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Typically, within facility location problems, fairness is defined in terms of accessibility of users. However,
for facilities perceived as undesirable by communities hosting them, fairness between the usage of facilities
becomes especially important. Limited research exists on this notion of fairness. To close this gap, we
develop a series of optimization models for the allocation of populations of users to facilities such that
access for users is balanced with a fair utilization of facilities. The optimality conditions of the underlying
non-convex quadratic models state the precise balance between accessibility and fairness. We define new
classes of fairness, and a metric to quantify the extent to which fairness is achieved in both optimal and
suboptimal allocations. We show a continuous relaxation of our central model is sufficient to achieve a perfect
extent of fairness, while a special case reduces to the classical notion of proportional fairness. Our work is
motivated by pervasive ecological challenges faced by the waste management community as policymakers
seek to reduce the number of recycling centers in the last few years. As a computational case study, applying
our models on data for the state of Bavaria in Germany, we find that even after the closure of a moderate
number of recycling centers, large degrees of access can be ensured provided the closures are conducted
optimally. Fairness, however, is impacted more, with facilities in rural regions shouldering larger loads of
visiting populations than those in urban regions.
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1. Introduction
We revisit the class of Facility Location Problems (FLPs), which have a rich history in

the optimization literature. Specifically, we are interested in so-called undesirable or semi-
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desirable facilities; i.e., facilities that exert a negative impact on the surrounding community,
while still providing a necessary service to which residents must travel to. Examples of such
facilities include sanitary landfills, airports, recycling centers, or thermal stations (Erkut and
Neuman 1989). Users prefer certain facilities, while facilities have finite capacities. There are
two aims we pursue: (i) select a subset of facilities for the allocation, and (ii) provide an
assignment of users to the selected facilities. We determine the allocation and assignment in
a balanced manner that is both fair to the community surrounding a facility and accessible
to the users traveling to this facility; we make the two terms—“fair” and “accessible”—
precise later in this work. A high utilization of a facility, that results from assigning a large
amount of users to it, has a detrimental impact on the community that hosts this facility
(we explain this below). Thus, an assignment that is highly accessible for the users could
disproportionately burden some communities. Analogously, an allocation that is highly fair
for communities around facilities could result in assignments that are inaccessible, or biased,
to the users. We formulate optimization models whose solutions balance these two goals,
and the aim of this work is to analytically (where possible) quantify such compromises. To
this end, we present general results—using the optimality conditions of our models—that
determine this balancing relationship between accessibility and fairness.

Preferences of users to facilities in FLPs are typically modeled via weights that quantify
accessibility, e.g., distances between users and facilities. In locating desirable facilities, a pol-
icymaker might seek to reduce these distances. However, for locating undesirable facilities,
a policymaker needs to incorporate additional criteria based on fairness to the communities
hosting these facilities (henceforth, fairness among the facilities). For example, it is unfair
to impose disproportionately large usage burdens on such facilities that are already objec-
tionable to the public (we provide a concrete motivation for this concern below). There is
an extensive body of literature devoted to addressing such concerns from the perspective of
the visiting users in this “obnoxious” FLP. One typical approach is to maximize the distance
of users to facilities in some fashion (Cappanera 1999). A second well-studied approach is
to minimize the population lying within a given radius of a facility (Plastria and Carrizosa
1999). Both these approaches also find relevance outside FLPs, e.g., in the general context
of clustering data; here, disparity between cluster costs or the contained number of points
is reduced via min-max styled objectives (Abbasi et al. 2021, Ghadiri et al. 2021). Inequity
in assignments is also long acknowledged in the resource allocation literature; thus, various
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general measures of equity and fairness have been proposed, see, e.g., Marsh and Schilling
(1994). Bertsimas et al. introduce several classes of the optimization problem of fairly allocat-
ing resources, where recipients have varying utilities (Bertsimas et al. 2011). Fairness criteria
play an especially important role in communication networks where aspects of this problem
are studied, see, e.g., Kelly et al. (1998). These lead to competing definitions of fairness, and
two well-studied notions are those of max-min fairness and proportional fairness (Bertsimas
et al. 2011, Kaplan 1974, Kelly et al. 1998, Singh 2020). We revisit these concepts as well.

However, only a few works consider fairness in the sense of disparities in usage of facilities.
Two exceptions are Berman et al. (2009) and Maŕın (2011) where, as in the mentioned works
related to clustering (Abbasi et al. 2021, Ghadiri et al. 2021), the authors seek fairness
by minimizing the maximum load a facility carries and by balancing the maximum and
minimum number of users assigned to a facility, respectively. In a similar spirit, our notion
of fairness among facilities dwells from reducing disparities in utilization of facilities, yet
still ensuring large degrees of access for the users visiting these facilities. Balanced usage
helps reduce an already poor and further deteriorating image of these undesirable facilities,
such as recycling centers, and is also a public policy goal (Bourguignon 2015). The two
goals of maximizing accessibility of users to a facility and minimizing disparities in the
utilization of facilities are conflicting. Two factors cause further challenges: (i) users have
varying preferences to certain facilities, such as shorter travel times or preferences that
depend on individual choices (Tversky and Simonson 1993), and (ii) the preferred facility of
a user might not have enough capacity to accommodate it (Pirkul and Schilling 1988). With
this background, there are two broad components to this work.

The first component is a theoretical contribution to the rich class of FLPs. We begin
by proposing a quadratic-binary optimization model that is uniquely distinguished from
traditional FLPs by the choice of its objective function; in Section 2, we discuss in detail the
reasons for this modeling choice. Our model balances both the competing goals we mention
above; further, we present a new notion of fairness. Feasible solutions of this model that are
suboptimal pay a price both in terms of the maximum access of users and the minimum
dispersion in the utilization of the facilities. Interestingly, even solutions that are optimal
achieve fairness only to a limited extent. With this motivation, we construct a metric that
quantifies the extent of fairness. The natural follow-up question is when—if at all—is a perfect
extent of fairness achieved. We prove that a suitably relaxed version of our optimization



Schmitt and Singh: Balancing Accessibility and Fairness
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

model achieves this in an optimal solution, thereby providing one sufficient condition. Next,
we relate our notion of fairness to existing results on proportional fairness; specifically, we
prove that a special case of this relaxed model achieves a type of proportional fairness.

The second component of this work is inspired by a pervasive problem in the waste man-
agement community—closures of existing recycling centers. As of 2018, Germany is among
the leading countries worldwide in the proportion of waste that is recycled (Kaza et al.
2018). In Germany, the “Wertstoffhöfe” (or, recycling centers) are facilities where the public
is obligated to dispose waste that is not regularly collected from households. A few examples
of such waste include construction waste, recyclable electronics, large appliances, and scrap
metal. However, recycling centers pose health and environmental hazards to the communities
who reside near them, e.g., increased risks of fires (Ibrahim 2020), and trace metal pollution
in soil and road dust (Yekeen et al. 2016). Consequently, recycling stations are perceived as
undesirable facilities by the community hosting them, and a large usage of these facilities is
further discouraged. Making matters worse, this negative perception is enhanced even more
when one region is forced to shoulder a disproportionately large burden of usage (Morell
1984). Thus, the number of recycling centers has steadily decreased within the German state
of Bavaria during the last few years (Bayerisches Landesamt für Umwelt 2015); the number
of recycling centers in the years 2016, 2017, 2018, and 2019 were 1,624, 1,597, 1,583, and
1,578, respectively (Bayerisches Landesamt für Umwelt 2020). This leads to a natural ques-
tion that policymakers face: what is an optimal selection of a limited number of recycling
centers to keep open that balances both high public accessibility and a proportionally-low
facility usage? Given this budget of recycling centers, an efficient usage of the open facilities
by the public is paramount for a state’s environmental policy. We apply our optimization
models as a case study for the entire set of users and actual recycling locations of Bavaria
and provide extensive computational experiments. Here, our analysis provides data-driven
evidence on significant disparity between rural and urban regions both in the treatment of
recycling centers and in the populations visiting them.

