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Doctor of Philosophy

Aspects of Estimation and Inference for Predictive Regression Models
by

Christis Katsouris

This PhD thesis1 presents three essays on nonstationary time series econometrics which are
grouped into three chapters. The chapters cover aspects of estimation and inference for predictive
regression models through the lens of moderate deviation principles from the unit root boundary
in a class of stable but nearly-unstable processes which exhibit high persistence.

The first chapter presents an overview of the research background which includes the persistence
classes and the main asymptotic properties of estimators for nonstationary autoregressive pro-
cesses. The persistence properties of time series is modeled via the local-to-unity parametrization
which implies that the autoregressive coefficient is specified such that it approaches the unit
boundary as the sample size increases. The second part of the chapter summarizes the structure
of the thesis and the main contributions to the literature.

The second chapter, proposes an econometric framework for predictability testing in linear predic-
tive regression models robust against parameter instability. In particular, the asymptotic theory
for the proposed sup-Wald test statistics when regressors are assumed to be mildly integrated
and persistent stochastic processes is established. The asymptotic theory of OLS and IVX based
estimators and test statistics presented in this thesis is developed based on standard local-to-unity
asymptotics and the limit theory of triangular arrays of martingales.

The third chapter, addresses the aspect of structural break detection for nonstationary time series
when a conditional quantile specification form is used. In particular, the proposed econometric
framework is suitable for testing for a structural break at unknown time in nonstationary quantile
predictive regression models and can be further employed for investigating the aspect of quantile
predictability against parameter instability.

The fourth chapter, proposes a novel estimation and inference methodology in systems of quantile
predictive regressions with generated regressors. This econometric framework allows to address
the issue of modelling systemic risk in financial networks when considering the interplay between
network-type of dependence and time series nontationarity.

1Christis Katsouris (2022). "Aspects of Estimation and Inference for Predictive Regression Models", University
of Southampton, Faculty of Social Sciences, Department of Economics, PhD Thesis.
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Chapter 1

Introduction

1.1 Background

Consider the first-order autoregressive process {Xt}+∞
t=1 , defined by the following recursive process

Xt = ϑnXt−1 + εt, X0 = 0, (1.1)

where {εt} are independent N (0, 1) random sequences. The least squares estimator ϑ̂n of ϑ, based
on a sample of n observations {X1, ..., Xn} is given by the following expression

ϑ̂n =
(

n∑
t=1

X2
t−1

)−1( n∑
t=1

Xt−1Xt

)
. (1.2)

It is well known that ϑ̂n is a consistent estimator for ϑn for all values of ϑn ∈ (−∞,+∞). More
precisely, the asymptotic distribution of ϑ̂n depends on restrictions imposed on the admissible
parameter space of ϑ. In particular, in the stable case, which implies that the parameter space of
ϑ takes values within the unit circle, that is, |ϑ| < 1, various seminal studies such as Mann and
Wald (1943) and Anderson (1959) among others, have shown that

√
n
(
ϑ̂n − ϑn

)
d→ N

(
0, 1 − ϑ2) as n → ∞. (1.3)

When the true parameter lies on the boundary of the parameter space, such that |ϑ| = 1, it has
been shown by White (1958) and Phillips (1987b) that the following limiting distribution holds

n
(
ϑ̂n − ϑn

)
d→
(∫ 1

0
W (r)2ds

)−1 (∫ 1

0
W (r)dW (r)

)
as n → ∞, (1.4)

where W (r) for some 0 ≤ r ≤ 1 is a standard Wiener process within the probability space
(Ω,P,Ft). Furthermore, when the true parameter of the autoregressive process given by (1.1)
is outside the unit circle (explosive parameter region), such that |ϑ| > 1, it has been shown by
White (1958) and Anderson (1959) that the following asymptotic result holds

√
n
(
ϑ̂n − ϑn

)
d→ Cauchy

(
0, ϑ2 − 1

)
as n → ∞. (1.5)

1



CHAPTER 1. 2

The aforementioned statistical properties have been an important aspect of consideration in
both the statistics and the time series econometrics literature (see, Rao (1978), Dickey and Fuller
(1979), Chan and Wei (1987), Phillips (1989), Abadir (1993), Buchmann et al. (2007), and Phillips
and Magdalinos (2007)). Without loss of generality, considering for each n ∈ N, the statistical
experiment En corresponding to the observations {X0, ..., Xn}, the sequence (En)n∈N, where En
represents the experiment under consideration (i.e., recursive process), is locally asymptotically
normal (LAN ) if |ϑ| < 1, it is locally asymptotically Brownian functional (LABF) if |ϑ| = 1, and
it is locally asymptotically mixed normal (LAMN ) if |ϑ| > 1 (Le Cam and Yang (2012). The
local-to-unity asymptotic framework was introduced by Chan and Wei (1987), Phillips (1987a),
Phillips (1987b), Phillips (1988a), Phillips (1988b), Phillips and Perron (1988).

Specifically, the class of nearly nonstationary time series models as proposed by the seminal
studies of Phillips (1987a) and Phillips (1987b) who developed asymptotics for near-integrated
time series provide a unified approach to inference. In practise, expressing the autocorrelation
coefficient with the local-unit-root specification, such that, ϑn =

(
1 + c/n

)
, where n the sample

size and c denotes the nuisance parameter of persistence, provides a modelling methodology that
encompasses such moderate deviations from the unit boundary (e.g., unit root, near-integrated or
explosive). Furthermore, the nonstandard nature of the inference problem in predictive regressions
has been previously discussed in the literature such as by the studies of Phillips and Hansen
(1990), Cavanagh et al. (1995) and Jansson and Moreira (2006), with the main challenge being
the robustness of inference methodologies to the nuisance parameter of persistence. In addition,
Phillips and Magdalinos (2009) and Kostakis et al. (2015) have proposed a unified framework for
robust estimation and inference regardless of the unknown degree of persistence.

Figure 1.1: Spectrum of degrees of nonstationarity



CHAPTER 1. 3

All three essays in the thesis are developed around the idea that when considering nonstandard
inference problems in time series models the asymptotic theory will be affected by the nuisance
parameters of persistence which capture the nonstationary properties. In particular, the aspect of
nonstationarity in time series has important implications for estimation and testing purposes and
in simple terms describes the integration order. Although the conventional approach in stationary
time series modelling environments is to consider the first difference approach to ensure covariance
stationarity, it is found to result in loss of information especially with respect to long-memory
properties. In contrast, within the predictive regression framework the persistence properties
of regressors are captured by the nuisance parameter of persistence ci and the exponent rate γ.
Thus, in our modelling environment the degree of persistence allows to model moderate deviations
from the unit boundary by employing the local-to-unity specification and the related asymptotics
in order to establish weak convergence of sample moments to Brownian motion functionals.

Firstly, against this background testing the null hypothesis of no parameter stability in predic-
tive regression models, implies that the testing hypothesis is formulated to capture unobserved
time-variation in the coefficients of the model. Under the alternative hypothesis which implies
the presence of a single structural break, we basically have the case where the model coefficients
are non constant throughout the sample. However, allowing for an unknown break-point location,
implies that we have the problem of an unidentified parameter under the null hypothesis, also
called Davies problem, which requires to consider the supremum functional when testing for a
structural break as well while deriving the asymptotic distribution of the proposed tests statistics
(see, Davies (1977), Davies (1987) and Hansen (1996), Hansen (2000b)). Additionally, operating
within the predictive regression framework implies that regressors are generated as nonstation-
ary AR(1) autoregressive processes, which means expressing the autocorrelation coefficient with
respect to the local unit root specification and therefore permits to capture abstract degree of
persistence by considering different values of the parameter space of ci and γx.

More precisely, we assume that the autocorrelation coefficient to take values near the unit bound-
ary, but we consider two cases, such that it approaches unity from below but with different
convergence rates (local unit root or mildly integrated). In other words, we restrict the permissi-
ble values of these nuisance parameters, such as ci > 0 for all i ∈ {1, ..., p} and the exponent rate
γ, that controls the degree of persistence of the predictors, to take values such that 0 < γ ≤ 1.
Consequently, the asymptotic behaviour of test statistics, especially when testing for structural
breaks, relies on the implementation of suitable invariance principles. Specifically, for the de-
velopment of the asymptotic theory in the thesis, we employ the fundamental building block
when deriving asymptotics for nonstationary time series models such as the weakly convergence
of invariance principles into their Brownian motion counterparts.

The concept of invariance principles was first introduced by the paper of Erdös and Kac (1946) as
well as generalized by Prokhorov (1956) (see, discussion in Kuelbs (1968)). Furthermore, Kuelbs
(1968) considers the weak convergence of these random elements into continuous functionals on the
space of real-valued functions that includes Gaussian measures as analogues to Wiener measures.
More precisely, the particular property of such topological spaces motivated the construction of a
new metric such as the approach of Skorokhod (1956), who introduced a number of metrics on the
space of cádlag functions on [0, 1], with J1 topology being the most widely used in statistics and
econometric asymptotic theory. A first introduction of the particular weak convergence arguments



CHAPTER 1. 4

when considering the asymptotics of autoregressive processes is presented by White (1958) and
White (1959). Then, the asymptotic theory of model estimators for autoregressive processes
was established by Chan and Wei (1987) and by the seminal papers of Phillips (1987a), Phillips
(1987b) and Phillips and Durlauf (1986) who establish the concepts of invariance principles for
time series regression models and the asymptotic theory for obtaining the limiting behaviour of
estimators and test statistics (see, also Phillips and Solo (1992)).

Secondly, we consider the statistical estimation and inference problem in quantile time series
models which occurs when the main purpose is to estimate the conditional quantile instead of
the conditional mean for quantile time series models. Therefore, in Chapter 3 and 4 of the
thesis we concentrate on the particular modelling methodology within the nonstationary econo-
metric environment. The first application (Chapter 3) examines the structural break detection
in nonstationary quantile time series models, while the second application (Chapter 4) proposes
an estimation and inference framework for systemic risk in financial networks. In particular,
a large literature that considers econometric methods for modelling systemic risk in financial
markets (see, Härdle et al. (2016) and Adrian and Brunnermeier (2016)) illustrate the effect of
increased tail dependence and the presence of systemic risk appears as higher level of connect-
edness. Therefore, the novelty in Chapter 4 of the thesis is that we consider the modelling of
systemic risk by developing an econometric framework for estimation and inference in quantile
predictive regression systems under the assumption of possibly nonstationary regressors.

1.2 The IVX Instrumentation

A key theoretical background to the thesis is the use of instrumental variable estimation methods
in the context of nonstationary predictive regressions models, which is the case when the regressors
are modelled using an autoregressive specification with an autocorrelation coefficient that has the
local-to-unity form, such that, ρn = (1 + c/nγx), where γx is the exponent rate of the localizing
coefficient of persistence and c is the coefficient of persistence that can take either negative values
(c < 0) when we assume that the underline stochastic processes that generate the regressors are
near-stationary or takes a positive values (c > 0) when regressors exhibit mildly explosive or
explosive asymptotic behaviour both cases in conjecture with what values we allow the exponent
rate to take, such that γx = 0, γx = 1 or γx ∈ (0, 1). All of the above cases can be generalized
within the moderate deviations framework as proposed by Phillips and Magdalinos (2007), and
require the use of IV techniques in order to construct the filtered instruments based on the IVX
instrumentation proposed by Phillips and Magdalinos (2009). In this thesis we employ this robust
inference procedure (see, Kostakis et al. (2015)) for predictive regressions, that does not require
knowledge of the degree of persistence. In particular, the KMS test is a Wald-type statistic which
is constructed based on endogenously generated variables and has a chi-squared limit distribution
with degrees of freedom equal to the number of stochastic regressors. Usually the interest of
standard procedures in the literature is in testing joint significance of all the stochastic regressors
included in the regression. The specific testing hypothesis has an exact finite-sample distribution,
although some presence of finite sample distortions could be unavoidable due to the bias in the
residual-variance estimator which can be corrected using the fully-modified transformation of the
corresponding quantities. These finite-sample size distortions disappear asymptotically.
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1.2.1 Classification of Autoregressive regions

Next, we provide an assumption which summarizes the persistence properties one can consider
with respect to the parameter space of the autocorrelation coefficient that appears in the autore-
gressive specification that models the possibly nonstationary stochastic regressors of the predictive
regression models, the main econometric model of interest in the thesis.

Assumption 1.1. (Persistence class) Consider the specification

Xt = θnXt−1 + ut (1.6)

Consider the following probability limit

ζn := lim
n→+∞

n (θn − 1) → ζ (1.7)

P.1 nearly stable processes: if (θn)n∈N is such that ζ = −∞ and it holds that θn → |θ| < 1.

P.2 nearly unstable processes: if (θn)n∈N is such that ζ ≡ c ∈ R and it holds that θn → θ = 1.

P.3 nearly explosive processes: if (θn)n∈N is such that ζ = +∞ and it holds that θn → |θ| > 1.

Notice that various definitions exists in the literature. In particular, the class P.1 corresponds
to the near-stationary definition of Magdalinos (2020) and the class P.2 corresponds to the near-
nonstationary definition of Magdalinos (2020). Some further details regarding these definitions:

The class P.1 implies that θn is near to the unit boundary but there is no local-to-unity speci-
fication, therefore the limit tends to −∞. Furthermore, for the class P.2 we have that θn → 1
but we specify θn =

(
1 + c

kn

)
, where kn = nγx with γx = 0, γx = 1 or γx ∈ (0, 1). Thus, when

θn =
(
1 + c

kn

)
we have that

ζn := lim
n→+∞

n (θn − 1) = lim
n→+∞

n

[(
1 + c

kn

)
− 1

]
= lim

n→+∞

{
n

kn

}
c (1.8)

In the thesis we mainly focus in the case when c < 0, which implies that

1. If kn = nγx with γx = 1 (kn = n), then ζ ≡ c ∈ R, whichfallsintheclassofnearly-unstableprocesses(near−
nonstationary).

2. If kn = nγx with γx ∈ (0, 1), then ζ = −∞. In this case, although we are in the perimeter of
the circle given on Figure 1 but within the "blue zone" then we have a mildly integrated process
which falls in the class of nearly-stable processes (near-stationary).

3. If kn = nγx with γ = 0 (kn = 1), then ζ = −∞ which falls in the class of nearly-stable processes
(near-stationary).
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Based on the above definitions with respect to the stability properties of the autoregressive
equation, various methodologies have been proposed for constructing valid statistical inference
under the presence of the nuisance parameter of persistence and the exponent rate (e.g., in cases
we assume that γx ∈ (0, 1)). However, in our framework we employ the IVX instrumentation
which is an approach that although is motivated by an instrumental variable regression estimation
methodology, it only uses within the system information to construct the set of endogenously
generated instruments without violating commonly used assumptions.

1.2.2 Instrument Construction

Specifically, the IVX filtration is constructed using endogenous instruments, which are based
on information contained in the regressors of the predictive regression model. As a result, the
degree of persistence of the instrumental variable has degree of persistence explicitly controlled so
that the induced process is mildly integrated. To be precise, the IVX instrument is constructed
with the first order difference of the corresponding autoregression model which is obtained by
expanding the autoregression coefficient and rearranging as below

∆xt = − C

nγx
xt−1 + vt, γx = 0, γx ∈ (0, 1) or γx = 1. (1.9)

In practice, the above first difference sequence is not an innovation process unless the regressor
belongs to the persistence class of integrated processes. However, it behaves asymptotically as an
innovation after linear filtering by a matrix consisting of near-stationary roots1. Therefore, the
procedure requires to choose an artificial coefficient matrix of the form

Rnz =
(
Ip − Cz

nδz

)
, δz ∈ (0, 1), cz > 0. (1.10)

where Cz = diag{cz,1, ..., cz,p}, cz > 0 for all i ∈ {1, ..., p}. Then, the instrumental regressor
matrix z̃t ∈ Rn×p can be constructed as below

z̃t =
t∑

j=1
Rt−j
z ∆xj , Rz =

(
Ip − Cz

nδz

)
, δz ∈ (0, 1),Cz > 0. (1.11)

The exponent rate δx of the generated mildly integrated instrument has a value, δx < 1, which is
below that of the exponent rate of the regressor. Using expression (1.9) we obtain

z̃t =
t∑

j=1
Rt−j
z

(
C

nγx
xj−1 + uj

)
=

t∑
j=1
Rt−j
z uj + C

nγx

t∑
j=1
Rt−j
z xj−1. (1.12)

which can be written via the following expression

z̃t = zt + C

n
ψt, zt =

t∑
j=1
Rt−j
z vj and ψt =

t∑
j=1
Rt−j
z xj−1. (1.13)

1Note this assumption is a key idea in the development of the asymptotic theory in cointegrated systems for
regressors with various types of nonstationarity (see, Phillips and Magdalinos (2009)).
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The IVX filtration, employs the constructed z̃t instruments for the regressors xt which are con-
sidered to behave asymptotically as mildly-integrated processes. More explicitly, by replacing xt
with the instrument zt which has a controllable degree of persistence, result to a robust inference
procedure which accounts for the effects of nonstationarity.

1.3 Summary of the chapters

This thesis comprises three self-contained chapters that cover some aspects of estimation and
inference for predictive regression models. Specifically, this thesis considers three complementary
nonstandard inference problems in predictive regression models with regressors being generated
as local-to-unit root processes. In Chapter 2, the nonstandard inference problem of interest is
predictability testing in predictive regressions with highly persistent regressors. In Chapter 3, the
relevant nonstandard inference problem corresponds to econometric inference in quantile predic-
tive regressions under the presence of parameter instability and predictors being parametrized as
local-to-unity processes. In Chapter 4, we propose an econometric framework for estimation and
inference in systems of quantile predictive regressions with generated covariates and near unit
root regressors. In terms of empirical data applications, Chapter 2 employs the dataset of Welch
and Goyal (2008) to investigate the stock return predictability puzzle robust against parameter
instability. Chapter 3, utilizes the dataset of Yang et al. (2020) in order to examine the pres-
ence of quantile predictability in house price dynamics under the presence of a single structural
break at an unknown location. Chapter 4, employs the dataset of Härdle et al. (2016) to test for
the presence of systemic risk spillover effects in systems of quantile predictive regressions with
possibly nonstationary regressors.

In all cases, we operate within a parametric setting which implies that the vector of innovation
sequences generating the predictive regression has a well-defined density that follows a Gaussian
random variable with prespecified moments. In terms of the nonstationarity regimes, in Chapter
2 and 3 of the thesis we develop structural break testing procedures for the linear and quantile
predictive regression models, focusing only on the cases of near unit root and mildly integrated
processes. In both cases, the Wald-type test statistics, which are the proposed structural break
detectors, are assumed to have certain optimality properties such as a small probability of a false
alarm and asymptotic power one, regardless of the abstract degree of persistence. In Chapter 4, we
consider nonstationary processes using the local-to-unity parametrization but without extending
to the case of mildly explosive processes. Specifically, due to the Seemingly Unrelated Regression
representation for the system of quantile predictive regressions, these node-specific equations
incorporate generated covariates that represent the presence of systemic risk, but under the
assumption that these block of regressors have the same persistence properties. Overall, the
asymptotic theory developed as well empirical and simulation results presented in this thesis,
contribute to the literature of robust methods for estimation and inference in predictive regression
models. These contributions are threefold and are summarized below.
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1.3.1 Chapter 2: Predictability Testing Robust against Parameter Instability

In Chapter 2, we consider the problem of joint predictability and structural break testing which
is a nonstandard econometric problem since the nuisance parameter of persistence ci is present
both under the null as well as the alternative while the innovations of the regressand and those
of the regressors are correlated. The literature proposes various methodologies for handling
the nuisance parameter of persistence in estimation and inference problems. In this chapter
we investigate suitable testing methodologies that accommodate these features when identifying
structural breaks in linear predictive regressions.

The first contribution to the literature is a structural break testing framework for predictive
regression models with persistent regressors. We propose Wald-type test statistics based on the
ordinary least squares estimator as well as the endogenous IVX instrumentation proposed by
Phillips and Magdalinos (2009). We establish the limiting distributions of these test statistics
and study suitable bootstrap-based inference methodologies for obtaining critical values. We
find that the degree of persistence in regressors can affect the asymptotic theory of the tests.
Specifically, under high persistence regardless of the chosen estimator the limiting distributions
are nonstandard and nonpivotal, while under mildly integratedness both test statistics weakly
converge to the conventional nuisance-parameter free limiting distribution. Our framework is
extended to the case when testing for joint predictability and parameter instability in linear
predictive regressions and we demonstrate that the asymptotic behaviour of test statistics is
sensitivity to the stability of model intercepts.

1.3.2 Chapter 3: Detecting Structural Breaks in Quantile Predictive Regres-
sions

In Chapter 3, we consider the problem of break detection in nonstationary quantile predictive
regression models. We establish the limit distributions for a class of Wald and fluctuation type
statistics based on both the ordinary least squares estimator and the endogenous instrumental
regression estimator proposed by Phillips and Magdalinos (2009). Although the asymptotic dis-
tribution of these test statistics appear to depend on the chosen estimator, the IVX based tests
are shown to be asymptotically nuisance parameter-free when regressors exhibit mildly integrat-
edness. The finite-sample performance of both tests is evaluated via simulation experiments. An
empirical application to house pricing index returns demonstrates the practicality of the proposed
break tests for regression quantiles of nonstationary time series data.

The second contribution to the literature is the development of an econometric environment for
break-point detection in nonstationary quantile time series models, that is, predictive regression
models estimated using a conditional quantile specification functional form. Specifically, we focus
on constructing Wald-type statistics for testing for the presence of parameter instability at an
unknown break-point location, given some fixed quantile level within a compact set. Further-
more, by extending the scope of conditional quantile specifications to multiple quantile levels, we
provide a novel structural break testing framework in quantile predictive regression models under
high persistence. Similar to the test statistics for break detection in linear predictive regression
models, we find that due to the presence of the unidentified break-point parameter under the null
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hypothesis, the limiting distributions have a discontinuity with respect to the parameter space of
the nuisance parameter of persistence which captures the nonstationary properties of regressors.

1.3.3 Chapter 4: Estimation and Inference in Systems of Quantile Predictive
Regressions with Generated Regressors

In Chapter 4, we propose a robust Wald test for Quantile Predictive Regression Systems with
generated regressors. These generated regressors are estimated based on nodewise nonstationary
quantile predictive regression models. Then, the proposed robust Wald test is constructed based
on adding-up restrictions of the parameters across the system of quantile regressions. We demon-
strate that the asymptotic behaviour of the test is asymptotically distribution-free, that is, no
nuisance parameters are involved in the derived limit of the test statistic which weakly converges
to a chi-squared limiting distribution. Moreover, we provide several examples and finite sample
simulation experiments to demonstrate the relevance of the test for certain parameter restrictions
of the system which are particularly useful when modelling systemic risk.

The third contribution to the literature is that we propose a framework for estimation and in-
ference methods in quantile predictive regression systems when the set of regressors include both
nonstationary regressors as well as a generated regressor to estimate the Value-at-Risk and the
Conditional-Value-at-Risk respectively, based on the local-to-unity specification that we impose
on the autoregressive equation that models predictors. Therefore, since our aim is to model
a financial network the proposed modelling environment is a novel contribution to the litera-
ture of statistical inference methods for Seemingly Unrelated Regression (SUR) systems under
the assumption of regressor’s nonstationarity, specifically when individual equations are quantile
predictive regression models under a more general dependence structure. Consequently, our esti-
mation methodology has important applications when modelling and testing for systemic risk in
financial networks using risk measures (see, Adrian and Brunnermeier (2016)).



Chapter 2

Predictability Testing Robust against
Parameter Instability

Abstract

In this Chapter we establish the limiting distributions of Wald-based statistics when testing
for a structural break in parameters of predictive regressions and illustrate that these have a
discontinuity for certain degrees of regressors persistence regardless of the chosen model estimator.
The test statistics based on both the OLS and the IVX estimators converge to a nonstandard and
nonpivotal limiting distribution when the break-point is unknown and regressors exhibit nearly
integrated or high persistent behaviour. A nuisance-parameter free distribution under the null
hypothesis holds when regressors are mildly integrated or stationary. Furthermore, we consider
the corresponding asymptotic theory results when testing for joint predictability and parameter
instability in predictive regression models. We compare the finite-sample size performance of the
proposed tests based on both estimators via simulation experiments. Critical values in the cases
of nonstandard limiting distributions are obtained using bootstrap approximations.

10
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2.1 Introduction

Predictive regression models are commonly used in financial econometrics and empirical finance
when assessing time series predictability especially with regressors of unknown integration order.
The development of methodologies for detecting the presence of parameter instability as well
as stock return predictability is an important research question in the financial and time series
econometrics literature. A related aspect is the predictability of indices such as equity premiums
using predictive regression models with predictors macroeconomic and financial variables that
has been found to be countercyclical. On one hand, a stream of literature focuses on identifying
these periods of episodic predictability (see, Gonzalo and Pitarakis (2012, 2017), Chinco et al.
(2019), Demetrescu et al. (2020)). On the other hand, a different stream of literature argues, that
these periods of unstable predictability appear in time series models in the form of parameter
instability (see, Rossi and Inoue (2012), Inoue et al. (2017), Pitarakis (2017) and Georgiev et al.
(2018)). The predictive regression model operates under the strong assumption of parameter
stability, which can be violated in certain regions of the sample. A related study to parameter
instability in prediction models is presented by Paye and Timmermann (2006). However, the
majority of the structural break literature propose testing methodologies under the assumption
of stationary time series. Therefore, we focus on developing an econometric environment for
predictability testing robust to parameter instability in predictive regressions under the presence
of persistence regressors when the break-point is at an unknown location within the full sample.

Consider the pair (yt,xt−1)t∈Z with an underline martingale difference sequence wt = (ut, vt)′ such
that (yt,xt−1, wt)t∈Z is generated by a predictive regression model while the vector of regressors
xt is assumed to be an autoregressive process with an autocorrelation coefficient as a local unit
root, it allows us to examine the persistence properties of regressors in a unified way. However, in
most of the aforementioned frameworks, estimation and inference in predictive regression models
operates under the assumption of parameter constancy throughout the sample. In this paper,
we consider structural break tests for predictive regression models in which the regressors are
assumed to follow stable autoregressive processes. The stability of the autoregressive processes
is determined by the parameters utilized in the local to unity specification of the autocorrelation
coefficient. Specifically, we focus on autoregressive processes which are close to the unit boundary
but have different order of convergence, namely high persistent regressors which are O(n−1/2) and
mildly integrated regressors which are O(n−γx/2), where γx ∈ (0, 1) denotes the exponent rate of
persistence and ci > 0 is a positive persistence coefficient for all stochastic regressors. Specifi-
cally, to measure the degree of persistence in time series we follow the persistence classification
in Kostakis et al. (2015). Furthermore, conventional structural break tests for the parameters
of linear regression models employ the widely used sup Wald test proposed by Andrews (1993).
However, the distributional theory of the Andrews’s test depends on the strict stationarity as-
sumption of regressors. On the other hand, the predictive regression model is usually fitted to
economic datasets which contain time series that are highly persistent. Thus, within such econo-
metric environment the traditional law of large numbers and central limit theorems can invalidate
the standard econometric assumptions of linear regression models, which affect the large sample
approximations. As a result distorted inferences can occur when testing for parameter instability
in predictive regressions when these features are not accommodated in the asymptotic theory of
the test statistics, especially under the presence of persistent regressors.
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Our first objective is to theoretically demonstrate the impact of the nuisance parameter of per-
sistence on the statistical validity of weakly convergence arguments to a Brownian Bridge pro-
cess as in the case of Andrews sup Wald OLS based tests. Specifically, the particular limit
result implies the use of the supremum functional on the Brownian Bridge process defined as
sups∈[0,1]

[
Wn(s) − sWn(1)

]
. Under weak convergence, we have process convergence where B is

a Brownian motion, that is, a pivot process, hence enabling the practitioner to use standard
tabulated critical values. Our theoretical results show that the standard NBB asymptotic ap-
proximations of the sup OLS-Wald tests in the presence of nearly integrated regressors holds
while under high persistence the same limit is no longer valid (see, also Katsouris (2022)).

Our second objective is to develop an instrumental variable based modification of the sup OLS-
Wald statistic proposed by Andrews (1993), whose asymptotics are robust to the persistence
properties of regressors. To do this, we employ the IVX filtration proposed by Phillips and
Magdalinos (2009) and also extensively examined by Kostakis et al. (2015) in the context of
predictability tests and by Gonzalo and Pitarakis (2012) in the context of predictability tests for
threshold predictive regression models1. Due to the presence of the supremum functional when
testing for structural break at an unknown break-point location both the persistence properties
of regressors and the type of the Wald test can affect the distributional theory.

We study the statistical inference problem of structural break testing at an unknown break-
point therefore the supremum functional is implemented and two test statistics are considered
based on two different parameter estimation methods. The first estimation method considers
the OLS estimator, while the second method considers an instrumental variable based estimator,
namely the IVX estimator proposed by Phillips and Magdalinos (2009). These two estimators
of the predictive regression model have different finite-sample and asymptotic properties, which
allows us to compare the limiting distributions of the proposed tests for the two different types of
persistence of the regressors. Furthermore, for both test statistics we assume that the regressors
included in the model are permitted to be only one of the two persistence types which simplifies
the asymptotic theory of the tests, however the presence of nuisance parameters under the null
of parameter constancy, that is, the unknown break-fraction and the coefficient of persistence,
requires careful examination of the asymptotic theory. An additional caveat is the inclusion of an
intercept in the predictive regression model which induces different limiting distributions when
is assumed to be stable vis-a-vis the case in which is permitted to shift. In summary, our main
goal in this paper is the identification of the limit behaviour of Wald type tests when testing for
structural breaks in predictive regression models based on the OLS vis-a-vis the IVX estimator.

Therefore, our asymptotic theory holds due to the invariance principle of the partial sum process
of xt, where xt =

(
1 − c

nγx

)
xt−1, as proposed by Phillips (1987a). Furthermore, we denote with

ÛT (s) := 1√
n

∑⌊ns⌋
t=1 xt, for some s ∈ [0, 1] and with Ûnγx (s) := 1

nγx/2
∑⌊nγxs⌋
t=1 xt, for some s ∈ [0, 1]

and 0 < γx < 1 for the invariance principle of the partial sum process of xt in the case of mildly
integrated processes, for the corresponding limit as proposed by Phillips and Magdalinos (2007).

1More specifically, the limit theory of Kostakis et al. (2015) provides a unified framework for robust inference
and testing regardless the persistence properties of regressors. A simple example is the application of the IVX-Wald
test for inferring the individual statistical significance of predictors under abstract degree of persistence. Further
scenarios such as predictors of mixed integration order see Phillips and Lee (2013) and Phillips and Lee (2016) in
which cases the mixed normality assumption still holds.
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Similarly in this chapter we employ the invariance principles for the partial sums processes that
correspond to the instrumental variable, IVX, proposed by Phillips and Magdalinos (2009), specif-
ically within a structural break testing framework. Therefore, these results allow us to formally
obtain the limiting distributions of the proposed tests with respect to the nuisance parameter of
persistence along with the unknown break-point location, and observe in which cases we obtain
nuisance-free inference that can simplify significantly the hypothesis testing procedure.

In summary, we propose an econometric framework for jointly testing against both predictability
and structural break. The tests are constructed in a similar manner as the Wald type statistics
proposed by Pitarakis (2014) and Gonzalo and Pitarakis (2012) in a threshold predictive regres-
sion model2. Our contributions are threefold: (i) We propose a test statistic which jointly tests
against the alternative hypothesis of both predictability and structural break and show that the
test is robust to the persistence properties of predictors in the model; (ii) We show that the test
statistic has a nuisance parameter free limiting distribution under the assumption of stationary
and mildly stationary regressors, while it converges to a nonpivotal asymptotic distribution un-
der the assumption of local-to-unit root (LUR) regressors; (iii) We examine the finite-sample
performance of the tests with Monte Carlo simulations where we obtain the empirical size the
sup OLS-Wald and IVX-Wald tests. Lastly, we employ the proposed structural break testing
framework to investigate the predictability of the equity premium based on US stock returns.

2.1.1 Literature Review

The ideas in this paper are related to research done in two different fields. From finance, it
is related to the stock return predictability literature and from the econometrics and statistics
perspective it is related to the literature of parameter instability and structural break testing
methodologies. Therefore, our aim is to bridge the gap in the literature by developing an econo-
metric environment for testing the presence of joint predictability and parameter instability.

Firstly, the implementation of the Student’s t-test is commonly employed to detect statistical
significance in stable relations of predictants such as equity index returns, on the lagged time
series of predictors. From extensive empirical applications, this practise has been proved to
cause distorted inference due to the presence of high persistent predictors, since nonstandard
terms appear in the limiting distribution of the t-test. In particular, Stambaugh (1999) observed
this finite sample bias3 which occurs when the classical least squares estimator is employed for
statistical inference. Furthermore, Amihud and Hurvich (2004) consider a second-order bias-
correction and propose a reduced-bias OLS based estimator. Both aforementioned methods are
considered to provide a post-estimation bias correction in finite samples.

Secondly, the predictability literature was extended to nonstandard inference problems to account
for the presence of nonstationary predictors; some of the most notable contributions include the
Bonferroni-type approach as in Cavanagh et al. (1995) and Campbell and Yogo (2006), the control
function method proposed by Elliott (2011) as well as the conditional likelihood method using

2Gonzalo and Pitarakis (2017) propose tests which capture the effects of linearity and the presence of a threshold
effect in predictive regressions with persistent predictors to test for episodic predictability.

3Specifically, the Stambaugh bias correction is based on the studies of Marriott and Pope (1954) and Kendall
(1954) who proposed suitable bias correction in autocorrelations.
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the framework of sufficient statistics4 proposed by Jansson and Moreira (2006). However, the
drawback of the aforementioned testing methodologies is that the asymptotic theory has some
undesirable properties such as the non-correctable bias due to the presence of the nuisance pa-
rameter of persistence that appears in the limiting distribution of test statistics (see, Phillips and
Lee (2013)). Furthermore, these testing approaches can be computational intense especially in
multivariate predictive regression settings without ensuring that robust inference to the unknown
parameter of persistence is guaranteed either in finite-samples or asymptotically.

Thirdly, a novel approach that recently has been attracting much attention is the instrumental
variable-based test statistic proposed by Kostakis et al. (2015), (KMS, hereafter), which is build
upon the theoretical framework developed by Phillips and Magdalinos (2009). This methodology,
referred to as IVX-Wald test, provides a robust framework for predictive regression models which
is valid for predictors with general persistence properties. Specifically, the asymptotic theory
shows that the IVX estimator which converges to a mixed Gaussian distribution, successfully
removes the long-run endogeneity, that appears due to the innovation structure of the model,
and provides a pivotal statistic robust under different degrees of persistence or even regressors
of mixed integration (e.g., see Phillips and Lee (2016)). Hence, a self-normalized Wald statistic
can be constructed that converges to a nuisance parameter free χ2 limiting distribution. More
importantly, the IVX filtration implies a direct inference procedure via the various moment ap-
proximations (e.g., long-run covariance matrices) and can be easily extended to the multivariate
predictive regression model under certain regulatory conditions.

An important assumption for the previously mentioned methodologies developed in the literature
is the condition of parameter constancy5 which implies a stable predictive relationship over the
sample period. However, due to the nature of economic conditions, shifting between periods of
market tranquillity and periods of market exuberance, the phenomenon of episodic predictability6

has been proposed to capture these "pockets" of predictability across business cycles (see, Farmer
et al. (2019)). This implies the existence of time-varying predictability which can be examined
within an econometric framework which accommodates time-varying parameters. In this chapter,
we approach this aspect by proposing a testing methodology for the existence of joint predictabil-
ity and parameter stability, in the form of a single parameter shift at an unknown break-point
location. Our approach is closer to the framework of Andrews (1993) who proposed Wald-type
statistics for testing for a single structural break at an unknown break-point. The importance of
having an inference methodology for predictability testing robust against parameter instability is
shown both in empirical studies as well as in simulation experiments, where under the presence
of a structural-break at an unknown location, model estimates and test statistics are affected.

4Sufficient statistics are developed as optimal tests invariant under transformation based on the curved expo-
nential family. The framework proposed by Jansson and Moreira (2006) implies the use of conditional restrictions
testing in the presence of nuisance parameters and is particularly appealing in the case of near integrated regressors.

5The literature of structural change goes back to 1940s and 1950s with the pioneering work of Wald on sequential
hypothesis testing as well as the seminal work of Page (1954), who propose methods for detecting anomalies in
control charting, an idea further developed by Chu et al. (1995) and Chu et al. (1996) who consider testing for
structural break in the sense of contaminated and non-contaminated periods in linear regression models. Further
seminal studies for structural break tests include Chow (1960), Hawkins (1987) and Ploberger and Krämer (1990).

6Testing methods for stock return predictability are proposed by Lanne (2002), Guo (2006), Gonzalo and
Pitarakis (2012, 2017), Harvey et al. (2021a), Demetrescu et al. (2022b), Demetrescu et al. (2022a), Farmer et al.
(2023) and Tu and Xie (2023), which includes the so-called episodic, pocket, subsample, or sporadic predictability.
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The presence of parameter instability in predictive regression models implies variation in pre-
dictability across time. Consequently, standard testing methodologies for break detection, such
as Andrew’s Wald statistics for linear regression models as well as the family of tests proposed
by Bai and Perron (1998) can no longer be valid for nonstationary7 predictors as captured by the
autoregressive specification of the predictive regression model. This invalidity is demonstrated by
the simulation studies of Paye and Timmermann (2006). More specifically, the authors show that
in the case of highly correlated innovations and (unfiltered) persistent predictors, an implementa-
tion of a sup-F test and UDMax test can cause severe size distortions when testing for structural
breaks in time series. Moreover, the optimal test of Elliot and Muller has good empirical size
performance, but distortions appear in the asymptotic properties of the power function of the
test. The literature of structural break tests has recently focused in the construction of suitable
testing frameworks for predictive regression models. Cai et al. (2015) propose modelling smooth
structural breaks using an L2− type statistic, in predictive regressions with nonstationary pre-
dictors. A different approach include the study of Pitarakis (2017) who consider a CUSUM-type
statistic. Additionally, due to the occurrence of nonstandard limiting distributions in standard
structural break test implementations, Georgiev et al. (2018) and Georgiev et al. (2019) propose
the use of a fixed regressor wild bootstrap procedure8 to approximate critical values. Another
related study to the bootstrapping approach of structural break tests is presented by Boldea et al.
(2019). However, the proposed framework is restricted to the case of exogenous regressors.

Despite the recent developments of the structural break literature for predictive regressions, these
methodologies consider the detection of parameter instability in predictive regression models
without simultaneously testing whether the tests are robust to the presence of predictability
around the break-point location. The only existing study that jointly tests for the existence of
both effects is the paper of Demetrescu et al. (2020) (see, also Andersen and Varneskov (2021)
and Andersen and Varneskov (2022)), who propose to combine testing for predictability using
appropriate subsampling techniques9(see also similar techniques employed by Hansen (2000a)).
The authors propose to use bootstrap-based inference due to the existence of a non-pivotal limiting
distribution, which is a robust approach to provide statistical validity of the tests. Further
aspects related to the IV based approach of KMS that we follow in this paper, can be also
examined within the above parameter instability testing procedures. Recent applications include
Magdalinos (2020) who consider predictability tests with GARCH-type effects (see also, Gungor
and Luger (2020)) as well as Yang et al. (2020) who consider a modification of the KMS test that
accounts for serial correlation in the error term of the linear predictive regression. Moreover, Pang
et al. (2020) propose testing methodologies for multiple structural breaks under the presence of
nonstationary predictors with an application to financial bubble detection. All these features are
further refinements one can consider as future research related to our proposed framework.

7Specifically, Phillips and Magdalinos (2009) explicitly examine the various forms of nonstationarity attributed
due to the structure of the predictive and cointegrated system, as captured by specific characteristics of the system.
This is a major distinction in the literature which previously thought that the presence of nonstationarity in the
regressors as a characteristic occurring due to the autoregressive equation of predictors solely.

8The fixed regressor wild bootstrap is an extension to the fixed regressor bootstrap employed by Hansen (2000b),
to deal with the presence of a nonstandard limiting distribution due to nonstationary regressors.

9The subsampling technique is similarly employed by Davidson and Monticini (2010) in the context of detecting
structural break due to break in cointegration of the relation under investigation.
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The chapter is organized as follows. Section 2.2, presents the predictive regression model along
with the background assumptions. This Section also includes a review of the IVX instrumentation
procedure of KMS, which is employed for the construction of the proposed test statistic. Section
2.4, presents the asymptotic theory of the test statistic under different degrees of regressors per-
sistence. Section 2.5 presents an extensive Monte Carlo simulation study. Section 2.6 illustrates
an application to the US stock returns which provides evidence of the empirical relevance of the
proposed tests for jointly testing predictability and structural break. Section 2.7 concludes.

2.2 Model Estimation and Assumptions

Consider the linear predictive regression model with a possible single structural break

yt = µt + β′
txt−1 + ut, with t ∈ {1, ..., n} , (2.1)

xt =
(
Ip − Cp

nγx

)
xt−1 + vt, (2.2)

where yt ∈ R is an 1−dimensional vector and xt ∈ Rp×n is a p−dimensional vector of local unit
root regressors, with an initial condition x0 = 0. Moreover, C = diag{c1, ..., cp} is a p×p diagonal
matrix which determines the degree of persistence of the regressors by the unknown persistence
coefficients ci’s which are assumed to be positive constants. Furthermore, we consider that the
exponent rate, γx, takes the following values:

• γx = 1, the case of local-unit-root (LUR) regressors.

• γx ∈ (0, 1), the case of mildly integrated (MI) regressors.

• γx = 0, the case of stationary regressors.

The above definitions can be found in Phillips and Magdalinos (2009) and Kostakis et al. (2015).
Notice that in the case of stationary predictors, i.e., γx = 0, this class of persistence holds for a
suitably restricted coefficient matrix (Ip −C). Moreover, the predictive regression model (4.11)-
(4.12) accommodates the existence of a single structural break at unknown location k. The model
parameters take the following form indicating a time-varying parameter vector

µt =

µ1, t ≤ k

µ1, t > k
and βt =

β1, t ≤ k

β2, t > k
, s.t k = ⌊nπ⌋ (2.3)

where π denotes the first π fraction of the sample such that π ∈ (0, 1) while the model parameters
are denoted by (µ1, µ2) ∈ R and (β1,β2) ∈ Rp×1. Notice that the introduction of the notation
(µt,βt) implies that we consider predictive regression models with structural break type time-
variation in the parameters of the predictive regression.

Let Ft denote the natural filtration, then for the error term of the predictive regression we
assume that E (ut|Ft−1) = 0 and E

(
u2
t |Ft−1

)
= σ2

uu. Specifically, the innovation structure of
the predictive regression model allows to impose a linear process dependence for vt, with a
conditionally homoscedastic martingale difference sequence condition such that
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vt =
∞∑
j=0
φjεt−j , εt ∼ mds (0,Σ) , (2.4)

The particular error sequence representation for the autoregressive specification of the regressors
that correspond to the predictive regression model is proposed by the seminal study of Phillips and
Solo (1992). Specifically, the given representation is based on a simply polynomial decomposition
such that vt = ∑∞

j=0φjεt−j where φo(z) = ∑∞
j=0φjzj .

Thus, the function φo(z) represents a power series such that∑∞
j=0φjzj has a radius of convergence

ϱ ∈ [0,+∞] which implies that φo(z) converges absolutely for |z| < ϱ and does not converge for
|z| > ϱ. Therefore, a uniform convergence result follows under regularity conditions on the radius
of convergence which in practise can be accommodated by the summability condition of the
positive coefficients φj such that ∑∞

j=0φj < ∞.

Therefore, representing the innovation sequence of the autoregressive model as a linear process
it permits to express the regression model (xt − xt−1) = ∑∞

j=0φjεt−j , where εt is a m.d.s and∑∞
j=0 j

∥∥∥φj∥∥∥ < ∞ such that
∥∥∥φj∥∥∥ = trace

[(
φ′
jφj

)]1/2
which results to a stationary process.

The aforementioned conjecture was originated from the theory of cointegration; however when
the autoregressive specification is expressed in the form of a near unit root process, such that
xt =

(
Ip + C

nγx

)
xt−1 then a more sophisticated method is required to convert the nonstationarity

property of regressors induced by the nuisance parameter of persistence. For this reason, the
IVX filtration proposed by Phillips and Magdalinos (2009) can be employed to obtain mildly
integrated processes. Our goal is to statistical infer on the stability of the model parameters
regardless of the time series properties of the predictor vector xt as captured by the unknown
persistence coefficients c′

is and the exponent rate γx, such that γx = 0, γx ∈ (0, 1) or γx = 1.
More specifically, parameter instability is captured by the assumed time-variation in the vector
(αt, βt), while the different types of persistence of predictors is modelled by the LUR specification.
Therefore, for the development of the asymptotic theory of the structural break tests we impose
the following regularity conditions given by Assumption 2.1 below.

