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A B S T R A C T

Purpose: The 100,000 Genomes Project diagnosed a quarter of affected participants, but 26% of
diagnoses were not on the applied gene panel(s); with many being de novo variants. Assessing
biallelic variants without a gene panel is more challenging.
Methods: We sought to identify missed biallelic diagnoses using GenePy, which incorporates allele
frequency, zygosity, and a user-defined deleterious metric, generating an aggregate GenePy score
per gene, per participant. We calculated GenePy scores for 2862 recessive disease genes in
78,216 100,000 Genomes Project participants. For each gene, we ranked participant GenePy
scores and scrutinized affected participants without a diagnosis, whose scores ranked among the
top 5 for each gene. In cases which participant phenotypes overlapped with the disease gene of
interest, we extracted rare variants and applied phase, ClinVar, and ACMG classification.
Results: 3184 affected individuals without a molecular diagnosis had a top-5-ranked GenePy
score and 682 of 3184 (21%) had phenotypes overlapping with a top-ranking gene. In 122 of
669 (18%) phenotype-matched cases (excluding 13 withdrawn participants), we identified a
putative missed diagnosis (2.2% of all undiagnosed participants). A further 334 of 669 (50%)
cases have a possible missed diagnosis but require functional validation.
Conclusion: Applying GenePy at scale has identified 456 potential diagnoses, demonstrating the
value of novel diagnostic strategies.
© 2024 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Abbreviations
100KGP – 100,000 Genomes Project
ACMG – American College of Human Genetics and Genomics
CADD – combined annotation dependent depletion
GEL – Genomics England GenCC, Gene Curation Coalition
GQ – genotype quality
HPO – human phenotype ontology
RE – research environment
OMIM – Online Inheritance in Man
MANE – matched annotation from NCBI and EMBL-EBI

2 E.G. Seaby et al.
Introduction

The 100,000 Genomes Project (100KGP) was a UK-
government-funded research project led by Genomics En-
gland (GEL) to sequence 100,000 genomes for families
predominantly presenting with rare disease.1 The project
utilized a phenotype to genotype approach, whereby genome
sequencing data were filtered using a pre-selected PanelApp2

gene panel or panels chosen by GEL based on the Human
Phenotype Ontology (HPO)3 terms recorded at recruit-
ment.1,4 The project was completed in 2020 and yielded an
overall diagnostic rate of ~25% across all rare-disease cate-
gories.1,5 However, as ever-increasing numbers of re-
searchers gained access to anonymized genome sequencing
data from the 100KGP, additional diagnoses were made
using methods that extended variant analysis beyond gene
panels across more coding and non-coding regions, which
have subsequently been returned to participants.4 As of 2022,
26% of all diagnoses returned by the 100KGP were from
diagnoses not on the pre-selected gene panel applied, with
many being pathogenic de novo coding variants.4,5 However,
assessing other variants such as biallelic variants is more
burdensome, particularly without the use of gene panels
because of the sheer number of variants that require scrutiny.
This is because many are inherited from unaffected relatives
and are carried at non-trivial allele frequencies in population
databases. Furthermore, biallelic variation is often hard to
interpret, especially for compound heterozygotes, in which
one variant may be pathogenic, and another may be a copy-
number variant, non-coding variant, or other variant of un-
certain significance (VUS). This is where gene panels show
their greatest utility because they can help narrow down
variants to clinically relevant genes.2 However, this approach
must be balanced against the potential of missing diagnoses
outside of the original gene panel applied.

We sought to identify potential missed biallelic di-
agnoses in recessive disease genes independently of the
gene panel applied using a genome pathogenicity metric
called GenePy, pronounced “Jenni-pea (dʒ′ 3nɪpˌiː).”
GenePy (https://github.com/UoS-HGIG/GenePy-1.3) is a
gene pathogenicity prioritization tool developed at the
University of Southampton that transforms the interpretation
of next generation sequencing data from the variant level to
the gene or pathway level.6 GenePy incorporates allele
frequency, individual zygosity (in which a heterozygote
scores 1 point and a homozygote scores 2 points), and a
user-defined deleterious metric (such as the Combined
Annotation Dependent Depletion [CADD] score7) into a
single variant score.