The structure of the rest of this article is as follows. In Section 2, we propose our central
and relaxed optimization models plus provide our definitions and metrics for fairness. In
Section 3, we demonstrate the connection of our models to existing results on proportional
fairness. Section 4 summarizes the estimation of data from Bavaria for our computational
case study in Section 5. We provide a concluding discussion in Section 6, and further details,
analysis, and proofs in the Online Appendix.
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2. Mathematical Models
Consider a set of users i ∈ I with populations Ui > 0 and a set of facilities j ∈ J with
capacities Cj > 0. Populations of users have a preference to facilities measured in terms
of weights or probabilities; without loss of generality we assume 0 < Pij ≤ 1. For example,
populations might prefer facilities that are closer to their residences or those that are open on
weekends with a higher probability than others. In the absence of this preference, if user i is
allocated to facility j then its entire population Ui visits j. Instead, the preference discounts
the population of i that actually visits j to UiPi,j < Ui. Then, the following optimization
model describes our central problem of assigning users to facilities in a balanced manner:

z∗ = min
x,y

∑
j∈J

Cj

(
1−

∑
i∈I UiPi,jxi,j

Cj

)2 (1a)

s.t.
∑
i∈I

UiPi,jxi,j ≤Cj ∀j ∈ J : αj (1b)∑
j∈J

yj ≤B : β (1c)∑
j∈J

xi,j = 1 ∀i∈ I : νi (1d)

yj ≥ xi,j ∀i∈ I, j ∈ J : µi,j (1e)

xi,j ∈ {0,1} ∀i∈ I, j ∈ J : γi,j (1f)

yj ∈ {0,1} ∀j ∈ J : δj (1g)

The optimization model (1) is a quadratic-binary program. Here, αj, β, νi, µi,j, γi,j, δj,

denote the dual variables for equations (1b)-(1g), respectively; we revisit these later. Note
that the binary restrictions in constraint (1g) can be written as yj(1− yj) = 0 with the dual
variables interpreted accordingly. Model (1) is non-convex due to the binary restrictions on
the decision variables, however its relaxation is a convex quadratic program. To understand
model (1), we begin by defining two key quantities below.

aj = ∑
i∈I UiPi,jxi,j, ∀j ∈ J, (2a)

uj =
∑

i∈I UiPi,jxi,j

Cj

, ∀j ∈ J. (2b)

First, in equation (2a) the quantity aj denotes the total population assigned to facility j;
this quantity is a measure of the access of facility j for all the users. Second, in equation (2b)
the quantity uj denotes the utilization of facility j; i.e., the fraction of its total capacity
that is actually being used. Conversely, the idleness of facility j is given by 1− uj. Then,
model (1) minimizes the capacity-weighted sum of squared idleness; we explain this objective
function in detail below. Constraint (1b) ensures the utilizations are no more than 1, while
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constraint (1c) allows no more than a budget of B facilities to open. The binary variables
xi,j and yj govern whether user i is assigned to facility j and whether facility j is open,
respectively; this is ensured by constraints (1f) and (1g), respectively. Constraint (1d) ensures
a user i is assigned to only one facility; i.e., the entire population of user i—discounted by
the preferences—is allocated only to a single facility. Thus, the fraction ∑

j∈J Ui(1−Pi,j)xi,j

of the population of user i is left unallocated to any facility as an artifact of user i being
stringent in its preferences. Constraint (1e) enforces facility j is open if any user is assigned
to it, while if j is closed then no user is assigned to it; i.e., yj = 1 if xi,j = 1 for any i, while
if yj = 0, then xi,j = 0,∀i∈ I.

In model (1), constraints (1b), (1d)-(1g) are similar to those of a traditional capacitated
FLP (see, e.g., (Wolsey 1998)) with two additional restrictions. The first is a preferential
access to facilities—this preference is reflected via the coefficients UiPi,j. The second is a
budget on the number of facilities—this is enforced via constraint (1c). Proposition A.1 in
Online Appendix A.1, motivated by the capacitated FLP, provides a valid inequality for
model (1). Analogously, constraints (1c)-(1g) are similar to those of a p-median problem
(see, e.g., (ReVelle and Swain 1970)). Then, the binary restrictions in (1g) can be replaced
with their continuous relaxation, 0≤ y ≤ 1; since there exists an optimal solution where y

is binary if x is binary (see, Proposition A.2 in Online Appendix A.1). However, the binary
restrictions in equation (1f) cannot be replaced with their continuous relaxation; this is
unlike the traditional p-median problem due to the choice of our objective function (see,
Proposition A.3 in Online Appendix A.1 for a counterexample).

An important feature distinguishing model (1) from traditional FLPs is our choice of the
objective function (1a). Our choice is central to the discussion and results in this section,
and the rationale behind this choice is subtle. We first provide an intuitive explanation and
then lay out the formal reasoning that substantiates our choice. Assigning each user to its
most accessible facility, even when the capacities allow, results in a disproportionately large
degree of utilization for the highly-accessible facilities. Due to the undesirable perception
of the facilities, as we mention in Section 1, we seek to avoid this. On the other hand,
allocating facilities to a capacity-proportional amount of utilization might lead to inaccessible
assignments for remote users. This impairs the needed accessibility of these facilities and we
again seek to avoid this. Thus, as we mention in Section 1, there are two conflicting aims
we pursue and the objective function (1a) precisely captures both of these. First, we seek
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to achieve fairness between facilities by ensuring that no facility carries a disproportionate
burden of assigned users; the proportion of burden is determined by the facility’s capacity.
Simultaneously, we seek to maximize users’ access to the facilities. The terms in the objective
function (1a) get smaller for a larger utilization uj, and, in turn, from a larger access to the
facility j. The sum of the squared idleness then seeks to reduce the disparity between the
utilization of the different facilities; the weights Cj determine the relative weighting of the
utilization of the facilities. To this end, model (1) balances access and fairness. With this
background, we are now ready to define a precise notion of fairness among facilities.

Definition 1 (Fairness). Consider an allocation with utilization defined by equa-
tion (2b), and two distinct open facilities j, j′ ∈ J .
(i) The allocation to the ordered pair (j, j′) is said to have a warranted fairness if Pi,j ≥ Pi,j′

for every user i∈ I assigned to j.
(ii) The allocation to the ordered pair (j, j′) is said to have a compensatory fairness if there

exists a user i∈ I assigned to j with Pi,j < Pi,j′ and uj ≤ uj′ .
Then, an allocation is said to be fair if it has a warranted or compensatory fairness for all
ordered pairs of distinct open facilities (j, j′). □

Definition 1 classifies a fair solution between two facilities as follows. First, fairness is only
defined for facilities that are open (y > 0); i.e., we do not model regret to a closed facility
that was previously preferred by a user. In a choice between two open facilities, if all users
are assigned to their preferred facility then there is no basis for a competition. This denotes
a warranted fairness. Such an allocation is most favorable for a policymaker as it allows
no grounds for unfairness. However, now consider a user i that prefers an open facility j′

over another open facility j, yet in a feasible solution i is assigned to j. Such a solution is
fair for the respective facilities only if the assignment seeks to not worsen the utilization
of the facilities; i.e., j is utilized at most as much as j′. Such an allocation, although not
completely fair in terms of preferences towards facilities, is compensated for fairness by a
larger utilization of the preferred facility. Then, this allocation has a compensatory fairness
according to Definition 1 if there is at least one user assigned in this fashion. Pairs of open
facilities with neither warranted nor compensatory fairness are allocated unfairly.

