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ABSTRACT
Supermassive black holes require a reservoir of cold gas at the centre of their host galaxy in order to accrete and shine as active
galactic nuclei (AGN). Major mergers have the ability to drive gas rapidly inwards, but observations trying to link mergers with
AGN have found mixed results due to the difficulty of consistently identifying galaxy mergers in surveys. This study applies
deep learning to this problem, using convolutional neural networks trained to identify simulated post-merger galaxies from
survey-realistic imaging. This provides a fast and repeatable alternative to human visual inspection. Using this tool, we examine
a sample of ∼8500 Seyfert 2 galaxies (𝐿 [Oiii] ∼ 1038.5−42 erg s−1) at 𝑧 < 0.3 in the Sloan Digital Sky Survey and find a merger
fraction of 2.19+0.21

−0.17% compared with inactive control galaxies, in which we find a merger fraction of 2.96+0.26
−0.20%, indicating an

overall lack of mergers among AGN hosts compared with controls. However, matching the controls to the AGN hosts in stellar
mass and star formation rate reveals that AGN hosts in the star-forming blue cloud exhibit a ∼ 2× merger enhancement over
controls, while those in the quiescent red sequence have significantly lower relative merger fractions, leading to the observed
overall deficit due to the differing 𝑀∗ − SFR distributions. We conclude that while mergers are not the dominant trigger of all
low-luminosity, obscured AGN activity in the nearby Universe, they are more important to AGN fuelling in galaxies with higher
cold gas mass fractions as traced through star formation.
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1 INTRODUCTION

It is well known that most galaxies host supermassive black holes
(SMBHs) at their centres. Physical models (e.g. Silk & Rees 1998;
King 2003) show that galaxies and their SMBHs interact constantly.
When a galaxy has a reservoir of cold gas at its centre, the SMBH may
accrete this gas rapidly, releasing a tremendous amount of energy
as light and potentially even outshining the starlight of the galaxy
as an active galactic nucleus (AGN). Some fraction of this energy
is injected back into the gas surrounding the central region, either
heating the gas or driving it out of the galaxy entirely. This in turn
is expected to eventually quench star formation in the galaxy and
starve out the AGN as the supply of cold gas required for both
quickly disappears (Di Matteo et al. 2008; Hopkins et al. 2008).
Hence galaxies and their black holes are expected to grow together,
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as implied by the tight relationship between galaxy bulge mass and
SMBH mass (Kormendy & Ho 2013).

Being located at the centre of a galaxy, an AGN must draw its
supply of cold gas from within the galaxy. Many galaxies contain
large reservoirs of such gas, but in order to reach the central region,
gas orbiting at 𝑟 ∼ 10 kpc must lose ≳99.9% of its angular mo-
mentum (Alexander & Hickox 2012). Mechanisms for destabilising
this gas may be environmental, such as gas-rich mergers (Di Mat-
teo et al. 2005; Fontanot et al. 2015) or tidal interactions (Martig
& Bournaud 2008), or internal, such as bar formation (Shlosman
et al. 1989; Shankar et al. 2012) or wet compaction from violent disc
instabilities at high redshifts (Dekel & Burkert 2014; Zolotov et al.
2015; Lapi et al. 2018; Lapiner et al. 2023). This work focuses on
major mergers, which are known to drive large gas masses inwards
particularly rapidly (Cox et al. 2008; Teyssier et al. 2010).

In a merger between two gas-rich galaxies, the intense tidal forces
and changing gravitational potential drive the gas to the centre of
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the system, where it may fragment and form stars or accrete on
to the SMBH(s) to form an AGN, possibly initially shrouded in
dust (Sanders et al. 1988). As the AGN accretion and starburst con-
tinue, the feedback from both will eventually shut both down as
gas is either heated or blown out. Meanwhile, the merger will have
redistributed stellar orbits into random orientations via violent relax-
ation (Lynden-Bell 1967), and what is left at the end is a gas-poor,
‘red and dead’ elliptical galaxy.

Whilst this scenario represents one possible formation pathway
of an AGN, the question remains of how necessary mergers are
for triggering AGN compared with other, less violent processes.
Models indicate that some amount of merger triggering is necessary
to match observed AGN demographics (e.g. Hopkins et al. 2014;
Draper & Ballantyne 2012), but AGN have also been observed to
exist in host galaxies with only a gas-rich disc (e.g. Cisternas et al.
2011; Smethurst et al. 2019), whose lack of a significant classical
bulge component strongly suggests major-merger-free mass assembly
histories. This implies that secular gas inflows from disc instabilities
that build up over time can be sufficient to fuel SMBH growth in
many cases.

A great deal of work has been done over the years seeking to
pinpoint the relative importance of galaxy mergers and secular pro-
cesses in triggering AGN activity, and results have been mixed. Many
studies (Cisternas et al. 2011; Kocevski et al. 2012; Villforth et al.
2014; Sabater et al. 2015; Mechtley et al. 2016; Marian et al. 2019;
Sharma et al. 2021) find no merger excess among AGN hosts com-
pared with inactive control galaxies, suggesting that mergers have
no additional contribution to AGN triggering. However, many other
studies (Ramos Almeida et al. 2011, 2012; Ellison et al. 2019; Marian
et al. 2020; Pierce et al. 2023) find overall merger excesses between
their AGN hosts and controls. This discrepancy could be explained
by the different types of AGN studied, as it has been suggested that
mergers may only be the dominant trigger of high-luminosity AGN
while secular processes are sufficient at lower luminosity (Somerville
et al. 2008; Hopkins & Hernquist 2009; Hopkins et al. 2014), which
has been supported by models (Marulli et al. 2008; Bonoli et al.
2009; Menci et al. 2014; Steinborn et al. 2018), though observa-
tional evidence remains mixed (Alexander & Hickox 2012; Glikman
et al. 2015; Mechtley et al. 2016; Villforth et al. 2017). Further,
the evolutionary model of AGN obscuration (Sanders et al. 1988)
predicts that obscured AGN occur more recently after the trigger-
ing event and thus may be more strongly associated with merger
features, though again observations find mixed results (Urrutia et al.
2008; Satyapal et al. 2014; Glikman et al. 2015; Kocevski et al. 2015;
Donley et al. 2018; Villforth et al. 2019). Redshift may also play a
role, as some models have suggested that mergers are more impor-
tant for AGN triggering in the earlier Universe, with the dominant
mechanism switching to secular processes at lower redshift (Draper
& Ballantyne 2012; Menci et al. 2014). Conversely, cosmological
surface brightness dimming means that for a fixed surface brightness
limit in a survey, faint merger features are less likely to be picked
up at increasing redshift. Indeed, Pierce et al. (2023) found a posi-
tive correlation between imaging depth and observed merger excess,
suggesting that inconsistent sensitivity in the images used to iden-
tify mergers may go a long way towards explaining the inconsistent
results found over the years.

A further issue lies in the methods used to identify mergers. For
the past century (Hubble 1926), many studies of galaxy morphology
have relied on visual classification. The human eye is well-suited
to identifying morphological features, including merger signatures,
but this method is intrinsically subjective. While the basic Hubble
types of spheroid vs disc are relatively well-defined, mergers are

particularly tricky to define consistently. Comparing a few of the vi-
sual classification systems used in past studies gives a sense of the
variety in the literature. Cisternas et al. (2011) used three flags of in-
creasing distortion level (none vs minor vs strong), which are chosen
subjectively by the classifiers. Ellison et al. (2019) used binary, non-
exclusive flags marking disturbances and presence of a neighbour,
though only the disturbance flag was considered as ‘interacting’ in
their analysis. Ramos Almeida et al. (2011) and further works from
that group used the most complicated system with separate flags for
different possible signatures (e.g. tidal tails, shells, etc). Interestingly,
these three examples exhibit a trend of increasing observed merger
fraction with increasing classification system complexity. Perhaps
having a larger variety of features to consider may naturally lead the
human brain to identify more occurrences.

There is also the simple issue of visual inspection being time con-
suming, with the analysis of even a small dataset taking up many
hours of an expert’s precious research time. Crowd-sourcing projects
such as Galaxy Zoo (Lintott et al. 2008) mitigate this issue (and
also avoid some of the variation caused by subjectivity) by spreading
the visual inspection work across thousands of citizen scientists and
combining their votes into final classifications, but accuracy can suf-
fer due to the lack of professional training of the volunteers (Galaxy
Zoo classifiers were particularly hesitant to classify any galaxy as
a merger; see Darg et al. 2010). Further, as future surveys collect
exponentially increasing volumes of data (e.g. LSST, Ivezić et al.
2019), even having an army of volunteers providing classifications is
becoming increasingly impractical.

Automatic morphological classification algorithms, on the other
hand, are able to handle large volumes of data with ease, but tra-
ditionally have been seen as less accurate compared with human
classifiers.1 This is due to the fact that until recently, most auto-
matic classifiers have been based on measuring properties of the
galaxy’s shape and light distribution, such as concentration, asym-
metry, clumpiness, Gini coefficient, and 𝑀20. The galaxies are then
divided in parameter space, either by taking cuts on each parame-
ter (e.g. Abraham et al. 1996; Conselice 2003; Lotz et al. 2008) or
using simple machine learning algorithms (e.g. Scarlata et al. 2007;
Huertas-Company et al. 2008; Rose et al. 2023). The values of these
properties have been shown to vary with signal-to-noise (Huertas-
Company et al. 2014), making their classifications inconsistent across
surveys and failing at high redshifts (Abruzzo et al. 2018).