Assumption 2.1. Let et = (ut, ϵ′
t)

′ be a (p + 1)−dimensional vector. The innovation sequence
et is a conditionally homoscedastic martingale difference sequence (m.d.s) such that the following
conditions hold:

A1. E [et|Ft−1] = 0, where Ft = σ (et, et−1, ...) is an increasing sequence of σ−fields.

A2. E [ete′
t|Ft−1] = Σee, where Σee ∈ R(p+1)×(p+1) is a positive-definite covariance matrix,

which has the following form:

Σee =
[
σ2
u σ′

uv

σvu Σvv

]
> 0.

with σ2
u ∈ R, σuv ∈ Rp×1 and Σvv ∈ Rp×p, where p is the number of predictors.
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A3. The innovation to xt is a linear process with the representation below

vt := Φ(L)ϵt ≡
∞∑
j=0

Φjϵt−j , ϵt ∼i.i.d (0,Σee)

where {Φ}∞
j=0 is a sequence of absolute summable constant matrices such that

∞∑
j=0

Φj has

full rank and Φ0 = Ip with Φ(1) ̸= 0, allowing for the presence of serial correlation.

Under conditions (A1)-(A3), the following Functional Central Limit Theorem (FCLT ) applies

1√
n

⌊ns⌋∑
t=1

wt = 1√
n

⌊ns⌋∑
t=1

[
ut

v′
t

]
⇒ BM (Σw) =

[
Bu(s)
Bv(s)

]
≡ Σ1/2

w W (s), (2.5)

where wt = (ut,v′
t)

′ and {W (s) : 0 ≤ s ≤ 1} is the standard vector-valued Brownian motion,
in the space of D ([0, 1]), that is, the Skorokhod topology within which joint weak convergence
arguments hold. Thus, expression (2.5) represents an invariance principle for the partial sum
process of wt, which implies that the partial sum of wt, weakly converges to the stochastic
quantity Σ1/2

w W (s), that is, a (p+1)−dimensional Brownian process with covariance matrix Σw.

2.2.1 Preliminaries

Our main focus for the asymptotic theory are the following partial sum processes:

Ûn(s) := 1
n

1
2

⌊ns⌋∑
t=1

Xt ⇒ Kc(s), s ∈ [0, 1] when γx = 1 in (4.12), (2.6)

Ûnγ(s) := 1
n

γx
2

⌊nγxs⌋∑
t=1

Xt ⇒ Jc(s), s ∈ [0, 1] when γx ∈ (0, 1) in (4.12). (2.7)

Corollary 2.1. Suppose Assumption 2.1 holds. If supt∈Z E
[
ϵ2t
]
< ∞, then for each γx ∈ (0, 1)

and ci > 0 for all i ∈ {1, ..., p} it holds that

sup
s∈[0,n1−γx ]

∣∣ Ûnγx (s) − UT γx (s)
∣∣ = op(1) as n → ∞ (2.8)

where

Unγx (s) :=
∫ s

0
e(s−r)CdWnγx (r) (2.9)

In a shorter notation, we denote x[nr]/
√
n ⇒ Kc(r) which represents the local-unit-root asymp-

totics proposed Phillips (1987a). Notice that when γx ∈ (0, 1) then suitable normalization are
necessary to obtain an equivalent asymptotic limit as proposed by Phillips and Magdalinos (2007).
Notice that, Kc(r) denotes a p−dimensional Gaussian process defined as below

Kc(r) =
∫ r

0
e(r−s)CdBv(s), r ∈ (0, 1). (2.10)
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that satisfies the Black-Scholes differential equation dKc(r) ≡ cKc(r)+dBv(r), with Kc(r) = 0,
implying also that Kc(r) ≡ σvJ c(r), where J c(r) =

∫ r

0
e(r−s)CdW v(s). Notice that Kc(r)

represents the Ornstein-Uhlenbeck10, (OU) process, which encompasses the unit root case such
that J c(r) ≡ Bv(r), for C = 0. Moreover, the assumption of a local-unit-root specification for
the predictors of the model and more specifically by allowing the autocorrelation coefficient to
be of the form Rn =

(
Ip − C

nγ

)
, permits to consider the Kc(r) Gaussian process given by (2.10)

as a stochastic integral approximation. The underline error structure introduced by Assumption
2.1, provides a realistic interpretation of macroeconomic shocks. More specifically, the shocks
to yt and xt−1, given by the sequences ut and vt respectively, for t ∈ {1, ..., n}, appear to be
contemporaneously correlated, a commonly used assumption in predictive regression models.
Related definitions can be found in the seminal papers of Phillips and Durlauf (1986) and Phillips
(1987a). By imposing a MDS assumption on the disturbance sequence (ut, ϵ′

t)
′ of the predictive

regression, it follows that E [utϵt−k] = 0, for all k ≥ 1 (see, Gonzalo and Pitarakis (2012)), which
eliminates any covariance terms of the error term at time t with past innovations. Then, since the
FCLT 11 given by (2.5) holds within our context, it allow us to derive the limiting distribution of
Wald type statistics when testing for parameter instability in predictive regression models with
persistent predictors, as functionals of the particular stochastic processes.

Assumption A3 gives the linear process representation of innovations proposed by Phillips and
Solo (1992). The particular assumption regarding the innovation sequence of the predictive
regression model, allows to impose further econometric conditions regarding how the shocks to the
predictors of the model are generated, considering this way the case of shocks which can be serially
correlated and heteroscedastic. This is an important result worth emphasizing, since although
we permit these features for the shocks, the conditionally homoscedastic martingale difference
assumption for the error term ut that correspond to the predictive regression model, holds. This
assumption can be further relaxed by introducing the conditionally heteroscedasticity for the
variance of ut (see, Kostakis et al. (2015)). Our modelling framework given by (4.11)-(4.12) and
(2.3) encompasses the linear predictive regression model. Under the null hypothesis of parameter
constancy, which is equivalent to the case when the time-varying parameters µt and βt are both
constant over the full sample, implies that µ1 = µ2 and β1 = β2, and the regression specification
reduces to the standard predictive regression model. Moreover, our research interest in this paper
is the detection of a parameter instability in the predictive regression model at a single break-
point under the alternative hypothesis, where we denote with k = ⌊nπ⌋, the unknown break-point.
We consider structural breaks in the coefficients of the predictive regression, assuming that the
variance terms of the error sequence, (σu, σv) remains constant over the sample which also implies
the FCLT to hold with no additional refinements. Furthermore, we consider related econometric
aspects which arise within our context, such as the use of an appropriate bias correction to tackle
the endogeneity bias under the presence of these two regimes12.

10The OU process is a stationary Gaussian process with an autocorrelation function that decays exponentially
over time. Moreover, the continuous time OU diffusion process has a unique solution and this property allows to
approximate asymptotic terms which appear in the various expressions of the estimators and the corresponding
test statistics as a function of the LUR parameters.

11A standard FCLT for linear regression models is introduced by Theorem 7.17 in White (2001).
12Notice that the underline regimes of our framework are motivated by the hypothesis of parameter instability

in the predictive regression model rather than the presence of an independent threshold variable which induces the
presence of the two regimes, as in Gonzalo and Pitarakis (2012, 2017) (see, also Zhu et al. (2022)).
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2.2.2 Robust Inference with the IVX instrumentation

Our main research objectives in this chapter is using the IVX instrumentation proposed by Phillips
and Magdalinos (2009) in order to robustify structural break tests to the unknown persistence co-
efficient, as this is captured via the local-unit-root specification of stochastic regressors employed
to the predictive regression model. To do this, we begin by reviewing the econometric implemen-
tation of the particular methodology for the linear predictive regression model, which is equivalent
to the case when µ1 = µ2 and β1 = β2 as mentioned earlier. Notice that the IVX methodology
can robustify inferences in terms of the unknown persistence properties of predictors.

Then, the tuning parameters, which are the exponent rate δz and the diagonal matrix Cz are
selected to ensure that zt is mildly integrated; less persistence than a unit root or a regressor
assumed to be generated via a local-unit-root process. Then, considering the IVX estimator for
the standard linear predictive regression model with no structural breaks and γx = 1 we obtain

β̃
IV X =

[
n∑
t=1

(
xt − x̄n−1

)
z̃′
t−1

]−1 n∑
t=1

(
yt − ȳn

)
z̃′
t−1, (2.11)

where x̄n−1 = 1
n

∑n
t=1 xt−1 and ȳn = 1

n

∑n
t=1 yt, are the corresponding sample means.

As shown by Theorem A in the Appendix of Kostakis et al. (2015), the IVX estimator converges
to a mixed Gaussian13 limiting distribution, which holds regardless of the degree of persistence
of the regressors in the model. In turn, this property allows to construct a self-normalized Wald-
type statistic which is shown to converge to a standard χ2−distribution. The classical testing
hypothesis implies that, H0 : Rβ = 0 vs H1 : Rβ ̸= 0, where R the full rank (q × p) restriction
matrix with rank q. Then, the IVX-Wald statistic can be used to test the null hypothesis of no
predictability in predictive regression models. The IVX-Wald statistic is expressed as below

WIV X
n = β̃

IV X′
Q−1

R β̃
IV X (2.12)

Notice that QR is a consistent estimator of the asymptotic variance-covariance matrix of β̃IV X

that accommodates both long-run endogeneity caused by the correlation between the error terms
of the system, that is, ut and vt, and the finite-sample distortion which results from removing
the model intercept. The covariance matrix QR, is derived via the following fully modified (FM)
estimation of the system covariance terms

QR =
(

n∑
t=1

z̃t−1x
′
t−1

)−1

M

(
T∑
t=1

x′
t−1z̃t−1

)−1

M = σ̂2
u

(
n∑
t=1

z̃t−1z̃
′
t−1

)
− T z̄n−1z̄

′
n−1Ω̂FM

where the fully modified covariance matrix is defined as

Ω̂FM = Σ̂uu − Ω̂uvΩ̂uuΩ̂′
uv, and z̄n−1 = 1

n

n∑
t=1

z̃t−1.

13The mixed Gaussianity property of the IVX estimator is also extensively examined in the papers of Phillips
and Lee (2013) and Phillips and Lee (2016) under various integration orders.
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The corresponding population covariance matrices are such that

Σuu = E
(
u2
t

)
, Σuv = E

(
utv

′
t

)
, Σvv = E

(
vtv

′
t

)
. (2.13)

Ωuu =
+∞∑

h=−∞
E
(
vtv

′
t−h
)
, Ωuu = Σuv + Λuv + Λ′

uv, Λuv =
+∞∑
h=1

E
(
vtv

′
t−h
)
. (2.14)

where Ωuu the long-run covariance matrix. Notice that the particular decomposition of the long-
run covariance matrix holds under the assumption that the innovation process of the predictive
regression system is serially uncorrelated and stationary. For instance, under the presence of
serial correlation, additional terms for the matrix Λuv needs to be incorporated. However, we do
not consider such an econometric feature within our framework.

Next, for the case of the univariate predictive regression model we define Ω̂FM ≡ σ2
FM and

Σ̂uu ≡ σ̂2
u, where σ̂2

u is a consistent estimator of σ2
u. Therefore, we can use the bias correction of

KMS for the univariate model which is given by

M =
[
n∑
t=1

z̃2
t−1 − nz̄2

t−1

(
1 − ρ̂2

uv

)]
σ̂2
u, with ρ̂2

uv = Ω̂uv

Σ̂uuΩ̂vv

. (2.15)

A key aspect for the computation of the IVX-Wald statistic is the estimation procedure for the
matrices Ω̂uv and Ω̂uu, which represent the estimated long-run covariance between ut and vt

and the long-run variance of ut respectively. These covariance matrices can be constructed using
nonparametric kernels with preselected bandwidth parameters, such as the Newey-West type
estimators (see, Kostakis et al. (2015), Newey and West (1987) and Andrews (1991)).

Furthermore, it can be proved that under the null hypothesis which imposes a set of linear re-
strictions in the parameter vector β, we obtain that WIV X

n =⇒ χ2(q) as n → ∞ (see, Theorem
1 in KMS). This important limit theory result provides a unified framework for robust inference
and testing regardless the persistence properties of regressors. A simple example is the applica-
tion of the IVX-Wald test for inferring the individual statistical significance of predictors under
abstract degree of persistence. For additional scenarios such as predictors of mixed integration
order see Phillips and Lee (2013) and Phillips and Lee (2016) in which cases the mixed normality
assumption still holds. The particular bias correction allows to control the empirical size when
using the IVX Wald formulation for testing hypothesis.

In summary, our main objective in this paper is to propose a unified framework for structural
break testing in predictive regression models with persistent predictors. Our framework operates
under the assumption of a single structural break under the alternative hypothesis, even though
the case of multiple structural breaks can be considered in a subsequent study. In terms of the
proposed tests we implement the IVX-Wald test proposed by Phillips and Magdalinos (2009) and
use the supremum functional which is suitable to detect structural breaks in a potential unknown
break-point location within the full sample. Another interesting application, is to extend the
structural break testing framework, to test for both the presence of predictability and structural
break, in a similar manner as in the frameworks of Gonzalo and Pitarakis (2012, 2017).
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2.3 Structural Break Testing Framework

2.3.1 Econometric Environment

Consider testing for a single structural break at an unknown break point location. Then, the
predictive regression model is expressed as below

yt =
(
µ1 + β′

1xt−1
)
I{t ≤ k} +

(
µ2 + β′

2xt−1
)
I{t > k} + ut (2.16)

where k = ⌊nπ⌋ with π ∈ (0, 1) such that the regressors are LUR processes

xt =
(
Ip − C

nγx

)
xt−1 + vt (2.17)

where C = diag{c1, ..., cp} > 0 for all i ∈ {1, ..., p} and γ = 1 (LUR) or γx ∈ (0, 1) (MI).

The presence of a nuisance parameter, such as the unknown break-point k = ⌊nπ⌋, under the
null of parameter constancy is well-known as the unidentified parameters problem under the null
hypothesis, introduced by the seminal paper of Davies (1987) and references therein. Our pro-
posed econometric framework allows to formulate statistical tests for parameter instability, as
time-varying parameters in the predictive regression model, investigating this way the presence
of potential unstable coefficients. Furthermore, similar to the case of predictability testing, which
implies finding statistical evidence against the null hypothesis of no predictability, we are inter-
ested in detecting such cases under the presence of parameter instability. However, we do focus
on a linear parametric conditional mean specification of the model in this chapter. For instance,
the nonparametric predictive hypothesis of Kasparis et al. (2015) is constructed by comparing
the nonparametric functional form estimator with its parametric counterpart estimator.

The current settings here although are based on less involved stochastic approximations to the
nonparametric approach, it still requires to determine the stochastic approximations that ap-
pear to the expression of the limiting distribution of Wald-type statistics under abstract degree
of persistence in regressors and the presence of a single structural break. In particular, we
develop an econometric framework for testing the null hypothesis of linearity, implying that,
µ1 = µ2,β1 = β2, specifically for the predictive regression model which permits to model the
time series properties of regressors via the LUR specification. In this paper we consider only
the univariate predictive regression model which has a single predictant, while we consider both
single and multiple predictors to illustrate the related derivations for developing the asymptotic
theory of the proposed tests under different econometric scenarios.

Remark 2.1. For the correct identification of a possible structural break in the predictive re-
gression model, since k = ⌊nπ⌋, is the break position such that 0 < π < 1, we assume that the
fraction of the structural break defined as π0 = k0/n is within the interior of (0, 1) for some
fixed π0 parameter. The particular condition ensures that no nuisance parameters appear at the
boundary of the parameter space. Thus, we allow structural breaks to occur at locations which
are considered to be fractions of the sample size, such as π0 = k0/n. Under the assumption of an
unknown break-point, to avoid unidentified parameters under the null the supremum functional
is employed for the construction of the Wald tests.
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2.3.2 Classical Least Squares Estimation

We are interested about the parameter stability of the model intercept, µ, of the predictive
regression model when one is included and that of the model coefficients with β := (β1, ..., βp).
We denote with µ̂ the estimator of the model intercept for the predictive regression model and
with β̂ :=

(
β̂1, ..., β̂p

)
. In this Section, we develop the asymptotic theory which corresponds

to the sup OLS-Wald test, that is based on the ordinary least squares estimator, when testing
for a single structural break in predictive regressions with multiple predictors. Moreover, the
asymptotic theory based on the OLS estimator allow us to obtain an analytic form for the limiting
distribution of the test which indicates how the assumption of nonstationarity and the presence
of an unknown coefficient of persistence in the underline stochastic process, affects statistical
inference for the sup OLS-Wald statistic.

We denote with X1 :=
[
I{t ≤ k} xtI{t ≤ k}

]
and X2 :=

[
I{t > k} xtI{t > k}

]
and define

X = [X1 X2] ∈ Rn×2(p+1) the corresponding partitioned matrix. Moreover, the linear restriction
matrix is denoted with R = [Ip+1 − Ip+1] with Ip+1 an identity matrix. Let θj = (αj , βj) for
j = 1, 2 and θ := (θ1,θ2)′, the parameter vector which implies that the predictive regression can
be expressed as y = Xθ + u. Then, the OLS Wald statistic for testing the null hypothesis is

H0 : θ1 :=
(
µ(1), β

(1)
1 , ..., β(1)

p

)
≡ θ2 :=

(
µ(2), β

(2)
1 , ..., β(2)

p

)
(2.18)

against H1 : θ1 ̸= θ2, for k = ⌊πn⌋, is given by the following expression

WOLS
n (π) = 1

σ̂2
u

(
θ̂1(π) − θ̂2(π)

)′ [
R
(
X ′X

)−1 R′
]−1 (

θ̂1(π) − θ̂2(π)
)

(2.19)

where σ̂2
u

p→ σ2
u is a consistent (empirical) estimator of the residuals of the predictive regression

model. Then, statistical inference under the null hypothesis of no structural break in the predictive
regression are conducted using the supremum functional. Thus, taking into consideration the
unknown nature of the break-point, the sup OLS-Wald statistic is expressed as below

W̃OLS := sup
π∈[π1,π2]

WOLS
n (π), (2.20)

where 0 < π1 < 1 and 0 < π2 < 1 with π2 = 1 − π1.

Under the null hypothesis the break-point k is unidentified and so the supremum functional se-
lects the maximum Wald statistic corresponding to a sequence of Wald statistics evaluated at
values within the interval [π1, π2]. Specifically, in order to construct the corresponding supremum
Wald tests we split the full sample {yt, xt−1}nt=1 into two sub-samples; the first sub-sample cor-
responds to the time period before time τ , {yt, xt−1}τt=1 and the second sub-sample corresponds
to the time period after time t, {yt, xt−1}nt=τ+1. Due to the fact that we operate within the
Skorokhod topology the sample moments that correspond to these sub-samples weakly converge
to the corresponding asymptotic result which are based on the D ([0, 1]) topology. For instance,
when deriving the sample moments we can use the notation π ∈ [π1, π2], where π1 and π2 are the
lower and upper bounds for the possible break-point location.
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Theorem 2.1. Under conditions of Assumption 2.1, then the sup OLS-Wald statistic for the
null hypothesis H0 : θ1 = θ2 against H1 : θ1 ̸= θ2, where θj = (µj , βj)′ with j = 1, 2 based on
the predictive regression model (4.11)-(4.12) with γx = 1 (LUR predictors) weakly converges to
the following limiting distribution

W̃OLS(π) ≡ sup
π∈[π1,π2]

WOLS
T (π) ⇒ sup

π∈[π1,π2]

{
Ñ

′
c(π)M̃ c(π)−1Ñ c(π)

}
(2.21)

where

M̃ c(π)−1 = G̃c(π) − G̃c(π)G̃c(1)−1G̃c(π) (2.22)

and

Ñ c(π) =
{
G̃c(π)−1H̃c(π) −

[
G̃c(1) − G̃c(π)

]−1[
H̃c(1) − H̃c(π)

]}′

(2.23)

such that K̃c(r) := (1,Kc(r))′, we define G̃c(π) and H̃c(π) as below

G̃c(π) :=
∫ π

0
K̃c(r)K̃

′
c(r)dr and H̃c(π) :=

∫ π

0
K̃c(r)dBu(r) (2.24)

with G̃c(π) ∈ R(p+1)×(p+1) a positive-definite stochastic matrix and H̃c(π) ∈ R(p+1)×1.

Theorem 2.1 is our first theoretical contribution to the literature, demonstrating that the sup
OLS-Wald statistic for structural break testing with an unknown break-point in the predictive
regression model with persistent predictors, does not converge to the NBB result as shown by
Andrews (1993) for linear regression models. More specifically, as seen by the limiting distribution
of the sup OLS-Wald test, the asymptotic theory of the OLS based test depends on the nuisance
parameter of persistence ci.

Remark 2.2. Notice that due to the presence of the unknown persistence parameter, ci, the
OLS-Wald test does not converge to the NBB asymptotic limit, when we have LUR predictors
(i.e., γx = 1 and ci > 0 ∀ i), even under the assumption of a known break-point, that is, π ≡ π0.
The particular aspect, motivates us to investigate whether the implementation of an IVX based
Wald test which is robust to the persistence properties, would induce an asymptotic distribution
free of any nuisance parameters.

Remark 2.3. Notice that σ̂2
u refers to the residual variance under H0. Under H0, σ̂

2
0
σ̂2

1

p→ 1, thus
the residual variance does not affect the limiting distribution. However, when the finite sample
properties of the test are examined, using the residual variance under the null instead the one
under the alternative, results to incorrect power function dynamics. Since σ̂2

1 takes the shape of
the H1 into account then, this improves the ability of the test in detecting departures from the
null hypothesis, towards specific local alternatives.
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2.3.3 IVX based Estimation

In this section, we propose the IVX-Wald type statistic for testing for the presence parameter
instability in the predictive regression model. The supremum IVX-Wald test is constructed by
splitting the sample into two sub-samples. Then, the model estimates of the two sub-samples
are used to construct the proposed test statistics. We denote with β̃IV X1 (π) and β̃IV X2 (π) the
IVX estimates of the two sub-samples; and with Q̃1 (π) and Q̃2 (π) the corresponding covariance
matrices. The sample estimates are given by

β̃
IV X

1 (π) =
(

1
π

π∑
t=1

z̃1,t−1x
′
1,t−1

)−1( 1
π

π∑
t=1

z̃1,t−1yt

)
, (2.25)

β̃
IV X

2 (τ) =
(

1
n− π

n∑
t=π+1

z̃2,t−1x
′
2,t−1

)−1( 1
n− π

T∑
t=π+1

z̃2,t−1yt

)
. (2.26)

We begin our asymptotic theory analysis by considering the case in which under the null hypoth-
esis both the model intercept and the model slopes have no structural break. Then, the testing
hypothesis of interest is given by

H0 : α1 = α2 and β1 = β2 (2.27)

For evaluating our hypothesis we use the IVX-Wald test which has the following form14

WIV X
β (π) =

(
β̃
IV X

1 (π) − β̃IV X2 (π)
)′ [

Q̃1(π) + Q̃2(π)
]−1 (

β̃
IV X

1 (π) − β̃IV X2 (π)
)
. (2.28)

We denote with W̃IV X
β (π) ≡ sup

π∈[π1,π2]
WIV X
β (π), the corresponding sup IVX-Wald statistic, since

we consider the case of the unknown break-point. The two IVX estimates of β and their corre-
sponding asymptotic variances are computed, using the data from each sub-sample separately,
defined as below

Q̃1(π) =
(
Z ′

1X1
)−1 (

Z ′
1Z1

) (
X ′

1Z1
)−1 and Q̃2(π) =

(
Z ′

2X2
)−1 (

Z ′
2Z2

) (
X ′

2Z2
)−1 (2.29)

Thus, the WIV X
β (π) statistic can be thought as a Chow-type statistic for detecting break at time

π, such that π1 ≤ π ≤ π2. Then, due to the unknown nature of the break-point the sup Wald
test is simply a sequence of Chow-type statistics within the same probability space. Theorem
3.2 presents the limiting distribution of W̃IV X

β (π), under the null hypothesis of no parameter
instability in the predictive regression model.

14Note that the covariance matrices are computed based on the long-covariance matrices and corresponding FM
corrections given by KMS, see also Kasparis et al. (2015). These definitions are employed since we do not rule out
the strong assumption of a weakly covariance dependence in the model.
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Theorem 2.2. Under Assumptions 2.1 and 4.3 hold and π denotes the unknown break-point,
then the sup IVX-Wald statistic under the null hypothesis (with α known to be stable a priori)
H0 : α1 = α2 and β1 = β2, based on the predictive regression model (4.11)-(4.12) and no
restriction on the exponent rate γx, has the following asymptotic behaviour

W̃IV X
β (τ) ⇒ sup

π∈[π1,π2]

{
N(π)′M(π)−1N(π)

}
(2.30)

with π ∈ [π1, π2]15, where

N(π) = Bp(π) −R(π)Bp(1) (2.31)
M(π) = π

(
Ip −R(π)

)(
Ip −R(π)

)′ + (1 − π)R(π)R(π)′ (2.32)

such that

R(π) =



(
πΩxx +

∫ π

0
BdB′

)(
Ωxx +

∫ 1

0
BdB′

)−1
, if γx > 1

(
πΩxx +

∫ π

0
JCdJ

′
C

)(
Ωxx +

∫ 1

0
JCdJ

′
C

)−1
, if γx = 1

πIp , if γx < 1

(2.33)

where B(.) is a p−dimensional standard Brownian motion, JC(π) =
∫ π

0 e
C(π−s)dB(r) is an

Ornstein-Uhkenbeck (OU) process and we denote with JC(π) = JC(π) −
∫ 1

0 JC(s)ds and B(π) =
B(π) −

∫ 1
0 B(s)ds the demeaned processes of J(π) and B(π) respectively.

Theorem 2.2 demonstrates that the supremum functional of the IVX-Wald test weakly conver-
gence to a stochastic quadratic functional and does not have the same asymptotic behaviour as the
corresponding IVX-Wald statistic which is proved to follow a χ2

p distribution as in the framework
proposed by Kostakis et al. (2015). Specifically, based on our asymptotic theory analysis we show
that the limit distribution of the test statistic weakly converges to a non deterministic quadratic
due to the dependence to Brownian motion functionals that contain two nuisance parameters,
the unknown break-point π ∈ [π1, π2] and the unknown localizing coefficient of persistence ci.

An important implication of Theorem 2.2, which consists our second contribution to the limit
theory of structural break tests in predictive regression models with nonstationary predictors,
is that we show that the dependence of the limiting distribution to the unknown parameter of
persistence takes different forms by restricting further the parameter space of the exponent rate.
Specifically, Theorem 2.2 demonstrates that when testing for a structural break in predictive
regression models, under the assumption that the predictors are integrated or nearly integrated,
then the limiting distribution of the test, weakly converge to a nonstandard process, which ver-
ifies the corresponding result already mentioned by Hansen (2000b)). When the predictors are
stationary or mildly stationary, then the test statistic weakly converges to the familiar squared
tied-down Bessel process as proved by Andrews (1993) in the case of linear regression models.

15Note that, since we operate within the Skorokhod topology D (0, 1) we can apply standard weakly convergence
arguments.
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The latter implies that when we consider separately the special case for which γx < 1, which
covers both the cases of mildly integrated regressors, i.e., γx ∈ (0, 1), and stationary regressors,
i.e., γx = 0, then it can be proved that the limiting distribution of the sup IVX-Wald test
converges to the standard NBB result16. Corollary 3.1 below is a direct implication of Theorem
2.2 and summarizes this finding.

Corollary 2.2. Under the assumptions and definitions given by Theorem 2.2, when γx < 1 then
the following asymptotic distribution holds

W̃IV X
β (τ) ⇒ sup

π∈[π1,π2]

BBp(π)′BBp(π)
π(1 − π) , (2.34)

where BBp(.) is a p−dimensional standard Brownian bridge.

Remark 2.4. The weakly convergence of the sup IVX-Wald test into a normalized squared Brow-
nian bridge, when the exponent rate is restricted such that γx < 1, implies standard statistical
inference due to the known distribution, and this occurs in the case when we have a mildly inte-
grated predictor. One rejects H0 for large values of the sup IVX-Wald test based on a significance
level α such that 0 ≤ α ≤ 1 and thus the limit distribution can be used to derive associated critical
values, denoted with cα such that P

(
W̃IV X
β (π) > cα

)
> 0 with lim

T→∞
P
(
W̃IV X
β (π) > cα

)
= 1.

Our findings presented by Theorem 2.2 verify the conjuncture of Hansen (2000b) who argues
that when testing for a structural break based on a sup-functional induces an asymptotic non-
pivotal distribution under the assumption of nonstationarity. However, this seminal study has
not examined in details certain forms of nonstationarity which can occur and how these are
manifested in the limit theory of the tests. In particular, within our framework we demonstrate
using local-to-unit root asymptotic arguments that the nonstandard limiting distribution occurs
when xt is properly modelled as a nonstationary stochastic process, and specifically the NBB
result no longer holds when xt is either a nearly integrated or an integrated process. The proofs
of both Theorem 2.2 and Corollary 2.2 can be found in Appendix A.1. However, notice that in
the case when the structural break is known, say π ≡ π0 then the limiting distribution simplifies
to the standard NBB result in all cases of Theorem 2.2, since

∫ π0

0
f(x)dx = π0

∫ 1

0
f(x)dx.

16Note that in the case of a known break-point we can easily prove a convergence to a χ2
p distribution which is

free of nuisance parameters and so conventional inference methods apply
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2.4 Joint Predictability and Structural Break Testing

For evaluating our hypothesis we use the IVX-Wald test which has the following form.

WIV X
β (π) =

(
β̃IV X1 (π) − β̃IV X2 (π)

)′
[
Q̃1(π) + Q̃2(π)

]−1 (
β̃IV X1 (π) − β̃IV X2 (π)

)
. (2.35)

We denote with W̃IV X
β (π) ≡ sup

π∈[π1,π2]
WIV X
β (π), the corresponding sup IVX-Wald statistic, since

we consider the case of the unknown break-point. The two IVX estimates of β and their corre-
sponding asymptotic variances are computed, using the data from each sub-sample separately.
Thus, the WIV X

β (π) statistic can be thought as a Chow-type statistic for detecting break at time
t, such that π1 ≤ π ≤ π2. Then, due to the unknown nature of the break-point the sup Wald
test is simply a sequence of Chow-type statistics within the same probability space. Theorem 2.2
presents the limiting distribution of W̃IV X

β (π), under the null hypothesis of no parameter insta-
bility in the predictive regression model. The proofs of both Theorem 2.2 and Corollary 3.1 can
be found in Appendix A.1. Next, we focus on designing test statistics for jointly testing against
predictability and structural break in predictive regression models. We define a joint Wald test
based on the IVX estimator under the assumption of an unknown break-point as below

W̃joint
β := sup

π∈[π1,π2]

{
WIV X
n + WIV X

β (π)
}
, for π1 ≤ π ≤ π2. (2.36)

where the supremum functional applies only on the second component of the test above. Then,
the Corollary 3.2 below gives the related limit theory result.

Corollary 2.3. (i) If the conditions of Theorem 2.2 hold, then under the null hypothesis, H0 :
α1 = α2 and β1 = β2 = 0 and no restriction on the exponent rate γx, the large sample theory of
the test statistic specified by (2.36) has the following form

W̃joint
β ⇒ B(1)′B(1) + sup

π∈[π1,π2]

{
N(π)′M(π)−1N(π)

}
, (2.37)

where B(.), N(π) and N(π) are defined in Theorem 2.2.
(ii) As a special case, when γx < 1, it follows that

W̃joint
β ⇒ χ2

p + sup
π∈[π1,π2]

BBp(π)′BBp(π)
π(1 − π) , (2.38)

where BBp(.) is a p−dimensional standard Brownian bridge and χ2
p denotes the χ2 random variable

with p degrees of freedom. Furthermore, the two stochastic quantities of the limiting distribution
are assumed to be independent.

Remark 2.5. Notice that Corollary 2.3 demonstrates that when γx < 1, the large sample theory
of the test statistic Wβ is pivotal. Therefore, in this special case by having a limiting distribution
being free of nuisance parameters, asymptotic critical values for testing the null hypothesis can
be easily obtained. The particular test statistic provides a methodology for testing for both
predictability and structural break which is robust to the persistence properties of regressors
after replacing the OLS with an IVX estimator.
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The main arguments we use for the proof of Corollary 3.2 is to consider the joint testing hypothesis
as a composite hypothesis based on the mutually exclusive parameter space, and thus we construct
the limit theory of this test based on the joint formulation of the two separate testing hypotheses.
By employing the asymptotic matrix moments based on the IVX method we prove that the
limiting distribution of the joint test can be decomposed into two components. Since these
components are independent random variables and thus practically we could use the critical
values of the limiting distributions that corresponds to each of these stochastic quantities.

2.4.1 Joint Wald Tests

Proposition 2.1. Consider the predictive regression model given by expressions (4.11)-(4.12). If
Assumption 2.1-4.3 hold and α is known to be unstable a priori, then under the null hypothesis
H0 : α1 = α2 and β1 = β2 = β, as n → ∞ the following limit result holds

W̃IV X
α (τ) ⇒ sup

π∈[π1,π2]

BB1(π)′BB1(π)
π(1 − π) (2.39)

where BB1(.) is a one-dimensional standard Brownian bridge.

Remark 2.6. Notice that Proposition 2.1 provides an asymptotic result for a composite hy-
pothesis since we consider jointly testing for a structural break in the model intercept and the
slope coefficients while we test, that under the null hypothesis the slope coefficient has a fixed
parameter value β. Additionally, we can investigate the limiting distribution of the joint Wald
test when we assume that under the null hypothesis there is no predictability.

Proposition 2.2. Consider the predictive regression model . If Assumption 2.1-4.3 hold and α

is known to be unstable a priori, then under the null hypothesis H0 : α1 = α2 and β1 = β2 = 0,
as n → ∞ the following limit results hold: (i)

W̃joint
αβ (π) ⇒ B(1)′B(1) + sup

π∈[π1,π2]

{
Ñ(π)′M̃(π)−1Ñ(π)

}
(2.40)

where Ñ(π) =
(
BB1(π),N(π)

)′ and M̃(π) =
(
π(1 − π) 0

0 M(π)

)
. The terms, N(π) and M(π)

are defined in Theorem 2.2.
(ii) As a special case, when γx ∈ (0, 1), it holds that

W̃joint
αβ (τ) ⇒ χ2

p + sup
π∈[π1,π2]

BBp+1(π)′BBp+1(π)
π(1 − π) (2.41)

where BBp+1(.) is a (p+ 1)−dimensional standard Brownian bridge, and χ2
p is a random variable

following a χ2 distribution with p degrees of freedom.

Remark 2.7. Notice that, Proposition 2.2 shows that the limiting distribution of the joint test
for both predictability and structural break, when we consider simultaneously testing whether
there is a structural break to the model intercept and no predictability using the set of regressors
of the model, has an asymptotic distribution which takes a different form when we consider
different values of the parameter space of the exponent rate.
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2.5 Monte Carlo Simulation Study

Monte Carlo simulations were performed to examine the quality of the asymptotic approximations
to the finite-sample distributions. In this section, we present extensive Monte Carlo simulation
experiments to examine the finite size properties of the proposed Wald-type tests in terms of
their empirical size and power performance, under the null hypothesis of parameter constancy
in the predictive regression with persistent predictors. In practise, the degree of persistence in
the time series of the regressors is unknown. More specifically, both the coefficient of persistence
ci as well as the exponent rate γx are both unknown parameters to the researcher. Moreover,
we have proved that the limiting distribution of the Wald-type statistics for detecting structural
break in predictive regression models depend on these unknown properties of the regressors for
certain parameter value restrictions on the coefficient of persistence.

Therefore, to demonstrate the above theoretical result, under the null hypothesis of no structural
break, we can generate a DGP with no breaks in the coefficients of the predictive regression. Then,
constructing the sup-Wald test and using the Andrews’ critical values we can observe whether
size distortions indeed occur in this scenario17. Secondly, we propose an alternative approach
to overcome this problem. In particular, using an IV based sup-Wald test, which is constructed
using the IVX instrumentation, we prove that the limiting distribution of the statistic indeed
weakly converges to a nonstandard limiting distribution, therefore a bootstrap methodology is
necessary to control the empirical size. Furthermore, under certain parameter restrictions on
the nuisance parameter we prove that the NBB limit holds, which allow us to use the Andrews’
critical values, avoiding this way to simulate critical values which can be computational complex.
Next, we focus on the data generating process, the test statistics as well as the size and power
comparisons for the proposed Wald type statistics.

2.5.1 Data Generating Process

We use the following data generating process (DGP) where yt is a scalar and xt is a vector of LUR
predictors (with the property of being highly persistent). We begin with the case of a predictive
regression with two predictors.

yt = β0 + β1xt−1 + β2xt−1 + ut (2.42)

xt =

1 − c1
nγx

0

0 1 − c2
nγx

xt−1 + vt, x0 = 0. (2.43)

with t ∈ {1, ..., n} and n = {100, 250, 500, 1000} for B = 5, 000 replications, such that γx = 1.

17Recall that under the assumption of persistent predictors, we prove via Theorem 2.1 that when testing for
parameter instability in the predictive regression the limiting distribution of the sup OLS-Wald statistic no longer
follows a normalized squared brownian bridge, (NBB) for an unknown structural break. In particular, when
contacting inference or assessing the statistical validity of the sup-Wald statistic via a MC experiment, using the
corresponding critical values of the sup-Wald test proposed by Andrews (1993) we can observe that leads to size
distortions due to the non-NBB limiting distribution.
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Furthermore, we consider the effect of different localizing coefficients of persistence across the
predictors. We use ci ∈ {1, 5, 10, 20} for i = 1, 2, which cover various cases of LUR regressors,
with smaller values implying that we impose the assumption of higher persistence and lower
values implying that existence of mild persistence in the predictor. The covariance matrix of
the innovations et = (ut, vt)′ ∼ N (03×1,Σee) we assume that is parametrised with the following
dependence structure

Σee =


1 0 0
0 1 0
0 0 1

 , or Σee =


1 0.10 −0.29

0.10 1 −0.03
−0.29 −0.03 1



2.5.2 Test statistics

We assess the statistical validity in finite and large samples of the Wald based statistics within
our structural break framework, that is, the sup OLS-Wald test and the sup IVX-Wald test.
In particular, we are interested to verify any size distortions under the null hypothesis of no
structural change, when using the sup OLS-Wald test and we expect to observe improvements
in the empirical size of the sup IVX-Wald test. Moreover, we examine the finite sample size of
the two statistics for different degree of persistence as well as the rate at which we allow the
IVX instrumentation procedure to induce a more mildly integrated regressor (controlled by the
parameters cz and the exponent rate γz). For the large sample properties of the test statistics a
standard convergence result apply, that is, Wn(π; γz) d→ W(π; γz) as n → ∞.

Then, the testing hypothesis of interest is a two-sided type hypothesis which is expressed as

H0 : β1 = β2 vesus H1 : β1 ̸= β2 (2.44)

Therefore, the test statistics are computed via expressions (2.45) and (2.46), while standard
regularity and invariance principles holds.

Wald-OLS statistic

WOLS
n (k) = 1

σ̂2
u

(
β̂1 − β̂2

)′
[ (
X ′

1X1
)−1 +

(
X ′

2X2
)−1

]−1 (
β̂1 − β̂2

)
(2.45)

Wald-IVX statistic

WIVX
n (π) = 1

σ̂2
u

(
β̂IVX

1 − β̂IVX
2

)′
Q−1

R

(
β̂IVX

1 − β̂IVX
2

)
(2.46)

The covariance matrix, QR(k), is estimated using the decomposition, QR(k) := Q̃1(k) + Q̃2(k)
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as well as by adjusting for the second-degree bias for each sub-sample, as below

Q̃j(k) =
(

T∑
t=1

z̃jt−1x
′
jt−1

)−1

M j(k)
(

T∑
t=1

x′
jt−1z̃jt−1

)−1

(2.47)

M j(k) = σ̂2
u

(
T∑
t=1

z̃jt−1z̃
′
jt−1

)
− Tj z̄jT−1z̄

′
jT−1Ω̂FM (2.48)

where Ω̂FM = Σ̂uu − Ω̂uvΩ̂uuΩ̂′
uv, is estimated based on the full sample, for j ∈ {1, 2} and Tj

denotes the sample size for each sub-sample, i.e., Tj = k for j = 1 and Tj = (T − k) for j = 2.

To evaluate the performance of the tests in relation to the asymptotic approximations in the
theory section of the paper, we focus on two cases, that is, (i) Design 1: the case of a fixed
break-point; (ii) Design 2: the case of a random (unknown) break-point within the permissible
parameter space of the fraction parameter π such that π ∈ Π = [π1, π2]. Furthermore, the data
that we generate from the DGP given by (4.106) and (4.107) only differ over the values of c1 and
c2 and are the same for different values of the sample size T . Thus, as the sample size increases
the degree of persistence of the endogenous regressors remain the same.

Design (Random break-point) π ∈ Π = [π1, π2]. In the case of an unknown break-point,
we obtain the critical values proposed by Andrews (1993) with an appropriate significance size
such as α = 5% only under mildly integradeness. Following the common practise in the literature
(see, Andrews (1993) and (Caner and Hansen, 2001, p. 1563)), we use the trimming parameters
π1 = 0.15 and π2 = 0.85. On the other hand, a bootstrap based methodology can be implemented
for both the OLS-Wald and IVX-Wald statistics in the case of persistent regressors (LUR) while
for the case of mildly integrated regressors (MI) the critical values of Andrews can be utilized.
Specifically, we use the residual wild bootstrap (RWB) procedure as given by Algorithm 1.

Our asymptotic theory analysis demonstrates that when the break is known a prior, then the lim-
iting distributions of the test statistics can be simplified, while in the case we allow for a structural
break at an an unknown location within the sample, to obtain critical values bootstrap-based in-
ference is required. Since we focus on the case of an unknown break-point location, then the sup
functional is employed to obtain the maximum test statistic value after estimating a sequence
of statistics over the interval π ∈ [π1, 1 − π2]. Thus, critical values can be obtained from the
corresponding limiting distribution of the bootstrapped test statistic due to the nonstandard and
nonpivotal limiting distribution under the null hypothesis when regressors have high persistence18.
In practise, this makes it difficult to control the empirical size in those cases in which the limiting
distribution of the tests is nonstandard, due to two factors: (i) the presence of the unknown
coefficient of persistence which cannot be consistently estimated, and (ii) the unavailability of
asymptotic critical values for the limiting distribution given by Theorem 2.2 (e.g., γx = 1 and
γx ∈ (0, 1)). Therefore, bootstrap implementations of the structural break tests such as via a
fixed regressor bootstrap, in the same spirit as in Georgiev et al. (2018) are necessary to control
size distortions given a prespecified significance level.

18As we have seen for a known break-point the IVX-Wald test gives an asymptotically pivotal limit distribution
(a standard χ2−distribution). A pivotal statistic is one whose distribution is independent of the true parameter.
In the case of the sup IVX-Wald test this property doesn’t hold and this is the reason we need to utilize bootstrap
based methodologies.
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Remark 2.8. Notice that the FM covariance correction provides a second-degree bias correction
for the IVX-Wald test due to the presence of persistent predictors. For instance, since in finite
sample the mixed Gaussanity assumption of the IVX estimator can be violated due to the fact
that a component of the limit expression might not vanish as it depends on three factors: the
degree of regressor persistence as captured by the exponent rate γx, the correlation between
the innovation sequence ut and vt, and the choice of the exponent rate of the instrumentation
procedure which is responsible to control the degree of persistence in the endogenous generated
instruments. Therefore, the FM covariance correction employs a weighted demeaning of the
IVX instruments by a matrix that depends on Ω̂uv which balances the presence of bias in finite
samples occurring for various combinations of persistence and correlations across the persistence
classes that predictors are allowed to belong to. In other words, all finite-sample effects are
simultaneously removed by the finite-sample correction on the self-normalizing component of the
IVX-Wald statistic (see, Remark A (2) in Appendix of Kostakis et al. (2015)).

Remark 2.9. The particular finite-sample correction proposed by KMS is a weighted demeaning
of the dominating term Z̃ ′Z̃ ⊗ Σ̂uu by the term nz̄n−1 ⊗ z̄n−1 ⊗ Ω̂FM . In simple words, this
correction removes the finite-sample effects of estimating a model intercept in the predictive
regression. Then, the FM covariance matrix correction given by Ω̂FM is a fully modified correction
that controls the effect of correlation between ut and vt on the remainder term of the Gaussian
first-order approximation by the degree of demeaning of the instrument moment matrix Z̃ ′Z̃.
Notice that these finite-sample effects are more prominent for highly persistent regressors that
are strongly correlated with the predictive model’s innovations. We find that the bias-corrected
IVX estimator indeed leads to better size control (see, Kostakis et al. (2015)).

2.5.3 Size Comparison

To conduct a size comparison of the test statistics, we examine the empirical rejection rates of
the sup-Wald OLS and sup-Wald IVX tests for detecting single structural change for LUR and
MI predictors, under the null hypothesis of no structural change, that is, H0 : β1 = β2 using
a significance level α = 5%. To do this, we generate 5,000 datasets from DGP (4.106) and
(4.107) for various values of the model coefficients and compute the frequency of rejecting the
null hypothesis. In particular, the increase in the sample size aims to reflect the properties of
finite versus large sample asymptotics for the Wald type statistics in testing for a single unknown
break-point in predictive regression models with highly persistent regressors.