GenePy is defined as follows:

Sgh = −∑
i=1kDilog10(fi1 • fi2)

(in which h = individual; g = gene; k = variants; i = locus;
Di = allele deleteriousness; fi = allele frequency; fi1 = allele
1; fi2 = allele 2).
GenePy then aggregates variant scores across genes in an
additive manner, generating a single score, per gene, per in-
dividual that is represented in a GenePy matrix table
(Figure 1). However, for large genes and intronic regions there
is a potential to accumulate noise from low scoring variants.
To mitigate this, GenePy can be customized to filter variants
with high in silico scores only, eg, CADD score above a
particular threshold. Additionally, GenePy can be applied
across any defined interval and variant scores do not have to be
summed across genes, eg, one may choose to sum variants
across a particular biological pathway or genomic region.

Upon generation of a GenePy matrix, GenePy scores can
be compared across individuals in a cohort; GenePy scores
are intuitive in that higher GenePy scores correlate with
higher pathogenic variant burden such that individuals can be
ranked for their score for any given gene, relative to all in-
dividuals with comparable input genomic data. GenePy
scores are not easily compared between genes, without
normalization and adjustment for gene length. Even then,
genes with alternative tolerance to dysfunctional variation are
likely to exhibit very different GenePy score profiles. Instead,
GenePy demonstrates the greatest utility when individual
gene scores are compared across large numbers of in-
dividuals. BecauseGenePy is an additive score, individuals in
large cohorts with the highest ranked GenePy scores will be
enriched for biallelic disease. Given the potential for missed
biallelic diagnoses in the 100KGP, we applied GenePy at
scale in a panel-agnostic way to uplift diagnostic rates.
Materials and Methods

Access to 100KGP data

Participants were recruited to the 100KGP with written
consent. The full protocol is available here: https://doi.org/1
0.6084/m9.figshare.4530893.v7. Deidentified data from the
project are held in the secure Genomics England Research
Environment (RE).

We obtained access to 100KGP data after governance
training and through membership of the “Quantitative
Methods, Machine Learning, and Functional Genomics”
Genomics England Clinical Interpretation Partnership. We
had an approved Genomics England Project (RR359).

https://github.com/UoS-HGIG/GenePy-1.3
https://doi.org/10.6084/m9.figshare.4530893.v7
https://doi.org/10.6084/m9.figshare.4530893.v7


Figure 1 Overview of GenePy pathogenicity software and output. A. Patient’s DNA undergoes sequencing and subsequent processing
to produce a file listing all variants identified in their data. B. Each variant is individually annotated with biological information reflecting:
zygosity, ie, the allele inherited from each parent, deleteriousness (D, we commonly use a metric called CADD, but this can be user
specified), and frequency of the observed alleles (f) for which we refer to gnomAD—one of the largest population database resources
reporting the observed occurrence of alleles across very large population datasets. C. These data are input into the GenePy algorithm for each
variant and then summed across all variants observed within that gene for that individual. This step is run in parallel for all genes across all
patients within the cohort. D. The output is a matrix of all individuals by all genes. For certain applications, this matrix can be transposed such
that for each gene, individuals are ordered by highest pathogenic variant loading.

E.G. Seaby et al. 3
In 2022, we accessed 78,216 genomes from affected and
unaffected participants recruited to the 100KGP. We
extracted participants’ affection status (ie, whether they
were coded as affected with disease or not) and any HPO
terms associated with participants’ records. Using the
package LabKey in R, we queried the “GMC Exit Ques-
tionnaire” SQL table and extracted any diagnostic (likely
pathogenic/pathogenic) variants returned to participants by
the project.