Over the last few years, deep learning, specifically with convolu-
tional neural networks (CNNs) has seen much success in classify-
ing general galaxy morphology (e.g. Huertas-Company et al. 2015;
Domínguez Sánchez et al. 2018; Cheng et al. 2020; Spindler et al.
2021; Huertas-Company & Lanusse 2023) as well as identifying
galaxy mergers (e.g. Bottrell et al. 2019b; Pearson et al. 2019; Wang
et al. 2020; Ćiprĳanović et al. 2020, 2021; Bickley et al. 2021;
Koppula et al. 2021). As an automatic classification method, deep
learning is easily repeatable and able to handle large data volumes far
better than any number of human volunteers. CNNs have also been
shown to outperform older automatic models based on previously
measured features (Cheng et al. 2020), as they work by including
image convolutions within the deep layers, where the weights trained
form the convolutional kernels. Hence, during training they learn not

1 There is of course no ground truth to compare with for observations, but
human classification is often seen as the gold standard, and most automatic
classifiers have failed to agree with humans. It is important to note that the
two methods of classification are looking for intrinsically different patterns,
and galaxy morphology has historically been understood through the lens of
human perception.
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only which features correspond to different labels but also what the
features themselves are and where they are located in the images.

This work aims to resolve some of the ambiguity around the AGN-
merger relationship through applying deep learning methods to study
the merger status of a large sample of AGN host galaxies. We focus
here on Type 2 AGN to avoid point source contamination, which
hinders morphological analysis of the host (see Marian et al. 2019;
Villforth et al. 2019). We also focus specifically on identifying post-
mergers, which are thought to be the phase where black hole accretion
rates peak (Hopkins et al. 2008; Blecha et al. 2018), and which specif-
ically require morphological (or kinematic) analysis (as opposed to
pre-mergers, which can be identified as close pairs). We take the ap-
proach of supervised learning, where the neural network is trained to
recognize mergers in a set of images of galaxies whose true merger
status is known. This makes use of the IllustrisTNG cosmological
simulation (Weinberger et al. 2017; Pillepich et al. 2018a), whose
public data release includes merger trees, from which we assemble
a catalogue of post-mergers and nonmergers, and visualisation tools,
with which we create survey-realistic mock observations of galaxies
in our catalogue. We then apply this classifier to a sample of Seyfert
2 host galaxies imaged by the Sloan Digital Sky Survey (SDSS;
Abazajian et al. 2009), comparing their merger fractions to a mass-
and redshift-matched control sample of inactive galaxies.

This paper is organized as follows. Section 2.1 describes our SDSS
AGN hosts and inactive control galaxies, while Section 2.2 introduces
the simulated data we use to train the neural networks. Section 3
details the methods used to generate the training images and train
the CNNs, and Section 4 shows the results of applying the CNNs
to classify the SDSS galaxies. Section 5 interprets the results of
the CNN classification, comparing to other studies and discussing
caveats of our approach. Finally, Section 6 concludes. Consistent with
IllustrisTNG, this paper assumes the Planck 2015 cosmology (Planck
Collaboration et al. 2016).

2 DATA

2.1 SDSS AGN hosts

This work considers merger fractions in Type 2 AGN only, so as to
avoid point source contamination from unobscured AGN. We use
the MPA-JHU catalogue (Kauffmann et al. 2003a; Brinchmann et al.
2004; Salim et al. 2007) of SDSS DR7 (Abazajian et al. 2009),
which contains emission line data and derived stellar masses and
star formation rates of ∼800,000 galaxies, including AGN hosts.
We consider all sources with well-constrained (𝜎 < 0.4 dex) stellar
masses greater than 109 M⊙ that are not classified as BROADLINE
(Type 1) by the SDSS pipeline. To select our AGN sample, we use
BPT emission line diagnostics (Baldwin et al. 1981; Kewley et al.
2001; Kauffmann et al. 2003b) on galaxies with a signal-to-noise
ratio greater than 3 for their measurements of the H𝛼, H𝛽, [Oiii]
𝜆5007, and [Nii] 𝜆6583 emission lines. The possible classes are star-
forming, composite, Seyfert, and LINER as shown by Figure 1. We
add to the Seyfert class galaxies with secure measurements of H𝛼,
[Oiii], and [Nii] whose 3𝜎 upper limit on H𝛽 places them in the
Seyfert region. Of the 14,979 galaxies classified as Seyferts in this
way, 8492 have a sufficiently large angular size to consider them
well-resolved, i.e. 𝑅0.5Petrosian > 1.5×FWHM of the field PSF in the
𝑟-band. These comprise our AGN sample.

We select control galaxies from the BPT star-forming and low S/N
(assumed majority quiescent) galaxies, excluding both composites
and LINERs from the study. We match the control sample to the
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Figure 1. BPT diagnostics of our AGN sample (red) and the non-AGN galax-
ies in our sample with secure measurements of all four relevant emission lines
(grey). Black points indicate the non-AGN selected as controls for this work
(approximately half of the control sample, as the other half come from the set
of galaxies without secure emission line detections and are not shown here).
Galaxies are classified as star-forming below the Kauffmann et al. (2003b)
cutoff (dashed line), as composite between this and the Kewley et al. (2001)
cutoff (solid line), and as Seyfert or LINER above this and split by a straight
line of angle 25◦ (dot-dashed line; see Figure 2 of Kauffmann et al. 2003b).

AGN sample by binning all well-resolved non-Seyfert galaxies (both
those with non-Seyfert BPT classifications and those with low S/N
emission lines) in mass and redshift (bin width 0.2 dex in 𝑀∗ and 0.02
in 𝑧, as shown in Figure 2). Then, for each bin in the AGN sample, we
randomly select the same number of galaxies from the corresponding
bin in the parent control sample. This ensures matching distributions,
but individual AGN hosts do not have a single matched control galaxy.
In total, the control sample selected this way is comprised of 32%
star-forming galaxies and 68% low S/N (quiescent) galaxies.

For the purpose of comparing observed merger fractions of sub-
populations of the AGN and control samples divided by galaxy prop-
erties, we consider star formation rates and bulge-to-total fractions
of our galaxies. Brinchmann et al. (2004) derived star formation rates
for the AGN in the MPA-JHU catalogue based on 𝐷𝑁 (4000), which
avoids contamination from the AGN in the emission lines used to
derive the SFR of inactive galaxies. Figure 3 shows the distributions
of specific star formation rates (derived SFR/𝑀∗) of our AGN hosts
compared with the controls. We see that the control galaxies follow
the typical bimodal distribution of star-forming and quiescent galax-
ies, while the AGN hosts follow a unimodal distribution peaking in
the green valley. This is in line with observations that have shown
AGN occupying galaxies at all stages of star formation but most of-
ten green valley and star-forming galaxies (Cardamone et al. 2010;
Schawinski et al. 2010; Aird et al. 2012; Mullaney et al. 2015).

We also examine trends with bulge-to-total fraction derived
by Simard et al. (2011), which may lend insight into the classifi-
cation process of the CNN.

For merger identification, we create a cutout image of each galaxy

MNRAS 000, 1–17 (2023)
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Figure 2. Distribution of our primary AGN sample (Seyfert 2 galaxies) in
stellar mass (top) and [Oiii] luminosity versus redshift. The bin widths of the
𝑀∗ and 𝑧 histograms illustrate the bins used for control matching. Note that
the control sample is matched in 𝑀∗ and 𝑧 and therefore the histograms for
the control are identical and not shown here.
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Figure 3. Distributions of specific star formation rates (Brinchmann et al.
2004) of our AGN host sample (red) and their mass- and redshift-matched
control galaxies (black).

in the SDSS 𝑔𝑟𝑖 bands. The cutouts are scaled to have a width of 8
times the Petrosian half light radius in the 𝑟-band, so that each galaxy
occupies approximately the same area within its cutout (images are
later rebinned to a uniform number of pixels for ML). Figure 4 shows
example cutouts of AGN hosts and control galaxies. It is visually
evident that galaxies span a variety of morphological types, and
there is no obvious point source at the centres of the host galaxies.

2.2 IllustrisTNG training data

To build a deep learning-based classifier of galaxy morphology,
we use a supervised learning approach with a training set drawn
from the IllustrisTNG cosmological magnetohydrodynamical sim-
ulations, specifically the TNG100-1 simulation (Weinberger et al.
2017; Pillepich et al. 2018a, hereafter referred to simply as TNG100).
We use TNG because it simulates galaxy evolution in a cosmological
context, including a variety of galaxies in different environments and
thus giving a reasonably realistic approximation of the population
of galaxies imaged in our SDSS sample. TNG has been shown to
reproduce well most observed scaling relations of the galaxy popu-
lation over cosmic time (Springel et al. 2018; Pillepich et al. 2018b;
Nelson et al. 2018; Naiman et al. 2018; Marinacci et al. 2018), as
well as broadly representing the diversity seen in galaxy morphol-
ogy (Huertas-Company et al. 2019). TNG100 has a box size of ∼100
Mpc and stellar particle resolution of ∼106 𝑀∗, which places it in
the middle of the TNG suite for both properties. This allows us to
create a reasonably large set of reasonably realistic training images.

TNG data are saved in snapshots capturing the simulation state
at specific times, which are unevenly sampled but spaced by ap-
proximately 100–200 Myr. For each snapshot, haloes (representing
galaxy groups or clusters) and subhaloes (representing galaxies) are
determined by running a friends-of-friends algorithm and the Sub-
Find algorithm (Springel et al. 2005) respectively. Subhaloes are
then traced across snapshots via the SubLink algorithm (Rodriguez-
Gomez et al. 2015), which produces merger trees, linked lists where
each subhalo’s entry links to its progenitor(s) in the preceding snap-
shot and descendant in the following snapshot. A galaxy having
multiple progenitors indicates that a merger must have taken place
since the previous snapshot. Hence we assemble a catalogue of post-
mergers by looking backwards along the merger trees of galaxies
matching our observational sample in mass and redshift, described
in more detail in Section 3.1.