A natural follow-up question is the extent to which fairness is achieved in optimally bal-
anced solutions; i.e., the proportion of open pairs allocated fairly. The following definition
quantifies this.
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Definition 2 (Degree of Fairness). Let JO = {j ∈ J : yj = 1} denote the set of open
facilities and let Ij = {i∈ I : xi,j = 1} ⊆ I,∀j ∈ JO denote the set of users that are assigned to
an open facility j. Further let kj,j′ = 1(Pi,j ≥ Pi,j′ ,∀i∈ Ij) denote that the allocation to (j, j′)
has a warranted fairness, ∀j, j′ ∈ JO, and lj,j′ = 1(∃i∈ Ij : Pi,j < Pi,j′) ·1(uj ≤ uj′) denote that
the allocation to (j, j′) has a compensatory fairness, ∀j, j′ ∈ JO according to Definition 1.
Here, 1(·) is 1 if its argument is TRUE and 0 otherwise.
(i) The Degree of Fairness (DoF ) is defined as the ratio of the total number of facility pairs

(j, j′) that are allocated fairly among all the |JO| · (|JO| − 1) ordered pairs of distinct
open facilities:

DoF =
∑

j,j′∈JO ,j ̸=j′ kj,j′ + lj,j′

|JO| · (|JO| − 1) ∈ [0,1].

(ii) The Degree of unwarranted Fairness (DoF ′) is defined as the ratio of the total number
of facility pairs (j, j′) for which an allocation has a compensatory fairness to the total
number of facility pairs (j, j′) for which an allocation does not have a warranted fairness:

DoF ′ =
∑

j,j′∈JO ,j ̸=j′ lj,j′

|JO| · (|JO| − 1)−
∑

j,j′∈JO ,j ̸=j′ kj,j′
∈ [0,1].

□

Definition 2 states the DoF in terms of ordered pairs of open facilities. Thus, the ordered
pair (j, j′) might not have a fair allocation even if the pair (j′, j) has one. However, Defi-
nition 1 implies that at least one of the pairs (j, j′) and (j′, j) always has a fair allocation,
∀j, j′ ∈ JO. To see this, consider a pair (j, j′) that does not have a fair allocation. Then, by
Definition 1, uj > uj′ necessarily holds. Thus, uj′ > uj does not hold, and (j′, j) is guaranteed
to be allocated fairly. Hence, the DoF is at least 0.5 in any feasible solution. The DoF ′

analogously measures the extent of fairness among facilities that do have competition. Then,
Definition 2 defines the DoF ′ as the odds of the number of facilities with compensatory fair
allocations to the odds of those without a warranted fair allocation.

We note that the preceding discussion as well as both Definition 1 and Definition 2 are
independent of the underlying optimization models. Different modeling choices—for example,
with modifications of the objective function—are expected to give different extents of DoF .
Our choice of the objective function in model (1) is governed by this consideration as well.
Unfortunately, model (1) still does not guarantee that the optimal allocation has a warranted
or compensatory fairness for all pairs of open facilities; i.e., model (1) does not ensure DoF =
1 in an optimal solution. See, Example A.5 in Online Appendix A.3 in this regard. To
explain our reasoning, and to further substantiate our choice of the objective function, we
now provide one sufficient condition that results in an optimal solution with a perfectly fair
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allocation. This sufficient condition is a continuous relaxation of the x variables in model (1)
as given by the following model.

z∗ = min
x,y

∑
j∈J

Cj

(
1−

∑
i∈I UiPi,jxi,j

Cj

)2 (3a)

s.t. (1b)− (1e); (1g);xi,j ≥ 0,∀i∈ I, j ∈ J. (3b)

In model (3), we remove the constraints xi,j ≤ 1 as they are implied by constraints (1e)
and (1g). Thus, the only difference in model (1) and model (3) is in constraint (1f): model (1)
constrains x as a binary variable, while model (3) provides its continuous relaxation.

Theorem 1. An allocation corresponding to an optimal solution to model (3) is fair by
Definition 1.

Let (x, y) be an optimal solution to model (3), and F (x, y) denote the objective function
of model (3). Using the definition of u from equation (2b), we have ∂F

∂xi,j
= −2UiPi,j(1 −

uj),∀i ∈ I, j ∈ J and ∂F
∂yj

= 0,∀j ∈ J . The necessary Karush-Kuhn-Tucker (KKT) optimality
conditions for the non-convex quadratic optimization model (3) are:

• Primal feasibility: constraints (3b)
• Dual feasibility:

αj

UiPi,j

Cj

− νi + µi,j − γi,j = 2UiPi,j(1−uj) ∀i∈ I, j ∈ J (4a)

β− δj(1− 2yj) =
∑
i∈I

µi,j ∀j (4b)

αj , β,µi,j , γi,j ≥ 0 ∀i∈ I, j ∈ J. (4c)

• Complementary slackness:

αj

(
1−uj

)
= 0 ∀j ∈ J (5a)

β

(
B−

∑
j∈J

yj

)
= 0 (5b)

νi

(
1−

∑
j∈J

xi,j

)
= 0 ∀i∈ I (5c)

µi,j

(
yj −xi,j

)
= 0 ∀i∈ I, j ∈ J (5d)

γi,jxi,j = 0 ∀i∈ I, j ∈ J (5e)

δj

(
yj(1− yj)

)
= 0 ∀j ∈ J. (5f)

We note that these KKT conditions although not sufficient for optimal solutions are neces-
sary; i.e., any optimal solution (x, y) for model (3) must satisfy them. Consider an arbitrary
ordered pair (j, j′) of distinct open facilities; i.e., j ̸= j′, yj = yj′ = 1. If Pi,j ≥ Pi,j′ for every
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user i ∈ I assigned to j, then according to Definition 1 the allocation has a warranted fair-
ness. Next, consider that there exists a user i∈ I with xi,j = 1 with Pi,j < Pi,j′ . We show that
the allocation has a compensatory fairness.

If uj′ = 1, then uj ≤ uj′ is trivially true, and the allocation to the pair (j, j′) has a com-
pensatory fairness. Hence, in the following we assume uj′ < 1. From equation (1d), xi,j′ = 0.
From equation (5a), αj′ = 0, while from equations (5d) and (5e) we further have µi,j′ = 0 and
γi,j = 0, respectively. Hence, it follows from equation (4a) that

−2UiPi,j(1−uj) + αj

UiPi,j

Cj

− νi + µi,j = 0 (6a)

−2UiPi,j′(1−uj′)− νi− γi,j′ = 0. (6b)

We distinguish two cases below: (i) uj = 1 and (ii) uj < 1.
(i) Assume uj = 1. We prove that this is not possible.

From equation (6) we have

αj

UiPi,j

Cj

+ µi,j =−2UiPi,j′(1−uj′)− γi,j′ .

Since αj, µi,j, γi,j′ ≥ 0 and uj′ < 1, a contradiction follows.
(ii) Next, consider the case that uj < 1. We prove that uj < uj′ . We have αj = 0 from

equation (5a). Further, since µi,j, γi,j′ ≥ 0, equation (6) leads to

Pi,j(1−uj)≥ Pi,j′(1−u′
j).

Under the hypothesis, Pi,j < Pi,j′ and uj, uj′ < 1. Then, the result follows. □

Theorem 1 shows that a continuous relaxation of the x variables of model (1) alone ensures
that all the ordered pairs of facilities have allocations that are fair in an optimal solution of
model (3); i.e., there exists an optimal solution with DoF = 1 for model (3). In other words,
optimal solutions that do not have a fair allocation stem only from the discrete nature of
the decision variables xij. The proof of Theorem 1 hinges on our particular choice of the
objective function. Note that model (3) is still non-convex; thus, all solutions that are fair
or satisfy the KKT conditions are not always optimal to model (3).

We conclude this section with a disclaimer. The continuous relaxation of binary variables
is often a significant modification of any discrete optimization model. In this sense, the above
results are of interest purely from a theoretical point of view. That being said, there are
three grounds that further warrant our contributions. First, for certain classes of FLPs—
in particular the p-median problem—integer solutions are obtained even with a continuous
relaxation of both the x and y variables, see, e.g., (ReVelle and Swain 1970, Siegel and
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Rajaram 2021). Second, the above results are strong in the sense that they provide certificates
of fairness despite the non-convexity of the relaxed model and even without requiring the
typical additional constraint qualifications. Finally, in Section 5.4 we present computational
experiments that provide the DoF and DoF ′ for model (1) by varying the budget B; these
results help determine the shortfall from a DoF of 1.