Curating a list of recessive disease genes

To target our method toward potential missed biallelic di-
agnoses, we curated a list of 2862 recessive disease genes
using the Online Inheritance in Man (OMIM)8 database
(downloaded in May 2022) and cross checked these findings
with the Gene Curation Coalition (GenCC) database,
whereby discrepancies in inheritance were examined more
carefully.9 We then generated a bed file of gene coordinates
for GRCh38 using the UCSC Genome Browser. The full
gene list is available in Supplementary File 1.

Application of GenePy

Within the Genomics England RE we applied GenePy v.1.3
(https://github.com/UoS-HGIG/GenePy-1.3) software to
78,216 participants in the 100KGP using CADD7 v1.6 as
our deleterious metric and the gnomAD v.2.1.1 and v.310

databases as our reference for allele frequency. We
selected variants with a minimum depth of 10, minimum
genotype quality (GQ) of 20, and mean GQ > 35 using
vcftools. We applied a call-rate filter, whereby each variant
had to be genotyped in at least 70% of the cohort. For
downstream analysis, we only modeled and scored partici-
pant variants annotated as coding +/− 8 base pairs (on any
transcript) and with a CADD score ≥15. We specified
CADD as our input metric because it scores the greatest
variety and number of variant types. We generated GenePy

https://github.com/UoS-HGIG/GenePy-1.3
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scores for 2862 recessive disease genes to create a matrix
comprising GenePy scores for 2862 genes across 78,216
individuals. Of note, in addition to “affected” participants,
this cohort included many “control”-type individuals that
represented unaffected parents of affected children and
germline genomes of cancer patients.

For each of the 2862 recessive genes, we ranked every
Genomics England participant’s GenePy score relative to
one another, eg, the person with the highest GenePy score
for CFTR would be ranked 1, and the person with the lowest
GenePy score in CFTR would be ranked 78,216. After
ranking, we arbitrarily assessed only individuals who ranked
among the top-5 GenePy score for each gene. If 2 in-
dividuals had identical scores, we retained all participants
with a rank of 5 or less. We then removed any individuals
who were coded as unaffected, and affected individuals with
insufficient phenotypic data in the form of HPO terms
Figure 2 Workflow of GenePy applied to 78,216 participants in the
autosomal recessive genes in 78,216 participants, using CADD v.1.6 and
per gene, whereby those who ranked in the top 5 GenePy score for each g
were removed. HPO terms from unaffected individuals without a diagnosi
clinical features described for the autosomal recessive gene that the p
overlapped with the gene that the person ranked in the top 5 for, we ex
ClinVar status and applied ACMG guidelines. We then prioritized the fin
putative missed diagnoses, “Middle” and “Low” priority being of interest
“Closed” being when the participants had been withdrawn from the Pro
recorded. We next separated affected cases into those with a
confirmed diagnosis returned by the 100KGP and those with
a negative result. If the participant had a diagnosis returned,
we assessed whether the established diagnostic variant was
in a gene with a top-5 ranked GenePy score (Figure 2).

For affected participants with a negative genome result,
we extracted HPO terms from R LabKey and compared
these HPO terms with the clinical features associated with
the disease gene for which they scored in the top 5 rank. For
example, if the participant had the HPO terms “pancreatic
insufficiency,” “failure to thrive,” and “recurrent chest in-
fections” and they ranked 3rd for CFTR, we would compare
their HPO terms with the clinical features of cystic fibrosis.
This process was completed manually by a clinician who
used clinical acumen, phenotypic descriptions and HPO
terms listed in OMIM, and the clinical literature to help
assess phenotype overlap. If the participant’s HPO terms
100,000 Genomes Project. GenePy scores were created for 2862
gnomAD v.2.1.1. Participants scores were ranked across the cohort
ene were retained for downstream analysis. Unaffected individuals
s returned by the 100,000 Genomes Project were compared with the
articipant scored in the top 5 for. If the participant’s HPO terms
tracted the individual participant variants and assessed phase and
dings according to the prioritization rules, with “Top” priority being
but lacking sufficient evidence, “Exclude” being not diagnostic and
ject.
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were consistent with those for a gene that the same partic-
ipant was ranked in the top 5 GenePy scores for (eg, the
participant had pancreatic insufficiency and recurrent chest
infections and was ranked 3rd in CFTR), this was consid-
ered a potential missed diagnosis. If the disease-gene
phenotype was unrelated to the participant’s clinical
phenotype but represented a gene in the American College
of Human Genetics and Genomics (ACMG) 7811 list or may
represent an adult-onset disease, this was considered a po-
tential incidental finding. For these, we contacted the
recruiting clinician to discuss the findings. If there was no
correlation between the participant’s HPO terms and the
clinical phenotype for the implicated disease gene, this was
considered to be lacking phenotypic overlap and excluded
from further consideration.