This approach is limited by the coarse time sampling in the sim-
ulation, as we cannot image galaxies many times along the merger
process (as done by Bottrell et al. 2019b; Koppula et al. 2021) nor get
more precise than a several hundred Myr upper bound on the time
since coalescence of the identified post-mergers. However, making
the reasonable assumption that the exact time of coalescence for each
merger occurs at a random point between the last snapshot in which
SubFind identifies two subhaloes and the first snapshot in which it
finds only one, a sample of galaxies selected for having undergone a
merger-tree-selected merger within a fixed time window can be ex-
pected to cover the full range of times since coalescence. The coarse
time sampling of TNG100 is the cost of the large diversity of galaxies
and cosmological context present in the simulation, which cannot be
provided by higher-time-resolution simulations of individual galaxy
pairs colliding.

3 METHODS

We train an ensemble of neural networks to classify the merger state
of galaxies from their cutout images, using supervised learning with
a training set of simulated galaxy images derived from IllustrisTNG.
Section 3.1 describes the selection of the training set of post-merger
and nonmerging galaxies from the simulation merger trees, while
Section 3.2 describes how we generated realistic mock observations
of these galaxies. Finally, Section 3.3 describes the neural network ar-
chitecture, image preprocessing, and training procedure. All machine
learning procedures are performed using the Keras package (Chollet
et al. 2015) of the TensorFlow API (Abadi et al. 2015).

MNRAS 000, 1–17 (2023)
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Figure 4. Example gri cutouts of SDSS Seyfert 2s (left) and control galaxies (right), sorted into most confident mergers (top) and most confident nonmergers
(bottom), as identified by our CNN ensemble described in Section 3.3. Here, ‘most confident mergers’ are galaxies classified as mergers by at least 84% of
the networks in the ensemble, while ‘most confident nonmergers’ are classified as nonmergers by 100% of the networks. Images are logarithmically scaled to
better appreciate faint features, and the brightest 1% of image pixels are saturated. Some of the predicted mergers have visually clear merger signatures or close
companions, while others appear smooth and elliptical. Conversely, many of the predicted nonmergers are disc-dominated and some have asymmetries and
features that could be interpreted visually as merger signatures or simply spiral arms.

3.1 Training sample selection

For our supervised learning model, we need a training set of Illus-
trisTNG galaxies that have lingering merger features and thus have
undergone a sufficiently recent and major merger (our ‘post-merger’
sample) and a matched control set that likely have no merger features
and thus have not undergone any significant mergers in a long time
(our ‘nonmerger’ sample). To assemble this set, we begin by quanti-
fying the merger state of each galaxy with 𝑀∗ > 109𝑀⊙ in the last
22 snapshots of the TNG100 simulation (𝑧 ≲ 0.3). For each galaxy,
we search its merger tree for the most recent merger above stellar
mass ratio 𝜇 = 0.01 (following Rodriguez-Gomez et al. 2015, we
define 𝜇 as the ratio of the progenitor galaxy masses at the time prior
to coalescence at which the smaller progenitor reaches its maximum
stellar mass, thereby avoiding 𝜇 decreasing due to mass transfer). If
this merger exists, we also check the 5 snapshots before coalescence
for any higher-mass-ratio mergers so that e.g. a galaxy having under-
gone a 𝜇 = 0.01 merger 200 Myr in the past and a 𝜇 = 1 merger 400
Myr in the past will be labelled a a major rather than a minor merger.

Using this catalogue, we select our post-merger sample to consist
of all galaxies in the aforementioned mass and redshift range with
a major merger (𝜇 ≥ 0.25) found within the last 500 Myr, which
consists of 1954 galaxies. We match the nonmerger sample out of
galaxies which have not undergone a merger with 𝜇 > 0.01 within
the last 2 Gyr (chosen with the aim of avoiding training images with
intermediate-mass-ratio mergers, which may exhibit ambiguous fea-
tures). The matching is performed by binning the post-mergers in

mass (bin width 0.2 dex) and snapshot (bin width 2, correspond-
ing to Δ𝑧 ∼ 0.27) and drawing an equal number of controls from
each bin, similarly to the binning of the observed sample detailed in
Section 2.1.

Figure 5 shows the original stellar mass distribution of the train-
ing galaxies (hatched histogram). As this is the innate distribution
of galaxies without observational selection effects, the fraction of
low mass galaxies is much higher than in the SDSS sample, which
creates issues with neural network prediction accuracy on galaxies
with 𝑀∗ ≳ 1010.5𝑀⊙ . To correct for this, we artificially increase
the number of high-mass galaxy observations using image transfor-
mations in the d4 dihedral group (mirroring and rotations by 90◦).
Galaxies with 10 < log(𝑀∗/𝑀⊙) < 11 have their number of ob-
servations doubled, while galaxies with 11 < log(𝑀∗/𝑀⊙) < 11.5
have theirs tripled and galaxies with log(𝑀∗/𝑀⊙) > 11.5 have theirs
increased by a factor of 8 (the maximum amount). This increases the
effective number of training galaxies by a factor of ∼3, yielding the
final boosted training sample whose mass distribution is shown in
the open histogram of Figure 5.

Figure 6 shows the distribution of 𝜇 and Δ𝑡 in the merger training
sample, where Δ𝑡 refers to the time difference between the imaged
galaxy and the last snapshot where multiple progenitors are present.
While the 𝜇 distribution falls off smoothly as expected, the Δ𝑡 dis-
tribution is highly clustered around certain time differences. This is
due to the discrete time snapshots in the simulation data: the three
peaks in the distribution indicate the time differences associated with
one, two, and three snapshots since the merger (with spread due to

MNRAS 000, 1–17 (2023)
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Figure 5. Mass distribution of the IllustrisTNG training galaxies. The hatched
histogram shows the original distribution, while the open histogram shows the
final sample we used after boosting the number of high-mass galaxy images
with random image augmentations as described in Section 3.3.2.

the uneven time spacing of snapshots). We emphasize that Δ𝑡 repre-
sents the upper limit on time since coalescence, as it could happen
at any point between the snapshot with multiple progenitors and the
snapshot with a single descendant, and the true distribution of time
since coalescence is likely far more even (see Section 2.2).

3.2 Mock observations

3.2.1 Idealised image generation

Images of the training sample are generated using the IllustrisTNG
‘Visualize Galaxies and Halos’ online tool (Nelson et al. 2019).2
This tool projects all stellar particles associated with the galaxy and
its parent halo within the field of view (including any other galaxies
within the same halo), which we set to a width of 8 times the stellar
half-mass radius 𝑅0.5𝑀∗ . It then uses the fsps stellar population
synthesis model (Conroy et al. 2009; Conroy & Gunn 2010) and
SDSS filter response functions (Gunn et al. 1998) to generate an
idealised mock observation of the galaxy. These visualisations do
not include the effects of gas and dust in the ISM (which are not
necessary to recover good merger identification, see Bottrell et al.
2019b). Each galaxy is imaged from three orthogonal viewing angles,
giving three independent observations per galaxy and hence tripling
our training sample size to a total of ∼17000 images. The top panels
of Figure 7 show example idealised images of the TNG training
mergers (left) and control nonmergers (right) in the SDSS gri bands.

3.2.2 Observational realism

In order to train a machine learning algorithm on mock observations
of simulated galaxies and have confidence in its predictions on real
observations, the noise and resolution properties of the training set
must match the observed dataset as closely as possible. To achieve
this, we apply the observational realism suite RealSim (Bottrell
et al. 2017a,b, 2019a,b)3 to the idealised images of our TNG training
sample. The aim of this algorithm is to transform idealised stellar-
map-based images of galaxies into images indistinguishable from
observations in scale, noise, and field properties. To accomplish this,
the algorithm first rebins the image to the SDSS pixel scale, then

2 https://www.tng-project.org/data/vis
3 https://github.com/cbottrell/RealSim

convolves the idealised image with the PSF of a randomly-chosen
SDSS field, then adds Poisson noise based on the SDSS exposure
time of 53.9s, and finally inserts the image into an empty region of
the same SDSS field to add the sky background. Figure 7 shows the
example images after realism is applied.4

As with the SDSS galaxies, an appreciable fraction of the train-
ing galaxies have radii too small to be well resolved by the SDSS
telescope. This becomes an issue when realism is applied, since low
resolution on images of mergers may lose identifying features and
could bias the neural network to erroneously classify low-resolution
images as mergers. In the interest of maintaining as large a training
set as possible, rather than removing undersized galaxies, we place
them at a lower redshift chosen to bring the image width up to the
CNN input scale. While the IllustrisTNG galaxy visualisation tool
will only create mock images in the rest frame or at each galaxy’s
original redshift, a redshift change of up to 0.3 does not significantly
affect galaxy colour or the position of the 4000Å break relative to
the SDSS gri bands. While in principle this could lower CNN per-
formance on compact, higher-redshift galaxies, we note that similar
galaxies were removed from the SDSS sample (see Section 2.1), so
our training galaxies continue to be representative of the science
sample.