All tests are run at the 5% nominal (asymptotic) significance level. The simulations were per-
formed in MATLAB19, version R2020a, using M = 1000 Monte Carlo replications and B = 1000
Bootstrap replications for both the empirical size and empirical power experiments. Table A1
(for sup Wald-OLS) and Table A2 (for sup Wald-IVX), present the probabilities of rejection of
the two Wald-type statistics at the 5% nominal rate, under the null hypothesis. In particular, we
consider different values for the exponent rate of the IVX parameter, such as δz ∈ {0.75, 0.95} in
order to investigate the varying effect of the degree of persistent of the instrumental variable for
detecting structural change in predictive regressions with persistent regressors, as well as different

19I grateful acknowledge Michalis P. Stamatogiannis for making the Matlab code of the paper of Kostakis et al.
(2015), available on his website. Moreover the R implementation of the IVX procedure in the IVX package of
Kostas Vasilopoulos has been particularly helpful. The MC simulations were run on Iridis 4, using 16 cores.
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localizing coefficient of persistence, ci ∈ {1, 5, 10, 20}. Comparing the empirical size results for
Table A1 versus Table A2, we can see that the sup Wald IVX produces values for the empirical
size quite close to the nominal size for critical value cα = 13.42, δz = 0.95 and −0.5 ≤ ρ ≤ 0.5.
The particular critical value is a closer representation to the α−quantile from the corresponding
limiting distribution.

In Table A1 and Table A2 we present the empirical size under the null hypothesis for the model
with a single predictor and no model intercept. We can observe that size distortions appear for
larger values of correlation between the ut and vt and this is more severe for high persistence
regressors (i.e., low values of the coefficient of persistence). All main conclusions are in line with
similar findings in the literature of predictive regression models, such as larger size distortions
appear as the correlation between ut and vt increases, and this effect is more apparent in the
case of persistent predictors (i.e., lower values of the persistence coefficient c). Moreover, we
see that the sup OLS-Wald statistic with the standard asymptotics as derived by Andrews, is
clearly immune to persistence when there is no correlation between the error terms ut and vt

of the predictive regression. However, the predictive regression model is particularly useful for
examining the case of non-zero correlation between the error sequence (ut, vt). Specifically, when
Cov(ut, vt) ̸= 0, then under the assumption of nonstationary predictors (LUR), we expect to have
size distortions. This is in accordance with the asymptotic theory we proved in the paper, that
is, the limiting distribution of the test no longer follows the standard NBB result of Andrews, as
it depends on the nuisance coefficient of persistence ci.

The initial simulation experiments we obtain indicate that the extent of size distortions in finite
samples can be considerable if the empirical size is not controlled with a bootstrap methodology,
for cases we have a non-standard limiting distribution (e.g, LUR). For instance, we observe that
even though the simulated empirical size for the sup IVX-Wald test for detecting a single unknown
structural break in the predictive regression model with no model intercept is not quite close to
the 8.85 critical value that corresponds to the NBB result of Andrews. Furthermore, from the
empirical size experiments across different values of the contemporaneous correlation coefficient,
ρ, we can see that the simulated size are quite close when observing at a specific value of c. This
is not surprising since the fully modified covariance estimator incorporated in the construction of
the covariance matrix for the IVX takes into account the dependence structure of the regressors
by applying a common long-run covariance structure. This holds across different values of ci.

In summary, under mild persistence, such that γx ∈ (0, 1), we expect that the sup OLS-Wald
test to be properly sized based on the cut-off point from Table 1 of Andrews (1993). Similarly,
this findings should also hold in the case of the sup IVX-Wald test as we have proved that the
limiting distribution of both tests under the null converges to a NBB. Furthermore, under the
assumption of LUR, such that γx ∈ (0, 1), using the cut-off that correspond to the NBB, when
testing for structural break based on the sup OLS-Wald we expect to have size distortions and
this is also the case for the sup IVX-Wald test.
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2.5.4 Bootstrap procedure

For robustness of the procedure we use a bootstrap algorithm in order to obtain correspond-
ing critical values. The bootstrapped critical values are estimated based on the Residual Wild
Bootstrap (RWB) within the structural break framework. Other approaches include the Fixed
Regressor Wild bootstrap (FRWB) which can be found in the predictability literature such as
in Georgiev et al. (2021) and Xu (2020). Further frameworks which describe suitable procedures
for obtaining bootstrapped critical values are described by Hansen (2000b) and Georgiev et al.
(2018) specifically for structural break tests.

Algorithm 1. Two-sided 100 × (1 − α)% Bootstrap sup IVX-Wald test for testing the null
hypothesis H0 : θ1 = θ2, where θj =

(
µj , β

′
j

)′
.

Consider the predictive regression with multiple predictors. Simulate the following DGP

yt = µ+ x′
t−1β + ut, (2.49)

xt = Rxt−1 + vt, (2.50)

where R is a k × k dimensional coefficient matrix and ut = (ut, v′
t)

′ is (k × 1)−dimensional
martingale difference sequence with variance-covariance matrix

Var(ut) = Σ =
[
σ2
u σ′

uv

σvu Σvv

]
(2.51)

Step 1. Estimation Step

1.1. Fit the predictive regression given by (2.49) to the sample data (yt, xt−1)′ to obtain the
OLS residuals ût, for t ∈ {1, ..., n}. Obtain the vector of coefficients

{
µ̂1, µ̂2, β̂1, β̂2

}
.

1.2. Fit by OLS the autoregression of order 1, AR(1), given by (2.50) to the vector of
predictors xt, to obtain the OLS residuals v̂t, for t ∈ {1, ..., n}. Set v̂t = 0. Obtain the
vector of coefficients

{
R̂
}

.

Step 2. Generate the bootstrap sample {y∗
t , x

∗
t , t = 1, ..., n}.

2.1. Generate the bootstrap innovations w∗
t = (u∗

t , v
∗′
t )′ := (κt ⊗ ût, κt ⊗ v̂t), where ⊗ de-

notes element-wise vector multiplication, such that κt for t ∈ {1, ..., n}, is a scalar
sequence independent from the data such that κt i.i.d∼ N (0, 1).

2.2. Generate x∗
t such that

x∗
tb

= R̂x∗
tb−1 + u∗

tb
, for tb ∈ {1, ..., T} , (2.52)

with initial conditions x∗
0 = 0 and b ∈ {1, ..., B}.



CHAPTER 2. 36

2.3. Generate the associated bootstrap IVX instrument z∗
t as below

z∗
0 and z∗

t =
tb−1∑
j=0

(
I − Cz

n

)j
∆x∗

tb−j , for t ∈ {1, ..., T} , (2.53)

where Cz is the coefficient matrix for the persistence of the bootstrap IVX instruments
that contains the same values as the original IVX instruments.

2.4. Generate y∗
tb

such that y∗
tb

= µ̂+ x∗′
tb−1β̂ + u∗

tb
. Set y∗

1 = y1.

2.5. Repeat Steps 2.1 to 2.4 B times (e.g., B = 1000).

Step 3. For each bootstrap sample,

y∗
tb

=
(
µ̂1 + x∗′

tb−1β̂1
)

1 {tb ≤ k} +
(
µ̂2 + x∗′

t−1β̂2
)

1 {tb > k} + u∗
tb

(2.54)

calculate the bootstrap IVX-Wald statistic

W∗
IV X =

(
θ̂∗
j − θ̂j

)′ [
Q̂∗

1 + Q̂∗
2

]−1 (
θ̂∗
j − θ̂j

)
,

where Q̂∗
1 and Q̂∗

2 are computed like Q̂1 and Q̂2 except that the bootstrap sample {y∗
t , x

∗
t , z

∗
t }

is replaced by the original sample {yt, xt, zt} such that

Q1 :=
{(
Z ′

1X1
)−1

(
Z̃ ′

1Z̃1
)

adj

(
X ′

1Z1
)−1

}
Q2 :=

{(
Z̃ ′

2X2
)−1 (

Z̃ ′
2Z̃2

)
adj

(
X ′

2Z̃2
)−1

}

where X1 = [1, x′
1t−1]′ and X2 = [1, x′

2t−1]′. Similarly, Z̃1 = [1, z̃′
1t−1]′ and Z̃2 = [1, z̃′

2t−1]′.

The FM covariance matrix correction is implemented as below:(
Z̃ ′

1Z̃1
)

adj
=
(
Z̃ ′

1Z̃1
)

⊗ Σ̂uu − kz̄1n−1z̄
′
1n−1 ⊗ Ω̂FM (2.55)(

Z̃ ′
2Z̃2

)
adj

=
(
Z̃ ′

2Z̃2
)

⊗ Σ̂uu − (T − k)z̄2n−1z̄
′
2n−1 ⊗ Ω̂FM (2.56)

where Ω̂FM = Σ̂uu − Ω̂uvΩ̂′
uuΩ̂′

uv.

Step 4. Use the 100(1 − α)% quantile τW∗
IV X

(1 − α) of W∗
IV X over B bootstrap replications as the

critical value, that is, the hypothesis H0 is rejected at the significance level α if it holds that
WIV X > W∗

IV X . We can also reject the null hypothesis based on the bootstrap p-value, as
given by expression (2.57) below.

Remark 2.10. Notice that large sample theory and asymptotic validity for the IVX bootstrap
Wald statistic via a bootstrap functional central limit theory is presented in Georgiev et al. (2018)
and Georgiev et al. (2021) for the interested reader. The particular asymptotic results allow us
to employ the Wild bootstrap procedure to generate critical values for the sup IVX-Wald test for
cases in which the limiting distribution of the test does not converge to the standard NBB limit.
In those cases (e.g., γx ∈ (0, 1) and γx = 1) the bootstrapped empirical distribution sufficiently
converges to the true limiting distribution of the test.
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Therefore, we compute the bootstrap p-value as below

p∗ (τ̂WIV X
) = 1

B

B∑
j=1

I
(
τ̂∗

WIV X
> τ̂WIV X

)
(2.57)

Under the null hypothesis H0, as T → ∞, p − value∗ := P∗
(
W̃∗
IV X ≤ W̃IV X

)
w→ U [0, 1], where

P∗ denotes the probability space conditional on the data x and y.

Generally, if we denote with Wn a Wald type statistic, then the bootstrapped counterpart es-
timates the asymptotic distribution of the original statistic which implies that the convergence
G∗
n(x) := P∗(Wn ≤ x) →p G∞(x) holds. Moreover, the bootstrap consistency result holds

sup
x∈R

∣∣P∗ (W ∗
n ≤ x) − P (W ∗

n ≤ x)
∣∣ →p 0 (2.58)

Then, the bootstrap p-value satisfies p∗
n := P∗ (W ∗

n ≤ x) |x=Wn = G∗
n(Wn) ⇒ U [0, 1]. In practise,

the bootstrapped p-value given by expression (2.57), p∗ (τ̂WIV X
) is the fraction of the bootstrap

samples for which τ̂∗
WIV X

is larger than τ̂WIV X
. Then, the null hypothesis is rejected when the

empirical p-value p∗ of the test statistic is smaller than the significance level α.

An important aspect when simulating p-values for a certain test statistic is the assumption of
the test being pivotal. However, it can be proved that the bootstrap p-values under H0 are
asymptotically uniformly distributed, and therefore the implementation of the Residual Wild
Bootstrap is asymptotically valid in this sense. Since we utilize the above bootstrap procedure
(modification of Algorithm 1) to obtain critical values for the sup Wald tests within a Monte Carlo
setting then the bootstrap step is replicated in each Monte Carlo simulation. In other words, since
asymptotic critical values are not available for the sup IVX-Wald test in the case of persistent or
integrated regressors we employ the bootstrap critical values to obtain the empirical size under
the null hypothesis of no parameter instability. Practically, since the asymptotic critical values for
the sup IVX-Wald test (e.g., given by Theorem 2.2) are not available, then we use the simulated
critical values. The regressor wild bootstrap is preferred to the residual wild based bootstrap for
example since when the variance error Var(ϵi|Xi) depends on the value of the predictors Xi (i.e.,
heteroscedasticity), then the residual bootstrap will be unstable because the residual bootstrap
will swap all the residuals regardless of the value of the predictor. Nevertheless, one could also
examine the implementation of a residual wild bootstrap (RWB) to obtain the required critical
values for the empirical size and power of the tests (e.g., see Cavaliere et al. (2013)).

The choice of the number of Bootstrap replications is another important aspect for consideration
for bootstrap based inferences. A small number of artificial samples clearly affects the precision of
estimation of p-values under the null hypothesis. In other words, we generate B bootstrap samples
of size n where u∗

b1, ..., u
∗
bn is a random sample drawn, with replacement, from an asymptotically

valid OLS residual-based EDF. Then, the bootstrap test statistics can be calculated and the
p-values of the corresponding actual test statistics can be estimated.
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Remark 2.11. Notice also that we consider the case of unconditional weakly convergence under
the presence of correlation between the innovations of the predictive regression model. Further-
more, using for example conditional dependence arguments as in Georgiev et al. (2018), the
limiting distribution under the null hypothesis for a random break-point π ∈ [π1, π2] is still ran-
dom. Obviously, when we impose the assumption that the break-point is fixed π = π0, then even
in the case of conditional convergence the limiting distribution of the tests can be shown to be χ2

(see, the discussion in Georgiev et al. (2018) i.e., Remarks 14 to 17.). On the other hand, since
we are particularly interested to evaluate the statistical performance of the IVX-Wald test under
the null hypothesis and the assumption of an unknown break-point, then the best we can do is to
rely on the corresponding bootstrap distribution. More specifically, Georgiev et al. (2018) discuss
that the bootstrap statistics conditional on the data, and the original statistics, conditional on
the data, share the same asymptotic distribution (due to weak convergence arguments) e.g., for
example in the case of the wild-bootstrap procedure. The particular result has important impli-
cations. In other words, even though we can not exactly determine the asymptotic distribution of
the sup Wald-IVX test for the case of persistent or integrated predictors, then bootstrapped coun-
terpart statistics ensure both the the presence of asymptotically valid tests as well as they allow
to obtain bootstrap p-values regardless of the random-nature of the original limiting distribution
as well as the abstract degree of persistence.

The correct use of critical values close to the true asymptotic distribution of the test statistic
under examination is crucial in Monte Carlo simulations. This allows to correctly identify the
existence of size distortions. In order to decide whether to accept or reject the null hypothesis, one
can use already tabulated critical values, only in those cases that the asymptotic distribution of
the test statistic under consideration has a known Brownian functional (such as NBB). Therefore,
implementing bootstrap inference ensures robust performance of the empirical size and power of
the tests. In order to avoid the critical values of the tests to diverge to infinity for any significance
level, we choose a trimming parameter which ensures that we do not select an unrestricted full
range of values for the break fraction π.
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2.6 Empirical Application

Our empirical implementation sheds light on the literature of stock return predictability. Identi-
fying periods of predictability has important implications in various aspects of finance. Related
modern reviews of these aspects are presented by Kostakis et al. (2018) and Chinco et al. (2019),
among others. However, despite the extensive research of the field, the findings are still rather
mixed (Kasparis et al., 2015) (see, Welch and Goyal (2008) for a full discussion). For instance,
aspects such as the chosen sample period or the selected predictors can give different conclusions.
Additionally, parameter instability due to certain economic events can also affect the reliability of
predictability tests. Therefore, it is of paramount importance to develop robust testing method-
ologies for inferring predictability under conditions such as parameter instability or the presence
of nonstationary regressors. Using the predictive regression model studied in this paper20 our
primary focus is to examine the robustness of the proposed tests.

Dataset Description The dataset we employ for the stock return predictability application of
the paper, is constructed based on the set of variables considered in the study of Welch and Goyal
(2008)21 which capture economic and financial conditions for the US economy. Thus, we focus on
examining the presence of predictability and parameter instability for monthly US stock market
excess returns over the sampling period 1990Q1-2019Q4, which includes the economic shocks of
the 2008 financial crisis.

Predictant The dependent variable is the monthly equity premium (excess return) of the US
stock market based on the S&P500 index. We construct the excess return as in Kasparis et al.
(2015), that is, the difference between the total rate of return and the risk-free rate for the same
sample period. As a proxy of the US stock market return, we use the value-weighted S&P500
total stock market return including dividends (dividend adjusted returns) using the variables of
the particular dataset. Moreover, to account for the risk-free rate we utilize the 3-month T-bill
rate obtained from the FRED22database. After making these adjustments, we fit the univariate
or multivariate predictive regression models with predictors as described below.

Predictors The predictor variables include a set of financial valuation variables, such as:
dividend-payout ratio (d/e), long-term yield (lty), dividend yield spread (dy), dividend-price-
ratio (d/p), T-bill rate (tbl), earnings-price-ratio (e/p), book-to-market ratio (b/m), default
yield spread (dfs), net equity expansion (ntis), term spread (tms) and inflation rate (inf).

20Alternative model specifications can be considered; for instance a model which considers expected returns in
relation to macroeconomic conditions and forecasting uncertainty. A first move towards this direction is presented by
Atanasov et al. (2020) who examine consumption fluctuations and expected returns with respect to the predictability
literature. More specifically, the authors indeed find statistical evidence of predictability at the one-quarter horizon
using the IVX testing approach of KMS.

21The dataset can be retrieved from Amit Goyal’s website at http://www.hec.unil.ch/agoyal/. Detailed
descriptions of variables can be found in the Online Appendix of Welch and Goyal (2008).

22Time series of macroeconomic variables, such as the US inflation rate and the T-bill rate can be found at
https://fred.stlouisfed.org/. Notice also that the proxy of equity premium and the other financial variables
we consider in this paper, are commonly used in the predictability literature, see Gonzalo and Pitarakis (2012),
Kasparis et al. (2015), Kostakis et al. (2015) and Kostakis et al. (2018).

http://www.hec.unil.ch/agoyal/
 https://fred.stlouisfed.org/
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2.6.1 Predictability Tests

We apply the predictability tests based on the the full sample 1946Q1-2019Q4 (Panel A), as
commonly done in the literature, using as predictant the S&P500 Equity Premium. Moreover, in
this paper we also focus on the sub-sample spanning the period 1990Q1-2019Q4 (Panel B). For
both Panel A and B the time series observations correspond to monthly sampling frequency. Our
first aim is to examine the stock return predictability of this subsample, that is, to identify the
financial variables which are individually statistical significant as well as to identify for evidence
of joint statistical significance. Furthermore, our second aim is to employ our proposed parameter
instability tests for both the OLS and IVX estimators and compare the results we obtain. In
particular Panel B, includes the period of the 2008 financial crisis, so it is natural to assume
that certain predictors might exhibit structural break around that economic event. Therefore,
this is a suitable sample to assess the statistical validity of our proposed framework for the case
of a single structural break. Certain limitations of our approach are on sight, however these do
not invalidate our findings. In particular, we do not consider the existence of multiple structural
breaks neither we consider sample splitting techniques which can affect the power of the tests
especially when using an out-of-sample forecasting scheme.

Table A3 summarizing our findings, which presents predictability tests based on both the OLS
estimator and the IVX estimator. Notice that for these set of tests we fit the predictive regression
models using the predictors without any detrending or differencing to preserve the unknown
persistence properties and have comparability between the two estimators. As we can observe
from the estimates on Table A3, using the HAC adjusted t-ratio based on the OLS estimator,
indicates that for Panel A both the T-bill rate as well as the Inflation rate have predictive power
for the US equity premium, while this is not the case for Panel B. This finding motivates us
further to apply our novel Wald type statistics to detect whether any predictors exhibit parameter
instability, causing any distortions to statistical inference on the parameters.

Table A4 presents standard structural break tests for the model parameters of the univariate
predictive regressions. We implement a set of retrospective structural break tests, under the
assumption of stationary time series, by taking the first difference of the predictors before fitting
the AR(1) regressions, to avoid any violation of the related econometric assumptions of these
test statistics. For instance, it is well-known that the events around the financial crisis of 2008,
caused structural breaks in various time series that capture financial and economic conditions.
As we can see from the estimates of Table A4, which is based on the dataset of Panel A, both
the max-based and exp-based Likelihood Ratio tests indicate statistical evidence of structural
breaks in the Dividend payout ratio as well as the earnings-price-ratio, based on the fitted AR(1)
model. Therefore, we expect that these variables can affect the robustness of the predictability
test, when are included in the model.
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2.7 Conclusion

Our objective in this paper, is to provide a unified framework for parameter constancy tests in
predictive regression models with nonstationary predictors. More specifically, we propose novel
wild bootstap sup-Wald tests to detect parameter instability in predictive regression models with
nonstationary predictors. Conducting inference, such as structural break testing, on the regression
coefficient of the predictive regression model with multiple highly persistent regressors can lead to
a nonstandard limiting distribution. In this paper, we propose a robust econometric framework
for structural change testing in predictive regressions with highly persistent predictors as defined
via the LUR specification.

In particular, we consider "pure" structural change as it is defined by Andrews (1993), in the sense
that the entire parameter vector is subject to structural change under the alternative hypothesis.
We have extensively examined the asymptotic theory of tests for parameter instability under the
assumption of nonstationary regressors. We compare our results with previous seminal work in
the fields of both structural break testing in linear regressions as well as predictability testing
in predictive regression models. We find some interesting results not previously presented in the
literature. Firstly, using the OLS estimator for the parameters of the predictive regression model
we show that the limiting distribution of the Wald statistic for testing for a single structural break
has a nonstandard limiting distribution which depends on the unknown coefficient of persistence.
Secondly, by employing the IVX estimator proposed in the literature as a robust estimator which
filters out the abstract degree of persistence in regressors, we have proved that the limiting
distribution of the parameter constancy test is also nonstandard but in some special cases of the
parameter space of γx, this simplifies to the NBB result. Finally, we prove that the sup OLS-Wald
and sup IVX-Wald are equivalent in the case of mildly integrated predictors. However, for the
case of highly persistent predictors, which is the case of interest in this paper, the two statistics
have a different limiting distribution.

We evaluate Wald type test statistics that asymptotically converge to a nonstandard limiting
distribution under the null hypothesis. The implementation of a fixed regressor bootstrap is com-
putational feasible and since the econometrician is agnostic regarding the persistence properties
of regressors, it allows to obtain asymptotic approximations of the distributions of the test statis-
tics under the null hypothesis. Furthermore, the structure of the predictive regression model, can
be proved that produces valid bootstrap inference as it is shown in the framework of Georgiev
et al. (2021). The particular conjecture implies a weak convergence argument which allows to use
the bootstrap asymptotic critical values even though the presence of the nuisance parameter of
persistence in both the original limiting distribution and the corresponding bootstrap distribution
under the null hypothesis.

Further aspects related to the IV based approach of KMS that we follow in this paper, can be
also examined within the above parameter instability testing procedures. Recent applications
include for instance, Gungor and Luger (2020) who consider predictability tests with GARCH-
type effects (see also, Magdalinos (2020)) and Yang et al. (2020) who consider a modification
of the KMS test that accounts for serial correlation in the error term of the linear predictive
regression. Moreover, Pang et al. (2020) propose testing methodologies for multiple structural
breaks under the presence of nonstationary predictors.



Chapter 3

Detecting Structural Breaks in
Quantile Predictive Regressions

Abstract

We propose an econometric environment for structural break detection in nonstationary quantile
predictive regressions. We establish the limit distributions for a class of Wald and fluctuation type
statistics based on both the ordinary least squares estimator and the endogenous instrumental
regression estimator proposed by Phillips and Magdalinos (2009). Although the asymptotic dis-
tribution of these test statistics appears to depend on the chosen estimator, the IVX based tests
are shown to be asymptotically nuisance parameter-free regardless of the degree of persistence
and consistent under local alternatives. The finite-sample performance of both tests is evaluated
via simulation experiments. An empirical application to house pricing index returns demonstrates
the practicality of the proposed break tests for regression quantiles of nonstationary time series.

42
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3.1 Introduction

Time series predictability is a research question that sparked the development of various method-
ologies for estimation and inference in predictive regression models. Related studies include
Jansson and Moreira (2006), Mikusheva (2007), Phillips (2014), Cai and Wang (2014), Kostakis
et al. (2015), Kasparis et al. (2015), Gonzalo and Pitarakis (2012, 2017), Ren et al. (2019), Deme-
trescu et al. (2020), Yang et al. (2020), Georgiev et al. (2021), Andersen and Varneskov (2021),
Harvey et al. (2021b) as well as Dou and Müller (2021) among others1. These frameworks oper-
ate under the assumption of a stable relation between the predictant and the predictors of the
model. However, the possible presence of parameter instability under these conditions require a
different treatment (e.g., see Pitarakis (2017) and Georgiev et al. (2018)). Thus, to derive limits
for structural break tests suitable for predictive regressions, necessitate to employ certain regu-
larity conditions and invariance principles of partial sum processes as in Phillips and Magdalinos
(2007), Phillips and Magdalinos (2009), to obtain stochastic integral approximations.

Most of the current literature focuses on detecting structural break in the conditional mean of the
distribution of f(yt|xt) or f(yt|xt−1) where xt is assumed to follow a near unit root process such
as in Cai et al. (2015), Georgiev et al. (2018) and leaving the conditional quantile distribution
vastly unexplored. Consequently, this paper addresses these issues by developing a framework
suitable for structural break testing for quantile regressions under nonstationarity which has not
seen much attention. Specifically, we build on related studies such as Lee (2016) and Fan and Lee
(2019) who propose a framework for estimation and inference in quantile predictive regressions as
well as the study of Qu (2008) who focus on break testing procedures for regression quantiles. The
latter approach studies a linear quantile model with stationary covariates, while we consider the
nonstationary quantile predictive regression model with persistent covariates as in Lee (2016).
Another related study is presented by Aue et al. (2017) in the context of piecewise quantile
autoregressions. Therefore, proposing tests which bridge the gap between these two approaches
is a further development of the current toolkit while the local-to-unity theory proposed by Phillips
(1987a) and Phillips and Perron (1988) can facilitate the asymptotic theory.

Consider the τ−th conditional quantile of yt which is defined as following

Qy (τ|x) = F−1
y|x(τ|x) := inf

{
s : Fy|x(s|x) ≥ τ

}
(3.1)

Thus, using the conditional quantile function (3.1) proposed by Kiefer (1967), to be the spec-
ification form for the predictive regression model then the modelling environment permits to
investigate the presence of quantile predictability. The parameter vector of the predictive re-
gression model is quantile dependent for some fixed quantile level within a compact set and can
be estimated as the unique solution of the following unconstrained optimization problem (see,
Koenker and Portnoy (1987) and Portnoy (1991))

arg min
b∈Rp

n∑
t=1

ρτ
(
yt − x′

t−1b
)

(3.2)

1The problem of distorted statistical inference in predictive regression models under nearly integrated predictors
has been also reported in previous studies such as Elliott and Stock (1994), Elliott (2011), Campbell and Yogo
(2006) and references therein.
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where ρτ(u) ≡ u (τ − 1 {u < 0}), is the check function as defined by Koenker and Bassett (1978),
b is some parameter vector and xt−1 is the lagged regressor of the model. Our research objective
is on the asymptotic behaviour of the parameter estimators of b as well as related test statistics
about the parameter vector under the null hypothesis of no parameter instability. Under the
alternative hypothesis there exists a structural break at an unknown break-point location.

The structural break literature has various applications for different modelling conditions, how-
ever there are currently limited studies related to break testing in quantile time series models
even under the assumption of stationarity and ergodicity such as in the seminal paper of Andrews
(1993) for linear models. Furthermore, when considering predictive regression models inference
regarding structural break involves deriving nonstandard asymptotic theory due to the presence
of the nuisance coefficient of persistence. More precisely, testing based on conventional estima-
tion methods (such as OLS-based tests) has been proved to have size distortions for persistent
regressors (e.g., see Georgiev et al. (2018) and as in Chapter 2 of the thesis). Our study is con-
sidered as a unified framework for structural break detection in quantile predictive regressions
(see, Lee (2016) and Fan and Lee (2019)) which encompasses regressor properties such as high
persistent, mildly integrated or stationary under certain parameter space restrictions on the per-
sistence parameters. In particular, the proposed tests can statistically evaluate for breaks in the
model coefficients at both fixed and multiple quantiles of the underline conditional quantile dis-
tribution. We investigate the asymptotic theory and implementation of both Wald type statistics
as in Andrews (1993) as well as fluctuation type statistics as in Qu (2008) but within the setting
of nonstationary quantile predictive regressions.

Our contributions are threefold. Firstly, we study the estimation problem of quantile predictive
regressions with multiple predictors assumed to be generated as either near unit root or mildly
integrated processes. We construct quantile predictability Wald statistics under the null of no
predictability and derive the asymptotic distributions (as in Lee (2016)). Secondly, we propose a
structural break testing procedure for quantile predictive regressions which permits testing for the
presence of breaks at the tails. Thirdly, we examine the statistical performance of these tests for
detecting parameter instability in the coefficients of quantile predictive regressions with extensive
simulation experiments of empirical size. Our distribution theory is based on a double indexed
empirical process (see, Caner and Hansen (2001)) with a weakly convergence to a two-parameter
Brownian motion within the Skorokhod topology. Under the null hypothesis of no structural break
the specific weakly convergence argument permits to establish convergence to stochastic integral
approximations defined with respect to a two-parameter process; limit results employed to derive
the asymptotic distributions of fluctuation type statistics. Similarly, for the Wald type statistics
we employ the asymptotic theory developed by Phillips and Magdalinos (2009) and Lee (2016).
Thus, we introduce invariance principles for partial sum processes of matrix moments based on
these functionals to obtain asymptotic results for the proposed econometric environment.

We assume that all random elements are defined within a probability space denoted with the
triple (Ω,F ,P). All limits are taken as n → ∞, where n is the sample size. Denote with D ([0, 1])
to be the set of functions on [0, 1] that are right continuous and have left limits, equipped with
the Skorokhod metric. Then, the symbol ” ⇒ ” is used to denote the weak convergence of the
associated probability measures as n → ∞. The symbol D→ and P→ are employed to denote
convergence in distribution and convergence in probability respectively.
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Outline Chapter 3 is organized as follows. Section 3.2 introduces the quantile predictive re-
gression model along with main assumptions, the estimation methodology as well as the testing
hypotheses of interest. Section 3.3 presents the testing procedure and asymptotic theory of
structural break testing for a fixed quantile level. Section 3.4 presents the testing procedure
and asymptotic theory of structural break testing across multiple quantile levels. Section 3.5
investigates the finite sample performance of the proposed tests via Monte Carlo experiments.
Section 3.6 illustrates the implementation of of the proposed testing procedures with an empirical
application. Section 3.7 concludes. Proofs of main limit results can be found in Appendix B.

3.1.1 Literature Review

Estimation and inference with quantile models has been proposed to the literature with the
seminal work of Koenker and Bassett (1978) and Koenker and Bassett (1982). In particular,
the uniform Bahadur-type representation established by Koenker and Portnoy (1987) as well as
the representation of quantiles proposed by Knight (1989) (see also Koul and Saleh (1995)) are
commonly used to derive limit distributions for estimators and test statistics. Several papers in
the literature follow these methodologies that examine related aspects to the proposed estimation
environment and testing procedures.

Firstly, the problem of structural change for regression quantiles include the studies of Su and Xiao
(2008) and Qu (2008). Both frameworks develop diagnostic tools for break detection in quantile
regression models under the assumption of stationary covariates. In the former case the alternative
hypothesis of a single break is formulated with respect to the magnitude of the break-point. In the
latter case, the author also propose a multiple break point testing procedure. Additionally, Furno
(2014) implements these quantile regression based statistics using the methodology proposed by
Chow (1960) which implies testing for break at a known location in the sample.

A different perspective is presented by Hoga (2018) who consider detecting for breaks using
tail dependence measures (see also Hoga (2017)2) based on an empirical estimator of extremal
dependence. An extension of the method to an alternative hypothesis with multiple breaks is
also examined. All aforementioned procedures correspond to structural break tests suitable for
quantile models3 while in our study we focus on implementing testing procedures specifically for
quantile predictive regression models in which the time series properties of predictors are modelled
with the nuisance parameter of persistence. In particular, a separate autoregressive model with a
local unit root coefficient matrix is used to model the unknown degree of persistence which implies
that conventional approaches for deriving large sample theory are no longer valid. However, the
fluctuation based tests implemented by Qu (2008) for break detection in quantile models with
stationary covariates provides a suitable econometric environment for investigating the effect of
nonstationarity to the asymptotic distribution of the tests.

2The framework proposed by Hoga (2017) considers a set of change point tests for the tail index of random
variables and contributes to the literature of nonparametric modelling methods.

3Notice that the literature of break tests presented here differs from the literature of slope heterogeneity in
quantile models. Related aspects to inference are Koenker and Hallock (2001), Chernozhukov (2005), Portnoy
(2012) and Escanciano and Goh (2018) which are of independent interest.
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Secondly, asymptotic theory for quantile time series regressions has been examined by Koenker
and Xiao (2002, 2004, 2006) in the context of autoregressive model specifications and unit root
testing4. Further applications in the time series literature include testing procedures for threshold
effects under the assumption of a conditional quantile function as in the studies of Galvao et al.
(2011, 2014) and the case of nonstationary (nonlinear) quantile regressions by Xiao (2009), Cho
et al. (2015), Li et al. (2016) and Uematsu (2019). Moreover, Kato (2009) derives related limit
results which are useful when considering the asymptotic behaviour of quantile estimators for
a wide class of modelling approaches and econometric conditions. All these studies cover both
stationary and nonstationary models however they operate under the null hypothesis of no pa-
rameter instability in model parameters. Therefore, our proposed testing procedure, is considered
to be a novel contribution to the time series econometrics literature.

Thirdly, the proposed structural break testing methodology is closely related to the problem of
unidentified parameters under the null hypothesis which is well-known in the econometrics and
statistics literature as the Davies problem (see, Davies (1977)). The particular aspect which is
relevant to parameter admissibility has been investigated in problems of estimation and testing
such as in the studies of Hansen (1996), Andrews and Ploberger (1994), Pitarakis (2004) and
Elliott et al. (2015). A more recent approach to the unidentified parameter problem under
the null is presented by McCloskey (2017)5. Therefore, to overcome this challenge, we employ
the supremum operator when constructing Wald type statistics. Furthermore, a nonparametric
estimation approach for quantile regressions such in the study of Qu and Yoon (2015), may require
different moment conditions for estimation and inference which is beyond the scope of this paper.

Lastly, in terms of the model structure of the proposed modelling approach of the paper, we impose
standard econometric assumptions and conditions in the literature of predictive regressions. More
precisely, by imposing a standard martingale difference condition on the equation innovations ut,
this implies an orthogonality condition between the innovations and the model regressors, such
that Cov

(
ut,xt

)
= E

[
xtE (ut|Ft−1)

]
= 0. Furthermore, the model structure we follow does not

allow for endogeneity even though the IVX instrumentation method implies the construction
of endogenous instruments. Specifically, as explained by Phillips and Magdalinos (2009) and
Kostakis et al. (2015), the IVX filtration implies the construction of instrumental covariates
based on information obtained only from the regressors of the model. According to (Wang and
Phillips, 2012, p. 731) the model structure would permit for the presence of endogeneity when the
equation error could be serially dependent and cross-correlated under certain moment restrictions
(see also Yang et al. (2020)6). However, the particular aspect can complicate the derivation of the
limit distributions as additional considerations will be needed, such as to incorporate conditional
heteroscedasticity, which is beyond the scope of our study and we leave as future research related
to the proposed framework.

4A unified framework for econometric inference with nearly integrated regressors and unit roots is proposed
by the seminal work of Phillips (1988a), Phillips (1987b). Further relevant literature includes the study of Stock
(1994) who discuss aspects related to testing with unit roots and structural breaks in time series models as well as
Chapter 14 in Davidson (2000) that has additional derivations and examples.

5Specifically, McCloskey (2017) proposes a framework for a set of flexible size-corrected critical values construc-
tion methods that lead to tests with correct asymptotic size and desirable power properties in testing problems
with nuisance parameter under the null hypothesis.

6Specifically, Yang et al. (2020) propose a unified IVX-AR Wald statistic that accounts for serial correlation
in the error terms of the linear predictive regression model. The IVX-AR estimator corrects the size distortions
arising from serially correlated error under the presence of high persistence.
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3.2 Econometric Environment and Testing Problem

3.2.1 Econometric Model and Assumptions

Consider the (linear) predictive regression model

yt = α+ β′xt−1 + ut, 1 ≤ t ≤ n, (3.3)
xt = Rnxt−1 + vt (3.4)

where yt ∈ Rn×1 is a scalar dependent variable and xt−1 ∈ Rn×p is a p−dimensional vector of
predictors such that xt is generated as a near unit root process (or local unit root process) with
an autocorrelation coefficient matrix as defined by the studies of Phillips and Magdalinos (2009)
and Kostakis et al. (2015) expressed as below

Rn =
(
Ip + Cp

nγx

)
, for some γx > 0. (3.5)

where n is the sample size, and Cp = diag {c1, ..., cp} is a p×p diagonal matrix with the coefficients
of persistence ci for i = 1, ..., p. We consider that the predictors of the model are allowed to belong
only to one of the two degree of persistence as specified below

• Local Unit Root (LUR): γx = 1 and ci ∈ (−∞, 0), ∀ i = 1, ..., p.

• Mildly Integrated (MI ): γx ∈ (0, 1) and ci ∈ (−∞, 0), ∀ i = 1, ..., p.

Let Ft denote the natural filtration, then for the error term of the predictive regression we
assume that E (ut|Ft−1) = 0 and E

(
u2
t |Ft−1

)
= σ2

uu. Specifically, the innovation structure of
the predictive regression model allows to impose a linear process dependence for vt, with a
conditionally homoscedastic martingale difference sequence condition such that

vt =
∞∑
j=1
φjεt−j , εt ∼ mds (0,Σ) ,

with necessary conditions for the linear process representation to hold given as below

Σ > 0,
∞∑
j=0

j
∥∥∥φj∥∥∥ < ∞ such that φo(z) =

∞∑
j=0

zjφj . (3.6)

Denote with et = (ut,v′
t)

′, then under regularity conditions, the following invariance principle
(FCLT ) holds (see Phillips and Solo (1992))

1√
n

⌊nr⌋∑
t=1

et := 1√
n

⌊nr⌋∑
j=1

[
ut

vt

]
≡

[
Bun(r)
Bvn(r)

]
⇒

[
Bu(s)
Bv(s)

]
:= BM

[
σ2
uu σ′

uv

σvu Σvv

]
(p+1)×(p+1)

(3.7)

where Σvv ∈ Rp×p is a positive definite covariance matrix and 0 < r < 1.



CHAPTER 3. 48

Specifically, the individual components of the vector sequence et = (ut,v′
t)

′ have partial sums
processes that weakly converge into their Brownian motion counterparts as below

Bun(r) := 1√
n

⌊nr⌋∑
t=1

ut ⇒ Bu(r) := N
(
0, rσ2

uu

)
(3.8)

Bvn(r) := 1√
n

⌊nr⌋∑
t=1

vt ⇒ Bv(r) := N
(
0, rΣvv

)
(3.9)

where B(r) =
(
Bu(r),Bv(r)′)′ being a (p × 1) Brownian motion with long-run covariance ma-

trix Σee, that is, a Gaussian vector process with almost surely continuous sample paths. More
precisely, since xt is an adapted process to Ft then in practise there exists a correlated vector
Brownian motion Bn(r) =

(
Bun(r),Bvn(r)′)′ such that

 1√
n
σ−1
uu

⌊nr⌋∑
t=1

ut,
1√
n

Σ−1/2
vv

⌊nr⌋∑
t=1

vt

′

⇒ B(r) =
(
Bu(r),Bv(r)′)′, 0 < r < 1 (3.10)

on D ([0, 1])2 as n → ∞, with covariance matrix as in (4.25) implying joint convergence. Under
the above conditions hold, then the following invariance principle holds (see, Phillips (1987a))

x[nr]√
n

⇒ J c(r), where J c(r) =
∫ r

0
e(r−s)CpdBv(s). (3.11)

The functional J c(r) represents the Ornstein-Uhlenbeck process7 which is employed to derive
stochastic integral approximations for the nonstationary predictive regression model (4.11)-(4.12).
Denote with Kc(r) := ΣvvJ c(r), where Kc(r) is a p−dimensional Gaussian process defined
as Kc(r) =

∫ r

0
e(r−s)CpdBv(s) is the solution of Black-Scholes differential equation dKc(r) ≡

cKc(r) + dBv(r), with Kc(r) = 0 as the initial condition.

The specific autoregression matrix specification (3.5) allows to examine other persistence prop-
erties such as unit root processes, when ci = 0 for all i ∈ {1, ..., p}, or explosive processes when
ci > 0. We consider two types of nonstationarity, that is, the near unit or high persistent re-
gressors and the mildly integrated regressors. In both cases the coefficient of persistent, ci, lies
below the unit root boundary. However, the main difference between these two persistence classes
is that the mildly integrated regressors have an exponent rate below the unit boundary, which
implies that these regressors are less persistent than regressors generated from near unit root pro-
cesses. One can consider extending our estimation and testing framework to the case of explosive
regressors; we leave this aspect for future research. The proposed framework develops the test-
ing procedure and relevant asymptotic theory for structural break testing in quantile predictive
regressions while allowing for an endogenous predictive regressor with any degree of persistence.
To evaluate the performance of the proposed sup-Wald tests we use Monte Carlo resampling
techniques to control the familywise error rate in finite samples.

7The OU process is a stationary Gaussian process with an autocorrelation function that decays exponentially
over time. Moreover, the continuous time OU diffusion process has a unique solution and this property allows
to approximate asymptotic terms for estimators and corresponding test statistics as a function of the nuisance
parameter of persistence (see, Perron (1991)).
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Quantile Predictive Regression Model

Our main goal is to investigate the asymptotic theory and empirical implementation of structural
break tests suitable for quantile predictive regression models. Therefore, we consider suitable
modifications of the innovation structure that corresponds to the linear predictive regression
model, following standard conditions and assumptions employed for quantile time series models,
currently presented in literature. More precisely, the conditional quantile function of yt denoted
with Qyt (τ|Ft−1), replaces the conditional mean function of the predictive regression which im-
plies the following model specification

Qyt (τ|Ft−1) := F−1
yt|xt−1

(τ) ≡ α(τ) + β(τ)′xt−1. (3.12)

such that Fyt|xt−1(τ) := P
(
yt ≤ Qyt (τ|Ft−1)

∣∣Ft−1
)

≡ τ, where τ ∈ (0, 1) is some quantile level
in the compact set (0, 1). Therefore, in order to define the innovation structure that corresponds
to the quantile predictive regression, we employ the piecewise derivative of the loss function such
that ψτ(u) =

[
τ−1 {u < 0}

]
. Consequently, this implies that ut(τ) := ut−F−1

u (τ) where F−1
u (τ)

denotes the unconditional τ−quantile of the error term ut. Then, the corresponding invariance
principle for the nonstationary quantile predictive regression model is formulated as below

1√
n

⌊nr⌋∑
t=1

[
ψτ

(
ut(τ)

)
vt

]
⇒
(
Bψτ(r)(1×n)

Bv(r)(p×n)

)
≡ BM

[
τ(1 − τ) σ′

ψτv

σvψτ Ωvv

]
(3.13)

Assumption 3.1. The following conditions for the innovation sequence hold:

(i) The sequence of stationary conditional probability distribution functions (pdf) denoted with{
fut(τ),t−1(.)

}
evaluated at zero with a non-degenerate mean function such that fut(τ)(0) :=

E
[
fut(τ),t−1(0)

]
> 0 satisfies a FCLT given as below

1√
n

⌊nr⌋∑
t=1

(
fut(τ),t−1(0) − E

[
fut(τ),t−1(0)

] )
⇒ Bfut(τ)(r). (3.14)

(ii) For each t and τ ∈ (0, 1), fut(τ),t−1(.) is uniformly bounded away from zero with a corre-
sponding conditional distribution function Ft(.) which is absolutely continuous with respect
to Lebesgue measure on R (see, Neocleous and Portnoy (2008), Goh and Knight (2009),
Lee (2016) and Fan and Lee (2019)).

Remark 3.1. Assumption 3.1 (i) provides a standard weak convergence argument to a Brownian
motion process that corresponds to the underline distribution generating the innovation sequence
of the quantile predictive regression model (see, Lee (2016) and Fan and Lee (2019)). Furthermore,
Assumption 3.1 (ii) provides the weak convergence argument for the sparsity function of the
model to its Brownian motion counterpart for some 0 < r < 1.
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3.2.2 Estimation Methodology

We investigate the statistical properties of the estimation methodology in relation to the handling
of the nuisance parameter of persistence. We derive the asymptotic distributions of the associated
test statistics based on two optimization methods which are known to have different convergence
rates in the time series predictability literature.

