃗c = aµ
eB⃗

m
. (1.147)

The underlying idea behind the experiments is to measure the angle between the spin

and the direction of motion of muon as a function of time [85] while moving in a circular

orbit under the magnetic field. If the anomalous g-2 is measured to be 10−3, this means

that in one cycle on the orbit the relative spin direction turns a thousand rounds under

the magnetic field. Therefore, to accurately measure the anomaly the muons need to be

stored long enough to make many thousands turns. However, this leads to a problem

because the lifetime of muon at rest is short about 2.2 microsecond. The muon’s lifetime

issue can be leviated by the time dilation effect when it moves with speed close to the

speed of light. This means that Eq.(1.145) has to be modified with the Lorentz factor γ

ω⃗c =
eB⃗

γm
, (1.148)

where γ = (1− β2)−1/2 and β⃗ is the muon’s velocity in the unit of speed of light.

The motion of the muon on the circular orbit gives rise to a relativistic effect. When

viewing from the laboratory frame, its rest frame appears to precess with the frquency

ω⃗T =

(︃
1− 1

γ

)︃
eB⃗

m
. (1.149)

This fact was discovered by Thomas in the context of electron spin in 1926 [86]. Thus,

the total angualar frequency of the spin is given by

ω⃗s ≡ ω⃗L − ω⃗T = (1 + aµ)

(︄
eB⃗

m

)︄
−
(︃
1− 1

γ

)︃(︄
eB⃗

m

)︄
=

(︃
aµ +

1

γ

)︃(︄
eB⃗

m

)︄
. (1.150)

Eq.(1.150) implies that the relativistic description does not affect the previous conclusion

where

ω⃗a = ω⃗s − ω⃗c = aµ

(︄
eB⃗

m

)︄
, (1.151)

which gives the same result as Eq.(1.147).



44 Chapter 1. Introduction

Figure 1.13: The schematic setup of the storage ring in FNAL experiment. Figure
from [84].

In the modern muon g-2 experiments like BNL and FNAL, the muon beams with chosen

spin-polarisation are injected into the storage ring through the inflector as depicted in

figure 1.13 and their spin evolution is tracked as they move on the ring. As muons move

in the region with uniform magnetic field B and the electric field is absent, assuming

that they only on a plane perpendicular to the B field β⃗ ·B⃗ ≈ 0 where β⃗ is the velocity of

muon, the anomalous frequency of muon spin precession is given by Eq.(1.151). However,

if the electric field is turned on and the muon beam is not exactly perpendicular to the

magnetic field, Eq.(1.151) becomes

ω⃗a ≡ ω⃗s − ω⃗c =
e

m

[︄
aµB⃗ − aµ

(︃
γ

γ + 1

)︃
(β⃗ · B⃗)β⃗ −

(︄
aµ −

1

γ2 − 1

)︄
β⃗ × B⃗

]︄
. (1.152)

When a positive muon travels on a circular ring for a time equal to its lifetime it will decay

to a positron and corresponding neutrinos. According parity-violating weak decays,

µ+ → e+ν̄µνe, the muon will preferably inject a high energy positron in the same

direction of its spin in the muon rest frame. However, in the lab frame, the angle

between muon’s spin and momentum can affect the positron energy spectrum. This

allows us to measure the evolution of positron energy spectrum as muon beams move

around the ring. This energy is measured by many calorimeters placed around the

interior of the ring. The energy of positron is the highest when the muon’s spin and

momentum are pointing in the same direction. Thus, the number of positrons which is

detected at time t is given by

N(t) = N0e
−t/τ [1 +A cos (ωat+ ϕ)], (1.153)
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where N0 is the normalisation constant, A is the muon decay asymmetry and τ is the

lifetime of muon.

The current experimental results from the E821 at BNL for both positive and negative

muons were reported to be [13]

aexp,BNL
µ+

= 116 592 040(60)(50)× 10−11,

aexp,BNL
µ− = 116 592 150(80)(30)× 10−11, (1.154)

where the numbers in first and second brackets indicate the statistical and systematic

errors. In addition, the result at Fermilab from Run I, II and III is combined to be

aexp,FNAL
µ = 116 592 055(24)× 10−11. (1.155)

Therefore, the averaged value of the muon anomalous magnetic moment from BNL and

FNAL experiments is given by [87]

aexpµ = 116 592 059(22)× 10−11. (1.156)

The current status of the experimental findings from BNL and FNAL Run 1-3 is pre-

sented in figure 1.14. The central value for BNL, FNAL Run-1, FNAL Run-2/3 FNAL

Run-1 + Run-2/3 and the current experimental average is indicated by the blue trian-

gle, red hollow square, red dot and purple square, respectively. The uncertainties are

presented as horizontal lines. The statistical uncertainty is labeled by the small tick on

the horizontal lines while the purple band indicates the total uncertainty.

Figure 1.14: The comparison of experimental fidings from different muon g-2 mea-
surements. Figure from [87].
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1.4.2 The standard model prediction of g-2

Classically, the Dirac equation predicts the g-factor (g = 2) for any fermions. However,

due to the quantum effect, at higher order correction of µµγ vertex, the vertex function

is modified because muon interacts with virtual particles circulating in the loops at

higher order. In order to determine the quantum effect on the muon magnetic moment,

we need to evaluate the radiative correction of µµγ vertex.

Generically, the vertex function Γµ(p′, p) can be separated into many parts

Γµ =γµF1(q
2) +

iσµνqν
2mµ

F2(q
2) +

qµ

mµ
F3(q

2)

+ (γµ − /qqµ

q2
)γ5G1(q

2) +
iσµνqνγ5
2mµ

G2(q
2) +

qµ

mµ
γ5G3(q

2). (1.157)

where p and p′ represent the momentum of incoming and outgoing muons, respectively.

The momentum q is equal to p− p′. The quantities F1, F2, G1 and G2 are called Dirac,

Pauli form factor, Anapole and electric dipole moment (EDM), respectively. The only

form factor contributing to the anomalous magnetic moment is called the Pauli form

factor or F2(0) and is given by

aµ =
gµ − 2

2
≡ F2(0), (1.158)

where gµ is called the g-factor which tells us how strong the muon can interact with the

magnetic field.

At one loop, the Γµ(p′, p) can be computed by evaluating the relavant Feynmann diagram

as shown in figure 1.15. The expression for anomalous magnetic moment of a generic

fermion was computed in [88]. Let us consider a model with Lagrangian

Lint =
∑︂
F,X

µ̄[CV γ
ρ + CAγ

ργ5]FXρ, (1.159)

where F and X are a generic fermion and vector boson, respectively. Here CV and CA

stand for the vector and axial-vector couplings. The result for diagram 1.15(a) and (b)
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µ µ
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µ

F
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H H
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µ µ

γ

F F

H

(d)

Figure 1.15: The contributing diagrams to the µµγ vertex at the leading order from
QED and electroweak sectors. Here X, F and H represent generic vector, fermion and

scalar fields, respectively.

is given by

a(a)µ = −
qFm

2
µ

4π2

∫︂ 1

0
dx

[︄
C2
V

{︄
(x− x2)

(︄
x+

2mF

mµ
− 2

)︄

− 1

2M2
X

(︄
x3(mF −mµ)

2 + x2(m2
F −m2

µ)

(︃
1− mF

mµ

)︃)︄}︄

+ C2
A{mF → −mF }

]︄[︂
m2
µx

2 +M2
X(1− x) + x(m2

F −m2
µ)
]︂−1

, (1.160)

a(b)µ =
qXµ

2

8π2

∫︂ 1

0
dx

[︄
C2
V

{︄
4mF

mµ
x2 − 2x2(1 + x)

+
m2
µ

M2
X

[︄
− x2(x− 1)− mF

mµ
(−2x3 + 3x2 − x)− m2

F

m2
µ

(2x− 3x2 + x3)

+
m3
F

m3
µ

(x− x2)
]︄}︄

+ C2
A{mF → −mF }

]︄[︂
m2
µx

2 + (M2
X −m2

µ)x+m2
F (1− x)

]︂−1
,

(1.161)

where qF is the electric charge of F in unit of |e|. The mµ, mF and MX are the mass of

muon, fermion F and vector boson X, respectively. The term {mF → −mF } represents
all previous term but with the opposite sign of internal fermion mass. These two results

have been cross-validated with the ones I derived in Appendix F.
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For the scalar contribution with Lagrangian

LYukawa =
∑︂
F,H

µ̄[CS + CPγ
5]FH, (1.162)

the results for diagrams with scalar propagation as depicted in figure 1.15(c) and (d)

read

a(c)µ = −
qHm

2
µ

8π2

∫︂ 1

0
dx

[︄
C2
S

{︄
x3 − x2 + mF

mµ
(x2 − x)

}︄
+ C2

P {mF → −mF }
]︄

×
[︂
m2
µx

2 + (m2
H −m2

µ)x+m2
F (1− x)

]︂
, (1.163)

a(d)µ = −
qFm

2
µ

8π2

∫︂ 1

0
dx

[︄
C2
S

{︄
x2 − x3 + mF

mµ
x2

}︄
+ C2

P {mF → −mF }
]︄

×
[︂
m2
µx

2 + (m2
F −m2

µ)x+m2
H(1− x)

]︂
, (1.164)

where CS and CP are the scalar and pseudo-scalar couplings. After integrating over the

Feynman parameter x, the result of a
(d)
µ has been checked against Eq.(F.25).

Figure 1.16: The SM diagrams contributing to the muon anomalous magnetic moment
at one loop. Figure from [13]

In principle, the SM calculation for the muon anomalous magnetic moment can be

separated into three parts, which are the pure QED, the electroweak and the hadronic

contributions [13]. In the SM, the one loop contributions from QED diagram can be

calculated by Eq.(1.160) and is given by

aQED
µ [1-loop] =

α

2π
. (1.165)

This first expression was originally calculated by Julian Schwinger in his 1948 paper [89].

Nowadays, however, we are able to evaluate the pure QED contribution up to five

loops [90] and it reads

aQED
µ =

α

2π
+ 0.765 857 420(13)

(︂α
π

)︂2
+ 24.050 509 85(23)

(︂α
π

)︂3
+ 130.8782(60)

(︂α
π

)︂4
+ 751.0(9)

(︂α
π

)︂5
+ · · · (1.166)

= 116 584 718.93(0.10)× 10−11. (1.167)
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In addition, the one loop results for EW contributions read

aEWµ [1-loop] =
GFm

2
µ

8
√
2π2

[︄
5

3
+

1

3
(1− 4 sin2 θW )2 +O

(︄
m2
µ

M2
W

)︄
+O

(︄
m2
µ

M2
H

)︄]︄
, (1.168)

= 194.8× 10−11. (1.169)

This result is easily found by substituting the SM couplings into Eq.(1.160), (1.161) and

(1.164) and expanding it in the limit of m2
µ/m

2
W ≪ 1 and m2

µ/m
2
H ≪ 12. Now we have

the EW result up to two loop contribution and it reads

aEWµ = 153.6(1.0)× 10−11. (1.170)

Note that errors in QED and EW results are small because the parameters used in those

expressions are very-well measured.

However, this is not the case for the hadronic contribution because of the large uncer-

tainty. The leading order diagrams from hadronic part is depicted in figure 1.16(d).

Traditionally, the data-driven dispersion relation approach is used to compute the lead-

ing order contribution by relying on the data of of e+e− annihilation cross section into

hadrons. The hadronic vaccuum polarisation contribution at leading order is given

by [91]

ahadµ [LO] =
1

3

(︂α
π

)︂2 ∫︂ ∞

m2
π

ds
K(s)

s
R(0)(s),

= 6 931(40)× 10−11. (1.171)

The function K(s) ∼ 1/s is called the QED kernel function at low energy and R(0)(s) is

the ratio of cross section of e+e− annihilation into hadrons to that into muons which is

dominated by the resonance of ρ(770) → π+π−. Recently, the hadronic contribution is

calculated up to next to next to leading order (NNLO) and reads

ahadµ [NNLO] = 6(18)× 10−11. (1.172)

Therefore, the sum of all three contributions leads to

aSMµ = 116 591 810(43)× 10−11. (1.173)

The large uncertainty appears in the SM results mainly originates from the hadronic vac-

uum polarisation (HVP) contribution [90] based on the data-driven approach. However,

there is a different approach for computing this contribution which relies on the lattice

QCD simulation. This approach has been used by several groups [93, 94, 95, 96, 97].

2The loop function is highly unstable in the region with large mass hierarchy.
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Figure 1.17: The comparison between data-driven and lattice QCD approaches as
labelled by red and green, respectively. Figure from [92].

However, the lattice simulation results from these collaborations (labelled by BMWc’17,

RBC’18, ETM’19, FHM’19, Mainz’19, BMWc’20) gave a large uncertainty and are

not comparable to the data-driven or R-ratio results (labelled by CHHKS’19, KNT’19,

DHMZ’19) as indicated by figure 1.17. The no new physics blue region in figure 1.17

corresponds to the value of the leading order HVP contribution that would explain the

gµ − 2 experimental result. Recently, the uncertainty from HVP contribution has been

considerably reduced according to the BMW result [92] which relaxes a tension between

the measurement and SM prediction to the 1.5σ significance. Nevertheless, this result

leads to another tension with electroweak global fits which changes the running of fine

structure constant ∆α
(5)
had [98]. In addition, the latest BMW result has not yet been con-

firmed by other groups. Therefore, it is uncertain whether or not their result is correct.

Until we can confirm their finding, the result from data-driven approach will be used in

this thesis.

When comparing the SM prediction to the experimental result in Eq.(1.156), it follows

that

∆aµ = aEXP
µ − aSMµ = 249(48)× 10−11, (1.174)

which leads to the 5σ departure from the SM prediction. This number will be used in

the chapter 4 when we discuss the phenomenology of the muon portal to vector dark

matter scenario.
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Chapter 2

Theoretical setup for Vector Dark

Matter with Fermionic portal

2.1 Introduction

The Standard Model (SM) of particle physics describes fundamental particle fields and

their interactions under strong, Electro-Magnetic (EM) and weak forces using the sym-

metry principle of gauge invariance. Furthermore, through the so-called Higgs mech-

anism, triggering Electro-Weak Symmetry Breaking (EWSB), the last two forces are

actually unified into a single EW force. Given the particle content and charges under

the gauge group of the SM, SU(3)C × SU(2)L × U(1)Y , some of the particles in it are

stable either due to the (unbroken) gauge symmetries themselves (such as the gluons

and photon) or due to the fact that they are the lightest ones obeying a conservation

law (charge or number conservation) such as the electron and its neutrino. The latter

is of some importance here, as the analysis of the gravitational interactions at different

scales in the Universe implies the existence of matter without EM interactions, called

Dark Matter (DM), for which a particle interpretation is a natural possibility in the

framework of the SM. So far, the only viable candidate is the aforementioned neutrino,

alas, it is not compliant with corresponding experimental observations. Hence, leaving

aside other shortcomings of it, there is an obvious need to surpass the SM.

We consider here DM as a vector (spin-1) gauge particle. Such a theoretical construction

is extremely well motivated whilst being constrained in the possible model building

choices. The Higgs portal is the simplest and most favoured mechanism to connect

a dark sector where the DM is represented by a new gauge boson which gets its mass

through a new scalar, that breaks the gauge symmetry through the Higgs mechanism. In

this mechanism the quartic interaction involving two new scalars and two Higgs bosons,

|S|2|H|2, is not protected by any symmetry, and is the minimal way of connecting the

visible with the invisible sector. The Higgs portal, however, might not be the dominant



52 Chapter 2. Theoretical setup for Vector Dark Matter with Fermionic portal

connection between the two sectors. It induces a mixing in the scalar sector modifying

the Higgs couplings to the SM particles and generating Higgs-DM interactions, which

are strongly constrained [99]. The size of the dimensionless coupling of the quartic

interaction, which in principle can have any value, is thus constrained to be small to

respect the size of the scalar mixing. This makes the detection of signatures from

the dark sector extremely challenging. For the non-Abelian case it is also possible

to construct kinetic-mixing terms, which are however non-renormalisable and hence

suppressed by the scale of new physics. All these scenarios have been extensively studied

in literature [100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,

115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125].

Other mediation mechanisms can however be present in case of vector DM, noticeably in-

volving the fermionic sector [126, 125]. The fermionic mediator which was studied in the

context of scalar DM is well motivated theoretically [127, 128] and provides interesting

phenomenology with well-defined parameter space [129, 130, 131, 132]. The interaction

of vector DM with SM fermions is also well motivated from the phenomenological point

of view: most of the current anomalies observed in SM measurements are associated

with the fermion sector (especially with the lepton one) [133]. Also, the new fermions

might also play a role in the radiative shift of the W boson mass, for which a sizeable

discrepancy with respect to the SM expectation has been recently reported by [134].

Scenarios with Vector-Like (VL) fermion portals, but for scalar DM candidates, have

also been explored in the literature [135, 136]. Some version of a non-Abelian vector

DM scenario connected to the SM through the Higgs portal and the fermionic sector

was suggested in [126], to explore EM multipole interactions of DM candidates, where

the authors introduced two new fermionic multiplets (a doublet Ψℓ and a singlet Ψe).

Moreover, they assumed a negligibly small Higgs portal, so that the main connection to

the SM is at one-loop level via the new fermions. In that paper the authors also assumed

vanishing Yukawa terms between new and SM fermions (yΨ̄ℓ(iτ2Φ
∗
D)ℓR) where ℓR is the

right-handed lepton. However, the new Yukawa terms are introduced due to the mixing

between two new fermion multiplets.

In this chapter, we propose a new minimal framework for Fermion Portal Vector DM

(FPVDM) (albeit closely related to that of [126]) which incorporates just one dark

doublet of VL fermions. The FPVDM scenario relies crucially on the mixing of one of

the fermions from the dark doublet with one or more SM fermions sharing the same

electric charge, and this mixing provides the tree-level portal connecting dark and SM

sectors. Unlike the previous work, we consider the effect of Yukawa terms between new

and SM fermions. Also, we include the results from the Z boson propagating diagrams

which is not considered in [126]. Therefore, our model is more minimal in the theoretical

setup and we further investigate the effect of Z boson propagation together with the

photon. In addition we have formulated the complete Lagrangian for this FPVDM

framework, together with the necessary conditions and dark charge assignments which
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guarantee the stability of vector DM, ensuring the consistency of the new framework

suggested in our approach. In our setup the elements of doublet VL fermions have

different charges under a new “dark” SU(2) group and are singlets under the SU(2)L

group of the SM. The elements of the fermionic doublet have opposite Z2 parity. This

parity emerges as a subgroup of a new global U(1)globalYD
symmetry, which has to be

imposed to ensure the stability of the dark sector, and for which different members

of SU(2)D multiplets transform differently depending on the third component of their

dark-isospin (D-isospin). The U(1)globalYD
global symmetry can in principle be promoted

to a local symmetry and gauged, generating a new massless gauge boson besides the

DM candidate.

The plan of this chapter is as follows. In section 2.2 we give a detailed description

of the class of models we propose. In the following section 2.3 we further discuss the

possibility of gauging the U(1)globalYD
global symmetry of the model which would provide

a natural symmetry behind the stability of DM. In section 3.1 we discuss the case of a

particular realisation of our model, in connection with new interesting collider features.

In this scenario we invoke a top-quark portal and eliminate any mixing between SM

and dark Higgs bosons. We discuss various aspects of phenomenological implications of

this specific top-portal scenario (a selection of such results is presented in Ref. [137]).

Finally, in chapter 5 we summarise our findings on the new FPVDM framework and our

particular realisation of it.

2.2 The dark sector and its interactions with the SM

We start by considering a new dark SU(2) group – the simplest non-Abelian group in

terms of number of generators – which we label as SU(2)D. The gauge bosons associated

with the SU(2)D before symmetry breaking are labelled as VDµ =
(︂
V +
Dµ, V

0
Dµ, V

−
Dµ

)︂T
,

where, here and in the following, the superscript identifies the QD charge (see the discus-

sion about this charge below)1. The full covariant derivative, including the SM terms,

is

Dµ = ∂µ −
(︃
i
g√
2
W±
µ T

± + igW 3
µT3 + ig′Y Bµ

)︃
−
(︃
i
gD√
2
V ±
DµT

±
D + igDV

0
DµT3D

)︃
, (2.1)

where g and g′ are, respectively, the weak and hypercharge coupling constants, gD is

the SU(2)D coupling constant, T3 and Y are the weak-isospin and weak-hypercharge,

respectively, while T3D is the dark-isospin third component of SU(2)D. The indices of

the TD matrices act only on the SU(2)D elements and are diagonal with respect to the

SU(2)L ones while the indices of the T matrices act only on the SU(2) elements and

are diagonal with respect to SU(2)D. The SU(2)D symmetry needs to be spontaneously

1In order to indicate particles carrying the dark QD charge (a superscript), we use a subscript D on
them.
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broken to generate a mass for its gauge bosons. Two complex scalar doublets are thus

needed for the breaking of SU(2)L and SU(2)D, respectively:

ΦH =

(︄
ϕ+

ϕ0

)︄
−→ ⟨ΦH⟩ =

1√
2

(︄
0

v

)︄
(breaking SU(2)L × U(1)Y ) , (2.2)

ΦD =

(︄
φ+
D

φ0
D

)︄
−→ ⟨ΦD⟩ =

1√
2

(︄
0

vD

)︄
(breaking SU(2)D × U(1)globalYD

) . (2.3)

The full scalar potential has the following form:

V (ΦH ,ΦD) = −µ2Φ†
HΦH − µ2DΦ

†
DΦD + λ(Φ†

HΦH)
2 + λD(Φ

†
DΦD)

2

+λHD(Φ
†
HΦH)(Φ

†
DΦD) , (2.4)

where the last term provides the interaction between ΦH and ΦD (the Higgs portal).

In the unbroken phase the Lagrangian of ΦD is invariant under a SO(4) ∼ SU(2) ×
SU(2) global symmetry. One of the two SU(2) is gauged to be SU(2)D. The Vacuum

Expectation Value (VEV) of ΦD selects a direction in the scalar field space keeping three

unbroken generators and leaving an unbroken global symmetry, the custodial symmetry

associated with the diagonal SU(2), SO(4) → SO(3) ∼ SU(2)diag. In the absence of

new fermions, this custodial symmetry ensures the stability of the new (dark) gauge

bosons [101].

We stress here that the quartic term Φ†
HΦHΦ

†
DΦD is in general not protected by any

symmetry and therefore cannot be removed altogether from the Lagrangian. A key

point of the model, however, is that this portal does not need to play an important role

and can indeed be negligible with respect to the other operators of the potential. The

connection between the dark sector and the SM is realised via two new VL fermions,

singlets of SU(2)L but with a U(1)Y hypercharge identical to one of the corresponding

right-handed SM fermions. These VL fermions form a doublet under SU(2)D, labelled

as Ψ = (ψD, F ). The respective mass terms and Yukawa interactions of the new fermion

sector have the following form:

−Lf =MΨΨ̄Ψ + (y′Ψ̄LΦDf
SM
R + h.c) , (2.5)

where fSMR generically denotes a SM right-handed singlet and y′ is a new Yukawa coupling

connecting the SM fermion with Ψ through the ΦD doublet. The absence of an additional

Yukawa term y′′Ψ̄LΦ
c
Df

SM
R , which would violate the stability of DM, is protected by the

presence of the unbroken global U(1)globalYD
. Without this symmetry such a term would

be compulsory since the scalar doublet, ΦD, is in the pseudo-real representation. Under

this global U(1)globalYD
= eiΛYD , the new fields transform non trivially, whilst the SM fields

transform into themselves.
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In analogy with the SM, where the SU(2)L × U(1)Y symmetry breaks down to the EM

U(1), the vacuum state of ΦD is invariant under a residual U(1), which in this case is

global. The invariance of the VEV under the transformation eigDα⃗·τ⃗eiΛYD , is ensured if

the relations gDα3 = Λ and (T 3
D + YD)⟨ΦD⟩ = 0 are satisfied, leading to the assignment

YD = 1/2 for ΦD. The breaking pattern in the dark sector is therefore SU(2)D ×
U(1)globalYD

→ U(1)globalQD
associated with the diagonal generator SU(2)D×U(1)globalYD

with

a conserved quantum number QD = T3D + YD, the dark charge of the new particles.

For this reason, different elements of SU(2)D multiplets have different transformation

properties under the residual U(1)globalQD
, and with the assignment YD = 1/2 for doublets

and YD = 0 for triplets, a Z2 subgroup can be defined as

Z2 : (−1)QD , (2.6)

under which different members of SU(2)D multiplets transform differently, guaranteeing

the stability of the lightest Z2 odd state. Specifically, SU(2)D doublets always contain a

Z2-odd and Z2-even component, while SU(2)D triplets have a (− + −) transformation

structure. Clearly, the analogies with the SM EM U(1) can be exploited further by

promoting the global U(1)globalYD
to a local symmetry and gauging it. This leads to the

presence of renormalisable kinetic mixing between the SM and dark U(1)globalYD
groups in

the unbroken phase. This aspect will be addressed in section 2.3, but such a construction

and its phenomenological consequences is not part of the FPVDM scenario suggested

here, and therefore will not be explored in detail.

The particle content of the model is summarised in Table 2.1.

After imposing the dark charge conservation, ensuring the stability of the lightest particle

in the dark sector which is odd under Z2, the most general Lagrangian for this scenario,

which is composed of field strength tensors for the vectors (SM and dark), the kinetic

and mass terms for the fermions and the scalars, the Yukawa terms and the potential

for ΦH and ΦD, takes the following form:

LD ⊃ −1

4
(V i
µν)

2|B,W i,V 0i
D ,V ±

D
+ f̄

SM
i /DfSM + Ψ̄i /DΨ+ |DµΦH |2 + |DµΦD|2 − V (ΦH ,ΦD)

− (yf̄
SM
L ΦHf

SM
R + y′Ψ̄LΦDf

SM
R + h.c)−MΨΨ̄Ψ , (2.7)

with the covariant derivative and scalar potential given in Eq.(2.1) and Eq.(2.4), respec-

tively.

The lightest Z2-odd particles can be either the V ±
Dµ dark gauge bosons, or ψD. If it is

ψD, it can be either a partner of a) SM quarks, b) charged leptons or c) neutrinos. In

case a) the DM candidate would form a stable bound state with SM quarks, in case b)

the model would be excluded because the DM would be electrically charge, while in case

c) the DM would be a neutrino partner. Conversely, if the lightest Z2-odd particle is
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Scalars SU(2)L U(1)Y Q SU(2)D U(1)YD QD Z2

ΦH =

(︃
ϕ+

ϕ0

)︃
2 1/2

1
0

1 0 0 +

ΦD =

(︃
φ+
D

φ0
D

)︃
1 0 0 2 1/2

1
0
−
+

Vectors SU(2)L U(1)Y Q SU(2)D U(1)YD QD Z2

Wµ =

⎛⎝W+
µ

W 3
µ

W−
µ

⎞⎠ 3 0
1
0
−1

1 0 0 +

Bµ 1 0 0 1 0 0 +

VDµ =

⎛⎝V +
Dµ

V 0
Dµ

V −
Dµ

⎞⎠ 1 0 0 3 0
1
0
−1

−
+
−

Fermions SU(2)L U(1)Y Q SU(2)D U(1)YD QD Z2

fSML =

(︃
fSMu,ν
fSMd,ℓ

)︃
L

2 1
6 ,−1

2

2
3
−1

3

,
0
−1 1 0 0 +

uSMR , νSMR 1 2
3 , 0

2
3 , 0 1 0 0 +

dSMR , ℓSMR 1 −1
3 ,−1 −1

3 ,−1 1 0 0 +

Ψ =

(︃
ψD
F

)︃
1 Q Q 2 1/2

1
0
−
+

Table 2.1: The quantum numbers under the EW and dark gauge group SU(2)D ×
U(1)globalYD

of the particles of the model, and their Z2 parity.

V ±
Dµ, the DM is a massive dark gauge boson. It is this this scenario, labelled as Fermion

Portal Vector Dark Matter (FPVDM), which we discuss in the rest of this paper.