3. Proportional Fairness
Among the most prevalent and well-studied notions of fairness is that of proportional fairness:
all users should have the same share of resources or in proportion of their precedence. Within
the FLP context this means facilities are assigned users in proportion to their capacities.
This notion has been extensively adapted outside of the FLP context as well, see Pióro
and Medhi (2004) for examples. Huang et al. study a model for allocating discretionary
amounts of vaccines to dispensing sites and show that their convex-quadratic optimization
model achieves coverage proportional to the weights assigned to sites (Huang et al. 2017);
this is generalized by Singh (2020). Model (1) significantly differs from the model employed
in (Huang et al. 2017) as we also consider the preferences of users and their access to
facilities; i.e., we simultaneously balance large access and fairness in an optimal allocation.
Furthermore, unlike the models considered in the above cited works (Huang et al. 2017, Singh
2020), our models are not convex. The definition of a proportionally fair solution of (Singh
2020) modified to our model is as follows:

Definition 3 (Proportional Fairness). An allocation with utilization defined by
equation (2b) is said to be proportionally fair if it provides the same utilization for all open
facilities. □

Similar to fairness, proportional fairness is also not guaranteed in an optimal solution to
model (1); it is easy to construct such examples, see Example A.5 in Online Appendix A.3.
Next, proceeding as in Section 2, we investigate conditions that allow proportional fairness in
an optimal solution to model (1). We show that a special case of model (3)—where we entirely
eliminate the preferences of user i towards any facility—does indeed ensure proportional
fairness in an optimal solution. Thus, as compared to model (1), we require two modifications:
(i) we relax the binary restrictions on x to their continuous relaxation as we did in model (3);
i.e., 0 ≤ xi,j ≤ 1, and (ii) we remove the preferences of users towards facilities; i.e., Pi,j ←
Pi ∈ (0,1). These modifications result in the following optimization model.

z∗
P F = min

x,y

∑
j∈J

Cj

(
1−

∑
i∈I UiPixi,j

Cj

)2 (7a)

s.t.
∑
i∈I

UiPixi,j ≤Cj ,∀j ∈ J ; (1c)− (1e); (1g);xi,j ≥ 0,∀i∈ I, j ∈ J. (7b)
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To prove that an optimal solution of model (7) has a proportionally fair allocation we need
the following lemma, the proof of which we reserve for Online Appendix A.2. Intuitively, the
proof rests on the fact that in the absence of preferences towards facilities the total assigned
population is ∑

j∈J

∑
i∈I UiPixi,j = ∑

i∈I UiPi in every feasible solution, where the equality
follows from equation (1d). By allowing a user’s population to be split arbitrarily among
multiple facilities, the proof shows that given a feasible solution to model (7) we can always
construct another feasible solution, where there is a user from which we allocate fractions of
population to every utilized facility while maintaining the same utilization of the facilities.

Lemma 1. In a feasible solution (x, y) to model (7), let JB = {j ∈ J : ∑
i∈I UiPixi,j > 0} ⊆

J . Consider an i∗ ∈ I, j∗ ∈ J such that xi∗,j∗ > 0 (such a pair exists because of constraint (1d)).
Then, there exists another feasible solution (x′, y′) that provides the same value of the objec-
tive function (7a) as (x, y), such that:

L.(i) ∑
i∈I UiPix

′
i,j = ∑

i∈I UiPixi,j, ∀j ∈ J

L.(ii) x′
i∗,j > 0, ∀j ∈ JB.

See Online Appendix A.2. □

Corollary 1. Given an optimal solution (x, y) to model (7) there exists another optimal
solution (x′, y′), such that conditions L.(i) and L.(ii) of Lemma 1 are satisfied.

The proof follows directly from Lemma 1. □

Theorem 2. An allocation corresponding to an optimal solution to model (7) is propor-
tionally fair by Definition 3.

The proof is similar to that of Theorem 1. Let (x, y) be an optimal solution to model (7).
The necessary KKT optimality conditions to model (7) are primal feasibility given by equa-
tions (7b), dual feasibility given by equation (4), and complementary slackness given by
equation (5), with Pij← Pi ∈ (0,1),∀i ∈ I, j ∈ J . Let JO = {j ∈ J : yj = 1} ⊆ J be the set of
open facilities. We prove that uj is the same for all j ∈ JO. The result is vacuous if JO = ∅,
while the result holds by definition if |JO|= 1. Hence, consider |JO| ≥ 2. We distinguish three
cases below.
(i) First, we consider the case that there exists a facility j ∈ JO that is fully utilized; i.e.,

uj = 1. Let j′ ∈ JO be another facility that is not fully utilized; i.e., uj′ < 1. We prove
this is not possible. Since uj > 0, there exists an i∗ such that xi∗,j > 0, hence γi∗,j = 0
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from equation (5e). From equation (1d) and xi∗,j > 0 we have xi∗,j′ < 1, hence µi∗,j′ = 0
from equation (5d). Further, αj′ = 0 from equation (5a). Then, from equation (4a) it
follows that αj

Ui∗ Pi∗
Cj

+µi∗,j = νi∗ and −2Ui∗Pi∗(1−uj′)−γi∗,j′ = νi∗ . Since αj, µi∗,j, γi∗,j′ ≥ 0
and uj′ < 1 a contradiction follows. Thus, in an optimal solution if there exists even a
single facility that is completely utilized, then all other open facilities are also completely
utilized.

(ii) Next, we consider the case that there exists a facility j ∈ JO that is not utilized at all;
i.e., uj = 0. Let j′ ∈ JO be another facility that is utilized; i.e., uj′ > 0. We prove this
is also not possible. Since uj′ > 0, there exists an i∗ such that xi∗,j′ > 0, hence γi∗,j′ = 0.
Since uj = 0, we have xi∗,j = 0 by the definition of u; further αj = 0 and µi∗,j = 0 from
equations (5a) and (5d). Then, from equation (4a) it follows that

−νi∗ − γi∗,j = 2Ui∗Pi∗ (8a)

αj′
Ui∗Pi∗

Cj′
− νi∗ + µi∗,j′ = 2Ui∗Pi∗(1−uj′) (8b)

Equation (8) leads to:

αj′
Ui∗Pi∗

Cj′
+ µi∗,j′ + γi∗,j =−2Ui∗Pi∗uj′ . (9)

Since αj′ , µi∗,j′ , γi∗,j ≥ 0 and uj′ > 0, a contradiction follows. Thus, in an optimal solution
if there exists even a single facility that is open but not utilized at all, then all other
open facilities are also not utilized at all.

(iii) Finally, we consider the case that all open facilities have a utilization strictly between 0
and 1. Then, the set JB = {j ∈ J : ∑

i∈I UiPixi,j > 0} ⊆ JO of utilized facilities is identical
to JO. Thus, from Corollary 1, without loss of generality there exists an i∗ ∈ I such
that xi∗,j > 0,∀j ∈ JO; hence, γi∗,j = 0,∀j ∈ JO from equation (5e), while yj = 1,∀j ∈ JO

from equations (1e) and (1g). Further, since |JO| ≥ 2, it follows from equation (1d) that
xi∗,j < 1,∀j ∈ JO. Then, µi∗,j = 0,∀j ∈ JO from equation (5d). Lastly, since by hypothesis
uj < 1,∀j ∈ JO, we have αj = 0,∀j ∈ JO from equation (5a).

Hence, from equation (4a) and the definition of u we have

νi∗ =−2Ui∗Pi∗(1−uj), ∀j ∈ JO,

or, uj = 1 + νi∗

2Ui∗Pi∗
< 1, ∀j ∈ JO.
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This proves the result. □

Theorem 2 implies that an optimal solution of a modified version of model (1), where
preferences for facilities are removed and x is allowed to be fractional, is proportionally fair.
This result is again intuitive since without preferences the coverage is independent of the
specific facility the population is assigned to. Further, relaxing the binary restrictions on x

allows splitting the population of a user among several facilities. Finally, we note that cases
(i) and (ii) in the proof of Theorem 2 likely do not have a practical relevance. The case
of uj = 1,∀j ∈ JO only holds if ∑

i∈I UiPi = ∑
j∈JO

Cj, while the case of uj = 0,∀j ∈ JO is
not even possible when Pi,Ui are strictly positive. In other words, for a realistic model the
utilization of all open facilities is equal and strictly between zero and one.