3.3 Neural network training and predictions

3.3.1 Neural network architecture

We use a relatively simple convolutional neural network (CNN) ar-
chitecture, similar in complexity to other CNNs currently used in
the field (e.g. Bottrell et al. 2019b; Domínguez Sánchez et al. 2018;
Ćiprĳanović et al. 2020), but independently designed. A schematic
of the CNN is shown in Table 1. The architecture consists of four
blocks containing a convolutional layer with decreasing kernel sizes
and increasing numbers of kernels, followed by batch normalisation
and dropout layers. The third block includes a 2 × 2 maximum pool-
ing layer, decreasing the image dimensions by half. The idea behind
the varying convolutional kernel sizes and max pooling is to capture
features at different scales within the image, while the batch normal-
isation and dropout layers are used to reduce overfitting. After these
blocks follows a fully connected layer before the output layer, which
is where classification is performed on the features extracted by the
convolutional layers. The exact sizes of the convolutional kernels and
fully-connected layer shown in Table 1 were chosen via a hyperpa-
rameter search with KerasTuner (O’Malley et al. 2019). The final
output of the CNN is normalised to a merger probability, which we
then convert to a binary prediction of merger/nonmerger by setting a
decision threshold probability, which is explained in more detail in
Section 4.1.

3.3.2 Image preprocessing

The realistic TNG mock images and observed SDSS cutouts are pre-
processed identically before being passed to the CNN for training and
prediction. Images are first rebinned to a uniform 36× 36 pixel scale
to match the CNN input size. We estimate the sky level in each band
by taking the median of pixels around the edge of the image (with a

4 To test the effectiveness of RealSim in creating mock images indistin-
guishable from observations, two of the authors (MSAM and CV) carried out
blind visual inspection on a subsample of random training images and SDSS
cutouts. Neither could tell a difference in a majority of cases.
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Figure 6. Mass ratio (𝜇; left panel) and time since merger coalescence (Δ𝑡 right panel) distributions of the merger sample in the IllustrisTNG training set.
Shaded and open regions represent the distributions before and after boosting the number of high-mass galaxies as described in Section 3.1.
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Figure 7. Example images from our IllustrisTNG training set sorted by true
merger status (left panels: mergers; right panels: nonmergers) and CNN-
predicted merger status (top panels: predicted mergers; bottom panels: pre-
dicted nonmergers). The left-hand images in each column show the idealised
images described in Section 3.2.1, while the right-hand images show the same
images after observational realism is applied (described in Section 3.2.2).
Images are logarithmically scaled to better appreciate faint features, and the
realistic images have the brightest 1% of their pixels saturated.

Layer Output Shape # Parameters

Input Layer (36, 36, 3) 0

Conv2D-1 (6 × 6) (31, 31, 32) 3488
BatchNorm-1 (31, 31, 32) 128
Dropout-1 (0.1) (31, 31, 32) 0

Conv2D-2 (5 × 5) (27, 27, 64) 51,264
BatchNorm-2 (27, 27, 64) 256
Dropout-2 (0.1) (27, 27, 64) 0

Conv2D-3 (4 × 4) (24, 24, 128) 131,200
BatchNorm-3 (24, 24, 128) 512
MaxPool-3 (2 × 2) (12, 12, 128) 0
Dropout-3 (0.1) (12, 12, 128) 0

Conv2D-4 (3 × 3) (10, 10, 128) 147,584
BatchNorm-4 (10, 10, 128) 512
Dropout-4 (0.1) (10, 10, 128) 0

Flatten (12800) 0
Dense (64) 819,264

Output Layer (2) 130

Total Parameters − 1,154,338

Table 1. Schematic table showing the layers of the CNN used, as explained
in Section 3.3.1.

3 px border thickness) and sky-subtract each band individually, then
rescale the entire image cube logarithmically between 0 and 1 with
a uniform background of 0.1 added. This process preserves intrinsic
colour information in each galaxy.

The simulated images are randomly split 80/10/10 into train-
ing/validation/testing sets. The training set is the sample seen by
the neural network during training, while the validation set is used to
evaluate performance at each epoch and minimize overfitting. After
training is complete, the testing set is used to judge the overall per-
formance of the neural network at classifying galaxies into mergers
and nonmergers, and all plots of performance metrics shown in this
paper use the testing set. While the different viewing angles mean
that the same galaxy may appear in both the training and testing sets,
the mass boosting described in Section 3.1 is applied only to the
training and validation sets after splitting them. Thus, the same im-
age in different orientations will not be repeated in multiple sets, and
the performance metrics shown in Section 4.1 and Appendix A accu-
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rately reflect the performance on the set of merging and nonmerging
galaxies.

3.3.3 Training procedure

We generate merger fraction predictions using 100 CNNs in an
ensemble, reducing the uncertainty arising from different random
weight initialisations leading to different predictions between CNNs
trained on the same dataset. We train each CNN for up to 500 epochs
with a learning rate of 10−5, using the Adam optimiser (Kingma &
Ba 2014) and categorical crossentropy as the loss function (quantify-
ing the difference between predicted merger probabilities and labels
of 0 or 1). To minimise overfitting, training images undergo random
reflections, rotations up to 15◦, and shifts up to a few pixels at each
epoch. These augmentations performed at training time are distinct
from those performed to artifically increase the number of images
of higher-mass galaxies: not only are the augmentation parameters
different, but the aim here is to avoid CNNs learning a dependence
on galaxy orientation, and training-time augmentations change ran-
domly at each epoch. Training is also cut off if the loss function of the
validation set fails to improve after 50 epochs, which typically indi-
cates overfitting beginning to happen. The averaged training histories
are shown in Figure A1.

4 RESULTS

The trained ensemble of CNNs form a classifier with the ability
to identify merger candidates and hence predict merger fractions
within SDSS galaxy populations, estimating the uncertainty of its
predictions arising from variations between different neural network
instances. Section 4.1 describes the overall performance of this clas-
sifier on the testing subset of our IllustrisTNG mock images, where
the merger state of each galaxy is known and thus prediction accu-
racy can be assessed. Section 4.2 presents the results of applying
this classifier to our sample of Type 2 AGN hosts and their matched
controls, comparing merger fractions of the overall samples as well
as examining potential trends with different galaxy and AGN prop-
erties. Section 4.3 discusses caveats of our method and steps taken
to validate the CNN predictions.

4.1 Neural network performance

Each CNN outputs a merger probability 𝑃mg for each image. We
may measure the overall effectiveness of each CNN by its receiver
operating characteristic (ROC) curve, which is calculated by com-
puting true positive rate (fraction of true mergers correctly identified;
TP/(TP+FN)) and false positive rate (fraction of nonmergers falsely
identified as mergers; FP/(FP+TN)) and varying the threshold prob-
ability below which a galaxy is classified as a nonmerger and above
which it is classified as a merger. Figure 8 shows the ROC curves for
each of our 100 CNNs on the testing set of the labelled TNG mock
images. A completely random classifier would have a ROC curve
following the straight dashed line in Figure 8, while a perfect classi-
fier would reach the top left corner, with a true positive rate of 100%
and a false positive rate of 0%. Hence, we can use the area under
the curve (AUC) as a metric of performance: our CNNs achieve a
median AUC of 0.893+0.005

−0.008.
To convert the output probabilities to a predicted merger fraction,

a fixed 𝑃mg threshold must be set. Figure 8 shows that most of
the CNNs achieve the shortest distance to 100% true positives and
0% false positives with a classification threshold close to 0.5, so
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Figure 8. Receiver Operating Characteristic (ROC) curves of CNN perfor-
mance on the testing set of the TNG galaxies, composed of true positive
rate and false positive rate plotted at varying threshold probabilities between
predicting a merger vs nonmerger (colour scale). The dashed black line rep-
resents a completely random classifier, while a ROC curve reaching the top
left corner would represent a perfect classifier.

taking this into consideration (along with the observation that the
vast majority of the CNN 𝑃mg values are well separated, i.e. close
to either 0 or 1; see Figure A3), we set a uniform classification
threshold of 0.5 for all CNNs. Repeating the measurements presented
in Section 4.2 with uniform thresholds between 0.4 and 0.6 showed
no qualitative change to the scientific results, only a change in overall
normalisation. Hence, given a set of galaxies (e.g. the AGN sample,
or galaxies separated into bins as in Figures 10 and 11), the merger
fraction is calculated as

𝑓mg =
#(𝑃mg > 0.5)

# galaxies in sample
. (1)

This is calculated separately for each CNN. Merger fractions quoted
in text and shown in figures are medians unless otherwise stated. Error
bars are calculated by combining 1𝜎 binomial confidence intervals
calculated using the method of Cameron (2011) with classification
variations between different CNNs, represented by 16th and 84th per-
centiles of the 100 CNN predictions. Errors are generally dominated
by the binomial term.

With the classification threshold fixed, our CNNs perform gener-
ally well, reaching a median accuracy of 80.8+1.3

−0.8%. This is compa-
rable to performances achieved in other recent works using CNNs to
identify simulated mergers in realistic images (Bottrell et al. 2019b;
Wang et al. 2020; Ćiprĳanović et al. 2021). Precision (purity, fraction
of true mergers out of galaxies identified as such; TP/(TP+FP)) and
recall (completeness, fraction of correctly-classified true mergers;
TP/(TP+FN)) fall into similar ranges of 80.9+1.2

−1.2% and 81.1+2.6
−2.4%

respectively. Given that our sample here has been balanced to have
an equal number of post-mergers and nonmergers, while in nature
mergers are rare events, it is important to keep in mind that the imper-
fect accuracy and purity indicate that merger samples derived using
these classifiers will contain a large number of false positives.

For the CNNs to reliably predict merger fractions for real galaxies,
we must be sure they are basing their predictions on morphology
and not becoming biased by galaxy properties that are unrelated or
loosely correlated to merger state. To verify this, we bin the TNG
testing set galaxies in stellar mass, redshift, specific star formation
rate, and half mass radius and compare both prediction accuracy and
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predicted vs intrinsic merger fraction for each property. We find no
correlations between false positive rate and any of these observables,
indicating no regions with systematically higher contamination rates.
We do, however, observe that post-mergers with higher stellar masses
and larger physical radii (both relatively rare) and lower specific star
formation rates have a higher chance of being a false negative (see
Figures A4 and A5).