2.2.1 Kinetic mixing in the unbroken EW and dark phases

We discuss here in more detail the origin of the kinetic mixing at loop level. The two

scalar doublets are secluded with respect to one another in the sense that the SM one

has no dark quantum numbers (singlet with respect to SU(2)D) and the SU(2)D one

has no SM quantum numbers (transforming as a singlet with respect to the SM). The

operators giving rise to kinetic mixing in the effective Lagrangian are of dimension-six

for U(1)Y and dimension-eight for SU(2)L and, in our case, have the form

VµνaD Φ†
Dk(σ

a)klΦDl

(︂κW
Λ4

W b
µνΦ

†
Hi(σ

b)ijΦHj +
κB
Λ2
Bµν

)︂
, (2.8)

where σa is a Pauli matrix generator of SU(2)D and σb is a generator of SU(2)L. Here,

VµνaD is the field strength tensor of SU(2)D and W b
µν and Bµν are, respectively, the

field strength tensors of SU(2)L and U(1)Y . The kinetic mixing term is obtained upon

inserting the VEVs of the Higgs doublets but, as already indicated, the operator is
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suppressed through the fourth power of the large scale Λ. Concerning the origin of

this effective operator in our model, the suppression can be estimated with a one-loop

two-point function mixing the two types of gauge bosons, SU(2)L×U(1)Y and SU(2)D.

Figure 2.1: Loop realisation of the kinetic mixing operators for U(1)Y and SU(2)L
in the unbroken EW and dark symmetry phases.

The fermion loops with VEV insertions allows the two types of gauge bosons to connect,

as shown in figure 2.1, and the interactions are expected to be of order

1

16π2M2
Ψm

2
f

y′2g′ gDv
2
D (for U(1)Y − SU(2)D mixing) (2.9)

and
1

16π2M2
Ψm

4
f

y2y′2g gDv
2v2D (for SU(2)L − SU(2)D mixing) , (2.10)

where MΨ is the mass of the VL fermion Ψ with both weak hypercharge and SU(2)D

quantum numbers coupling with a Yukawa type term y′ to the Higgs sector.2 A

gauge mixing term is also possible using the quartic term in the scalar potential –

λHDΦ
†
HΦH Φ†

DΦD– but its contribution is more suppressed as it arises at two-loop

level. In the broken phase, a kinetic mixing arises between the electrically neutral mass

eigenstates [138, 139, 126, 140]. This is described in more detail in section 2.2.3.2 and

has important phenomenological consequences.

2.2.2 Electroweak and dark symmetry breaking

The minimum of the potential reads as

V (ΦH ,ΦD)min = −µ
2

2
v2 − µ2D

2
v2D +

λ

4
v4 +

λD
4
v4D +

λHD
4

v2v2D (2.11)

2Notice that the Yukawa parameters determine the masses of both Z2-even fermions, and their ex-
pression is a function of all fermion masses. Therefore, Eq.(2.9),(2.10) are finite in the limit mf → 0:
this can be verified by substituting the explicit expressions of the Yukawa couplings (see Eq.(2.22)) and
consider that, in the the same limit, the two elements of the VL fermion doublet become degenerate.
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and the minimisation conditions are

v(−µ2 + λv2 +
1

2
λHDv

2
D) = 0 and vD(−µ2D + λDv

2
D +

1

2
λHDv

2) = 0 (2.12)

whilst the two non-trivial stationary points are

v =

√︄
4λDµ2 − 2λHDµ2D

4λλD − λ2HD
and vD =

√︄
4λµ2D − 2λHDµ2

4λλD − λ2HD
, (2.13)

where the VEVs are taken to be positive without loss of generality. They are minima

if the corresponding Hessian matrix is positive definite (i.e., if its eigenvalues are both

positive, being a symmetric matrix),

H|vmin,vDmin =

(︄
3λv2 − µ2 + λHD

2 v2D λHDvvD

λHDvvD 3λDv
2
D − µ2D + λHD

2 v2

)︄
, (2.14)

which leads to the following conditions for the Lagrangian parameters:

µ ̸= 0 and µD ̸= 0 and

⎧⎪⎨⎪⎩
λHD < 0 and λ > 0 and λD > 0 and λ2HD < 4λλD

or

λHD > 0 and 2λµ2D > λHDµ
2 and 2λDµ

2 > λHDµ
2
D

.(2.15)

Finally, if the Higgs quartic coupling vanishes, λHD = 0, the system simply reduces to

two independent potentials, V (ΦH ,ΦD) = V (ΦH) + V (ΦD), where the two terms have

identical structure, corresponding to the SM one, and where the minima are simply

defined as:

v = ±
√︃
µ2

λ
and vD = ±

√︄
µ2D
λD

. (2.16)

2.2.3 Particle spectrum of the model

The model contains new scalar, fermion and vector states. The scalar and fermion ones

can mix with SM objects, while the vectors undergo kinetic and mass mixing in the

broken EW and dark phases, potentially affecting observables primarily sensitive to the

SM itself. In this section, the structure of each particle sector is thus carefully described.

2.2.3.1 Fermions

The fermion component with T3D = +1/2 gets only the VL mass, therefore

mψD =MΨ , (2.17)
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whereas the other fermion masses are generated after both scalars acquire a VEV. The

fermionic mass matrix reads as follows:

Lfm = (f̄
SM
L FL)MF

(︄
fSMR
FR

)︄
, with MF =

(︄
y v√

2
0

y′ vD√
2

MΨ

)︄
. (2.18)

This mass matrix describes the mixing of a VL fermion with a SM fermion but, unlike

in well-known VL scenarios where the new states mix with SM fermions via the Higgs

boson, in this case the mixing is driven by ΦD and the non-zero off-diagonal element

is proportional to vD. The mass matrix can be diagonalised by two unitary matrices,

VL,R, leading to the mass eigenstates f and F , where f identifies the SM fermion and

F its heavier partner:

Lfm = (f̄LFL)Md
F

(︄
fR

FR

)︄
= (f̄LFL)V

†
fLMFVfR

(︄
fR

FR

)︄
. (2.19)

The two rotation matrices

VfL =

(︄
cos θfL sin θfL

− sin θfL cos θfL

)︄
, and VfR =

(︄
cos θfR sin θfR

− sin θfR cos θfR

)︄
, (2.20)

diagonalise the productsMd
FM

d†
F andMd†

FMd
F , respectively, and the mass eigenvalues

are:

m2
f,F =

1

4

[︃
y2v2 + y′2v2D + 2M2

Ψ ∓
√︂
(y2v2 + y′2v2D + 2M2

Ψ)
2 − 8y2v2M2

Ψ

]︃
. (2.21)

The fermion sector therefore contains the SM fermion with mass mf , a Z2-even partner

with mass mF and a Z2-odd partner with mass mψD . The mass hierarchy is mf <

mψD ≤ mF . This is the choice that we make based on the phenomenological reason

in which vector-like fermion searches provide the lower limits on mass above the SM

partners. Another possible hierarchy is mF < mΨ < mf which is excluded by collider

searches.

It is possible to trade the Yukawa parameters for the masses of the physical fermions

{mf ,mψD ,mF } as:

y =
√
2
mfmF

mψDv
, y′ =

√
2

√︂
(m2

F −m2
ψD

)(m2
ψD
−m2

f )

mψDvD
. (2.22)

The mixing angles can also be expressed as function of the masses as:

sin2 θfL =
m2
f

m2
ψD

m2
F −m2

ψD

m2
F −m2

f

, sin2 θfR =
m2
F −m2

ψD

m2
F −m2

f

. (2.23)
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The left-handed mixing angle is suppressed by the m2
f/m

2
ψD

ratio. This feature is dif-

ferent from the usual scenarios where a SU(2)L-singlet VL fermion is added to the SM

and allowed to mix with SM fermions and where the right-handed mixing angle is sup-

pressed [141]. In this case, despite the fact that ψ is a singlet under the SM gauge

group, the mixing is driven by the SU(2)D fermion doublet Ψ and the SU(2)D scalar

doublet ΦD, the elements of which are also singlets under the EW gauge group and

hence involves a right-handed SM fermion.

Finally, the new fermion sector is completely decoupled in the limit mF = mψD , for

which y = ySM =
√
2
mf
v , y′ = 0, sin θfL = sin θfR = 0, so that the pure SM scenario is

restored.

2.2.3.2 Gauge bosons

The kinetic Lagrangian of ΦH and ΦD evaluated at the minimum of the scalar potential

reads as follows:

LkinS |v,vD ⊃ (V0SM)TM2
V0
SM
V0SM +

1

4
g2v2W+W− +

1

8
g2Dv

2
D(V

0
D)

2 +
g2D
4
v2DV

+
D V

−
D , (2.24)

where V0SMµ = (Bµ W
3
µ)
T . At tree level, the SM gauge bosons are not affected by the

new ΦD scalar, and therefore their masses correspond to the SM values, while the gauge

bosons of SU(2)D are all degenerate and their masses are

mV ≡ mV ±
D

= mV 0
D
=
gD
2
vD . (2.25)

The only electrically neutral massive Z2-odd states of FPVDM scenarios are the SU(2)D

gauge bosons V ±
D , which are thus identified as DM candidates.

The degeneracy in mass is broken at loop level by different effects. In the following, for

making the notation more compact, we will label the two gauge bosons as:{︄
V ±
D± ≡ V

(∗)
D with mass mVD

V 0
D ≡ V ′ with mass mV ′

.

First of all, in the broken EW and dark gauge symmetry phases, a kinetic mixing arises

between V ′ and both photon and Z boson [138, 139, 126, 140]. Using analogous notation

to [140], and assuming only one VL fermion doublet under SU(2)D exists, the kinetic

mixing parameters ϵAV and ϵZV entering the kinetic mixing matrix

V KM =

⎛⎜⎜⎜⎝
1 0 − ϵAV√

1−ϵ2AV −ϵ2ZV
0 1 − ϵZV√

1−ϵ2AV −ϵ2ZV
0 0 1√

1−ϵ2AV −ϵ2ZV

⎞⎟⎟⎟⎠ , (2.26)
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Figure 2.2: The Feynman diagrams contributing to mass corrections and mixing of
SU(2)D vector bosons, V ′, Z, γ (left) and VD (right) at one loop level. Z2-odd particles

are highlighted in red.

which rotates the (Aµ Zµ V ′
µ) vector of gauge eigenstates, are determined by loops

involving the only three fermions charged under the SM and dark gauge groups, f , F

and ψD, as shown in figure 2.2. The scalar fields do not contribute due to the fact that

neither ΦH nor ΦD transform under the SM and dark gauge groups at the same time.

These loops can be evaluated separately for the AV and ZV mixings using the general

expression of the gauge boson vacuum polarisation tensor provided in [142]. For the

AV mixing the tensor is purely transverse and in the q2 → 0 limit reads ΠAVT ∼ q2ϵAV ,
where

ϵAV =
gDeQf
8π2

∑︂
i=f,F,ψD

(V 2
Li + V 2

Ri)T
3
Di ln

m2
i

µ2

=
gDeQf
8π2

[︄
−1

2
(sin θ2fL + sin θ2fR) ln

m2
f

µ2
− 1

2
(cos θ2fL + cos θ2fR) ln

m2
F

µ2
+ ln

m2
ψD

µ2

]︄

=
gDeQf
16π2

[︄
m4
ψD
−m2

fm
2
F

(m2
F −m2

f )m
2
ψD

ln
m2
f

m2
F

+ 2 ln
m2
ψD

mfmF

]︄
≡ gDeQf

16π2
FAV (rf , rψD) , (2.27)

with {c, s, t}W ≡ {cos, sin, tan}θW , rf = mf/mψD and rψD = mψD/mF . The loop

function

FAV (rf , rψD) =
r2ψD − r

2
f

1− r2fr2ψD
ln(r2fr

2
ψD

) + ln
r2ψD
r2f

(2.28)

does not depend on the specific fermion flavour but only on the ratios between fermion

masses, and its numerical values are shown in figure 2.3, where it is possible to see that

the contribution of kinetic mixing completely cancels when rf = rψD .

The vacuum polarisation tensor for the ZV mixing, in contrast, is more involved due

to the non-vector nature of the couplings on both sides of the loop. Its transverse and

longitudinal components in the q2 → 0 limit read

ΠZVT (q2 → 0) ∼ ggD
64π2cw

[︃
3m2

fFZVm (rf , rψD) + q2
(︃
FZVqT1(rf , rψD)

+Qfs
2
WFZVqT2(rf , rψD)

)︃]︃
, (2.29)

ΠZVL (q2 → 0) ∼ ggD
64π2cw

[︃
3m2

fFZVm (rf , rψD) + q2FZVqL (rf , rψD)

]︃
, (2.30)
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Figure 2.3: Numerical values of the loop function FAV (rf , rψD
), with rf = mf/mψD

and rψD
= mψD

/mF .

such that the total contribution is

ΠZV (q2 → 0) ∼ ggD
64π2cw

[︃
6m2

fFZVm (rf , rψD)

+ q2
(︃
FZVqT1+qL(rf , rψD) +Qfs

2
WFZVqT2(rf , rψD)

)︃]︃
, (2.31)

where the functions FZVm,qT1+qL,qT2(rf , rψD) are provided in Appendix B and their nu-

merical values are shown in figure 2.4.

Figure 2.4: Numerical values of the loop function FZVm,qT1+qL,qT2(rf , rψD
), with rf =

mf/mψD
and rψD

= mψD
/mF .

Besides the kinetic mixing, a mass mixing is thus induced between the SM Z boson and

V ′. The coefficients of the ZV kinetic and mass mixing read:

ϵZV =
ggD

64π2cw

(︃
FZVqT1+qL(rf , rψD) +Qfs

2
WFZVqT2(rf , rψD)

)︃
, (2.32)

∆m2
ZV =

3ggD
32π2cw

m2
fFZVm (rf , rψD) . (2.33)
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The adimensional function FZVm (rf , rψD) appearing in the expression of the mass shift

∆m2
ZV is small for rψD ≃ 1 (i.e., in the decoupling limit) and rapidly grows as rψD

decreases. The function FZVqT1+qL(rf , rψD) has a similar behaviour but with a milder

dependence on rψD . The function F
ZV
qT2(rf , rψD) has a similar behaviour as FAV (rf , rψD).

The mass matrix of the (Zµ V
′
µ) system receives a shift proportional to the mass term

in the vacuum polarisation tensor:

M̃
2
ZV =

(︄
1
4(g

2 + g′2)v2 1
2∆m

2
ZV

1
2∆m

2
ZV

1
4g

2
Dv

2
D

)︄
=

(︄
m̃2
Z

1
2m

2
f ϵ
m
ZV

1
2m

2
f ϵ
m
ZV m̃2

V ′

)︄
, (2.34)

where the adimensional parameter ϵmZV = ∆m2
ZV /m

2
f has been introduced, and where

loop contributions to the diagonal terms have been neglected because of the non-zero

tree-level values. This matrix is rotated by V KM into

M2
ZV =

(︁
V KM

)︁T
M̃

2
ZV V

KM

=
1

4

⎛⎜⎝ (g2 + g′2)v2 − (g2+g′2)v2ϵZV −2m2
f ϵ
m
ZV√

1−ϵ2AV −ϵ2ZV

− (g2+g′2)v2ϵZV −2m2
f ϵ
m
ZV√

1−ϵ2AV −ϵ2ZV

g2Dv
2
D+(g2+g′2)v2ϵ2ZV −4m2

f ϵZV ϵ
m
ZV

1−ϵ2AV −ϵ2ZV

⎞⎟⎠ (2.35)

and diagonalised through a rotation with angle

tan 2θZV = ±
2
(︂
(g2 + g′2)v2ϵZV − 2m2

f ϵ
m
ZV

)︂√︂
1− ϵ2AV − ϵ2ZV

(1− ϵ2AV − ϵ2ZV )(g2 + g′2)v2 − g2Dv2D + 4ϵZV ϵmZVm
2
f

, (2.36)

which is positive formV ′ > mZ and negative otherwise, and in the limit of small ϵAV , ϵZV

and ϵmZV becomes:

tan 2θZV ≃ 2θZV ≃ ±2
2m2

f ϵ
m
ZV − (g2 + g′2)v2ϵZV

g2Dv
2
D − (g2 + g′2)v2

. (2.37)

In the same limit the masses of the Z and V ′ bosons read:

m2
Z ≃ 1

4
(g2 + g′2)v2

[︃
1 + θ2ZV

(︃
1− g2Dv

2
D

(g2 + g′2)v2

)︃]︃
, (2.38)

m2
V ′ ≃ 1

4
g2Dv

2
D

[︃
1 + ϵ2AV + (θZV − ϵZV )2

(︃
1− (g2 + g′2)v2

g2Dv
2
D

)︃]︃
(2.39)

The induced modification to the Z boson mass (and an analogous modification to the

W boson mass induced by loops involving F and a SM particle, potentially contributing

to the W mass anomaly observed by [134])3 are constrained by EW precision data and

depend on specific realisations of the model.

3This is not studied yet within our model and it will be done in near future.
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Another source of VD and V ′ mass split are the different fermionic loop corrections from

f, F and ψD corresponding to the different Z2 parities of the SU(2)D gauge bosons,

as shown in figure 2.2. A detailed discussion of the 1-loop calculations is provided in

Appendix A. The mass splitting ∆mV = mVD −mV ′ can be written in a compact form

in terms of the parameters

ϵ1 =
m2
F −m2

ψD

m2
F

, ϵ2 =
m2
f

m2
F

, ϵ3 =
m2
VD

m2
F

. (2.40)

In the approximation of ϵ1, ϵ2, ϵ3 ≪ 1 one has

∆m′
V ≡ ∆mV

⃓⃓
ϵ,ϵ2,ϵ3≪1

=
1

640π2mVD

ϵ21g
2
Dm

2
F [(20 + 3ϵ3 − 15ϵ2 + 20ϵ2ϵ3)

+10(3ϵ2 − ϵ3 − 2ϵ2ϵ3) log ϵ3] + o(ϵ21, ϵ2, ϵ3) . (2.41)

For practical purposes, the expression for ∆mV can be further simplified by neglecting

ϵ2 and ϵ3 and keeping the leading term in ϵ1, which leads to the following simple form:

∆m′′
V ≡ ∆m′

V

⃓⃓
ϵ2,ϵ3=0

=
g2Dm

2
F

32π2mVD

ϵ21 =
g2Dm

2
F

32π2mVD

(︄
m2
F −m2

ψD

m2
F

)︄2

. (2.42)

The radiative mass splitting between the VD and V ′ bosons plays a very important

role in the determination of relic density and DM Indirect Detection (ID) rates. The

range of validity of the approximations for ∆mV presented above depends on the specific

realisation of the FPVDM model and its parameter space. A detailed discussion of the

respective numerical results for ∆mV is given in section 3.1 for a specific case study.

Finally, it is important to mention that the covariant derivative is modified by the kinetic

mixing as follows:

Dµ ≃ ∂µ − ieQAµ − i
[︃
g

cw
(T3 −Qs2W )− gDT 3

DθZV

]︃
Zµ

− i
[︃
gDT

3
D − eQϵAV +

g

cw
(T3 −Qs2W )(θZV − ϵZV )

]︃
V ′
µ , (2.43)

where we have included only leading terms in θZV and ϵZV .

This modification has certain phenomenological consequences. Among the most relevant

ones, the interaction of V ′ with all charged SM particles via the mixing parameter ϵAV

allows the direct production of V ′ at the LHC via Drell-Yan topologies, and is therefore

constrained by direct searches of heavy resonances. Also, the DM candidate VD can

interact through EM multipoles with atomic matter, contributing to direct detection

observables [126]. In the case where only one VL representation is present, the con-

straints coming from these processes depend only on the fermion charge Q and on the

mass ratios rf and rψD , but not on the specific flavour of the fermion.
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2.2.3.3 Scalars

The scalar potential of Eq.( 2.4) is constructed starting from the 8 degrees of freedom of

all the scalar fields of the theory: 4 for ΦH and 4 for ΦD. The theory contains 6 massive

gauge bosons: Z, W±, V ′ and VD (with two opposite D-isospin values). Therefore 6

Goldstone bosons are needed to give the corresponding longitudinal components. Thus,

2 degrees of freedom are left, which correspond to physical massive scalars: the SM

Higgs boson, h, and a further CP-even scalar, H. Upon expressing the neutral scalars

in the interaction eigenstates in terms of their components in the unitary gauge as

ϕ0 =
1√
2
(v + h1) , (2.44)

φ0
D =

1√
2
(vD + φ1) , (2.45)

the Lagrangian terms for scalar masses can be written as:

LSm = −(h1 φ1)

(︄
λv2 λHD

2 vvD
λHD
2 vvD λDv

2
D

)︄(︄
h1

φ1

)︄
. (2.46)

The mass eigenvalues are obtained by diagonalising the mass matrix via a rotation

matrix VS =

(︄
cos θS sin θS

− sin θS cos θS

)︄
and are

m2
h,H = λv2 + λDv

2
D ∓

√︂
(λv2 − λDv2D)2 + λ2HDv

2v2D (2.47)

whilst the mixing angle is

sin θS =

√︄
2
m2
Hv

2λ−m2
hv

2
DλD

m4
H −m4

h

. (2.48)

Even in the absence of explicit mixing induced by the quadratic term, i.e., even if

λHD = 0, h1 and φ1 can mix at one-loop via the their interactions with fermions. The

consequences of this mixing, which can also affect Higgs-related observables, go beyond

the scopes of this analysis, and will be treated in a future work.

2.2.4 Flavour structure and Cabibbo-Kobayashi-Maskawa (CKM) ma-

trix

The previous treatment assumed the presence of one VL SU(2)D doublet interacting

with one SM fermion, without specifying the flavour structure involved. If the full flavour

structure of the SM is considered, different possibilities might arise. A VL fermion can

interact with one or more SM flavours and there can be multiple VL fermions.
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The most general Lagrangian, accounting for the above-mentioned possibilities, is

Lm = M I
U Ū IUI +MJ

DD̄JDJ +MK
E ĒKEK

+ yiuQ̄
SM
iL Φ̃Hu

SM
iR + yidṼ

ij
CKMQ̄

SM
iL ΦHd

SM
jR + yil L̄

SM
iL ΦH l

SM
iR + h.c.

+ (y′u)
IjŪ ILΦDu

SM
jR + (y′d)

JjD̄JLΦDd
SM
jR + (y′l)

KjĒKLΦDl
SM
jR + h.c. , (2.49)

where Φ̃H = iτ2Φ
∗
H , i, j = 1, 2, 3 are SM flavour indices and I, J,K run over the flavours

of the VL partners. The SM Yukawa couplings have been diagonalised exploiting the

flavour symmetries and the SM CKM matrix (i.e., the CKM matrix if no VL states were

introduced) and Ṽ CKM has been introduced to parametrise the misalignment between

the flavour and mass eigenstates in the down sector.

The most generic mass matrices read as follows:

MU =

(︄
yiu

v√
2

0iI

(y′u)
Ii vD√

2
M I
U

)︄
, MD =

⎛⎝ yidṼ
ij
CKM

v√
2

0iJ

(y′d)
Ji vD√

2
MJ
D

⎞⎠ ,

ME =

(︄
yil

v√
2

0iK

(y′l)
Ki vD√

2
MK
E

)︄
. (2.50)

The mass matrices can be diagonalised by two unitary matrices VL and VR, with dimen-

sion 3+{I, J,K} depending on the fermion type. If the same VL fermion interacts with

multiple flavours of SM fermions, the most constraining effects are represented by mod-

ifications to SM observables, induced by Flavour Changing Neutral Currents (FCNCs)

[143, 144]. If for each SM fermion there is a VL partner, the matrix proportional to y′ is

diagonal as well and no mixing is induced between different SM and VL flavours, thus

fermions from the dark sector only interact with the corresponding SM flavour. In the

following we will limit the analysis to this simpler scenario.

An important property of this construction is that the CKM matrix of the SM receives

contributions from new physics. In fact, the SM charged current is

Jµ
W+ =

g√
2
(ūSM i
L Ū

I
L)γ

µ

(︄
13×3 03J

0I3 0IJ

)︄(︄
dSM i
L

DJ
L

)︄

=
g√
2
(ūiL ū

′I
L )γ

µV †
uL

(︄
Ṽ CKM 03J

0I3 0IJ

)︄
VdL

(︄
diL
d′JL

)︄
, (2.51)

such that the entries of the measured CKM matrix are given by

V ij
CKM = (V †

uL)
ikṼ

kl
CKMV

kj
dL . (2.52)



2.2. The dark sector and its interactions with the SM 67

2.2.5 FPVDM parameter space

The Lagrangian parameters of the model are the following:

• gauge couplings: g, g′, gD;

• Scalar potential parameters: µ, λ, µD, λD, λHD;

• Yukawa couplings and VL quark mass: y, y′,mψD ;

• Ṽ CKM parameters.

Assuming that the new VL fermion interacts only with one SM flavour, these parameters

can be traded for the masses of all the physical states, the weak coupling constant g (or

equivalently, the fine structure constant αEM), the new gauge coupling gD, the mixing

angle between the scalar fields θS and the measured CKM parameters. A complete set

of parameters is therefore:

{g,mW ,mZ}, {gD,mVD}, {mh,mH , sin θS}, {mf ,mF ,mψD} and VCKM , (2.53)

but, since g,mW ,mZ , mh, mf and VCKM are precisely measured SM parameters, we are

left with the following six independent new physics parameters, namely:

gD,mVD ,mH , sin θS ,mF ,mψD . (2.54)

Approximating the CKM as a diagonal matrix for simplicity, the relations between

the Lagrangian parameters connected to the new physics components and the input

parameters take a very simple form:

v =
2mW

g
, vD =

2mVD

gD
, (2.55)

λ =
g2

8m2
W

(m2
h cos

2 θS +m2
H sin2 θS) , (2.56)

λD =
g2D

8m2
VD

(m2
h sin

2 θS +m2
H cos2 θS) , (2.57)

λHD =
g gD

8mWmVD

(m2
H −m2

h) sin 2θS , (2.58)

µ2 =
1

2

(︃
m2
h cos

2 θS +m2
H sin2 θS +

1

2

g

gD

mVD

mW
(m2

H −m2
h) sin 2θS

)︃
, (2.59)

µ2D =
1

2

(︃
m2
h sin

2 θS +m2
H cos2 θS +

1

2

gD
g

mW

mVD

(m2
H −m2

h) sin 2θS

)︃
, (2.60)

y =
g mf mF√
2mψDmW

, (2.61)

y′ =
gD
√︂

(m2
F −m2

ψD
)(m2

ψD
−m2

f )√
2mψDmVD

. (2.62)
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The minimisation conditions of the scalar potential in Eq.(2.15) are automatically sat-

isfied. If λHD < 0, which corresponds to mh > mH , the condition λ2HD < 4λλD

translates into 1
16

g2g2D
m2
Wm2

VD

m2
hm

2
H > 0, which is always true, whilst, if λHD > 0, the

conditions 2λµ2D > λHDµ
2 and 2λDµ

2 > λHDµ
2
D translate into 1

8
g2

m2
W
m2
hm

2
H > 0 and

1
8
g2D
m2
VD

m2
hm

2
H > 0, respectively, again automatically satisfied.

For a perturbative analysis of the parameter space we need to identify the regions where

coupling parameters do not become too large, in order to make sure that all predictions

on the model are reliable. A complete loop description of all the sectors of the model is

beyond the scope of this analysis and therefore we assume that perturbativity is achieved

by the requirement for all couplings of the FPVDM model to be (optimistically) below

4π. For example, the requirement λ < 4π defines the maximal value of mH for a given

value of the scalar mixing angle, θS , as shown by the blue contour in the left panel of

figure 2.5. The same figure presents contours for the gD/mVD ratio in the {mH , θS} plane
corresponding to λD = 4π, which indicates the perturbativity limit on the respective

parameters.

The perturbative constraints on the Yukawa couplings y and y′ imply that the ratio

between the masses of the new fermions F and ψD cannot be too large. The condition

for y reads as mF
mψD

< 4π
√
2mW
gmf

. At the same time, the y′ < 4π condition is defined also

by the gD/mVD ratio, as one can see from Eq.2.62. Both constraints from y and y′ per-

turbativity requirements are presented in the right panel of figure 2.5 in the (mψD ,
mF
mψD

)

plane. In our analysis of the parameter space we indicate the respective regions where

perturbativity constraints are violated.