As in Section 2, we conclude this section with another disclaimer. It is tempting to conclude
that equal preferences towards facilities renders model (7) impractical. However, such results
open several opportunities for exploring characteristics of optimal solutions. The non-convex
model (7) that allows fractional assignments—although a significant modification from the
original model (1)—still applies to several settings where the population corresponding to
user i can be partitioned across facilities via xi,j; e.g., splitting according to the last digit of
their address or splitting with preferences towards facilities of particular chains. However,
the most important question is: how balanced is an optimal solution with a proportionally
fair allocation? The answer is positive: model (7) is perfectly balanced. It is perfectly fair
towards facilities (proven already in Theorem 2) and also achieves the maximum possible
access for users. The following corollary of Theorem 2 proves the latter.

Corollary 2. An optimal solution to model (7) achieves the maximum overall access
across any feasible solution.

The maximum overall access is given by

z̄∗
P F = max

x,y

∑
j∈J

∑
i∈I

UiPixi,j, s.t. (7b).

From equation (1d) it follows that in any feasible solution for model (7) we have z̄∗
P F =∑

i∈I UiPi. An optimal solution also achieves this access. □

4. Data Sources and Estimation
In this section, we summarize the data we use for our computational experiments in Section 5.
We consider the set of users—i ∈ I—as the set of all the ZIP codes in Bavaria, and the set
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of facilities—j ∈ J—as the subset of ZIP codes that contain at least one recycling center.
Then there are |I|= 2,060 ZIP codes and 1,529 recycling centers spread over |J |= 1,394 ZIP
codes. As we describe below, we further parameterize the set of facilities as rural or urban.
Model (1) requires four parameters: Cj,Ui, Pi,j,∀i ∈ I, j ∈ J , and B. We solve model (1) for
different budgets B ≤ |J |, and below we briefly describe our methods for estimation of the
other three parameters. We reserve the details for Online Appendix B.

4.1. Estimation of Cj and Ui

We estimate the population of ZIP codes, Ui, using data from suche-postleitzahl.org (2020);
see Online Appendix B.1 for details. We do not have explicit data on the capacities of all
the recycling centers, and thus assume that a recycling center’s capacity is proportional to
the amount of waste that is collected there. To approximate the amount of waste collected,
we calculate the “catchment population” of each recycling center; i.e., the number of people
that are closest to this recycling center. For details on this estimation, see Algorithm S1
in Online Appendix B.3. For details on this estimation and the differentiation of rural and
urban regions, see Online Appendix B.2 - B.4.

4.2. Estimation of Pi,j

Next, we describe our method to estimate the preferences of populations in ZIP code i to
recycling centers in ZIP code j. To this end, we construct a data-driven model that includes
a total of 618,245 person-trips that determines how far people in Germany travel. Using a
least-squares fit on our data, we obtain the fraction of target population willing to travel
at least d kilometers that we present in Figure 1. This willingness to travel determines the
preferences, Pi,j. For the model and the details, see Online Appendix B.5.

5. Analysis
5.1. Setup

In this section, we describe the setup for our computational experiments. As we mention in
Section 4.1, we consider |I|= 2,060 ZIP codes and |J |= 1,394 recycling centers. Thus, there
are approximately 2.9 million x variables and as many constraints in equation (1e) alone.
To reduce computational effort, we remove (i, j) combinations that have low preferences;
this reduction is similar to that implemented in Risanger et al. (2021). Specifically, we set
xi,j = 0,∀i∈ I, j ∈ J for which Pi,j < 0.2. As a byproduct of this reduction, 27 ZIP codes are
left out that do not have a preference of at least 20% to any recycling center. Hence, we
implement a post-processing step that assigns these ZIP codes to open recycling centers.
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Figure 1 Willingness to travel curves (solid lines) for urban and rural populations fit to the MiD data (circles) on
person-trips for the entire German population. For details, see Section 4.2 and Online Appendix B.5.

Here, we solve a secondary optimization problem—in addition to model (1)—that considers
only the subset Ĵ ⊂ J of recycling centers that are open in an optimal solution of the primary
model (1). Further, we fix the xi,j variables to the values obtained via the primary model
∀i∈ I \ Î, where Î ⊂ I is the set of ZIP codes that are left unassigned in the primary model.
Thus, constraints (1c), (1e), and (1g) are obsolete, and a second computationally easy to
solve model results. This secondary optimization model is as follows.

min
x

∑
j∈Ĵ

Cj

(
1−

∑
i∈I UiPi,jxi,j

Cj

)2 (10a)

s.t.
∑
i∈I

UiPi,jxi,j ≤Cj ∀j ∈ Ĵ (10b)∑
j∈Ĵ

xi,j = 1 ∀i∈ Î (10c)

xi,j ∈ {0,1} ∀i∈ Î , j ∈ Ĵ . (10d)

Next, to further reduce computational effort, as we mention in Section 2, constraint (1g)
can be replaced without loss in optimality by its continuous relaxation. Although there is
some data-driven evidence that MIP solvers can generate superior cuts when both x and
y are enforced as binary (Ostrowski et al. 2012), in our computational experiments we do
not enforce y as binary. For a survey of similar data-driven computational enhancements
for MIPs, see, e.g., Klotz and Newman (2013). Finally, we model constraint (1d) as an
inequality, ∑

j xi,j ≤ 1, instead of an equality. Then, we use model (10) as a post-processing
step to assign the previously unassigned ZIP codes. We denote these two versions as “Strict”
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(with constraint (1d)) and “Loose” (with constraint (1d) implemented as ∑
j∈J xi,j ≤ 1). Both

versions include the secondary optimization model (10).
The above two enhancements lead to solutions that are feasible to model (1) but sub-

optimal. We quantify the tradeoff between suboptimality and the computational savings in
Section 5.3. With these two enhancements, we carry out all computational experiments on
two high performance computing clusters with Intel Xeon E5-2643 v4 processors with 256
GB of RAM, Pyomo version 6.1.2 and Gurobi version 9.1.2. We seek to solve all optimization
models to an optimality tolerance of 0.5%, except model (10) to a 0% tolerance.

5.2. Analysis

Budget Regions Overall Travel Utilization
access [%] distance [km] [%]

p10 p50 p90 p10 p50 p90

100% all 62.2 0.7 2.0 6.0 27.0 40.5 56.7
rural 61.6 0.7 2.1 6.6 26.1 39.8 55.4
urban 62.8 0.6 1.9 4.8 28.7 43.0 59.2

90% all 61.9 0.7 2.2 6.4 29.2 42.3 58.0
rural 61.1 0.7 2.4 7.0 28.6 41.7 56.8
urban 62.7 0.6 2.0 4.8 31.2 43.9 60.5

80% all 61.2 0.7 2.5 7.0 31.3 43.9 59.7
rural 60.1 0.7 2.8 7.6 30.9 43.6 58.8
urban 62.4 0.7 2.2 5.0 32.8 44.5 62.0

70% all 60.4 0.8 2.9 7.5 32.7 46.4 62.3
rural 58.8 0.8 3.4 8.1 32.4 46.5 61.8
urban 62.1 0.8 2.2 5.5 33.4 46.0 62.8

60% all 59.1 0.9 3.4 8.0 33.7 47.7 63.7
rural 57.0 1.0 4.1 8.8 33.0 48.2 63.2
urban 61.4 0.9 2.4 5.8 34.6 46.9 64.6

50% all 57.6 1.0 4.1 8.9 34.4 49.2 65.8
rural 54.5 1.2 5.1 9.9 34.2 50.2 65.9
urban 60.8 0.9 2.6 6.7 34.6 47.2 65.8

40% all 55.4 1.2 5.0 9.8 36.0 51.3 69.4
rural 51.6 1.4 6.0 10.8 35.2 53.3 69.6
urban 59.2 1.0 3.0 7.8 36.2 47.5 66.6

30% all 52.6 1.5 6.0 11.5 37.7 55.4 73.0
rural 48.2 1.8 6.8 11.9 37.5 58.2 74.6
urban 57.1 1.1 3.8 8.5 38.0 52.3 71.4

Table 1 Estimated overall access, travel distances, and utilization of open facilities for different budgets for
rural, urban, and all regions of Bavaria on solving model (1). Here, the “Budget” column denotes the percentage

of open facilities. The “p10”, “p50”, and “p90” columns denote the 10th, median, and 90th percentiles,
respectively. For details, see Section 5.2.