To understand how merger state affects the CNN predictions, we
consider true and false positive rate (TPR and FPR) as a function
of mass ratio 𝜇 and time since merger Δ𝑡. A Pearson correlation
test indicates that TPR shows no significant trends with either 𝜇

or Δ𝑡 (𝑝 = 0.17 and 0.19 respectively): evidently, the CNNs are
equally good at identifying mergers over the 𝜇 andΔ𝑡 ranges adopted.
However, FPR shows a positive correlation (𝑟 = 0.61; 𝑝 = 0.0046)
with the mass ratio of the most recent merger with 𝜇 > 0.01 and a
negative one (𝑟 = −0.85; 𝑝 = 0.0016) with Δ𝑡 (see Figure 9). This
shows that if a galaxy has undergone a major merger at any point,
the CNNs are more likely to classify it as a post-merger. Further, the
more recently a galaxy has undergone a merger of any mass ratio, the
more likely it will be classified as a post-merger, a trend persisting
even over timescales of several Gyr. This suggests that either merger-
specific features linger in TNG for up to several Gyr (potentially
depending on mass ratio), or the CNNs are basing classifications on
features that linger for longer than asymmetry and tidal tails, such as
bulge dominance.

4.2 Merger fractions of Type 2 Seyferts and inactive galaxies

With an unbiased classifier that identifies mergers with ≳80% accu-
racy, we begin our analysis of the merger-AGN relationship in the
observed SDSS sample by comparing overall predicted merger frac-
tion of the AGN hosts with the controls. We in fact find a decrease
of median merger fraction in AGN hosts relative to controls, with
𝑓mg,AGN = 2.19+0.21

−0.17% and 𝑓mg,control = 2.96+0.26
−0.20%.

To quantify the significance of this result, we calculate the proba-
bility of an enhancement (enh = 𝑓mg,AGN/ 𝑓mg,control) greater than 1
as follows. For each CNN in the ensemble, we randomly sample beta
distributions based on the merger fraction measured by that CNN,
one for the AGN hosts and one for the controls. Each pair of merger
fractions drawn is divided to generate a distribution of enhancements,
which we sum over the CNNs in the ensemble to create a combined
pdf. We integrate the pdf to obtain 𝑝(enh > 1). All enhancement
significances quoted in this paper are calculated using 10000 draws
for each CNN.

Using this method, we calculate that 𝑝(enh > 1) = 0.0105, in-
dicating that our observation of a relative lack of mergers among
AGN hosts overall is significant to just shy of the 3𝜎 level. Hence,
our first observation is that on a global scale, we see no evidence
for mergers being the dominant trigger of all activity in obscured
low-luminosity AGN in the nearby Universe. However, the picture
becomes more nuanced when we separate our AGN hosts and con-
trols by galaxy properties and compare observed merger fractions at
fixed values of these properties. Figure 10 shows predicted merger
fractions of the two populations binned by properties of the stellar
populations, bulge-to-total ratio, redshift, and AGN luminosity. For
the comparison, we divide both AGN hosts and control galaxies into
bins containing equal numbers of objects. The rest of this section is
devoted to discussing the trends found.

4.2.1 Merger fraction and stellar populations

Panels (a) and (b) of Figure 10 show predicted merger fractions of the
AGN hosts compared with controls as a function of (a) stellar mass
and (b) specific star formation rate. Comparing the binned data with
a Pearson correlation test, the controls show no significant evolution
of merger fraction with stellar mass, while the AGN hosts exhibit
a correlation coefficient of 𝑟 = −0.84 with high significance (𝑝 =

1.6×10−3). These combined trends result in a potential enhancement
in the lowest-mass bin and relative lack of mergers among AGN hosts
in the highest-mass bins.

Both populations show significant negative trends of 𝑓mg with
sSFR, though the trend for the AGN hosts is both flatter and of lower
significance (𝑟 = −0.81; 𝑝 = 0.005) compared with that of the
controls (𝑟 = −0.92; 𝑝 = 1.6 × 10−4). Comparing the two trends
in Figure 10 panel (b), this results in a merger enhancement among
AGN hosts among galaxies with log(sSFR/yr−1) ≳ −10.5, although
the merger fraction among all galaxies in this region is very low.

Given that stellar mass and star formation rate are known to sep-
arate galaxies into the distinct populations of the star-forming blue
cloud and quiescent red sequence, the trends with 𝑀∗ and sSFR sug-
gest an underlying difference between AGN triggering in these two
populations. Figure 11 investigates this by showing median merger
enhancement, 𝑓mg,AGN/ 𝑓mg,control, of our sample binned in equally-
spaced bins in the log 𝑀∗ − log SFR plane. The merger enhancement
distributions compared in each bin are generated as described at the
beginning of this section, and crosses mark bins where 𝑝(enh > 1)
or 1 − 𝑝(enh > 1) > 0.68, i.e. where the enhancement differs from
unity by at least 1𝜎. Here we see a clear difference in the merger frac-
tions measured among the two populations, with significant merger
excesses among AGN hosts across the blue cloud and a significant
lack thereof in parts of the red sequence. The crossover point between
these behaviours roughly follows the location of the green valley.

To succinctly compare the differences in merger fractions in the
blue cloud and red sequence, we divide the populations by estimat-
ing the location of the green valley in the log 𝑀∗ − log SFR plane
for our sample. The dashed black line in Figure 11 shows this by-
eye division, defined as log SFR = 0.83 log 𝑀∗ − 8.96. Above the
divide, in the blue cloud, we find that the median merger fraction
among AGN is 𝑓mg,AGN = 1.07+0.19

−0.14% compared to that of controls,
𝑓mg,control=0.52+0.14

−0.09
%, for a median enhancement of 2.03+0.92

−0.63. We
find that 𝑝(enh > 1) = 0.953: the positive enhancement is signifi-
cant at the 2𝜎 level. Conversely, in the red sequence, we see a deficit
of mergers among AGN hosts, with 𝑓mg,AGN = 3.15+0.37

−0.27% and
𝑓mg,control = 5.01+0.45

−0.35% and a median enhancement of 0.65+0.10
−0.09.

Here we find that 𝑝(enh > 1) = 0.0041, so this lack of mergers
is highly significant. These results reflect the substantial decrease
of detected merger fraction with sSFR seen in both AGN hosts and
controls, but they also suggest a different relationship between AGN
activity and galaxy merger status depending on the star formation
properties and by extrapolation the cold gas fractions of the merging
galaxies.

4.2.2 Merger fraction and bulge fraction

In addition to stellar properties, we investigate trends of merger frac-
tion with a simple measure of overall galaxy morphology, bulge-to-
total ratios from the catalogue of Simard et al. (2011). The result
is shown in panel (c) of Figure 10. The correlation between 𝑓mg
and B/T is the strongest of any property we examined, with Pearson
correlation coefficients of 0.95 (AGN; 𝑝 = 2.8×10−5) and 0.98 (con-
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Figure 9. False positive rate (FPR) of our CNN ensemble as a function of mass ratio 𝜇 (left) and time since merger 𝐷𝑒𝑙𝑡𝑎𝑡 (right). The TNG testing set is split
into equally-filled bins to create these plots: horizontal error bars represent the bin widths. Grey dashed lines show linear best fits.

trols; 𝑝 = 1.8 × 10−7). This shows that the more bulge-dominated
a galaxy is, the more likely it is to be identified as a post-merger
by our CNN classifier, regardless of whether it hosts an AGN. This
in and of itself is hardly surprising, as it is generally believed that
mergers reorganize stellar orbits into bulges, so one might expect
that very few post-mergers are disc-dominated. However, this also
brings up the concern that bulge dominance may itself be a classi-
fication criterion for the CNNs rather than simply correlating with
presence of post-merger features. This possibility is further explored
in Section 4.3.

4.2.3 Merger fraction and redshift

Due to cosmological surface brightness dimming and the fact
that merger detection typically relies on identifying low-surface-
brightness features, it may be expected for identified merger fractions
to decline with redshift and a speculated merger enhancement among
AGN hosts (or any specific subpopulation) to therefore be detected at
a lower level or missed entirely (Pierce et al. 2023). Conversely, our
finding in Section 4.2.1 of a merger enhancement among the AGN
hosts only in star-forming galaxies would predict an increase in over-
all enhancement with redshift, given that star formation on the whole
increases with redshift until cosmic noon (𝑧 ∼ 2; Madau & Dickin-
son 2014). Panel (d) of Figure 10 shows merger fractions of AGN
hosts and controls in redshift bins. We observe negative correlations
between 𝑓mg and 𝑧 for both samples, though neither is particularly
significant (AGN: 𝑝 = 0.081; controls: 𝑝 = 0.018), likely due to the
flattening of predicted 𝑓mg above 𝑧 ∼ 0.1. In fact, 84% of the galaxies
with a majority of votes for merger lie at 𝑧 < 0.1.

Given that the bulk of the decline in observed merger fraction
occurs between 𝑧 ∼ 0 and 𝑧 ∼ 0.1, corresponding to a surface
brightness dimming of at most 0.2 mag, it seems unlikely that the
redshift dependence of observed merger fraction is entirely due to
cosmological dimming. However, the redshift-dependent mass- and
𝐿[Oiii]-completeness (see Figure 2) may play a role here, as merger
fraction is seen to decline with stellar mass, particularly among AGN
hosts (see panel (a) of Figure 10 and Section 4.2.1), as well as the
difference seen between AGN above and below 𝐿 [Oiii] ∼ 1040 erg
s−1 (see panel (e) and Section 4.2.4). Given the narrow redshift
range of this study, our results here cannot be extrapolated to higher
redshift.