Figure 2.5: Left: the maximum value of mH and minimum value of θS for λ < 4π
and λD < 4π as function of gD

mVD
. The regions corresponding to λD < 4π are to the

left of the green lines. Right: the maximum value of the mF /mψD
ratio as function of

mψD
and gD

mVD
, and under different hypotheses about which SM fermion interacts with

the SU(2)D doublet Ψ, to satisfy the perturbativity conditions {y, y′} < 4π.
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2.3 On the origin of the global U(1) symmetry

One of the main open questions of the construction presented in this analysis is the

origin of the global U(1)globalYD
symmetry (with its Z2 parity subset) which has to be

imposed to avoid the contemporary presence of two Yukawa interactions involving ΦD

and Φ∗
D which would explicitly break SU(2)D, and therefore spoil the stability of the

DM candidate. A theoretical origin of the symmetry would provide a robust ground for

the consistency of the model. In this section we explore two options for explaining such

origin. The first involves promoting the global U(1)globalYD
to a local gauge symmetry,

U(1)YD , in the dark sector, which would generate a mirror version of the SM EW sector

in the dark sector, the two of which can be connected by the mixed (Φ†
HΦH)(Φ

†
DΦD)

quartic term in the full potential and by the gauge kinetic mixing between U(1)Y and

U(1)YD . In this scenario the U(1)QD local symmetry would be associated to a conserved

dark-charge completely analogous to the EM charge of QED, thus giving literal meaning

to the notation V 0
D and V ±

D for the SU(2)D gauge bosons in the dark sector.

The second involves the existence of a strongly-coupled sector whose condensates form

the particle in the low energy regime, in particular, a residual parity for the composite

sector is present due to the specific vacuum alignment present in this kind of models

(which would typically also imply an extended Higgs sector). A detailed discussion is

given in [145] and further used in [146] for the case of a scalar DM candidate.

2.3.1 A dark electroweak sector

In this scenario the SM is augmented with a dark sector constructed starting from a

dark gauge group GD with same structure as the EW gauge group of the SM (in this

scenario the U(1)YD is promoted to be local.). The gauge group is spontaneously broken

as:

G = GSM × GD = SU(2)L × U(1)Y × SU(2)D × U(1)YD −→ U(1)Q × U(1)QD . (2.63)

The gauge boson associated to U(1)YD is labelled as BDµ. The full covariant derivative

is

Dµ = ∂µ −
(︃
i
g√
2
W±
µ T

± + igW 3
µT3 + ig′Y Bµ

)︃
−
(︃
i
gD√
2
V ±
µDT

±
D + igDV

0
µDT3D + ig′DYDBDµ

)︃
, (2.64)

where g and g′ are, respectively, the weak and hypercharge coupling constants, gD and

g′D are the SU(2)D and U(1)YD coupling constants, T3 and Y are the weak-isospin and

weak-hypercharge, T3D and YD are the dark-isospin associated with SU(2)D and the

dark-hypercharge associated with U(1)YD and where the indices of the TD matrices act
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only on the SU(2)D elements and are diagonal with respect SU(2)L while the indices of

the T matrices act only on the SU(2) elements and are diagonal with respect to SU(2)D.

The unbroken U(1)QD continuous symmetry is associated to a conserved charge, labelled

D-charge, defined as:

QD = T3D + YD . (2.65)

Notice that the D-charge is not associated with the electric charge : electrically neutral

particles can be D-charged and vice versa. The only assumption to be made in this

scenario is that all the SM states are neutral under the conserved D-charge QD. This

however does not necessarily imply that all the states of new physics are charged under

U(1)QD or that they must be neutral under the conserved SM charges.

The fields responsible for the breaking of the gauge symmetry are the two scalar doublets

ΦH and ΦD described in section 2.2. Since ΦH is singlet with respect to the dark gauge

group and ΦD is singlet with respect to the EW gauge group, given the absence of

gauge kinetic mixing terms at tree level, no mixing is induced between the fully neutral

gauge bosons W 3
µ , Bµ, V

0
Dµ and BDµ. In complete analogy with the SM, by counting

the number of bosonic degrees of freedom, one massless gauge boson is predicted in the

dark gauge sector and the other dark gauge bosons receive different masses. We can

thus define the mass eigenstates γD, ZD and W±
D with values

MγD = 0 , (2.66)

MZD =
1

2

√︂
g2D + g′2D vD , (2.67)

MW±
D

=
gD
2
vD , (2.68)

such that the masses of the DM vector V ±
D and of the D-charge-neutral gauge boson

V 0
D receive a splitting proportional to 1

2g
′
DvD. The particle content of the model is

summarised in Table 2.2. One should note that the presence of the massless dark

radiation from the unbroken U(1)QD is not necessarily a problem as long as it does not

contribute too much to relativistic degrees of freedom at BBN and allows the formation

of structures as small scales. As shown in [147], for example, it can be achieved when

at the DM decouples from the dark radiation at high redshifts.

The presence of two U(1) gauge groups, however, allows for the existence of a renormal-

isable and gauge-invariant kinetic mixing term already in the unbroken EW and dark

symmetry phases, such that the Lagrangian of the U(1)Y × U(1)YD sector is

−LKM =
1

4
BµνB

µν +
1

4
BDµνB

µν
D +

ϵ

2
BµνB

µν
D , (2.69)
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EW Dark Unbroken
SU(2)L U(1)Y SU(2)D U(1)YD U(1)Q U(1)QD

Scalar fields

ΦH =

(︃
ϕ+

ϕ0

)︃
2 1/2 1 0

1 0
0 0

ΦD =

(︃
φ+
D

φ0
D

)︃
1 0 2 1/2

0
0

1
0

Fermion fields

fSML =

(︃
fSMu,ν
fSMd,ℓ

)︃
L

2 1/6,−1/2 1 0 T3f + Yf 0

uSMR , νSMR 1 2/3, 0 1 0 T3f + Yf 0
dSMR , ℓSMR 1 −1/3,−1 1 0 T3f + Yf 0

Ψ =

(︃
ψD
F

)︃
1 QΨ 2 1/2 QΨ

1
0

Vector fields

Wµ =

⎛⎝W+
µ

W 3
µ

W−
µ

⎞⎠ 3 0 1 0
1
0
−1

0
0
0

Bµ 1 0 1 0 0 0

VDµ =

⎛⎝V +
Dµ

V 0
Dµ

V −
Dµ

⎞⎠ 1 0 3 0
0
0
0

1
0
−1

BDµ 1 0 1 0 0 0

Table 2.2: The quantum numbers under the EW and dark gauge group SU(2)D ×
U(1)QD

of the particles of the model. The charges of the unbroken local groups U(1)Q
and U(1)QD

are also provided.

where BDµν is the field tensor of U(1)YD and ϵ is the kinetic mixing parameter. The

diagonalisation of the kinetic terms can be obtained through the rotation [148]:(︄
Bµ

Bµ
D

)︄
=

(︄
1√
1−ϵ2 0

− ϵ2√
1−ϵ2 1

)︄(︄
cos θk − sin θk

sin θk cos θk

)︄(︄
Bµ

1

Bµ
2

)︄
(2.70)

The kinetic-mixing term induces a modification in the mass mixing matrix of the fully

neutral gauge bosons. Upon diagonalisation, two massless eigenstates are obtained,

corresponding to the SM photon and to a massless dark photon, and two massive eigen-

states, corresponding to the Z boson and to a massive Z ′ boson. The full expressions

of the mass mixing matrix and of the mass eigenstates can be found in Appendix C.

Expanding the mass eigenstates of Z and Z ′ for small ϵ, the lowest order terms assume
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a simple form:

M2
Z =

v2

4

[︃
g2 + g′2

(︃
1 +

(g2 + g′2)v2 − g2Dv2D
(g2 + g′2)v2 − (g2D + g′2D)v

2
D

ϵ2
)︃]︃

+O(ϵ4) , (2.71)

M2
Z′ =

v2D
4

[︃
g2D + g′2D

(︃
1 +

g2v2 − (g2D + g′2D)v
2
D

(g2 + g′2)v2 − (g2D + g′2D)v
2
D

ϵ2
)︃]︃

+O(ϵ4) , (2.72)

which in the ϵ→ 0 limit (no kinetic mixing) reduce to the SM value and Eq.2.67, respec-

tively. Of course, analogously to the FPVDMmodel with the global U(1)globalYD
symmetry,

after spontaneous breaking of EW and dark symmetries, kinetic and mass mixing terms

arise at loop level as illustrated in section 2.2.3.2, involving the four electrically and

D-charge neutral gauge bosons. The implications of this scenario and the derivation of

its experimental bounds are beyond the scope of this analysis and are reserved for future

developments.

2.3.2 A composite origin

In the case of composite models the discrete symmetries allowing the stability of the

DM particle depend on the model building details of the composite sector. However,

this does not mean that the DM candidate and the corresponding discrete symmetries

are an arbitrary choice. The composite effective chiral Lagrangian is invariant under

a parity changing the signs of all the pseudo Nambu-Goldstone Bosons (pNGBs), as

they appear in bilinear terms in the Lagrangian. Furthermore, these models contain by

construction explicit symmetry breaking terms, so more scrutiny is needed to understand

if a pNGB can be stable due to a residual parity and therefore be used as a particle

describing DM. The origin of the non-invariance with respect to parity (and also charge

conjugation) is due to the choice of the vacuum while the strong techni-sector at the

origin of these models is instead parity invariant as it is VL with respect to the composite

gauge dynamics and the SM gauge group. Once possible parities acting on the pNGBs

are identified, these models require a careful check of their invariance, including the

Wess-Zumino-Witten terms. In explicit realisations studied in the literature, e.g., in

[145, 146], a stable pNGB multiplet allowing the description of DM can indeed be found.
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Chapter 3

Phenomenology of the top portal

3.1 A case study: top portal with no mixing between h

and H

This section is dedicated to a specific realisation of the model. It is assumed that only

one VL partner exists, and interacts exclusively with the SM top quark. Moreover it

is further assumed that the Higgs bosons h and H do not mix, i.e., θS = 0. These

choices significantly simplify the expressions of the Lagrangian parameters (See the full

discussion of the theoretical setup in chapter 2), which read:

v =
2mW

g
, µ2 =

m2
h

2
, λ =

g2m2
h

8m2
W

, (3.1)

vD =
2mVD

gD
, µ2D =

m2
H

2
, λD =

g2Dm
2
H

8m2
VD

, λΦHΦD = 0, (3.2)

yt =
g mt mT√
2mtDmW

= ySMt
mT

mtD

, y′t =
gD

√︂
(m2

T −m2
tD
)(m2

tD
−m2

t )√
2mtDmVD

, (3.3)

where the Z2-even(-odd) partner of the top quark has been labelled T (tD), the SM Higgs

sector is left unaffected by the new scalar, and ΦD has a potential completely analogous

to the Higgs potential. The hierarchy between the masses in the fermion sector is the

same as that discussed in section 2.2.3.1, i.e., mt < mtD ≤ mT , but H can have any

mass allowed by experimental bounds, including, in principle, being lighter than the SM

Higgs boson.

The new physics parameter space for this model is five-dimensional:

gD,mVD ,mH ,mtD ,mT . (3.4)

In the following, we will denote this scenario as TPVDM – a specific case of top portal

in the FPVDM framework. We chose this realisation as a case study since, on the
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one hand, it is minimal whilst, on the other hand, it allows us to explore a scenario

where a non-Abelian dark sector is not connected to the SM via a Higgs portal at tree

level. Furthermore, connecting the dark sector only with the SM top quark allows for an

exploration of several interesting collider physics signatures, whilst reducing the impact

of constraints from direct detection.

Many other realisations are also very attractive. For example, the dark sector could

be connected to SM leptons. The collider constraints on new VL leptons would then

be milder, making the scenarios potentially less restricted, but the impact on the cos-

mological observables would not qualitatively change.1 These kind of realisations are

potentially interesting for a study of anomalies in the lepton sector, for example in

connection with the muon anomalous magnetic moment, which is the subject of the

chapter 4.

As anticipated in section 2.2.3.2, the mass splitting between mVD and mV ′ , ∆mV =

mVD − mV ′ , plays an important role for DM phenomenology. First of all, we have

found that ∆mV > 0 in the whole parameter space of the model, with the approximate

expressions for ∆mV given by Eq.(2.41) and (2.42). Since mVD > mV ′ , the VDV
∗
D →

V ′V ′ process for DM annihilation will always take place for any point in the parameter

space to contribute crucially to the list of processes affecting the relic density and to

extend the viable parameter space compatible with constraints imposed by the relic

density. The VDV
∗
D → V ′V ′ process also contributes to the DM indirect detection

signals.

Numerically, the value of ∆mV varies over a very wide range, since it scales as g2D and it

is proportional to m2
T −m2

tD
. One should also note that ∆mV does not depend on mH ,

as explained in appendix A. In figure 3.1 (left) we present the iso-contours for ∆mV in

the {mtD ,mVD} plane for gD = 0.1 and mT = 1600 GeV, whilst in figure 3.1 (right) we

show how ∆mV evolves as function of mVD for the specific value of mtD = 1590 GeV,

all other parameters being the same. The value of mT is chosen to be safely above the

current upper limit on VL top partners at the LHC [149]. For our particular choice of

gD and mT , ∆mV can be as large as 1 GeV, while its minimal value reaches zero for

a vanishing value of mT −mtD . In both frames we present a comparison of the exact

one-loop result for ∆mV and its approximations given by Eq.(2.41) and (2.42). It is

possible to see from figure 3.1 (right) that the approximate formulae are very accurate

for a small mT −mtD splitting, but break down for mVD close to the mt+mtD threshold,

where the one-loop corrections are highly non-linear in the expansion parameters used

in approximate expressions for ∆mV . Moreover, for small values of mVD , the one-loop

mass corrections can be large, making the evaluation of ∆mV perturbatively unstable.

Therefore, we indicate by the hatched area the region where one-loop corrections to the

1This is true except when the mass difference between DM and VL fermion mediator is small. In
that case DM co-annihilation will be less intense in comparison with strong co-annihilation with the tD
quark.
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masses of VD and/or V ′ become larger than 50% of the corresponding tree level masses.

Figure 3.1: Values of the mass splitting ∆mV = mVD
−mV ′ in the (mtD ,mVD

) plane
for a specific choice of gD,mT andmH (left panel) and as a function ofmVD

for a specific
value of mtD (right panel). The red, green and blue curves correspond to results from
exact expression, approximated formulae Eq.(2.41) and (2.42), respectively. The region
where one-loop corrections to the masses of VD or V ′ become larger than 50%, so that

a perturbative treatment is questionable, is also highlighted.

The lifetime of V ′ does not directly depend on ∆mV . However, the Z2-even SU(2)D

gauge boson can also be long lived, if the DM is light enough. The only tree-level

interaction of V ′ with SM particles is with top quarks, due to its mixing with T . If

the mass of V ′ drops below the tt̄ threshold, it can only decay directly to a three-body

or four-body final state with W bosons and b quarks via the off-shell top quarks, or

decay to a bb̄ final state at one-loop, see the Feynman diagrams in figure 3.2 (left). The

latter, although only present at the one-loop level, becomes dominant due to the reduced

phase space for the four-body final state. This is shown in figure 3.2 (centre and right).

These loop-induced diagrams prevent V ′ from having a sufficiently long lifetime to spoil

Big Bang Nucleosynthesis (BBN). However, when the gD coupling is small, the tD mass

approaches the decoupling limit (mtD = mT ) and the DM is light, V ′ becomes long lived

at colliders. Therefore, it could provide a signal for searches of long-lived neutral bosons

decaying into bb̄ pairs.

As mentioned in section 2.2.3.3, even if TPVDM scenario does not contain a tree-level

mixing, a loop-induced mixing between h and H still occurs, via SM top and the Z2-even

top (T ) loops. This contribution is eventually suppressed. A scenario with tree-level

scalar mixing is more constrained and can exhibit the following signatures: 1) the heavy

scalar H can decay also to any final state accessible to the Higgs boson, and therefore

the model predicts further signatures at collider; 2) if the mass of the DM is small

enough, the Higgs boson will decay into the DM itself or the Z2-even gauge boson V ′,

affecting its width and branching ratios. From the cosmological point of view, additional
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Figure 3.2: Left: Tree-level and one-loop diagrams for V ′ decay. Center and right:
decay width and lifetime of V ′ at tree and one-loop level for gD = 0.05, mT = 1600

GeV and different values of mtD .

interactions from the tree-level scalar mixing will affect the relic density, and direct and

indirect detection observables.

Since there is no h-H mixing in TPVDM scenario, DM scattering off the nuclei is

induced only at loop-level. The Feynman diagrams for DM-gluon interactions with

quark box and triangle topologies are shown in figure 3.3(a) and (b), while the DM-

quark diagrams generated by the loop-induced V ′ − γ/Z kinetic mixing and triangle

diagrams are shown in figure 3.3(c) and (d), respectively. The detailed evaluation of the

triangle loop of fermions connected to gauge boson propagators is given in appendix D.

As it will become clear in section 3.1.3, the KM and triangle contributions play a crucial

role in constraining the parameter space of the model through Direct Detection (DD)

limits on DM.

(a) (b) (c) (d)

Figure 3.3: Representative diagrams for direct detection processes. H is the Z2-even
scalar in the dark sector. Z2-odd particles are highlighted in red.

In the following sections, this model is tested against multiple observables from cosmol-

ogy (relic abundance, direct and indirect DM detection rates) and LHC searches. For

this analysis we implemented the Lagrangian of the model in the LanHEP [150] and

FeynRules [151] packages whilst model files have been generated in CalcHEP [152],

FeynArts [153] and UFO [154] formats.2 We used micrOMEGAs v5.2.7 [51] for

calculating DM observables and for setting the corresponding limits (see section 3.1.1)

as well as for the evaluation of some LHC processes. The model implementation in UFO

format has been used in MG5 aMC [156] for the determination of the complete set of

2The model implementations are available in the HEPMDB [155] repository in CalcHEP (https:
//hepmdb.soton.ac.uk/hepmdb:0322.0335) and UFO (https://hepmdb.soton.ac.uk/hepmdb:0322.
0336) formats.

https://hepmdb.soton.ac.uk/hepmdb:0322.0335
https://hepmdb.soton.ac.uk/hepmdb:0322.0335
https://hepmdb.soton.ac.uk/hepmdb:0322.0336
https://hepmdb.soton.ac.uk/hepmdb:0322.0336
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LHC constraints (see section 3.1.2). The FeynArts model files from LanHEP were

used to generated one-loop corrections to masses of SU(2)D gauge bosons by Feyn-

Calc [157], FeynHelpers [158] and Package-X [159]. A simplified version of the

model has been implemented to calculate cross-sections at one-loop level in MG5 aMC

and FormCalc9.8 [160].

3.1.1 Cosmological constraints

There are many non-collider experiments dedicated to searching for signals of DM, both

in space and on Earth which play a very important role in limiting the DM parameter

space and in the identification of viable DM models. These experiments are devoted to

the precise determination of the DM relic density as well as to DD and ID of DM.

3.1.1.1 DM relic density

In particular, the PLANCK experiment has measured the relic density with a precision

better than 1% [21]:

ΩPlanck
DM h2 = 0.12± 0.0012 . (3.5)

In our analysis, we will select points that satisfy this constraint, bearing in mind that

points which predict a relic density below the PLANCK constraint could still be allowed

if new sources of DM exist besides VD.

3.1.1.2 DM direct detection

For DMDD we use the limits from XENON1T [44]. The XENON1T experiment provides

the most stringent upper limit (compared to LUX (2017) and Panda-X (2017), see

figure 5 in the reference [44]). XENON1T provides the limit on DM-nucleon’s cross-

section vs DM mass at 90% C.L. together with the detector’s efficiency as a function

of nuclear recoil energy. We have evaluated the DM-nucleon scattering cross section

and converted it into the number of events by taking in account the efficiency of the

XENON1T detector. This allowed us to find the corresponding p-value for the signal.

The calculation was performed using a modified version of micrOMEGAs package

which allowed us to correctly evaluate DM DD rates from the loop-induced γ(Z)-VD-VD

interactions.

The modified code of micrOMEGAs

The standard routine CDM NUCLEON of micrOMEGAs cannot be used to calculate the

DM DD rate for diagrams of virtual photon with zero momentum transfer as it causes
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divergence. To this end, we use the special code implemented by Alexander Pukhov

(one of the authors of micrOMEGAs package).

VD

p, np, n

VD

no γ

(a)

VD

XeXe

VD

(b)

VD

XeXe

VD

γ

(c)

Figure 3.4: The diagrams describing the interaction between DM and (a) nucleons
without virtual photon, (b) xenon as point-like and (c) xenon with virtual photon.

We use the following trick to calculate the DM DD rate. Firstly, we calculate the

spin-independent amplitudes of DM-nucleon scattering excluding the photon propagat-

ing diagrams as depicted in figure 3.4 (a). Then, we implement the 4-point vertex of

VD, VD, Xe,Xe with the following effective Lagrangian

Leff4-point = geffXeXeV
α
D (p3)V

β
D(p4), (3.6)

where

geff = 4mVD(54A
S
p + (130− 54)ASn)gαβ + 2(54AAp + (130− 54)AAn (/p3 − /p4))gαβ . (3.7)

The factor 54 and (130-54) are the number of protons and neutrons, respectively, inside

xenon nuclei. The quantities ASp (A
S
n) and AAp (A

A
n ) are the symmetric and asymmetric

amplitudes of DM scattering on proton(neutron), respectively. They are defined by

ASp =
1

2
(AVDp +A

V ∗
D
p ),

AAp =
1

2
(AVDp −A

V ∗
D
p ), (3.8)

where AVDp is the amplitude of DM and proton and A
V ∗
D
p is the amplitude of anti-DM

and proton. After that, we sum the amplitude from diagram 3.4 (b) and (c) and then

calculate the scattering cross section for VD, Xe→ VD, Xe process.

In the code, the differential scattering cross section in terms of the squared matrix

element |M|2, the detector efficiency ϵeff and nuclear form factor F is given by

dσEM
d sin (θ/2)

= 4 sin

(︃
θ

2

)︃
|M|2 ϵeff F 2. (3.9)

The scattering cross section reads

σEM =
1

32πs

∫︂ 1

a

dσEM
d sin (θ/2)

d sin (θ/2), (3.10)



3.1. A case study: top portal with no mixing between h and H 79

where

a =

√︄
Emin

2pcm
,

pcm =

(︃
mDMmN

mDM +mN

)︃
v. (3.11)

Finally, we calculate the number of events by

Nevent =
ρDM

mDM
tNXe σEM

∫︂ vesc+vEarth

0
vfMaxwell(v)dv, (3.12)

where ρDM is the local DM density, t the exposure time and NXe the number of xenon

nuclei. The parameter vesc is the maximal DM velocity around the sun and vEarth is the

Earth velocity in the galactic rest frame, respectively.

We have scaled the number of registered events if the corresponding relic density is less

than the measured value as follows:

N̂ event =

⎧⎨⎩
(︂

ΩDM

ΩPlanck
DM

)︂
Nevent, if ΩDMh

2 < 0.12

Nevent, otherwise
, (3.13)

and have defined the p-value, p̂, as

p̂ = exp(−N̂ event) . (3.14)

The exclusion of parameter space is imposed on the points where p̂ < 0.1, which corre-

sponds to the exclusion limit at 90% C.L.

3.1.1.3 DM indirect detection

ID DM searches are being performed by many experiments, including Fermi-LAT [161],

IceCube [64], ANTARES [62], etc. However, these experiments rely on the DM local

density and velocity distribution as well as the propagation of the particles in the galactic

plane. Therefore, the respective predictions are affected by various uncertainties of an

astronomical nature. To be independent of these uncertainties, in this study we use the

Cosmic Microwave Background (CMB) limit on DM ID based on PLANCK data. We

consider the product of the DM-self annihilation or the DM decay into SM particles.

By studying the effect of energy injection from DM annihilation products (electrons,

positrons, gamma-ray, neutrinos and anti-protons) on the galactic medium which is

sensitive to the CMB anisotropies, the upper limit on the energy injection measured by

PLANCK is:

Pann < 3.2× 10−28 cm3

sGeV
at 95% C.L., (3.15)
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with

Pann =
∑︂
j

f effj ⟨σv⟩j
MDM

(︃
ΩDM

ΩPlanck
DM

)︃2

, (3.16)

where ⟨σv⟩j is the thermally averaged partial annihilation cross-section for the j channel

whilst f effj is the energy fraction of DM annihilation transferring to the plasma for the

jth channel. Pann To construct the quantity Pann, we use micrOMEGAs to calculate

⟨σv⟩j for all possible channels and neglect those that contribute to the total annihilation

cross-section less than 0.1%. The effective fraction of energy f effj was thoroughly studied

and provided for almost all DM annihilation processes into two SM particles in the

final state in [70, 162]. For non-SM particles in the final state of 2 → 2 processes, for

example VD, V
∗
D → V ′, V ′/V ′, H/H,H , we make the approximation f effnon-SM ∼ f effqq̄ . This

approximation is reasonable because each VD/H eventually decays into 3 pairs of quarks

anti-quarks and the energy fractions stored in each quark anti-quark pair (u, d, s, c, b, t)

are not significantly different. The annihilation cross-section in eq. (3.16) is rescaled by

(ΩDM/Ω
Planck
DM )2 due to the two DM particles in the initial state.

Finally, we have checked that the model does not spoil the predictions from BBN. When

the lifetime of V ′ is too long, such that it decays during or after BBN, it would spoile

the observed neutron to proton density ratio. For mV ′ ≲ 2mW , the dominant decay to

bb̄ via the loop-induced process discussed above makes V ′ lifetime much shorter than

the value excluded by BBN. So, in this respect, BBN does not exclude any region of the

parameter space of our model that is allowed by relic density constraints.

3.1.2 Collider constraints

In the scenario under consideration the top quark is the only SM particle which interacts

with the dark sector. Processes involving top quarks in propagators or final states are

therefore affected by new physics contributions. The model contains a complex vector

DM candidate but two different kind of mediators: the VL and Z2-odd top partner tD

and the two Z2-even bosons H and V ′, which however can only be produced at the LHC

via interactions with the top quark or its Z2-even partner t′.

A list of relevant signatures for the scenario are provided in Table 3.1. A mono-jet

signature can only arise at loop level, while the tt̄ + Emiss
T and tt̄tt̄ one can receive

both tree- and loop-level contributions, which might be of similar size depending on the

regions of parameter and phase space. Given the preliminary and explorative nature of

this analysis, in the following we perform a recast of current LHC searches only for the

tree-level processes to obtain constraints on the parameter space of the model.

The simulations are performed at Leading Order (LO) with MG5 aMC [156] in the 4-

flavour scheme using the NNPDF3.0 LO set [163] through the LHAPDF 6 library [164]
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Process Representative diagrams

mono-jet (only loop) + jet from ISR or from loop

tt̄+ Emiss
T

tt̄tt̄

hV ′ and V ′V ′ (only loop)

Table 3.1: List of relevant processes at the LHC. Z2-odd particles are highlighted in
red. Due to its purely VL nature, tD cannot interact with the scalars.

(LHA index 262400). No resonant propagation of new particles is imposed, to allow for

the inclusion of interference and off-shellness effects when relevant. For the tt̄ + Emiss
T

signature, in the region of a small mass gap between tD and VD, where mtD−mVD < mt,

simulations are performed for the 2 → 6 process pp → W+bW−b̄VDVD. The recast is

done through the MadAnalysis 5 framework and the searches considered for the recast

are different depending on the process:

• for the tt̄+Emiss
T processes we used a CMS search for top squark pair production

decaying to DM, in final states with opposite sign leptons and missing transverse

energy Emiss
T [165], recast in [166].

• for the tt̄tt̄ processes we used a CMS search for four top quarks in final states with

either a pair of same-sign leptons or at least three leptons, in addition to multiple

jets [167], recast in [168].

In both cases, the searches target the very same final states predicted by our model, and

are therefore ideal for determining constraints from collider.

The model also predicts a signal from pair production of the Z2-even partners of the

SM top-quark, T T̄ , which is constrained by ATLAS and CMS searches and only needs

to be rescaled for different branching ratios. However, the T -quark primarily decays

into Wb/Zt/ht final state with a 50%/25%/25% branching ratio pattern, and the con-

tribution of decays to new states is very small in the whole parameter space. Therefore,

current LHC bounds leave the region of parameter space with mT ≳ 1.5 TeV uncon-

strained [169, 170]. Bounds from single T production are more model-dependent, but

less tight, as the production cross-section is driven by the T − t mixing which is small.

The loop-level diagrams can be relevant especially when the particles which decay to the

final states are produced at resonance : in this case the loop suppression can be com-

pensated by the lower multiplicity in the phase space. For the hV ′ and V ′V ′ processes
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we have only computed cross-sections using a simplified version of the model suitable

for one-loop calculations in MG5 aMC, to estimate if they can be tested against data

from current searches.