First, we present our results on solving model (1) for different budgets, B; i.e., the number
of recycling centers that are open. Fig. 2a shows the overall access, given by 100

∑
j∈J

aj∑
i∈I

Ui
, for

different budgets of open recycling centers, while Fig. 2b shows the travel distances from the
ZIP codes to the assigned recycling centers in an optimal solution. For increasing budget, the
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overall access increases while the median travel distance decreases. Table 1 presents these
results. The maximum overall access is no more than 62.2%, even when all the recycling
centers are open. This value is determined by the stringent preferences, as we discussed
in Section 2, given by the travel model in equation (16) of Online Appendix B.5, and the
relatively low value of the maximum access is primarily due to two reasons.
(i) First, several regions in Bavaria have a sparse number of recycling centers. For example,

there are only two recycling centers in the district of Schweinfurt with about 116,000
inhabitants spread over an area of 841,000 square kilometers. Similarly, the district of
Tirschenreuth with a population of 72,000 and an area of 1,084,000 square kilometers
has only one recycling center. Thus, even when all the recycling centers are open, there
is poor access, and the travel distances are large.

(ii) Second, our travel model (16) of Online Appendix B.5 is a conservative estimate of
the preferences to recycling centers. This is because our model is based on data that
shows how far people actually travel for errands instead of how far they would be will-
ing to travel. Similar underestimates in travel models have been reported before; see,
e.g., Risanger et al. (2021). In other words, the actual access to the recycling centers
might be larger than that predicted by our results; however, if our estimation is con-
servative consistently across our data, the choice of the optimal recycling centers would
not change.

In our computational experiments, we distinguish our results for rural and urban regions
after optimizing for all the regions. For the overall access and travel distances this distinction
is with respect to the users’ location, while for the utilization of open facilities it is with
respect to the facilities’ location. As demonstrated in Fig. 1, users in rural regions have
slightly larger preferences to the same facility than those in urban regions. However, as we
observe from Table 1, access is always lower in rural regions than in urban regions for all
budgets; correspondingly, the travel distances in the rural regions are larger. The reasons for
this are subtle and are as follows. Although, for the same distance, the preferences are larger
for users in rural regions than those in urban regions, the distances to the closest recycling
centers are also, on average, larger in the rural regions. For users in rural regions the average
preference to the closest open recycling center when all the facilities are open is slightly less
(0.61) than that for users in urban regions (0.63). Equivalently, the average distance to the
closest open recycling center is larger for users in rural regions (3.0 kms) than that in urban
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regions (2.3 kms). Consequently, the access to the assigned recycling center is lower for users
in rural regions. Secondly, for small budgets, model (1) favors larger facilities to open. The
average capacity of a facility in a rural region is 10,905 persons while that of one in an urban
region is 22,865 persons. For B = 558 (or 40%), the largest 139 facilities are all opened. The
share of large facilities among facilities in urban regions is higher than among facilities in
rural regions; e.g., for a 40% budget (B = 40%|J |), in an optimal solution 55% of all the
facilities that are located in urban regions are open, while only 34% of all the facilities that
are located in rural regions are open. This is despite the fact that there are significantly more
facilities in rural regions than in urban regions; 70% of all the 1,394 facilities are in rural
regions. For a 40% budget, in an optimal solution, only 58% (42%) of the opened facilities are
in rural (urban) regions. Thus, users in rural regions are forced to travel farther to facilities
outside of their ZIP codes. Indeed, for a 40% budget, 58% of the users in rural regions are
assigned to a facility that is not their closest open facility. In contrast only 38% of the users
in urban regions are assigned to facilities that are not the closest.

The above discussion demonstrates that the burden of providing access to rural regions
falls predominantly on the fewer rural facilities. This results in larger utilization of the rural
facilities and a lower access. However, the gaps between the rural and urban regions shrink
as more facilities are allowed to be open. The overall access for a 40% budget deviates by 7.6
percentage points (i.e., the urban populations have 7.6 percentage points more access than
the rural populations) while for a 90% budget the difference drops to only 1.6 percentage
points. Similarly the deviation in the median utilization changes from -5.8 percentage points
to 2.2 percentage points (i.e., the urban facilities are utilized 2.2 percentage points more
than the rural facilities) for an increase in budget from 40% to 90%. For details, see Table 1.

The median utilization of the open facilities drops with increasing budget, since the bur-
den of providing access is distributed among more recycling centers, see Fig. 3a. When all
the recycling centers are open—which provides the maximum access of 62.2%—the median
utilization is at its lowest value of 40.5%, with a wide range of the 10th and 90th quan-
tiles, see Table 1. However, although the marginal gains in access by opening more facilities
steadily drop, the same is not true for the marginal drops in the median utilization. The
increase in overall access by opening the last 30% facilities (i.e., varying the budget between
70% and 100%) is less than 2 percentage points, while the decrease in median utilization
is almost 6 percentage points. These observations also hold true when considering rural or
urban facilities alone.
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(a) Overall access
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(b) Travel distance
Figure 2 Estimated overall access (Fig. 2a) and the corresponding travel distances (Fig. 2b) for different budgets

for rural (in red), urban (in green), and all (in blue) regions of Bavaria on solving model (1). “Bud-
get” denotes the percentage of open facilities. In Fig. 2b, the solid, dashed, and dotted lines denote
the median, 10th percentile and 90th percentile of the travel distances, respectively. For details, see
Section 5.2.

���� ���� ���� ��� ��� ��� ������

��

����

����

����

���

�D��

�U�X�U�D�

�X�U�E�D�Q

(a) Utilization of open facilities
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(b) Distribution of the utilization of open facilities
Figure 3 Optimal utilization of the open facilities for different budgets. “Budget” denotes the percentage of

open facilities. Fig. 3a provides the utilization for the rural (in red), urban (in green), and all (in blue)
regions of Bavaria on solving model (1). The solid, dashed, and dotted lines denote the median, 10th
percentile and 90th percentile of the utilization, respectively. Fig. 3b shows the distribution of utilization
for budgets, where the y-axis provides the relative frequency of the open facilities. A broad distribution
suggests a large dispersion. For analogous figures on the distribution of the utilization of facilities in
rural and urban areas, see Fig. S2a and Fig. S2b in Online Appendix C, respectively. For details, see
Section 5.2.

5.3. Effect of computational enhancements

In this section, we provide a brief analysis of the tradeoff between the suboptimality of the
solution with the two computational enhancements we mention in Section 5.1. First, we
compare the quality of an optimal solution provided by the Loose and Strict models. Both of
these versions involve a post-processing step due to the 20% cutoff. A few ZIP codes contain
only a very small number of facilities to which the respective travel probability exceeds 20%;
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this can result in infeasibility of the Strict version. The Loose version is always feasible as it
allows some ZIP codes to be left unassigned; there are 76 such ZIP codes (i.e., 3.69%) for a
30% budget, while there are no such unassigned ZIP codes for a 100% budget. In addition,
in both the versions, 27 ZIP codes (i.e., 1.31%) are excluded as they fall out of the 20%
cut-off. After the post-processing step all ZIP codes are assigned.