Assessing potential missed diagnoses

When the participant’s phenotype was overlapping with the
disease gene for which the participant ranked in the top 5,
we extracted all variants from the participant’s variant call
file with a CADD score ≥15. These variants were then
prioritized by likelihood of being a missed biallelic diag-
nosis, taking into consideration variant phase where
possible, ClinVar12 status, and variant curation by ACMG/
AMP13 guidelines (Figure 2). Variants that were prioritized
as “Top” priority were considered putative missed diagnoses
and mostly represented homozygous likely pathogenic/
pathogenic variants or likely pathogenic/pathogenic com-
pound heterozygous variants.
Results

We applied GenePy to 2862 recessive disease genes in
78,216 participants recruited to the 100KGP (Figure 2). For
each gene we selected the top 5 ranked participants by
GenePy score, which yielded a total of 9404 unique par-
ticipants, with some participants ranking top 5 for more than
one recessive gene. Of the top ranked participants, 4713 of
9404 (50.1%) were unaffected and 4691 of 9404 (49.9%)
were affected. Unaffected participants (rare disease or can-
cer germline) represented 45% of the entire cohort. Of the
4691 affected participants with a top-5 ranked GenePy
score, 847 of 4691 (18.1%) already had a diagnosis returned
by the 100KGP up to 2022. Of these, 599 of 847 (70.7%)
had diagnoses in 1 of the top 5 ranked genes. Twenty-nine
percent (248/847) of individuals had a diagnosis returned by
GEL in an alternative gene and all of these diagnoses were
returned as complete diagnoses (ie, they explained the entire
phenotype). Of these, 87 individuals had a de novo patho-
genic variant and 161 had a pathogenic variant in a domi-
nant gene (either inherited from an affected individual or the
participant was a from a singleton family).

In total, there were 3184 affected individuals who had a
“no diagnosis” genome report returned by the 100KGP
who were ranked in the top 5 GenePy scores for the 2862
computed recessive disease genes. For these cases, we
compared the participant’s reported HPO terms with the
clinical phenotype of the GenePy disease gene implicated
in the participant. For 340 participants, there were missing
phenotype data—typically this was an affected relative
with no HPO terms. For 320 participants, there was
insufficient HPO terms recorded to assess for phenotypic
overlap between the participant’s clinical phenotype and
that of the implicated disease gene. These were either due
to a very limited number of non-specific HPO terms or only
1 HPO term recorded. Therefore, these individuals were
removed from downstream analysis. There were 2864 in-
dividuals who had sufficient HPO terms to assess pheno-
type overlap and for 682 of 2864 (23.8%) of these cases,
the participant’s HPO terms overlapped with the clinical
presentation associated with the top 5 ranked GenePy
disease gene. For 2173 of 2864 (75.9%) of cases, the
phenotypes were non-overlapping and for 9 of 2864 (0.3%)
of cases the phenotypes were not overlapping, but the
implicated gene was 1 of the ACMG 78 incidental finding
genes.