3.1.3 Combined bounds

3.1.3.1 Full parameter scan

We explore the viable parameter space of our model as well as the effect of the cosmolog-

ical and collider constraints by performing a comprehensive scan over the 5D parameter

space in the following ranges:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

10−3 < gD < 4π

10 GeV < mVD < mtD

1.5 TeV < mT

mt < mtD ≤ mT < 10 TeV

10 GeV < mH < 20 TeV

. (3.17)

In figure 3.5 we present the results of this scan showing projections into various planes:

(mVD , gD) (a), (mH ,mVD) (b), (mtD ,mVD) (c) and (mtD , gD) (d).

The allowed parameter space is indicated by the green, cyan and blue regions, corre-

sponding to generic DM annihilation (via VDVD → V ′V ′ and t-channel VDVD → tt̄

processes), resonant (H) annihilation and DM− tD co-annihilation regions respectively.

The representative Feynman diagrams for these channels are shown in figure 3.6.

In these regions the relic density constraint from PLANCK is satisfied to within 5%. The

grey colour indicates the under-abundant DM relic density region. From figure 3.5(a)

one can see that the generic DM annihilation (diagrams (a)–(c) of figure 3.6) determines

a narrow strip in the (gD,mVD) plane indicating the correlation between gD and mVD

required to arrange the right amount of DM. For values of gD below this band these

processes cannot provide large enough cross-section for DM annihilation and this leads to

the excluded over-abundant DM region indicated by the red colour. One can clearly see

this region in all panels of figure 3.5 for large DM masses. However, there are additional

processes which provide an effective DM annihilation low DM relic density respectively,

consistent with PLANCK data. One of them is VDVD → H resonant annihilation, a

representative diagram of which is shown in figure 3.6(d). This process allows one to

extend the viable parameter space into the lower region of gD (by up to two orders of

magnitude) indicated by the cyan colour. This can be clearly seen in figure 3.5(b), which

presents the cyan H resonant band which goes across the whole parameter space in the

(mH ,mVD) plane.
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Figure 3.5: Excluded and allowed region of the parameter space of the model from the
full five-dimensional scan of the parameter space projected into (mVD

, gD), (mH ,mVD
),

(mtD ,mVD
) and (mtD , gD) planes. The white areas represent: top-left corner of panel

(a) and bottom-right corner of panel (c) – non-perturbative region of the parameter
space; upper part of panel (c) – kinematically inaccessible mVD

> mtD region.

(a) (b) (c) (d) (e)

Figure 3.6: Representative contributions to relic density. From left to right: 4-leg;
t-channel DM annihilation; DM annihilation via resonant H (the Z2-even scalar in the
dark sector); DM-mediator co-annihilation. Z2-odd particles are highlighted in red.

Another process, the DM-tD co-annihilation channel (see representative diagram in fig-

ure 3.6(e)), provides viable parameter space even for lower values of gD for mVD > mt

and mtD values below 2 TeV. The respective region is indicated by the blue colour,

which can be clearly seen especially in (mtD ,mVD) as a narrow resonance band. At the

same time, when mVD is above 2 TeV, neither DM-tD co-annihilation nor H-resonant

annihilation are effective enough to provide low enough relic density for gD values below

the generic DM annihilation region. Therefore, the region with low gD and large mVD

is excluded due to the over-abundant relic density indicated by the red colour.
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Furthermore, notice that the regions with low mVD and large gD values are partly ex-

cluded by DD and/or ID experiments as indicated by magenta and orange points, re-

spectively. The region of DM masses which can be tested and excluded by the LHC is

presented by the violet region. This parameter space, which can be seen in all panels of

figure 3.5, is related to constraints on the tt̄+Emiss
T signal at the LHC coming from tD t̄D

pair production. For masses of tD below about 900 GeV this signal would be observed

if there is enough phase space for tD → VDt decay. This process is important in setting

one of the main collider constraints on the model under study.

The four projections presented in figure 3.5 reveal the non-trivial shapes of the allowed

and excluded regions over the 5D parameter space of the model. For example, the

orange colour, which presents the DM ID exclusion region, takes place for mVD < 20

GeV (figure 3.5(a,b,c)), gD ≲ 0.06 (figure 3.5(a,d)) and mH ≲ 3 TeV(figure 3.5(b)). In

figure 3.5 (b), one can see that DM ID exclusion takes place (besides the low mVD region

discussed above) and also along the very middle of the cyan band, where mVD = mH/2.

Indeed, in this case, DM effectively annihilates through the H state into tt̄, V ′V ′ or

gg, distorting precise CMB data, which therefore also limits the model parameter space.

This region cannot be clearly seen in other panels, where it is presented just by randomly

scattered points.

3.1.3.2 Benchmark analysis

In order to assess the relative role of the different constraints in identifying the allowed

region of parameter space of our model we identify different benchmarks, characterised

by fixed values for the masses of the Z2-even top partner, mT = 1600 GeV, and of

the new scalar, mH = 1000 GeV, as well as different values of the new gauge coupling

gD = {0.05, 0.1, 0.3, 0.5}. These choices have the following rationale: 1) the gauge

coupling can either assume a small value for which constraints from over-abundant relic

density only allow tiny regions of the parameter space or a larger value for which such

constraints become weaker; 2) the Z2-even partner of the top (T ) is heavy enough to

evade current LHC bounds based on pair production and considering decays into SM

final states; 3) the mass of the H state is large enough for it to decay into a top-quark

pair. This affects the relative contribution of the diagrams mediated by H in table 3.1.

The complementarity of cosmological and collider constraints can be represented in the

{mtD ,mVD} or {mtD , 1 −
mVD
mtD
} planes. The former, shown in figure 3.7, allows us to

highlight the low mVD region while the latter, shown in figure 3.8, emphasises the small

mass gap region between tD and the DM particle.

The interplay between cosmological and collider bound is largely driven by the relative

roles of relic density and DD bounds as function of the gauge coupling value, while

indirect detection plays a role only for small coupling values.
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Figure 3.7: Combination of constraints from LHC, relic density, ID and DD in the
{mtD ,mVD

} plane for mT = 1600 GeV, mH = 1000 GeV and different values of gD.
The coloured regions are excluded. The measured relic density value is reconstructed
on the borders of the excluded region. When constraints from ID are absent, cross-
sections for hV ′ and V ′V ′ production processes are shown. The non perturbative region
corresponds to corrections to the gauge boson masses larger than 50%. An estimate of
the region of large KM is shown as a hatched area where at least one of the adimensional

KM parameters {ϵAV , ϵZV , θZV } becomes larger than 10%.

For smaller values of the gauge coupling, gD = 0.05 and gD = 0.1, the measured amount

of relic density is reconstructed only for light DM masses, mVD ∼ O(10) GeV, and in

a narrow region where the mass splitting between tD and the DM is small, less than

∼ 10% of mtD . In the co-annihilation region, where the mass gap between VD and tD is

small, as well as in the H-resonant region around mVD = mH/2, where H is produced

near resonance, the relic density is drastically reduced, becoming under-abundant.

The small bell-shaped area visible in the middle of each panel of figure 3.8 with gD < 0.5

corresponds to the process in which T is produced resonantly and decays into SM final

states Wb, Zt or ht, (see figure 3.6). If the gauge coupling becomes large enough, it

eventually becomes impossible to reconstruct the measured value of the relic density and
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Figure 3.8: Same as figure 3.7 in the plane {mtD , 1−
mVD

mtD
}, to highlight the region

where the DM and tD have a small mass splitting. Contours corresponding to the
lifetime of tD (in a region where it can be long-lived) are also shown.

the entire allowed parameter space of the model corresponds to an under-abundant relic

density. In this case, the theory would not be able to explain the whole observed DM

content of the universe and other sources of DM would be needed.

In the smallmVD region, strong constraints from ID limit the allowed parameter space to

mtD values approaching mT , i.e., the region where the mixing between T and t becomes

small. ID constraints however disappear for increasing values of gD, corresponding to a

reduction of relic density values, owing to the scaling reported in eq.(3.16).

However, the constraints from DD always exclude the region with small mVD regardless

of the gauge coupling value. The contribution of DM-gluon topologies is limited to the

region with either minimal or maximal mixing in the fermion sector, corresponding to

dominant contributions of the topologies (a) or (b) of figure 3.3, respectively. These

contributions destructively interfere for generic mixing otherwise, reducing the impact

of this process in driving the DD bounds. But the main contributions to DM DD is
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driven by the topologies with kinetic mixing induced by gauge boson self-energies, see

figure 3.3(c), and by loop-induced effective couplings VD-VD-Z/γ which lead to DM-

quark interactions through multipole moments, see figure 3.3(d). The evaluation of the

amplitudes for triangle diagrams leading to VD-VD-Z/γ multipole interactions is given

in detail in figure D.3 For DM masses below about ∼400 GeV, the kinetic mixing with

Z-boson plays dominant role for DM DD constraints. In the hatched region of figure 3.7,

one can see that the KM contribution becomes strongest when the DM mass is compara-

ble to the mass of Z boson (i.e., dominated by the mass mixing between Z and V ′). As

the gauge coupling increases, the effect of KM becomes strong also when the DM mass

is small and the ratio between tD and T is small (compatibly with the behaviour of the

KM functions in figure 2.4. On the other hand, for heavier DM and sufficiently large

y′t coupling, triangle diagrams, defining multipole DM interactions with the photon can

play a dominant role. Therefore, taking into account of the complete set of Feynman

diagrams and their interference is an important element for the consistent and correct

estimation of DM DD rates and constraints in the FPVDM framework.

The LHC bound comes exclusively from the tt̄ + Emiss
T signature, dominated by the

pair production of tD states. The bound is almost independent of the mass of tD

and constrains the region 250 GeV ≲ mtD ≲ 850 GeV, independently of gD, until the

mass difference between tD and the DM becomes small: in this case the missing energy

component of the events decreases and the sensitivity of the relevant CMS search reduces,

allowing the small mass gap region. Effects coming from the width of tD are negligible,

as the tD is narrow in the whole parameter space for each choice of gD. The 4-top-quark

search does not show any sensitivity over the whole parameter space, regardless of the

value of gD. The loop processes of hV ′ associate production and V ′V ′ pair production

are not testable at current luminosities, as their cross-sections are always well below

σ ≳ O(10 fb) in the region where the relic density is reproduced. Higher luminosities

and/or higher energies would be needed to be sensitive to such final states.

A very interesting feature of this scenario emerges for small values of gD in the small

region where the DM and tD have a small mass gap: the decay width of tD becomes

significantly small, such that tD becomes long-lived (its lifetime in the small mass gap

region is shown in figure 3.8) and can be probed by dedicated searches at the LHC or

future colliders. Different T or H masses would not modify this qualitative picture.

One should also note that the model predicts that the tth Yukawa coupling, yt is al-

ways bigger than the SM one (see eq. 3.3). This happens due to the the presence

of a non-zero y′ coupling – the key point of the model, which provides the portal be-

tween the SM and dark sectors. The current direct constraints on yt are quite weak

(of the order of 50%) from pp → ttH production at the LHC. We have checked that

3The role of multipole contributions in DM DD has also been studied in [126]. In our study, however,
we took into account also KM topologies and the interference between them.
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imposing even 10% constraint on yt, e.g., requiring δyt/yt < 0.1 does not qualitatively

change our results. On the other hand, the yt constraint will play a very important role

at future e+e− colliders, which will measure yt to within an accuracy of one percent.

The importance of such a constraint as future colliders is the subject of a separate study.

As a general conclusion, the combination of cosmology and LHC bounds always favours

the region with a small mass splitting between tD and the DM. Other regions can be ac-

cessed depending on the value of other model parameters. This specific realisation of the

model is in any case an example dictated by its simple features. Including mixing in the

scalar sector, further VL partners or further interactions of the same VL representation

would enlarge the possible signatures and change the complementarity between different

observables in constraining the model, potentially opening up further new interesting

signatures.
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Chapter 4

Phenomenology of the muon

portal and muon gµ − 2

The precise measurements of the muon anomalous magnetic moment, aµ ≡ (gµ − 2)/2,

from Brookhaven National Laboratory (BNL) [171, 172, 173] and Fermilab National Ac-

celerator Laboratory (FNAL) [174, 175, 176, 87] implies the departure from the Standard

Model (SM) prediction. Thanks to a more stable beam and improved magnetic field at

Fermilab, the systematic error is decreased by more than a factor of 2 [87]compared to

its previous result [176] which leads to a smaller uncertainty in the combined result from

BNL and FNAL measurements

aEXP
µ = 116592059(22)× 10−11. (4.1)

In the near future, this error is expected to be further improved by the upcoming Fer-

milab and J-PARC experiments based on a different measurement technique [177, 178].

On the theoretical side, however, the prediction of the SM [179, 180, 181, 182, 183, 184,

185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197] gives

aSMµ = 116591810(43)× 10−11. (4.2)

It is a well-known fact that the contribution from the Leading Order Hadronic Vacuum

Polarisation (LO-HVP) [90] is mainly responsible for the large uncertainty in the SM

prediction which relies on the data-driven dispersion relation approach [186, 187, 198,

199] using data from the ratio of e+e− annihilation cross section into hadrons to a pair of

muons. Despite, a different approach has been used to compute this contribution which

relies on the lattice QCD simulation. The lattice simulation approach has been applied

by several groups [92, 93, 94, 95, 96, 97]. In the past, the lattice QCD results were not

reliable because of large uncertainty compared to the data-driven approach. However,

the recent result by BMW group in 2020 [92] has considerably reduced this uncertainty.

The result massively reduces a tension between the measurement and SM prediction to
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1.5σ significance level. However, it is still unclear that this result is correct as it leads

to the tension with electroweak global fits which changes the running of fine structure

constant ∆α
(5)
had [98] and it has not yet been confirmed by other groups. Therefore, until

the dust settles we will not consider the result from the lattice QCD but adopt the value

from data-driven approach in this thesis. By comparing Eq.(4.1) and (4.2), it leads to

∆aEXP
µ = aEXP

µ − aSMµ = 249(48)× 10−11, (4.3)

which implies the positive excess of experimentally averaged result over the SM predic-

tion at the level of 5σ significance. The excess obviously manifests a need for physics

beyond the Standard Model (BSM) to successfully accommodate the deviation. More

precisely, we need new particles that interact with the SM muon and/or photon.

In addition to the gµ − 2 anomaly, the existence of DM is also a long-standing and

compelling issue in particle physics since there is no suitable particle in the SM that

can consistently explain its particle nature as a Cold Dark Matter (CDM). Recently,

the dedicated observations of the Cosmic Microwave Backgroud (CMB) anisotropies by

PLANCK measurement implies a large amount of DM about five greater than that of

the baryonic matter [21]. In spite of that, for many years we have been searching for DM

signal in terrestrial laboratories but it still evades our sight. Therefore, the hunting for

DM might be one of the long and biggest quest for particle physicists and cosmologists

nowadays.

The gµ − 2 anomaly and DM problem is a sensible motivation for us to seek for beyond

the SM (BSM). Nowadays, there are several models purposed to simultaneously describe

the these issues: the Scalar DM (SDM) models [200, 201, 202, 203, 204], the SDM with

Vector-Like Leptons (VLLs) [205, 206, 207, 208, 209, 210], the Vector Dark Matter

(VDM) with scalar portal [211, 212], the VDM with VLL portal [122].

In the previous chapter, we have thoroughly studied the scenario in which the VL fermion

double is a VL top quarks in both cosmological and collider phenomenology. In this chap-

ter, we study a possibility to explain the DM problem and muon anomalous magnetic

moment at the same time with the MPVDM scenario. The theoretical framework of

the MPVDM is still similar to our previous articles. The connection between SM and D

sectors is established via the Yukawa interaction of SM and VL muons. In additional to

the SM particles in the loop, aµ receives contributions from new gauge bosons, scalars

and fermions from MPVDM which we abbreviate as “New Physics” (NP) contribution.

Therefore, the MPVDM has a potential to address the gµ − 2 and DM problems at the

same time.

This chapter is organised as follows: In section 4.2, we display the relevant expressions

for aµ and present the parameter space that is allowed by the existing limits. In sec-

tion 4.3, we consider the DM candidate for our model and the surviving parameter space
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after application of a series of cosmological bounds (relic density, direct and indirect de-

tections). In section 4.4, we discuss the collider limits from pp→ µ+µ−+EmissT which is

important to constrain the masses of VL muons. In addition, our model predicts unique

and novel multi-lepton signature. Also, we study the interplay between the (g − 2)µ,

collider and DM limits that narrows down our parameter space to region where all afore-

mentioned bounds are satisfied at the same time. Finally, we summarise our findings on

the MPVDM scenario in section 5 and propose future outlooks.

4.1 The MPVDM model

In this thesis, we explore the potential of FPVDM to explain the DM observables and

experimental excess of g-2 over the SM prediction [179]. The combined result from BNL

and FNAL experiments indicates the 5σ discrepancy from the SM prediction ∆aEXP
µ =

249(48)× 10−11. In order to explain the Muon anomalous magnetic moment we need a

D fermionic doublet which mixes wtih the SM muon and this D fermionic doublet can

naturally be a doublet of VL muon Ψ = (µD, µ
′)T . The mixing of SM and D muons is

obviously given by the Yukawa term of y′. Therefore, the additional contributions to

the gµ − 2 result from the NP diagrams including HD , V ′, V
(∗)
D and µD, µ

′. 1

The most general Lagrangian for this scenario takes the following form

L ⊃ −1

4
(V i
µν)

2|B,W i,V iD
+ f̄

SM
i /DfSM + Ψ̄i /DΨ+ |DµΦH |2 + |DµΦD|2 − V (ΦH ,ΦD)

− (yf̄
SM
L ΦHf

SM
R + y′Ψ̄LΦDf

SM
R + h.c)−MµDΨ̄Ψ , (4.4)

where V (ΦH ,ΦD) is the scalar potential and is given by

V (ΦH ,ΦD) = −µ2Φ†
HΦH − µ2DΦ

†
DΦD + λ(Φ†

HΦH)
2 + λD(Φ

†
DΦD)

2

+ λHD(Φ
†
HΦH)(Φ

†
DΦD) . (4.5)

The quartic term of ΦH and ΦD (the Higgs portal) mixes and will play an vital role in

studying the phase transition and gravitational waves. However, we are considering a

mininal scenario in which the quartic coupling λHD is negligibly small.

4.1.1 MPVDM parameter space

Even though there are a number of parameters in the Lagrangian but those are fixed by

the experimental results. In general, the model contains free six parameters.

gD,mVD ,mHD ,mµ′ ,mµD , sin θS . (4.6)

1In this chapter, we change a notation to label scalars. The SM Higgs and new scalar are presented
by H and HD, respectively.
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However, in this thesis we would like to consider the effect of the fermionic portal to

dark sector without scalar portal at tree level which mean that sin θS = 0. Therefore,

the dependent parameters can be written in terms of input parameters as follows

v =
2mW

g
, vD =

2mVD

gD
, (4.7)

λ =
g2m2

H

8m2
W

, λD =
g2Dm

2
HD

8m2
VD

, λHD = 0 , (4.8)

µ2 =
m2
H

2
, µ2D =

m2
HD

2
, (4.9)

y =
g mµ√
2mW

mµ′

mµD

, y′ =
gD
√︂
(m2

µ′ −m2
µD

)(m2
µD
−m2

µ)
√
2mµDmVD

. (4.10)

4.2 The analytical and numerical results

As we have mentioned at the beginning of the introduction that the averagedly combined

experimental measure of the anomalous magnetic moment of the muon, aµ ≡ (gµ −
2)/2, from BNL and FNAL leads to aEXP

µ = 116592059(22) × 10−11. However, the

prediction of this quantity within the framework of SM gives aSMµ = 116591810(43) ×
10−11 provided by the Muon g-2 Theory Initiative in 2020 [179]. In general, the SM

prediction can be divided into 3 catergories: 1) the pure QED contribution aQED
µ =

116 584 718.93(0.10)×10−11, 2) the Electro-Weak (EW) contribution aEWµ = 153.6(1.0)×
10−11 and 3) the Hadronic Vacuumn Polarisation (HVP) contribution aHad

µ = 6931(40)×
10−11 2 . The theoretical uncertainties from the QED and EW sectors are negligibly

small. The most difficult part is the hadronic one which is responsible for the large

contribution in uncertainty of the SM prediction. The discrepancy between experimental

results and SM prediction leads to ∆aEXP
µ = aEXP

µ − aSMµ = 249(48) × 10−11 which

indicates the 5.2σ deviation from the SM prediction.

This experimental excess over the theoretical prediction could be explained by the

MPVDM framework. As we mentioned before that the model does not require the

Higgs portol to connect to dark sector. Therefore, we will not consider diagrams with

scalar mixing (sin θS = 0) in this thesis. In the next section, we present the complete

analytical results of gµ − 2 for our model.
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Figure 4.1: A set of diagrams contributing to the aµ in addition to the pure SM ones.
The pure QED and hadronic diagrams are not represented here.

4.2.1 Analytical results

It has been shown in [88] that analytical expressions for aµ for generic diagrams and

internal particles are gauge-independent and divergent free. In order to ensure that

the results in [88] are reliable, we have also calculated the contributions to the aµ with

generic couplings and mediators in the limit of Rξ → 0 (in the Unitary gauge) and

cross-validated with their results. We found that our results on aµ agree with theirs.

The detail of our calculations can be found in Appendix F. Moreover, our results have

been crossed validated against the pre-existing in [88, 213, 214]. Indeed, the one-loop

results could be extensively complicated and highly unstable. The instability in loop

functions originates from the fact that the mass of muon is much smaller than that

of other particles which means that we cannot naively use the results. Fortunately,

the instability can be coped with the approximation formulae which give us the more

simplified and compact expressions. The loop diagrams from MPVDM at the leading

order are depicted in figure 4.1. Note that we do not present the pure QED and HVP

diagrams here since they are similar to the SM scenario at the leading order. In the

following sections, we discuss the analytical results from diagrams with scalar, vector

with Neutral Current (NC) and Charged Current (CC), respectively.

2We use the result due to a data-driven dispersion relation approach. However, there are several
groups evaluating the HVP contribution using the lattice QCD approach. The recent result from the
BMW collaboration [92] is aBWM

µ = 7075(55)× 10−11. The difference between two approaches might be
explained by new physics contributions
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4.2.1.1 The scalar diagram

As aforementioned, the instability in loop functions happens if the mass of muon is

much smaller than that of other particles. Therefore, in order to get a reliable result

we expand the scalar contribution in the limit of mµ ≪ mf where mµ and mf are the

mass of muon and VL muons, respectively. After doing expansion and keeping only the

leading order, the analytical result for figure 4.1 (a) reads

aSµ =
(C2

S − C2
P )

16π2
mµmf

(m2
f −m2

s)
3

(︄
m4
f − 4m2

fm
2
s + 3m4

s − 2m4
s log

(︄
m2
s

m2
f

)︄)︄
+O

(︄
m2
µ

m2
f

)︄
,

(4.11)

where ms is the mass of scalar fields. The CS and CP are the scalar and pseudo-scalar

components of a generic coupling of a scalar-fermion-fermion vertex, respectively. The

full analytical expression in terms of integral for scalar case is given by Eq.(F.4). In

addition, in the regime that ms ≪ mf and mµ ≪ mf , the result for figure 4.1 (a) is

much more simplified to

aSµ =
(C2

S − C2
P )

16π2
mµ

mf
+O

(︄
m2
µ

m2
f

)︄
+O

(︄
m2
s

m2
f

)︄
(4.12)

Note these results are evaluated at the leading orders of the expansion. Of course, the

higher order results are much more complicated.

In the case of the internal fermions are SM muons and mµ ≪ ms , the result reads

aSµ =
m2
µ

48π2m2
s

(︄
(11C2

P − 7C2
S) + (C2

S − C2
P )6 log

(︃
m2
s

m2
µ

)︃)︄
+O

(︄
m4
µ

m4
s

)︄
(4.13)

In our framework after substituting the CS and CP couplings (see table E.1 and E.2),

the NP contributions from HD propagating diagrams in figure 4.1(a) and (b) can be

reduced to

a(a),Hµ ≈ g2W
64π2

m2
µ

m2
W

∆M2

M2
µ′

m2
µ

(m2
µ′ −m2

H)
3

[︃
3m4

H − 4m2
Hm

2
µ′ +m4

µ′ + 4m4
H log

mµ′

mH

]︃
(4.14)

a(a),HDµ ≈ g2D
96π2

m2
µ

m2
VD

[︄
1

4

∆M2

m2
µ′

(︄
−1 + 7∆M2

m2
µ′

)︄]︄
(4.15)

a(b),HDµ ≈ g2D
96π2

m2
µ

m2
VD

[︄
1

2

m2
µ

m2
HD

∆M4

m4
µ′

(︃
−7 + 12 log

mHD

mµ

)︃]︄
, (4.16)

respectively, where ∆M2 = m2
µ′ −m2

µD
. One can see that the a

(a),H
µ contribution is very

suppressed because of m2
µ/m

2
W and ∆M2/m2

µ′ . The a
(a),HD
µ and a

(b),HD
µ contribution
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obviously depends on three quantities: 1) the squared coupling constant g2D, 2) the

square of the ratio of muon’s mass to DM’s mass (mµ/mVD)
2 and 3) the mass squared

difference between two VL muons over m2
µ′ . This fact is also true for the contributions

from NC and CC diagrams as we will see later. More specifically, one can clearly see

that Eq.(4.15) can give a positive contribution if (mµ′/mµD)
2 > 7/6 and it is negative if

1 < (mµ′/mµD)
2 < 7/6. Eq.(4.16) is positive and negative ifmHD > mµ andmHD < mµ,

respectively. The contributions involving the SM-Higgs can be neglected due to the

suppression in the mixing of SM and D fermions.

4.2.1.2 The NC diagram

The contributions from the vector propagating diagrams can be divided into 2 groups:

1) the diagrams with NC and 2) the diagrams with CC. Starting with a contribution

from NC diagram, the result for figure 4.1 (c)-(e) at the leading order of the expansion

in the limit of mµ ≪ mf is given by

aNC
µ =

(C2
V − C2

A)

16π2
mµmf

m2
v(m

2
f −m2

v)
3

(︄
m6
f + 3m2

fm
4
v − 4m6

v + 6m2
fm

4
v log

(︄
m2
v

m2
f

)︄)︄

+O
(︄
m2
µ

m2
f

)︄
, (4.17)

where the CV and CA are a vector and axial-vector couplings of a vector-fermion-fermion

vertex. The full analytical integral for NC case is given by Eq.(F.59). Here the mf is the

masses of VL muons (µD, µ
′) and mv is the masses of neutral gauge bosons (Z, V ′, VD).

When mµ ≪ mf and mv ≪ mf , the analytical expression reads

aNC
µ =

(C2
V − C2

A)

16π2
mµ(m

2
f + 3m2

v)

mfm2
v

+O
(︄
m2
µ

m2
f

)︄
+O

(︄
m2
v

m2
f

)︄
. (4.18)

When the internal fermions are SM muons and if mµ ≪ mv, the contribution from NC

diagram reads

aNC
µ =

(C2
V − 5C2

A)

12π2
m2
µ

m2
v

+O
(︄
m4
µ

m4
v

)︄
, (4.19)

This result is consistent with the Eq. (2.5) in [215] and we have checked that it can

reproduced the SM prediction found in [13].

Substituting the relevant couplings from tabletable E.1 and E.2, the NP contributions

of new gauge bosons propagating diagrams from figure 4.1(c), (d) and (e) reads
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a(c),V
′

µ ≈ g2D
96π2

m2
µ

m2
VD

[︄
1

4

∆M2

m2
µ′

(︄
1 +

5∆M2

m2
µ′

)︄]︄
, (4.20)

a(d),V
′

µ ≈ g2D
96π2

m2
µ

m2
VD

[︄
−2∆M

4

m4
µ′

]︄
, (4.21)

a(e),VDµ ≈ g2D
96π2

m2
µ

m2
VD

[︄
1

2

∆M2

m2
µ′

]︄
, (4.22)

respectively. One can clearly see the key features of these results are still similar to what

we have commented for the scalar contribution. The NP contributions from figure 4.1(c),

(d) and (e) give the positive, negative and positive results, respectively.