We observe that for lower budgets, more ZIP codes remain unassigned via the primary
model. In other words, the Loose version becomes increasingly accurate for larger budgets.
Table 2 summarizes these observations for a 30% budget. Further, Fig. 4a demonstrates
that the objective function values of the two models are close, however we save significant
computational effort in the Loose model. The largest deviation between the two objective
function values is 0.96% for a budget of 30%; for the same budget, the improvement in the
runtime is 77.37%. On average, the objective function values obtained by the Loose model
differ only by 0.16%, suggesting that the significant reduction in computational effort comes
at the expense of at most a marginal deterioration in the quality of solutions.
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(a) Effect of loose inequality
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(b) Effect of cutoff
Figure 4 Tradeoff between the computational runtimes (blue) and objective function values (red) for model (1).

In Fig. 4a, the “Strict” and “Loose” denote the two versions when constraint (1d) is implemented
as an equality and inequality, respectively. Both versions include a 20% cutoff and a post-processing
step. In Fig. 4b, the “0% cutoff” and “20% cutoff” denote the two versions without and with a 20%
cutoff, respectively. Both versions include constraint (1d) as an inequality. The total number of users
and facilities in Fig. 4b are 30% of that in Fig. 4a. For details, see Section 5.2.

Next, we compare the quality of an optimal solution when we remove all (i, j) combinations
that have preferences less than 20%. Instances with the full set of users and facilities could
not be generated without this cutoff (see Fischetti et al. (2017) for one standard way to
resolve this); hence, we only consider instances where the first 30% of users and facilities are
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selected. Then, we solve model (1) twice — first without removing any (i, j) combinations,
and second, with removing all combinations with Pij < 20%; we denote these versions as
“0% cutoff” and “20% cutoff”, respectively. Fig. 4b presents our results. The 0% cutoff
implementation could not be solved to optimality within a time limit of 20,000 seconds for
all budgets we consider. On the other hand, the 20% cutoff implementation is solved to
optimality with significantly lesser effort. Again, the deviation from optimality is marginal.
The conservative gap between the best feasible solution reported by the 20% cutoff and the
best bound reported by the 0% cutoff is, on average, 2.4%. For a detailed analysis with a
variety of instances, see Table S1 in Online Appendix C.

Strict Loose Improvement

Before After Before After

Assigned zip codes [%] 98.69 100.00 95.00 100.00 0.00%
Overall access [%] 52.34 52.43 52.30 52.60 -0.31%
Objective value 10,195,018.2 10,177,542.3 10,124,222.9 10,079,376.8 0.96%
Solving time [s] 3,872.8 3,873.2 871.0 876.4 77.37%

Table 2 Comparison of the quality of solutions for model (1) when constraint (1d) is implemented as an
equality (“Strict”) and as an inequality (“Loose”) for a 30% budget. Both versions include a 20% cutoff and a

post-processing step. The “Improvement” column shows the relative difference between the two “After” columns;
i.e., 100 Strict-Loose

Strict . The solving time for the Loose model is 77.37% better at a deviation of 0.31% in overall
access and 0.96% in the objective function value. For details, see Section 5.3.

5.4. Balancing accessibility and fairness

As we mention before, the objective function (1a) of model (1) seeks to simultaneously achieve
the conflicting goals of maximizing overall access and fairness in utilization of the open
recycling centers. Theorem 2 shows that a modification of model (1)—model (7)—guarantees
perfect proportional fairness. In Example A.5 of Online Appendix A.3, we demonstrate that
proportional fairness does not necessarily hold for model (1). In this section, we examine the
extent to which proportional fairness is achieved via model (1) by studying various measures
of the variability in the utilization of the open recycling centers.

First, Table 1 provides the median, 10th, and 90th percentiles of the utilization, while
Fig. 3b illustrates the distribution of the utilization of open facilities for various budgets. The
distributions are consistently unimodal; for larger budgets they exhibit positive skewness
characterized by long right tails. Although the gaps between the 10th and 90th percentiles
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are significant, the distributions become narrower for larger budgets suggesting dispersion
decreases with increasing budget. Further, peaks of the distributions shift to the left reiterat-
ing the notion that utilization decreases with increasing budget, as we discuss in Section 5.2.

An optimal solution of model (1) that achieves perfect proportional fairness, as character-
ized by Theorem 2, has zero variance of the utilization of open facilities. Since the objective
function (1a) of model (1) seeks to achieve low variability by minimizing the capacity-weighted
sum of squared idleness 1− uj, the weighted variance of the utilization of open facilities is
one measure to determine the extent to which proportional fairness is achieved. Here, the
weights correspond to the capacities of the facilities. We standardize this measure by dividing
the weighted standard deviation by the weighted average utilization of open facilities, and
obtain the weighted coefficient of variation (CVw) as CVw =

√
V arw(u)

ūw
. Here, ūw =

∑
j∈JO

Cjuj∑
j∈JO

Cj

and V arw(u) =
∑

j∈JO
Cj(uj−ūw)2∑

j∈JO
Cj

are the weighted average and weighted variance of the uti-
lization of open facilities, respectively, and JO = {j ∈ J : yj = 1} is the set of open facilities in
a feasible solution. We distinguish these results according to the region in which the facilities
are located. For all budgets in Table 3, the CVw is at most just above 30% for both the rural
and urban regions. In Table S2 of Online Appendix C, we provide additional computational
experiments that show minimizing the variance of utilization of the open facilities, instead
of our chosen objective function, leads to poor overall access; although, naturally, this leads
to a lower median utilization. Further, we additionally examine minimizing the maximum
utilization of a facility as an objective function. This particular objective reduces the median
utilization of open facilities even further than minimizing the variance; however, the overall
access drops by an order of magnitude from that computed by our chosen objective function.
Both these experiments empirically demonstrate the balancing strength of our objective func-
tion as opposed to those that seek fairness alone. In contrast, simply maximizing the overall
access leads to only marginally larger access than that already provided by our objective
function; i.e., the penalty we pay in terms of access by seeking fairness is small. We revisit
this particular objective function later in this section by precisely computing this penalty.

The third measure we examine is the DoF and the DoF ′ as given by Definition 2. The
last two columns in Table 3 present these values. The DoF is nearly one for all budgets we
consider. This uniform behavior is because the allocation has a warranted fairness for nearly
all of the open facility pairs. In other words, model (1) drives towards solutions that lower
any basis for arguments between facilities. Further, the DoF ′ column demonstrates that
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among facility pairs for which the allocation has a warranted fairness, over two-thirds do have
allocations that are compensatory fair. With increasing budget, the DoF increases; i.e., the
fraction of pairs with an unfair allocation shrinks. Similarly, with increasing budget, the DoF ′

generally decreases; i.e., the fraction of pairs to which the allocation has a compensatory
fairness shrinks even faster than the fraction of pairs with an unfair allocation.

Budget Regions ūw [%]
√

V arw(u) [%] CVw [%] DoF [%] DoF ′ [%]

100% all 40.23 11.23 27.91 100.00 67.54
rural 38.74 11.81 30.48
urban 41.86 10.31 24.64

90% all 40.93 10.86 26.53 100.00 76.38
rural 39.72 11.45 28.82
urban 42.22 10.03 23.75

80% all 41.74 10.78 25.83 100.00 83.92
rural 40.85 11.55 28.26
urban 42.67 9.85 23.08

70% all 42.62 10.93 25.65 100.00 88.80
rural 42.19 11.80 27.96
urban 43.04 9.97 23.17

60% all 43.57 11.10 25.47 99.99 89.41
rural 43.43 12.27 28.26
urban 43.70 9.84 22.52

50% all 44.71 11.57 25.87 99.99 89.40
rural 45.34 12.97 28.61
urban 44.15 10.13 22.93

40% all 46.09 11.93 25.88 99.99 92.92
rural 47.57 13.49 28.37
urban 44.85 10.28 22.92

30% all 48.59 12.93 26.61 99.99 94.32
rural 51.08 14.72 28.82
urban 46.63 10.94 23.45

Table 3 The third to fifth columns present the weighted mean (ūw), weighted standard deviation (
√

V arw(u)),
and weighted Coefficient of Variation (CVw) of the utilization of open recycling centers for different budgets,

respectively. The last two columns present the Degree of Fairness (DoF ) and the Degree of unwarranted Fairness
(DoF ′) as defined in Definition 2. For details, see Section 5.4.