For the 682 participants with a potential missed diag-
nosis, we extracted variants in their top 5-ranked gene with
a CADD score ≥15 directly from their variant call file. In
total we extracted 847 unique variants. Following priori-
tization (Figure 2), we identified 122 top priority, putative
missed diagnoses supported by phase, ClinVar12 classifi-
cations and ACMG/AMP guidelines (Supplemental
Results).13 262 individuals were assigned “Middle” prior-
ity demonstrating supportive evidence for a potential
missed diagnosis, whereby for many there was lack of
phased data limiting diagnostic potential. Seventy-two in-
dividuals had some, but weak, evidence for a potential
missed diagnosis, for example, because of 1 variant being
non-coding on the matched annotation from NCBI and
EMBL-EBI (MANE)14 transcript and were assigned
“Low” priority. Two hundred twenty-nine cases were ruled
as non-diagnostic, typically because of the variants being
in cis, being non-coding on the MANE transcript, not
segregating with affected and related individuals, and be-
ing common in the 100,000 Genomes call-set (Table 1).
There were 3 cases in which 1 variant was a predicted loss-
of-function (pLoF), and the second variant was non-coding
on the MANE transcript (Supplemental Results). Alterna-
tive transcripts were considered for these 3 cases; however,
the coding transcripts had poor overall expression in gno-
mAD. In 13 cases, no variants were extracted because the
individual had withdrawn from the 100KGP.
Discussion

We applied a gene pathogenicity score, GenePy, to a cohort
of 78,216 individuals recruited to the 100KGP. Utilizing
ranked individuals’ GenePy scores for 2862 recessive



Table 1 Flags applied to deprioritize variants

Variant Priority
(No. of Variants)

At Least One
Non-coding
Variant

Common
in Call-
set

Does Not
Segregate

In
cis

No
Second
Hit

Top (122) NA NA NA NA NA
Middle (262) 12 NA NA NA NA
Low (72) 48 NA NA NA NA
Exclude (229) 73 22 63 71 61

Variant pairs were deprioritized when at least 1 variant was non-coding
on the MANE transcript, any variant was common in the 100,000 Genomes
Project call-set (>5%), the variant(s) did not segregate between affected
individuals from the same family, variants were in cis, or when only 1
heterozygous variant was identified.
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disease genes, we identified outliers with the highest
GenePy scores per gene. We selected individuals who
ranked in the top 5 scores for each gene, with an expectation
that these individuals may harbor missed biallelic diagnoses.

Eight-hundred and forty-seven individuals with a top 5
ranked GenePy score had a diagnosis returned by the
100KGP. Seventy-one percent (599/847) of these in-
dividuals had a diagnosis in a top 5 ranked gene, demon-
strating how GenePy was able to rapidly recover 71% of
diagnoses, showing potential diagnostic utility for both
known and novel disease genes. The remaining 248 cases
had diagnoses in dominant genes, with 81 diagnoses being
de novo and 161 being inherited from an affected individual
or the individual represented a singleton.

In total we identified 2864 undiagnosed individuals with
top 5 ranked GenePy scores, of which 682 of 2864 (24%)
had phenotypes overlapping with the clinical features of
their top ranked recessive disease gene. Following prioriti-
zation and removing 13 cases in which participants had
withdrawn from the 100KGP, 122 of 669 (18%) of the
phenotype-matched cases had a putative missed diagnosis
supported by phase, ClinVar classifications and ACMG/
AMP guidelines. All these findings have since been returned
to GEL through their Diagnostic Discovery Pathway. For
334 of 669 (50%) of individuals, we identified variants of
interest in a disease gene consistent with the participant’s
phenotype with some supportive evidence for pathogenicity,
but often phase could not be determined because of missing
parental data. Additionally, for many of these cases, the
variants contributing to the high GenePy scores were clas-
sified as VUS and therefore require additional functional
work-up. These variants are being reviewed by a clinical
scientist in an NHS accredited diagnostic laboratory.
Although follow-up of these variants is outside the scope of
this research project, many of these variants, even those
prioritized in the low category, may represent pathogenic
variants. For example, non-coding variants were assigned to
a lower priority grouping, despite them having a CADD
score ≥15. It is hoped that many of these variants may be
functionally investigated in the future as high-throughput
methods to model VUS advance.