4.2.1.3 The charged current diagram

The last contribution is originated from the CC diagrams which the result we present

here is from the full integral in Eq.(F.73). Expanding in the limit of mµ ≪ mv, the

expression for figure 4.1 (f) is given by

aCC
µ =

5(C2
V + C2

A)

24π2
m2
µ

m2
v

+O
(︄
m4
µ

m4
v

)︄
(4.23)

where mv = mW . This result is used for the figure 4.1(f) and is always positive. After

substituting the CV and CA according to table E.1 and E.2, we numerically found that

the result is equal to that of the pure SM. Notice that this result has been computed

under the assumption that mass of internal fermion is zero which is consistent to the SM

and the MPVDM cases in which the neutrinos are massless. The more general result

can be found in [88], Eq.(4). The extensive detail for one-loop contributions to g-2 from

S, NC and CC digrams are given in the Appendx F. The validation of Eq.(4.19) and

(4.23) can be done by considering the SM results from the Z and W boson diagrams and

we found that they provide the consistent results with Eq.(14) and (15) in [216].

As we see above, the contributions from all NP diagrams can give both positive and

negative results. In order to explain the experimental results we need the total pos-

itive contribution. The MPVDM model has a potential to accommodate the ∆aEXP
µ

discrepany through new contributions from VL muons (µD and µ′), a dark scalar (HD)

and two new gauge bosons (VD and V ′). In order to explain this discrepancy, we define

the NP contributions as the difference between MPVDM and SM ones as follows

∆aNP
µ = aMPVDM

µ − aSMµ (4.24)

where aMPVDM
µ is the contributions according to the diagrams (a-f) in figure 4.1 and

aSMµ is merely the contributions from diagrams a, c and f with pure SM particles and
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couplings combining the pure QED, EW and Had contribution as mentioned in the

begining of section 4.2. Thus, the ∆aNP
µ give purely NP contributions.

4.2.2 The gµ − 2 results

In order to understand a comprehensive picture of the full 5-Dimensional (5D) parameter

space of {gD,mVD ,mµD ,mµ′ ,mHD}, we have scanned over the 5D parameter space with

the following ranges

10−4 ≤ gD ≤ 4π,

0.01 ≤ mVD/GeV ≤ 10000,

100 ≤ mµD/GeV ≤ 10000,

100 ≤ mµ′/GeV ≤ 10000,

0.01 ≤ mHD/GeV ≤ 10000. (4.25)

The upper limit on the coupling is chosen according to the perturbativity condition

while the lower one should not be too small because it will not be relevant to the

collider search for new signature (see the discussion of the multi-leptons signatures in

section 4.4). The maximum values of the masses are limited at 104 GeV whilst the

minimum values of masses are set at 10 MeV. The lower limit on the VL muons was set

based on the obvious limit from LEP experiment which has searched for exotic unstable

neutral and charged heavy leptons at the L3 detector. We use the results in 2000

which corresponds to the centre of mass energy 200-208 GeV with a total integrated

luminosity 450 pb−1. The heavy charged leptons L± are pair-produced through the

Dell-Yan processes e+ e− → γ, Z → L+ L− then they can decay into a pair of neutrinos

with W bosons L± → νℓ W
± or a pair of SM charged leptons with Z bosons L± → ℓ± Z.

The bovious lower limit on L± is placed around 100 GeV [217]. For the actual limits on

masses of VL muons, we derive in section 4.4.1 by using the data on µ+µ−+Emiss
T from

LHC.

In the 5D scan, we have collected only data that satisfies the perturbativity constraints

which is defined as follows

λH ≤ 4π, λD ≤ 4π, y ≤ 4π, y′ ≤ 4π,
mVD −mV ′

mVD

< 0.5, (4.26)

wheremVD andmV ′ are the renormalised masses at one loop for VD and V ′, respectively.

In order to visualise the region of good aµ within experimental limits, we have defined

the ∆âµ which describes the deviation of the NP contributions ∆aNP
µ from the ∆aEXP

µ
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Figure 4.2: The colour bar plot of ∆âµ from 5D scan projected on the (gD,mVD
)

plane. The perturbativity constraints Eq.(4.26) is imposed on the plot. The varying
spectrum illustrates the deviation of the ∆aNP

µ from ∆aEXP
µ . The spectrum ranges from

dark blue to dark red which corresponds to −5.0σ ≤ ∆âµ ≤ 5.0σ. The region with
aµ±2σ is highlighted by a spectrum from light blue to bright orange which corresponds

to −2σ ≤ ∆âµ ≤ 2σ.

as follows

∆âµ =
(∆aNP

µ −∆aEXP
µ )

σ
(4.27)

where ∆aEXP
µ is given by Eq.(4.3) and ∆aNP

µ by Eq.(4.24), and σ = 48× 10−11 from the

recent averaged value [87].

The figure 4.2 represents the projection of 5D data onto the (gD,mVD) plane. The

colour bar on the right of the plot shows the varying colour sprectrum from dark blue

to dark red for −5.0 ≤ ∆âµ ≤ 5.0 . The points with aµ within 95% C.L. or ±2σ
are highlighted with the spectrum from ligth blue to bright orange. The white region

is excluded by the perturbativity constraint Eq.(4.26). As we have mentioned in the

analytical results sector that the aµ is proportional to the squared coupling g2D and

inversely proportional to the squared mass of DM m2
VD

. From figure 4.2, it is obvious

that the greater gD the bigger aµ while it is smaller if the DM mass gets heavier. As

we have seen from Eqs.(4.15), (4.16), (4.20), (4.21), (4.22), when the ratio ∆M2/m2
µ′ is

small , the contributions from the diagram (a), (c) and (e) are dominant. However, if the

ratio ∆M2/m2
µ′ is large , the contributions from the diagram (b) and (d) are dominant.

The contributions from other diagrams are highly suppressed by the mixing between SM

and VL muons, especially for the diagram involving SM Higgs, Z and W bosons. Even
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if SM and VL muon mix, the SM-like contributions are very slightly changed compared

to the SM prediction.

In order see clearly in which region we can reproduce the experimental result of gµ − 2,

we present the 1 dimensional plots of (mVD ,∆a
NP
µ ) in figure 4.3. In each panel, the mass

of DM varies from 0.01-100 GeV. The dotted, solid and dashed blue lines correspond

to the ∆aNP
µ = ∆aEXP

µ − 2σ, ∆aNP
µ = ∆aEXP

µ and ∆aNP
µ = ∆aEXP

µ + 2σ, respectively.

In figure 4.3 (a), we fix mµD = 800 GeV, mµ′ = 850 GeV and mHD = 0.5 GeV and

vary gD ∈ {0.001, 0.0025, 0.005} which are labeled by the solid red, green and orange

lines, respectively. One can see that the points where the blue line intersects with the

red, green and orange ones can reproduce the experimentally measured value of gµ − 2

and correspond to mVD ∈ {0.0475, 0.119, 0.236} GeV. If gD is large we also need large

mVD to balance the g2D/m
2
VD

. However, the aµ is not sensitive to mHD as one can in

figure 4.3 (b). The curves slightly changes with respect to mHD even though we vary

mHD ∈ {0.01, 0.1, 1} GeV. This is because, at the leading order of expansion, amongst

the NP contributions the scalar contributions are less relevant compared to the NC and

CC contribution. Numerically, it contributes at most only a few percent to the ∆aNP
µ .

In figure 4.3 (c), it is obvious that aµ is proportional to ∆M2/m2
µ′ . To get the measured

value of gµ − 2a, if ∆M2/m2
µ′ is large the large mVD is needed to compensate.
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Figure 4.3: The 1 dimensional plots of (mVD
,∆aµ). In each panel, the mass of DM

is varied from 0.01-100 GeV. The dotted, solid and dashed blue lines correspond to the
∆aNP

µ = ∆aEXP
µ − 2σ, ∆aNP

µ = ∆aEXP
µ and ∆aNP

µ = ∆aEXP
µ + 2σ, respectively.
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4.3 Cosmological probes of MPVFM model

4.3.1 The cosmological limits

We have already discussed the cosmological bounds in section 3.1.1. Here we only present

the result for MPVDM scenario after applying those constraints.
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Figure 4.4: The data from 5D scan projecting on various scatter plots: a) (mVD
, gD),

b) (mµD
, gD), c) (mVD

,mHD
) and d) (mµD

,mVD
) planes, respectively. The perturba-

tivity and cosmological constraints have been applied on each individual panel. The
cosmological limits contain 1) the DM relic density, 2) the DM DD and 3) the DM ID.
The allowed region are coloured by green, cyan, blue and grey while the excluded ones
are highlighted by dark red, orange and magneta. The white region corresponds to the

perturbativity exclusion region.

In figure 4.4, the allowed regions are coloured by green, cyan, blue and grey while the

excluded ones are labeled by dark red, orange and magenta. The green, cyan and blue

regions are allowed by perturbativity constraint, DD and ID, and they have the relic

density ΩPlanck
DM h2 ± 0.012. The grey region also satisfies the same constraints as green,

cyan and blue ones but has the under-abundant relic density. On the other hand, the

dark red, orange and magenta regions are not allowed by the relic density, CMB ID

and DD limits, respectively. More precisely, the green region as labelled by generic

DM annihilation appears as a small diagonal strip in figure 4.4(a) where the dominant

annihilation channels are VD V ∗
D → V ′ V ′. However, the generic DM annihilation
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processes are not effective and is excluded by DM ID constraint in a region of small

DM mass below 1 GeV and small coupling gD below 0.02. One can see that the green

strip is not uniform over a range 1 < mVD/GeV < 10000, especially in the region with

10 < mVD/GeV < 100 in which the DM DD constraint becomes relatively stronger.

The regions above(below) the green one corresponds to the region with under(over) relic

abundance which they are labelled in grey and dark red. The cyan region is identified by

the HD resonance region where the main annihilation channel is VD V ∗
D → HD → V ′ V ′.

This can happen when the DM mass gets close to a half of mHD . One can clearly see a

region of the resonance as a diagonal cyan strip of figure 4.4(c). Finally, the blue region

corresponds to the µD co-annihilation region and this happens when the DM mass gets

close to mµD as in figure 4.4(b) and (d) panels. The co-annihilation process becomes

visible on the parameter space when the DM mass goes to 100 GeV (the lower limit of

VLM from LEP). For small coupling gD < 0.1, the co-annihilation region is effectively

produced by a process of µD, µD → qq̄, ℓ+ℓ−, νν̄ via photon and Z exchange which does

not depend on the coupling gD and happens in region of 100 < mVD/GeV < 300. When

the coupling gD becomes larger, the dominant process shifts to VDµD → γµ, γµ′ via

µ, µ′ exchange.

4.3.2 The combined bounds: cosmological and aµ limits

In previous sections, we have discussed the cosmological and aµ constraints seperately.

In this section, we try to combine these bounds together and find a allowed region where

it satisfies the cosmological and aµ bounds simultaneously.

In figure 4.5 and 4.6, the grey region is allowed by the perturbativity constraint. The

green(cyan) region is allowed by the DM DD, ID and has the correct(underabundant)

relic density. The dark red labels a region with aµ within 2σ from the averaged value

Eq.(4.1). The starred magenta and orange indicate a region allowed by aµ ± 2σ, DM

DD, ID with the relic density ΩPlanck
DM h2 and 15%ΩPlanck

DM h2, respectively. The white

region in the figure 4.5 (a) panel violates the perturbativity constraint while the white

region in figure 4.6 (b), (c) and (d) panels is excluded by the mass hierarchy condition

mVD < mµD < mµ′ .

In figure 4.5 (a) the (mVD , gD) panel, one can clearly see that the dark red and green

bands have different slopes. They intersect in a region of 10−4 < gD < 10−1 and 0.01 <

mVD/GeV < 10. However, the CMB ID constraint becomes strong and enormously

excludes a region of 1 < mVD/GeV < 10 and 0.01 < gD < 0.1. At the largest coupling

gD = 4π, the (gµ−2)/2 is below ∆aEXP
µ −2σ in a region with mVD > 2000, mµD > 3000,

mµ′ > 4000 and mHD > 2000 GeV as one can see clearly from figure 4.5 (a), (b), (c)

and (d) panels, respectively. A region which is allowed by cosmological and gµ−2 limits

corresponds to the HD resonance region and it appears as a diagonal strip in figure 4.6

(a).
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Figure 4.5: The scatter plots from 5D data projected on various planes: (mVD
, gD),

(mµD
, gD), (mµ′ , gD) and (mHD

,mµD
), respectively. The combined constraints on per-

turbativity (Eq.(4.26)), cosmology, VLM masses and aµ have been applied on each plot.
The VLM search has put a lower limits on mµD

and mµ′ around 600 GeV from LHC
data. The constraint on (gµ − 2)/2 is within 2σ.

In figure 4.7, we consider the 2D plots of (mVD , gD) plane with mµD = 650, 700, 750

GeV, mµ′ = 800 GeV, mHD = 0.5 GeV. In figure 4.8, we change mµD = 700, 800, 900

GeV and mµ′ = 1000 GeV while keep mHD = 0.5 GeV. In those plots, the red, orange

and magenta regions are excluded by the DM relic density, DM ID and perturbativity

constraints, respectively. The solid red line corresponds to the PLANCK relic density

ΩDMh
2 = 0.12. The solid orange one means the Pann = 3.2×10−28 cm3s−1 GeV−1. The

dashed, solid and dotted blue lines indicate the curves with ∆âµ = −2σ, ∆âµ = 0 and

∆âµ = +2σ, respectively. In parameter space we present in figure 4.7 and 4.8, the DM

DD limit is not relevant as the DM mass and coupling gD are too small. The allowed

region by cosmological and gµ − 2 limits resides in the white region, and only between

dashed and dotted blue lines. In figure 4.7 (a), the allowed region has 0.21 < mVD < 0.24

GeV and 0.002 < gD < 0.004. As one can see that the aµ increases depending on the

larger coupling gD. However, it decreases as DM mass increases. If the mass splitting

of VL muons decreases the slope of the blue lines increases to get the aµ with 2σ as one

can see from the figure 4.7 (b) and (c). In figure 4.8, the allowed region by cosmological

and gµ − 2 resides between 0.0015 < gD < 0.0035 with the same range of mVD as in
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Figure 4.6: (Cont.) The scatter plots from 5D data projected on various planes:
(mHD

,mVD
), (mµ′ ,mµD

), (mµ′ ,mVD
) and (mµ′ ,mVD

), respectively. The combined
constraints on perturbativity (Eq.(4.26)), cosmology, VLM masses and aµ have been
applied on each plot. The VLM search has put a lower limits on mµD

and mµ′ around
600 GeV from LHC data. The constraint on (gµ − 2)/2 is within 2σ.

figure 4.7 because mHD does not change. However, the allowed range of gD is slightly

smaller compared to those in figure 4.7 because of large mass splitting of VL masses.

Another 2D plane can be found in figure 4.9. We present the 2D plots on (mµD ,mVD)

plane with gD = 0.001, 0.0025, 0.005, 0.0075, mµ′ = 1000 GeV and mHD = 0.5 GeV.

According to the combined limits from cosmology and gµ − 2, one can see that the

allowed region appears only in figure 4.9 (b) where gµ = 0.0025, 0.21 < mVD < 0.24

GeV and 750 < mµD < 800 GeV.
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Figure 4.7: The 2D parameter space of (mVD
, gD) plane with mµD

= 650, 700, 750
GeV, mµ′ = 800 GeV and mHD

= 0.5 GeV. The magenta, orange and red regions are
excluded by the perturbativity, DM ID and relic density constraints, respectively. The
solid red line corresponds to the relic density ΩDMh

2 = 0.12. The solid orange line
indicates the Pann = 3.2 × 10−28 cm3s−1 GeV−1. The dotted, solid and dashed blue

lines represent the ∆âµ = −2σ, ∆âµ = 0 and ∆âµ = 2σ, respectively.

Inputs/Observables BP1 BP2 BP3

gD 0.0025 0.0025 0.0025
mVD [GeV] 0.206 0.206 0.206
mµD [GeV] 650 740 850
mµ′ [GeV] 800 1000 1000
mHD [GeV] 0.5 0.5 0.5

(gµ − 2)/2 2.04× 10−9 2.461× 10−9 1.76× 10−9

ΩDMh
2 (Relic density) 0.105 0.098 0.105
Nevent (DD) 1.016× 10−8 2.014× 10−8 7.254× 10−9

p̂ (DD) 1 1 1
Pann [cm3 s−1GeV−1] (ID) 2.38× 10−28 3.17× 10−28 2.43× 10−28

Table 4.1: The representative benchmark points that are allowed by gµ − 2 and
cosmological bounds.
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Figure 4.8: The 2D parameter space of (mVD
, gD) plane with mµD

= 700, 800, 900
GeV, mµ′ = 1000 GeV and mHD

= 0.5 GeV. The magenta, orange and red regions
are excluded by the perturbativity, DM ID and relic density constraints, respectively.
The solid red line corresponds to the relic density ΩDMh

2 = 0.12. The solid orange line
indicates the Pann = 3.2 × 10−28 cm3s−1 GeV−1. The dotted, solid and dashed blue

lines represent the ∆âµ = −2σ, ∆âµ = 0 and ∆âµ = 2σ, respectively.
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Figure 4.9: The 2D parameter space of (mµD
,mVD

) plane with gD = 0.001, 0.0025,-
0.005, 0.0075, mµ′ = 1000 GeV and mHD

= 0.5 GeV. The magenta, orange and red
regions are excluded by the perturbativity, DM ID and relic density constraints, re-
spectively. The solid red line corresponds to the relic density ΩDMh

2 = 0.12. The solid
orange line indicates the Pann = 3.2 × 10−28 cm3s−1 GeV−1. The dotted, solid and
dashed blue lines represent the ∆âµ = −2σ, ∆âµ = 0 and ∆âµ = 2σ, respectively.
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4.4 Collider Constraints

In this section, we discuss collider limits for DM searches from LHC data where the

ATLAS collaboration is looking for a signal of a pair production of sleptons produced in

proton-proton collision and then they finally decay into a pair of SM muons and missing

transverse momentum pp → ℓ̃ℓ̃ → ℓℓ + Emiss
T . Additionally, we discuss novel signatures

of multi-leptons with at least six muon in the final state predicted by our model. Then,

we provide some benchmark points (BPs) with information of relevant branching ra-

tios, production cross sections of multi-leptons and the corresponding number of events.

These representative BPs are allowed by gµ − 2, cosmological bounds and collider lim-

its from pp → ℓℓ + Emiss
T . Moreover, the parameter space from 5D scan projecting

onto different planes of input parameters are presented after successively applying all

aforementioned limits.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: The recasting limits on the (mµD
,mVD

) plane for pp→ µ+
Dµ

−
D + Emiss

T

based on the combined limits from ALTAS and CMS searches. The recast is simulated
for gD = 0.001, 0.005, 0.01, mµ′ = 800, 1000 GeV and mHD

= 0.5 GeV. The orange line
indicates the exclusion limit at 95 % C.L. and the dotted lines show the ratio of the µD

decay width over its mass.

4.4.1 The lower masses of VL muons from pp→ µ+µ− + Emiss
T

The production of a pair of VL muons µ+Dµ
−
D can be made through proton-proton col-

lision via γ, Z, V ′ exchange. The first two processes are evidently dominant since µD

carries the same hypercharge as SM muon while the V ′ involving process is highly sup-

pressed by the KM effect. After the pair production of µ+Dµ
−
D, a µD will entirely decay

into a VD and a SM muon due to the mixing between SM and VL muons through the
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Figure 4.11: The scatter plots from 5D data projected on various planes: (mVD
, gD),

(mHD
,mVD

) and (mµ′ ,mµD
), respectively. The combined constraints on perturbativity

(Eq.(4.26)), cosmology, VLM masses and aµ have been applied on each plot. The VLM
search has put a lower limits on mµD

and mµ′ around 600 GeV from LHC data. The
constraint on (gµ − 2)/2 is within 2σ.
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Figure 4.12: The 2D parameter space of (mVD
, gD) plane with mµD

= 650, 700, 750
GeV, mµ′ = 800 GeV and mHD

= 0.5 GeV. The magenta, orange, red and cyan
regions are excluded by the perturbativity, DM ID, relic density, collider constraints,
respectively. The solid red line corresponds to the relic density ΩDMh

2 = 0.12. The
solid orange line indicates the Pann = 3.2 × 10−28 cm3s−1 GeV−1. The dotted, solid
and dashed blue lines represent the ∆âµ = −2σ, ∆âµ = 0 and ∆âµ = 2σ, respectively.

The solid cyan line shows the LHC exclusion limit at 95 % C.L.

Yukawa terms. In this section, we use collider limits from the ATLAS and CMS search-

ing for a pair of production of sleptons decaying into two SM muons and transverse

missing energy through the process of pp→ ℓ̃ℓ̃→ µ+µ−+Emiss
T . In our model, a similar

process can be produced by pp→ µ+Dµ
−
D → µ+µ− + Emiss

T . By recasting the limit from

this process, we can derive the exclusion region at 95 % confident level which can be

used to set a lower bound on masses of VL muons. The list of searches are the following:

atlas-susy-2018-32 [218], cms-sus-16-039 [219] and cms-exo-19-010 [220]. The recast is

based on these searches can be found in figure 4.10 and the results are presented in the

(mµD ,mVD) plane with varying parameters: gD = 0.001, 0.005, 0.01, mµ′ = 800, 1000

GeV and mHD = 0.5 GeV. One can see that in the region of interest where mVD < 1

GeV the lower limit on mµD by recasting is around 700 GeV. In figure 4.11, we apply

this limit on the various projections of 5D scan and one can see that the allowed region

(indicated by red stars) reside exactly in the resonance region of HD with gD < 0.003,
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Figure 4.13: The 2D parameter space of (mVD
, gD) plane with mµD

= 700, 800, 900
GeV, mµ′ = 1000 GeV and mHD

= 0.5 GeV. The magenta, orange, red and cyan
regions are excluded by the perturbativity, DM ID, relic density, collider constraints,
respectively. The solid red line corresponds to the relic density ΩDMh

2 = 0.12. The
solid orange line indicates the Pann = 3.2 × 10−28 cm3s−1 GeV−1. The dotted, solid
and dashed blue lines represent the ∆âµ = −2σ, ∆âµ = 0 and ∆âµ = 2σ, respectively.

The solid cyan line shows the LHC exclusion limit at 95 % C.L.

mVD < 0.5 GeV, mHD < 1 GeV and 700 < mµD ,mµ′ < 2000 GeV.

In addition, we also apply the recast results at 95% to the 2D plots as in figures 4.12, 4.13

and 4.14. In figure 4.12 (c), the parameter space is not excluded by LHC constraint and

the allowed region for mµD = 750 GeV, mµ′ = 800 GeV and mHD = 0.5 GeV is in range

of 0.005 < gD < 0.003 and 0.21 < mVD < 0.24 GeV, while parameter space in figure 4.12

(a) and (b) is not survived by the LHC constraint. In figure 4.13, the parameter space

in panel (a) is excluded by LHC constraint. The allowed region by cosmological, gµ − 2

and LHC constraints for mµD = 800 GeV, mµ′ = 1000 GeV and mHD = 0.5 GeV

has 0.002 < gD < 0.003 (panel (b)) while for mµD = 900 GeV, mµ′ = 1000 GeV and

mHD = 0.5 GeV the region with 0.0025 < gD < 0.004 is allowed (panel (c)).

The 2D parameter space of (mµD ,mVD) plane is shown in figure 4.14. One can see that

the allowed region is depicted by figure 4.14 (b) where gD = 0.0025, mµD = 1000 GeV,
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Figure 4.14: The 2D parameter space of (mµD
,mVD

) plane with gD = 0.001, 0.0025,-
0.005, 0.0075, mµ′ = 1000 GeV and mHD

= 0.5 GeV. The magenta, orange and red
regions are excluded by the perturbativity, DM ID and relic density constraints, re-
spectively. The solid red line corresponds to the relic density ΩDMh

2 = 0.12. The solid
orange line indicates the Pann = 3.2 × 10−28 cm3s−1 GeV−1. The dotted, solid and
dashed blue lines represent the ∆âµ = −2σ, ∆âµ = 0 and ∆âµ = 2σ, respectively.

mHD = 0.5 GeV and 750 < mµD < 800 GeV.

4.4.2 The signatures: multilepton in final states

In this section, we discuss the novel and characteristic collider signatures predicted by

the MPVDM. In our model, the multi-lepton processes can be produced by proton-

proton collisions through a pair production of µ′+µ′− and then a µ′ will decay into one

of these channels: 1) µDVD, 2) µHD and 3) µV ′. One HD decays into VDV
∗
D, V

′V ′ and

µ+µ− and then V ′ decays into a pair of two muons which the decay rate and branching

ratios of HD is determined by gD, mHD and the mass splitting ratio of two VL fermions,

(m2
µ′ −m2

µD
)/m2

µ′ . The information about decay channels and corresponding branching

ratios for relevant particles is given in table 4.2. Therefore, a process of pair production

of µ′+µ′− ends up with at least six muons in the final state. In table 4.2, we provide a

few Benchmark Points (BPs) that produce the measured relic density and passed DM
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Inputs/Observables BP1 BP2 BP3

gD 0.0025 0.0025 0.0025
mVD [GeV] 0.22 0.22 0.22
mµD [GeV] 600 600 600
mµ′ [GeV] 650 850 1000
mHD [GeV] 0.5 0.5 0.5

Br(µ′ → V ′µ) 0.48 0.3 0.22
Br(µ′ → HDµ) 0.48 0.28 0.2

Br(µ′ → Ṽ µD) 0.045 0.43 0.59

Br(HD → VDV
∗
D) 0.66 0.608 0.551

Br(HD → V ′V ′) 0.334 0.36 0.402
Br(HD → µ+µ−) 0.003 0.032 0.047

Br(V ′ → µ+µ−) ∼1 ∼1 ∼1
Br(µ′ → V ′µ→ 3µ) 0.48 0.3 0.22
Br(µ′ → HDµ→ 5µ) 0.16 0.1 0.076

σtot(pp→ µ′µ′) 0.85 0.22 0.088
Nevent(pp→ 6µ) 58.75 5.94 1.28
Nevent(pp→ 8µ) 19.58 1.98 0.44
Nevent(pp→ 10µ) 6.53 0.66 0.15

Table 4.2: The decay channels and corresponding branching ratios of µ′, V ′ and
HD for three representative BPs. The number of events is computed assuming that
the integrated luminosity is equal to 300 fb−1. Here the branching ratios of HD is

determined by gD, HD and the ratio (m2
µ′ −m2

µD
)/m2

µ′ .

DD and ID constraints, and have (gµ−2)±2σ. For the representative BPs, we evaluate

the production cross section at
√
s = 13.6 TeV and 300 fb−1 integrated luminosity for

six, eight and ten muons in the final state, and corresponding number of events for each

BP.

One can see that probability for having six, eight and ten muons from µ′+µ′− production

is in the range of 5-20%, 2-8%, and 1-3%, respectively. This spectacular signature would

give between 60 (for mµD = 650 GeV) and 1 (for mµ′ = 1000 GeV) events. Since

HD and its respective decay products HD → V ′V ′ will be boosted, it will give four

merged boosted muons, which requires a dedicated study. For very heavy µ′, however,

for example mµ′ > 1 TeV and mµD = 600 GeV, the radiative corrections bring down

the mass of V ′ below twice the mass of muon, mV ′ < 2mµ, so V
′ becomes long-lived

and decays to e+e− and three pairs of νℓν̄ℓ almost equally in branchings providing even

more intriguing signature, which looks like the flavour violation one – more precisely,

the lepton flavour violation occurs because of KM effect. In general, the model exhibits

the following unique signatures

1) one isolated prompt muon + four merged boosted muons
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2) pair of isolated muons + pair of four merged boosted muons

3) one isolated muon + four merged electrons from displaced vertex (10 muons in

total)

4) pair of isolated muons + pair of four merged boosted displaced electrons (2 muons+8

electrons in total)

These novel signatures are very characteristic for this model.

Finally, the parameter space from 5D scan are present in figure 4.11 after sequentially

applying the gµ − 2, cosmological and collider constraints, respectively. After imposing

the LHC costraint, one can see from (gD,mVD) panel that the DM mass and gD are

limited in a range of 0.01 < mVD/GeV < 4 and 10−4 < gD < 5×10−3. In the (gD,mHD)

panel, the HD mass consistently varies from 0.001-4 GeV. The mVD and mHD masses

are constrained to the region of HD resonance in (mVD ,mHD) panel. According to the

(gD,mµD), (gD,mµ′) and (mµD,mµ′) panels, the mass of µD and µ′ are allowed by LHC

bounds within 600-2500 and 650-300 GeV, respectively.
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Chapter 5

Conclusions

In this thesis, we explore a new class of models which is proposed in the publications [1,

2]. This framework relies on the new mechanism that connects the SM and dark sector

together called the Fermionic Portal to Vector Dark Matter (FPVDM). The model has

an additional SU(2)D gauge group and U(1)YD global symmetry. Two of the new gauge

bosons from SU(2)D group play a role as a DM candidate while global U(1)YD symmetry

is introduced to stabilise the DM. The portal to the SM sector is constructed by the

Yukawa term between the SM and its VL partners. As such, this scenario does not

necessarily require a Higgs portal mediating the interactions between the dark sector

and the standard one. This framework has a rich phenomenology which depends on the

nature of VL partners and the form of the scalar potential.