The fraction of open recycling centers whose utilization lies within one (two/three) stan-
dard deviation(s) of the mean is above 64% (95%/99.3%) for all budgets. This behavior is
similar to that observed when the data is normally distributed, where roughly 68%, 95% and
99.7% of values lie within one, two and three standard deviation(s) of the mean, respectively,
see e.g. (Casella 2002, Chapter 3). Finally, we find a strong linear correlation between the
capacity of an open recycling center j, Cj, and its accessibility, aj, given by equation (2a).
Using linear regression, we obtain linear functions aj = m ·Cj that fit the data well; for all
budgets we consider, the respective R2-values of these fits are greater than 0.9. The fits are
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better for large budgets; for a 70% budget or larger, the R2-values are greater than 0.94. For

a visualization of the linear correlation between a and C for an exemplary budget of 30%,

see Fig. S3 in Online Appendix B.
The above observations provide data-driven evidence that model (1) achieves proportional

fairness to a level that is not compromised by maximizing access. However, achieving this
level of fairness does require compromising some degree of access. To determine the extent
of the sacrifice paid in terms of access, we make use of the notion of the price of fairness
introduced in Bertsimas et al. (2011). We adapt this notion by computing the price of fairness
as the relative reduction of the optimal access achieved by model (1) compared with the
maximum possible access as follows:

Price of fairness = maximum overall access− optimal overall access
maximum overall access . (11)

To compute the maximum overall access, consider the following optimization model:

z∗
MA = max

x,y

∑
j∈J

∑
i∈I

Pi,jUixi,j , s.t. (1b)− (1g). (12)

Model (12) does not consider fairness, and only seeks to maximize overall access using the

same set of constraints as model (1). Then, in equation (11), the maximum overall access

is given by z∗
MA from model (12), while the optimal overall access is given by ∑

j∈J aj from

equation (2a) and model (1). From Corollary 2, the proportionally fair allocation of model (7)

guarantees a zero price of fairness. For the considered instance, Table 4 summarizes the

results for all budgets we consider; the price of fairness is still at most 2%. The above analysis

provides additional data-driven evidence that model (1) is well-equipped in providing good

accessibility while simultaneously ensuring a large extent of fairness.

Budget 30% 40% 50% 60% 70% 80% 90% 100%

Optimal overall access [%] 52.6 55.4 57.6 59.1 60.4 61.2 61.9 62.2
Maximum overall access [%] 53.7 56.4 58.3 59.8 60.9 61.5 62.2 62.4

Price of fairness [%] 2.0 1.8 1.3 1.1 0.9 0.4 0.6 0.3
Table 4 Comparison of optimal and maximum overall access for different budgets. The overall access is defined
by

∑
j∈J

aj , where aj is given by equation (2a). The optimal overall access is that achieved by model (1), while
the maximum overall access is that achieved by model (12). The price of fairness is the relative difference in these

two given by equation (11). For details, see Sections 5.4.
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5.5. Summary

Sections 4 - 5.4 address the applied component of our theoretical work in Sections 2 - 3. Now,
we provide some policy implications of our results for Bavaria that have standalone value in
their own regard. Although recycling centers are paramount to achieving sustainable goals,
they have had closures in recent years (Bayerisches Landesamt für Umwelt 2020). Data-driven
models help provide informed choices for such closures: our analysis provides insight into
the extent to which waste management services operate in Bavaria, even when a significant
number of recycling centers are closed. Policymakers have also recognized that the success
of recycling centers is driven by the degree of usage by the public (Bayerisches Landesamt
für Umwelt 2015). Smartly locating operational recycling centers is one tool to streamline
usage by the public. Efficient public informational campaigns is another, and policymakers
are implementing steps in this regard (Bayerisches Landesamt für Umwelt 2015).

Our analysis demonstrates that although the marginal loss in overall access by closing recy-
cling centers is quite small, fairness is severely impacted for facilities. Further, the marginal
drop in accessibility to open facilities is significantly larger among facilities in rural regions
than in urban regions. Increasing this disparity even more, the additional burden imposed
by closing recycling centers is not shared uniformly by facilities—the responsibility to ensure
access falls slightly more on facilities in rural regions. Rural regions have more facilities with
smaller capacities. In a choice between a closure of a larger and smaller facility, a policymaker
might prefer closing the smaller facility. Indeed, our models provide evidence to this—to
achieve high degrees of access closing a smaller facility is less damaging. Consequently, facil-
ities that do remain open in rural regions must shoulder a larger burden of users. Such
ethically challenging policy decisions that lead to increased disparities can be backed up by
policymakers with quantitative evidence, such as those provided by our models.

Our analysis relies on several simplifying assumptions. We parameterize recycling centers
only by their capacity and their location. However, not all facilities accept the full spectrum
of recyclable waste. Further, recycling centers in Germany impose different fees as well as
limits on the accepted quantities of each type of waste, see, e.g., (Bayerisches Staatsminis-
terium für Umwelt und Verbraucherschutz and Bayerisches Landesamt für Umwelt 2021).
These distinctions offer further opportunities to provide a higher-fidelity classification of
recycling centers. Additionally, the deposited waste is not always processed on the site, but
is often transported further for a final disposition. Our work ignores the transportation costs
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associated with such transfers; we also ignore any terminal costs for closures. Further, the
travel distances used as input to determine the preferences are simplified estimates. First, we
assume the entire population of a ZIP code resides at its centroid. Second, we use geodesic
distances—the shortest distances on the surface of the earth between the ZIP codes and
the recycling centers—rather than the longer road distances. These two simplifications are
frequently used when measuring the distances of two geographic objects, however they can
lead to underestimates in the actual distance traveled by residents (Jones et al. 2010).

6. Conclusions
We propose an optimization framework that balances user assignments to undesirable facil-
ities ensuring both a high accessibility for the users and a fair usage for the facilities. In
contrast to traditional work, where fairness is dealt with respect to the accessibility, we inves-
tigate fairness among usage of facilities. The problem is motivated by the need to keep usage
of facilities proportionally low to reduce their negative public perception, yet ensuring their
high reach due to the essential functions they provide. To this end, our central model is a
non-convex quadratic-binary program with constraints similar to a p-median problem, but a
significantly different objective function. With sequential relaxations, we present analytical
results, based on the KKT optimality conditions of the underlying optimization models, that
help balance between access and fairness. We demonstrate how our work extends several
concepts of fairness that already exist in the literature; a special case of our model reduces
to the well-studied notion of proportional fairness. We further present metrics that measure
the extent to which fairness is achieved in feasible solutions. Then, we present an application
of our work to allocate residents to recycling centers, using data from the state of Bavaria.
Our computational results provide further empirical evidence to our theoretical results show-
ing how neither access nor usage is significantly compromised by our proposed balancing
framework.

Our work offers several grounds for extension in the future. For example, our analysis does
not model regret experienced by users whose preferred facility was closed. Modeling this
could further enhance our definitions of fairness by including not only competition among
users to open facilities (as our work does) but also compare open and closed facilities. Sim-
ilarly, future work could compare different definitions of proportional fairness, particularly
with those in communication networks (Kelly et al. 1998). Such extensions allow an ana-
lytical examination of other classes of objective functions that achieve the appropriate, and
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new, fairness metrics. Variational analysis methods could be studied to identify objective
functions superior to others. Bilevel optimization models could also be explored to study the
conflicting goals of access and fairness. Another extension is the choice of different utility
functions that penalize both facilities that are too far and too close to residents. Further,
uncertainty could be accounted for in the preferences of users towards facilities. Then, a
probability distribution governs the preferences and stochastic optimization models could be
employed. Finally, analytical bounds for model (1) can be explored. These could also focus
on a heuristic that incorporates criteria for both fairness and accessibility to further improve
the upper bounds; this is particularly important as even modest-sized problems, such as
those considered in our numerical experiments, require several hours of computational effort.
This suggests development of specialized algorithms that achieve faster solutions as another
direction of future research.

All our data, models, and codes are available from the the IJOC GitHub software reposi-
tory (Schmitt and Singh 2023). An online appendix accompanies this article.
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