4.2.4 Merger fraction and AGN luminosity

It has been suggested that the role of galaxy mergers in AGN trig-
gering may differ depending on AGN luminosity and accretion rate:
perhaps mergers are only needed to trigger the most luminous, rapidly
accreting AGN (Hopkins & Hernquist 2009; Hopkins et al. 2014).
This study is not well poised to make statements on relationships
with luminosity as our AGN are all at the lower end of the luminosity
function, but we nevertheless examine any possible trends within our
luminosity range in panel (e) of Figure 10. We observe a marginally-
significant negative correlation between merger fraction and 𝐿[Oiii]
(𝑟 = −0.65; 𝑝 = 0.043), though the main source of the trend comes
from the three lowest-luminosity bins, which are below the AGN
luminosity cuts used by many studies. In fact, if anything, the slight
uptick around 𝐿 [Oiii] ∼ 1041 erg s−1 could be suggestive of a trend
to higher luminosities.

4.3 CNN validation and comparison with visual inspection

While it is a strength of CNNs that they learn what features to extract
at training time, this quality can lead to difficulty telling which aspects
of an image lead to the CNN’s classification. Are our CNNs picking
up on specific tidal features indicative of recent mergers, or are there
other properties shared by the post-mergers in the training set, such
as being more bulge-dominated, driving the classifications?

To get a more intuitive sense of the CNNs’ selection criteria, as well
as compare the CNN to human classifiers, two of the authors (MSAM
and CV) performed visual inspection on the 70 SDSS galaxies rep-
resenting the most confident CNN-selected mergers (𝑃mg > 0.5 for
≥ 84% of CNNs; 24 AGN hosts and 46 controls). We matched these
to confident nonmergers in 𝑀∗, SFR, and AGN classification to cre-
ate a balanced sample for inspection. While these small subsamples
may not be fully representative of the scope of CNN-classified merg-
ers and nonmergers, they should give us a sense of whether or not the
CNN-selected mergers are visually identifiable. The galaxies were in-
spected blind to their merger classification and AGN status, although
the human classifiers were aware of the 50/50 merger/nonmerger
split.

The human classifiers inspected each image using the Zooniverse5

interface, with a 2 × 2 grid showing views of the image with two
different saturation levels and both the original and CNN-rescaled
pixel sizes. Classifiers were first asked to identify each galaxy’s mor-
phology as bulge-dominated, disc-dominated, or unable to tell, as

5 Zooniverse.org
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Figure 10. Merger fractions of SDSS AGN hosts (red squares) and control
galaxies (black circles) binned in (a) stellar mass, (b) specific star formation
rate, (c) bulge-to-total ratio (Simard et al. 2011), (d) redshift, and (e) [Oiii]
luminosity (without controls as their [Oiii] luminosities are dominated by
star formation rather than nuclear activity). Bins are chosen such that the
total number of galaxies per sample is equal in each bin. The points represent
the median value of each galaxy/AGN property and median merger fraction
calculated for each bin. Horizontal error bars represent bin width, while
vertical error bars represent 1𝜎 confidence intervals on the merger fractions
(as calculated from binomial errors and CNN variance; see Section 4.1).
While the controls are matched in log 𝑀∗ and 𝑧 and thus these bins have
equal edges, they are not matched in the other properties shown, notably
sSFR (see Figure 3). Note that the most extreme bins in both panels represent
the tails of each property’s distribution and hence are potentially very noisy.
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Figure 11. Merger enhancement ⟨ 𝑓mg,AGN ⟩/⟨ 𝑓mg,control ⟩ of the sample in
equally (logarithmically) spaced bins of stellar mass and star formation rate.
Bins are only shown if they contain at least 50 AGN hosts and 50 control
galaxies. Bins marked with a cross have 𝑝 (enh > 1) or 1 − 𝑝 (enh > 1) >

0.68 (i.e. the bins where merger enhancement deviates from 1 by at least
1𝜎). The dashed line indicates our adopted divide between blue cloud and
red sequence, determined by the parent galaxy population.

well as if they saw any merger features, which had to be specified
from a list (asymmetry, tidal tail, shell, multiple cores, or interacting
companion). Classifiers were additionally asked whether they saw
any non-interacting galaxies in the field. Finally, comments were
used to indicate uncertainty in their merger classifications (e.g. ‘mild
asymmetry’ or ‘possibly a spiral arm’). These were used to separate
the visually-classified mergers into ‘possible’ and ‘certain’ subcate-
gories.

The classifiers agreed with each other in 74% of cases, with 42%
agreed as nonmergers, 21% as certain mergers, and an additional
11% as at least possible mergers. We define our visual merger classi-
fication as galaxies labelled as a certain merger by least one classifier
(including those where the other classification was nonmerger). Fig-
ure 12 shows the agreement between the visual classifiers, with the
collective ‘MSAM or CV’ classification indicated by text colour.

Our visual classifications agree with the CNN classifications in
only 43% of cases. As shown in Figure 13, MSAM and CV collec-
tively classified the CNN nonmerger set as being 50±5.9% mergers,
while they only identified visual merger features in 35.7+6.0

−5.2% of
the CNN mergers (errors given by beta distribution 1𝜎 intervals).
Overall, there appears to be very little similarity between the CNN-
identified mergers and what human visual classifiers deem as likely
mergers.

Figure 4 gives examples of the visually classified images and
hence intuitively demonstrates where the CNN and humans diverge
in merger classification criteria. While several of the CNN-predicted
mergers show strong tidal features and high levels of disturbance,
many appear smooth and featureless. We would expect high non-
merger contamination among these due to the rarity of mergers in
the parent sample. Conversely, many of the CNN-predicted nonmerg-
ers show features, particularly spiral arms, that could lead to merger
flags based on our visual criteria, but may well be due to other pro-
cesses than mergers. Coupled with the observed positive correlation
between predicted merger fraction and 𝐵/𝑇 (see Figure 10c), as well
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as the tendency of the CNNs to predict more false positives among
galaxies with higher mass ratios of and less time since their most
recent merger (even over timescales of Gyr), this points to the CNNs
identifying mergers by overall galaxy shape as well as a few very spe-
cific features, but asymmetry on its own is not enough to merit a high
merger probability. This interpretation also provides an explanation
for why the human classifiers found a lower fraction of visual mergers
among the CNN mergers in the control galaxies compared with the
AGN hosts (see the right columns of the central and right panels of
Figure 13), since the control sample contains proportionately more
of these bulge-dominated galaxies. In summary, while visual classi-
fication shows poor agreement with the CNN classification, this can
be explained by the differing features identified by humans and the
CNN.

To better understand how well human classifiers can identify post-
mergers from images, MSAM and CV also inspected a subset of the
TNG training images. They were shown mock images of 46 post-
mergers and 46 matched nonmergers, sampled across the 𝑀∗ and 𝑧

distributions, with the knowledge that the dataset was evenly split.
They viewed the idealised and realistic images simultaneously and
were asked which image, if either, showed merger features.

Compared with the true merger state from the simulation,
MSAM/CV were unable to consistently identify actual post-mergers,
each correctly identifying merger status of 53/66% of the idealised
images and 49/58% of the realistic images. Both classifications from
CV are consistent with random guessing, while MSAM achieved
slightly higher accuracy at the cost of labelling many (29% for ide-
alised and 36% for realistic) false positives. Both classifiers saw a
slight but not significant increase in accuracy comparing realistic to
idealised images, indicating that even in the idealised stellar maps
with no noise or sky added, mergers are not visually distinguish-
able. However, we do observe a slight increase of true positive rate
with decreasing time since the merger (no trend was observed with
mass ratio). Evidently post-mergers in TNG100 do not all exhibit the
features used to visually classify galaxies as merging, though this
appears more likely to be the case immediately after coalescence.

The inconsistency between visual and CNN classification raises
the question: do galaxy mergers in cosmological simulations ac-
tually look like real galaxy mergers? Several previous works have
assessed the suitability of TNG for comparisons to SDSS (also using

RealSim), though they do not focus specifically on mergers. Huertas-
Company et al. (2019) showed that TNG100 produces a population of
galaxies whose morphological properties broadly agree with SDSS
at 𝑧 ∼ 0.05, spanning the full range of morphological types and
reproducing global relations such as the size-mass relation. How-
ever, Zanisi et al. (2021) found that a neural network could identify
differences between the populations of galaxies in TNG compared
with SDSS, calculating a distance metric between the simulated and
real galaxy populations. Notably, when split into star-forming and
quiescent samples, the simulated star-forming population displayed
a smaller distance to its SDSS counterpart than the quiescent popula-
tion did, indicating that TNG reproduces more realistic star-forming
galaxies than quiescent. Eisert et al. (2023) sought to connect im-
age realism with specific galaxy properties, using deep learning to
compare TNG galaxies with those observed by HSC They found that
overall, ∼ 67% of TNG100 galaxies reside within the domain of
visual appearances spanned by observations, while the other 33%
are ‘out of domain,’ which can be interpreted as realistic/unrealistic.
They connected a high out-of-domain score (implying poor realism)
with larger radii and asymmetry, higher concentration, and lower el-
lipticity (see their Figure 12), some of which are features associated
with red sequence galaxies, though they did not find similar trends
with galaxy colour, 𝐵/𝑇 , or 𝑀∗. We note that we observe a decline
of CNN performance with increasing physical radius but not angular
size (see Figure A5cd), though this may be easily explained by the
decrease in number of galaxies above a certain size.