Here we investigated the DM phenomenology based on a simple scenario of FPVDM

models where the SM and dark scalars do not mix and the portal is purely from the

Yukawa. Therefore, only five parameters are needed to define the model. In addition,

the VL fermions mix with only one SM flavour. Our first study is called the Top Portal

to Vector Dark Matter (TPVDM) where the VL top quarks (tD and T ) are added

and mix with the SM top quark. Since this scenario does not provide the interaction

between DM and nucleons at tree level, we calculated the loop-induced vertices of DM-

DM-Z/γ and provided the generic expressions in terms of vector (v) and axial-vector

(a) couplings. This is a very crucial result for evaluating the DM DD rate. We applied

the DM ID constraint from CMB anisotropies observation which has less uncertainty

than conventional measurements. For collider limits, we used the LHC bound for VL

top search which does not allow the mass of T below 1.5 TeV. We also used the LHC

constraint for tt̄+Emiss
T searches by recasting which excludes the parameter space with

225 < mtD < 825 GeV and mVD < 500 GeV. The interplay between cosmological and

collider limits play a crucial role in constraining the parameter space of the model. Here

we presented the 5D scatter plots after applying those bounds and clearly showed the

allowed regions with different mechanisms of generic, co-annihilating and HD resonant

DM annihilation. We also gave the 2D plots to highlight the specific region where the
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HD resonance and co-annihilation regions happen. In addition, More importantly, this

specific scenario predicts two long-lived particles (tD and V ′) which makes this class of

model is more attractive and is possible to test it in the current and future colliders.

The second study is based on the Muonic Portal to Vector Dark Matter (MPVDM)

where we have, instead of VL top quark, the VL muons (µD and µ′). In this scenario,

we have a possibility to describe the muon anomalous magnetic moment gµ− 2 and DM

issue simultaneously. We also rederived the generic expressions of gµ−2 contribution and

crossed-validated against the existing results. Here we still used the same cosmological

constraints as in the case of TPVDM. However, for collider constraint, we did recasting

for µ+µ− + Emiss
T based on the ATLAS and CMS searches for a pair of sleptons. We

used this result to set up the lower limit on the VL muons where it is slightly above 700

GeV. Applying the combined limits from cosmology, gµ−2 and collider on the parameter

space, we found that the allowed region is clearly on the resonance region of new scalar

HD. Moreover, we presented the 5D scatter and 2D plots which showed the allowed

parameter space. The key feature of this scenario is that it predicts the multi-leptons

signatures with 6-10 muons in the final state which makes this scenario very interesting

to experimentalists to test it.

The material that I presented in this thesis is based on my publications [1, 2] discussed in

chapter 2 and 3 and upcoming article entitled “the muon anomalous magnetic moment

gµ − 2 from Fermionic Portal to Vector Dark Matter” [3] discussed in chapter 4.

The studies in this thesis are only two realisations of the FPVDM framework which

can be extended to explain many problems in the SM, not only the DM and gµ − 2.

Here I will give an outline for future studies that can be explored. For example, if the

Yukawa coupling and new gauge coupling are so tiny that DM cannot be in thermal

bath with SM particles. It allows us to study the another DM production mechanism

called the freeze-in scenario. Instead of VL top quarks and muons, we can introduce

the VL neutrinos which mix with the SM neutrinos. This scenario could explain the

smallness of SM neutrino masses and also provide the fermionic DM instead of Vector

DM which makes really intriguing. Moreover, a recent anomaly on W boson mass could

be explained by new VL states propagating in the loop. The first order phase transition

(FOPT) can be created in SU(2)D breaking and leads to the gravitational waves (GW).

Another interesting scenario can happen with a non-zero scalar mixing (λHD ̸= 0). This

setup modifies the scalar potential and gives an crucial ingredient to create the FOPT

at the early universe which is very important to baryogenesis. In addition, if we have

both non-zero scalar mixing and VL neutrinos in the same scenario. It could lead to

a model of leptogenesis which is another way to explain to the baryon asymmetry of

the universe (BAU) apart from the baryogenesis. In the framwork we presented here, it

is assumed that VL fermions mix with only one SM particle. So if we allow these VL

fermions mix with more than one SM fermions this could explain the flavour anomalies

in the SM. Now one can see a big picture of the FPVDM framework that it does not
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only explain the DM problem but many problems in the SM could be explained by this

framework and it needs further studies in future.
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Appendix A

Mass splitting at one loop
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Figure A.1: The complete set of Feynman diagams contributing to the mass correction
of the VD.

At tree level, the neutral and charged components of SU(2)D gauge triplet are degenerate

in mass as one can see in eq. (2.25). Nevertheless, the radiative correction at one-loop

level obviously breaks their mass degeneracy. The difference between mVD and mV ′

takes place due to the F -f mixing and the different Z2 parities of the members of the

SU(2)D fermion doublet, which results in distinct particles circling in the loops. In

figure A.1 and A.2, the complete contributions to the mass correction of VD and V ′ are

depicted. In the limit of mF → mψD , Eq.(2.23) implies no mixing mixing between the

F -f fermions. Thus, the mass degeneracy of VD and V ′ is still not broken. The mass

splitting occurs when mF is different from mψD . The scalar contributions from h and

HD mediation are non-zero separately. However, they are identical for VD and V ′ and

will play any role in the mass difference.
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Figure A.2: The complete set of Feynman diagams contributing to the mass correction
of the V ′.

Self-energy diagrams with fermionic loops for VD and V ′ are shown in figure 2.2. Gener-

ally, the self-energy function of a vector boson can be decomposed into two components:

iΠµνV (p2) =

(︃
gµν − pµpν

p2

)︃
iΠT

V (p
2) +

(︃
pµpν

p2

)︃
iΠL

V (p
2) , (A.1)

where ΠT
V and ΠL

V are the transverse and longitudinal amplitudes, respectively. Here

we use a symbol V to indicate either VD or V ′. To get the transverse and longitudinal

components of the self-energy amplitude, we extract each part by using the following

operators

ΠT
V (p

2) =
1

3− 2ϵ

(︃
gµν −

pµpν
p2

)︃
ΠµνV (p2),

ΠL
V (p

2) =
pµpν
p2

ΠµνV (p2). (A.2)

We work in d-dimensions where d = gµνg
µν = 4− 2ϵ. The physical mass, mV , is defined

as the position of the propagator’s pole and is given by

m2
V ≡ (mpole

V )2 = m2
V,tree +Re(ΠT

V ) , (A.3)

where mV,tree is the bare mass at tree level, which is the same for both VD and V ′, and

Re(ΠT
V ) stands for the real part of Π

T
V function. We use the physical (one-loop corrected)
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mass of DM (VD) as an input parameter of the model. The mass of V ′ is given by

m2
V ′ = m2

VD
−ΠT

V ′ +ΠT
VD
,

mV ′ = mVD

⌜⃓⃓⎷
1−

(︂
ΠT
V ′ −ΠT

VD

)︂
m2
VD

= mVD −

(︂
ΠT
V ′ −ΠT

VD

)︂
2mVD

+ ... . (A.4)

We have expanded the square root assuming that ∆Π ≡ (ΠT
V ′ − ΠT

VD
)/m2

VD
≪ 1. After

cutting the expansion up to the g2D order, the VD − V ′ mass splitting at one-loop reads:

∆mV = mVD −mV ′ =
1

2

(︄
ΠT
VD
−ΠT

V ′

mVD

)︄
. (A.5)

The sign of mass splitting is very important to the calculation of relic density and DM

annihilation rate. If it is positive the cross section of VDVD → V ′V ′ is enhanced and

vice versa.

The transverse component of the self-energy function ΠT
V (p

2) of gauge bosons with

fermion F1 and F2 in the loop is given by

ΠTF1,F2
(p2) =

1

16π2

[︄
2(v212 + a212)(A0(m

2
1) +A0(m

2
2))

− 8(v212 + a212)B00(p
2,m2

1,m
2
2) + 2(v212(m1 −m2)

2 + a212(m
2
1 +m2

2)

− p2(v212 + a212))B0(p
2,m2

1,m
2
2)

]︄
, (A.6)

where the v12 and a12 are the vector and axial-vector couplings of F1F2V vertices,

respectively. The A0, B0 and B00 are the standard one- and two-point Veltman-Passarino

functions. The one-loop function for V ′ and VD are defined as

ΠT
VD

= ΠT
f,ψD

+ΠT
F,ψD

,

ΠT
V ′ = ΠT

f,f +ΠT
F,F +ΠT

f,F +ΠT
ψD,ψD

, (A.7)

where ΠT
F1,F2

is the transverse component of self-energy function in which the fermions

F1 and F2 are circulating.

We have evaluated Eq.(A.5) by using Eq. (A.6), the expressions for couplings from

table E.1 and E.2, and then set the square incoming momentum and the renormalisation

scale equal to the mass of DM, µ2 = p2 = m2
VD

, which leads to the following simple
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expression

∆m′
V =

g2D
640π2

m2
F

mVD

ϵ21

[︄
(20 + 3ϵ3 − 15ϵ2 + 20ϵ2ϵ3)

+ 10(3ϵ2 − ϵ3 − 2ϵ2ϵ3) log ϵ3

]︄
. (A.8)

where

ϵ1 =
m2
F −m2

ψD

m2
F

, ϵ2 =
m2
f

m2
F

, ϵ3 =
m2
V

m2
F

. (A.9)

This formula was derived in the approximation ϵ1, ϵ2, ϵ3 ≪ 1. Keeping only the leading

term of ϵ1 provides the following very simple expression for the VD-V
′ mass splitting:

∆m′′
V =

g2D
32π2

m2
F

mVD

ϵ21 =
g2D
32π2

m2
F

mVD

(︄
m2
F −m2

ψD

m2
F

)︄2

. (A.10)
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Appendix B

Kinetic mixing functions
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Figure B.1: The complete set of Feynman diagams contributing to the mass correction
of the VD.

The neutral gauge bosons like γ, Z and V ′ cannot mix at tree level. However, this is not

the case at one loop or higher order loops. They do mix via the fermionic propagation

in the loop as one can in figure B.1.

The kinetic mixing (KM) is thoroughly explained in section 2.2.3.2 and the KM functions

for the Z-V mixing are given by

FZVqT1+qL(rf , rψD) =
2(r2f − 1)(r2ψD − 1)

3(r2fr
2
ψD
− 1)4

[︃
3r6fr

6
ψD
− 5r6fr

4
ψD
− 21r4fr

4
ψD

+ 22r4fr
2
ψD
− 21r2fr

2
ψD
− 5r2f + 3

+ 6

(︂
r8fr

6
ψD
− 3r6fr

4
ψD

+ 12r4fr
4
ψD
− 3r4fr

2
ψD

+ r2f

)︂
r2fr

2
ψD
− 1

log (rfrψD)

]︃
, (B.1)

FZVqT2(rf , rψD) = 8

[︃
log

(︃
rf
rψD

)︃
+

(r2ψD − r
2
f ) log (rfrψD)

r2fr
2
ψD
− 1

]︃
, (B.2)

FZVm (rf , rψD) =
(r2f − 1)(r2ψD − 1)

(r2fr
2
ψD
− 1)2

[︄
1− 4r2ψD + r2fr

2
ψD

r2ψD

+
4(r2fr

2
ψD
− r2f + 1) log (rfrψD)

(r2fr
2
ψD
− 1)

]︄
, (B.3)

where rf = mf/mψD and rψD = mψD/mF .
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Appendix C

Mixing structure in the dark EW

sector

Defining V0D0µ = (Bµ,W
3
µ , B

0
D0µ, V

0
D0µ)

T and using analogous notation as Eq.(2.24) for

the fully neutral gauge boson Lagrangian term after EW and dark symmetry breaking,

LkinV0
D0
|v,vD ⊃ (V0D0)

TM2
V0
D0
V0D0 , (C.1)

the entries of the mass mixing matrix in the gauge sector are:

M2
V0
D0
|11 =

1

8 (1− ϵ2)
[︂(︁
g′2v2 + g′2Dv

2
Dϵ

2
)︁
cos2 θk − g′2Dϵ

√︁
1− ϵ2 sin 2θkv2D

+ g′2D
(︁
1− ϵ2

)︁
sin2 θkv

2
D

]︁
(C.2)

M2
V0
D0
|12 = M2

V0
D0
|21 = −

gg′v2 cos θk

8
√
1− ϵ2

(C.3)

M2
V0
D0
|13 = M2

V0
D0
|31 =

1

16 (1− ϵ2)
[︂
g′2Dv

2
D

(︂(︁
1− 2ϵ2

)︁
sin 2θk − 2ϵ

√︁
1− ϵ2 cos 2θk

)︂
−g′2 sin 2θkv2

]︁
(C.4)

M2
V0
D0
|14 = M2

V0
D0
|41 =

1

8
gDg

′
Dv

2
D

(︃
ϵ cos θk√
1− ϵ2

− sin θk

)︃
(C.5)

M2
V0
D0
|22 =

g2v2

8
(C.6)

M2
V0
D0
|23 = M2

V0
D0
|32 =

gg′v2 sin θk

8
√
1− ϵ2

(C.7)

M2
V0
D0
|24 = M2

V0
D0
|42 = 0 (C.8)

M2
V0
D0
|33 =

1

8 (1− ϵ2)
[︂
g′2D
(︁
1− ϵ2

)︁
cos2 θkv

2
D + g′2Dϵ

√︁
1− ϵ2 sin 2θkv2D

+
(︁
g′2v2 + g′2Dv

2
Dϵ

2
)︁
sin2 θk

]︁
(C.9)

M2
V0
D0
|34 = M2

V0
D0
|43 = −

1

8
gDg

′
Dv

2
D

(︃
cos θk +

ϵ sin θk√
1− ϵ2

)︃
(C.10)
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M2
V0
D0
|44 =

g2Dv
2
D

8
, (C.11)

where ϵ is the KM parameter defined in Eq.(2.69). The mass eigenstates corresponding

to the eigenvalues of the mixing matrix are γ, γD, Z and Z ′. Their masses do not depend

on the rotation angle θk and read:

mγ = mγD = 0 (C.12)

M2
Z,Z′ =

1

8

[︁
g2v2 + g2Dv

2
D

+
1

1− ϵ2
(︂
g′2v2 + g′2Dv

2
D ∓

√︁
K0 +K2ϵ2 +K4ϵ4

)︂]︃
(C.13)

where the K functions are defined as:

K0 =
(︁(︁
g2 + g′2

)︁
v2 −

(︁
g′2D + g2D

)︁
v2D
)︁2

(C.14)

K2 = −2
[︁
g2(g2 + g′2)v4 + g2D(g

2
D + g′2D)v

4
D

−
(︁
g2(2g2D + g′2D) + g′2

(︁
g2D + 2g′2D

)︁)︁
v2v2D

]︁
(C.15)

K4 = (g2v2 − g2Dv2D)2 (C.16)

and the sign in front of the square root is chosen to reconstruct the SM value of the Z

mass for ϵ→ 0 and
(︁
g2 + g′2

)︁
v2 >

(︁
g′2D + g2D

)︁
v2D.
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Appendix D

Fermion loop contributions to

DM DD

In micrOMEGAs package [51], the computation of the direct detection rate is usually

done at tree level. However, in the case that the interaction between nucleons and DM

does not exist at tree level. The one loop box and triangle (scalar propagating) diagrams

in figure 3.3 (c) and (d) will be evaluated. These contributions only give a mild effect

on the parameter space where the mixing between F and f is optimum at mF → mψD

or mψD → mf . In addition to those diagrams, there are also two additional vertices,

V 0
D+V

0
D−γ and V 0

D+V
0
D−Z, which can also contribute to the direct detection limit. In

figure D.1, additional contributions of the fermionic triangle diagrams are shown. Here

the momenta for V 0
D+α, V

0
D−β and Vµ are p1, p2 and q, respectively. They are all pointing

towards the vertex and satisfy 0 = q + p1 + p2. The figure D.1 (a) and (b) describe the

clockwise (CW) directions of fermionic lines but with interchange of m2 and m3.

V 0
D+,α k1, m1

Vµ

V 0
D−,β

k1 + p2, m3k1 − p1, m2

p1 p2

q

(a)

V 0
D+,α k1, m1

Vµ

V 0
D−,β

k1 + p2, m2k1 − p1, m3

p1 p2

q

(b)

Figure D.1: The generic triangle diagrams for V 0
D+αV

0
D−βVµ where Vµ stands for

either photon and Z-boson. The ingoing momenta for V 0
D+, V

0
D− are p1, p2 and q,

respectively, and they safisfy 0 = q + p1 + p2. Diagrams (a) and (b) represent the
clockwise directions of fermionic lines with interchange of m2 and m3.
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The most general (CP conserving) effective Lagrangian [126, 221] for on-shell DM V 0
D±

interacting with neutral vector bosons γ/Z is given by

LeffV 0
D+V

0
D−V

= λV1

[︂
(∂µV

0
D+ν − ∂νV 0

D+µ)V
0µ
D−V

ν − (∂µV
0
D−ν − ∂νV 0

D−µ)V
0µ
D+V

ν
]︂

−λV2 V 0
D+µV

0
D−ν(∂

µV ν − ∂νV ν)

+
λV3
M2
V ±

(∂λV
0
D+µ − ∂µV 0

D+λ)(∂
µV 0

D−ν − ∂νV 0
D−µ)(∂

νV λ − ∂λV ν)

−iλV5 ϵµνρσ(V 0
D+µ∂ρV

0
D−ν − V 0

D−ν∂ρV
0
D+µ)Vσ

−iλV6 ϵµνρσ(V 0
D+µ∂ρV

0
D−ν − V 0

D−ν∂ρV
0
D+µ)∂

λ∂σ(∂
2)−1Vλ, (D.1)

where V can be either γ or Z and λs are the effective couplings. The DM vector particles

V 0
D± are taken to be on-shell with mass MV ± . Since in the direct detection process, the

momentum transferred from DM particles to nucleons is much smaller than the masses

of the DM particles, the form factors can be estimated in limit of q2 → 0.

The effective Lagrangian (in momentum space) Eq.(D.1) can be expressed in terms of

the vertex function V (p1, p2, q) which is a function of all incoming momenta

LeffV 0
D+V

0
D−V

= −iV αβµ
V (p1, p2, q)V

0
D+α(p1)V

0
D−β(p2)Vµ(q), (D.2)

where the vertex function reads

V αβµ
V (p1, p2, q) = fV1 (p1 − p2)µgαβ +

fV2
M2
V ±

(p1 − p2)µqαqβ

+fV3 (qαgµβ − qβgµα) + ifV5 ϵ
αβµρ(p1 − p2)ρ

+i
fV8
M2
V ±

(p1 − p2)ρqσ(ϵµαρσqβ − ϵµβρσqβ). (D.3)

The CP-conserving1 form factors, fi, are related to the couplings λi of Eq.(D.1) by

fV1 = λV1 +
q2

2M2
V ±

λV3 , (D.4)

fV2 = −λV3 , (D.5)

fV3 = λV1 + λV2 +
1

2
λV3 , (D.6)

fV5 = λV6 − λV5 , (D.7)

fV8 = −M
2
V ±

q2
λV6 . (D.8)

We explicitly calculate the form-factors of the V 0
D+V

0
D−V vertex according to the dia-

grams in figure D.1 where p1, p2 and q are the momenta of V 0
D+, V

0
D− and Vµ, respectively.

1The more general vertex function found in appendix A of [221] includes additional CP-violating
form-factors f4, f6, f7 and f9. However, these are irrelevant for direct detection of DM in this model,
and are therefore omitted.
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The vector and axial coupling constants for the vertex between a vector particle and

fermions Fi annd Fj (with masses mi and mj) are denoted by vij and aij , respectively.

For the diagrams in figure D.1 (a) and (b), the corresponding amplitudes read

iV µαβ
(a) = (−1)(−i)3(i)3

∫︂
ddk

(2π)d

Nµαβ
(a)(︁

k2 −m2
1

)︁ (︁
(k − p1)2 −m2

2

)︁ (︁
(k + p2)2 −m2

3

)︁ , (D.9)

iV µαβ
(b) = (−1)(−i)3(i)3

∫︂
ddk

(2π)d

Nµαβ
(b)(︁

k2 −m2
1

)︁ (︁
(k − p1)2 −m2

3

)︁ (︁
(k + p2)2 −m2

2

)︁ , (D.10)

where the factor (−1) is the Feynman rules for the fermion loop. The factor (−i)3 for

three vertices and (i)3 for three fermion propagator factor. The numerators of these

integrals are defined by

Na =Tr
[︂
γµ(v23 − a23γ5)(/k + /p2 +m3)γ

β(v13 − a13γ5)

· (/k +m1)γ
α(v12 − a12γ5)(/k − /p1 +m2)

]︂
, (D.11)

Nb =Tr
[︂
γµ(v23 − a23γ5)(/k + /p2 +m2)γ

β(v12 − a12γ5)

· (/k +m1)γ
α(v13 − a13γ5)(/k − /p1 +m2)

]︂
. (D.12)

We compute the loop integrals by using the Package-X [159] and use a set of appropriate

Schouten identities.

pα2 ϵ
νρµβ = pν2ϵ

αρµβ + pρ2ϵ
ναµβ + pµ2 ϵ

νραβ + pβ2 ϵ
νρµα, (D.13)

pβ1 ϵ
νρµα = pν1ϵ

βρµα + pρ2ϵ
νβµα + pµ2 ϵ

νρβα + pα2 ϵ
νρµβ . (D.14)

Then, we use the on-shell condition

p1 · p1 = p2 · p2 = m2
V , (D.15)

and the zero momentum transfer

(p1 + p2)
2 = q2 = 0 → p1 · p2 = −m2

V . (D.16)

Since the V 0
D+,α and V 0

D−,β are external particles so that the polarisation vectors are

orthogonal to their momenta

p1 · ϵ(p1) = 0 and p2 · ϵ(p2) = 0, (D.17)

this is equivalent to imposing

pα1 = 0 and pβ2 = 0. (D.18)
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After doing Feynman integrals and matching the coefficients of Eq.(D.3), we find the

following expressions for the form-factors:

fV1 =
(v23v12v13 + v23a12a13 + a23v12a13 + a23a12v13)

4π2

×
[︁
1− (m2

2 +m2
3)C̄1 − (m2

3 −m2
2)∆C1 + 8C̄001

]︁
+

(v23v12v13 − v23a12a13 + a23v12a13 − a23a12v13)
4π2

m1m2

[︁
C̄0 + 2C̄1

]︁
+

(v23v12v13 − v23a12a13 − a23v12a13 + a23a12v13)

4π2
m1m3

[︁
C̄0 + 2C̄1

]︁
− (v23v12v13 + v23a12a13 − a23v12a13 − a23a12v13)

4π2
m2m3

[︁
2C̄1

]︁
, (D.19)

fV2 = −(v23v12v13 + v23a12a13 + a23v12a13 + a23a12v13)

4π2
M2
V ±
[︁
8C̄112 + 4C̄12

]︁
, (D.20)

fV3 =
(v23v12v13 + v23a12a13 + a23v12a13 + a23a12v13)

4π2
[︁
−2− 2m2

1(C̄0 + 2C̄1)

+(m2
3 +m2

2)C̄1 + (m2
3 −m2

2)∆C1 + 8C̄00 + 8C̄001

]︁
− (v23v12v13 − v23a12a13 + a23v12a13 − a23a12v13)

4π2
m1m2

[︁
C̄0 + 2∆C1

]︁
+

(v23v12v13 − v23a12a13 − a23v12a13 + a23a12v13)

4π2
m1m3

[︁
2∆C1 − C̄0

]︁
+

(v23v12v13 + v23a12a13 − a23v12a13 − a23a12v13)
4π2

m2m3

[︁
2C̄1

]︁
, (D.21)

fV5 = −(a23a12a13 + a23v12v13 + v23a12v13 + v23v12a13)

4π2

×
[︁
(m2

2 +m2
3)C̄1 + (m2

3 −m2
2)∆C1

]︁
− (a23a12a13 − a23v12v13 + v23a12v13 − v23v12a13)

4π2
m1m2

[︁
C̄0 + 2C̄1

]︁
− (a23a12a13 − a23v12v13 − v23a12v13 + v23v12a13)

4π2
m1m3

[︁
C̄0 + 2C̄1

]︁
− (a23a12a13 + a23v12v13 − v23a12v13 − v23v12a13)

4π2
m2m3

[︁
2C̄1

]︁
, (D.22)

fV8 =
(a23a12a13 + a23v12v13 + v23a12v13 + v23v12a13)

4π2
M2
V ± [2C̄12] . (D.23)

The average and difference of three-point Passarino-Veltman C-functions are defined as

C̄{i} ≡
1

2

(︂
C

(a)
{i} + C

(b)
{i}

)︂
,

∆C{i} ≡
1

2

(︂
C

(a)
{i} − C

(b)
{i}

)︂
. (D.24)
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where Cr{i}, (r = a, b) are given in terms of to one-loop triangle Feynman integrals

1

iπ2

∫︂
d4k

1

D(r)
= C

(r)
0 ,

1

iπ2

∫︂
d4k

kµ

D(r)
= −pµ1C

(r)
1 + pµ2C

(r)
2 ,

1

iπ2

∫︂
d4k

kµkν

D(r)
= gµνC

(r)
00 + pµ1p

ν
1C

(r)
11 + pµ2p

ν
2C

(r)
22 − (pµ1p

ν
2 + pν1p

µ
2 )C

(r)
12 ,

1

iπ2

∫︂
d4k

kµkνkρ

D(r)
= − (pµ1g

νρ + pν1g
µρ + pρ1g

µν)C
(r)
001

+ (pµ2g
νρ + pν2g

µρ + pρ2g
µν)C

(r)
002

+ (pµ1p
ν
1p
ρ
2 + pµ1p

ρ
1p
ν
2 + pν1p

ρ
1p
µ
2 )C

(r)
112

− (pµ1p
ν
2p
ρ
2 + pν1p

µ
2p

ρ
2 + pρ1p

µ
2p

ν
2)C

(r)
122

− pµ1pν1pρ1C
(r)
111 + pµ2p

ν
2p
ρ
2C

(r)
222. (D.25)

The denominators of the Feynman integrals are

D(a) = (k2 −m2
1)
(︁
(k − p1)2 −m2

3

)︁ (︁
(k + p2)

2 −m2
2

)︁
.

D(b) = (k2 −m2
1)
(︁
(k − p1)2 −m2

2

)︁ (︁
(k + p2)

2 −m2
3

)︁
. (D.26)

Both the graphs in figure D.1, have the fermion direction in the clockwise (CW) direction.

Diagrams for which the fermion line is in the counter-clockwise direction (CCW) give

contributions to the the form-factors, which are related to the clockwise form-factor

contributions by

fCCW
1 = −fCW

1 ,

fCCW
2 = −fCW

2 ,

fCCW
3 = −fCW

3 ,

fCCW
5 = fCW

5 ,

fCCW
8 = fCW

8 . (D.27)

For the direct detection calculation, we need to evaluate the triangle integrals that

correspond to the Feynman diagrams shown in figure D.2. The vertex V 0
D+V

0
D−γ receives

the contributions from figure D.2 (a)-(d), while The vertex V 0
D+V

0
D−Z from figure D.2

(a)-(f). The complete set vertex couplings required to evaluate these triangle graphs is

provided in table E.1 and E.2 in section E.

For the numerical evaluation of triangle loops, we have created our own code written

in C and python for computing the necessary Passarino-Veltman (PV) functions, as

LoopTools [222] does not provide stable and reliable results for small momentum
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V 0
D+αV 0
D+α

γµ, Zµ

V 0
D−β

ff

ψD

(a)

V 0
D+αV 0
D+α

γµ, Zµ

V 0
D−β

FF

ψD

(b)

V 0
D+αV 0
D+α

γµ, Zµ

V 0
D−β

ψDψD

f

(c)
V 0
D+αV 0
D+α

γµ, Zµ

V 0
D−β

ψDψD

F

(d)

V 0
D+αV 0
D+α

Zµ

V 0
D−β

Ff

ψD

(e)

V 0
D+αV 0
D+α

Zµ

V 0
D−β

fF

ψD

(f)

Figure D.2: The complete set of Feynman graphs for V 0
D+V

0
D−γ and V 0

D+V
0
D−Z form

factor calculations. The diagram (a)-(d) contribute to the V 0
D+V

0
D−γ vertex and (a)-(f)

to the V 0
D+V

0
D−Z vertex.

q2 → 0.2.