Method A: OLS based estimation

We consider the OLS based estimation using the check function ρτ(.), which is common practise
for optimization problems of quantile series. Specifically, the asymptotic behaviour of the quantity
En(τ) ≡

√
n
(
βn(τ) − β0(τ)

)
is of interest. The traditional approach to asymptotics for β̂(τ) is

to employ a Bahadur representation which allows to decompose the expression into a Brownian
bridge component and an error term (see, Portnoy (2012) and Kato (2009)). Furthermore, various
studies are concerned with the determination of sharp error bounds for the specific error term.
However in our setting,

√
n−consistent asymptotics do not always apply due to the presence of

nonstationarity. Additionally, the chosen estimator affects the stochastic rates of convergence.

Similar to the linear predictive regression (a model with a conditional mean functional form),
under the assumption of persistent regressors, the OLS estimator has been proved to be biased
due to the presence of nuisance parameters (e.g., see Campbell and Yogo (2006)), resulting
to distorted statistical inference8. Nevertheless, focusing on the two persistence properties we
introduced previously, we derive its limit distribution which is useful when considering structural
break tests under nonstationarity.

Denote with θ(τ) =
[
α(τ),β(τ)′]′ ∈ R(p+1)×1 and Xt−1 =

(
1,x′

t−1
)′ ∈ R(p+1)×n, then the OLS

based estimator is obtained by solving the following optimization problem

θ̂
qr

n (τ) := arg min
θ∈Rp+1

n∑
t=1

ρτ
(
yt −X ′

t−1θ
)

(3.15)

where ρτ(u) = u
(
τ − 1 {u < 0}

)
with τ ∈ (0, 1), represents the asymmetric quantile regression

function. Following Lee (2016), we use the normalization matrices below which are different
according to the persistence properties of predictors such that

Dn :=

 diag
(√
n, nIp

)
for LUR,

diag
(√

n, n
1+γx

2 Ip
)

for MI.
(3.16)

Then, Corollary 3.1 summarizes the asymptotic distribution of the OLS-QR estimator (see also
Theorem 2.1 Lee (2016)) for mildly integrated and high persistent regressors.

8Relevant studies in the literature which examine the asymptotic behaviour of standard t−tests under these
conditions include Phillips and Lee (2013, 2016), Lee (2016), Fan and Lee (2019), Kostakis et al. (2015) and
Breitung and Demetrescu (2015) among others.
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Corollary 3.1. Under Assumption 3.1 and FCLT (4.25)-(4.25) it follows that: Dn

(
θ̂
qr

n (τ) − θ (τ)
)

⇒



fut(τ)(0)−1

 1
∫ 1

0
Jc(r)′dr∫ 1

0
Jc(r)dr

∫ 1

0
Jc(r)Jc(r)′dr


−1

(p+1)×(p+1)

 Bψτ
(1)(1×n)∫ 1

0
Jc(r)dBψτ

dr(p×n)

 LUR,

N

0, τ(1 − τ)
fut(τ)(0)2

[
1 0′

0 V −1
xx

]
(p+1)×(p+1)

 MI.

where the stochastic matrix V xx is defined by the following expression

V xx :=
∫ ∞

0
erCpΩxxe

rCpdr, where Ωxx :=
∞∑

m=−∞
E
(
vtv

′
t−m

)
= φo(1)Σφo(1)′.

Consequently, the limiting joint distribution of the model intercept and slopes for the nonstation-
ary quantile predictive regression model under the assumption of mildly integrated regressors, is
a mixed normal of the form MN

(
0,Σ⋆), where

Σ⋆ := τ(1 − τ)
fut(τ0)(0)2

[
1 0′

0 V −1
xx

]
, for some τ ∈ (0, 1). (3.17)

while under high persistence the asymptotic behaviour of Dn

(
θ̂
qr

n (τ) − θ (τ)
)

depends on func-
tionals of OU processes which are more challenging to approximate, especially if one is interested
to obtain sharp error bounds9 as in Portnoy (2012).

Furthermore, we assume that the sparsity coefficient can be consistently estimated with a fixed
unbiased estimator for all t. This a strong assumption which can be regarded as a trade-off
relation between the complicated objective function (i.e., non-differentiable and nonstationary)
and the tractable error term of the model (Uematsu, 2019). On the other hand, it permits to
consider the limiting distributions when testing for a set of parameter restrictions. Thus, to
overcome the problem of nonstandard statistical inference due to the presence of the nuisance
coefficient of persistence, we employ the instrumental variable regression approach proposed by
Phillips and Magdalinos (2009).

The estimator of Phillips and Magdalinos (2009) performs reasonably well in finite samples and
even performs better that the OLS counterpart (see Georgiev et al. (2021)), demonstrating the
robustness of the method in filtering out abstract degree of peristence when testing for linear
restrictions in predictive regressions. In addition, the suggested instrumental variable approach
is by definition neither spurious, since it is always correlated with the corresponding regressor,
not a poor instrument, because the correlation of unit root processes tends to one asymptotically.

9In particular, the study of Portnoy (2012) obtains a near
√

n−consistent error bound by employing the "Hungar-
ian construction" which requires to approximate the quantity En(τ) using a Brownian bridge limit which converges
to this non-zero Gaussian process with an appropriate rate of convergence.
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Method B: IVX based estimation

The endogenous instrumentation (IVX) procedure for predictive regression models10 proposed by
Phillips and Magdalinos (2009) implies the use of a mildly integrated instrumental variable. The
instrumented variable is constructed as below

z̃t =
t−1∑
j=0

(
Ip + Cz

nγz

) (
xt−j − xt−j−1

)
, (3.18)

where Cz = diag{cz1, ..., czp} is a p×p diagonal matrix such that czj < 0 ∀ j ∈ {1, ..., p} with 0 <
γz < 1, where γz is the exponent rate of the persistence coefficient of the instrumental variable,
such that γz ̸= γx. The IVX filtering methodology transforms a nonstationary autoregressive
process which is assumed to generate the regressors, xt, and can encompass both stable or unstable
processes based on the behaviour of the local unit root coefficient, into a mildly integrated process
which is less persistent than the endogenous variables. Another statistical property is the choice of
the exponent rate for the coefficient of persistence that corresponds to the instrumental variable
czj . Specifically, the econometric literature has documented a choice of γz close to 0.95 as a
reasonable value with desirable finite-sample properties when constructing predictability tests
(see, Lee (2016), Phillips and Lee (2016) and Kostakis et al. (2015)). Thus, to account for the
different convergence rates due to nonstationarity and obtain the asymptotic distribution of the
IVX-QR estimator we employ the following normalization matrices

Z̃t−1,n := D̃−1
n z̃t−1 and X̃t−1,n := D̃−1

n x̃t−1 (3.19)

where D̃n = n
1+γx∧γz

2 Ip, such that γx ∧ γz ≡ min (γx,γz) which is identical for both the case
of local unit root and mildly integrated regressors. Furthermore, we denote with yt(τ) := yt −
α(τ) + OP(n−1/2) to be the zero-intercept QR dependent variable. The particular dequantiling
procedure permits to reformulate the quantile model as yt(τ) = x′

t−1β(τ) + ut(τ) that simplifies
the derivations for the asymptotics of the model estimator which is known to have different
convergence rates when an intercept is included (e.g., see Gonzalo and Pitarakis (2012, 2017)).
Then, the IVX-QR estimator for the quantile regression, is defined by the following unconstrained
optimization problem

β̂
ivx−qr
n (τ) := arg inf

β∈Rp

1
2

{(
n∑
t=1

ht (β)
)′( n∑

t=1
ht (β)

)}
, (3.20)

where ht(.) is defined below such that ψτ(u) :=
[
1 {u ≤ 0} − τ

]
and ψτ(u) maps to7→ ρ−1

τ (u)

ht (β) := z̃t−1 × ψτ

(
ut(τ)

)
≡ z̃t−1 ×

[
τ − 1

{
yt(τ) < x′

t−1β
}]

(3.21)

10Notice that the related asymptotic theory which is robust to abstract degree of persistence and results to
nuisance-parameter free inference was pioneered by Magdalinos and Phillips (2009a) in the context of cointegration
models.
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The minimization of expression (3.20) leads to the following first order condition:

n∑
t=1
Z̃t−1,n ×

[
τ − 1

{
yt(τ) < x′

t−1β
ivx−qr
n (τ)

}]
= oP(1). (3.22)

Furthermore, it can be proved that for both the cases of high persistent and mildly integrated
predictors (LUR or MI ) the asymptotic distribution of the IVX-QR estimator is identical as
presented by Corollary 3.2. Notice that for the interested reader the limit distribution for other
classes of persistence (e.g., such as predictors which exhibit near stationary or mildy explosive
persistence) can be found in Theorem 3.1 of Lee (2016).

Corollary 3.2. (IVX-QR Limit Theory) Under Assumption 3.1 it follows that

D̃n

(
β̂
ivx−qr
n (τ) − β (τ)

)
⇒ N

(
0, τ(1 − τ)
fut(τ)(0)2

(
ΓcxzV −1

cxzΓ′
cxz

)−1
)

(3.23)

which is a mixed Gaussian distribution due to the stochastic covariance matrix.

Analytic definitions of the covariance matrices Γcxz and V cxz can be found in expressions (3.4) and
(3.5) in Lee (2016). Lastly, Lemma C.4 presents the asymptotic behaviour of the self-normalized
Wald statistic based on the IVX-QR estimator (see, Proposition 3.1 in Lee (2016)) for both the
cases of LUR and MI regressors.

Lemma 3.1. (Self-normalized IVX-QR) Under Assumption 3.1 it holds that,

f̂ut(τ)(0)2

τ(1 − τ)
(
β̂
ivx−qr
n (τ) − β(τ)

)′ (
X ′P Z̃X

) (
β̂
ivx−qr
n (τ) − β(τ)

)
⇒ χ2

p (3.24)

where

(
X ′P Z̃X

)
:=
(
X ′Z̃

) (
Z̃ ′Z̃

)−1 (
Z̃ ′X

)
≡
(

n∑
t=1
xt−1z̃

′
t−1

)(
n∑
t=1
z̃t−1z̃

′
t−1

)−1( n∑
t=1
z̃t−1x

′
t−1

)

such that f̂ut(τ)(0)2 is a consistent estimator of fut(τ)(0)2.

Furthermore, the above result can be generalized when testing for a set of linear restrictions
under the null hypothesis, H0 : Rβ(τ) = q(τ) where R is a r × p known matrix and q(τ) is a
prespecified vector. The corresponding asymptotic distribution for the IVX-Wald statistic for the
quantile predictive regression is given by the following expression

f̂ut(τ)(0)2

τ(1 − τ)
(
Rβ̂

ivx−qr
n (τ) − q(τ)

)′ [
R
(
X ′P Z̃X

)−1
R′
]−1 (

Rβ̂
ivx−qr
n (τ) − q(τ)

)
⇒ χ2

r

where χ2
r denotes the chi-square random variate with r degrees of freedom such that P

(
χ2 ≥ χ2

r;α

)
=

α, where 0 < α < 1 denotes the fixed significance level.
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3.2.3 Testing Hypotheses

In this section we present the testing problem of interest in this paper. More precisely, we
consider two type of testing hypotheses, that is: (i) testing for structural break for a fixed
quantile level τ ∈ (0, 1) and (ii) testing for a structural break multiple quantile levels. For both
testing hypotheses we operate under the assumption of a single structural break at an unknown
location. Similar formulations can be found in Qu (2008); however the focus of our study is the
nonstationary quantile predictive regression model with persistent covariates, commonly employed
in the time series econometrics literature.

Testing Hypothesis A. The first testing hypothesis of interest is concerned with testing for
structural break in a pre-specified quantile with the null and alternative hypothesis given as below

H(A)
0 : βt(τ) = β0(τ) for all 1 ≤ t ≤ n, textforafixed τ ∈ (0, 1),

H(A)
1 : βt(τ) =

β1(τ) where 1 ≤ t ≤ κ

β2(τ) where κ+ 1 ≤ t ≤ n

for a fixed τ ∈ (0, 1), where κ = ⌊λn⌋ the unknown break-point with λ ∈ (0, 1).

Testing Hypothesis B. The second testing hypothesis of interest is concerned with testing
for structural break across multiple quantiles, that is, quantiles contained in a set Tι, with the
null and alternative hypothesis given as below

H(B)
0 : βt(τ) = β0(τ) for all 1 ≤ t ≤ n, and for all τ ∈ Tι,

(3.25)

H(B)
1 : βt(τ) =

β1(τ) where 1 ≤ t ≤ κ

β2(τ) where κ+ 1 ≤ t ≤ n

for some τ ∈ Tι, where κ = ⌊λn⌋ the unknown break-point with λ ∈ (0, 1).

where β0(τ) is the value of the true population parameter under the null hypothesis of no pa-
rameter instability.

Remark 3.2. Notice that the statistical problem given by Testing Hypothesis A allow us to focus
on a particular quantile of interest, e.g., any fixed quantile level τ ≡ τ0 ∈ (0, 1). On the other
hand, the inference problem given by Testing Hypothesis B permits testing for structural break
in the coefficients of the quantile predictive regression model by investigating the presence of
breaks in the conditional distribution, that is, at any possible quantile level within the compact
set Tι := [ι, 1 − ι] where 0 < ι < 1/2.
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Both Testing Hypothesis A and B summarize the modelling environment under the null as well as
under the alternative hypothesis. More precisely, under the null hypothesis the parameter vector
is taken to be constant throughout the sample such that βt(τ) ≡ β0(τ) for t = 1, ..., n where β0(τ)
is the unknown quantile dependent regression parameter. Therefore, in practise we are interested
in testing the null hypothesis that βt(τ) remains constant, that is, βt(τ) = β0(τ) for all t against
the alternative that the quantile dependent parameter vector βt(τ) has a single structural break
at an unknown location within the full sample, resulting to two regimes11. Under the alternative
hypothesis:

Qyt (τ|Ft−1) = β1(τ)xt−11
{
t ≤ κ

}
+ β2(τ)xt−11

{
t > κ

}
+ ut (3.26)

where Ft denotes the σ−field generated by {xt−1,xt−2, ..., }. Therefore, it is convenient to write
the hypotheses with a different formulation. Denote with β(1)(τ) = β1(τ) and β(2)(τ) = β2(τ) −
β1(τ). Furthermore, to construct the model so that it can capture the magnitude of the structural
break we denote with X t−1 =

(
x′
t−1,x

′
t−11 {t > κ}

)′ and ϑ(τ) =
(
β(1)(τ)′,β(2)(τ)′)′. Thus, we

express the null hypothesis as following

H(A)
0 : Qyt (τ|Ft−1) = X ′

t−1ϑ(τ), with β(2)(τ) = 0 for some fixed τ0 ∈ Tι (3.27)

Then, the alternative hypothesis can be formulated as below

H(A)
1 : Qyt (τ|Ft−1) = X ′

t−1ϑ(τ), with β(2)(τ) ̸= 0 for some fixed τ ∈ Tι (3.28)

Furthermore, since we consider the nonstationary quantile predictive regression model without
an intercept, following the formulations given by expressions (3.27) and (3.28) for the null and
alternative hypotheses respectively, then we define the quantile dependent estimator as the opti-
mization problem below

ϑ̂n
(
λ, τ

)
:= arg min

ϑ∈R2p

n∑
t=1

ρτ
(
yt − X ′

t−1b
)
, (3.29)

Therefore, with the above formulation of the estimator ϑ̂n(τ, λ) is the quantile dependent regres-
sion estimator when we employ X t−1 to be the model predictor variables. Specifically, when the
H(A)

0 is true, under suitable regularity conditions, ϑ̂2(λ, τ) converges in probability to 0 for each
(λ, τ) ∈ Λη × Tι. On the other hand, when H(A)

1 is true, ϑ̂2(λ; τ0) converges in probability to
β(2)(τ0) =

(
β2(τ0) − β1(τ0)

)
̸= 0. In summary, since the quantile level τ0 especially for Test-

ing Hypothesis B is unknown a prior, then it is reasonable to reject H0 when the magnitude of
ϑ̂2(λ, τ) is suitable large for some (λ, τ) ∈ Λη × Tι. Thus, an example of a suitable test statistic
to test whether H0 against the alternative hypothesis H1 is to employ the supremum of the Wald
process.

11Notice that the two regimes we refer to here, are not equivalent to testing methodologies proposed in studies
such as Gonzalo and Pitarakis (2012, 2017) and Galvao et al. (2014) in which emphasis is given to testing the null
hypothesis of linearity based on the presence of no threshold effect.
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In general, a Wald type statistic has the following form

SWn
(
τ, λ

)
:= sup

(λ,τ)∈Λη×Tι

nβ̂(2)(τ0)
[
V n(λ; τ0)

]
β̂(2)(τ0) (3.30)

where V n(λ; τ0) is the asymptotic covariance matrix of the stochastic process
√
nβ̂(2)(τ0), under

the null hypothesis. However, since the covariance matrix that corresponds to the population
regression parameters is in practise unknown, is replaced by a suitable consistent estimate that
holds under the null hypothesis of no structural break in the quantile predictive regression model.
Obviously within the aforementioned structural break setting which is our main research focus
in the paper, the break-point location is not identified under the null hypothesis as we explained
in the introduction.

Moreover, additionally to Remark 3.2, the Testing Hypotheses of interest A and B correspond to
two different test functions such that Testing Hypothesis A requires to formulate test statistics
by employing the supremum funcitonal while Testing Hypothesis B requires to construct test
statistics with the use of the double supremum functional. Intuitively, we are interested to
examine both hypotheses since it might be the case that A is not rejected, that is, there are no
statistical evidence of the presence of a structural break for a given quantile level τ0 ∈ (0, 1),
while when employing Testing Hypothesis B, it could be the case that the test statistic provides
statistical evidence of rejecting the null hypothesis, implying that a structural break still exist at
some other quantile level not the one which is kept fixed, within the set (0,1).

3.3 Testing for break for a fixed quantile

Next, we focus on the structural break testing procedures for the quantile regression model with
regressors generated as near unit root processes based on two test statistics.

3.3.1 Preliminary Setting

We consider structural break tests for a fixed quantile level, say τ0 ∈ (0, 1). Consider the subgra-
dient12 Sn

(
λ, τ0, b

)
, based on the subsample 1 ≤ t ≤ κ

Sn
(
λ, τ0, b

)
= n−1/2

⌊λn⌋∑
t=1

xt−1ψτ

(
yt − x′

t−1b
)
, (3.31)

where b corresponds to an estimator of the parameter vector β(τ0) which encompasses both the
OLS and IVX estimators under suitable parametrizations.

The continuous function ψτ(.) is defined as ψτ(u) =
[
τ0 − 1 {u ≤ 0}

]
and κ = ⌊λn⌋ denotes the

unknown break-point location implying a break fraction λ ≡ lim
n→∞

κ/n such that λ ∈ Λη := [η, 1−η]
is a compact set.

12The required convexity arguments for obtaining estimators based on the conditional quantile function are based
on the convexity lemma result presented by Pollard (1991). Furthermore, related results are presented by Koenker
and Portnoy (1987).
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Therefore, under the null hypothesis of no structural break with stationary and ergodic regressors,
the quantity ψτ

(
yt − x′

t−1β(τ0)
)

is a pivotal statistic. In particular, since x′
t−1β(τ0) is equal to

the conditional τ−quantile of yt given xt−1, then the random variables

1
{
y1 ≤ x′

t−1β(τ0)
}
, ...,1

{
yn ≤ x′

t−1β(τ0)
}

(3.32)

are independent Bernoulli trials with success probability τ (see, Galvao et al. (2014)), which
implies a sequence of random variables with mean zero and variance τ0(1 − τ0). A similar result
should hold in our modelling setting with nonstationary regressors.

Furthermore, denote with X = (x′
1, ..., x

′
n)′ and define the following auxiliary quantity

Jn
(
λ, τ0,β0(τ)

)
:=
(
n−1X ′X

)−1/2
Sn
(
λ, τ0,β0(τ)

)
. (3.33)

Then, under stationarity and certain regularity conditions (e.g., see Assumptions 1 and 2 in Qu
(2008)), Jn

(
λ, τ0,β0(τ0)

)
converges to a limit distribution that is nuisance parameter free. More

specifically, it holds that (see, (Qu, 2008, p. 172))

Jn
(
λ, τ0,β0(τ0)

) D→ N
(
0, λ2τ0(1 − τ0)

)
. (3.34)

Thus, replacing the unknown parameter vector β0(τ0) with the quantile dependent regression
estimator based on the full sample, under the null hypothesis of no structural break in the model,
the quantity given by (3.33) can be formulated as below

Ĵn
(
λ, τ0, β̂n(τ0)

)
=
(
X ′X

)−1/2
⌊λn⌋∑
t=1

xt−1ψτ

(
yt − x′

t−1β̂n(τ0)
)
. (3.35)

for some 0 < λ < 1 and τ0 ∈ (0, 1).

In particular, the use of fluctuation type statistics provide a way for statistical inference regarding
the presence of structural breaks in model coefficients (Leisch et al. (2000)). Intuitively for these
class of tests we consider the asymptotic behaviour of the corresponding empirical processes to
decide whether to accept or reject the null. In particular, the fluctuation type test converges
to a nondegenerate limiting distribution under the null hypothesis, since the random quantity
given by expression (3.35) is essentially governed by the invariance principle under the null. In
practise, when the quantile dependent parameters exhibit no structural break in the sample, then
β̂n(τ0) is a consistent estimator and as a result, Ĵn

(
λ, τ0, β̂n(τ0)

)
has the same stochastic order

as its population counterpart. On the other hand, when the null hypothesis is false, the underline
stochastic process exhibit excessive fluctuations. Specifically, under the alternative hypothesis,
model parameters have a break at some unknown location in the sample, which implies that β̂n(τ0)
will differ significantly from the true value for some sub-sample and the estimated residuals will
have high fluctuations (beyond the usual increments of a Wiener process) resulting to falsely
rejecting the null due to a large value of the statistic (Qu, 2008, p. 172).
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The focus of the proposed econometric environment in this paper is the structural break detection
in the model parameters of the nonstationary quantile predictive regression, under the assumption
that regressors are generated as near unit root processes. Intuitively, the two persistence classes
(mildly integrated and near unit root) we consider encompasses moderate deviations from the
unit boundary similar to the case of near integrated (see Phillips (1988a)). Thus, both the value
(and sign) of the coefficient of persistence as well as its exponent rate13 (a tuning parameter),
determine the asymptotic behaviour of functionals based on these near unit root process. As a
result, the chosen estimator can affect the asymptotic theory of the proposed test statistics as
well as the corresponding functionals which we examine separately below.

OLS based functionals

Within the proposed econometric environment which corresponds to the modelling of nonstation-
ary quantile time series models, regressors are assumed to follow a local unit root process. Thus,
we expect that OLS based functionals will dependent on the nuisance coefficient of persistence14.
Furthermore, due to the presence of both a model intercept and the set of nonstationary regres-
sors, we also need to modify the functionals given by expressions (3.31)-(3.33) in order to account
for the different convergence rates.

Therefore, to obtain equivalent representations to the quantity Sn
(
λ, τ0, b

)
, we consider the cor-

responding partial sum process of the functional Knx
(
τ0,θ

ols
n (τ0)

)
as given by Definition 3.1. We

obtain the limit result for these functionals based on the full sample and then focus on deriving
invariance principles for the corresponding partial sum processes for the two estimators under ex-
amination (see, Section 3.3.2). More precisely, the functionals given by Definition 3.1 correspond
to a quantile regression ordinary least squares estimator and are employed when the asymptotic
behaviour of the OLS based test statistics is concerned (see also Lemma A1 in Lee (2016)).

Definition 3.1.

Knx
(
τ0,θ

ols
n (τ0)

)
:= D−1

n

n∑
t=1
Xt−1ψτ

(
ut(τ0)

)
(3.36)

Lnx
(
τ0,θ

ols
n (τ0)

)
:= D−1

n

[
n∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

]
D−1
n (3.37)

for some τ0 ∈ (0, 1) where ψτ

(
ut(τ0)

)
=
[
τ0 − 1

{
yt −X ′

t−1θ
ols
n (τ0) ≤ 0

}]
.

A key observation is that under the null hypothesis of no parameter instability these functional
converge to a nondegenerate limit distribution. Corollary 3.3 demonstrates the asymptotic dis-
tributions of the functionals given by Definition 3.1.

13Practically, these are nuisance parameters however via Monte Carlo simulations we can choose suitable values
for ci and γx in order to simulate these experimental conditions and thus evaluate the finite-sample performance
of the test statistics with high persistence or mildly integrated regressors.

14Notice that this is the standard inference problem in the predictability literature. Further details regarding the
bias (nonstandard distortion) occurred in predictability tests (i.e., t−tests) in quantile predictive regression models
can be found in the study of Lee (2016). In our study, we aim to compare both the OLS as well as the instrumental
variable approach of Phillips and Magdalinos (2009).
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Corollary 3.3. Under the assumption that the pair {yt,xt−1}nt=1 is generated by the model
(4.11)-(4.12) then for both LUR and MI regressors it holds that

(i) Knx
(
τ0,θ

ols
n (τ0)

)
⇒ Kx

(
τ0,θ0(τ0)

)
, for some τ0 ∈ (0, 1) as n → ∞,

(ii) Lnx
(
τ0,θ

ols
n (τ0)

)
⇒ Lx

(
τ0,θ0(τ0)

)
, for some τ0 ∈ (0, 1) as n → ∞,

where

Kx

(
τ0,θ0(τ0)

)
≡



 Bψτ
(1)(1×n)∫ 1

0
Jc(r)dBψτ


(p+1)×n

LUR,

N

0, τ0(1 − τ0) ×

1 0′

0 V xx


(p+1)×(p+1)


(p+1)×n

MI.

(3.38)

Lx
(
τ0,θ0(τ0)

)
≡



fut(τ)(0) ×

 1
∫ 1

0
Jc(r)′∫ 1

0
Jc(r)

∫ 1

0
Jc(r)Jc(r)′


(p+1)×(p+1)

LUR,

fut(τ)(0) ×

1 0′

0 V xx


(p+1)×(p+1)

MI.

(3.39)

where the stochastic matrix V xx is defined by Phillips and Magdalinos (2009) as

V xx :=
∫ ∞

0
erCpΩxxe

rCpdr, where Ωxx :=
∞∑

m=−∞
E
(
vtv

′
t−m

)
= φo(1)Σφo(1)′.

Remark 3.3. Notice that an important aspect for robust inference in quantile regressions15

is the consistent estimation of the sparsity coefficient (see, discussion presented in Koenker and
Machado (1999)) and also conditions proposed by Koltchinskii (1997), especially in finite samples.
In our setting the self-normalized property of Wald type tests ensures that the sparsity coefficient
does not affect the estimation accuracy.

15In some studies presented in the literature the use of the check function is defined to be the difference of the
indicator function from the quantile level, as in Zhou and Portnoy (1998); however both expressions are equivalent
due to the monotonicity property of the check function.
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IVX based functionals

In this Section, we derive the asymptotic distribution of the IVX based functionals which are useful
to obtain the asymptotic behaviour of the proposed structural break tests under the assumption
of nonstationary regressors in the model. We employ the embedded normalization version of the
instruments such that Z̃t−1,n := D̃−1

n z̃t−1.

Definition 3.2.

Knz
(
τ0,β

ivx
n (τ0)

)
:=

n∑
t=1
Z̃t−1,nψτ

(
ut(τ0)

)
(3.40)

Lnz
(
τ0,β

ivz
n (τ0)

)
:=
[
n∑
t=1

fut(τ),t−1(0)Z̃t−1,nZ̃
′
t−1,n

]
(3.41)

Mnz
(
τ0,β

ivx
n (τ0)

)
:=
[
n∑
t=1

fut(τ),t−1(0)Z̃t−1,nX
′
t−1,n

]
(3.42)

for some τ0 ∈ (0, 1) where ψτ

(
ut(τ0)

)
=
[
τ0 − 1

{
yt − βivxn (τ0)′xt−1 ≤ 0

}]
.

Corollary 3.4. Under the assumption that the pair {yt,xt−1}nt=1 is generated by the model
(4.11)-(4.12) then for both LUR and MI regressors it holds that

(i) Knz
(
τ0,β

ivx
n (τ0)

)
⇒ Kz

(
τ0,β0(τ0)

)
≡ N

(
0, τ0(1 − τ0)V cxz

)
,

(ii) Lnz
(
τ0,β

ivz
n (τ0)

)
⇒ Lz

(
τ0,β0(τ0)

)
≡ fut(τ)(0) × V cxz,

(iii) Mnz
(
τ0,β

ivx
n (τ0)

)
⇒ M z

(
τ0,β0(τ0)

)
≡ fut(τ)(0) × Γcxz,

where the definition of the asymptotic matrix V cxz depends on the stochastic dominance of the
two exponent rates (see, Phillips and Magdalinos (2009) and Lee (2016)) such as

V cxz ≡


V zz =

∫ ∞

0
erCz Ωxxe

rCzdr, when 0 < γz < γx < 1,

V xx =
∫ ∞

0
erCpΩxxe

rCpdr, when 0 < γx < γz < 1.

(3.43)

Moreover, the definition of the moment matrix Γcxz is presented by Lee (2016) via expression (3.4)
which is the corresponding asymptotic limit given by expression (20) in Phillips and Magdalinos
(2009) as given below

Γcxz :=


−C−1

z

(
Ωxx +

∫ 1

0
J c(r)dJ ′

c

)
, when γx = 1,

−C−1
z

(
Ωxx +CpV xx

)
, when 0 < γz < γx < 1,

V xx, when 0 < γx < γz < 1.

(3.44)
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The proofs of Corollary 3.3 and 3.4 can be found in the Appendix of the paper. Note that the
stochastic convergence of these functional holds for large sample size, n → ∞, and the existence of
well-defined moment matrices with negligible higher-order terms. Therefore, to facilitate the de-
velopment of the asymptotic theory we define the following empirical process for some parameter
vector b ∈ Rp such that

Gn (τ, b) := n−(1+γx)/2
n∑
t=1
zt−1 ×

{
ψτ

(
ut (τ) − x′

t−1b
)

− EFt−1

[
ψτ

(
ut (τ) − x′

t−1b
)]}

where τ ∈ (0, 1) and 0 < γx < 1. In particular, the empirical process Gn (τ, b) is consider
stochastically ϱ−equicontinuous over Tι ×B, such that for any ϵ > 0,

lim
δ→0

lim sup
n→∞

P
(

sup
[δ]

∣∣Gn(τ1, b1
)

−Gn
(
τ2, b2

)∣∣ > ϵ

)
= 0, (3.45)

where [δ] :=
{
(τ1, b1), (τ2, b2) ∈ (T ×B)2 : ϱ

(
(τ1, b1), (τ2, b2)

)
< δ

}
.

Remark 3.4. The above expression is often employed to derive asymptotics for quantile re-
gression models (with stationary regressors). Specifically, one can consider the validity of the
stochastic equicontinuity proof of Bickel (1975) under nonstationarity. Practically, since the
regressors employed when estimating the inverse of the quantile function ψτ(.), that is, z̃t−1 is
mildly integrated, inducing a nearly stationary process, then the conditions given by Bickel (1975)
are valid and the proof follows with modifications to accommodate the nonstationary quantile
predictive regression (Lee (2016)).

An additional condition for convergence in probability for the empirical process is imposed by
Lemma 3.2, which can be employed to derive the convergence rate of the IVX estimator for the
nonstationary quantile predictive regression model.

Lemma 3.2. For a generic constant C1 > 0

sup
{∥∥Gn(τ, b) −Gn(τ,0)

∥∥ : ∥b∥ ≤ n(1+δ)/2C1
}

= oP(1). (3.46)

where b is some estimator of the model parameter vector.

More precisely, Lemma 3.2 provides a simplified way to derive the convergence limit for the IVX-
QR estimator (see, also Lee (2016)) that ensures consistent estimation of the model parameters for
the quantile predictive regression model. A related study to our setting with detailed derivations
for nonstandard inference problems, (Wald type statistics), for nonstationary quantile regressions
is presented in the study of Goh and Knight (2009). Overall, the asymptotic theory of this
paper aims to combine unit root asymptotics with empirical process methods. Specifically, we
employ a two-parameter empirical process that converges weakly to a two-parameter Brownian
motion. Therefore, our asymptotic distributions involve stochastic integrals with respect to this
two-parameter process.
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3.3.2 Invariance principles for partial sum processes

To obtain the asymptotic distributions of the test statistics, we consider the asymptotic behaviour
of the partial sum processes of the functionals defined in the previous section. We focus in the
case of nonstationary regressors which are either high persistent or mildly integrated (see, Section
4.2 for definitions and Kostakis et al. (2015)). Moreover, since we derive and compare the limit
distributions of structural break tests based on the chose estimation methodology, we derive
invariance principles that correspond to each of these two estimators. Therefore, we define with

Solsnx
(
λ, τ0,θ

ols
n (τ0)

)
:= D−1

n

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)
, for some 0 < λ < 1, (3.47)

where ut(τ0) =
(
yt − X ′

t−1θ
ols
n (τ0)

)
for τ0 ∈ (0, 1), which can be determined uniquely, making

the mapping ψτ(u) 7→ ρ−1
τ (u) one-to-one and well-defined. Moreover, we denote with Xt−1 =(

1,x′
t−1
)′ the regressors and θ(τ0) =

(
α(τ0),β′(τ0)

)′ the parameters.

Recall that for mildly integrated regressors it holds that (see, Corollary 3.3)

Knx
(
τ0,θ

ols
n (τ0)

)
:= D−1

n

n∑
t=1
Xt−1ψτ

(
ut(τ0)

)
⇒ N

(
0, τ0(1 − τ0)

[
1 0′

0 V xx

])
(3.48)

Similarly, we can show that Solsnx
(
λ, τ,θolsn (τ0)

)
⇒ Sx

(
λ, τ0,θ0(τ0)

)
as n → ∞, where

Sx
(
λ, τ0,θ0(τ0)

)
≡ N

(
0, τ0(1 − τ0)λ

[
1 0′

0 V xx

])
(3.49)

for some 0 < λ < 1. Then, for the corresponding IVX based functional it holds that

Sivxnz
(
λ, τ0,β

ivx
n (τ0)

)
:=

⌊λn⌋∑
t=1

Z̃t−1,nψτ

(
ut(τ0)

)
⇒ N

(
0, τ0(1 − τ0)λV cxz

)
(3.50)

where Z̃t−1,n := D̃−1
n z̃t−1 since we employ the corresponding dequantiled model.

Definition 3.3.

Ĵ ols
nx

(
λ, τ0, θ̂

ols

n (τ0)
)

:=
(
X ′X

)−1/2
⌊λn⌋∑
t=1

Xt−1ψτ

(
yt −X ′

t−1θ̂
ols

n (τ0)
)
, (3.51)

Ĵ ivx
nx

(
λ, τ0, β̂

ivx

n (τ0)
)

:=
(
X ′Z̃

)−1/2
⌊λn⌋∑
t=1

Z̃t−1,nψτ

(
yt −X ′

t−1,nβ̂
ivx

n (τ0)
)
, (3.52)

Ĵ ivz
nx

(
λ, τ0, β̂

ivz

n (τ0)
)

:=
(
Z̃ ′Z̃

)−1/2
⌊λn⌋∑
t=1

Z̃t−1,nψτ

(
yt − Z̃ ′

t−1,nβ̂
ivz

n (τ0)
)
. (3.53)

for some 0 < λ < 1 and τ0 ∈ (0, 1).
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Consider the functionals given by Definition 3.3, then when we employ the OLS estimator for a
model with mildly integrated regressors, γx ∈ (0, 1), the following limit result holds

Ĵ ols
nx

(
λ, τ0, θ̂

ols

n (τ0)
)

=
(
X ′X

)−1/2
⌊λn⌋∑
t=1

Xt−1ψτ

(
yt −X ′

t−1θ̂
ols

n (τ0)
)

≡
(
D−1
n

[
n∑
t=1
X ′

t−1Xt−1

]
D−1
n

)−1/2
D−1

n

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)
⇒
{[

1 0′

0 V xx

]}−1/2

× N
(

0, τ0(1 − τ0)λ
[

1 0′

0 V xx

])

=
√
τ0(1 − τ0) × N

(
0, λIp

)
. (3.54)

since the term 1
n1+γx

∑⌊λn⌋
t=1 xt−1x

′
t−1

P→ λV xx converges in probability. A similar limit result
holds for the IVZ based functional such that Ĵ ivz

nx

(
λ, τ0, θ̂

ivz

n (τ0)
)

⇒
√
τ0(1 − τ0) × N

(
0, λIp

)
,

regardless of whether the regressors exhibit high persistence. On the other hand, the OLS based
functional has a nonstandard limit distribution with regressors of high persistence. In the case
of the IVX functional one needs to consider the limit result for these two classes of persistence
separately. These conjectures are summarized and proved by Proposition 3.1 in the next section
where we formalize the test statistics.

3.3.3 Test Statistics

We consider as detectors two types of test statistics commonly employed in the literature related
to structural break testing methodologies. The first type of test corresponds to the fluctuation
type statistic studied by Qu (2008) specifically for a quantile regression model, while the second
type of test corresponds to the Wald statistic proposed by the seminal paper of Andrews (1993)
for the linear regression model. Both test statistics utilize the supremum functional since the
underline assumptions allow for a structural break for the coefficients of the nonstationary quantile
predictive regression model at an unknown break-point location within the full sample.

Therefore, the null hypothesis of interest is formulated as below

H(A)
0 : θ(1)

n

(
λ; τ0

)
= θ(2)

n

(
λ; τ0

)
versus H(A)

1 : θ(1)
n

(
λ; τ0

)
̸= θ(2)

n

(
λ; τ0

)
(3.55)

where θ(j)
n (λ; τ0) =

(
α

(j)
n (λ; τ0),β(j)

n (λ; τ0)′)′, for j ∈ {1, 2} and the location of the break-point
is denoted with κ = ⌊λn⌋ for some 0 < λ < 1. Specifically, the implementation of structural
break tests for the purpose of detecting parameter instability in nonstationary quantile predictive
regressions is a novel aspect in the literature. To facilitate for the development of large sample
theory, Assumption 3.2 presents necessary conditions relating the matrix moments to the quantile
structure of the model.
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Assumption 3.2. The regressors of the nonstationary quantile predictive regression model which
follow a near unit process, are assumed to satisfy the following conditions:

(a) plim
n→∞

1
n1+γx

⌊λn⌋∑
t=1

fut(τ),t−1(0)xt−1x
′
t−1 = λfut(τ)(0)V xx, uniformly for 0 < λ < 1,

(b) plim
n→∞

1
n1+γx

⌊λn⌋∑
t=1

xt−1x
′
t−1 = λV xx, uniformly for some 0 < λ < 1, where V xx is a p × p

non-random positive definite matrix and γx ∈ (0, 1),

(c) E
(
xt−1x

′
t−1
)2+s

< L with s > 0 and L < ∞ for all 1 ≤ t ≤ n,

(d) there exists a δ > 0 and an M < ∞, such that n−1∑n
t=1 E ∥xt−1∥3(1+δ) < M and

E
(
n−1∑n

t=1 ∥xt−1∥3
)(1+δ)

< M hold for any n.

Assumption 3.2 (a) and (b) are standard convergence in probability limits for the nonstationary
quantile predictive regression model. Assumption 3.2 (c) is employed for the convergence of the
weighted empirical process n−1/2∑⌊λn⌋

t=1 xt−1
(
τ0 − 1

{
Fy|x(yt) ≤ τ0

} )
. Furthermore, Assumption

3.2 (d) ensures stochastic equicontinuity (see, Chapter 2 in Van Der Vaart and Wellner (1996)) of
the sequential empirical process based on estimated quantile regression residuals, which is needed
to establish weak convergence of the tests (see Bai (1996)). Moreover, when considering the case
of nonstationary regressors, since standard quantile regression estimators follow a locally uniform
weak convergence (see De Haan and Ferreira (2006)), then invariance principles hold uniformly
for λ ∈ (0, 1).

Fluctuation type tests

Specifically, since we assume that the true break point is unknown, we need to search over
all possible candidate subsets within the full sample. Furthermore, according to Qu (2008)
recentering Ĵn

(
λ, τ0, β̂n(τ0)

)
by the quantity λĴn

(
1, τ0, β̂n(τ0)

)
often yields better finite sample

performance. Such considerations lead to the following test statistic:

SQn(λ; τ0) = sup
λ∈[0,1]

∥∥∥∥ 1√
τ0(1 − τ0)

[
Ĵn
(
λ, τ0, β̂n(τ0)

)
− λĴn

(
1, τ0, β̂n(τ0)

)]∥∥∥∥
∞

(3.56)

where ∥.∥∞ is the sup−norm such that for a generic vector z = (z1, ..., zp) implies that ∥.∥∞ :=
max (|z1|, ..., |zp|) (see, Koenker and Xiao (2002)).

We focus on the implementation of two different estimation methodologies. Therefore, to inves-
tigate the practical use of the proposed fluctuation type test for structural break detection in
the nonstationary quantile predictive regression model, we consider the asymptotic distribution
of the test statistics according to the estimator employed to construct the test function.

Therefore, Proposition 3.1 summarizes the formulations of the test according to the estimation
methodology employed for a fixed quantile level τ0 ∈ (0, 1). Notice that the check function can
be written as below:

ρτ(u) = |u| ×
[
(1 − τ)1 {u < 0} + τ1 {u > 0}

]
(3.57)
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The regression quantile dependent estimator β(τ) for β with score function such that

ψτ

(
y;β

)
= ψτ

(
y − x′β

)
, (3.58)

where ψτ(u) = τ1 {u > 0} − (1 − τ)τ1 {u < 0} =
(
τ − 1 {u < 0}

)
. Thus, we can general-

ize the particular family of uniformly bounded functions ψτ(u) from Tι to Θ ⊂ Rp such that
ψτ,t(u) ≡ ψτ

(
yt −Q(τ|Ft−1)

)
such that Q(τ|Ft−1) is identified as the τ−th quantile of the condi-

tional distribution of yt given the information set Ft−1. Furthermore, we can express the check
function with respect to the score function such that ρτ(u) = −ψτ(u)u. Therefore, within the non-
stationary quantile predictive regression model of our framework we are particularly interested
for the asymptotic theory for

√
n
(
θ̂(τ) − θ0(τ)

)
, which is considered to be as a stochastic process

dependent on the quantile parameter τ ∈ Tι. Specifically, in our study we consider two different
types of estimators related to the quantile dependent parameter, that is, the OLS based QR
estimator as well as the IVX based QR estimator. Both of these estimators are useful for demon-
strating the effects of nonstationarity using the conditional distribution function when modelling
the yt variable based on the nonstationary regressors.

Similar asymptotic expressions are derived by Koenker and Machado (1999) who consider testing
the null hypothesis, H0 : β2(τ) = 0 for some quantile τ ∈ Tη, against a sequence of local alter-
natives. Furthermore, to investigate the asymptotic behaviour of the processes some notation
related to Bessel processes is employed. Let W p(λ) denote p−dimensional vector of independent
Brownian motions. Therefore, for each λ ∈ [0, 1], BBp(λ) = W p(λ) − λW p(1) represents a
p−vector of independent Brownian bridges. Notice that for any fixed λ ∈ (0, 1) it holds that

BBp(λ) ∼ N
(
0, λ(1 − λ)Ip

)
(3.59)

Moreover, the normalized Euclidean norm of BBp(λ), is defined as below

Qp(λ) = ∥BBp(λ)∥√
λ(1 − λ)

(3.60)

is referred to as a Bessel process of order p. In particular, critical values for the limiting distri-
bution supλ∈Λη

Q2
p(λ) have been tabulated by Andrews (1993). Then, for any fixed λ ∈ (0, 1)

it holds that Q2
p(λ) ∼ χ2

p. Furthermore, to characterize the behaviour of the test statistic under
local alternatives, it is helpful to define a noncentral version of the squared Bessel process as
an extension of the noncentral chi-squared distribution. Define with µ(λ) be a fixed, bounded
function from [0, 1] 7→ Rp. Then, we call the standardized squared norm below

Q2
p,η(λ) := ∥µ(λ) + BBp(λ)∥2

λ(1 − λ) and η(λ) = µ(λ)′µ(λ)
λ(1 − λ) , (3.61)

as a squared noncentral Bessel process of order p with noncentrality function η(λ). Then, for any
fixed λ ∈ (0, 1), Q2

p,η(λ) ∼ χ2
p,η(λ), a noncentral χ2

p random variable with p degrees of freedom and
noncentrality parameter η(λ). An important quantity is the sparsity function and the regression
estimates depend on this quantity, since it reflects the density of observations near the quantile.
Thus, when the data are very sparse at the quantile τ, then it will be difficult to estimate while
when the sparsity is low, (observations are dense), the quantile will be more precisely estimated.