Application of GenePy has identified putative missed
diagnoses, which raises the question as to why these were
not detected and returned by the 100KGP. For the 100KGP,
referring clinicians recorded HPO terms, but the number
recorded was very variable; some patients only had 1 or 2
non-specific terms recorded. The in silico gene panel se-
lection was made by GEL based on the HPO terms pro-
vided. This was a major limitation of the 100KGP; indeed,
26% of all diagnoses made from the project were not on the
original panel applied.5 This showcases the limitations of
panel-based strategies and highlights the need for panel-
agnostic methods such as GenePy to recover missed
diagnoses.

In total, GenePy has identified potential missed di-
agnoses in 456 of 2864 (16%) of undiagnosed individuals
who had a top-5 ranked GenePy score in a recessive disease
gene. Forty-eight variants were previously identified as
VUS by GEL (Supplemental Results). On average this
resulted in the curation of 1.2 additional variants per
participant. Therefore, the application of GenePy success-
fully uplifted diagnosis rates without adding large variant
numbers requiring time-consuming manual curation for
diagnostic laboratories to assess and classify.

GenePy6 is an open-source transferrable piece of soft-
ware that can be successfully applied at scale. GenePy
matrices can be used as reference datasets for other cohorts
applying the same GenePy methods, ie, when applying the
same deleterious metric, population reference database, and
quality control thresholds. For example, GenePy may be
applied to a cohort of 10 samples, whereby these 10 in-
dividuals’ GenePy scores could be ranked against a larger
GenePy matrix comprising 100,000 individuals. However,
GenePy matrices for genome sequencing data should only
be compared with other genome sequencing datasets, unless
restricted to the same target regions of exome data.

Limitations and opportunities

The application of GenePy to the 100KGP is not without its
limitations. For one, we used an entirely arbitrary cutoff of 5
when we ranked individuals. It is entirely possible that a
more permissive value may capture a wider range of di-
agnoses; however, this must be balanced with the additional
number of variants, per individual, which would require
further scrutiny by clinical laboratories.

We assessed for phenotype overlap between the partici-
pants’ HPO terms and the clinical features described for the
disease gene in which the participants ranked in the top 5
GenePy scores. For 320 cases, the HPO terms were so
limited (sometimes only 1 HPO term was recorded) that it
was not possible to assess overlap. This represents a real-
world limitation of sequencing studies in which there is
often variability in how submitters record phenotype data
and highlights the importance of accurate phenotyping. This
phenotype comparison step was performed manually on
2864 cases. This large number of cases required 4 weeks of
manual curation. Application of automated methods to
compare participant HPO terms with disease-gene
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phenotypes may, in the future, has the potential to increase
efficiency for GenePy applied at scale. However, it is un-
likely that clinical or diagnostic laboratories applying Gen-
ePy would be reviewing thousands of individuals at once,
but rather on a case-by-case basis. Additionally, automated
methods lack the clinical knowledge and experience of a
clinician or clinical scientist that may be better able to
intelligently compare groups of similar phenotypes.

In our application of GenePy we used CADD v.1.6 to
capture and model the greatest breadth of variation in an
unbiased way, but it may be that incorporation of other
metrics for different variant types (eg, REVEL15 for
missense) may prove more sophisticated in an improved
model. However, this is likely to require machine learning to
apportion in silico weightings fairly for different variant
types. We also applied a CADD cutoff of ≥15 to avoid
individuals accruing high GenePy scores in genes of
increasing length, where there was a higher chance of
finding multiple ultrarare variants by pure chance that would
score highly in GenePy. Although we are confident that
using CADD ≥15 reduced a lot of noise and helped isolate
pathogenic variants, we accept that this approach risks
missing some pathogenic variants with lower CADD scores.

Fifty percent of individuals with a top 5 ranked GenePy
score were unaffected. GenePy currently does not utilize
phased data, meaning that some high scores may represent
variants inherited in cis; indeed, we observed this in 71
cases (Table 1). However, we were conscious not to limit
GenePy to nuclear families with parental data because this
does not represent a real-world example and would disad-
vantage non-parent/child families for which phase cannot be
determined. In the future, this could perhaps be mitigated
with long read sequencing data.