2These codes are available together with the model files in the HEPMDB [155] repository at the
following link https://hepmdb.soton.ac.uk/hepmdb:0322.0335

https://hepmdb.soton.ac.uk/hepmdb:0322.0335
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Appendix E

The relevant Feynman rules for

FPVDM

Here we have summarised all vertices relevant for the calculation of the KM, fermionic

triangle contributions and new physics contributions of g-2. For a generic scalar-fermion-

fermion vertex, we separate couplings into CS−γ5CP where the CS and CP are the scalar

and pseudo-scalar components. Similarly, a generic vector-fermion-fermion coupling

can be divided to γµ(CV − γ5CA) where CV and CA are the vector and axial-vector

components. The spacetime index µ must be contracted with the Lorentz index on a

vector field.

In table E.1 and E.2, we present Feynman rules for some relevant vertices which are

necessary to calculation of KM, fermionic triangle and g-2 contributions. Here Qf is the

electric charge of the SM partner which mixes with F fermion. The coupling gW ≡ e/sW
and sW are the weak coupling and sine of weak mixing angle, respectively. The T f3 is

the isospin of third component for the SM partner. The fermionic mixing angles (sin θfL

and sin θfR) are defined in Eq.(2.23).
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Vertices Vector couplings (CV ) Axial couplings (CA)

Aµff eQf 0

AµψDψD eQf 0

AµFF eQf 0

Zµff
gW
sW

(︃
1

2
cos2 θfL T

f
3 −Qfs2W

)︃
gW
sW

1

2
cos2 θfL T

f
3

ZµψDψD −gW
cW

Qfs
2
W 0

ZµFF
gW
cW

(︃
1

2
sin2 θfL T

f
3 −Qfs2W

)︃
gW
cW

1

2
sin2 θfL T

f
3

ZµfF
gW
cW

1

2
sin θfL cos θfL T

f
3

gW
cW

1

2
sin θfL cos θfL T

f
3

VDµψDf − gD

2
√
2
(sin θfL + sin θfR) − gD

2
√
2
(sin θfL − sin θfR)

VDµψDF
gD

2
√
2
(cos θfL + cos θfR)

gD

2
√
2
(cos θfL − cos θfR)

V ′
µff −gD

4

(︁
sin2 θfR + sin2 θfL

)︁ gD
4

(︁
sin2 θfR − sin2 θfL

)︁
V ′
µFF −gD

4

(︁
cos2 θfR + cos2 θfL

)︁ gD
4

(︁
cos2 θfR − cos2 θfL

)︁
V ′
µfF

gD
4

(sin θfR cos θfR + sin θfL cos θfL) −gD
4

(sin θfR cos θfR − sin θfL cos θfL)

V ′
µψDψD

gD
2

0

Table E.1: The vector (CV ) and axial-vector (CA) components of a coupling in the
form of γµ(CV − CAγ5) and µ is the Lorentz index of a vector field.

Vertices Scalar couplings CS Pseudo-scalar couplings CP

hff − Yµ√
2
cos θfL cos θfR 0

HDff
Y ′
µ√
2
sin θfL cos θfR 0

hFF − Yµ

2
√
2
(sin θfR cos θfL + sin θfL cos θfR) − Yµ

2
√
2
(sin θfR cos θfL − sin θfL cos θfR)

HDFF − Yµ

2
√
2
(cos θfL cos θfR − sin θfL sin θfR) − Yµ

2
√
2
(cos θfL cos θfR + sin θfL sin θfR)

hFf − Yµ

2
√
2
(sin θfR cos θfL + sin θfL cos θfR)

Yµ

2
√
2
(sin θfR cos θfL − sin θfL cos θfR)

HDFf −
Y ′
µ

2
√
2
(cos θfL cos θfR − sin θfL sin θfR)

Y ′
µ

2
√
2
(sin θfL sin θfR + cos θfL cos θfR)

Table E.2: The scalar and pseudo-scalar components of a coupling in the form of
CS − CP γ5.
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Appendix F

The g-2 calculation

The general vertex function for a F -F̄ -γ vertex is given by

Γµ =γµF1(q
2) +

iσµνqν
2m

F2(q
2) +

qµ

m
F3(q

2)

+ (γµ − /qqµ

q2
)γ5G1(q

2) +
iσµνqνγ5

2m
G2(q

2) +
qµ

m
γ5G3(q

2). (F.1)

where F1, F2, G1 and G2 are called Dirac, Pauli form factor, Anapole and electric dipole

moment (EDM), respectively. The only form factor that is relevant to the anomalous

magnetic moment is the Pauli one F2(0). It is defined by

aℓ =
g − 2

2
≡ F2(0), (F.2)

where g is the g-factor which tells us how strong the lepton interact with the external

electromagnetic field. In quantum mechanics, the g-factor is the magnetic moment

measured in unit of eℏ/2mℓ

M⃗ = g
e

2mℓ
S⃗. (F.3)

At one loop, there are kinds of diagrams that contribute to the vertex function Γµ(p′, p).
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Vertices Vector couplings (vij) Axial couplings (aij)

γµ+µ− −e 0

γµ+Dµ
−
D −e 0

γM+M− −e 0

Zµ+µ− −gW
cW

(︃
cos2 θL

4
− s2W

)︃
−gW
cW

cos2 θL
4

ZM+µ− −gW
cW

sin θL cos θL
4

−gW
cW

sin θL cos θL
4

ZM+M− −gW
cW

(︃
sin2 θL

4
− s2W

)︃
−gW
cW

sin2 θL
4

Zµ+Dµ
−
D

gW s
2
W

cW
0

V0µ
+µ− −gD

4
(sin2 θL + sin2 θR) −gD

4
(sin2 θL − sin2 θR)

V0M
+µ−

gD
4
(sin θL cos θL + sin θR cos θR)

gD
4
(sin θL cos θL − sin θR cos θR)

VDµ
+
Dµ

− − gD

2
√
2
(sin θL + sin θR) − gD

2
√
2
(sin θL − sin θR)

VDµ
+
DM

− gD

2
√
2
(cos θL + cos θR)

gD

2
√
2
(cos θL − cos θR)

W−µ+ν
gW

2
√
2
cos θL

gW

2
√
2
cos θL

Hµ+µ− − Yµ√
2
cos θL cos θR 0

HDµ
+µ−

Y ′
µ√
2
sin θL cos θR 0

HM+M− − Yµ

2
√
2
(sin θR cos θL + sin θL cos θR) − Yµ

2
√
2
(sin θR cos θL − sin θL cos θR)

HDM
+M− − Yµ

2
√
2
(cos θL cos θR − sin θL sin θR) − Yµ

2
√
2
(cos θL cos θR + sin θL sin θR)

HM+µ− − Yµ

2
√
2
(sin θR cos θL + sin θL cos θR)

Yµ

2
√
2
(sin θR cos θL − sin θL cos θR)

HDM
+µ− −

Y ′
µ

2
√
2
(cos θL cos θR − sin θL sin θR)

Y ′
µ

2
√
2
(sin θL sin θR + cos θL cos θR)

Table F.1: The vector and axial part of coupling in the form of γµ (v − aγ5) where v
is the vector part, a the axial part and µ is the Lorentz index of a vector field. Here

we suppress the SU(2)D charge of V +/V − and write them as V .
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F.1 The scalar diagram

Figure F.1: The scalar diagram contributing to the gµ − 2 calculation. The generic
internal fermion and scalar are labelled by F and S.

Let us start with the simplest calculation, the diagram with scalar propagation, fig. F.1

in which the general vertex function is given by1

ū(p′)Γµau(p) =

i

∫︂
ddk

(2π)d
ū(p′)

[︄
(YV + YAγ5)(/p

′ − /k +mF )γ
µ(/p− /k +mF )(YV − YAγ5)[︁

(p′ − k)2 −m2
F

]︁ [︁
(p− k)2 −m2

F

]︁ [︁
k2 −m2

S

]︁ ]︄
u(p),

=i

∫︂
ddk

(2π)d
ū(p′)

1[︁
(p′ − k)2 −m2

F

]︁ [︁
(p− k)2 −m2

F

]︁ [︁
k2 −m2

S

]︁[︄
Y 2
V

(︁
/p
′ − /k +mF

)︁
γµ
(︁
/p− /k +mF

)︁
+ YV YAγ5

(︁
/p
′ − /k +mF

)︁
γµ
(︁
/p− /k +mF

)︁
− YV YA

(︁
/p
′ − /k +mF

)︁
γµ
(︁
/p− /k +mF

)︁
− Y 2

Aγ5
(︁
/p
′ − /k +mF

)︁
γµ
(︁
/p− /k +mF

)︁
γ5

]︄
u(p), (F.4)

where

den =
[︁
(p′ − k)2 −m2

F

]︁ [︁
(p− k)2 −m2

F

]︁ [︁
k2 −m2

S

]︁
N1 = Y 2

V

(︁
/p
′ − /k +mF

)︁
γµ
(︁
/p− /k +mF

)︁
,

N2 = YV YAγ5
(︁
/p
′ − /k +mF

)︁
γµ
(︁
/p− /k +mF

)︁
,

N3 = −YV YA
(︁
/p
′ − /k +mF

)︁
γµ
(︁
/p− /k +mF

)︁
γ5,

N4 = −Y 2
Aγ5

(︁
/p
′ − /k +mF

)︁
γµ
(︁
/p− /k +mF

)︁
γ5 (F.5)

1Notice that the coupling at µ̄FS has the opposite sign to the coupling at F̄ µS.
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Using the Dirac equation and the relation between Dirac matrices

/pu(p) = mµu(p), ū(p′)/p
′ = ū(p′)mµ, γµγν + γνγµ = 2gµν , (F.6)

we can simplify the numerator as

ū(p′)Nu(p) =ū(p′)

[︄
Y 2
V

{︂
(mµ +mF )

2γµ + /kγµ/k − 2kµ(mµ +mF )
}︂

+ YV YA

{︂
2(m2

µ −m2
F )γ

µγ5 − 2/kγµ/kγ5 + 4mµk
µγ5 − 4mµ/kγ

µγ5

}︂
− Y 2

A

{︂
− (mµ −mF )

2γµ − /kγµ/k + 2kµ(mµ −mF )
}︂]︄
u(p). (F.7)

Consider the integral denominator. Having used the Feynman parameters, it followds

that
1

[(p′ − k)2 −m2
F ][(p− k)2 −m2

F ][k
2 −m2

S ]
= 2

∫︂ 1

0
dx

∫︂ 1−x

0
dy

1

D3
(F.8)

where

D = x[(p′ − k)2 −m2
F ] + y[(p− k)2 −m2

F ] + z[k2 −m2
S ] (F.9)

The denominator can be simplified further by using on-shell condition p ·p = p′ ·p′ = m2
µ

and the fact that x+ y + z = 1. Thus, it is reduced to

D = k2 − 2p′ · kx− 2p · ky + (m2
µ −m2

F )(x+ y)−m2
S(1− x− y). (F.10)

In order to make the integral possible to integrate, we want to get rid of the scalar

product, p · k and p′ · k, by shifting the integration variable kµ → ℓµ + xpµ2 + ypµ1 . It

follows that

D = ℓ2 − p′2x2 − 2p · p′xy − p2y2 + (m2
µ −m2

F )(x+ y)−m2
S(1− x− y),

= ℓ2 −m2
µ(x+ y)2 + (m2

µ −m2
F )(x+ y)−m2

S(1− x− y) + xyq2,

= ℓ2 −∆, (F.11)

where ∆ = m2
µ(x+y)

2− (m2
µ−m2

F )(x+y)+m
2
S(1−x−y)−xyq2. Note that we replace

p · p′ = m2
µ − q2/2 in the second line.

Now let us go back to the numerator of the integral eq. (F.7). After replacing kµ →
ℓµ + xp′µ + ypµ, we found that

ū(p′)Nu(p) =ū(p′)

[︄
Y 2
V

{︂
(mµ +mF )

2γµ + (/ℓ + /p
′x+ /py)γ

µ(/ℓ + /p
′x+ /py)

− 2(ℓµ + p′µx+ pµy)(mµ +mF )
}︂
+ YV YA

{︂
· · ·
}︂
γ5

− Y 2
A

{︂
− (mµ −mF )

2γµ − (/ℓ + /p
′x+ /py)γ

µ(/ℓ + /p
′x+ /py)



F.1. The scalar diagram 139

+ 2(ℓµ + p′µx+ pµy)(mµ −mF )
}︂]︄
u(p),

=ū(p′)

[︄
Y 2
V

{︂
(mµ +mF )

2γµ + /ℓγµ/ℓ + (/p
′x+ /py)γ

µ(/p
′x+ /py)

− 2(p′µx+ pµy)(mµ +mF )
}︂
+ YV YA

{︂
· · ·
}︂
γ5

− Y 2
A

{︂
− (mµ −mF )

2γµ − /ℓγµ/ℓ − (/p
′x+ /py)γ

µ(/p
′x+ /py)

+ 2(p′µx+ pµy)(mµ −mF )
}︂]︄
u(p). (F.12)

Notice that we wrote · · · as the coefficient γ5 because it is not related to the magnetic

moment. Thus, we do not need to write it explicitly. However, this term contribute to

the electric dipole moment (EDM) of muon. In the second line, we have dropped the

terms proportional to ℓµ because ∫︂
ddℓ

(2π)d
ℓµ

D3
= 0. (F.13)

We can simplify it further by using∫︂
ddℓ

(2π)d
ℓµℓν

D3
=

∫︂
ddℓ

(2π)d

1
4g
µνℓ2

D3
,∫︂

ddℓ

(2π)d
/ℓγµ/ℓ

D3
=

∫︂
ddℓ

(2π)d
1

D3

(︃
−1

2
γµℓ2

)︃
,

ū(p′)(/p
′x+ /py)γ

µ(/p
′x+ /py)u(p) = ū(p′)

[︂
−m2

µ(x+ y)2γµ + 2mµ(x+ y)2p′µ

− 2mµy(x+ y)qµ + xyq2γµ
]︂
u(p). (F.14)

Then, eq. (F.12), after doing a bit of maths, becomes

ū(p′)Nu(p) =ū(p′)

[︄
Y 2
V

{︄
γµ
(︃
−ℓ

2

2
+ (mµ +mF )

2 −m2
µ(x+ y)2 + xyq2

)︃

+ 2mµ(x+ y)2p′µ − 2mµy(x+ y)qµ − 2(p′µx+ pµy)(mµ +mF )

}︄

+ YV YA

{︂
· · ·
}︂
− Y 2

A

{︄
γµ
(︃
ℓ2

2
− (mµ −mF )

2 +m2
µ(x+ y)2 − xyq2

)︃

− 2mµ(x+ y)2p′µ + 2mµy(x+ y)qµ + 2(p′µx+ pµy)(mµ −mF )

}︄]︄
u(p),

=ū(p′)

[︄
Y 2
V

{︄
γµ
(︃
−ℓ

2

2
+ (mµ +mF )

2 −m2
µ(x+ y)2 + xyq2

)︃

+ 2mµ(x+ y)2
(︃
Pµ + qµ

2

)︃
− 2mµy(x+ y)qµ
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− 2

[︃(︃
Pµ + qµ

2

)︃
x+

(︃
Pµ − qµ

2

)︃
y

]︃
(mµ +mF )

}︄
+ YV YA

{︂
· · ·
}︂

− Y 2
A

{︄
γµ
(︃
ℓ2

2
− (mµ −mF )

2 +m2
µ(x+ y)2 − xyq2

)︃

− 2mµ(x+ y)2
(︃
Pµ + qµ

2

)︃
+ 2mµy(x+ y)qµ

+ 2

[︃(︃
Pµ + qµ

2

)︃
x+

(︃
Pµ − qµ

2

)︃
y

]︃
(mµ −mF )

}︄]︄
u(p). (F.15)

We have replaced p′µ = (Pµ + qµ)/2 and pµ = (Pµ − qµ)/2 in the last line.

Let us recall the Gordon identity which states that

ū(p′)γµu(p) = ū(p′)

[︃
Pµ

2mµ
+
iσµνqν
2mµ

]︃
u(p). (F.16)

So we can write Pµ in terms of γµ and σµν by using eq. (F.16). Finally, the integral

numerator for the scalar diagram is given by

ū(p′)Nu(p) =ū(p′)
[︂
γµ (· · · ) + qµ (· · · ) + iσµνqν

2mµ
2mµ

(︂
Y 2
V [(mµ +mF )(x+ y)

−mµ(x+ y)2
]︁
+ Y 2

A

[︁
(mµ −mF )(x+ y)−mµ(x+ y)2

]︁ )︂]︂
u(p). (F.17)

Comparing with

Γµ(p′, p) = γµF1(q
2) +

iσµνqν
2mµ

F2(q
2), (F.18)

the Pauli form factor F2(0) for the scalar diagram reads

F2(0) = i

∫︂
ddℓ

(2π)d
2

∫︂ 1

0
dx

∫︂ 1−x

0
dy

1

(ℓ2 −∆)3
2mµ

(︂
Y 2
V [(mµ +mF )(x+ y)

−mµ(x+ y)2
]︁
+ Y 2

A

[︁
(mµ −mF )(x+ y)−mµ(x+ y)2

]︁ )︂
,

= 2i

∫︂ 1

0
dx

∫︂ 1−x

0
dy 2mµ

(︂
Y 2
V

[︁
(mµ +mF )(x+ y)−mµ(x+ y)2

]︁
+ Y 2

A

[︁
(mµ −mF )(x+ y)−mµ(x+ y)2

]︁ )︂ ∫︂ ddℓ

(2π)d
1

(ℓ2 −∆)3
. (F.19)
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Now ∆ = m2
µ(x+y)

2−(m2
µ−m2

F )(x+y)+m
2
S(1−x−y). The integration over spacetime

is referred to eq.(A.44) in Peskin book where

∫︂
ddℓ

(2π)d
1

(ℓ2 −∆)n
=

(−1)ni
(4π)d/2

Γ(n− d
2)

Γ(n)

(︃
1

∆

)︃n− d
2

, (F.20)(︃
1

∆

)︃2− d
2

= 1−
(︃
2− d

2

)︃
log∆ + · · · (F.21)

Γ(x) =
1

x
− γE +O(x) (F.22)

In the case that n = 3, we found∫︂
ddℓ

(2π)d
1

(ℓ2 −∆)3
=

−i
2(4π)2

1

∆
. (F.23)

Therefore, we arrive at

F2(0) =
1

16π2

∫︂ 1

0
dx

∫︂ 1−x

0
dy
[︁
m2
µ(x+ y)2 − (m2

µ −m2
F )(x+ y) +m2

S(1− x− y)
]︁−1

× 2mµ

(︂
Y 2
V

[︁
(mµ +mF )(x+ y)−mµ(x+ y)2

]︁
+ Y 2

A

[︁
(mµ −mF )(x+ y)−mµ(x+ y)2

]︁ )︂
(F.24)

F2(0) =
2(Y 2

V + Y 2
A)m

2
F + 2(Y 2

V − Y 2
A)mµmF − (Y 2

V + Y 2
A)(m

2
µ + 2m2

S)

16π2m2
µ

− 1

16π2m4
µ

(︂
(Y 2
V + Y 2

A)m
4
F + (Y 2

V − Y 2
A)mµm

3
F + (Y 2

V + Y 2
A)m

4
S

− (Y 2
V − Y 2

A)(m
3
µmF +mµmFm

2
S)− (Y 2

V + Y 2
A)(m

2
µm

2
F + 2m2

Fm
2
S)
)︂
log

[︃
m2
F

m2
S

]︃
+

1

8π2m4
µ

(︂
(Y 2
V + Y 2

A)m
6
F + (Y 2

V − Y 2
A)mµm

5
F + (Y 2

V + Y 2
A)m

4
S(m

2
µ −m2

S)

− 2(Y 2
V − Y 2

A)mµm
3
F (m

2
µ +m2

S)− (Y 2
V + Y 2

A)m
4
F (2m

2
µ + 3m2

S)

+ (Y 2
V − Y 2

A)mµmF (m
4
µ +m4

S) + (Y 2
V + Y 2

A)m
2
F (m

4
µ +m2

µm
2
S + 3m4

S)
)︂

× 1√
λ
log

[︄√
λ−m2

µ +m2
F +m2

S

2mFmS

]︄
(F.25)
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where λ = m4
µ +m4

F +m4
S − 2m2

µm
2
F − 2m2

µm
2
S − 2m2

Fm
2
S . In order to get the result,

these identities have been applied

tan−1 (iz) = i tanh−1 (z), (F.26)

tanh−1 (x)− tanh−1 (y) = tanh−1

(︃
x− y
1− xy

)︃
, (F.27)

tanh−1 (x) =
1

2
log

(︃
1 + x

1− x

)︃
. (F.28)

F.2 The NC diagram

Figure F.2: The NC diagram contributing to the gµ − 2 calculation. The generic
internal fermion and vector are labelled by F and V .

For vector diagram, fig. F.2, the loop integral is given by

ū(p′)Γµb u(p) =

− i
∫︂

dDk

(2π)D
ū(p′)

[︂
γρ(v − aγ5)

(/p′ − /k +mF )

(p′ − k)2 −m2
F

γµ
(/p− /k +mF )

(p− k)2 −m2
F

× γν(v − aγ5)

(︂
gνρ − kνkρ

m2
V

)︂
k2 −m2

V

]︂
u(p) (F.29)

Let us separate the numerator as

ū(p′)ΓµV u(p) = −i
∫︂

dDk

(2π)D
ū(p′)

[N1 +N2]

[(p′ − k)2 −m2
F ][(p− k)2 −m2

F ][k
2 −m2

V ]
u(p),

(F.30)
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where

N1 = γν(v − aγ5)(/p′ − /k +mF )γ
µ(/p− /k +mF )γν(v − aγ5), (F.31)

N2 = −
1

m2
V

/k(v − aγ5)(/p′ − /k +mF )γ
µ(/p− /k +mF )/k(v − aγ5). (F.32)

Consider ū(p′)N1u(p)

ū(p′)N1u(p) =ū(p
′)
[︂
v2γν(/p

′ − /k +mF )γ
µ(/p− /k +mF )γν

+ a2γνγ5(/p
′ − /k +mF )γ

µ(/p− /k +mF )γνγ5 + (· · · ) γ5
]︂
u(p)

=ū(p′)
[︂
v2γν(/p

′ − /k +mF )γ
µ(/p− /k +mF )γν

+ a2γνγ5(/p
′ − /k −mF )γ

µ(/p− /k −mF )γνγ5 + (· · · ) γ5
]︂
u(p)

=ū(p′)
[︂
(v2 + a2)γν(/p

′ − /k)γµ(/p− /k)γν + (v2 − a2)mFγ
ν(/p

′ − /k)γµγν

+ (v2 − a2)mFγ
νγµ(/p− /k)γν + (v2 + a2)m2

Fγ
νγµγν + (· · · ) γ5

]︂
u(p)

(F.33)

eq. (F.33) can be simplified by using these identities

γνγαγµγβγν = −2γβγµγα, (F.34)

γνγαγµγν = 4gαµ, (F.35)

γνγµγν = −2γµ. (F.36)

It follows that

ū(p′)N1u(p) =ū(p
′)
[︂
− 2(v2 + a2)(/p− /k)γµ(/p′ − /k) + 4mF (v

2 − a2)
(︁
pµ + p′µ − 2kµ

)︁
− 2m2

F (v
2 + a2)γµ + (· · · ) γ5

]︂
u(p). (F.37)

The above equation can be further simplified by replacing pµ = p′µ−qµ and p′µ = pµ+qµ

and using Dirac equation. With these, we get

ū(p′)N1u(p) =ū(p
′)
[︂
− 2(v2 + a2)(mµ − /q − /k)γµ(mµ + /q − /k)

+ 4mF (v
2 − a2)

(︁
pµ + p′µ − 2kµ

)︁
− 2m2

F (v
2 + a2)γµ + (· · · ) γ5

]︂
u(p),

=ū(p′)
[︂
− 2(v2 + a2)

{︂
m2
µγ

µ +mµ(γ
µ
/q − /qγµ)−mµ(γ

µ/k + /kγµ)− /qγµ/q

+ /qγ
µ/k − /kγµ/q + /kγµ/k

}︂
+ 4mF (v

2 − a2)
(︁
pµ + p′µ − 2kµ

)︁
− 2m2

F (v
2 + a2)γµ + (· · · ) γ5

]︂
u(p). (F.38)
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The second and third terms are written by using anti-commutation and commutation

properties of Dirac matrices.

γµγν − γνγµ =
2

i
σµν ,

γµγν + γνγµ = 2gµν (F.39)

eq. (F.38) becomes

ū(p′)N1u(p) =ū(p
′)
[︂
− 2(v2 + a2)

{︂
− 2mµiσ

µνqν − 2mµk
µ

− /q/kγµ + /k/qγ
µ + /kγµ/k

}︂
+ 4mF (v

2 − a2)
(︁
pµ + p′µ − 2kµ

)︁
+ (· · · ) γµ + (· · · ) qµ + (· · · ) γ5

]︂
u(p).x (F.40)

Notice that we have written terms proportional to γµ, qµ and γ5 implicitly because they

do not contribute to the Pauli form factor. We also need the following results. Their

derivations are quite straightforward. So I claim that

ū(p′)
[︁
/k/qγ

µ − /q/kγµ
]︁
u(p) = ū(p′) [−4/kpµ + (· · · ) γµ]u(p),

ū(p′) [/kγµ/k]u(p) = ū(p′)
[︁
mµ(x+ y)2(pµ + p′µ) + (· · · ) qµ + (· · · ) γµ

]︁
u(p)

(F.41)

eq. (F.40) becomes

ū(p′)N1u(p) =ū(p
′)
[︂
− 2(v2 + a2)

{︂
− 2mµiσ

µνqν − 2mµk
µ

− 4/kpµ +mµ(x+ y)2(pµ + p′µ)
}︂
+ 4mF (v

2 − a2)
(︁
pµ + p′µ − 2kµ

)︁
+ (· · · ) γµ + (· · · ) qµ + (· · · ) γ5

]︂
u(p). (F.42)

Now we shift the momentum kµ → ℓµ + p′µx + pµy together with rewriting p′µ =

(Pµ + qµ) /2 and pµ = (Pµ − qµ) /2. We get

ū(p′)N1u(p) =ū(p
′)
[︂
− 2(v2 + a2)

{︂
− 2mµiσ

µνqν +
(︁
−3mµ(x+ y) +mµ(x+ y)2

)︁
Pµ
}︂

+ 4mF (v
2 − a2) (1− x− y)Pµ + (· · · ) γµ + (· · · ) qµ + (· · · ) γ5

]︂
u(p).