CHAPTER 3. 66

Proposition 3.1. Under the null hypothesis H(A)
0 and given that Assumptions 3.1-3.2 hold, then

the fluctuation type statistics weakly converge to the limit distributions below

(i) SQols
n (λ; τ0) := sup

λ∈[0,1]

∥∥∥∥ 1√
τ0(1 − τ0)

[
Ĵn
(
λ, τ0, θ̂

ols

n (τ0)
)

− λĴn
(

1, τ0, θ̂
ols

n (τ0)
)]∥∥∥∥

∞

⇒


sup

λ∈[0,1]

∥∥BBp+1(λ)
∥∥

∞, when γx ∈ (0, 1)

sup
λ∈[0,1]

S−1/2
xx ×


BBψτ

(λ)(1×n)

J Bψτ
(λ)(p×n)


(p+1)×n

 , when γx = 1

(ii) SQivx
n (λ; τ0) := sup

λ∈[0,1]

∥∥∥∥ 1√
τ0(1 − τ0)

[
Ĵn
(
λ, τ0, β̂

ivx

n (τ0)
)

− λĴn
(

1, τ0, β̂
ivx

n (τ0)
)]∥∥∥∥

∞

⇒ sup
λ∈[0,1]

∥∥BBp(λ)
∥∥

∞, when γx = (0,γz)

(iii) SQivz
n (λ; τ0) := sup

λ∈[0,1]

∥∥∥∥ 1√
τ0(1 − τ0)

[
Ĵn
(
λ, τ0, β̂

ivz

n (τ0)
)

− λĴn
(

1, τ0, β̂
ivz

n (τ0)
)]∥∥∥∥

∞

⇒ sup
λ∈[0,1]

∥∥BBp(λ)
∥∥

∞, when γx = (0, 1]

where BBp(·) is a vector of p independent Brownian bridge processes16 on DRp ([0, 1]),

Sxx :=

 1
∫ 1

0
J c(r)′dr∫ 1

0
J c(r)dr

∫ 1

0
J c(r)J c(r)′


(p+1)×(p+1)

with 0 < r < 1

where Sxx is a positive definite stochastic matrix, BBψτ(λ) := Bψτ(λ) − λBψτ(1).

A necessary condition to apply weak convergence arguments that yields invariance principles for
partial sum processes in the Skorokhod space D ([0, 1]) follows

sup
λ∈(0,1)

D−1
n

∣∣∣∣ [Ĵn(λ, τ0, β̂n(τ0)
)

− λĴn
(
1, τ0, β̂n(τ0)

)]
−
[
Jn
(
λ, τ0,βn(τ0)

)
− λJn

(
1, τ0,βn(τ0)

)] ∣∣∣∣ = oP(1).

Remark 3.5. The proposed test statistics extend the fluctuation type tests studied by Qu (2008),
to the nonstationary quantile predictive regression model of our setting. More specifically, we
compare the instrumental variable based method to the classical OLS approach for construct-
ing the fluctuation test. Moreover, we employ the IVZ estimator given by Proposition 3.1 (iii),
which replaces the original covariate vector with the constructed instruments as a post-estimation
correction method that permits to obtain further simplifications of asymptotic terms. Our asymp-
totic theory analysis shows that the fluctuation type test weakly converges into a Brownian bridge
limit when the IVZ estimator is employed and the same limit holds for both OLS and IVX based
tests under mild integratedness.

16Note that BBp(·) is known as the square of a standardized tied-down Bessel process of order p.
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On the other hand, under high persistence the fluctuation type test based on the OLS estimator
is proved to have a weak convergence into a nonstandard and nonpivotal asymptotic distribution.
A similar asymptotic result holds for the corresponding IVX based test statistic when γx = 1
such that the following expression holds

Ĵn
(
λ, τ0, β̂

ivx

n (τ0)
)

− λĴn
(
1, τ0, β̂

ivx

n (τ0)
)

⇒
√
τ0(1 − τ0) × Γ−1/2

cxz ×
{

N
(

0, λV cxz

)
− λN

(
0,V cxz

)}
(3.62)

unless we assume that the exponent rate of persistence is such that γx(0,γz).

Fluctuation type statistics have been previously examined as a detector for parameter instability
in studies such as Kuan and Chen (1994), Chu et al. (1996) and Leisch et al. (2000). More
precisely, the statistical advantage of fluctuation type statistics lies in the fact that they utilize
properties of the maximum of Wiener processes (see Révész (1982)) and consequently weakly
convergence arguments as defined by Billingsley (1968) can be employed to derive their asymptotic
behaviour. Furthermore, these class of test statistics belong to the same class as CUSUM type
tests although in the latter case the test function is constructed based on regression residuals (see
Kulperger et al. (2005)).

Overall within the nonstationary quantile predictive regression model framework of our study, we
observe some important conclusions for the implementation of fluctuation type tests as structural
break detectors. Firstly, the asymptotic distribution of the test statistic SQ(λ; τ0) depends on
the chosen estimator when constructing the test function as seen from the limiting distributions
when constructing the test based on the two estimators, under high persistent regressors. On the
other, under the assumption of mildly integrated regressors these test statistics weakly converge
into a Brownian bridge type limit regardless of the chosen estimator when constructing the test
function. Therefore, for the particular persistence class fluctuatuon type tests depends only on the
number of parameters subject to structural break since the nuisance coefficient of persistence that
captures the nonstationary properties of predictors is filtered out. Secondly, these test statistics
do not require to estimate the sparsity coefficient fy|x

(
F−1
y|x(τ0)

)
. According to Qu (2008) this

occurs since the subgradient, when evaluated at the true parameter value β0(τ0), does not depend
on the distribution of the errors.

Thus, conducting statistical inference with some prior information regarding the presence of
persistence regressors, using fluctuation type tests as detectors is preferable to construct the test
function based on the IVZ estimator which can lead to conventional inference methods (e.g.,
using tabulated critical values). Next, we examine the self-normalized17 property of Wald type
tests by deriving the related asymptotic theory. Due to the assumptions and conditions under
which we construct the proposed test statistics, to examine their limit distributions stochastic
equicontinuity arguments are necessary in proofs (see, Newey (1991)).

17Specifically a relevant application of self normalized statistics is the construction of confidence intervals for
model parameters as in the study of Shao (2010). We leave this aspect for future research.
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Wald type tests

We now introduce the Wald type tests based on the two estimation methodologies which we
focus on (OLS versus IVX based tests). The formulation of the model under the null and under
the alternative hypothesis can change the interpretation in the notation we employ for model
parameters. One approach is to employ the formulations given by expressions (3.27)-(3.28). In
that case, the Wald type test is constructed for testing the null hypothesis that the parameter
vector β(2)(τ0) which implies that we are testing the null hypothesis that β1(τ0) − β1(τ0) = 0.
However, one has to be careful when constructing the covariance matrix as the regressors need to
be adjusted accordingly. Furthermore, a second approach is to construct the stacked regressors
that correspond to the time series observations from each of the two subsamples.

To simplify the notation, we employ the second approach and denote with β̂1(λ; τ0) the estimator
of β0(τ0), using observations up to κ = ⌊λn⌋ for some 0 < λ < 1 and with β̂2(λ; τ0) the
corresponding parameter estimator based on the remaining observations in the sample. Moreover,
denote with X̃ ≡

[
X1 X2

]
and R ≡

[
Ip − Ip

]
the selection matrix, then

∆β̂n(λ; τ0) :=
(
β̂2(λ; τ0) − β̂1(λ; τ0)

)
(3.63)

Then, the Wald test for testing the null hypothesis that the two regimes have equivalent parameter
vectors, based on the OLS estimator and some unknown break-point κ = ⌊λn⌋ is formulated as

Wn(λ, τ0) = n∆β̂n(λ; τ0)′[V̂ n(λ; τ0)
]−1∆β̂n(λ; τ0) (3.64)

where V̂ n(λ; τ0) is a consistent estimate of the limiting variance of ∆β̂n(λ; τ0) under the null
hypothesis, H(A)

0 , of no parameter instability for a fixed quantile level τ0 ∈ (0, 1). The variance
estimator is a key quantity which will affect the robustness of Wald type tests and takes different
forms depending on the estimation method we employ when fitting the nonstationary quantile
predictive regression.

Consider the following limiting variance estimate

plim
n→∞

{
V̂ n(λ; τ0)

}
≡
[
τ0(1 − τ0)
λ(1 − λ)

]
Ω0, (λ, τ0) ∈ (0, 1) × (0, 1), (3.65)

where Ω0 = H−1
0 D0H

−1
0 is the unknown variance of the OLS-Wald test.

Furthermore, define with

H0 = plim
n→∞

1
n

n∑
t=1

fy|x (yt|xt−1)x′
t−1xt−1 (3.66)

D0 = plim
n→∞

1
n

n∑
t=1
x′
t−1xt−1 (3.67)

where fy|x(.|xt−1) and Fy|x(.|xt−1) are the conditional density and conditional cumulative distri-
bution function of yt respectively (see Goh and Knight (2009) and Aue et al. (2017)).
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However, the particular form of the asymptotic variance only holds under the assumption of
stationarity in which case the variance estimator simplifies since it does not depend on any
nuisance parameters (such as the coefficients of persistence) and thus equivalent matrix moments
to the expressions in Qu (2008) (see also Andrews (1993)) hold. In our setting, we consider
alternative variance estimators based on both the chosen estimator and the persistence class of
regressors. For any of the aforementioned cases, the supremum Wald test statistic is defined as

SWn(λ; τ0) := sup
λ∈Λη

{
n∆β̂n(λ; τ0)′[V̂ n(λ; τ0)

]−1∆β̂n(λ; τ0)
}

(3.68)

In practise, a symmetric trimming coefficient is employed such that 0 < η < 1/2 which lead to the
admissible set Λη := [η, 1 − η], in order to ensure that the test statistics converge in distribution
under the null hypothesis. Therefore, we investigate the asymptotic behaviour of the OLS based
Wald test for the nonstationary quantile predictive regression model given by (4.11)-(4.12) which
encompasses the case of stationary regressors. Under the assumption of stable regressors the
asymptotic variance of the OLS-Wald test is equivalent to the case when regressors are stationary
and ergodic.

Under the assumption of nonstationarity, the formulation of the OLS-Wald test statistic requires
to determine the asymptotic behaviour of the following quantities

β̂
ols

1 (λ; τ0) =

 1
κ

⌊λn⌋∑
t=1

xt−1x
′
t−1

−1 1
κ

⌊λn⌋∑
t=1

xt−1yt

 (3.69)

β̂
ols

2 (λ; τ0) =

 1
n− κ

n∑
t=⌊λn⌋+1

xt−1x
′
t−1

−1 1
n− κ

n∑
t=⌊λn⌋+1

xt−1yt

 (3.70)

and ∆β̂olsn (λ; τ0) = β̂
ols

2 (λ; τ0) − β̂ols1 (λ; τ0), for some 0 < λ < 1 and τ ∈ (0, 1).

Then, due to orthogonality of the two set of regressors the covariance matrix simplifies into the
following expression:

V̂
ols

n (λ; τ0) :=
[
R
(
X̃ ′X̃

)−1
R′
]

≡
[(
X ′

1X1
)−1 +

(
X ′

2X2
)−1
]

(3.71)

3.3.4 Asymptotic Theory

As we discussed previously, the limit theory of the Wald type statistics for both the OLS and
IVX estimators seems more difficult than the limit results for the fluctuation type tests, espe-
cially due to the dependence of regressors and parameter estimates to the nuisance parameter
of persistence. Therefore, here we generalize the functionals introduced in Section 3.3.2 and
3.3.2 in order to study their asymptotic properties which can alleviate the difficulty in obtaining
stochastic approximations under the presence of abstract degree of persistence; simplifying this
way derivations for their limit distributions.
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OLS-Wald test statistic

We focus on the asymptotic theory for the OLS-Wald test statistic, which is employed as a struc-
tural break detection for the nonstationary quantile predictive regression model. In particular, we
investigate the asymptotic behaviour of the partial sum processes for the OLS based functionals
we introduced previously. For a general parameter vector b ∈ Rp we denote with Sn(λ, τ0, b) the
partial sum given by the following expression

Sn
(
λ, τ0, b

)
= n−1/2

⌊λn⌋∑
t=1

xt−1ψτ

(
yt − x′

t−1b
)

(3.72)

where ψτ(u) is such that ψτ(u) :=
[
τ − 1 {u ≤ 0}

]
. Therefore, Sn(λ, τ0, b) is written as

Sn
(
λ, τ0, b

)
= n−1/2

⌊λn⌋∑
t=1

xt−1
[
τ0 − 1

{
yt − x′

t−1b ≤ 0
}]
. (3.73)

Following conventional laws of invariance principles for i.i.d partial sums the induced sequence
of increments are tight within a suitable topological space18 and in fact they converge weakly to
Gaussian processes. Therefore, investigating the asymptotic behaviour and properties of these
functionals is useful for the development of the asymptotic theory of the proposed test statistics
as well as for other applications. To do this, we consider centering the quantity 1

{
yt−x′

t−1b ≤ 0
}

at its expectation conditional on xt−1, instead around the quantile level τ0. Since we assume that
the nonparametric functional given by expression (3.73) can be employed as a stochastic process
in D ([0, 1]), which is the topological space of all right continuous functions with left limits then
we can derive an invariance principle for this partial sum process.

To simplify derivations for the asymptotic theory, and following Qu (2008), we define the quantity
S̃n
(
λ, τ0, b

)
with the expression below

S̃n
(
λ, τ0, b

)
= n−1/2

⌊λn⌋∑
t=1

xt−1
[
Fy|x

(
x′
t−1b

)
− 1

{
yt − x′

t−1b ≤ 0
}]
. (3.74)

where Fy|x
(
x′
t−1b

)
is assumed to be monotonic. A necessary and sufficient condition for the

monotonicity property of the cumulative distribution function to hold is presented by Lemma
B.2 (see, also Lemma A1 in Qu (2008)). Consequently, we obtain that

Sn
(
λ, τ0, b

)
≡ S̃n

(
λ, τ0, b

)
+ n−1/2

⌊λn⌋∑
t=1

xt−1
[
τ0 − Fy|x

(
x′
t−1b

)]
. (3.75)

18Related theory to weak convergence arguments of partial sum processes can be found in various studies. For
instance, Wang and Phillips (2012) redefine the innovation sequence of their model, in the context of specification
testing under nonstationarity, to a richer probability space which contains a standard Brownian motion. To do this,
a triangular representation of the near unit process is employed in order to investigate the asymptotic behaviour
of the transformed functional with respect to this triangular array. Although this would be an interesting way to
represent our functionals we avoid the introduction of triangular arrays which could be more challenging to handle.
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Our research objective here is to establish the weak convergence argument that holds for the ran-
dom quantity Sn (λ, τ0, b) on (D[0, 1])2 by accommodating for the different convergence rates with
appropriate matrix normalizations according to the estimator employed in each case. Moreover,
the limit results of these functionals19 can be utilized to show the following type of stochastic
convergence

√
n

(
β̂
ols

1 (λ; τ0) − β0(τ0)
)

= OP(1), (3.76)

where β̂ols1 (λ; τ0) is the quantile regression OLS based estimator that corresponds to the sub-
sample 1 ≤ t ≤ ⌊λn⌋ for some 0 < λ < 1 and τ0 ∈ (0, 1), when the quantile regression has no
model intercept. Intuitively, when the model structure incorporates both intercept and slopes
then the different convergence rates of these coefficients due to the presence of nonstationarity is
accommodated with the use of embedded normalization matrices. In the case of the IVX esti-
mator obtained using observations from the full sample the following order of convergence holds:
n

1+γx
2 (β̂ivxn (τ) − β0(τ)) = OP(1), which is proved by Corollary 3.2 in the Appendix of the paper

(see also Theorem 3.1 in Lee (2016)).

For the remainder of this section, we suppose that the parameter vector is of the form θ(τ) =[
α(τ),β(τ)′]′. Then, Lemma 3.3 below provides a useful decomposition for the functional given

by expression (3.75) which we employ when deriving the limit distribution of the OLS-Wald test
statistic under the null hypothesis of a single structural break at an unknown location denoted
with κ = ⌊λn⌋, for some 0 < λ < 1. Therefore, testing for a structural break in the quantile
predictive regression model, using a Wald type statistic formulation based on the OLS estimator
implies to use the parameter vector θ(τ) instead of β(τ).

Remark 3.6. Notice that the Wald statistic of interest is a generalized version of the t−test
statistic given by the following expression

Tn,i := n
f̂τ
(
Riθ̃n(τ) − ri

)
{
τ(1 − τ)RiΣ−1

n Ri

}1/2 , τ ∈ (0, 1). (3.77)

Therefore, it can been easily seen that the t−test statistic denoted with T 2
n,i equals the Wald

statistic that tests the null hypothesis H0 : θi(τ) = θ0i (e.g., if ri = 0) against the alternative
hypothesis H1 : θi(τ) ̸= θ0i, where θi(τ) is the i−th element of the parameter vector θi. We focus
on the asymptotic behaviour of the Wald-based test statistics for testing parameter stability in
quantile predictive regression models. We expect that as the sample size increases, the empirical
level of these test statistics tend to converge to the nominal level.

19Notice that the proposed functionals in this paper similar to the framework of Qu (2008), clearly depend on the
estimated parameter vector. Therefore, in our setting the assumption of a nonstationary quantile model contributes
to some challenging asymptotic theory aspects, which we are motivated to tackle. Moreover, we shall note that a
related large stream of literature considers functionals of estimated residuals with associated test statistics such as
CUSUM and CUSUM-square commonly employed in the change-point literature. We avoid presenting the related
literature here, as it beyond our scope.
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Lemma 3.3. Under the null hypothesis, H(A)
0 , and given that Assumptions 3.1-3.2 hold:

(i) uniformly in λ ∈ Λη := [η, 1 − η] as n → ∞, then

Ŝolsn
(
λ, τ0, θ̂

ols

1 (λ; τ0)
)

= Sn
(
λ, τ0,θ0(τ0)

)
+ λLnx

(
τ0,θ

ols
n (τ0)

)
Ê
ols

1 (λ; τ0) + oP(1),

where Ê
ols

1 (λ; τ0) :=
√
n
(
θ̂
ols

1 (λ; τ0) − θ0(τ0)
)

and θ̂
ols

1 (λ; τ0) denotes the estimate of θ0(τ0) using

the sample up to ⌊λn⌋, and Lnx
(
τ0,θ

ols
n (τ0)

)
as in Definition 3.1.

(ii) uniformly in λ ∈ [0, 1] as n → ∞, then

Ŝolsn
(
λ, τ0, θ̂

ols

n (λ; τ0)
)

= Sn
(
λ, τ0,θ0(τ0)

)
+ λLnx

(
τ0,θ

ols
n (τ0)

)
Ê
ols

n (τ0) + oP(1),

where Ê
ols

n (τ0) :=
√
n
(
θ̂
ols

n (τ0) − θ0(τ0)
)

and θ̂
ols

n (τ0) denotes the OLS estimate of θ0(τ0) using
the full sample.

The proof of Lemma 3.3 can be found in the Appendix of the paper.

Proposition 3.2. Under the null hypothesis H(A)
0 and given that Assumptions 3.1-3.2 hold, then

the Wald type statistics weakly converge to the limit distributions below

(i) SWols
n

(
λ; τ0

)
⇒ sup

λ∈[0,1]

∥∥BBp+1(λ)
∥∥2

λ(1 − λ) , for γx ∈ (0, 1)

(ii) SWols
n

(
λ; τ0

)
⇒ sup

λ∈Λη

∆ols
0
(
λ; τ0

)′[Σ−1
0
(
λ; τ0

)]
∆ols

0
(
λ; τ0

)
, for γx = 1

where BBp+1(.) is a vector of (p + 1) independent Brownian bridge processes on DRp+1 ([0, 1]).
Denote with

Σ−1
0
(
λ; τ0

)
:= fut(τ)(0)2

[
Sxx(λ) − Sxx(λ)S−1

xx (1)Sxx(λ)
]

∆ols
0
(
λ; τ0

)
:= S−1

xx (λ)

 Bψτ(λ)∫ λ

0
J c(r)dBψτ

−
[
Sxx(1) − Sxx(λ)

]−1

 Bψτ(1) −Bψτ(λ)∫ 1

0
J c(r)dBψτ −

∫ λ

0
J c(r)dBψτ

 .
where Σ−1

0
(
λ; τ0

)
∈ R(p+1)×(p+1) and ∆ols

0
(
λ; τ0

)
∈ R(p+1)×n since the model included both an

intercept and slopes.

The proof of Proposition 3.2 can be found in the Appendix of the paper. Notice that Σ−1
0
(
λ; τ0

)
represents the weakly convergence result of the inverse of the covariance matrix of the stochastic
process

√
n
(
β̂(2)(τ0) − β(2)(τ0)

)
, in which case Wn(τ0) is the Wald statistic for testing the null

hypothesis H0 : β̂(2)(τ0) = 0. Furthermore, notice that the event
{
y(t) ≤ x′

t−1β(τ)
}

is distributed
exactly as a Bernoulli(τ) conditional on X regardless of the sample size. Therefore, any test
statistic that depends only on this event, X, will have a distribution that does not depend on
any unknown parameters in finite samples and thus can be used to construct valid finite sample
inference statements.
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IVX-Wald test statistic

The instrumentation methodology proposed by Phillips and Magdalinos (2009) has been proved
to be robust in filtering abstract degree of persistence in predictive regression models (see also
Phillips and Lee (2013, 2016)). Our research objective in this section is to study the asymp-
totic behaviour of the proposed structural break tests based on the endogenous instrumentation
procedure in nonstationary quantile predictive regressions. The corresponding limit results for
the self-normalized sup IVX-Wald test function as a break detector for the coefficients of linear
predictive regressions is examined in Chapter 1. Specifically, the supremum IVX-Wald test corre-
sponds to the maximum20 of a sequence of test statistics constructed based on sequential sample
splitting locations such that κ = ⌊λn⌋ where λ ∈ Λη := [η, 1 − η] with 0 < η < 1/2. Further-
more, we employ the dequantiled model structure and denote with β̂ivx1 (λ; τ0) and β̂ivx2 (λ; τ0) the
IVX based estimators for the two sub-samples occurred at each splitting step. Therefore, these
estimators are computed via the following expressions

β̂
ivx

1 (κ; τ0) =
(

1
κ

κ+j∑
t=1

z̃1,t−1x
′
1,t−1

)−1(
1
κ

κ+j∑
t=1

z̃1,t−1yt

)
, (3.78)

β̂
ivx

2 (κ; τ0) =

 1
n− κ

n∑
t=κ+1+j

z̃2,t−1x
′
2,t−1

−1 1
n− κ

n∑
t=κ+1+j

z̃2,t−1yt

 . (3.79)

where κ = ⌊λn⌋ for some 0 < λ < 1 and the indicator j ∈ {0, ..., (n− κ)} shows that a
sequence of parameter estimates is obtained by moving along all proportions within the compact
set Λη = [η, 1 − η], to compute the maximum Wald statistic. However, for notation convenience
we drop the index notation (κ+ j) and (κ+ 1 + j) which can be confused with notation used for
time-varying parameter estimates. Also, x1,t−1 := xt−11 {t ≤ κ} and x2,t−1 := xt−11 {t > κ}.
Furthermore, Q̃1(λ; τ0) and Q̃2(λ; τ0) denotes the covariance matrices which correspond to the
two subsample parameter estimates and permits to decompose the covariance matrix21 of the test
with respect to each regime

Q̃1
(
λ; τ0

)
=
(
Z̃ ′

1X1
)−1 (

Z̃ ′
1Z̃1

) (
X ′

1Z̃1
)−1

Q̃2
(
λ; τ0

)
=
(
Z̃ ′

2X2
)−1 (

Z̃ ′
2Z̃2

) (
X ′

2Z̃2
)−1

Then, under the null hypothesis, H(A)
0 , the sup IVX-Wald statistic is formulated as

SWivx
n

(
λ; τ0

)
:= sup

λ∈Λη

{
∆β̂

ivx

n

(
λ; τ0

)′
[
V̂
ivx

n

(
λ; τ0

)]−1
∆β̂

ivx

n

(
λ; τ0

)}
(3.80)

where ∆β̂
ivx

n

(
λ; τ0

)
:=
(
β̂
ivx

1 (λ; τ0) − β̂
ivx

2 (λ; τ0)
)

and V̂
ivx

n

(
λ; τ0

)
:= Q̃1

(
λ; τ0

)
+ Q̃2

(
λ; τ0

)
.

20Further details regarding the formulation of Wald type tests and asymptotic theory is presented in the seminal
study of Andrews (1993). The particular framework propose for structural change tests in linear regression models
under the assumption of stationary and ergodic time series.

21The decomposition of the covariance matrix for the IVX-Wald statistic can be obtained using a formula for
inverting partitioned matrices. In particular, since Z′

1X2 = Z′
2X1 = 0 then the matrix inversion formula simplifies

further, allowing us to obtain an expression for the variance of the test.
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Theorem 3.1. Under the null hypothesis and given that Assumptions 3.1-3.2 hold, then the sup
IVX-Wald statistic weakly convergence to limit distribution below

SW ivx
n

(
λ; τ0

)
⇒ sup

λ∈Λη

{
∆ivx

0
(
λ; τ0

)′[Σivx
0
(
λ; τ0

)]−1∆ivx
0
(
λ; τ0

)}
(3.81)

where Λη := [η, 1 − η] with 0 < η < 1/2 and

∆ivx
0
(
λ; τ0

)
:= W p(λ) − Ψc(λ)W p(1) (3.82)

Σivx
0
(
λ; τ0

)
:= λ

(
Ip − Ψc(λ)

)(
Ip − Ψc(λ)

)′ + (1 − λ)Ψc(λ)Ψc(λ)′ (3.83)

such that

Ψc(λ) =



(
λΩxx +

∫ λ

0
Jµc (r)dJ ′

c

)(
Ωxx +

∫ 1

0
Jµc (r)dJ ′

c

)−1
, for γx = 1

λIp , for γx ∈ (0, 1)

where W p(.) is a p−dimensional standard Brownian motion, J c(λ) =
∫ λ

0 e
(λ−s)CpdB(s) is an

Ornstein-Uhkenbeck process and we denote with Jµc (λ) = J c(λ) −
∫ 1

0 J c(s)ds and W µ
p (λ) =

W p(λ) −
∫ 1

0 W (s)ds the demeaned processes of J c(λ) and W p(λ) respectively.

Remark 3.7. Notice that inference on βivxn (τ) critically depends on the estimator of the covari-
ance matrix V̂ ivx

n (λ; τ0). Moreover, the estimation of the sparsity coefficient does not affect the
estimation accuracy when constructing test statistics in quantile time series models due to the
self-normalized property of Wald type tests. On the other hand, the robust estimation of the
covariance matrix is ensured by employing fully modified type of transformations as in the linear
model (see, Kostakis et al. (2015)).

Theorem 3.1 presents the asymptotic distribution of the sup IVX-Wald test under the null hy-
pothesis of a single unknown break-point. Furthermore, it covers some practical considerations
that arise in empirical work especially with respect to the persistence properties of regressors.
As we can observe from the asymptotic behaviour of the test for local unit root regressors (high
persistence), it converges to a nonstandard and nonpivotal distribution. On the other hand, for
mildly integrated regressors the test behaves in large samples similar to the sup OLS-Wald test
which weakly converge into a Brownian bridge type of limit. In the former case, a comparison
of the limit distributions of the two tests does not necessarily indicate which test statistic might
have better performance in detecting structural breaks to the coefficients of nonstationary quan-
tile predictive regressions. To investigate the particular aspect, we use simulation experiments
where allow us to use a suitable experimental design that accommodates these conditions. The
proof of Theorem 3.1 can be found in the Appendix of the paper.
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Some important implications follow from Theorem 3.1. More precisely, our asymptotic theory
analysis confirms some of the conclusions drawn in similar studies. For instance, Hanson (2002)
and Seo (1998) (see also Georgiev et al. (2018)) demonstrated that testing for structural breaks
with integrated regressors based on the OLS estimation method converges to a nonstandard
and nonpivotal limiting distribution. Furthermore, although the IVX-Wald statistic is proved to
be robust to abstract degree of persistence when testing for parameter restrictions, within the
structural break testing framework due to the presence of the unknown break-point location,
the sup IVX-Wald test similar to the OLS counterpart is coverages to a nonpivotal limiting
distribution, which is not Brownian bridge (as defined in the stationary case) even though it is
still tied down.

Nevertheless, some interesting further simplifications occur; for instance under the assumption of
mildly integrated regressors, it can be easily proved that the limiting distribution of the sup IVX-
Wald test converges to a normalized Brownian bridge limit. This occurs due to the asymptotic
matrix moments such that, for 0 < γx < 1 it holds that∑n

t=1 xt−1z̃
′
t−1 ⇒ −ΩxxC

−1
z by expression

(20) in Phillips and Magdalinos (2009). Thus, it also holds that ∑⌊λn⌋
t=1 xt−1z̃

′
t−1 ⇒ −λΩxxC

−1
z ,

which implies that Ψc(λ) = λIp. Furthermore, we also consider the limiting distribution of the
sup IVZ-Wald test.

Corollary 3.5. Under the null hypothesis, H(A)
0 and suppose that Assumptions 3.1-3.2 hold,

then the sup IVZ-Wald statistic weakly convergence to the asymptotic distribution below

SW ivz
n

(
λ; τ0

)
⇒ sup

λ∈Λη

∥∥BBp(λ)
∥∥2

λ(1 − λ) , for 0 < γx ≤ 1. (3.84)

where BBp(.) is a vector of p independent Brownian bridge processes on DRp ([0, 1]).

In summary, in this section we show that the limiting distribution of the sup IVX-Wald test
statistic under high persistence is nonstandard and nonpivotal. Furthermore, the particular limit
result simplifies when regressors in the model are assumed to be mildly integrated resulting to
weakly convergence into a Brownian bridge type limit. On the other hand, when we construct the
test statistic based on the IVZ estimator then the sup IVZ-Wald test converges into a Brownian
bridge type of limit regardless of the degree of persistence. Lastly, for a known break-point
Wald type tests converge to a nuisance-parameter free limiting distribution, simplifying this way
statistical inference. The proof of Corollary 3.5 can be found in the Appendix.

Another important aspect we consider for the development of the asymptotic theory of the paper,
is the classical result of Huber for models with nonstandard conditions such as quantile regression
models. More specifically, the first order condition (FOC) defined as the right derivative of the
objective function plays a key role in deriving the asymptotic theory of estimators for the quantile
model. In particular, we can show that the parameter vector estimator solves these FOC and
then apply a Bahadur representation for the estimator. All these results hold with almost surely
convergence in large samples.
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3.4 Testing for break across multiple quantiles

3.4.1 Preliminary Setting

Testing for breaks at multiple quantiles implies that there is quantile-varying effects of these non-
stationary regressors which implies that quantile predictability robust against parameter instabil-
ity can only be detected if we test for structural breaks across multiple quantiles. In particular,
when the quantile level is allowed to vary within the compact set (0, 1) this implies that the
proposed test statistics22 can detect for possible breaks in the coefficients of the nonstationary
quantile predictive regression across multiple quantile levels23. The testing procedure under this
scenario generalizes the search for structural breaks since parameter instability in the relation
between predictant and predictors can occur across any quantile level within the admissible set.

Test statistics and functionals

Thus, we extend the test statistics DQn(λ, τ) and DWn(λ, τ) as structural break detectors across
multiple quantiles using the double supremum operator.

DQn
(
λ, τ

)
:= sup

τ∈Tι

sup
λ∈[0,1]

∥∥∥∥ 1√
τ(1 − τ)

[
Jn
(
λ, τ, β̂n(τ)

)
− λJn

(
1, τ, β̂n(τ)

)]∥∥∥∥
∞
, (3.85)

DWn
(
λ, τ

)
:= sup

τ∈Tι

sup
λ∈Λη

{
n ∆β̂n

(
λ, τ

)′
V̂ n

(
λ, τ

)−1∆β̂n
(
λ, τ

)}
. (3.86)

where Tι := [ι, 1 − ι] for some 0 < ι < 1/2 and (λ, τ) ∈ (0, 1) × (0, 1).

In particular, the proposed testing methodology for detecting breaks in quantile predictive re-
gression models is based on the double supremum tests (see also Qu (2008) and Andrews (1993))
which are suitable test functions for evaluating Testing Hypothesis B (see Section 3.2.3). In partic-
ular, under the specific econometric environment, statistical inference encompasses cases such as
structural breaks in the coefficients at different quantile levels such as the lower or the upper tails
of the underline conditional quantile distribution function. Consequently, in order to strengthen
the ability of these test statistics to detect structural-break which implies improving the mono-
tonic performance of the asymptotic power function, the admissible quantile set Tι ⊂ (0, 1) can
be modified accordingly using for instance an asymmetric trimming factor.

22A relevant line of literature to structural break testing is concerned with the development of methodologies
for specification testing of conditional distributions (as in Escanciano and Velasco (2010)). Although the null
hypothesis for these procedures do not directly apply to the testing hypotheses we consider, the idea of testing for
the correct specification of quantile models over multiple quantiles has similar intuition to detecting for structural
breaks at random quantiles within the compact set (0, 1).

23Within our setting the estimation procedure implies that the quantile regression model is fitted on the pair of
data {yt,xt}n

t=1 assuming a Gaussian error distribution. Moreover, based on the optimization function the model
estimator corresponds to a parameter quantile dependent vector without imposing any assumptions regarding the
presence of quantile effects. Therefore, structural break testing can only be interpreted as detecting for the presence
of possible parameter instability for this quantile dependent vector either around a fixed quantile level or across
multiple quantile levels within the set (0, 1).
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Regularity Conditions for Weak Convergence

Therefore, the asymptotic theory of these tests statistics can be developed by examining their
limit distributions in relation to the asymptotic behaviour of a two-parameter Gaussian process
in τ and λ within a product of the compact set (0, 1)2. More precisely, following the framework
of Qu (2008) further regularity assumptions can be imposed to ensure stochastic equicontinuity
of the process Sn

(
λ, τ,β0(τ)

)
on (K, d), where K = [0, 1] × [0, 1] and d is some metric with well-

defined properties on K. Assumption 3.3 below imposes additional conditions that ensure the
weakly convergence of the tests to two-parameter Gaussian processes.

Assumption 3.3 (Qu (2008)). For the vector-valued sequence
{
ψτ

(
ut(τ),Xt−1,n, Z̃t−1,n

)}
, let

Ft to denote the natural filtration. Then, for the functionals DQn
(
λ, τ

)
and DWn

(
λ, τ

)
:

(i) there exists a fixed scalar δn such that the array Jnt = δnJt
(
λ, τ, bn(τ)

)
satisfies Jn,⌊λn⌋(., τ) ⇒

J o(λ, τ) for some 0 < λ < 1 and τ ∈ (0, 1), where J o(λ, τ) is continuous almost surely;

(ii) the functionals DQn
(
λ, τ

)
and DWn

(
λ, τ

)
converge weakly in the Skorokhod space D ([0, 1])2

equipped with the product J1 topology, to a two-dimensional Gaussian process, such that{(
B(u), B(v)

)
, 0 ≤ u, v ≤ 1

}
. Moreover,

{
B(u), 0 ≤ u ≤ 1

}
and

{
B(v), 0 ≤ v ≤ 1

}
are

assumed to be two independent Gaussian processes.

Lemma 3.4 (Qu (2008)). Under the null hypothesis H(B)
0 and given that Assumptions 3.1-3.3

hold, then:

(i) uniformly in (λ, τ) ∈ Λη × Tι and for n large,

Ŝn
(
λ, τ, θ̂1(λ, τ)

)
= Sn

(
λ, τ,θ0(τ)

)
+ λLnx (τ,θn(τ))Ê1(λ, τ) + oP(1),

where Ê1(λ, τ) :=
√
n
(
θ̂1(λ, τ) − θ0(τ)

)
and θ̂1(λ, τ) denotes the estimate of θ0(τ) using

the sample up to ⌊λn⌋, and Lnx
(
τ,θn(τ)

)
as in Definition 3.1.

(ii) uniformly in (λ, τ) ∈ [0, 1] × Tι and for n large,

Ŝn
(
λ, τ0, θ̂n(λ, τ)

)
= Sn

(
λ, τ,θ0(τ)

)
+ λLnx

(
τ,θn(τ)

)
Ên(τ) + oP(1),

where Ên(τ) :=
√
n
(
θ̂n(τ) − θ0(τ)

)
and θ̂n(τ) denotes the (OLS) estimate of θ0(τ) using

the full sample.

Denote with Bp(u, v) =
(
B1(u, v), ..., Bp(u, v)

)′ be a p−vector of independent Gaussian processes
with each component defined on [0, 1]2 having zero mean and a covariance function specified
below

Cov
(
Bi(r, u), Bi(s, v)

)
:= E

[
Bi(r, u)Bi(s, v)

]
=
(
r ∧ s − rs

)(
u ∧ v − uv

)
. (3.87)

where {r, u, s, v} are some random elements in a compact set such that r ̸= s ̸= u ̸= v.
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3.4.2 Asymptotic Theory

Fluctuation type tests

We begin with deriving the limiting distribution for the fluctuation type test statistic. Notice that
the formulation of the fluctuation OLS based test given by (3.85) corresponds to the nonstationary
quantile predictive regression model with both a model intercept and slopes. Furthermore, we
consider testing for structural breaks across multiple quantiles, (i.e., random quantiles within
the compact set (0, 1)). Therefore, to derive the limiting distribution of the test we utilize a
two-parameter Brownian motion and employ weak convergence arguments which apply in the
Skorokhod topology D ([0, 1]).

Proposition 3.3. Suppose that Assumptions 3.1-3.3 hold, then under the null hypothesis, H(B)
0 ,

the fluctuation type statistics weakly converge to the limiting distributions below

(i) DQols
n

(
λ, τ
)

:= sup
τ∈Tι

sup
λ∈[0,1]

∥∥∥∥ 1√
τ(1 − τ)

[
Ĵn
(
λ, τ, θ̂

ols

n (τ)
)

− λĴn
(

1, τ, θ̂
ols

n (τ)
)]∥∥∥∥

∞

⇒


sup
τ∈Tι

sup
λ∈[0,1]

∥∥BB⋆
p+1
(
λ, τ
)∥∥

∞, when γx ∈ (0, 1)

sup
τ∈Tι

sup
λ∈[0,1]

S−1/2
xx ×


BBψτ

(λ)(1×n)

J Bψτ
(λ)(p×n)


(p+1)×n

 , when γx = 1

(ii) DQivx
n

(
λ, τ
)

:= sup
τ∈Tι

sup
λ∈[0,1]

∥∥∥∥ 1√
τ(1 − τ)

[
Ĵn
(
λ, τ, β̂

ivx

n (τ)
)

− λĴn
(

1, τ, β̂
ivx

n (τ)
)]∥∥∥∥

∞

⇒ sup
τ∈Tι

sup
λ∈[0,1]

∥∥BB⋆
p

(
λ, τ
)∥∥

∞, when γx = (0,γz)

(iii) DQivz
n

(
λ, τ
)

:= sup
τ∈Tι

sup
λ∈[0,1]

∥∥∥∥ 1√
τ(1 − τ)

[
Ĵn
(
λ, τ, β̂

ivz

n (τ)
)

− λĴn
(

1, τ, β̂
ivz

n (τ)
)]∥∥∥∥

∞

⇒ sup
τ∈Tι

sup
λ∈[0,1]

∥∥BB⋆
p(λ)

∥∥
∞, when γx = (0, 1]

where BB⋆
p(., .) is a vector of p independent Brownian bridge processes on DRp ([0, 1]),

Sxx :=

 1
∫ 1

0
J c(r)′dr∫ 1

0
J c(r)dr

∫ 1

0
J c(r)J c(r)′


(p+1)×(p+1)

, with 0 < r < 1

such that Sxx is a positive definite stochastic matrix, BBψτ(λ) := Bψτ(λ)−λBψτ(1) and J Bψτ(λ) :=∫ λ

0
J c(r)dBψτ − λ

∫ 1

0
J c(r)dBψτ .
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Remark 3.8. The main ingredients in the proof of Proposition 3.3 are the three results:

(i) A Bahadur representation that holds uniformly in (λ, τ) ∈ Λη × Tι (Lemma 3.4),

(ii) A uniform approximation to the re-centered subgradient process

Sn
(
λ, τ,β0(τ) + n−1/2ξ

)
(3.88)

(iii)
√
n
(
β̂1n(λ, τ) − β0(τ)

)
= OP(1) uniformly in (λ, τ) ∈ Λη × Tι.

Wald type tests

The above functionals and test functions are employed for the purpose of conducting statistical
inference with a fixed significance level 0 < α < 1 for Testing Hypothesis B; which corresponds to
structural break detection in the quantile dependent parameter vector of the model for all τ ∈ Tι.
Similarly, we consider the asymptotic theory for the Wald type test statistics that correspond to
the double supremum functional. Therefore, the following formulation holds

DWn
(
λ, τ

)
:= sup

τ∈Tι

sup
λ∈Λη

{
n ∆β̂n

(
λ, τ

)′
V̂ n

(
λ, τ

)−1∆β̂n
(
λ, τ

)}
.

Proposition 3.4. Suppose that Assumptions 3.1-3.3 hold, then under the null hypothesis, H(B)
0 ,

the sup OLS-Wald test statistic weakly converge to the limiting distribution below

(i) DWols
n

(
λ, τ

)
⇒ sup

τ∈Tι

sup
λ∈Λη

∥∥∥BB⋆
p

(
λ, τ

)∥∥∥2

λ(1 − λ)τ(1 − τ) , for γx ∈ (0, 1)

(ii) DWols
n

(
λ, τ

)
⇒

sup
τ∈Tι

sup
λ∈Λη

fut(τ)(0)2

λ(1 − λ)τ(1 − τ)

 Bψτ(1)∫ 1

0
J c(r)dBψτ


′

⊗ S−1
xx ⊗

 Bψτ(1)∫ 1

0
J c(r)dBψτ

 , for γx = 1.

where BB⋆
p(., .) is a vector of p independent Brownian bridge processes on DRp ([0, 1]).

Next, we focus on the formulation and asymptotic theory of the double supremum IVX-Wald test
statistic under the null hypothesis, H(B)

0 . Similar to the setting of testing for structural breaks
for a fixed quantile level in the case of a random quantile level within the compact set (0, 1), the
crucial aspect to establish is whether the limit distribution of the test under the null hypothesis
is nuisance-parameter free.
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Theorem 3.2. Suppose that Assumptions 3.1-3.3 hold, then under the null hypothesis, H(B)
0 ,

sup IVX-Wald statistic weakly convergence to the limiting distribution below

(i) DW ivx
n

(
λ, τ

)
⇒ sup

τ∈Tι

sup
λ∈Λη

{
∆ivx

0
(
λ, τ

)′[Σivx
0
(
λ, τ

)]−1∆ivx
0
(
λ, τ

)}
(3.89)

where Λη := [η, 1 − η] with 0 < η < 1/2 and

∆ivx
0
(
λ, τ

)
:= W p(λ) − Ψc(λ)W p(1) (3.90)

Σivx
0
(
λ, τ

)
:= λ

(
Ip − Ψc(λ)

)(
Ip − Ψc(λ)

)′ + (1 − λ)Ψc(λ)Ψc(λ)′ (3.91)

such that

Ψc(λ) =



(
λΩxx +

∫ λ

0
Jµc (r)dJ ′

c

)(
Ωxx +

∫ 1

0
Jµc (r)dJ ′

c

)−1
, for γx = 1

λIp , for γx ∈ (0, 1)

Moreover, the corresponding sup IVZ-Wald statistic weakly converge to the limiting distribution
given below

(ii) DW ivz
n

(
λ, τ

)
⇒ sup

τ∈Tι

sup
λ∈Λη

∥∥BB⋆
p

(
λ, τ

) ∥∥2

λ(1 − λ) , for 0 < γx ≤ 1. (3.92)

where BB⋆
p(., .) is a vector of p independent Brownian bridge processes on DRp ([0, 1]).

3.5 Monte Carlo Simulation Study

Practically, it is unclear how well the asymptotic theory can provide reliable reference and guid-
ance in finite samples when applied to time series data since usually they can exhibit abstract
degree of persistence. However, under the assumption that regressors incorporated in the quantile
predictive regression model are generated by near unit root processes for which their asymptotic
behaviour is well-understood, then our test statistics can provide an indication regarding the
ability of the testing procedures in detecting structural breaks in coefficients of nonstationary
quantile predictive regression models. Thus, to investigate the finite sample performance of the
proposed tests for their adequacy in detecting parameter instability we focus on the empirical
size simulation results as well as on asymptotic power analysis under relevant sequence of local
alternatives.
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3.5.1 Experimental Design

We conduct a number of Monte Carlo experiments to evaluate the performance of the limit
distribution of the Wald and fluctuation type statistics against the conventional χ2 asymptotic
approximation. We simulate the following data generating process

yt = α+
3∑
j=1

βjxj,t−1 + ut, 1 ≤ t ≤ n (3.93)

xt =


ϱn(cj ,γx) 0 0

0 ϱn(cj ,γx) 0
0 0 ϱn(cj ,γx)

xt−1 + vt (3.94)

where xt =
(
x1t, x1t, x1t

)′, vt =
(
v1t, v1t, v1t

)′ and ϱn(cj ,γx) =
(

1 + cj
nγx

)
. Then, the innovation

sequence of the model, denoted with et = (ut,vt)′ is generated such that et ∼ N
(
0(p+1)×1,Σee

)
,

where Σee is an (p+ 1) × (p+ 1) positive-definite covariance matrix with a pre-specified variance-
covariance structure given as below

Σee =
[
σ2
uu ρ′

ρ Σvv

]
(3.95)

where the matrix Σvv is of full rank p, resulting to a nonsingular matrix Σee.