Although we applied GenePy herein focusing on identi-
fication of potential missed recessive disease, there may also
be opportunities to apply it in autosomal dominant diseases.
When we scrutinized the variants of individuals with po-
tential missed diagnoses, we identified 61 individuals that
ranked in the top 5 GenePy scores for a given gene; yet, they
only had one variant with a CADD score ≥15 in that gene.
Most commonly, these individuals harbored predicted loss-
of-function variants, which are upweighted in the GenePy
statistic. Therefore, there may be utility of GenePy in hap-
loinsufficient disease genes, but it is likely that a more
stringent CADD cutoff, such as ≥20, or limiting the GenePy
statistic to the highest scoring variant is necessary to
apportion lower GenePy scores to individuals who would
otherwise accrue high scores from multiple rare, but benign,
variants with lower CADD scores.

GenePy also has potential to identify novel disease
genes. If multiple top-ranking individuals across the same
novel gene share similar clinical features, this may support
the discovery of new disease genes. For novel
haploinsufficient genes, unpublished data from our
research group suggest that GenePy performs best when
limited to high CADD scores, eg, CADD >20, whereas
recessive genes may benefit from a more permissive
CADD cutoff.

Conclusion

The application of GenePy to ~78,000 individuals in the
100KGP has identified 122 putative missed biallelic di-
agnoses in known autosomal recessive disease genes that are
being returned to participants through the Genomics England
Diagnostic Discovery Pathway. Selecting the top 5 ranked
individuals for 2864 autosomal recessive genes yielded re-
view of only 1.2 additional variants per individual, rendering
GenePy a useful tool to identify biallelic variants of interest
without significantly burdening diagnostic laboratories with
additional variants to assess. A dilemma for many diagnostic
laboratories is how to limit number of variants requiring
assessment without missing diagnoses. Although strategies to
prioritize dominant diseases are well established, eg, de novo
analysis or Exomiser,16 there are limited tools for prioritizing
recessive conditions. We attest that GenePy is a useful panel-
agnostic adjunct to exome and genome analysis pipelines to
uplift diagnoses of recessive disease.
Data Availability

Access to the 100KGP data set analyzed in this study is only
available as a registered GeCIP member in the Genomics
England Research Environment, but restrictions apply to the
availability of these data because of data protection and are
not publicly available. Information regarding how to apply for
data access is available at the following url: https://www.
genomicsengland.co.uk/about-gecip/for-gecip-members/dat
a-and-data-access/. Access to supplementary material and the
full GenePy matrix is available within the Research envi-
ronment at the following url: /re_gecip/shared_allGeCIPs/
Ellie_Seaby/GenePy. All data shared in this manuscript were
approved for export by Genomics England. The data sets and
code supporting the current study are fully accessible within
the Genomics England Research Environment.
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16. Smedley D, Jacobsen JO, Jäger M, et al. Next-generation diagnostics
and disease-gene discovery with the Exomiser. Nat Protoc.
2015;10(12):2004-2015. http://doi.org/10.1038/nprot.2015.124

http://doi.org/10.1038/s41586-022-04558-8
http://doi.org/10.1016/j.ajhg.2016.08.016
http://doi.org/10.1016/j.ajhg.2016.08.016
http://doi.org/10.1038/nprot.2015.124

	A gene pathogenicity tool “GenePy” identifies missed biallelic diagnoses in the 100,000 Genomes Project
	Introduction
	Materials and Methods
	Access to 100KGP data
	Curating a list of recessive disease genes
	Application of GenePy
	Assessing potential missed diagnoses

	Results
	Discussion
	Limitations and opportunities
	Conclusion

	Data Availability
	Acknowledgments
	Funding
	Author Information
	Ethics Declaration
	Conflict of Interest
	Additional Information
	References
	Members of Genomics England Research Consortium