(F.43)
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By using the Gordon’s identity eq. (F.16), We can write

ū(p′)N1u(p) =ū(p
′)2mµ

[︂
mµ(v

2 + a2)
(︁
4− 6(x+ y) + 2(x+ y)2

)︁
+mF (v

2 − a2) (−4 + 4(x+ y))
]︂ iσµνqν

2mµ
u(p),

=ū(p′)2mµ

[︂
v2
{︂
(4mµ − 4mF ) + (4mF − 6mµ)(x+ y) + 2mµ(x+ y)2

}︂
+ a2{mF → −mF }

]︂ iσµνqν
2mµ

u(p). (F.44)

Now let us turn back to the N2 part

ū(p′)N2u(p) =−
1

m2
V

ū(p′)/k(v − aγ5)(/p′ − /k +mF )γ
µ(/p− /k +mF )/k(v − aγ5)u(p)

=− 1

m2
V

ū(p′)
[︂
v2/k(/p

′ − /k +mF )γ
µ(/p− /k +mF )/k

+ a2/kγ5(/p
′ − /k +mF )γ

µ(/p− /k +mF )/kγ5 + (· · · ) γ5
]︂
u(p)

=− 1

m2
V

ū(p′)
[︂
v2/k(/p

′ − /k +mF )γ
µ(/p− /k +mF )/k

+ a2/k(/p
′ − /k −mF )γ

µ(/p− /k −mF )/k + (· · · ) γ5
]︂
u(p)

=− 1

m2
V

ū(p′)
[︂ (︁
v2 + a2

)︁
/k(/p

′ − /k)γµ(/p− /k)/k +
(︁
v2 − a2

)︁
mF /k(/p

′ − /k)γµ/k

+
(︁
v2 − a2

)︁
mF /kγ

µ(/p− /k)/k +
(︁
v2 + a2

)︁
m2
F /kγ

µ/k + (· · · ) γ5
]︂
u(p) (F.45)

In the third line, we have swapped γ5 through all γµ from the left to the right with the

use of {γ5, γµ} = 0, until it meets with another γ5 then we used γ25 = I. Next, we can

move the exterior /k into the bracket and use /k/k = k2. As a result, we get

ū(p′)N2u(p) =−
1

m2
V

ū(p′)
[︂ (︁
v2 + a2

)︁
(/k/p

′ − k2)γµ(/p/k − k2) +
(︁
v2 − a2

)︁
mF (/k/p

′ − k2)γµ/k

+
(︁
v2 − a2

)︁
mF /kγ

µ(/p/k − k2) +
(︁
v2 + a2

)︁
m2
F /kγ

µ/k + (· · · ) γ5
]︂
u(p),

=− 1

m2
V

ū(p′)
[︂ (︁
v2 + a2

)︁{︂
/k/p

′γµ/p/k − k2/k/p′γµ − k2γµ/p/k + k4γµ
}︂

+
(︁
v2 − a2

)︁{︂
mF /k/p

′γµ/k −mFk
2γµ/k +mF /kγ

µ
/p/k −mFk

2/kγµ
}︂

+
(︁
v2 + a2

)︁
m2
F /kγ

µ/k + (· · · ) γ5
]︂
u(p). (F.46)

We would like to move /p′ and /p to the very left and right side, respectively, so we can

use Dirac equation. It follows that

ū(p′)N2u(p) =−
1

m2
V

ū(p′)
[︂ (︁
v2 + a2

)︁{︂ (︁
2k · p′ − /p′/k

)︁
γµ
(︁
2k · p− /k/p

)︁
− k2

(︁
2k · p′ − /p′/k

)︁
γµ

− k2γµ
(︁
2k · p− /k/p

)︁
+ k4γµ

}︂
+
(︁
v2 − a2

)︁{︂
mF

(︁
2k · p′ − /p′/k

)︁
γµ/k −mFk

2 (γµ/k + /kγµ)
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+mF /kγ
µ
(︁
2k · p− /k/p

)︁}︂
+
(︁
v2 + a2

)︁
m2
F /kγ

µ/k + (· · · ) γ5
]︂
u(p),

=− 1

m2
V

ū(p′)
[︂ (︁
v2 + a2

)︁{︂ (︁
2k · p′ −mµ/k

)︁
γµ (2k · p−mµ/k)− k2

(︁
2k · p′ −mµ/k

)︁
γµ

− k2γµ (2k · p−mµ/k) + k4γµ
}︂

+
(︁
v2 − a2

)︁{︂
mF

(︁
2k · p′ −mµ/k

)︁
γµ/k − 2mFk

2kµ

+mF /kγ
µ (2k · p−mµ/k)

}︂
+
(︁
v2 + a2

)︁
m2
F /kγ

µ/k + (· · · ) γ5
]︂
u(p),

=− 1

m2
V

ū(p′)
[︂ (︁
v2 + a2

)︁{︂
4k · pk · p′γµ − 2mµk · p′γµ/k − 2mµk · p/kγµ +m2

µ/kγ
µ/k

− 2k2k · p′γµ +mµk
2 (/kγµ + γµ/k)− 2k2k · pγµ + k4γµ

}︂
+
(︁
v2 − a2

)︁{︂
2mFk · p′γµ/k − 2mµmF /kγ

µ/k − 2mFk
2kµ + 2mFk · p/kγµ

}︂
+
(︁
v2 + a2

)︁
m2
F /kγ

µ/k + (· · · ) γ5
]︂
u(p). (F.47)

On the sixth term, we can use /kγµ + γµ/k = 2kµ and write the terms proportional to γµ

implicitly because they do not contribute to aµ. We have

ū(p′)N2u(p) =−
1

m2
V

ū(p′)
[︂ (︁
v2 + a2

)︁{︂
− 2mµk · p′γµ/k − 2mµk · p/kγµ +

(︁
m2
µ +m2

F

)︁
/kγµ/k

+ 2mµk
2kµ
}︂

+
(︁
v2 − a2

)︁{︂
2mFk · p′γµ/k − 2mµmF /kγ

µ/k − 2mFk
2kµ + 2mFk · p/kγµ

}︂
+ (· · · ) γµ + (· · · ) γ5

]︂
u(p),

=− 1

m2
V

ū(p′)
[︂
v2
{︂
(−2mµ + 2mF )(k · p′γµ/k + k · p/kγµ)

+ (2mµ − 2mF )k
2kµ + (mµ −mF )

2/kγµ/k + a2 {mF → −mF }
}︂]︂

(F.48)

Having shifted the momentum kµ → ℓµ + p′µx+ pµy, we found that

ū(p′)(k · p′γµ/k + k · p/kγµ)(p) = ū(p′)
[︂2
d
ℓ2(pµ + p′µ) + 2m2

µ(x+ y)(p′µx+ pµy) + (· · · )γµ
]︂
u(p),

ū(p′)k2kµu(p) = ū(p′)
[︂(︂

1 +
2

d

)︂
ℓ2(p′µx+ pµy) +m2

µ(x+ y)2(p′µx+ pµy)
]︂
u(p),

ū(p′)/kγµ/ku(p) = ū(p′)
[︂1
d
ℓ2γµ +mµ(x+ y)(p′µx+ pµy)

]︂
u(p) (F.49)
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On substituting eq. (F.49) into eq. (F.48), we get

ū(p′)N2u(p) =−
1

m2
V

ū(p′)
[︂
v2
{︂
(−2mµ + 2mF )

(︂2
d
ℓ2(pµ + p′µ) + 2m2

µ(x+ y)(p′µx+ pµy)
)︂

+ (2mµ − 2mF )
(︂(︂

1 +
2

d

)︂
ℓ2(p′µx+ pµy) +m2

µ(x+ y)2(p′µx+ pµy)
)︂

+ (mµ −mF )
2
(︂1
d
ℓ2γµ +mµ(x+ y)(p′µx+ pµy)

)︂
+ a2 {mF → −mF }

}︂]︂
(F.50)

In the above results, we have dropped the term proportional to ℓµ, γµ and qµ. Those

terms do not contribute to g − 2. By substituting pµ = (Pµ − qµ) /2 and p′µ =

(Pµ + qµ) /2, we arrive at

ū(p′)N2u(p) =−
1

m2
V

ū(p′)

[︄
v2
{︂
(mµ −mF )

(︁(︁
d+ 2

)︁
(x+ y)− 4

)︁ℓ2
d

+m2
µ(mµ −mF )(x+ y)3 +mµ(m

2
F −m2

µ)(x+ y)2
}︂

+ a2 {mF → −mF }
]︄
Pµu(p). (F.51)

Now we use the Gordon identity eq. (F.16) to write Pµ in terms of γµ and iσµνqν . We

get

ū(p′)N2u(p) =
2mµ

m2
V

ū(p′)

[︄
v2
{︂
(mµ −mF )

(︁(︁
d+ 2

)︁
(x+ y)− 4

)︁ℓ2
d

+m2
µ(mµ −mF )(x+ y)3 +mµ(m

2
F −m2

µ)(x+ y)2
}︂

+ a2 {mF → −mF }
]︄(︄

iσµνqν
2mµ

)︄
u(p). (F.52)

At this point, we are done with the numerator part. The denominator part is given by

1

[(p′ − k)2 −m2
F ][(p− k)2 −m2

F ][k
2 −m2

V ]
= 2

∫︂ 1

0
dx

∫︂ 1−x

0
dy

1

D3
(F.53)

where

D = ℓ2 −∆, ∆ = m2
µ(x+ y)2 − (m2

µ −m2
F )(x+ y) +m2

V (1− x− y)− xyq2. (F.54)

Notice that we have terms proportional to ℓ2 in eq. (F.52). Let us consider this integral

first. ∫︂
ddℓ

(2π)d
ℓ2

(ℓ2 −∆)n
=

(−1)n−1i

(4π)d/2
d

2

Γ(n− d
2 − 1)

Γ(n)

(︃
1

∆

)︃n− d
2
−1

. (F.55)
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Here we use d = 4− 2ϵ. In the case of n = 3, the integral becomes∫︂
ddℓ

(2π)d
ℓ2

(ℓ2 −∆)3
=

i

16π2
d

4
Γ(ϵ)

(︃
4π

∆

)︃ϵ
. (F.56)

Now we can do the momentum integration as follow∫︂
ddℓ

(2π)d
((d+ 2)(x+ y)− 4)

d

ℓ2

(ℓ2 −∆)3

=
((4− 2ϵ+ 2)(x+ y)− 4)

d

i

16π2
d

4

(︂1
ϵ
− log

(︃
∆

4πe−γE

)︃
+O(ϵ)

)︂
=

i

16π2

{︄(︄
3(x+ y)− 2

2

)︄
1

ϵ
−
(︃
3(x+ y)− 2

2

)︃
log

(︃
∆

4πe−γE

)︃
− (x+ y)

2

}︄
.

(F.57)

The divergent term is vanishing because of

∫︂ 1

0
dx

∫︂ 1−x

0
dy

i

16π2

(︄
3(x+ y)− 2

2

)︄
1

ϵ
= 0. (F.58)

Thus, the F2(0) is free from divergent. From eqs. (F.44), (F.52) and (F.57), the Pauli

form factor F2(0) is given by

F2(0) = −
mµ

8π2

∫︂ 1

0
dx

∫︂ 1−x

0
dy

[︄
v2

{︄(︃
(4mµ − 4mF ) + (4mF − 6mµ)(x+ y) + 2mµ(x+ y)2

)︃
1

∆0

+
1

m2
V

(︃
(mµ −mF )

(︂
(3(x+ y)− 2) log∆0 + x+ y

)︂
+
(︂
m2
µ(mµ −mF )(x+ y)3 +mµ(m

2
F −m2

µ)(x+ y)2
)︂ 1

∆0

)︃}︄

+ a2 {mF → −mF }
]︄

(F.59)

where

∆0 = ∆(q2 → 0) = m2
µ(x+ y)2 − (m2

µ −m2
F )(x+ y) +m2

V (1− x− y) (F.60)
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Figure F.3: The CC diagram contributing to the gµ − 2 calculation. The generic
internal fermion and vector are labelled by F and V .

F.3 The CC diagram

Now let us consider fig. F.3. We can write the vertex function as2

ū(p′)Γµc u(p) =

i

∫︂
dDk

(2π)D
ū(p′)

[︂
γν(v − aγ5)

/k

k2
γρ(v − aγ5)

(︂
gρα − (p−k)ρ(p−k)α

m2
W

)︂
(p− k)2 −m2

W

(︂
gβν − (p′−k)β(p′−k)ν

m2
W

)︂
(p′ − k)2 −m2

W

×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂ ]︂
u(p). (F.61)

The denominator can be rewritten in terms of Feynman parameters

1[︁
(p′ − k)2 −m2

W

]︁ [︁
(p− k)2 −m2

W

]︁
[k2]

= 2

∫︂
dx dy

1

D3
, (F.62)

where

D = ℓ2 −∆, ∆ = (m2
W −m2

µ)(x+ y) +m2
µ(x+ y)2 − xyq2. (F.63)

We have shifted the momentum kµ → ℓµ+p′µx+pµy. Now let us consider the numerator

of eq. (F.61).

ū(p′)Nu(p) = ū(p′) [γν(v − aγ5)/kγρ(v − aγ5)]

×
(︃
gρα −

(p− k)ρ(p− k)α
m2
W

)︃(︃
gβν −

(p′ − k)β(p′ − k)ν
m2
W

)︃
×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p).

(F.64)

2Please pay attention to the sign of W−γW+ vertex. For the standard Feynman rules for loop
calculation we need to go against the fermion line in fig. F.3 we will first encounter W− that is why we
use the Feynman rule of W−γW+ vertex, not the W+γW− one.
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In order to make our calculation less complicated. We can split the numerator into 3

parts.

ū(p′)N1u(p) = ū(p′) [γν(v − aγ5)/kγρ(v − aγ5)] gραgβν
×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p),

ū(p′)N2u(p) = ū(p′) [γν(v − aγ5)/kγρ(v − aγ5)]

×
(︃
−gρα

(p′ − k)β(p′ − k)ν
m2
W

− gβν
(p− k)ρ(p− k)α

m2
W

)︃
×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p),

ū(p′)N3u(p) = ū(p′) [γν(v − aγ5)/kγρ(v − aγ5)]
(p− k)ρ(p− k)α

m2
W

(p′ − k)β(p′ − k)ν
m2
W

×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p).

(F.65)

We start with the N1

ū(p′)N1u(p) = ū(p′) [γν(v − aγ5)/kγρ(v − aγ5)] gραgβν
×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p),

= ū(p′)
[︁
v2γν/kγρ + a2γνγ5/kγ

ργ5
]︁
gραgβν

×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p),

= ū(p′)(v2 + a2)γν/kγρgραgβν

×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p),

= ū(p′)(v2 + a2)
[︁
(2k − p− p′)µγα/kγα + γµ/k(2/p

′ − /p− /k) + (2/p− /p′ − /k)/kγµ
]︁
u(p),

= ū(p′)(v2 + a2)
[︂
(2k − p− p′)µ(2− d)/k + 2mµk

µ − 4(pµ + p′µ)/k + (· · · )γµ
]︂
u(p),

= ū(p′)(v2 + a2)
[︂
(2− d)(2(ℓµ + p′µx+ pµy)− pµ − p′µ) + 2mµ(ℓ

µ + p′µx+ pµy)

− 4(pµ + p′µ)(/ℓ + /p
′x+ /py)

]︂
u(p),

= ū(p′)(v2 + a2)
[︂
(2− d)

(︁
2mµ(x+ y)(p′µx+ pµy)−mµ(x+ y)(pµ + p′µ)

)︁
+ 2mµ(p

′µx+ pµy)− 4mµ(p
µ + p′µ)(x+ y) + (· · · )γµ

]︂
u(p), (F.66)

As we see that there is no ℓ2 term contributing to g − 2, we can simply take d→ 4.

ū(p′)N1u(p) = ū(p′)(v2 + a2)
[︂
− 4mµ(x+ y)(p′µx+ pµy)− 2mµ(x+ y)(pµ + p′µ)

+ 2mµ(p
′µx+ pµy) + (· · · )γµ

]︂
u(p). (F.67)

Replacing p′µ = (Pµ + qµ)/2 and pµ = (Pµ − qµ)/2, we arrive at

ū(p′)N1u(p) = ū(p′)(v2 + a2)
[︂
−mµ(x+ y)Pµ − 2mµ(x+ y)2Pµ

]︂
u(p). (F.68)
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Let us turn to the second terms of the numerator

ū(p′)N2u(p) = ū(p′) [γν(v − aγ5)/kγρ(v − aγ5)]

×
(︃
−gρα

(p′ − k)β(p′ − k)ν
m2
W

− gβν
(p− k)ρ(p− k)α

m2
W

)︃
×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p),

= −(v2 + a2)

m2
W

ū(p′)γν/kγρ
[︁
gρα(p

′ − k)β(p′ − k)ν + gβν(p− k)ρ(p− k)α
]︁

×
[︂
gαβ(2k − p− p′)µ + gβµ(2p′ − p− k)α + gµα(2p− p′ − k)β

]︂
u(p),

= −(v2 + a2)

m2
W

ū(p′)γν/kγρ
[︂
(p′ − k)ρ(p′ − k)ν(2k − p− p′)µ

+ (p′ − k)µ(p′ − k)ν(2p′ − p− k)ρ + (p′ − k) · (2p− p′ − k)(p′ − k)νδµρ
+ (p− k)ρ(p− k)ν(2k − p− p′)µ + (p− k)ρ(p− k) · (2p− p′ − k)δµν
+ (p− k)ρ(p− k)µ(2p− p′ − k)µ

]︂
u(p),

=
(v2 + a2)
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W
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u(p). (F.69)

We also need the following

ū(p′)k2/ku(p) = ū(p′)

[︃(︃
1 +

2

d

)︃
mµ(x+ y)ℓ2 +m3

µ(x+ y)3
]︃
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ū(p′)k2u(p) = ū(p′)
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]︁
u(p),
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ū(p′)/kkµu(p) = ū(p′)
[︂ℓ2
d
γµ +mµ(x+ y)(p′µx+ pµy)

]︂
u(p). (F.70)

Substituting eqs. (F.49) and (F.70) into eq. (F.69), we arrive at

ū(p′)N2u(p) =
(v2 + a2)

m2
W

ū(p′)
[︂ℓ2
d

{︂
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}︂
+
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Pµu(p). (F.71)

Consider the term proportional to ℓ2∫︂
ddℓ

(2π)d
1

(ℓ2 −∆)3
ℓ2

d
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}︂
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1

4
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4mµ − 4mµ(x+ y) + 2mµ(x+ y)2

}︂
− log∆

{︂
− 4mµ + 12mµ(x+ y)− 8mµ(x+ y)2

}︂]︂
. (F.72)
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The Pauli form factor for the diagram fig. F.3 is given by

F2(0) =2i

∫︂ 1

0
dx

∫︂ 1−x

0
dy(v2 + a2)
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2mµ
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2 · 16π2
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)︂
− 2mµ

m2
W
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}︂(︂ −i

2 · 16π2
1

∆0

)︂
+

i

16π2
1

4
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− log∆0
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}︂]︂]︂]︂
(F.73)
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Figure F.4: The NP diagrams contributing to g-2 of muon.



F.4. Results 153

We have expanded the contribution to the g-2 of muon from each diagram in the limit

that m2
µ ≪ m2
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a(e)µ =
g2W
48π2

m2
µ

c2Wm
2
Z

(︁
−1− 2s2W + 4s4W

)︁
(F.78)

a(f)µ =
g2W

384π2
m4
µ(m

2
D −m2

M )

c2Wm
2
Zm

2
Dm

2
M (m2

M −m2
Z)

4

(︄
5m8

M − 14m6
Mm

2
Z + 39m4

Mm
4
Z

− 38m2
Mm

6
Z + 8m8

Z + 18m4
Mm

4
Z log

m2
Z

m2
M

)︄
(F.79)

a(g)µ =− g2D
48π2

m2
µ(m

2
D −m2

M )2

m4
Mm

2
V ′

(F.80)

a(h)µ =
g2D

384π2
m2
µ(m

2
D −m2

M )

m2
V ′(m3

M −mMm2
V ′)4

(︄
(m2

M −m2
V ′)

×
(︂
m2
D(5m

6
M − 9m4

Mm
2
V ′ + 30m2

Mm
4
V ′ − 8m6

V ′)

− 6(m8
M + 3m4

Mm
4
V ′ − 4m2

Mm
6
V ′)
)︂

− 18m4
Mm

4
V ′(m2

D − 2m2
M + 2m2

V ′) log
m2
M

m2
V ′

)︄
(F.81)

a(i)µ =
g2D

192π2
m2
µ(m

2
M −m2

D)

m2
Mm

2
VD

(m2
D −m2

VD
)4

(︂
m8
D + 8m6

Dm
2
VD
− 21m4

Dm
4
VD

− 4m2
Dm

6
VD

+ 16m8
VD
− 18m2

Dm
4
VD

(m2
D − 2m2

VD
) log

m2
D

m2
VD

)︂
(F.82)

a(j)µ =
5g2W
96π2

m2
µ

m2
W

(F.83)





155

References

[1] A. Belyaev, A. Deandrea, S. Moretti, L. Panizzi, D. A. Ross and N. Thongyoi,

Fermionic portal to vector dark matter from a new gauge sector, Phys. Rev. D

108 (2023), no. 9 095001 [2204.03510].

[2] A. Belyaev, A. Deandrea, S. Moretti, L. Panizzi and N. Thongyoi, A fermionic

portal to a non-abelian dark sector, 2203.04681.

[3] A. Belyaev, L. Panizzi and N. Thongyoi, The muon anomalous magnetic moment

gµ − 2 from the fermionic portal to vector dark matter, 2024(to appear).

[4] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory.

Addison-Wesley, Reading, USA, 1995.

[5] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge

University Press, 6, 2005.

[6] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications.

Cambridge University Press, 8, 2013.

[7] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector

Mesons, Phys. Rev. Lett. 13 (1964) 321–323.

[8] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev.

Lett. 13 (1964) 508–509.

[9] Particle Data Group Collaboration, M. Tanabashi et. al., Review of Particle

Physics, Phys. Rev. D 98 (2018), no. 3 030001.

[10] Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of

Superconductivity, Phys. Rev. 117 (1960) 648–663.

[11] J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19

(1961) 154–164.

[12] J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev. 127

(1962) 965–970.

http://arXiv.org/abs/2204.03510
http://arXiv.org/abs/2203.04681


156 REFERENCES

[13] Particle Data Group Collaboration, P. A. Zyla et. al., Review of Particle

Physics, PTEP 2020 (2020), no. 8 083C01.

[14] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge

University Press, 3, 2014.

[15] C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard

Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev.

Lett. 55 (1985) 1039.

[16] R. B. Palmer et. al., Muon colliders, AIP Conf. Proc. 372 (1996), no. 1 3–30

[acc-phys/9602001].

[17] A. Liddle, An introduction to modern cosmology; 2nd ed. Wiley, Chichester, 2003.

[18] E. Hubble, A relation between distance and radial velocity among extra-galactic

nebulae, Proc. Nat. Acad. Sci. 15 (1929) 168–173.

[19] E. W. Kolb and M. S. Turner, The early universe. Frontiers in physics. Westview

Press, Boulder, CO, 1990.

[20] P. Di Bari, Cosmology and the early Universe. Series in Astronomy and

Astrophysics. CRC Press, 5, 2018.

[21] Planck Collaboration, N. Aghanim et. al., Planck 2018 results. VI. Cosmological

parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209]. [Erratum:

Astron.Astrophys. 652, C4 (2021)].

[22] M. Bauer and T. Plehn, Yet Another Introduction to Dark Matter: The Particle

Physics Approach, vol. 959 of Lecture Notes in Physics. Springer, 2019.

[23] WMAP Collaboration, C. L. Bennett et. al., Nine-Year Wilkinson Microwave

Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J.

Suppl. 208 (2013) 20 [1212.5225].

[24] COBE Collaboration, G. F. Smoot et. al., Structure in the COBE differential

microwave radiometer first year maps, Astrophys. J. Lett. 396 (1992) L1–L5.

[25] D. Baumann, Cosmology. Cambridge University Press, 7, 2022.

[26] S. Vagnozzi, Weigh them all! - Cosmological searches for the neutrino mass scale

and mass ordering. PhD thesis, Stockholm U., 4, 2019.

[27] G. Bertone and D. Hooper, History of dark matter, Rev. Mod. Phys. 90 (2018),

no. 4 045002 [1605.04909].

[28] J. Silk et. al., Particle Dark Matter: Observations, Models and Searches.

Cambridge Univ. Press, Cambridge, 2010.

http://arXiv.org/abs/acc-phys/9602001
http://arXiv.org/abs/1807.06209
http://arXiv.org/abs/1212.5225
http://arXiv.org/abs/1605.04909


REFERENCES 157

[29] J. F. Navarro, C. S. Frenk and S. D. M. White, The Structure of cold dark

matter halos, Astrophys. J. 462 (1996) 563–575 [astro-ph/9508025].

[30] A. Del Popolo, Dark matter and structure formation a review, Astron. Rep. 51

(2007) 169–196 [0801.1091].

[31] J. R. Primack, Dark matter and structure formation, in Midrasha Mathematicae

in Jerusalem: Winter School in Dynamical Systems, 7, 1997. astro-ph/9707285.

[32] E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein and S. W.

Randall, Detection of An Unidentified Emission Line in the Stacked X-ray

spectrum of Galaxy Clusters, Astrophys. J. 789 (2014) 13 [1402.2301].

[33] R. Massey, T. Kitching and J. Richard, The dark matter of gravitational lensing,

Rept. Prog. Phys. 73 (2010) 086901 [1001.1739].

[34] A. C. Freegard, Dark matter models : signals and backgrounds at the LHC and

future colliders. PhD thesis, University of Southampton, Southampton U., 2023.

[35] G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter,

Phys. Rept. 267 (1996) 195–373 [hep-ph/9506380].

[36] S. Dodelson and L. M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev.

Lett. 72 (1994) 17–20 [hep-ph/9303287].

[37] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.

82 (2010) 557–602 [0807.3125]. [Erratum: Rev.Mod.Phys. 91, 049902 (2019)].

[38] D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1–79 [1510.07633].

[39] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte and M. Thomas,

Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and

non-LHC Dark Matter Searches, Phys. Rev. D 97 (2018), no. 3 035011

[1612.00511].

[40] Fermi-LAT Collaboration, W. B. Atwood et. al., The Large Area Telescope on

the Fermi Gamma-ray Space Telescope Mission, Astrophys. J. 697 (2009)

1071–1102 [0902.1089].

[41] IceCube Collaboration, M. G. Aartsen et. al., Observation of High-Energy

Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113

(2014) 101101 [1405.5303].

[42] AMS Collaboration, M. Aguilar et. al., First Result from the Alpha Magnetic

Spectrometer on the International Space Station: Precision Measurement of the

Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV, Phys. Rev. Lett.

110 (2013) 141102.

http://arXiv.org/abs/astro-ph/9508025
http://arXiv.org/abs/0801.1091
http://arXiv.org/abs/astro-ph/9707285
http://arXiv.org/abs/1402.2301
http://arXiv.org/abs/1001.1739
http://arXiv.org/abs/hep-ph/9506380
http://arXiv.org/abs/hep-ph/9303287
http://arXiv.org/abs/0807.3125
http://arXiv.org/abs/1510.07633
http://arXiv.org/abs/1612.00511
http://arXiv.org/abs/0902.1089
http://arXiv.org/abs/1405.5303


158 REFERENCES

[43] LUX Collaboration, D. S. Akerib et. al., First results from the LUX dark matter

experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112

(2014) 091303 [1310.8214].

[44] XENON Collaboration, E. Aprile et. al., Dark Matter Search Results from a

One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018), no. 11

111302 [1805.12562].

[45] PandaX-II Collaboration, A. Tan et. al., Dark Matter Results from First 98.7

Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016),

no. 12 121303 [1607.07400].

[46] WMAP Collaboration, D. N. Spergel et. al., First year Wilkinson Microwave

Anisotropy Probe (WMAP) observations: Determination of cosmological

parameters, Astrophys. J. Suppl. 148 (2003) 175–194 [astro-ph/0302209].

[47] Planck Collaboration, P. A. R. Ade et. al., Planck 2015 results. XIII.

Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [1502.01589].

[48] K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances,

Phys. Rev. D 43 (1991) 3191–3203.

[49] L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, Freeze-In Production

of FIMP Dark Matter, JHEP 03 (2010) 080 [0911.1120].

[50] J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations,

Phys. Rev. D 56 (1997) 1879–1894 [hep-ph/9704361].

[51] G. Belanger, A. Mjallal and A. Pukhov, Recasting direct detection limits within

micrOMEGAs and implication for non-standard Dark Matter scenarios, Eur.

Phys. J. C 81 (2021), no. 3 239 [2003.08621].

[52] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A

Program for calculating the relic density in the MSSM, Comput. Phys. Commun.

149 (2002) 103–120 [hep-ph/0112278].

[53] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The

Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod.

Phys. A 32 (2017), no. 27 1730023 [1706.07442].

[54] J. M. Gaskins, A review of indirect searches for particle dark matter, Contemp.

Phys. 57 (2016), no. 4 496–525 [1604.00014].

[55] R. K. Leane, Indirect Detection of Dark Matter in the Galaxy, in 3rd World

Summit on Exploring the Dark Side of the Universe, pp. 203–228, 2020.

2006.00513.

http://arXiv.org/abs/1310.8214
http://arXiv.org/abs/1805.12562
http://arXiv.org/abs/1607.07400
http://arXiv.org/abs/astro-ph/0302209
http://arXiv.org/abs/1502.01589
http://arXiv.org/abs/0911.1120
http://arXiv.org/abs/hep-ph/9704361
http://arXiv.org/abs/2003.08621
http://arXiv.org/abs/hep-ph/0112278
http://arXiv.org/abs/1706.07442
http://arXiv.org/abs/1604.00014
http://arXiv.org/abs/2006.00513


REFERENCES 159
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