The University of Southampton
University of Southampton Institutional Repository

Euclid preparation. Spectroscopy of active galactic nuclei with NISP

Euclid preparation. Spectroscopy of active galactic nuclei with NISP
Euclid preparation. Spectroscopy of active galactic nuclei with NISP
The statistical distribution and evolution of key properties (e.g. accretion rate, mass, or spin) of active galactic nuclei (AGN), remain an open debate in astrophysics. The ESA Euclid space mission, launched on July 1st 2023, promises a breakthrough in this field. We create detailed mock catalogues of AGN spectra, from the rest-frame near-infrared down to the ultraviolet, including emission lines, to simulate what Euclid will observe for both obscured (type 2) and unobscured (type 1) AGN. We concentrate on the red grisms of the NISP instrument, which will be used for the wide-field survey, opening a new window for spectroscopic AGN studies in the near-infrared. We quantify the efficiency in the redshift determination as well as in retrieving the emission line flux of the H$\alpha$+[NII] complex as Euclid is mainly focused on this emission line as it is expected to be the brightest one in the probed redshift range. Spectroscopic redshifts are measured for 83% of the simulated AGN in the interval where the H$\alpha$+[NII] is visible (0.892x10^{-16}$ erg s$^{-1}$ cm$^{-2}$, encompassing the peak of AGN activity at $z\simeq 1-1.5$) within the spectral coverage of the red grism. Outside this redshift range, the measurement efficiency decreases significantly. Overall, a spectroscopic redshift is correctly determined for ~90% of type 2 AGN down to an emission line flux of $3x10^{-16}$ erg s$^{-1}$ cm$^{-2}$, and for type 1 AGN down to $8.5x10^{-16}$ erg s$^{-1}$ cm$^{-2}$. Recovered black hole mass values show a small offset with respect to the input values ~10%, but the agreement is good overall. With such a high spectroscopic coverage at z
astro-ph.GA
Shankar, F.
b10c91e4-85cd-4394-a18a-d4f049fd9cdb
Euclid Collaboration
Shankar, F.
b10c91e4-85cd-4394-a18a-d4f049fd9cdb

[Unknown type: UNSPECIFIED]

Record type: UNSPECIFIED

Abstract

The statistical distribution and evolution of key properties (e.g. accretion rate, mass, or spin) of active galactic nuclei (AGN), remain an open debate in astrophysics. The ESA Euclid space mission, launched on July 1st 2023, promises a breakthrough in this field. We create detailed mock catalogues of AGN spectra, from the rest-frame near-infrared down to the ultraviolet, including emission lines, to simulate what Euclid will observe for both obscured (type 2) and unobscured (type 1) AGN. We concentrate on the red grisms of the NISP instrument, which will be used for the wide-field survey, opening a new window for spectroscopic AGN studies in the near-infrared. We quantify the efficiency in the redshift determination as well as in retrieving the emission line flux of the H$\alpha$+[NII] complex as Euclid is mainly focused on this emission line as it is expected to be the brightest one in the probed redshift range. Spectroscopic redshifts are measured for 83% of the simulated AGN in the interval where the H$\alpha$+[NII] is visible (0.892x10^{-16}$ erg s$^{-1}$ cm$^{-2}$, encompassing the peak of AGN activity at $z\simeq 1-1.5$) within the spectral coverage of the red grism. Outside this redshift range, the measurement efficiency decreases significantly. Overall, a spectroscopic redshift is correctly determined for ~90% of type 2 AGN down to an emission line flux of $3x10^{-16}$ erg s$^{-1}$ cm$^{-2}$, and for type 1 AGN down to $8.5x10^{-16}$ erg s$^{-1}$ cm$^{-2}$. Recovered black hole mass values show a small offset with respect to the input values ~10%, but the agreement is good overall. With such a high spectroscopic coverage at z

Text
2311.12096v2 - Author's Original
Available under License Creative Commons Attribution.
Download (6MB)

More information

e-pub ahead of print date: 20 November 2023
Keywords: astro-ph.GA

Identifiers

Local EPrints ID: 487462
URI: http://eprints.soton.ac.uk/id/eprint/487462
PURE UUID: 6919a306-b771-43f4-805d-398c0a90b951

Catalogue record

Date deposited: 20 Feb 2024 18:20
Last modified: 17 Mar 2024 07:38

Export record

Altmetrics

Contributors

Author: F. Shankar
Corporate Author: Euclid Collaboration

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×