The coefficients of persistence are such that cj ∈ {−1,−2,−5} and γx is defined to be γx = 1
to simulate near unit root predictors and γx = 0.75 to simulate mildly integrated predictors.
Moreover, we consider different sample size such that n ∈ {250, 500, 750, 1000}. Under the null
hypothesis of no parameter instability we use the following parameters α = 1, β1 = 0.25, β2 =
0.75, β3 = −0.50 and construct the proposed test statistics with significance level α = 5%. For
the IVX instrumentation we use cz = 1 and γz = 0.95.

In particular, to construct the test statistics the simulated pair {yt,xt}nt=1 is formulated:

yt =

α(1)(τ) +
3∑
j=1

β
(1)
j (τ)xj,t−1

1
{
t ≤ κ

}
+

α(2)(τ) +
3∑
j=1

β
(2)
j (τ)xj,t−1

1
{
t > κ

}
+ ut

where κ = ⌊λn⌋ and the search over all possible subsets occurs for values of λ ∈ Λη. Denote
with θ(j)(τ) =

(
α(j)(τ), β(j)

1 (τ), β(j)
2 (τ), β(j)

3 (τ)
)′

with j ∈ {1, 2} to be the quantile dependent
parameter vector of each of the two regimes, for a fixed quantile τ0 that belongs in the compact
set24 Tη such that 0 < η < τ0 < 1 − η < 1.

Then, the testing hypothesis of interest is formulated as below

H(A)
0 : θ(1)

n (τ) = θ(2)
n (τ) versus H(A)

1 : θ(1)
n (τ) ̸= θ(2)

n (τ) (3.96)

with a fixed quantile τ0 ∈ Tη := [η, 1 − η], for an unknown break-point location κ = ⌊λn⌋ where
0 < λ < 1 and a significance level α = 5%.

24Notice that the compact set Tη falls strictly within the unit interval to allow the conditional distribution to
have an unbounded support.
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Furthermore, the second set of simulation experiments we consider involves the consideration of
the power performance for both the OLS and IVX based tests for detecting structural breaks in
the coefficients of the quantile predictive regression model. More precisely, we consider a set of
experiments against a sequence of alternatives given by

H(A)
1n : βt(τ) = β0(τ) + δ(τ)√

n
× g

(
t

n

)
, (3.97)

where δ(τ) is a constant that is quantile dependent and g(t/n) is a vector-valued function.

Notice that, we are particularly interested for the asymptotic behaviour of the test statistics under
local alternatives. According to White (1996), the particular form of the parameter vector given
above allows analysis of our test statistics under a form of local alternative, and therefore supports
investigation of local power properties of the associated test procedures. Furthermore, in the
literature of the behaviour of testing procedures under local alternatives, the standard approach
is to subject the data generating mechanism to a drift, while holding the null hypothesis fixed.
However, we do not consider a sequence of global alternatives, rather we focus on the case of a
sequence of local alternative hypotheses. Therefore, we are particularly interested to investigate
whether the proposed bootstrap procedure can consistently estimate the limiting distribution
of the proposed structural break tests based on the OLS and IVX estimators in the context of
the nonstationary quantile predictive regression model. For instance, it might be the case that
the proposed bootstrap methodology cannot be used for correcting the induced endogeneity bias
especially for the nonstationary quantile time series model.

3.5.2 Implementation Procedure

One important aspect for the correct implementation of the fluctuation based tests (which involves
the estimation of a subgradient) is that no nuisance parameter is needed (without the LUR
parametrization). Thus, for the Wald type statistics, we need a consistent estimate of the variance-
covariance matrix Ω0. In particular, it requires estimating the following matrix25

H0 = plim
n→∞

(
n−1

n∑
t=1

fy|x
(
F−1
y|x (τ)

)
xt−1x

′
t−1

)−1

(3.98)

A discussion regarding methodologies for estimating the matrix given by expression (3.98) can be
found in Qu (2008). Our asymptotic theory analysis reveals that when using Wald type statistics
as structural break detectors in nonstationary quantile predictive regression models, the chosen
estimator can affect the limiting distributions of test statistics and therefore its finite-sample
performance, especially under the presence of high persistence regressors. In particular, we have
proved that when selecting the OLS estimator then the limit distribution is nonstandard and
nonpivotal making inference challenging since critical values can be constructed only with the use
of bootstrap-based methodologies. When the IVZ estimator is chosen then the limit distribution is
proved to be nuisance-parameter free regardless of the persistence properties driving the behaviour
of regressors employed when estimating the quantile predictive regression.

25Notice that the estimation of the sparsity function will affect the finite-sample performance of the test statistics
if not consistently estimated.
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Remark 3.9. Another relevant aspect to investigate is the sensitivity of the proposed test statis-
tics to the break-point location within the full sample. Therefore, for instance we are interested
to examone whether the proposed tests have roughly equal sensitivity to a break occurring early
or late in the sample (see, also Leisch et al. (2000)). We expect that the break-point location will
not affect the power performance of the proposed test statistics especially due to the fact that
we do not operate within a sequential monitoring scheme in which case parameter estimates and
functionals are updated continuously.

Remark 3.10. Furthermore, notice that we compare the performance of the sup OLS-Wald with
the sup IVX-Wald for detecting structural break in nonstationary quantile predictive regression
models, by comparing the empirical size results based on the bootstrapped test statistics when
detecting structural breaks in these models.

Bootstrap-based inference

In this section, we discuss bootstrap based approximations to the asymptotic distribution of the
fluctuation and Wald type statistics under the assumption of high persistence regressors. In
particular, these bootstrap approximations can be employed to calculate critical values and p-
values when evaluating the empirical size and power performance of the proposed test statistics.
A bootstrap methodology which is robust to conditional heteroscedasticity of unknown form
in the error term of a pure time series autoregressive model is the pairs bootstrap, where one
resamples with replacement the vector that collects the dependent variable and its lagged values.
Specifically, the asymptotic validity of the pairs bootstrap can be established following the same
assumptions as those underlying the validity of the fixed-design wild bootstrap.

Theorem 3.3. Under regularity conditions, it follows that

sup
x∈R

∣∣∣∣ P∗
{√

NT
(
θ̂∗
RD − θ̂

)
≤ x

}
− P∗

{√
NT

(
θ̂∗
RD − θ̂

)
≤ x

} ∣∣∣∣ p→ 0. (3.99)

Therefore, investigating the asymptotic validity of the recursive-design bootstrap is essential in
establishing the practicality of the methodology in empirical and applied work. Furthermore, with
simulation experiments we can evaluate the finite-sample performance of the proposed bootstrap.

Simulation Procedure

The simulation procedure is briefly described as follows.

(1) Under H0, estimate the coefficients in the model, yt = xt−1β+ut using the OLS method and
obtain the corresponding OLS residuals ût. Run the autoregression such as xt = ρnxt−1+vt
where t = 1, ..., n to obtain the vector of residuals v̂t.

(2) Apply the proposed two-stage estimation procedure on the simulated sample in Step (1)
to obtain estimates of the time-varying coefficients, calculate the estimated nonparametric
residual ũt, and then estimate the conditional variance of Jn say σ̃2.

(3) Replace with ût and σ̃2 and calculate the test statistic Ĥn.
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(4) Perform a large number of iterations, say 1, 000, to find the empirical distribution of
{
Ĥn

}
.

The critical value at significance level α is given by the (1 − α)−th quantile.

Example 3.1. Consider the predictive regression model

yt = β0 + β1xt−1 + ϵt (3.100)
xt = ρxt−1 + ut (3.101)

Moreover, the innovations {ϵt, ut} are assumed to be i.i.d bivariate normal N (0,Σ). Then, the
AR(1) model is estimated via OLS and the residuals ϵ̂t are stored. Then, N different pseudo time
series data {y∗

t , t = 1, ..., T} are generated in a manner consistent with the estimated (no-break)
model as below:

y∗
t = µ̂+ ρ̂y∗

t−1 + ut (3.102)

where µ̂ and ρ̂ are OLS estimates and the ut the pseudo-disturbances are drawn randomly with
replacement from the estimated residuals ϵ̂t. Then, for each of these N simulated series, a sup
Wald test statistic is calculated, and the α−th percentile of the resulting empirical distribution
is employed as the (1 − α)−percent critical value for the proposed testing procedure.

Notice that bootstrap methods can only be expected to work well when they provide a good
approximation to the underlying data generating process. In light of this, one potential weakness
of the sieve bootstrap approach is that the way that pseudo-disturbances ut are generated (i.e.,
drawing randomly from the estimated residuals) might provide a poor description of DGPs that
exhibit heteroscedasticity. When a model intercept is included the testing procedure represents
a joint test for a simultaneous break in the intercept and the slope coefficients of the model. Fur-
thermore, notice that for the case of high persistence regressors, the size distortions for asymptotic
tests can be extremely large and this can be confirmed from empirical size results.

Therefore, our testing procedure aims to disentangle the problem of distinguishing between a
persistent time series with no structural breaks for one that is less persistent but has a break in the
intercept. Therefore, within our setting we aim to formalize the particular aspect using suitable
formulations of the null hypothesis. In practise, most of the literature on testing for structural
breaks formulates the hypotheses such that in the statistical model the stochastic process under
the null hypothesis of no parameter instability is stationary. In our case, we consider that under
the null hypothesis, the quantile predictive regression model with nonstationary regressors has
in practise stable coefficients, meaning that the coefficients are constant throughout the sample.
Furthermore, the formulation of the null hypothesis, implies that for the development of the
asymptotic theory of the distributional properties of a test statistic we still operate under the
assumption of nonstationary time series, although the model parameters are assumed to be stable
over time. On the other hand, under the alternative hypothesis we operate under the assumption
that there is a structural break in the model parameters at some unknown break-point location in
the sample, operating this way under the assumption of both nonstationarity as well as unstable
model parameters in the form of a sudden structural change.

Thus, it is clear that in our setting we are not testing for stationarity versus nonstationarity. The
nonstationarity in the time series is present both under the null as well as under the alternative in
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the form of the model regressors being generated as near unit root processes. Therefore, generally
speaking one can assume that a non-mean reversion is equivalent to nonstationarity, however in
our framework specifically we restrict the properties of the underline stochastic processes to be
such that both mean-reversion and nonstationarity can coexist, allowing this way to distinguish
between different degrees of persistence that a regressor can exhibit regardless of the presence of
structural break in the model parameters under the alternative hypothesis.

Furthermore, the particular aspect is discussed in the study of Diebold and Chen (1996). In
particular, the asymptotic distribution theory of the supremum Wald test proposed by Andrews
(1993), especially when testing for structural break in nonstationary time series models under
persistence is an unreliable guide to finite-sample behaviour. Therefore, one of the main aims
of this paper is to develop asymptotic theory suitable for structural break tests in nonstationary
quantile predictive regression models. For instance, Diebold and Chen (1996) provide a detailed
finite-sample evaluation of the size of supremum tests for structural change in a dynamic model,
with attention focused on the comparative performance of asymptotic versus bootstrap proce-
dures. Therefore, the particular results are of interest not only from the perspective of testing for
structural change, but also from the broader perspective of compiling evidence on the adequacy
of bootstrap approximations to finite-sample distributions in econometrics.

In practise, within our setting the algorithm we aim to construct is a bootstrap Monte Carlo.
More precisely, a flow chart of the bootstrap Monte Carlo procedure is presented by Diebold
and Chen (1996), which we summarize below for convenience. Let i = 1, ...,M index Monte
Carlo replications, and let j = 1, ..., B index the bootstrap replications inside each Monte Carlo
replication. Nominal size is denote with α. Then the procedure is as following:

Step [1] Draw the vector of innovations
{
ϵ
(i)
1 , ..., ϵ

(i)
T

}
∼ N (0, 1). Then, generate a vector of true

data such that
{
y

(i)
1 , ..., y

(i)
T

}
based on the following DGP:

y
(i)
t = ρy

(i)
t−1 + ϵ

(i)
t , t = 1, ..., T, (3.103)

y0 ∼ N
(

0, 1
(1 − ρ2)

)
. (3.104)

and compute the OLS estimator for ρ and ρ̂(i), and the associated de-meaned residuals{
ϵ̂
(i)
1 , ..., ϵ̂

(i)
T

}
. Finally compute the sup Wald test statistic SW(i)

T .

Step [2A] Draw
{
e

(j)
1 , ..., e

(j)
T

}
by sampling with replacement from the sequence

{
ϵ̂
(i)
1 , ..., ϵ̂

(i)
T

}
. Then,

generate the pseudo-data
{
y

(ij)
1 , ..., y

(ij)
T

}
via

y
(ij)
t = ρ̂(i)y

(ij)
t−1 + ϵ

(j)
t , t = {1, ..., T} . (3.105)

Choose the initial condition, y(ij)
0 , randomly from the stationary distribution as proxied by

the vector of "true" data
{
y

(i)
1 , ..., y

(i)
T

}
. Finally, compute the sup Wald test statistic SW(ij)

T .

Step [2B] Repeat the Step [2A] B times, yielding a (B × 1) vector of SW(ij)
T values. Therefore,

the particular vector constitutes the bootstrap distribution for Monte Carlo replication
i ∈ {1, ...,M}. Then, to obtain the 5% critical value of the bootstrap distribution, for
example, is estimated as the 950−th element in the vector, after sorting from smallest to
largest.



CHAPTER 3. 86

Step [2C] Compare the SW(i)
T value from Step [1] to the α% bootstrap critical value from Step [2B],

and determine whether the critical value is exceeded.

Step [3] Repeat Steps [1]-[2] M times.

Step [4] Compute the percentage of times a rejection occurs in Step [2C]. Therefore, if nominal and
empirical test size are equal, then rejection should occur at α% of the time (up to Monte
Carlo error).

Remark 3.11. Overall, for a Bootstrap Monte Carlo study one has to operate under the as-
sumption that in each Monte Carlo step the simulated paired data {yt,xt−1}nt=1 is the true data
generating process from which we construct the bootstrapped empirical distribution. The par-
ticular, bootstrapped distribution is employed to calculate the critical value for determining the
acceptance or rejection decision of the testing hypothesis for one iteration. Then, this procedure
is repeated based on the fixed Monte Carlo replications. Therefore, the computational time can
significantly increase when we increase the number of bootstrap replications within each Monte
Carlo step. The advantages and the limitations of using the bootstrap when evaluating the
performance of test statistics is discussed in Brownstone and Valletta (2001).

Remark 3.12. Another important point is that when constructing the Bootstrap Monte Carlo
procedure, the data generating process is obtained under the null hypothesis of no structural break
in the nonstationary quantile predictive regression model. Therefore, the two regimes induced
due to the different model parameters should be constructed.

Specifically, when evaluating the performance of the proposed test statistics in detecting param-
eter instability the Residual Wild Bootstrap (RWB) procedure outperforms the Fixed Regressor
Bootstrap (FRB) especially in the case when regressors are strongly persistent. The proposed
Bootstrap Monte Carlo procedure aims to mimic the original model by retaining the nonsta-
tionary property of the modelling environment captured by the original time series in the sample
pseudo-time series. In particular, these pseudo-time series maintain the same characteristics since
are generated based on the same sample size. Therefore, the particular approach allow us to ap-
proximate the distribution of the proposed test statistics under the null hypothesis. Furthermore,
although we do not consider the case of increasing the number of regressors in the model, it is
clear that in that case the quality of the bootstrap approximation in relation the corresponding
asymptotic critical values can deteriorate, as documented by Xu and Guo (2020). Therefore, we
can conclude that indeed the RWB based Wald test, controls empirical size much better than the
other bootstrap based tests with empirical rejection frequencies close to the nominal level.

Additionally, when testing for structural breaks under the assumption of high persistent regres-
sors, either using conventional critical values or critical values obtained from suitable bootstrap
based implementations, these tests can be found to deliver asymptotically nonpivotal inference
regardless of the chosen estimator, unless we employ the IVZ estimator in which case the limit-
ing distribution is found to be nuisance-parameter free both in finite-sample and large samples.
Obviously this conclusion, is not equivalent to the asymptotically pivotal inference that holds
in the case of standard predictability tests, which holds regardless of the degree of persistence
or endogeneity of the regressor as found by Kostakis et al. (2015), Phillips and Lee (2016) and
Georgiev et al. (2021) among others in the time series econometrics literature.
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Thus, we can compare the performance of the proposed test statistics under high persistence when
the OLS versus the IVX estimators are employed using bootstrap-based inference. Secondly, one
can propose asymptotically valid RWB implementations of the proposed test statistics and to
establish the conditions required for their asymptotic validity. In particular, simulation evidence
can be obtained to demonstrate that structural break tests based on RWB resampling schemes
perform well in finite samples, while correcting the finite sample size distortions seen with the
corresponding asymptotic structural break tests. Furthermore, the proposed implementations
which cover both single as well as multiple regressors in the quantile predictive regression model,
hold provided that these satisfy the condition imposed by Kostakis et al. (2015) that the set of
regressors belong to the same persistence class, that is, all of the included regressors in the model
are generated as either strongly or weakly persistent (i.e., LUR or mildly integrated).

3.5.3 Simulation Results

The empirical sizes of the simulation experiments are calculated as the a proportion of the re-
jection number of the null hypothesis out of 1000 repetitions. To begin with, we evaluate the
performance of the tests in the nonstationary setting. To achieve this task, we generate bivariate
normal random variables and use a pre-specified covariance matrix. In particular, we evaluate the
performance of the tests at different quantiles by employing the test statistics that correspond to
the fixed quantile level. More precisely, this allow us to check for structural breaks at the median,
or at the upper and lower quantiles for example, thus observing the presence of parameter insta-
bility at different levels of the predictant with respect to persistent predictors. Our simulation
experiments verify the empirical and theoretical results that we illustrated for the case of the
linear predictive regression model, that is, a trend of over-rejecting the null hypothesis when the
OLS estimator is employed when constructing structural break tests26.

Overall, the finite-sample results reflect the main conjectures presented in the asymptotic theory
of the paper and appear to be reasonable for practical use in testing for structural breaks in
the coefficients of nonstationary quantile predictive regression models, especially with persistent
regressors and endogeneity27. In practise, in those cases in which the exact α−level critical
values for 0 < α < 1 depend on the unknown parameters of persistence, we employ bootstrap
based resampling methods for inference purposes. Therefore, we can observe that these near
unit root processes driving the regressors of the model, can affect the ability of the proposed
structural break tests for detecting parameter instability in quantile predictive regression models.
Specifically, in the simulation study of Wang and Phillips (2012), the authors mention that serial
dependence can affect power. Furthermore, the lower long-run signal strength in the regressor
tends to reduce discriminatory power.

26Notice that the concept of spurious break is discussed by Hansen (2000b) who emphasize that instability in
the exogenous variables can cause over-rejection in the standard OLS-based tests.

27Notice that exogeneity plays an important role in dealing with non-stationary variables. More specifically, in
Chapter of Banerjee et al. (1993) it is mentioned that dynamic regression equations in which the conditioning is on
weakly or strongly exogenous variables (for the parameter of interest) provide asymptotically unbiased estimates.
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3.6 Empirical Application

Our empirical application is concerned with the monitoring of the US housing price index returns
(HPI ). Using macroeconomic variables with predictive regression models has been demonstrated
in various studies. For instance, the empirical study of Paye (2012) verifies the episodic pre-
dictability conclusions documented in the literature such as in Gonzalo and Pitarakis (2012,
2017) (see also Demetrescu et al. (2020)). The author finds statistical evidence of predictability
in relation to countercyclical macroeconomic events when forecasting volatility using predictive
regressions with macroeconomic covariates. Furthermore, Atanasov et al. (2020) investigate the
impact of consumption fluctuations on predictability of expected returns using the IVX filter.
Overall, our empirical study focuses in the implementation of the proposed test statistics28; thus
our research goal here is to test for structural breaks in the relation between the predictant and
the predictors at various quantile levels of the underline data specific distribution.

3.6.1 Data Description

For the empirical study, we utilize the dataset of Yang et al. (2020) that includes the US housing
price index returns along with ten common macroeconomic variables. Specifically, the HPI covers
more transactions and longer time interval, and thus can well represent the trend of the national-
wide housing price such as the housing bubble collapsed during the 2007 subprime mortgage crisis.
Furthermore, based on the HPI the authors obtain the quarterly growth rate of the housing price
and use this rate as the dependent variable. More precisely, the ten macroeconomic variables are
collected from FRED, and all data are quarterly between 1975:Q1 and 2018:Q2.

• CPI: Consumer price index with all items less shelter for all urban consumers (Index 1982 to 1984
= 100).

• DEF: The implicit price deflator of the gross domestic product (Index 2012 = 100).

• GDP: %−Change of the gross domestic product from the preceding period.

• INC: %−Change of the real disposable personal income from the quarter one year ago.

• IND: The industrial production index (Index 2012 = 100). An economic indicator that measures real
output for all U.S. located facilities manufacturing, mining, and electric, and gas utilities (excluding
those in U.S. territories).

• INT: The effective federal funds rate. The interest rate at which depository institutions trade federal
funds (balances held at FRBs) with each other overnight.

• INV: The shares of the residential fixed investment in the gross domestic product. Gross private
domestic investment is a critical component of gross domestic product as it provides an indicator of
the future productive capacity of the economy. Residential investment represents expenditures on
residential structures and residential equipment that is owned by landlords and rented to tenants.

• MOG: 30-year mortgage rate. It represents contract interest rates on commitments for fixed-rate
first mortgages.

• RES: The total reserve balances maintained with the Federal Reserve banks.

• UNE: The civilian unemployment rate. It represents the number of unemployed as a percentage of
the labor force.

28Notice, that a different stream of literature proposes testing procedures for detecting market exuberance and
bubble effects. Our empirical application is concerned with the detection of structural breaks in the data based on
the nonstationary quantile predictive regression.
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3.6.2 Data Analysis

We begin our analysis by applying standard unit root tests to the predictors29 employed for the
quantile predictive regression model. Furthermore, we test each individual predictor separately for
the presence of parameter instability using a toolkit of various structural break tests commonly
employed in the literature. In particular, testing for breaks in housing price indices has been
previously studied by Canarella et al. (2012). However, testing for quantile predictability as
well as testing for breaks in nonstationary quantile regressions is a novel aspect not previously
examined in the literature. Moreover, we are testing for breaks using a linear AR(1) model versus
detection of breaks based on a quantile autoregression model for comparability purposes.

Secondly, we implement the IVX-Wald statistic under the null hypothesis that all slope coefficients
simultaneously equal to zero30. More precisely, the particular hypothesis correspond to the null
hypothesis of no quantile predictability. Thus, formulating the model in this manner allow us
to investigate whether there is a stable relation between regressand and regressors at a specific
quantile level31 τ0 ∈ (0, 1). Separately, we test the null hypothesis of no parameter instability
by implementing the proposed tests for detecting structural breaks in the model coefficients of
nonstationary quantile predictive regression models. As a third robustness check, we implement
the joint IVX-Wald statistic under the null hypothesis that at least two of the slope coefficients
have no structural break throughout the sample.

3.6.3 Main Findings

Our proposed structural break testing methodologies are able to identify structural breaks in the
price index returns for the house market. In particular, there strong evidence of the presence of
parameter instability which imply a potential price mismatch during periods of increased volatility
and market uncertainty such as financial crises. During these period unidentified structural breaks
can result to biased parameter estimates as well as inaccurate forecasts if not rigorously addressing
these issues in model building and related statistical inference applications. In addition, by
identifying the periods for which structural breaks indeed exist, we can utilized different modelling
methodologies that can reduce model uncertainty. Furthermore, as robustness checks we can also
apply our testing procedure to identify possible structural breaks in the quantiles of time series
using different subsamples. In particular, we fit the quantile predictive regression model we
introduce above.

29Notice that we have t = 1, ..., 174 time series observations which correspond to quarterly economic indicators
and macroeconomic variables.

30We consider rejections of the null hypothesis at significance level 5% to match the rejection probabilities
employed in the simulation study of the paper.

31In particular, the empirical study presented by Lee (2016) demonstrates statistical evidence of predictive ability
using the nonstationary qunatile predictive regression model, at some specific quantiles of stock returns such as
at lower or upper quantiles while on the other hand evidence of predictability disappear at the median of the
conditional distribution of stock returns.
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3.7 Conclusion

In Chapter 3, we develop a framework for structural break detection for nonstationary quantile
predictive regression models, under the null hypothesis of no structural break32. A major chal-
lenge when deriving the asymptotic theory of these structural break tests is to obtain nuisance-
parameter free limit distributions which is not a trivial task due to the stochastic approximation
terms that depend on nuisance parameters, such as higher order covariance terms as functions of
the coefficients of persistence that capture the time series properties of regressors. More precisely,
we establish the asymptotic distributions for both Wald type (i.e., as in Andrews (1993)) and
fluctuation type tests (i.e., as in Qu (2008)) with respect to two different estimation methods, that
is, the OLS and IVX estimators33. Our test statistics show to have good finite-sample properties
as shown by the Monte Carlo experiments in which we obtain the empirical size and power.

Firstly, we verify that indeed the self-normalization of Wald type statistics when testing the
null hypothesis of no predictability in quantile predictive regressions results to a nuisance-free
distribution, that is, ensuring their pivotal property (as also proved by Lee (2016) for abstract
degree of persistence). Secondly, we demonstrate that the limit distribution of the proposed
test statistics for structural break detection is not depending on the particular choice of the
estimator of the quantile predictive regression model under mildly integrated; however under
high persistence the choice of the estimator alters the limit theory due since different weakly
convergence arguments apply. Furthermore, keeping the quantile level fixed versus testing for
breaks across multiple quantile levels requires to consider extending the limit result into the two-
parameter Gaussian process, for the latter case. Moreover, bootstrap-based methodologies can
be applied when the limit distribution is nonstandard, allowing to infer regarding the presence
of structural breaks under these conditions (e.g., high persistence). Further research aspects
worth investigating that are worth mentioning include to extend the current framework in the
case of alternative hypotheses with multiple structural breaks as in Qu (2008) as well as within
a multivariate setting such that the framework proposed by the study of Qu and Perron (2007).

32Notice that we avoid to explicitly use the terminology of a null hypothesis of “stationarity” versus an alternative
hypothesis of “non-stationarity” (see Pitarakis (2014) and Kwiatkowski et al. (1992)). Specifically, within our setting
these two terms are interpreted in relation to the persistence properties of model predictors rather that with respect
to the parameter constancy of coefficients in terms of temporal dependence. Related limit theory and conditions
relevant to temporal dependence specifically for quantile and tail empirical processes can be found in Chapter 5 of
De Haan and Ferreira (2006).

33Notice in the study of Phillips and Park (1988) the authors demonstrate the asymptotic equivalence of OLS
and GLS based estimators in regression models with integrated regressors.



Chapter 4

Estimation and Inference in
Seemingly Unrelated Systems of
Nonstationary Quantile Predictive
Regression Models

Abstract

This Chapter proposes a framework for estimation and inference in quantile predictive regression
systems with nonstationary regressors and a generated regressor which is a proxy for systemic
risk. In particular, the proposed modelling methodology employs a seemingly unrelated regression
system, (SUR), with individual equations representing quantile predictive regression models with
nonstationary regressors. The nonstationary properties of regressors is captured by the nuisance
parameters of persistence which requires the local-to-unity asymptotic theory of Phillips (1987a)
when deriving limiting distributions. Furthermore, inference is conducted using Wald-type statis-
tics with linear restrictions as well as suitable subset restrictions for testing the null hypothesis
of no systemic risk in our tail dependency driven system. Thus, to robustify estimation and
inference against the nuisance parameters of persistence across these individual system equations
the endogenous instrumentation methodology proposed by Phillips and Magdalinos (2009) is em-
ployed. We demonstrate that the asymptotic behaviour of these test statistics is asymptotically
distribution-free as a weakly converge result to a χ2

q−squared limiting distribution is established.
The finite-sample properties of the proposed testing methodology is studied with simulation ex-
periments that demonstrate the relevance of the tests when imposing parameter restrictions on
the system and is particularly useful when modelling and testing for systemic risk.
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4.1 Introduction

Modelling tail dependency with multivariate nonstationary time series is an aspect which has not
seen much attention in the literature. Specifically, while several studies propose methodologies
for estimation and inference using quantile regressions with stationary time series when modelling
systemic risk, using nonstationary time series1 for this purpose has received less attention. A key
aspect of consideration of our proposed econometric framework is the use of quantile regression
for modelling tail events. In particular, Adrian and Brunnermeier (2016), Härdle et al. (2016)
and Chen et al. (2019) employ quantile-based regression models when estimating forecasts of tail
risk measures2 such as the Value at Risk (VaR) and Conditional Value at Risk (CoVaR), under
the assumption of stationary time series. Moreover, there is currently a gap in the literature
regarding suitable testing methodologies for the true presence of the coefficients of systemic risk
appeared in these econometric specifications. Our research objective is to propose a framework
for identification, estimation and inference in systems of nonstationary quantile predictive regres-
sions as well as to establish the asymptotic theory of Wald-type statistics when testing the null
hypothesis of no systemic risk across the system of equations of the cross-sectional units3.

Regardless the complexity of the proposed interdependent system4, this complexity does not
preclude identification and consistent estimation of the parameters involved in these models (re-
gardless of the presence of persistent data). Although variation of regression coefficients over
time has been examined extensively in the single-equation context, there is less focus in the lit-
erature in a pooling context. These model specifications have the potential for describing both
the cross-sectional and inter-temporal dynamics using a pooled data structure, although in this
paper we exclude cases of time-varying coefficients when modelling systemic risk (e.g., see Bianchi
et al. (2019)). Therefore, we introduce an identification and estimation approach in Seemingly
Unrelated Systems of Nonstationary Quantile Predictive Regression Models, motivated by the as-
pects of modelling systemic risk in a tail-driven network under the presence of nonstationarity. In
particular, the SUR estimator allows to gain estimation efficiency as well as to impose restrictions
on the quantile predictive regressions in the system. Our identifying conditions relies on error
covariance matrix restrictions by assuming no correlation between equation-specific error covari-
ance matrices. We should emphasize that our techniques can also be used for estimating dynamic
panel data structures based on suitable modifications, although we focus on our proposed system
representation and estimation problem which aligns with our research motivation.

1A necessary condition for deriving the asymptotic behaviour of estimators in nonstationary time series models
is for weakly convergence arguments of sample moments to stochastic integrals to hold.

2The risk measure pair (VaR, CoVaR) are commonly used in the literature for modelling systemic risk as well as
in portfolio optimization problems in which case additional regularity conditions and constraints are required.

3Under the null hypothesis we assume that the presence of tail dependency across the cross-section is kept at
minimal which has desirable properties in terms of portfolio risk as explained in the studies of Katsouris (2021)
and Olmo (2021). In particular these studies derive conditions under which optimal portfolio allocation problems
relate to the portfolio risk under network structure.

4Several studies in the literature highlight that modelling financial contagion and systemic risk by considering the
economy requires the simultaneous estimation of equations in which case the SUR model provides a parsimonious
representation. A simple example is the case of investment equations across financial institutions where the activities
of a firm in a given year is expected to have a lagged effect within and across firms.
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Our contributions to the literature are as below. First, the paper contributes to the modern
literature on identification and estimation in seemingly unrelated systems of quantile predictive
regression models with nonstationary regressors by considering the modelling of systemic risk,
based on the pair of risk measures (VaR,CoVaR), as our focal point. Existing literature on network
driven estimation techniques has focused on the use of models for stationary time series models
(see, Henderson et al. (2015), Cho et al. (2015), Wang et al. (2018), Cai and Liu (2020), Tan
et al. (2021), Xu et al. (2022) and Cai and Liu (2022)), while the literature which considers
nonstationary time series models relies on different to ours representations either with respect to
the cointegration properties of the multivariate time series (see, Poskitt (2006), ? and Magdalinos
(2021)) or with respect to the properties of the system equations (see, Mark et al. (2005), Chen
et al. (2023)), while in our case our focus is the tail network-driven network approach for modelling
systemic risk (see, Katsouris (2023b)). Second, the paper contributes to the literature of statistical
inference on subvector of system parameters with our proposed Wald test that test for the presence
of systemic risk effects in the identified and estimated network structure.

We consider a system of m nonstationary quantile predictive regressions where we assume that all
system equations are estimated parametrically based on the same conditional quantile functional
form. Moreover, similar to the Gaussian SUR model, the system equations are related through
the underline correlation structure of the Gaussian errors such that

e
i.i.d∼ N

(
0,Σ ⊗ In

)
(4.1)

where the ei error vector corresponds to the n time series observations of the i−th equation and
Σ is a positive-definite (m × m) covariance matrix which also requires estimation. Moreover,
we assume that the estimation of the observed time series based on independence conditions of
the system errors, such as serial independence and conditional quantile independence although
these two conditions does not preclude cross-sectional dependence dynamics based on further
assumptions. The error terms are assumed to be independent and identically distributed across
equations, while all equations are based on the same number of time series observations. Our
modelling approach is also related to several recent developments in the literature of robust
estimation methods in predictive regression models as we further explain below (see, Demetrescu
and Rodrigues (2020) and Chen et al. (2023)).

A crucial assumption of our framework is that we assume the dimension of the multivariate time
series vector yt is the same as the number of system equations. Consider two elements of the
m−dimensional vector yt, that is, y(i)t and y(j)t such that (i, j) ∈ {1, ...,m} with i ̸= j. Then,
the conditional expected mean function is defined as below

E
[
y(j)t

∣∣xt−1, y(i)t
]

:= β0 + β′
1xt−1 + δy(i)t, t = 1, ..., n, (4.2)

where y(.)t is a scalar vector and xt−1 is p−dimensional vector of regressors. Then, the coefficients
β0, β1 and δ can be estimated consistently via OLS of y(j)t on xt−1 and y(i)t. Furthermore, the
predicted value of such an OLS regression would be the mean of y(j)t conditional on xt−1 and
y(i)t.
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Similarly, when estimating the risk measures of VaR and CoVaR, we employ a conditional quantile
function which is a common practise in the literature (see, Adrian and Brunnermeier (2016) and
White et al. (2015)). Additionally, in the current paper we assume that the regressors follow a near
unit root process such as xt =

(
Ip − Cp

n

)
xt−1+vt, where Cp is a (p×p) matrix with the nuisance

parameters of persistence. This assumption, allows to capture the nonstationary properties of
regressors, however it requires a different modelling methodologies such as an instrumental based
approach (see, Phillips and Magdalinos (2009)) which is robust to the nuisance parameter of
persistence.

Furthermore, to provide a more realistic framework we consider that the conditional distribution
y(g)t|xt−1 for all g ∈ {1, ...,m} is randomly generated although from the same underline stochastic
process, which in practise allows to consider estimating a different quantile predictive regression
model based on the aforementioned data structure. Thus, for the development of our asymptotic
theory we consider a triangular system for each node by assuming that each innovation sequence
corresponding to these system equations are generated by a set of triangular arrays which are
independently generated. This property ensures that cross-section dependence and time series
dependence are induced simultaneously without further assumptions regarding the correlation
structure of the regressand and the regressors that correspond to each member of the cross-
section5. Based on the aforementioned methodologies, we develop a framework for estimation
and inference in such a complex tail dependency driven system under nonstationarity and a more
general form of dependence.

Furthermore, to facilitate the econometric identification for these independently generated trian-
gular arrays across the m nodes we employ the framework of Seemingly Unrelated Regressions,
(SUR), in which each individual system equation corresponds to the quantile predictive regres-
sions. Similarly, we want to investigate an implementation of the OLS and IVX estimators under
the presence of possibly nonstationary regressors in the two econometric specifications that cor-
respond to the risk measures of VaR and CoVaR. Then, the particular generated regressor is
used as an additional regressor in the CoVaR specification. Specifically, we extend the current
conditional probability definitions for VaR and CoVaR proposed by Adrian and Brunnermeier
(2016) to incorporate the persistence properties of regressors when modelling these conditional
risk measures. For example, Mark et al. (2005) propose a framework for estimation and inference
in a SUR system of cointegrating regressions while separating the effects from each individual
equation. This study considers the estimation and inference of a quantile predictive regression
model with nonstationary regressors which is suitable when estimating the VaR risk measure while
at the same time incorporating information regarding the nonstationary properties of regressors
with the local-unit-root specification. Furthermore, we can estimate the CoVaR based on a similar
modelling framework, by constructing a different quantile predictive regression model with the
same set of regressors and an additional regressor which corresponds to the generated VaR risk
measure.

5In particular, according to Phillips and Moon (1999), the simultaneous modelling of both cross section de-
pendence and time series dependence remains a challenging problem and is a major area for future research in
multi-index asymptotics.
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4.1.1 Illustrative Examples

In order to motivate the modelling methodology we propose in the current study we demon-
strate some examples of relevant econometric specifications which can provide some insights for
the identification and estimation strategy we follow. In particular, we consider that the data
generating process is based on the predictive regression models with nonstationary regressors as
these were proposed in the studies of Phillips and Magdalinos (2009) and Kostakis et al. (2015).
Specifically, the nonstationary specification of the autoregression equation permits to capture the
persistence properties of regressors.

Example 4.1. Consider the lag-augmented version of the linear predictive regression

yt = βxt−1 + δyt−1 + ut t = 1, ..., n, (4.3)

xt = ρxt−1 + vt, ρ =
(

1 − c

n

)
, c > 0. (4.4)

with δ ̸= 0 for estimation and inference. The lag-augmented modification proposed by Deme-
trescu (2014) is considered as a from of variable addition procedure (e.g., see Dolado and Lütke-
pohl (1996)). The model (4.106)-(4.107) implies the weak convergence 1√

n

∑⌊ns⌋
t=1

(
ut, vt

)
⇒

(σuW (s), σvV (s))′ with (W (s), V (s))′ a vector of correlated standard Wiener processes such that
an invariance principle for xt holds, that is, 1√

n
x⌊ns⌋ ⇒ Bc(s), where Bc(s) is the OU process

driven by V such that Bc(s) = V (s) − c
∫ s

0 e
−c(s−r)V (r). In practise, when the shocks ut and

vt are correlated, then the regressor xt is considered to be endogenous and given the presence
of high persistence in the time series of the regressor various methods have been proposed in
the literature to fix the finite-sample bias in the estimation of the standard OLS estimator of
the predictive regression model. We do not impose any further assumptions that exclude such
form of correlation structure between the error terms ut and vt, which allows for the presence of
endogeneity. However, we consider inference methods that are robust to both endogeneity and
persistence.

Remark 4.1. The model (4.106)-(4.107) presented by Example 4.1 has some parallelism with the
proposed modelling framework (for the univariate case). Although, instead of using as a predictor
the first lag of yt, that is, yt−1, for the econometric specification we introduce in Section 2, the
additional predictor which does not belong in the set of nonstationary regressors (modelled via
the LUR specificaton) is used as a proxy for the systemic risk. Specifically, following the literature
econometric specifications for estimating systemic risk measures such as the framework of Adrian
and Brunnermeier (2016), the particular generated regressor captures the VaR of each node. The
challenging task of our framework is that to derive correctly asymptotic theory we need to take
into account the fact that we additionally consider that these risk measures are estimated using
nonstationary time series models, which provides additional information regarding the persistence
properties of the regressors.
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Example 4.2. Consider a pair of nodes (i, j) in the graph and we aim to obtain estimates
for the CoVaR risk measures of node i and node j. Moreover, assume we have the observable
vector sequence {y1t, y2t, xt}nt=1. Then, the following bivariate system occurs, assuming a quantile
objective function for some τ ∈ (0, 1) :

y1t = β1(τ)xt−1 + δ1(τ)y2t + u1t(τ), with xt = ρ1xt−1 + v1t (4.5)
y2t = β2(τ)xt−1 + δ2(τ)y1t + u2t(τ), with xt = ρ2xt−1 + v2t (4.6)

where ρj =
(
1 − cj

n

)
, for j = {1, 2} with c1 ̸= c2 > 0. Then, the null hypothesis is, H0 : δ1(τ) =

δ2(τ) = 0 and the alternative, HA : δ1(τ) ̸= δ2(τ) ̸= 0.

Remark 4.2. Example 4.2 provides a simple illustration of the econometric complexity of mod-
elling an observable vector sequence {yt,xt}

n
t=1, where yt =

[
y1t, . . . , ymt

]
in a similar manner as

the pairwise quantile predictive regression specification given by the two systems in expressions
(4.5)-(4.6), due to the presence of dependent covariate in each of those two separate predictive
regressions. For instance, under the assumption that δ1(τ) = δ2(τ) = 0, then one can model
the particular bivariate system as a multivariate predictive regression system in the spirit of
Kostakis et al. (2015) and Lee (2016). The particular approach would hold for both the cases of
either a single predictor xt (scalar) or multiple predictors xt (vector) while having a multivariate
regressand yt.

Therefore, both Example 4.1 and 4.2 illustrate that for a large number of nodes, the estimation
procedure can be done either in a pairwise manner equation-by-equation for all m(m − 1) pairs
of nodes in the graph or using a parsimonious modelling approach which permit to group some of
those pairs which have common indices. Thus, we propose the implementation of a SUR system
for specific set pair of nodes in the graph. As a by-product, we also propose a novel estimator, so
called, SUR-IVX estimator for a quantile predictive regression system of equations which permits
estimation and inference in econometric models with graph structure, for the purpose of modelling
systemic risk. More precisely, we consider the tail risk measures of VaR and CoVaR, focusing on
the CoVaR as a systemic risk measure while the econometric identification is achieved via the
pairwise quantile predictive regression models proposed by Adrian and Brunnermeier (2016).
Thus, our research contributions are organized around two main pillars. First we contribute to
the financial econometrics literature by proposing a unified approach for estimating systemic risk
incorporating the persistence properties of the lagged regressors (see, the framework proposed by
Lee (2016)). Second, our testing methodology for the presence of systemic risk contributes to the
econometrics literature since we propose a Wald type statistic for SUR models with quantile pre-
dictive regression model specifications robust to the unknown persistence properties of regressors
employed in these models.
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4.1.2 Related Literature

Firstly, the econometric specifications we employ in this paper are motivated by current method-
ologies for modelling systemic risk as proposed by Adrian and Brunnermeier (2016) and extended
by Härdle et al. (2016) to the case of nonlinar time series regressions to capture tail effects in
graphs. Although these approaches consider an underline graph dependence, Shin et al. (2016)
consider a SUR modelling approach for IV estimation of contagion models. An application to
systemic risk modelling, is proposed by Bianchi et al. (2019) who implement a SUR system of
equations using high dimensional graph modelling. Furthermore, in a slightly different context,
Galvao et al. (2018b) propose an IV based estimation procedure for a system of investment
equations. All aforementioned studies consider an identification strategy which is suitable for
modelling financial spillover effects in markets, without imposing further assumptions regarding
the exact form of graph dependence.

Secondly, in terms of the testing methodology for the presence of systemic risk, the idea of
formulating the null hypothesis for testing linear restrictions on parameters across blocks has
some similarities with the literature of slope homogeneity testing in panels (see, Galvao et al.
(2018a) and Galvao et al. (2019)). A different approach for testing that these systemic coefficients
are zero is proposed by Nkurunziza (2008, 2010). Additional features we consider with the testing
procedure of our tail dependency driven system, are presented in the study of Ravikumar et al.
(2000) who consider the use of adding-up restrictions when formulating the standard Wald test
in a SUR system of equations. However, there is currently a gap in the literature regarding
suitable testing methodologies for the true presence of these systemic risk effects in econometric
models. In particular, the framework of White et al. (2015) allows the quantiles of the underline
distributions to depend on lagged quantiles, past innovations and other covariates. In particular,
this approach employs a Vector Autoregression representation for estimating the VaR for a set of
firms as well as for testing the null hypothesis of no tail codependence based on the coefficients of
the lagged quantiles. Our framework proposes the construction of a suitable testing procedure,
which implies that under the null hypothesis the presence of tail dependency due to these systemic
risk effects is zero.

Thirdly, the additional feature which we consider in this paper and has not given much attention
in the literature before when modelling systemic risk measures (e.g., VaR and CoVaR), is the
nonstationary properties of regressors employed within these models. Therefore, a novelty of our
framework is that we incorporate information regarding the possible presence of nonstationarity
with the use of the predictive regression framework (see, Phillips and Magdalinos (2009), Kostakis
et al. (2015) as well as Magdalinos (2021)). Specifically, this approach requires to model the
regressors as local to unit root processes that capture the unknown persistence in the time series
of regressors and is based on the local-to-unity limit theory proposed by the seminal studies of
Phillips (1987a,b) (see, also Phillips and Solo (1992)). The estimation of these risk measures
requires to consider a conditional quantile specification form for modelling the quantiles6 with
nonstationary regressors as in the framework proposed by Lee (2016) and Fan and Lee (2019).