To summarise, visual inspection on subsets of both our science
sample and our training sample has shown that while many of the
CNN-selected mergers show no visually obvious signatures, neither
do many of the actual post-mergers found in TNG. Conversely, while
many of the CNN-selected nonmergers show asymmetry and other
features suggestive of a merger, so do TNG galaxies that have not
undergone a merger in several Gyr. While recent studies in the field
suggest that a substantial fraction of our training sample may be
‘unrealistic’ in terms of their resemblance to real galaxies, we cannot
say for sure whether the discrepancy between simulated mergers and
what humans identify as mergers is the result of poor simulation
realism or an indication that visual classification is not as accurate at
identifying true post-mergers as previously thought.

5 DISCUSSION

Overall, we find no enhancement in merger fractions between
Seyfert 2 hosts and mass- and redshift-matched control galaxies
( 𝑓mg,AGN = 2.19+0.21

−0.17% vs 𝑓mg,control = 2.96+0.26
−0.20%), indicating

that mergers are not the dominant cause of most supermassive black
hole accretion in obscured, low-luminosity AGN in the nearby Uni-
verse, and secular processes must play an important role. However,
when splitting our sample into star-forming and quiescent popula-
tions, we find a significant merger excess among AGN hosts in the
blue cloud compared with controls, while there are significantly fewer
mergers among AGN hosts than controls in the red sequence. This is
seen when comparing merger fractions of AGN hosts with controls
in bins of stellar mass and specific star formation rate (Figure 10
panels (a) and (b)), as excesses in merger fraction of AGN hosts over
controls are seen at low 𝑀∗ and high sSFR, and the divide becomes
clear when visualising merger enhancements over the 𝑀∗ − SFR
plane (Figure 11).

We note that due to the fact that major mergers are rare in the gen-
eral population, that even with high detection accuracy as achieved
here, the final sample of mergers is expected to have low purity. This
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is due to the fact that the false positives on the much larger non
merger sample will be higher in number than the true positives on
the much smaller number of major mergers. This also results in the
excess of mergers being underestimated. For example, assuming the
accuracy achieved here and a fraction of mergers in the full sample
of 5% (as observed here), the true excess would be underestimated
by about a factor of ≈2. This means that the actual excess seen in the
star-forming galaxies is likely higher, while the upper limit on the
excess in the full sample is still consistent with an enhancement of
mergers in the AGN sample of a factor of ∼ 2.

This result suggests that the ability of a merger to trigger an AGN
depends on the cold gas content of the galaxy, as higher sSFR in
the post-merger indicates the presence of cold gas. If there is no
gas for a merger to drive to the centre, then the merger has no
positive effect on the likelihood of an AGN to form, as we actually
observe a relative (low-significance) lack of mergers among AGN
hosts compared with controls in non-star-forming galaxies. This is
broadly consistent with the conclusions of Sabater et al. (2015),
though our data and results differ somewhat. Studying a sample
drawn from the same MPA-JHU catalogue, Sabater et al. (2015)
found a correlation between AGN fraction and host galaxy interaction
rate, but this correlation disappeared when controlled for central
star formation. They concluded that the key requirement for AGN
formation is availability of cold gas at the centre of the galaxy. This
work finds an excess among AGN hosts only in galaxies with higher
specific star formation over the entire galaxy, suggesting that mergers
are a vehicle for moving this gas inwards to the centre, when it is
present in the outer regions.

Unlike Ellison et al. (2019), who studied a similar sample of
optically-selected low-luminosity AGN hosts from SDSS, we find
no significant correlation between [Oiii] luminosity and merger frac-
tion. Our observation of a general decrease of 𝑓mg with stellar
mass also disagrees with their finding of an increase of 𝑓mg above
𝑀∗ ∼ 1010.6 𝑀⊙ . However, the complete lack of agreement between
our CNNs and expert human classifiers on our own galaxies (see
Section 4.3) indicates that the CNN classifications are probing a
different population of galaxies from visual classifications. Ellison
et al. (2019) based their merger classifications on visual inspection
and included systems identified as both pre- and post-coalescence
in their merger correlation calculations, compared with our CNN
classifier only looking for post-mergers, so it is likely that our two
studies probe very different populations of galaxies both identified
as ‘mergers.’

Ellison et al. (2019) additionally report much higher merger frac-
tions in both their AGN hosts and control galaxies than what we

find here: ∼18% of their total sample are identified as post-mergers,
compared to our ∼4%. As they base their merger identification on
imaging from CFIS, which they demonstrate to be deeper and of
higher quality than SDSS imaging, it is likely that our images are
missing low-surface-brightness features identifiable in CFIS images
of the same galaxies. Further, as our CNN classifier has been demon-
strated to identify galaxies as post-mergers without the presence of
human-identifiable merger signatures, the converse may be true as
well, as our visual inspection experiments identified a number of
galaxies with asymmetries that none the less had confident non-
merger classifications by the CNNs.

As star formation has generally declined from 𝑧 ∼ 2 to 𝑧 ∼
0 (Madau & Dickinson 2014), our observation of a merger enhance-
ment only among AGN hosts in the star-forming blue cloud suggests
that the merger-AGN connection should be stronger at higher redshift,
consistent with the models of Draper & Ballantyne (2012) and Hop-
kins et al. (2014). Our redshift window of 𝑧 ∼ 0 − 0.3 is too narrow
to see sSFR increase appreciably with 𝑧 in our sample, and we also
see no increase of merger enhancement: in fact, we see the opposite,
likely affected by both surface brightness dimming and the redshift-
dependent mass and luminosity completeness of SDSS. While most
higher-redshift studies of the merger-AGN relationship have focused
on high-luminosity quasars, Cisternas et al. (2011) looked at host
galaxy morphologies of AGN with 𝐿X (2 − 10 keV) ≲ 1045 erg/s
at 𝑧 ∼ 0.3 − 1 in the COSMOS survey, which represent a similar
luminosity range to ours. They found no overall correlation between
merger features and AGN activity. They further found no significant
dependence of merger fraction on stellar mass within the AGN pop-
ulation, though they did not comment on star formation properties
or gas fractions in their galaxies. For both their AGN hosts and their
controls, they found 34 − 35% to be bulge-dominated and 65 − 66%
to be disc-dominated, compared to our 74% of AGN hosts and 69%
of controls being disc-dominated (𝐵/𝑇 < 0.5). Their observation of
no overall enhancement is thus consistent with ours, though we can-
not compare specifically between the blue cloud and red sequence
populations. It is worth noting that Cisternas et al. (2011) also found
substantially higher merger fractions than this work did, with 15%
of their AGN hosts and 13% of their controls being classified with
strong distortions. As COSMOS is a much deeper survey than SDSS,
it is difficult to say with certainty whether this difference is related to
the increased redshift and implied increased gas fractions and SFRs
or simply due to the increased sensitivity (though it may be noted
that their observed merger fraction is consistent with the post-merger
fraction found by Ellison et al. 2019 at 𝑧 ∼ 0).

Our results are also broadly compatible with theoretical predic-
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tions. In both the eagle and Magneticum Pathfinder simulations,
mergers are found not to dominate black hole fuelling, but they are
most relevant at the highest luminosities (𝐿bol ≳ 1046 erg s−1), far
outside the region examined in this work (McAlpine et al. 2020;
Steinborn et al. 2018). Both observe a decreasing merger enhance-
ment with stellar mass, with fewer mergers seen among AGN hosts
than control galaxies at 𝑀∗ ≳ 1011𝑀⊙ . This is similar to our results
in panel (a) of Figure 10, though we see the transition at the lower
mass of 𝑀∗ ∼ 1010.5𝑀⊙ .

In more general terms, hydrodynamical simulations have shown
that galaxies with AGN are often characterized by a larger gas density
within the resolved accretion region around the central SMBH (e.g.
Steinborn et al. 2018, Figure 9). Whilst in all galaxies these central
gas densities decrease with cosmic time, particularly following the
overall galactic cosmic starvation, galaxies with evident AGN activity
and larger SMBH masses have a tendency for higher central densities,
a trend largely independent of their merger histories but possibly more
related to the conditions of the larger scale gas distribution. The same
simulations also show that mergers tend to trigger more AGN activity,
but their frequency among the AGN population remains limited to
< 20%, pointing to a contained role of mergers in boosting AGN.
This also matches our results of relatively low merger fractions. The
simulations also clearly predict that the AGN are much more common
in star forming galaxies, pointing to a close and statistically sound
correlation between AGN activity and SFR, although the models also
predict AGN fractions independent of the AGN luminosity, matching
our results of a higher merger enhancement in star-forming galaxies
(see Figure 11).

These theoretical predictions are in broad agreement with our ob-
servations that suggest a relatively small difference in the merger
fractions of active and inactive galaxies and a tendency for galaxies
with larger sSFR to have more AGN activity. More recent stud-
ies (Smethurst et al. 2023) conducted on the AGN-Horizon simula-
tion have shown that the BH mass-galaxy mass scaling relation is
preserved in all types of galaxies irrespective of their bulge-to-total
ratio and level of merger activity, even in galaxies with almost qui-
escent assembly histories, further supporting the idea of a loose link
between mergers and AGN activity. Simulations with Lagrangian
hyper-refinement (Anglés-Alcázar et al. 2021), however, have also
shown that although sub-pc inflow rates do correlate with nuclear
star formation, they might decouple with the larger scale SFR in the
host galaxy. Therefore, our results are consistent with a picture in
which the connection between mergers and AGN activity depends
on the galaxy’s gas fraction (see Figure 11).

6 CONCLUSIONS

The relative importance of galaxy interactions to the fuelling of
supermassive black holes has long been a subject of debate. While
major mergers have been shown to trigger the necessary gas inflows,
observational evidence remains inconclusive due to the difficulty
of consistently identifying merger features, particularly in galaxies
containing AGN.