6Notice that related techniques to the estimation and inference in quantile regression models are examined by
Koenker and Bassett (1978) and Koenker and Bassett (1982).
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Our framework requires the estimation of the CoVaR risk measures for all cross-sectional units.
Thus, for estimating the CoVaR risk measure, we follow the econometric specifications proposed
by Adrian and Brunnermeier (2016) (AB, thereafter) which require a conditional quantile pre-
dictive regression based on an information set with both lagged endogenous regressors and the
generated regressor for the VaR. Current methodologies for obtaining forecasts of the CoVaR risk
measures use the conditional quantile regression estimation approach while these operate under
the assumption of stationary regressors. In our study, we relax the particular assumption and
allow for the inclusion of nonstationary regressors, which necessitates to combine both the AB
specifications with the framework proposed by Lee (2016) who consider this feature. However,
the particular econometric specification is only suitable for modelling the risk measure of VaR and
therefore an extension for the modelling of the CoVaR based on the AB modelling approach has
not been previously examined in the literature. Lastly, some further aspects we consider which
require some refinements include the bias correction due to the presence of generated regressor
(see, Chen et al. (2021)), although under nonstationarity a different approach is required which
we discuss. Overall, due to the fact that each of the m nodes has an individual specific equation,
a VAR representation for obtaining the CoVaR measures is not a suitable modelling approach,
which motivates the use of a SUR type of system7 for estimation and inference purposes.

Our procedure implies a novel lag-augmentation procedure due to the presence of systemic risk
proxy (generated regressor) which has desirable properties since the score contributions of the
particular methodology are serially uncorrelated. In other words, both due to the novel de-
pendence structure of the node-specific predictive regression models as well as due to the fact
that the generated regressor that corresponds to each of the predictive regression models is not
correlated with the nonstationary regressors of the predictive regression model we are estimat-
ing, we contribute to the literature of uniform. Notice that the stationarity assumption for the
system is ensured since we assume that all individual specific equations have zero initial condi-
tions. Although the literature of seemingly unrelated regression system estimation requires the
availability of

√
n−consistent first round estimator a natural choice is the quantile regression

estimator. However, within our setting due to the nonstationarity effects we consider two esti-
mators which exhibit different rate of convergence. An obvious problem with such a two-step
procedure is that the first round estimation error, although asymptotically absent, can be such
that correction is not worthwhile in small samples. The particular source of error can be am-
plified when the number of regressors is large since nonparametric covariance matrix estimators
of high-dimensional functions are notoriously inaccurate. In terms of related assumptions that
hold is that we consider that the joint conditional distribution of the regressors across equations
is modelled at the same quantile level as when considering the conditional quantile function for
each of these individual specific equations. The particular condition provides efficiency gains and
is equivalent to an orthogonality condition between regressors and errors across equations in the
conditional mean regression case. However, we do not consider the case of modelling different
regression quantiles across equations.

7Discussion on aspects relevant to estimation and inference for SUR systems is presented in the studies of Zellner
(1962), Hillier and Satchell (1986), Mark et al. (2005).
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Since our identification strategy is based on a system of seemingly unrelated regressions of nonsta-
tionary quantile predictive regression model, then the SUR is expected to provide efficiency gains.
Our modelling approach captures the possible presence of endogeneity between the error terms of
regressors and predictive regressions when estimating risk measures, thereby under the assump-
tion of no cross-sectional dependence through unobserved factor structures the joint estimation of
these node specific equations provides efficiency gains in comparison to an equation-by-equation
case. We also exclude misspecified regimes by assuming that the full information set consists
only of the nonstationary regressors for each quantile predictive regression model as well as the
generated regressor which is a proxy to systemic risk. Therefore, this homogeneity of conditions
across equations ensures the consistent estimation of the system estimator. Investigating the
effect of individual equation specific misspecification requires different assumptions and method-
ologies that we do not examine in this chapter. In addition the systemic risk proxy (generated
variable) which is endogenously estimated for each of the system equations ensures that there is
no cross-correlation of the particular variable across equations which would violate the modelling
assumptions of the system estimator and thus our proposed estimation methodology has a great
asymptotic efficiency in comparison to the OLS estimator for instance. In contrast, the clas-
sical SUR model assumes deterministic regressors and homoscedastic errors, which corresponds
to independence of errors and regressors when regressors are random. Therefore, our modelling
framework operates differently since we consider that each of the system equations corresponds to
the quantile predictive regression model which has specific features such as endogeneity of regres-
sors. On the other hand, this assumption does not violate the independence assumption of errors
across system equations due to the proposed dependence structure we propose. Although the
specification function of the multivariate system allows for quantile dependency we only consider
fixed coefficients excluding time-varying effects from our framework.

Recently, Chen et al. (2023) investigate the use of a SUR system estimator for VAR models
with explosive roots. In particular, due to the inconsistency that appears when testing for a
common explosive roots (see, Phillips and Magdalinos (2013)) the approach proposed by Chen
et al. (2023) which uses a SUR estimator, treating this way the individual specific equations
as seemingly unrelated equations, is found to be consistent regardless of persistence properties
and most importantly in the presence of both distinct explosive roots and common explosive
roots. Furthermore, the authors demonstrate via simulations that the SUR estimate performs
better than OLS and IV estimate in both of these explosive cases8, which illustrate exactly the
importance of our proposed framework as well. Specifically, it is found that there is a significant
difference in the FEVD when using different estimators for explosive VAR models, which strongly
suggests the use of the SUR estimator when the focus is on bubble periods due to its good
statistical properties9.

8Notice that Magdalinos and Phillips (2009b) developed limit theory for multivariate co-explosive processes.
However, the common explosive root case yields a singular matrix for the sample variance matrix, which
requires coordinates rotation in developing asymptotics. Moreover, Phillips and Lee (2016) apply the self-
(endogenously)generated IVX instruments proposed by Kostakis et al. (2015), in the case of a co-explosive system.

9In particular, the SUR representation of a VAR system, is shown by Chen et al. (2023) that specifically for a
moderately explosive system with a common explosive root, the SUR estimator is consistent and has better finite
sample performance that the OLS and IV estimator proposed by Magdalinos and Phillips (2009b).
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4.1.3 Two-Stage Estimation Algorithm

Our proposed two-stage estimation procedure is summarized as below:

Step 1. Let θj be the parameter vector that corresponds to both the nonstationar regressors and the
generated covariate. Estimate θj and compute the fitted values such that x̂tj = gj

(
wtj , θ̂j

)
for j ∈ {1, ..., N} and then obtain the generated regressors, where N denotes the number
of nodes in the network or the number of firms in a cross-section. We denote with g(·) the
optimization function which corresponds to the conditional quantile functional form.

Step 2. Compute the unknown parameter vector β from the following QR model

β̂(τ) = arg min
β∈Rp

n∑
i=1

ρτ

(
yt − x′

t−1β

)
(4.7)

where the check function is defined as ρτ(u) := u
[
τ− 1 {u ≥ 0}

]
and xt are LUR processes.

One uses the estimates of θj , denoted by θ̂j for j ∈ {1, ..., N}, during the first-stage, to
obtain the generated regressor x̂VaR

t .

Step 3. Compute the unknown parameter vector β⋆ from the following QR model

β̂
⋆(τ) = arg min

β⋆∈Rp+1

n∑
i=1

ρτ

(
yt − x̃′

t−1β
⋆
)
, x̃t−1 =

[
xt−1 x̂VaR

t

]
(4.8)

where β⋆ corresponds to the parameter vector of the nonstationary regressor of the second-
stage as well as the unknown parameter that correspond to the fitted-values of the VaR10

that have been estimated during the first-stage estimation procedure.

Recall that we can consistently estimate the conditional quantile based on the quantile-dependent
model parameter β̂⋆(τ) such that Q̂τ(τ|xt−1, x̂

VaR
t ) = x̃′

t−1β̂
⋆(τ).

Organization of the paper Section 2 introduces the econometric framework which consists
of the identification strategy, the model, the main assumptions and the estimation methodology.
Section 3 presents our theoretical results under general dependence conditions and our proposed
statistical inference methodology. Section 4 discusses numerical studies using real and simulated
data. Section 5 concludes. All technical proofs can be found in the Appendix of the paper.

10In the framework of Härdle et al. (2016), this coefficient corresponds to the unknown model parameter β̂j|i in
their expression (6). See also expressions (7) and (8) of Härdle et al. (2016) that correspond to the econometric
specifications used to obtain the estimates of the risk measure pair under the assumption of stationary regressors.
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Notation Throughout the paper, for any vector a, we denote with ∥a∥1 = ∑
j |aj | and with

∥a∥2 =
√∑

j |aj |2. For any real arbitrary matrix A, the norm is denoted by ∥A∥ and corresponds

to the Frobenius norm defined by ∥A∥ =
√

trace(A′A). We use a(j) to denote the j−th component
of a vector a andA[i,j] is defined similarly for any arbitrary matrix A. Let λi(M) denote the i−th
largest eigenvalue of an (n × n) symmetric matrix M with its eigenvalues such that λ1(M) ≥
... ≥ λn(M). The spectral norm of A is denoted by ∥A∥2, such that, ∥A∥2 =

√
λ1(A′A), is

maximum column sum norm is denoted by ∥A∥1, such that, ∥A∥1 = max1≤j≤n
∑m
i=1 |Aij | and

its maximum row sum norm is denoted by ∥A∥∞, such that, ∥A∥∞ = max1≤i≤n
∑m
i=1 |Aij |.

Moreover, the operator P→ denotes convergence in probability, and D→ denotes convergence in
distribution and ⇒ denotes weak convergence in the D[0, 1] topological space. All limits are
for n → ∞ in all theories, and Op(1) is stochastically asymptotically bounded while op(1) is
asymptotically negligible.

4.2 Econometric Framework: Identification and Estimation

4.2.1 Identification Strategy

The modelling of systemic risk in the proposed complex tail dependency driven system is based
on the econometric specifications of Adrian and Brunnermeier (2016), although we extend the
particular framework in different directions as we explain below. To begin with, we assume
that there exists an m−dimensional vector yt for t = 1, ..., n and consider two elements of this
vector (i, j) ∈ {1, ...,m} such that i ̸= j, along with a d−dimensional vector of regressors xt−1

where d < m. Moreover, denote with y(j)t the j−th element of the yt vector, such that y(j)t is a
(n×1) scalar vector. Then, the conditional quantile function F−1

y(j)t

(
τ
∣∣xt−1, y(i)t

)
is the VaR(j)t (τ)

conditional on xt−1 and y(i)t, where F (.) is the conditional distribution function and F−1(·) is
the conditional quantile function of the underline distribution.

Similarly, by conditioning on y(i)t = VaR(i)t (τ), we obtain the CoVaR(j,i)t (τ) as defined below

CoVaR(j,i)t (τ) := inf
VaR(j)t(τ)

{
P
(
y(j)t

∣∣∣∣ {xt−1, y(i)t = VaR(i)t (τ)
})

≥ τ

}
(4.9)

Equivalently, it holds that

CoVaR(j,i)t (τ) ≡ F−1
y(j)t

(
τ
∣∣xt−1, y(i)t = VaR(i)t (τ)

)
(4.10)

where τ ∈ (0, 1) is a fixed quantile level.

The aforementioned definitions are instrumental in discussing the proposed econometric identi-
fication and estimation strategy in the present paper that considers further aspects to current
modelling methodologies.
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4.2.2 Predictive Regression Model

Consider the following seemingly unrelated regressions system with predictive regression models

yg,t = βgx
′
g,t−1 + ug,t, (4.11)

xg,t = Rg,nxg,t−1 + vg,t, (4.12)

where g ∈ {1, ...,m} and t = 1, ..., n such that yg,t ∈ R represents the regressand of the g−th
predictive regression model and xg,t =

(
x

(g)
1t , ..., x

(g)
dt

)′
is the d−dimensional vector of regressors

and we assume that the number of regressors for the g−th equation is the same for all g ∈
{1, ...,m}. In addition, to model the persistence properties of regressors the autocorrelation
coefficient matrix is defined as below

Rg,n :=
(
Id −

C
(g)
d

nγ

)
with γ = 1, (4.13)

where C(g)
d = diag{c(g)

1 , ..., c
(g)
dg

} is a (d × d) diagonal matrix such that cj > 0 ∀ j ∈ {1, ..., dg}
and n is the sample size. Then, the nonstationary properties of regressors are determined by the
unknown coefficients of persistence cj ’s which are positive constants. Thus, with the particular
autocorrelation matrix specification we focus on near unit root processes (see, ? and Buchmann
et al. (2007)). For illustration purposes we show that each of the g−th system equations is
represented by a predictive regression model as seen by the data generating mechanism below

y1,t = β′
1x1,t−1 + u1,t, for t = 1, ..., n (4.14)

x1,t = R1,nx1,t−1 + v1,t, with R1,n =
(
Id −

C
(1)
d

n

)
, (4.15)

where w1,t =
(
u1,t,v

′
1,t
)′ such that w1,t ∼ N

(
0,Σ(1)

ww

)
. Similarly for g = 2 we have

y2,t = β′
2x2,t−1 + u2,t, for t = 1, ..., n (4.16)

x2,t = R2,nx2,t−1 + v2,t, with R2,n =
(
Id −

C
(2)
d

n

)
, (4.17)

where w2,t =
(
u2,t,v

′
2,t
)′ such that w2,t ∼ N

(
0,Σ(2)

ww

)
and so on. Our proposed modelling

approach ensures that the independence assumption between the innovation sequences w1t and
w2t is preserved. This assumption provides a statistical way of estimating the equations across the
m units without imposing a cross-sectional dependence structure on the error terms using factor
loadings while the nonstationarity of regressors across these cross-sectional units is independently
determined.
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We assume that all individual equations have equivalent number of regressors. Then, the first step
in the estimation procedure is to obtain the IVX estimators for each of these individual quantile
predictive regression models as well as the fitted values of ŷog,t for all g′ ∈ {1, ..., G} based on a
fixed quantile τ ∈ (0, 1). These quantities represent the estimated VaR under nonstationarity;
which is itself a novel aspect in the current literature. Similarly, the estimated CoVaR is obtained
based on the two-stage estimation procedure explained in Katsouris (2023a). Our econometric
identification strategy aims to construct a tail dependency driven system while modelling the
nonstationary properties of regressors. Although, is considered as a methodology for tail depen-
dency modelling in multivariate nonstationary time series, our system representation is different
than the conventional multivariate predictive regression models (see, Remark 4.8). Specifically
the estimation procedure considers estimating a quantile predictive regression model for each of
the m cross-sectional units using their set of nonstationary regressors and a generated regressor
which is a proxy of systemic risk based on the nonstationary properties of regressors. Thus, as
shown in Figure 4.1 the complex tail dependency system consists of (m − 1) quantile predictive
regression models.

y1,t = θ′
(1)(τ)X̃1,t + u1,t(τ) ≡ β′

(1)(τ)x1,t−1 + δ(1)(τ)ŷo2,t + u1,t(τ)

y2,t = θ′
(2)(τ)X̃2,t + u2,t(τ) ≡ β′

(2)(τ)x2,t−1 + δ(2)(τ)ŷo3,t + u2,t(τ)

y3,t = θ′
(3)(τ)X̃3,t + u3,t(τ) ≡ β′

(3)(τ)x3,t−1 + δ(3)(τ)ŷo4,t + u3,t(τ)
... =

...
ym−1,t = θ′

(m−1)(τ)X̃(m−1)t + u(m−1)t(τ) ≡ β′
(m−1)(τ)xm−1,t−1 + δ(m−1)(τ)ŷom,t + um−1,t(τ)

Figure 4.1: A representation of the SUR system of equations

Figure 4.1 shows the node specific equations of the complex tail dependency system that repre-
sent quantile predictive regressions with nonstationary regressors. Our estimation methodology
is based on a SUR system, where the parameter vector is given by θ(g)(τ) =

(
β′

(g)(τ), δ(g)(τ)
)′

∈
Rd+1 for a fixed quantile level τ ∈ (0, 1). The set of regressors for each individual system equation
are partitioned to include the d nonstationary regressors and the generated regressor ŷog′t which
is employed as systemic risk proxies such that X̃(g)t =

[
xg,t−1 ŷost

]
where s ∈ {1, ...,m} such

that s ̸= g and t ∈ {1, ..., n}. In terms of the estimation procedure, the set of generated regres-
sors

{
ŷo2,t, ..., ŷ

o
m,t

}
of the system, as illustrated in Figure 4.1, are estimated individually from

the corresponding quantile predictive regression models after appropriate indexing as defined by
expressions (4.11)-(4.12). Our goal is to the robust estimation of a system of quantile predictive
regressions under the specific network type of dependence induced by the VaR − ∆CoVaR risk
matrix proposed by Katsouris (2021). In particular, the unique structure of the Γij risk matrix
illustrates that the SUR modelling approach that we employ in our framework is suitable for
this more general form of dependence. Our novel estimation approach implies that the equa-
tions of the SUR system correspond to node specific quantile predictive regression models with
regressands yg and nonstationary regressors xg,t−1.
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These models are constructed using only the nonstastionry regressors which are node specific to
the system. In other words, the quantities ŷos,t represent the estimated VaR under nonstation-
arity and the particular notation is employed to distinguish them from the quantities ŷg,t that
correspond to the estimated CoVaR measures. The dependence structure of our tail dependency
system implies that the computation procedure requires m of the above systems each of those with
(m−1) individual equations after using appropriate indexing. We initially focus on the estimation
methodology and related testing methodology of the SUR system that corresponds separately to
the columns, rows or diagonals of the Γij matrix (see, Figure 4.2). A further generalization of
our proposed tail dependency driven system can be also considered.

An important application of our estimation methodology is that it facilitates the construction
of the VaR − ∆CoVaR matrix in quadratic forms which can be used in portfolio optimization
problems with tail events. The exact functional form and the properties of the particular matrix
that ensure its suitability for optimal choice problems is beyond the scope of the current study,
we briefly discuss the use of our complex tail dependency system when estimating the particular
risk matrix proposed by Katsouris (2021). Further regularity conditions regarding the elements
of the tail-driven risk matrix with respect to time series properties can be found in Katsouris
(2023b).

Consider that the risk matrix has dimensions (m×m), where m is the sample size of the cross-
section of our system, then using the individual equations as displayed by Figure 4.1 we obtain
the fitted values,

{
ŷ1,t, ..., ŷ(m−1),t

}
which correspond to the estimated CoVaR measures under the

assumption of individual-specific nonstationarity. We demonstrate below that the these sequence
of values are employed to estimate the elements of the first diagonal in the upper diagonal region
of the matrix Γij . Similarly, we can estimate all off-diagonal elements under appropriate indexing.
An algorithm that estimates the VaR−∆CoVaR risk matrix can be found in the study of Katsouris
(2021).

Γij :=



VaR(1) •

VaR(2) •

. . . •

VaR(m)


m×m

Figure 4.2: A representation of the VaR − ∆CoVaR matrix

Remark 4.3. The proposed risk matrix is constructed by combining cross-sectional and time
series information. A related study to the aspect of modelling cross section and time series data
combinations is presented in the seminal study of Hussian and Wallace (1969) who provide a
unifying theory for the use of error component models in combining cross section with time series
data.



CHAPTER 4. 105

4.2.3 Main Assumptions

Our framework considers m deterministic equations which resemble a form induced network-
dependence across these m nodes of the system which correspond to the nonstationary quantile
predictive regressions. Thus, the corresponding m pairs of innovation sequences are independent
and for each node s ∈ {1, ...,m} their error vectors {ut,vt}nt=1 satisfy an invariance principle
(FCLT) that follows a correlated OU process (see, Phillips and Magdalinos (2009), Nkurunziza
(2010) and Chen et al. (2023) among others). Suppose that we have a sequence of n observed
time series such that

{(
X

(g)
1 , Y

(g)
1
)
,
(
X

(g)
2 , Y

(g)
2
)
, ...,

(
X(g)

n , Y (g)
n

)}
, for g ∈ {1, ...,m} (4.20)

are observed at discrete times 0 < t1 < t2 < ... < tn, where X(g)
t and Y (g)

t , represent respectively
the sizes of the population of the two pairs observed at time ti, i = 1, ..., n. From a methodological
point of view, we construct a complex tail dependency driven system for modelling the pairs(
X

(g)
ti , Y

(g)
ti

)
, for i = 1, ..., n and g = 1, ...,m. Let s be a given node where s ∈ {1, ...,m}. Moreover,

we assume that the dependent variable yg of a node g, where g ∈ {1, ...,m} is generated from
a nonstationary predictive regression model with nonstationary regressors generated using the
LUR parametrization. We impose the following assumptions on the variables and error sequences
of the seemingly unrelated system of equations that facilitate the development of the asymptotic
theory.

Assumption 4.1. (innovation structure) Define the filtration Ft = σ {wt,wt−1, ....}, where
wt = (u,vt)′. Let {wt,Ft} be an independent martingale difference sequence with

(i) The variance-covariance matrix of the error vector w(g)t for the g−th predictive regression
model has the following form

Σ(g)
ww := EFt−1

[
w(g)tw

′
(g)t

]
≡


Σ(g)
uu Σ(g)

uv

Σ(g)
vu Σ(g)

vv

 and E
[ ∥∥∥w(g)t

∥∥∥ ] > L a.s ∀ t ≤ n, (4.21)

where w(g)t =
(
ug,t,v

′
g,t

)′
such that Σ(g)

ww > 0 is positive definite matrix ∀ t ≤ n.

(ii) Denote with wt =
(
w(1)t, ...,w(m)t

)′
, then Ω represents the block covariance matrix of the

system which has the following form11

Ω := EFt−1

[
wtw

′
t

]
≡


Σ(1)
ww

Σ(2)
ww

. . .
Σ(m)
ww

 , Ω i.i.d∼ Wishartm(0,V ). (4.22)

11We assume a set of time invariant covariance matrices, but this condition can be further relaxed to capture
conditional heteroscedasticity dynamics within each quantile predictive regression model.
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Remark 4.4. Assumption 4.1 implies that
{

Σ(g)
ww

}
where g ∈ {1, ...,m} represents an i.i.d

sequence of covariance matrices generated randomly from a Wishart distribution. In particular,
these generated covariance matrices obtained from the Wishart process are positive definite which
implies that are well-defined as the covariance matrices for the Gaussian processes that generates
the innovation sequences of the system equations, thereby preserving the corresponding linear
processes representations and related properties of Phillips and Solo (1992).In other words, the
data generating mechanism implies that each covariance matrix Σ(g)

ww can be employed to generate
the error vector of the predictive regression models for all g ∈ {1, ...,m}. In addition, cross-
sectional restrictions are imposed by assuming that Ω is block-diagonal.

Moreover, following conventional assumptions commonly imposed in econometric environments
of nonstationary time series models, we consider that the innovation vector for each individual
equation of the system forms a martingale difference sequence, which is a condition commonly
employed for estimation and inference in predictive regression models (see, Phillips and Magdali-
nos (2009), Kostakis et al. (2015), Kasparis et al. (2015), Phillips and Lee (2013), Phillips and
Lee (2016), Lee (2016) Fan and Lee (2019) and Gonzalo and Pitarakis (2012, 2017)). Although,
the proposed data generating mechanism of our framework implies randomly obtaining these co-
variance matrices when obtaining the innovation sequences from independent Gaussian processes
that allow to obtain the pairs {Yg,Xg} for all g ∈ {1, ...,m} the martingale difference sequence
condition is not violated. Under suitable parametrizations conditional heteroscedasticity can be
also incorporated, which is useful when modelling latent volatility dynamics (see, Magdalinos
(2021)). We leave the implementation of the particular aspect, which requires extra refinements
for future work.

Denote with Ft is a sequence of increasing σ−fields which for each g ∈ {1, ...,m} is indepen-
dent of the innovation sequence of each system specific predictive regression model. Thus, the
existence of a correlated vector Brownian motion (W,V ), for each partial sum processes of the
innovation vectors of these individual equations is applicable and facilitates the development of
the asymptotic theory. Denote with

(
u(g)m,v

′
(g)m

)′
m≥1 to be a sequence of random vectors such

that Fm = σ
(
u(g)m,v

′
(g)m

)
.

Assumption 4.2 (triangular representation). Suppose that Assumptions 4.1 hold. Then, each
individual system equation has the following triangular representation

Mn :=
{
y(g)m,n = β′

g,nx(g)m−1,n + u(g)m,n

x(g)m,n = Rg,nx(g)m−1,n + v(g)m,n

}
(4.23)

where the autocorrelation coefficient Rg,n =
(
Id −

C
(g)
d

n

)
where m ≥ 1 and g ∈ {1, ...,m}.

Remark 4.5. Assumption 4.3 provides a suitable triangular representation for the predictive
regression model across the g system specific equations, for g ∈ {1, ...,m}. Asymptotic theory
relies in the long-run relation between the triangular arrays y(g)m,n and x(g)m,n that are not coin-
tegrated. In particular, limit theory corresponds to the case of n → ∞ and m → ∞ sequentially,
which we denote with (n,m)seq → ∞. Detailed discussion for asymptotics when the limit be-
haviour of both dimensions are taken simultaneously can be found in the studies of Phillips and
Moon (1999).
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Assumption 4.3 (conditional homoscedasticity). For each n ≥ 1
{
u(g)t,Ft,n

}
forms a martingale

difference satisfying the following almost surely convergence

lim
t→∞

sup
n≥t

∣∣∣∣E(u2
(g)t|Ft,n

)
− σ2

uu

∣∣∣∣ = 0, almost surely (4.24)

where Ft,n = σ
(
u1, ...,un;x1, ...,xn

)
for t = 1, ..., n with n > 30 for all g ∈ {1, ...,m}.

Assumption 4.4 (FCLT ). Suppose that Assumptions 4.1-4.5 hold. Denote with w(g)t =(
u(g)t,v

′
(g)t

)′
, then under regularity conditions, an invariance principle holds (see, Phillips and

Solo (1992))

1√
n

⌊nr⌋∑
t=1

w(g)t := 1√
n

⌊nr⌋∑
j=1

[
u(g)t

v(g)t

]
≡
[
B

(g)
un (r)

B(g)
vn (r)

]
⇒
[
B

(g)
u (s)

B(g)
v (s)

]
:= BM(g)

[
σ2
uu σ′

uv

σvu Σvv

]
(d+1)×(d+1)

(4.25)

where Σ(g)
vv ∈ Rd×d is a positive definite covariance matrix and 0 < r < 1 for all g ∈ {1, ...,m}.

To simplify the notation we exclude the index g for the various covariance terms of the above
Brownian motions, then due to independently generated measures the following results hold for
all g ∈ {1, ...,m}. In particular, the individual components of the vector sequence wt = (ut,v′

t)
′

have partial sums processes that weakly converge into their Brownian motion counterparts

Bun(r) := 1√
n

⌊nr⌋∑
t=1

ut ⇒ Bu(r) := N
(
0, rσ2

uu

)
(4.26)

Bvn(r) := 1√
n

⌊nr⌋∑
t=1

vt ⇒ Bv(r) := N
(
0, rΣvv

)
(4.27)

Denote with B(r) =
(
Bu(r),Bv(r)′)′ a (d × 1) Brownian motion with long-run covariance ma-

trix Σee, that is, a Gaussian vector process with almost surely continuous sample paths. More
precisely, since xt is an adapted process to the filtration Ft then this implies that there exists a
correlated vector Brownian motion Bn(r) =

(
Bun(r),Bvn(r)′)′ such that

 1√
n
σ−1
uu

⌊nr⌋∑
t=1

ut,
1√
n

Σ−1/2
vv

⌊nr⌋∑
t=1

vt

′

⇒ B(r) =
(
Bu(r),Bv(r)′)′, 0 < r < 1 (4.28)

on DR2 ([0, 1])2 as n → ∞, with covariance matrix as in (4.25) implying joint convergence. Then
the following local to unity principle applies (see, Phillips (1987a))

x[nr]√
n

⇒ JC(r), where J c(r) =
∫ r

0
e(r−s)CdBv(s). (4.29)

where Bv is a Brownian motion with a positive-definite covariance matrix Ωxx. The functional
JC(r) represents the Ornstein-Uhlenbeck stochastic process, that is, the solution of Black-Scholes
differential equation given by dJC(r) = CJC(r) + dBv(r), with an initial condition JC(r) = 0.
We also assume that the initial values of the nonstationary series {xg,t} has initial values such
that xg,0 = 0 for all g ∈ {1, ...,m}.



CHAPTER 4. 108

Assumption 4.3 provides the triangular representation for the system equations which is particu-
larly useful for constructing equivalent Linderburg type of conditions that apply to the correspond-
ing triangular arrays, such that lim

n→∞

∑n
j=1 E|u(g)j |2+s = 0 for some s > 0 for all g ∈ {1, ...,m}.

This condition ensures that the error term that corresponds to the predictive regressions models
that generate the particular general form of dependence for our complex system, excludes the
presence of fat tails in their distribution functions. The array

{
x(g)m,n

}
m≥1

with n ≥ 30 is corre-
sponds to a near unit root process, which permits the use of the classical invariance principle. In
terms of the estimation methodology, we employ the framework of quantile predictive regression
models to obtain estimates for the risk measures of VaR and CoVaR.

Therefore, the LUR specification (with γ = 1) induces the presence of near unit root processes
with localizing coefficients of persistence such that cj ̸= 0 where j ∈ {1, ..., d} and d being the
number of nonstationary regressors. The particular specification is a standard assumption in the
near-integrated time series literature (see, Phillips (1987b), Chan and Wei (1987), Hansen (1992)
and Buchmann et al. (2007) among others). As a result, the array

{
y(g)m,n

}
m≥1

represents a
predictive regression process with predictors generated as near unit root processes. Our research
objective is to develop an estimation and inference framework for our complex tail dependency
system under the assumption of stochastic processes with exactly these features; that is, high
persistence regressors12, which is a stylized feature of financial variables found in empirical studies.

Notice that the proposed data generating mechanism provided by Assumption 4.2 ensures that the
dependence structure of the vector innovation across the individual equations of the system have
desirable properties such as asymptotic independence. More precisely, these invariance principles
hold for each of those predictive regressions which allows to employ conventional local-to-unity
limit theory results. Moreover, Assumption 4.3 establishes a m.d.s condition for the error term of
the predictive regressions across all individual system equations holds; which ensures conditional
homoscedasticity as well. Furthermore, Assumption 4.5 provides invariance principles laws for
the innovation vector of each of the system specific equations which is essential for deriving the
asymptotic behaviour of estimators and test statistics in our framework.

Remark 4.6. The proposed mechanism under the Assumption on the innovation structure of the
system provides a more general form of dependence without imposing a factor structure. Current
methodologies in the literature focus on estimation and inference when pooling cross-sectional and
time-series data (see, Balestra and Nerlove (1966), Maddala (1971), Mundlak (1978)). We bridge
the gap between triangular-recursive and interdependent (i.e., non-triangular) systems (Basmann
(1963)). The classical causality hypothesis for a system of structural equations proposed by
Wold-Strotz (Strotz and Wold (1960)) required the concept of triangular-recursivness (e.g., the
matrix A to be triangular) as well as that each i−th equation to be interpreted as the OLS
of yti on the remaining variables in the equation. Under triangular representation assumption
imposed to each nonstationary quantile predictive regression model facilitates the development
of the asymptotic theory for both the pooled estimator as well as the equation-specific estimator
using conventional local-to-unity asymptotics. Therefore, the proposed modelling methodology
preserves the conventional structural causality interpretation without destroying the notion of
isolation as per Basmann (1963).

12Buchmann et al. (2007) proposes a framework for nearly unstable processes under strong dependence, which
is related to high persistence predictors especially when a strong correlation between the error terms of these two
processes exists.
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Then, the conditional quantile function of yt denoted with Qyt (τ|Ft−1), replaces the conditional
mean function of the predictive regression which implies the following model specification

Qyt (τ|Ft−1) := F−1
yt|xt−1

(τ) ≡ α(τ) + β(τ)′xt−1. (4.30)

such that Fyt|xt−1(τ) := P
(
yt ≤ Qyt (τ|Ft−1)

∣∣Ft−1
)

≡ τ, where τ ∈ (0, 1) is some quantile level
in the compact set (0, 1). Therefore, in order to define the innovation structure that corresponds
to the quantile predictive regression, we employ the piecewise derivative of the loss function such
that ψτ(u) =

[
τ− 1 {u < 0}

]
. Consequently, this implies that ut(τ) := ut−F−1

u (τ) where F−1
u (τ)

denotes the unconditional τ−quantile of the error term ut. Then, the corresponding invariance
principle for the nonstationary quantile predictive regression model is formulated as below

1√
n

⌊nr⌋∑
t=1

[
ψτ

(
ut(τ)

)
vt

]
⇒
(
Bψτ(r)(1×n)

Bv(r)(p×n)

)
≡ BM

[
τ(1 − τ) σ′

ψτv

σvψτ Ωvv

]
(4.31)

Assumption 4.5. Under Assumption 4.2 and 4.3, then the following conditions hold:

(i) The sequence of stationary conditional probability distribution functions (pdf) denoted with{
fut(τ),t−1(.)

}
evaluated at zero with a non-degenerate mean function such that fut(τ)(0) :=

E
[
fut(τ),t−1(0)

]
> 0 satisfies a FCLT given as below

1√
n

⌊nr⌋∑
t=1

(
fut(τ),t−1(0) − E

[
fut(τ),t−1(0)

] )
⇒ Bfut(τ)(r). (4.32)

(ii) For each t and τ ∈ (0, 1), fut(τ),t−1(.) is uniformly bounded away from zero with a corre-
sponding conditional distribution function Ft(.) which is absolutely continuous with respect
to Lebesgue measure on R (see, Goh and Knight (2009) and Lee (2016)).

sup
0≤r≤1

∣∣∣∣∣∣ 1
n1−δ

⌊nr⌋∑
t=1

[futτ,t−1(0) − fuτ(0)]

∣∣∣∣∣∣ = op(1).

4.2.4 Equation Specific Estimation Methodology

As we mentioned earlier two important features which we need to take into consideration within
our estimation environment is the quantile estimation procedure as well as the nonstationary
properties of regressors when fitting the model (see related discussion in Dahlhaus (1997)). We
begin by considering the estimation methodology for each individual system equation separately
(i.e., equation-by-equation estimation) which has the same philosophy as the framework proposed
by Lee (2016). Denote with Qyj (τ|xj) = F−1

yj
(τ|xj), τ ∈ (0, 1) the conditional quantile function.

Then, the estimation methodology requires to fit a quantile predictive regression model using the
conditional quantile specification function.
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Therefore, the corresponding quantile regression optimization function for obtaining model esti-
mates is expressed with the following form:

Qτ (yj |xj) = arg min
q(x)

E
[
ρτ

(
yj − q(xj)

)]
(4.33)

where τ is a fixed quantile level in the compact set (0, 1) and ρτ(u) = u (τ − 1{u ≤ 0}) is the
check function which is convex but nondifferentiable. Then, the model estimator that correspond
to one of these system equations is defined as below

y(g)t = θ′
(g)(τ)X̃(g)t + u(g)t ≡ β′

(g)(τ)xg,t−1 + δ(g)(τ)ŷ
o
(g′)t + u(g)t, for some g ̸= g′, (4.34)

xg,t =
(
Id −

C
(g)
d

n

)
xg,t−1 + vg,t, where C

(g)
d > 0 for all g ∈ {1, ...,m} . (4.35)

The econometric specification given by expressions (4.34) and (4.35) encompasses the main idea
of our proposed modelling methodology. In particular, the generated regressor ŷo(g′)t represents
the risk measure of VaR for a fixed quantile τ ∈ (0, 1) which in our setting is obtained under the
assumption of nonstationarity. On the other hand, y(g)t represents the risk measure of CoVaR
which is obtained based on the generated regressor as well as the nonstationary regressors of the
particular node. Therefore, our interest lies in the estimation and inference for the parameter
θ(g)(τ). Thus, the quantile dependent estimator θ(g)(τ) ∈ Rd+1 for some fixed quantile τ ∈ (0, 1)
is estimated using the following optimization function

θ̂(g) (τ) = arg min
θ(g)∈Rd+1

n∑
t=1

ρτ
(
y(g)t − θ′

(g)(τ)X̃(g)t
)

(4.36)

where θ̂(g) (τ) is the quantile dependent estimator of θ(g) (τ) based on the d−lagged regressors,
x(g)t−1, plus the systemic risk proxy, ŷo(s)t which is a scalar vector, where s ∈ {1, ...,m} such that
s ̸= g and is selected from the available vector of regressands yt =

[
y1t, ..., ymt

]
to represent the

tail dependence of the (g, s) pair of nodes (explanatory covariate for the g−th equation).

We model the regressors x(g)t−1 using an autoregressive model with local unit root coefficient,
which captures the unknown peristence properties in the time series of these regressors. Further
details of the corresponding modelling framework and asymptotic theory under the assumption of
nonstationary regressors (i.e., regressors generated by the LUR specification) can be found in Lee
(2016) and Fan and Lee (2019). Firstly, the implications of our proposed econometric environment
can be better understood in the context of cross-sectional time series regression models, even
though we assume that the cross-sectional dimension in our setting represents a graph structure.
Therefore, some implications in the econometric literature include the consistency of estimators
as well as the development of asymptotic theory13.

13In particular, Balestra and Nerlove (1966) mention that: "the reason that ordinary least squares estimates are
inconsistent when lagged variables are included is that these variables are correlated with the current values of the
residuals since they are determined to the same degree as the current value of the dependent variables". Furthermore,
the authors mention: "One solution to this difficulty is to use as instrumental variables a sufficient number of other
exogenous or in the absence of serially correlated residuals, lagged endogenous variables appearing elsewhere in the
system in the formation of the normal equations so that the current endogenous variables in the equation need not
be used for this purpose." These two sentences borrowed from Balestra and Nerlove (1966) describe the main idea
behind the IVX instrumentation method proposed by Phillips and Magdalinos (2009)
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Secondly, we consider the parametric estimation of our econometric specifications (e.g., quantile
predictive regression models). In other words, the corresponding throughout the paper we operate
under the assumption that the error processes follow a Gaussian distribution. Therefore, the
appearance of different convergence rates due to the two estimators we employ and compare
(OLS and IVX estimator) can only be contributed to the properties of these estimators rather
than the tail behaviour of the underlying distribution. Moreover, when the design matrix includes
nonstationary regressors, then we need to consider the near unit root properties of the underline
processes, to avoid the presence of singularities (e.g., see Phillips and Magdalinos (2013), and
Chen et al. (2023)). In addition, relevant frameworks from the quantile panel data regression
literature are proposed in the studies of Chen (2022), Feng (2023) and Belloni et al. (2023).
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4.2.5 IVX Instrumentation Methodology

The IVX instrumentation proposed by Phillips and Magdalinos (2009) Phillips and Magdalinos
(2009) implies the use of a mildly integrated instrumental variable and is expressed via the
following form

z̃tn =
t−1∑
j=0

(
Id − Cz

nγz

) (
xt−j − xt−j−1

)
, (4.37)

where Cz = diag{cz1, ..., czd} is a (d× d) diagonal matrix such that czj > 0 ∀ j ∈ {1, ..., d} with
0 < γz < 1, where γz is the exponent rate of the persistence coefficient which corresponds to
the instrumental variable. The IVX filtration transforms the autoregressive process generating
the set of regressors, xt, which encompasses either stable or unstable processes depending on the
behaviour of the local unit root coefficient, into a mildly integrated process which is less persistent
than the endogenous variables of the system, denoted with xt. A relevant aspect for inference
purposes is the choice of the exponent rate of persistence for the instrumental variables, where a
choice of γz close to 0.95 is found to be a reasonable value with desirable finite-sample properties
(see, Phillips and Lee (2016) and Lee (2016)) which we also employ in our simulation study.
Furthermore, our framework is concerned with estimation and inference for quantile predictive
regression systems. Thus, is crucial to establish the properties of the corresponding system IVX-
based estimator.

We aim to demonstrate through our asymptotic theory analysis that the SUR-IVX estimator has
the property of being robust against the unknown persistence properties of regressors as these
are captured by the coefficients of persistence cj . Therefore, the estimation procedure of the
SUR system is implemented into two steps. Practically, our modelling methodology proposes a
doubly IVX corrected estimator for Quantile predictive regression models with nonstationary and
generated regressors. The proposed doubly IVX estimator can be shown to automatically provide
robustness to abstract degree of persistence regardless of the presence of generated regressor in
the the second stage of the estimation methodology. In other words, first for each equation of
the system, that is, the quantile predictive regression model, we obtain the IVX estimator using
the IVX instrumentation methodology. Specifically, we obtain the IVX residuals to estimate the
overall covariance matrix using the IVX residuals such that

ûj = yj −X ′
jβ

IV X
j , with σ2

jj = 1
m

m∑
j=1
ûjû

′
j (4.38)

which implies that the block diagonal matrix of the system has the following form

Ω̂ := 1
n

n∑
t=1

[
ŵtŵ

′
t

]
=


Σ̂(1)
ww

Σ̂(2)
ww

. . .
Σ̂(m)
ww

 (4.39)
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The existence of a feasible and consistent estimator of the overall covariance matrix Ω̂ of the
SUR system is important for robust inference. In practise each covariance matrix estimator that
corresponds to each of system’s equations is constructed based on the residuals of the quantile
predictive regression model. Notice also that in practise the particular distributional conditions
given by Assumption 4.5 ensure that the m pairs of error processes are independent with the
same distribution, while each pair follows correlated Ornstein-Uhlenbeck processes (see, also the
framework of Nkurunziza (2010)).

4.3 Econometric Framework of Seemingly Unrelated Systems

Consider the linear predictive regression model formulated as below

yt = µ+ β′xt−1 + ut, 1 ≤ t ≤ n (4.40)
xt = Rnxt−1 + vt (4.41)

where xt ∈ Rp is a p−dimensional vector and Rn =
(
Ip − Cp

nγ

)
with γ = 1.

Assumption 4.6. Let ϵt = (ut, e′
t)

′ be an Rp+1−valued martingale difference sequence with
respect to the filtration Ft = σ

(
ϵt, ϵt−1, ...

)
satisfying E [ϵtϵ′

t | Ft−1] = Σϵ > 0. Let vt be an
Rp−valued stationary linear process such that vt = ∑∞

j=0Cjet−j , where Cj is a sequence of
constant matrices such that I0 = Ip,

∑∞
j=0Cj has full rank, and ∑∞

j=0 ∥Cj∥ < ∞.

Borrowing from the literature in the case when σuv ̸= 0 (which is the case we consider in this
paper), the exact OLS bias of β̂ is computed from the predictive regression model is given by
E
[
β̂ − β

]
= δE [ρ̂− ρ] where ρ̂ is the OLS estimate of ρ and δ := σuv/σ

2
v is the slope coeffi-

cient of in a regression of ut on vt. Furthermore, since ρ̂ is known to be downward biased in
small-samples, and (ut, vt)′ are typically strongly negatively contemporaneously correlated, the
autoregressive OLS bias feeds into the small-sample distribution of β̂ causing over-rejections of
the null hypothesis of no predictability, H0 : β = 0. Moreover, notice even with the use of
a possible finite-sample-bias correction on the OLS estimate, this reduces the noncentrality of
the limiting distribution of the OLS t-statistic, but the distribution remains nonstandard in the
near-integrated case. Therefore, a solution to the particular problem which provides robust sta-
tistical inference is the use of the IVX instrumentation, which ensures instrument relevance while
controlling for persistence. In particular, the IVX instrument is constructed such that

zt :=
t−1∑
j=0

ρjz∆xt−j , ρz =
(

1 − cz
nγz

)
, cz > 0 and γz ∈ (0, 1). (4.42)

In other words, since we operate within the framework of moderate deviations from unity, the
constructed IVX instrument for xt, is chosen so that zt is by construction only mildly integrated
when the predictor xt is nearly integrated.
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Therefore, the IVX estimator of β is found to have a slower convergence rate than the conventional
OLS estimator under near integration, such that n

1+γz
2 . In addition, the IVX estimator is mixed

Gaussian in the limit irrespectively of the degree of endogeneity implied by δ, leading to standard
inference in t and Wald tests. On the other hand, it can be proved that under low persistence, the
IVX estimator is asymptotically equivalent to the OLS procedure. To obtain the IVX estimator
we write the corresponding model with the demeaned variates such as

yµt = β′xµt−1 + vµt (4.43)

where the sample moments are estimated as ȳt = yt − 1
n−1

∑n
t=1 yt. Then, the IVX estimator is

constructed

β̂
ivx =

(
n∑
t=1
x̄t−1z

′
t−1

)−1( n∑
t=1

ytz
′
t−1

)
. (4.44)

Furthermore, denote with β̂ols the OLS estimator and define the residuals ût = ȳt− β̂
ols
x̄t−1 and

the residual variance estimator σ̂2
u = 1

n−1
∑n
t=1 û

2
t . Then, the IVX-Wald statistic under the null

hypothesis is

W = β̂
ivx′
V̂

−1
β̂
ivx (4.45)

where a feasible estimator for the covariance matrix is given by

V̂ =
(

n∑
t=1
x̄t−1z

′
t−1

)−1(
σ̂2
u

n∑
t=1
zt−1z

′
t−1

)(
n∑
t=1
x̄t−1z

′
t−1

)−1

(4.46)

Remark 4.7. The assumption of martingale difference sequence for the innovation term ut

allows to impose further assumptions regarding the modelling of conditional heteroscedasticity
via volatility processes such as ARCH/GARCH. However, this aspect is beyond the scope of our
study. Although, the assumption of KMS is that the innovations (ut, vt) are a correlated linear
process, if we assume that ut is a martingale difference sequence which is a special case of the
more general case, then the asymptotic theory for the IVX estimator simplifies. The condition
imposed by Assumption 4.2 does not violate conditional homoscedasticity assumption, especially
since no Garch specifications are employed as in Kostakis et al. (2015). This condition can be
further relaxed and a HC IVX-Wald test can be modified in our framework in a similar manner
as in the study of Magdalinos (2021)). Therefore, our goal is to investigate the asymptotic theory
and finite-sample performance of our proposed test statistic. In particular, we are interested in
investigating the presence of systemic risk effects based on our complex tail dependency system.
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Next, we establish the consistency and asymptotic mixed Gaussianity of the doubly IVX corrected
estimator βivx(τ). Recall that the QR model estimator is obtained as below

β̂(τ) = arg min
β

n∑
i=1

ρτ

(
yt − x′

t−1β

)
(4.47)

where the check function is defined as ρτ
{
τ − 1 (u ≥ 0)

}
u is the check function. Therefore, one

uses the estimates of θj , denoted by θ̂j , in the first step, to obtain the generated regressor x̂t. Our
aim is to demonstrate that our proposed methodology achieve rate and model double robustness
simultaneously, provided that the parameter θ satisfies certain regularity conditions. Furthermore,
in the current study the doubly robust estimation approach corresponds to conditional quantile
specification forms specifically for nonstationary data.