In this paper, we have approached this problem by using deep
learning techniques to detect galaxy mergers in a sample of ∼8500
Type 2 Seyferts at 𝑧 < 0.3 compared with mass- and redshift-matched
inactive control galaxies. We have accomplished this by using super-
vised learning with an ensemble of convolutional neural networks
trained to identify post-mergers in the IllustrisTNG simulation, based
on images processed to mimic SDSS 𝑔𝑟𝑖 observations. Comparing
identified merger fractions in our two samples, we find the following:

• There is no significant merger enhancement among low-redshift
Seyfert 2 galaxies compared with inactive galaxies at the same stel-
lar mass and redshift, with our CNN ensemble finding 𝑓mg,AGN =

2.19+0.21
−0.17% and 𝑓mg,control = 2.96+0.26

−0.20%. This indicates that galaxy
mergers are not the dominant trigger of low luminosity obscured
AGN in the nearby Universe.

• The fraction of mergers among AGN hosts decreases with stellar
mass, while it remains constant for controls. AGN hosts with 𝑀∗ ≲
1010.5𝑀⊙ are more likely to have undergone a recent merger than
control galaxies at the same mass, while those with 𝑀∗ ≳ 1010.5𝑀⊙
are less likely.

• Merger fraction for both AGN hosts and controls decreases with
specific star formation rate and increases with bulge-to-total fraction.
The decrease with sSFR is less pronounced for AGN hosts than for
controls, and a merger excess is observed at sSFRs above ∼10−10.5

yr−1.
• When separated in the 𝑀∗-SFR plane (Figure 11), there is a

significant difference in merger activity of AGN hosts relative to
controls depending on the stellar populations of the galaxies. We
observe, relative to controls, both

(i) a significant merger enhancement of 2.03+0.92
−0.63 among AGN

hosts in the blue cloud ( 𝑓mg,AGN = 1.07+0.19
−0.14% and 𝑓mg,control =

0.52+0.14
−0.09%; 𝑝(enh > 1) = 0.953) and

(ii) a significant lack of mergers (enh = 0.65+0.10
−0.09) among

AGN hosts in the red sequence ( 𝑓mg,AGN = 3.15+0.37
−0.27% and

𝑓mg,control = 5.01+0.45
−0.35%; 𝑝(enh > 1) = 0.0041),

suggesting that major mergers have very different impacts on black
hole accretion depending on the specific star formation rate, and by
implication cold gas fraction, of the host galaxies involved. Mergers
appear to have a positive impact on AGN formation in star-forming,
gas-rich galaxies, helping to drive gas from the disc to the centre.
Conversely, mergers have no significant effect on AGN in galaxies
that are overall gas-poor.

• Convolutional neural networks trained on simulated galaxy
mergers agree very little with human classifiers when examining
the same set of observations. Human classifiers are found to perform
very poorly at identifying simulated post-merger galaxies, suggest-
ing that these galaxies actually look very different from the human
notion of a galaxy merger and that deep-learning approaches will be
more reliable identifiers of post-mergers going forward.
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APPENDIX A: CNN PERFORMANCE ON TNG GALAXIES

This section provides additional details on the performance of the
CNNs on TNG training data, illustrating the stability of merger pre-
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Figure A1. Loss function of the CNNs over the training period. Solid lines
show median loss over all CNNs at each epoch, while shaded regions show
90% of the CNNs. As training length is variable, the number of CNNs still
training at a given epoch is shown in grey.

dictions with regard to changes in classification threshold probability
as well as the possibility of merger prediction bias with different
galaxy properties.

Figure A1 shows the aggregated training histories of the CNN
ensemble. While the loss function continuously improves for the
training galaxies, it levels off quickly for the validation galaxies.
Training is cut off after 50 epochs of no improvement to the validation
loss, thereby limiting the amount of overfitting.

Figures A2 and A3 illustrate the effect of changing the threshold
between merger and nonmerger classification. Precision and recall
(also called purity and completeness as in Section 4.1) measure the
fraction of correctly-identified galaxies out of the set of identified
and actual positives, respectively (i.e. precision=TP/(TP+FP) and
recall=TP/(TP+FN)). These vary with classification threshold in a
complementary way, as shown in the top panel of Figure A2. Our
adopted threshold of 0.5 is seen to balance both metrics. Overall CNN
accuracy, seen in the bottom panel, is largely insensitive to prediction
threshold within the central third of its range. This is due to the strong
bimodality in 𝑃mg predictions for most of our CNNs, an example of
which is shown in Figure A3. For our balanced testing set, small
changes in prediction threshold see more false positives balanced out
by more true positives, or vice versa. For the observational dataset in
which mergers are rare events, the tradeoff becomes more extreme,
where changing the threshold to include one more true merger would
be expected to add 10-20 false positives. However, we note that the
trends seen in Figure 10 persist over different choices of classification
threshold, with the overall normalisation being the only change.

To check for potential biases in the CNN classifier, Figures A4
and A5 illustrate how CNN performance changes with galaxy prop-
erties. Figure A4 compares predicted with true merger fractions in
the training galaxies binned in stellar mass, specific star formation
rate, half mass radius (physical and angular), and redshift, while Fig-
ure A5 shows true- and false-positive rates over the same properties
in addition to merger mass ratio and time since merger. Table A1 lists
the Pearson correlation coefficients and their associated 𝑝−values for
FPR, TPR, and, where applicable, 𝑓mg excess (Δ 𝑓mg; see Figure A4).
The correlations found among TPR suggest that the CNNs may be
missing more true mergers at:

(i) higher galaxy masses, which is unsurprising given the relative
rarity of high-mass galaxies in the training set (see Figure 5). As the
AGN and control samples are matched in stellar mass, this should not
greatly affect the merger enhancements and depressions measured.

(ii) lower specific star formation rates. This suggests that the de-
cline of 𝑓mg with sSFR may be steeper than shown in Figure 10b.
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Figure A2. Precision and recall (top panel) and overall accuracy (bottom
panel) as a function of threshold probability for our ensemble of 100 CNNs
applied to the testing set of our IllustrisTNG training data. Each line represents
a single CNN.

This should not greatly affect our main result of a merger enhance-
ment only in the blue cloud: if anything, additional mergers at lower
sSFR could increase the magnitude of the differences seen.

(iii) larger physical radii. This correlation is hardly surprising
given that large-radius galaxies are rare, similar to high-mass galax-
ies, but it has a less obvious interpretation since we did not study 𝑓mg
evolution with physical size in the SDSS sample. As galaxy radius
does correlate with stellar mass and overall SFR, we may expect
merger completeness to decline moving towards larger 𝑀∗ and SFR
in Figure 11. Overall, this trend seems unlikely to affect our overall
results.

In terms of possible contamination, the only galaxy properties
with which the merger predictions showed significant correlations
with FPR were merger mass ratio and time since merger, neither of
which can be measured in our SDSS sample. As discussed in depth
in Section 4.3, these trends (coupled with the observed increase of
𝑓mg with 𝐵/𝑇 , Figure 10c may indicate that the CNNs base their
predictions more on overall morphology than on specific small-scale
features.

The residuals of predicted and true 𝑓mg for the TNG testing set
give a direct indication of where the CNNs may over- or underpredict

0.0 0.2 0.4 0.6 0.8 1.0
Pmg

50

100

N
ga

l

post-mergers
nonmergers

Figure A3. Predicted merger probabilities for the TNG testing set for one
of our CNNs. The relative lack of highly confident post-mergers vs with
highly confident nonmergers is typical, potentially due to the wider variation
in appearance of post-mergers compared with nonmergers.

merger fraction. Of the observable galaxy properties, the only prop-
erty which significantly correlated withΔ 𝑓mg and had𝜎Δ 𝑓 ≳ 𝜎 𝑓 true,
i.e. changes in Δ 𝑓mg at least as large as the scatter in 𝑓mg,true, was
stellar mass. Again, since the AGN hosts and controls are matched
in mass, a slight underprediction of mergers at high stellar mass
and slight overprediction at low stellar mass should not substantially
affect our results.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A4. Predicted merger fraction of TNG training galaxies (blue squares) compared to actual merger fraction (black line) binned by (a) stellar mass, (b)
specific star formation rate, (c) physical stellar half-mass radius, (d) angular stellar half-mass radius, and (e) redshift. Pink circles show residuals.
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Figure A5. True positive rate (green) and false positive rate (orange) on the TNG training galaxies binned in (a) stellar mass, (b) specific star formation rate, (c)
intrinsic half-mass radius, (d) angular half-mass radius, (e) merger stellar mass ratio, and (f) time since merger.
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Property TPR FPR Δ 𝑓mg

𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

log(𝑀∗/𝑀⊙ ) −0.73 2.0 × 10−3 −0.26 0.36 −0.91 2.3 × 10−4

log(sSFR/yr−1 ) 0.86 3.8 × 10−5 0.34 0.22 0.66 0.038

log(𝑅0.5𝑀∗/kpc) −0.75 1.3 × 10−3 0.53 0.042 −0.82 3.8 × 10−3

log(𝑅0.5𝑀∗/′′ ) 0.07 0.81 0.64 0.01 0.20 0.59

𝑧 −0.44 0.21 −0.43 0.22 −0.77 8.8 × 10−3

log 𝜇 0.47 0.17 0.65 9.1 × 10−3 – –

log(Δ𝑡/Gyr) −0.45 0.19 −0.86 1.6 × 10−3 – –

Table A1. Pearson 𝑟 correlation coefficients and their associated 𝑝−values for true positive rate (TPR), false positive rate (FPR), and 𝑓mg excess (Δ 𝑓mg; see
Figure A4). Values with 𝑝 < 0.01 are bolded.
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