4.3.1 Two-Stage Estimation Procedure

Assume the existence of any two pair of dependent random variables {y1t, y2t} and a set of
predictors xt for t = 1, ..., n. Notice the steps below should not be confused with the first or
second stage estimators in instrumental variable regressions. These procedures refer to the two
different models under examination. Then, each of these two procedures indeed have a first and
second stage estimation step due to the fact that the nonstationary regressors of the model have
the local-to-unity specification. The two-stage estimation procedure for the risk measure pair
using the nonstationary quantile predictive regression models is described in more details in the
study of Katsouris (2023a).

First-Stage Procedure

During the first stage of our procedure we obtain a consistent estimator of the parameter vector.
We focus on the IVX estimator which is found to be robust to the abstract degree of persistence.
The econometric model is the linear predictive regression as below

y1,t = β01(τ) + β′
11(τ)x1,t−1 + u1t(τ), for t = 1, ..., n (4.48)

x1,t = R1,nx1,t−1 + v1,t (4.49)

Denote with β(τ) =
(
β01(τ),β′

11(τ)
)′ and the corresponding IVX estimator with βivx(τ). The

asymptotic behaviour of the IVX estimator that corresponds to the linear predictive regression
model under abstract degree of regressors persistence is studied by Kostakis et al. (2015) while
the asymptotic properties of the IVX estimator for the quantile predictive regression model is
studied by Lee (2016). Since when estimating the risk measure pair (VaR,CoVaR), we use the
conditional quantile distribution, i.e., to capture the effect of xt−1 on the conditional quantile
of yt, but with the additional assumption of possibly nonstationary regressors, then estimation
relies on the nonstationary quantile predictive regression.
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Second-Stage Procedure

During the second stage of our procedure we consider a consistent estimator of the parameter
vector for the set of regressors which includes the nonstationary regressors as well as the generated
regressor from the first stage procedure. More precisely, the generated regressor in our study
corresponds to the fitted values of the predictive regression model based on the IVX estimator
obtained in the first stage procedure.

y2,t = β02(τ) + β′
12(τ)x2,t−1 + δ(τ)ŷ1,t

(
β̂
ivx(τ)

)
+ u2t(τ), for t = 1, ..., n (4.50)

x2,t = R2,nx2,t−1 + v2,t, Rjn =
(
Ip − Cjp

nγ

)
, γ = 1. (4.51)

where Cjp = diag {cj1, ..., cjp} and j ∈ {1, 2}.

Define with β̃(τ) =
(
β02(τ),β′

12(τ), δ(τ)
)′ the parameter vector of the second stage procedure

and the corresponding IVX estimator with β̃ivx(τ). Specifically, we observe that this extended
parameter vector includes both the nearly integrated regressors as well as the generated regressor
from the first stage estimation step. In this case, we need to develop the asymptotic distribution
theory for both the OLS and IVX estimators when the generated regressor is included in the set
of regressors in the second stage predictive regression model that corresponds to the econometric
specification of the CoVaR risk measure. A modified IVX estimator is necessary to be developed
in order to account for the presence of the particular effect in the setting of the quantile predictive
regression models. The nuisance coefficient of persistence is defined such that ci > 0 and is either
γ = 1, which corresponds to near unit root regressors or γ ∈ (0, 1) that corresponds to mildly
integrated regressors.

Therefore, the focus of this paper is the implementation of the above econometric environment
and the development of the corresponding asymptotic theory in the case of the quantile predictive
regression model. Consider the piecewise derivative of the loss function which is defined as below
ψτ (u) = τ− 1 (u < 0). Then the innovation sequence of the quantile predictive regression model,
ut(τ) = ut − F−1

u (τ), and F−1
u (τ) is the unconditional τ-quantile of ut, where τ ∈ (0, 1) is a fixed

quantile (see, Lee (2016) and Fan and Lee (2019)). Thus, the βivx estimator is obtained from the
first stage procedure using the IVX estimation method14 for the model coefficients based on the
nonstationary regressors which implies that the generated regressor is defined

ŷ1,t
(
β̂
ivx(τ)

)
= x′

1,t−1β̂
ivx(τ) (4.52)

Thus to conduct inference we need to obtain a consistent estimator for the covariance matrix of
β̃ivx2 using the usual "sandwich" formula given below (see, Demetrescu and Rodrigues (2020)).

14The reason that we apply the IVX instrumentation procedure only to the estimate from the first stage quantile
predictive regression model rather to the corresponding generated covariate is to ensure that those fitted values can
preserve their definition as the estimated Value-at-Risk but in our case adjusted based on the presence of persistent
predictors and corrected accordingly using the IVX methodology.
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4.4 Statistical Inference and Asymptotic Theory

4.4.1 Preliminary Setting

Consider that the underline stochastic processes corresponding to the data generating mechanism
of our complex tail network-driven system corresponds to a commonly defined probability space
(Ω,F ,P) with a corresponding σ−algebra and Ft filtration. Due to the complex nature of our
tail dependency driven system, we consider a statistical modelling methodology which is based
on the "divide-and-conquer" principle. More precisely, the proposed hypothesis testing procedure
is divided into several stages when testing for systemic risk effects to accommodate the com-
plex estimation methodology. Therefore, based on the system displayed in Figure 4.1, the null
hypothesis of interest is formulated as below

H0 :
{
δ(1)(τ) = δ(2)(τ) = ... = δ(j)(τ) ... = δ(m−1)(τ) = 0

∣∣ g ̸= g′
}
, (4.53)

which implies that we are testing for the null hypothesis that the systemic risk coefficients of the
risk matrix in the upper off-diagonal are all zero. Then, the alternative hypothesis is formulated
as

H1 :
{
δ(1)(τ) ̸= δ(2)(τ) ̸= ... ̸= δ(j)(τ) ... ̸= δ(m−1)(τ) ̸= 0

∣∣ g ̸= g′
}

(4.54)

Under the alternative hypothesis at least one of the δ coefficients are different than zero. Due to
the unique way the VaR − CoVaR risk matrix is constructed further interesting statistical inference
procedures can be implemented in order to accommodate testing for the corresponding lower off-
diagonal elements of the risk matrix having all zero systemic risk coefficients. Nevertheless, we
focus on the testing hypotheses as formulated above.

Our proposed testing methodology which focus on linear restrictions specifically for the systemic
risk coefficients can be also modified with further adding up restrictions. A related study in the
literature which considers such a testing formulation is proposed by Ravikumar et al. (2000).
The use of adding-up restriction within our framework has specific interpretation in terms of
systemic risk in the graph. Specifically, by employing a fixed weight vector, we can impose
restrictions on the level of interconnectedness and systemic risk among the nodes of the graph.
The proposed testing methodology is based on the IVX-Wald statistic which has been found
to robustify inference in predictive regression models under abstract degree of persistence. Our
strategy for the development of the asymptotic theory is based on first deriving the limiting
distribution of the conventional IVX-Wald statistic for linear restrictions (see, Kostakis et al.
(2015)). Furthermore, our complex system has some specific features we have to tackle such
as the fact that we propose a double IVX instrumentation methodology. Therefore, to obtain
the limiting distribution for testing the null hypothesis of no systemic risk we have to establish
the asymptotic behaviour of the double IVX estimator, that is, a mixed Gaussian distribution
regardless of the persistence properties of regressors.
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Furthermore, deriving the limit theory for the corresponding system IVX-Wald test such that a
weakly convergence to a Chi-square limiting distribution holds, permits to conduct robust infer-
ence on the parameters of interest. A reasonable research question is whether to consider all the
cases of different degree of persistence for stage one nonstationary regressors versus stage two
nonstationary regressors. We begin our analysis under the assumption that the nonstationary
regressors of stage one are near unit root and similarly the nonstationary regressors of stage two
(although not from the exact same process, due to the proposed data generating mechanism),
to simplify the asymptotic theory. As a future research we can also consider the case in which
the nonstationary regressors across the two procedures have also different degree of persistence.
However, before doing that we concentrate on the correct construction of the statistical procedure
for testing for systemic risk effects across the nodes of the graph. Therefore in order to construct
the testing hypothesis we consider the following formulations of the individual specific equations
that represent the quantile predictive regression models with nonstationary regressors. In partic-
ular, we have g ∈ {1, ...,m} system equations. More specifically, Figure 4.3 below demonstrates
the complexity in estimating the particular large parameter space using a representation of the
different system equations across the different values of g, although we do not consider a high
dimensional setting for which the number of parameters is larger than the time series observations.

y(1)t = θ′
(1)(τ)X̃(1)t + u(1)t ≡ β′

(1)(τ)x1,t−1 + δ(1)(τ)ŷo2,t + u1,t

x1,t =
(
Id − Cd

nγ

)
x1,t−1 + v1,t

y(2)t = θ′
(2)(τ)X̃(2)t + u2,t ≡ β′

(2)(τ)x2,t−1 + δ(2)(τ)ŷo3,t + u2,t

x2,t =
(
Id − Cd

nγ

)
x2,t−1 + v2,t

y(3)t = θ′
(3)(τ)X̃(3)t + u(3)t ≡ β′

(3)(τ)x3,t−1 + δ(3)(τ)ŷo4,t + u3,t

x3,t =
(
Id − Cd

nγ

)
x3,t−1 + v3,t

... =
...

y(m−1)t = θ′
(m−1)(τ)X̃(m−1)t + u(m−1)t ≡ β′

(m−1)(τ)xm−1,t−1 + δ(m−1)(τ)ŷom,t + um−1,t

xm−1,t =
(
Id − Cd

nγ

)
xm−1,t−1 + vm−1,t

Figure 4.3: SUR system with quantile predictive regression models of upper diagonal of Sij
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4.4.2 Wald tests on the Row and Column Spaces of the Risk matrix

In practice, based on the structure of the risk matrix, there are three different formulations of
the testing hypotheses with respect to the systemic risk coefficients located in the diagonal above
the main diagonal, the columns or the rows of the risk matrix Γij proposed by Katsouris (2021).
In addition, it is worth emphasizing that we operate under the assumption that the model size
(number of regressors in each quantile predictive regression model) is fixed and relative small
to the sample size. Extending our estimation and asymptotic analysis to allow for q → ∞ is
technically challenging, especially with persistent and endogenous regressors (q ≡ d+1) and thus
examining the performance of IVX-Wald test in a high-dimensional setting (e.g., see Gupta and
Seo (2023)) is beyond the scope of our study. In that case one would be interested to compare the
performance of the two test statistics under two different data structure, a multivariate predictive
regression and a SUR representation. Nevertheless, we consider the derivation of Wald-type tests
under quite general conditions and identifying restrictions that we explain in details below.

Hypothesis Testing Diagonally of the risk matrix

The following econometric specifications correspond to the demeaned versions of the original ran-
dom variables and thus to avoid unnecessary complications with the notation we leave the current
notation without further changes. We employ an alternative representation of the econometric
specifications given by Figure 4.3 using matrix notation as displayed in Figure 4.4 below. Notice
that due to the unique structure of the proposed risk matrix, with "diagonality-based" testing we
main we consider the cases in which the joint estimation of the risk pair implies considering in-
dices that lie on the diagonals of the risk matrix but not on the main diagonal which corresponds
to all the estimated VaR risk measures of the cross-section. On the other hand, the flexibility of
our system representation permits to consider various different statistical inference methodolo-
gies commonly used in the literature. Therefore, beyond the classical linear restrictions imposed
by a Wald-test formulation which are examined in several studies in nonstationary time series
econometrics (see, Kostakis et al. (2015)) we focus on constructing a suitable statistical testing
approach for the significance of the systemic risk proxies, by leveraging the complexity of our risk
matrix and the proposed SUR representation.

In this direction, a similar approach has been proposed by Xu and Guo (2022) who consider the
special case when a multivariate regressand vector has all identical elements (see also Xu and Guo
(2019)) and based on a relative large vector of predictors, a SUR system representation is employed
for estimation and inference purposes (see, also ). Therefore, the approach of Xu and Guo (2022)
tackles the possible presence of high-dimensionality by assuming a large dimensional dependent
variable based on the SUR representation which provides efficiency gains and convenient testing
methods. Moreover, Chen et al. (2023) employ a SUR representation for a VAR(1) with explosive
roots, thereby projecting the dimensions of the dependent vector into univariate nonstationary
autoregressive processes. In contrast, our SUR representation implies projecting the m system
equations into nonstationary quantile predictive regressions with univariate dependent variables
but multivariate regressors.
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Thus, we can compare the performance of the SUR-IVX-Wald test when estimating separately
each individual equation of the system by fitting the quantile predictive regression model with
nonstationary regressors with the performance of the IVX-Wald in a multivariate setting. In
particular, based on our representation strategy, we expect the SUR-IVX-Wald test to perform
better than the IVX-Wald counterpart in terms of empirical size. More precisely, to see this we
can compare the performance of the two test statistics under two different data structures, a
multivariate predictive regression and a SUR representation. Furthermore, when employing the
IVX-Wald test in a high-dimensional setting, due to the large number of nonstationary regressors,
the size distortions can be indeed severe. On the other hand, a SUR system representation
provides a statistical mechanism for dimensionality reduction and therefore an IVX based Wald-
test for the particular model structure is expected to have better performance under the null
hypothesis. Similarly, one can consider the special case when such a multivariate regressand
vector has all identical elements (as in Xu and Guo (2022)) and given a relative large vector of
predictors, is formulated as a SUR system by splitting the large regressor vector into blocks equal
to the number of estimating equations. In other words, the proposed Wald-based test statistics
correspond to testing the quality of the columns of the non-linear risk matrix constructed using
systems of predictive regressions.

In this case, since the presence of high-dimensionality is contributed due to the large dimension of
the dependent variable, then consequently applying such a transformation to the data structure
can clearly provide similar benefits as when considering that the m−dimensional vector yt is
decomposed such that each vector element corresponds to one of the system equations. Then
the pooled estimator (i.e., SUR-IVX estimator) vis-a-vis the equation-specific estimators can be
compared in terms of their asymptotic properties and finite-sample properties especially when
these are used in the formulation of Wald-type test statistics with relevant restrictions. Thus, our
proposed testing methodology that has been developed specifically for the accompanied framework
of our complex tail dependency driven system, when reduced to an estimation and testing problem
of lower dimensional space, then the resulting testing procedure can provide significant benefits
in terms of empirical size and power performance under the null hypothesis. In matrix notation,
the seemingly unrelated system of nonstationary quantile predictive regressions can be expressed
as below

Y t = X⋆
t−1θ

⋆ +U t, for t = 1, ..., n (4.56)

where the IVX instruments are given by Zt−1 = diag
{
z′

1,t−1, ..., z
′
m−1,t−1

}
where zg,t−1 is of

dimension (d+ 1) × 1 for all g ∈ {1, ...,m− 1} since one of the system equations or one element
of the m−dimensional dependent vector is not included. Therefore, in practise these individual
equation specific instruments, zg,t−1, correspond to the IVX instruments for the d nonstationary
regressors of the m−th equation and the self-instrumentation of the proxy systemic risk regressor,
i.e., generated covariate (via the two-stage estimation procedure).
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Using a matrix form representation we have that, for d < m:



y1,t

y2,t

. . .

ym−1,t



′

︸ ︷︷ ︸
(m−1)×1

=



[
x1,t−1 ŷ

o
2,t
]
1×(d+1) 0 0 0

0
[
x2,t−1 ŷ

o
3,t
]
1×(d+1) 0 0

...
... . . . ...

0 0 0
[
xm,t−1 ŷ

o
m,t

]
1×(d+1)


︸ ︷︷ ︸

(m−1)×(d+1)



[
β′

(1)(τ) δ(1)(τ)
]′

[
β′

(2)(τ) δ(2)(τ)
]′

...

[
β′

(m−1)(τ) δ(m−1)(τ)
]′


︸ ︷︷ ︸

(d+1)×(m−1)

+



u1,t

u2,t

...

um−1,t


︸ ︷︷ ︸
(m−1)×1

Figure 4.4: SUR system matrix formulation

Denote with

θ⋆︸︷︷︸
(d+1)×(m−1)

:=
[
θ⋆1(τ), ..., θ⋆m−1(τ)

]
=
[[
β′

(1)(τ) δ(1)(τ)
]
, . . . ,

[
β′

(m−1)(τ) δ(m−1)(τ)
]]′

(4.58)

the (m− 1)−dimensional parameter vector, which contains as elements the parameter vector of each separate econometric specification with
q = (d+ 1) model parameters. Furthermore, we denote with

X⋆
t−1︸ ︷︷ ︸

(m−1)×(d+1)

:= diag
{[
x1,t−1 ŷ

o
2,t
]
1×(d+1), ....,

[
xm−1,t−1 ŷ

o
m,t

]
1×(d+1)

}
(4.59)

and with X⋆ the block diagonal matrix of regressors and with u⋆ =
[
u1,t, . . . ,um−1,t

]′
the corresponding (m− 1)−dimensional vector with the error

terms corresponding to the (m− 1) predictive regressions of the system.
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Linear Predictive Regression Model

We begin our analysis by considering the estimation methodology for the linear predictive re-
gression model by considering the formulations of model estimators as well as their correspond-
ing covariance matrices. We study the corresponding estimation and inference procedure when
the system equations represent nonstationary quantile predictive regression models in the next
section. Within our estimation framework we consider that m < n, that is, the number of cross-
sectional units, is less than the number of time series observations (e.g., m = 20 and n = 150).
The possible presence of high dimensionality15 is not explicitly examined in this chapter, which
might require modifications in our estimation methodology. Nevertheless, the parameter space is
still quite large due to the presence of different nonstationary regressors for each system equation
as well as the systemic risk proxy covariates. Moreover, to robustify against unknown persistence
forms our system estimator is based on the IVX filtration of Phillips and Magdalinos (2009) which
it has been proved to be robust to the abstract degree of persistence; in our case to filter out the
persistence of the nonstationary regressors across the equations of the system.

Therefore, the SUR-IVX-diag estimator for the model parameter θ⋆ is estimated as below

θ̂
⋆

ivx =
(

n∑
t=1
Z ′
t−1X

⋆
t−1

)−1( n∑
t=1
Z ′
t−1Y t

)
, (4.60)

where θ̂⋆ivx =
(
θ̂

′
ivx,1, ..., θ̂

′
ivx,m−1

)′ such that θ̂g =
(
β̂

′
g, δ̂g

)′
for all g ∈ {1, ...,m− 1}. To construct

the Wald-type test statistic we denote with Û t =
(
û1,t, ..., ûm−1,t

)′ to be the OLS residual obtained
from the multivariate model (4.56). Then, the (m− 1) × (m− 1) covariance matrix is expressed
as

Σ̂U = 1
n− 1

n∑
t=1
Û tÛ

′
t. (4.61)

Proposition 4.1. Suppose that the conditions of Assumption ?? hold. Then, it follows that

n
(1+γx)

2
(
θ̂
⋆

ivx − θ⋆
)

d→ MN
(
0,
(
Ψ−1
C

)′
V zzΨ−1

C ⊗ Σ
)
, as n → ∞. (4.62)

where all system equations have near-unit root regressors not necessarily identical.

Notice that regardless of the fact that the nonstationary regressors across the equations not all
belong to the same persistence regime we only consider nearly stationary and nearly nonstationary
cases and exclude cases such as explosive unit roots either common or distinct (as in ? and Chen
et al. (2023)).

15The aspect of estimation for high-dimensional SUR models within a stationary time series environment is
examined in the framework proposed by Tan et al. (2021).
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Theorem 4.1. Suppose that the conditions of Assumption 1-4 hold, with w(g)t =
(
u(g)t,v

′
(g)t
)′.

Define the following IVX-Wald statistic with an estimated covariance matrix

W⋆
sur−ivx =

(
Rθ̂

⋆

ivx − r
)′
Q̂

−1
R

(
Rθ̂

⋆

ivx − r
)

(4.63)

where Q̂R is the variance matrix estimator. Moreover, the test statistic can be expressed as below

W⋆
sur−ivx ≡

(
n∑
t=1
Z ′
t−1U t

)′

M̂−1
(

n∑
t=1
Z ′
t−1U t

)
, (4.64)

where M̂ is defined as below

M̂ := Σ̂U ⊙
n∑
t=1
Zg,t−1Z

′
g,t−1 =


Σ̂U ,11

n∑
t=1
z1,t−1z

′
1,t−1 . . . Σ̂U ,1K

n∑
t=1
z1,t−1z

′
K,t−1

... . . . ...

Σ̂U ,K1

n∑
t=1
zK,t−1z

′
1,t−1 . . . Σ̂U ,KK

n∑
t=1
zK,t−1z

′
K,t−1


K×K
(4.65)

where K ≡ m− 1. Then, under H0 : θ̂⋆ivx = 0, it follows that W⋆
ivx

d→ χ2
m−1 where the degrees of

freedom equal to the number of system equations.

Furthermore, under the null hypothesis the W⋆
ivx statistic takes the following form

W⋆
ivx =

(
n∑
t=1
z̃t−1ũt

)′

M̂−1
(

n∑
t=1
z̃t−1ũt

)
(4.66)

The particular formulation can be compared with the standard IVX-Wald statistic such that

Wivx =
(

n∑
t=1
zt−1ut

)′(
σ̂2
u

n∑
t=1
zt−1z

′
t−1

)−1( n∑
t=1
zt−1ut

)′

, (4.67)

An important conjecture is that in the special case when all regressors for the equations are
the same and the system responses, which are constructed using the data generating mechanism
provided by Assumption 4.2, are replaced by K replicates of the same vector (e.g., one of the
response vector of the nodes), our procedure simplifies to the estimation procedure proposed
by Xu and Guo (2019). In this special case, then it can be shown that Σ̂U

p→ σ2
u11′, where

1 = (1, ..., 1)′ is a (m× 1) unit vector. Then, the test statistic W⋆
sur−ivx simply replaces σ̂2

u in the
Wald statistic Wivx (expression (19) in KMS) by estimators of σ2

u with zero restrictions partially
imposed, such that all the coefficients of xt−1 are zero expect the regressors that correspond to
the g−equation, xg,t−1. Therefore, within our framework we will need to verify whether this
convergence in probability, such that Σ̂U

p→ σ2
u11′ due to the fact that each system equation has

a different Gaussian process.
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Remark 4.8. Our procedure encompasses the testing methodology proposed by Xu and Guo
(2019) since one can apply their dimensionality reduction method for each individual specific
system equation. We leave the illustration of the particular application as future research. Our
proposed estimation and testing methodology should be not viewed as an extension of the par-
ticular framework, when one employs the conditional functional form instead of the linear speci-
fication form. The motivation in the current study is driven from the perspective of systemic risk
modelling and examines the SUR modelling methodology for the proposed complex tail depen-
dency system of our framework. Furthermore, our framework considers a specific data generating
mechanism for a complex system based on an underline graph structure, which in other words
proposes a more general form of dependence.

However, in our case we need to evaluate whether the convergebce in probability result Σ̂U
p→

σ2
011′ holds. This is a crucial assumption especially due to the dependence structure we impose

that allows to generate independent innovation sequences for each node specific predictive re-
gression model. More specifically, due to the fact that each system equation is generated from
a different Gaussian process then possibly a different variance for the residual terms applies.
Therefore, in order to facilitate the development of the asymptotic theory within our proposed
framework we can impose an assumption of conditional homoscedasticity across equations.

Suppose that we are interested in testing mr linear restrictions such that mr ≤ m, where

H⋆
0 : R︸︷︷︸

mr×m
δ = r︸︷︷︸

mr×1
(4.68)

whereR and r contain known constants, andR has full rank. Then, the particular selector matrix
can be employed to test linear restrictions as well as parameter-specific adding-up restrictions
across the equations of the system.

Notice that in practise in the framework of Xu and Guo (2019) the authors keep fix a subset of
nonstationary regressors with a small cardinality and then the remaining subset which includes
a high dimensional vector of regressors, say K they divide this vector into equal smaller parts.
Then, these K linear projections on the regressand with regressors the fix subset plus another set
of regressors that corresponds to a partition from the large section of nonstationary regressors.
The specific approach can be also found in the statisics literature as subset selection in high
dimensional settings. However, the main difference in our framework is that we use a similar
modelling methodology to estimate the SUR system with quantile predictive regressions.
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4.4.3 System Specific Estimation Methodology

We focus on the development of the asymptotic theory for the case when we are testing for the
equality of the systemic risk coefficients within each column of the risk matrix. To avoid confusion
with the notation we assume that we have (m − 1) units and n time series observations such as
t = 1, ..., n. Therefore, we are constructing the testing procedure for the s−th column of the
matrix after removing the element of the s−th column which corresponds to the diagonal of the
risk matrix, i.e., the VaR risk measure such that j ̸= i where the indices (i, j, s) ∈ {1, ...,m}.

A matrix representation for the first s−th column of the matrix is:

y(1)t

y(2)t

...

y(m−1)t


=



[
xt−1 y(s)t

]
0 0 0

0
[
xt−1 y(s)t

]
0 0

...
...

...
...

0 0 0
[
xt−1 y(s)t

]′





[
β′

(1)(τ) δ(1)(τ)
]′

[
β′

(2)(τ) δ(2)(τ)
]

...

[
β′

(m−1)(τ) δ(m−1)(τ)
]′


+



u(1)t(τ)

u(2)t(τ)

...

u(m−1)t(τ)


.

In practise, we have (m− 1) quantile predictive regressions with the same covariates, i.e., the set
of lagged regressors xt−1 plus the same systemic risk covariate, y(s)t. Furthermore, the lagged
regressors are assumed to follow an AR(1) model with a LUR coefficient and a common coefficient
of persistence cm for all m ∈ {1, ..., k} where k is the number of regressors in each equation such
that k < m. Equivalently, the j−th equation of the above SUR system corresponding to the
s−th column of the risk matrix, such that s = {1, ...,m}, can be expressed using the following
more compact form

y(j\{s})t = θ′
(j)(τ)X̃(s)

j + u(s)
(j)t(τ) (4.69)

xt =
(
Ik − Ck

nγx

)
xt−1 + vt (4.70)

θ(j)(τ) :=
[
β′

(j)(τ) δ(j)(τ)
]′ and X̃(s)

j :=
[
xt−1 y(s)t

]
for all j ∈ {1, ...,m} \ {s} with s ∈ {1, ...,m}.

In particular, due to the fact that each of the system equations has a specific generated innova-
tion vector with first and second moments following the general principles of predictive regression
models, this property ensures that we can work under the assumption of conditional homoscedas-
ticity. Although extending to the conditional heteroscedasticity case with respect to imposing
for example a GARCH structure on the innovation vector of each system’s equation. Based on
the dependence structure given by Assumption 4.1 which implies a block structure for the covari-
ance matrices of the system, the zero conditional expectation (and second moments) across the
cross-section is preserved (i.e., for i ̸= j) since all those terms are equivalent with a zero (m×m)
matrix.
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Equivalently, formulating the Matrix From 4.4.3 in a vector form we obtain

Y (j\{s})t = X(s)β
(s)
(j)(τ) +

(
Im−1 ⊗ y(s)t

)
δ(s)(τ) +U (s)

(j)t(τ) (4.71)

xt =
(
Ik − Ck

nγx

)
xt−1 + vt, (4.72)

where

Y (j\{s})t :=



y(1)t

y(2)t

...

y(m−1)t


, X(s) := diag



X
(s)
1

X
(s)
2

...

X
(s)
m−1



′

, U
(s)
(j)t(τ) :=



u(1)t(τ)

u(2)t(τ)

...

u(m−1)t(τ)


, (4.73)

where X̃(s)
j =

[
xt−1 y(s)t

]
such that X(s)

j ≡ xt−1 for all j ∈ {1, ...,m}. Then, the model parame-
ters are given by the vectors β(s)

(j)(τ) =
(
β

(s)
(1)(τ), ...,β(s)

(m−1)(τ)
)′

and δ(s)(τ) =
(
δ

(s)
1 (τ), ..., δ(s)

m−1(τ)
)′

.

Equivalently, we have the following SUR system:



y(1)t

y(2)t

...

y(m−1)t


=



xt−1 0 0 0

0 xt−1 0 0

...
...

...
...

0 0 0 xt−1





β
(s)′
(1) (τ)

β
(s)′
(2) (τ)

...

β
(s)′
(m−1)(τ)


+



y(s)t 0 0 0

0 y(s)t 0 0

...
...

...
...

0 0 0 y(s)t





δ
(s)
1 (τ)

δ
(s)
2 (τ)

...

δ
(s)
m−1(τ)


+



u(1)t(τ)

u(2)t(τ)

...

u(m−1)t(τ)


Furthermore, all lagged regressors included in the individual equations, that is, the quantile
predictive regressions, are identical and follow the LUR process as below:

xt =
(
Ik − Ck

nγx

)
xt−1 + vt, (4.74)

Therefore, the testing hypothesis of interest is

H0 : δ(s)(τ) = 0 ⇒ δ
(s)
1 (τ) = ... = δ

(s)
m−1(τ) = 0. (4.75)

i.e., the equality of the elements of the systemic risk coefficient of the s−th column of the risk
matrix. Therefore, the above null hypothesis is tested using a Wald type statistic. In other words
under the null hypothesis, the true population SUR system does not include the systemic risk
covariate, i.e., δ(s)(τ) = 0, while under the alternative hypothesis we have the unrestricted model
which implies that at least some of those systemic risk coefficients are present in the SUR system.
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4.4.4 Parameter Estimation and Robust Wald Test

In order to estimate the econometric model within our setting we need to impose some regularity
conditions and assumptions which permit to obtain the asymptotic behaviour of the system
estimators as well as the proposed Wald statistic16. We begin by reviewing again the parameter
estimation procedure. Denote with β⋆(τ) the parameter vector of interest. Then, the estimator
β̂⋆(τ) is obtained via the following expression:

β̂⋆(τ) = arg min
β⋆∈R(m−1)×(k+1)

m∑
i=1

n∑
t=1

ρτ
(
yit −X⋆′

(i)t−1β
⋆(τ)

)
(4.76)

where X⋆
(i)t−1 =

[
x(i)t−1, y(j)t

]′ for all j ̸= i.

The regressor matrix contains lagged regressors assumed to be generated as local-unit-root pro-
cesses, representing the endogenous variables of the system plus the systemic risk covariate which
is regression specific and time-invariant. There are several points to discuss here. First, the par-
ticular aspect when one of the endogenous covariates is chosen as one of the dependent while the
rest are treated as if were independent is discussed by Balestra and Nerlove (1966) in the case of
cross-sectional time series regressios models. However, out modelling approach considers certain
features, such as the persistence properties of regressors as well as a possible graph dependence
among pairs of nodes. Moreover, since the LUR specification incorporates an unknown abstract
coefficient of persistence, we employ the IVX instrumentation methodology proposed by Phillips
and Magdalinos (2009) that filters out and controls the degree of persistence. Next, in terms of
graph dependence we impose an assumption that relates the standard covariance structure of the
quantile predictive regression model with the autoregression specification in terms of the system.

Furthermore, in order to facilitate the development of the asymptotic theory for model estimators
and associated test statistics we define the following matrices for some τ ∈ (0, 1).

D̂0 = 1
mn

m∑
i=1

n∑
t=1
X⋆

(i)t−1X
⋆′
(i)t−1, D̂1(τ) = 1

mn

m∑
i=1

n∑
t=1

fit
{
X⋆′

(i)t−1β
⋆(τ)

}
X⋆

(i)t−1X
⋆′
(i)t−1

where the sample moment matrices D̂0 and D̂1(τ) are well-defined and nonsingular.

The null hypothesis is now constructed using the selector matrix and considering linear restrictions
to specific parameters from each block, such as the systemic risk covariate as well as adding-up
restrictions on the systemic risk covariates as mentioned before.

H0 : Rβ⋆(τ) = q versus Rβ⋆(τ) ̸= q (4.77)

for any τ ∈ (0, 1), where R = (0, ...,0,1) and q = (0, ..., 0, 1)′ considers the adding-up restriction
of interest.

16Notice that the propose testing methodology specifically for the proposed structural model is a novel aspect
in the literature. For instance, in the framework of Zhu et al. (2019) the authors do not consider testing for the
joint statistical significance of model estimates via a Wald type statistic but only consider a general measure of
goodness-of-fit for the model.



CHAPTER 4. 128

Therefore, the particular null hypothesis considers the restriction on the systemic risk covariates
which belong to the different blocks of the multivariate model specification. Next, we proceed on
constructing the Wald test and study the asymptotic behaviour of the test statistic expressed as
below:

WSUR−IV X(τ) =
(
Rβ̂⋆SUR−IV X(τ) − q

)′Ω−1
R

(
Rβ̂⋆SUR−IV X(τ) − q

)
(4.78)

where ΩR the covariance matrix of the Wald test based on the SUR-IVX estimator.

Theorem 4.2. Consider the predictive regression model given by expressions (4.11)-(4.12) and
that the conditions of Assumption (3.2) hold. Then, the Wald test for testing the null hypothesis
(4.77) has the following limiting distribution

WSUR−IV X(τ) ⇒ χ2
q for some τ ∈ (0, 1) as n → ∞. (4.79)

4.4.5 Econometric Model and SUR system Representation

Consider the linear predictive regression model as below

ỹt = µ+ x̃′
t−1︸ ︷︷ ︸

1×D

ϑ+ ũt, 1 ≤ t ≤ n (4.80)

xt = Rnxt−1 + vt (4.81)

where x̃t ∈ Rd is a d−dimensional vector and Rn =
(
Id − Cd

nγ

)
with γ = 1.

Before proceeding with the estimation methodology the first step is to consider a standard de-
meaning transformation of the original predictive regression that yields exact invariance of esti-
mation of the parameter vector β to the presence of a model intercept. Therefore, the demeaned
random variables are denoted as

yt = ỹt − 1
n

n∑
t=1

ỹt, xt = x̃t − 1
n

n∑
t=1

x̃t, ut = ũt − 1
n

n∑
t=1

ũt, (4.82)

Therefore, we obtain the transformed predictive regression as below

yt = x′
t−1︸ ︷︷ ︸

1×d

ϑ+ ut, 1 ≤ t ≤ n (4.83)

The second step is to construct the IVX instruments based on the undemeand regressors of the
model such that

zt =
t−1∑
j=0
Rj
z∆xt−j , for t = 1, ..., n (4.84)

Then the IVX estimator is given by

ϑ̂
ivx =

(
n∑
t=1
zt−1x

′
t−1

)−1( n∑
t=1
zt−1yt

)
, (4.85)
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Parsimonious System

Construct a system of K linear projections, each of which is onto only one group of regressors of
xt−1 such that xg,t−1, where K ≡ N − 1. In particular, we have that

ỹg,t = αg + x̃′
g,t−1 βg︸︷︷︸

dg×1

+ũg,t, 1 ≤ t ≤ n (4.86)

where g = 1, ...,K where K are the number of system equations and dg is the number of nonsta-
tionary regressors for each system equation, however we assume that dg ≡ d for all g = 1, ...,K.
Therefore, the parameter of interest is given by β =

(
β1, ....,βm−1

)′ which is of dimension d× 1
and note that the total number of regressors for the system is given by D = ∑K

g=1 dg = (N − 1)d
as all system regressors have the same number of nonstationary regressors. Therefore, we are
interested in estimating an SUR system which provides a parsimonious representation for infer-
ence purposes. In practise, there is a duality between testing the zero linear restrictions on the
predictive regression model with the large regressor vector and testing for zero linear restrictions
across all system specific predictive regressions. In other words, instead of testing whether under
the null hypothesis ϑ = 0, we construct the testing hypothesis such that β = 0. Therefore, next
step is to consider the demeaned version of (4.87) such that

yg,t = x′
g,t−1 βg︸︷︷︸

dg×1

+ug,t, 1 ≤ t ≤ n (4.87)

Then by converting the above model with a matrix form we obtain that

Y t = Xt−1θ +U t (4.88)

where we define the following matrices as below which are thought as three-dimensional bars
projected to an (x, y) plan thus "cutting-out" the time-dimension such that

Y t︸︷︷︸
K×1

=


y1,t
y2,t

...
yK,t

 Xt−1︸ ︷︷ ︸
K×D

=


x′

1,t
. . .

x′
K,t

 , θ︸︷︷︸
K×1

=


θ1
...
θK

 , U t︸︷︷︸
K×1

=


u1,t

...
uK,t

 . (4.89)

Furthermore, we consider the block diagonal matrix with the IVX instruments that correspond
to the nonstationary regressors of our complex system where Zg,t =

(
zo′g,t, z

′
g,t
)′, and

Zt︸︷︷︸
K×D

=


Z ′

1,t
. . .

Z ′
K,t

 . (4.90)

Therefore, we can obtain the IVX estimator for the system that corresponds to θ such that

θ̂ivx =
(

n∑
t=1
Z ′
t−1Xt−1

)−1( n∑
t=1
Z ′
t−1Y t

)
(4.91)
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where θ̂ivx =
(
θ̂

′
1, ..., θ̂

′
K

)′ and θ̂ivxg =
(
δ̂ivxg , β̂

ivx′
g

)′
with g ∈ {1, ...,K}.

Define the following IVX-J statistic

Jn = θ̂
′
ivxV̂

−1
θ̂ivx =

(
n∑
t=1
Z ′
t−1Y t

)′

M̂
−1
(

n∑
t=1
Z ′
t−1Y t

)
, (4.92)

where V̂ −1 is the variance matrix estimator and M̂ is defined as below

M̂ =
n∑
t=1
Z ′
t−1Σ̂UZt−1. (4.93)

Theorem 4.3. Suppose that Assumption hold and wt =
(
ut,v

′
t

)′. Then, under the null hypoth-
esis θ = 0 it holds that

Jn
d→ χ2

K , as n → ∞. (4.94)

where

Jn = θ̂
′
ivxV̂

−1
θ̂ivx =

(
n∑
t=1
Z ′
t−1Y t

)′

M̂
−1
(

n∑
t=1
Z ′
t−1Y t

)
, (4.95)

and

M̂ := Σ̂U ⊙
n∑
t=1
Zg,t−1Z

′
g,t−1 =


Σ̂U ,11

n∑
t=1
z1,t−1z

′
1,t−1 . . . Σ̂U ,1K

n∑
t=1
z1,t−1z

′
K,t−1

... . . . ...

Σ̂U ,K1

n∑
t=1
zK,t−1z

′
1,t−1 . . . Σ̂U ,KK

n∑
t=1
zK,t−1z

′
K,t−1


K×K
(4.96)

such that ⊙ denotes the blockwise Hadamard matrix product.

Furthermore, we aim to investigate whether for all g ∈ {1, ...,K} the variance of the OLS residuals
from each system specific equation converges to a fixed covariance term.
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Wald-type Statistics Formulation with nonstationary and generated regressors

Consider the following formulation of the predictive regression model which incorporates both
nonstationary and generated regressors

ỹt = µ+ Ỹ
o′
t︸︷︷︸

1×K

δ + X̃ ′
t−1︸ ︷︷ ︸

1×D

β + ũt, for t = 1, ..., n (4.97)

Xt = RnXt−1 + vt (4.98)

Therefore, in a more compact form we obtain the following expression

ỹt = µ+ G̃
′
t−1︸ ︷︷ ︸

1×(D+K)

ϑ+ ũt, for t = 1, ..., n (4.99)

where ϑ =
(
δ′,β′)′ and G̃t−1 =

[
Ỹ
o′
t X̃

′
t−1

]
where Ỹ o

t corresponds to the undemeneaned gener-

ated regressors and X̃t−1 corresponds to the undemeneaned nonstationary regressors.

Similarly, consider the demeaned random variables are denoted as

yt = ỹt − 1
n

n∑
t=1
ỹt, Xt = X̃t − 1

n

n∑
t=1
X̃t, ut = ũt − 1

n

n∑
t=1
ũt, Y o

t = Ỹ
o

t − 1
n

n∑
t=1
Ỹ
o

t

(4.100)

Therefore, we obtain the transformed predictive regression and system form as below

Y t = G′
t−1︸ ︷︷ ︸

1×(D+K)

ϑ+U t, for t = 1, ..., n (see figure on landscape page) (4.101)

Additionally, in order to simplify the estimation procedure due to the high dimensionality of the
statistical problem we decide to partition the large vector of nonstationary regressors such that
Xt−1 =

[
x1t−1, ...,xKt−1

]
which implies that we group the p−dimensional vector of nonstationary

regressors into K groups with a small number of regressors in each group.

yt = µj + γ ′
jf t−1 + β′

jxt−1 + wit (4.102)

where j = 1, ..., d and denote with x̃jt =
(
f ′
t,x

′
t

)′ and θj =
(
γ ′
j ,β

′
j

)′ and wt is the linear projection
residual. Furthermore, we define with β =

(
β1, ..., βd

)′ which has the same dimension as δx.

Proof of Theorem 1 Consider the Wald test under the null hypothesis such that

W =
(

n∑
t=1
zt−1ut

)′(
σ̂2

0

n∑
t=1
zt−1z

′
t−1

)′( n∑
t=1
zt−1ut

)
(4.103)

We consider the limiting distribution for the J under the null hypothesis.
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First we consider the asymptotic behaviour of the following quantities

1
n(1+γz)M̂ = 1

n(1+γz)

n∑
t=1
Z ′
t−1Σ̂UZt−1 (4.104)

Now, under the assumption that the covariance matrix of the OLS residuals for each system
specific equation is the same, then we can simplify the asymptotics as below

1
n(1+γz)M̂ = 1

n(1+γz)

n∑
t=1
Z ′
t−1Σ̂UZt−1 = 1

n(1+γz)σ
2

n∑
t=1
Z ′
t−111′Zt−1 + op(1)

= 1
n(1+γz)σ

2
n∑
t=1
z′
t−1zt−1 + op(1) p→ σ2Qzz > 0,

Remark 4.9. Notice that the estimation methodology proposed by Kostakis et al. (2015) cor-
responds to a system of equations where each element of the multivariate regressand can be
formulated as an individual predictive regression with regressor the particular element and re-
gressors the common nonstationary regressors of the system. Therefore, our proposed estimation
and inference methodology is represented with a SUR system of equations where these fitted sys-
tem specific equations correspond to the quantile predictive regressions with nonstationary and
generated regressors. Furthermore, we allow for differently generated nonstationary regressors
due to the underline data generating mechanism we propose.

Theorem 4.4. Suppose that the conditions of Theorem 1 hold. Under the alternative hypothesis,
the SUR IVX-based Wald test, denoted with W⋆

SUR−IV X converges to the following asymptotic
distribution as n → ∞

1
κn

W⋆
SUR−IV X

d→ ϑ∗′Q′
zx

[
Σ∗
U ⊙ Q̄zz

]−1
Qzxϑ

∗ (4.105)

for some slow varying function κn.

Remark 4.10. Note that the W⋆
SUR−IV X test statistic reduces to the Wald-IVX test when we

have one estimating equation. On the other hand, with K ≥ 2, the W⋆
SUR−IV X test statistic is

expected to perform better than the IVX-Wald since it relies on multivariate predictive regression
models with (univariate regressands) that have much smaller sets of regressors in comparison to
the corresponding multivariate formulation. Moreover, the proposed test at the same time can be
more powerful than the LM test since its construction does not impose the entire null hypothesis.
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4.4.6 Large Sample Theory

Assumption 4.7. We impose the following conditions

A1. Each entry in the vector α(τ) is k−order differentiable in a neighbourhood of z0 for any z0.

A2. fz(z) is continuously marginal density of Z and fz(z0) > 0.

A3. The distribution of Y given X has an everywhere positive conditional density fY |X(·), which
is bounded and satisfies the Lipschitz continuity condition.

Notice that large sample theory can crucially depend on the relative magnitudes of m and n. The
advantage of the SURE procedure, is that it allows for contemporaneous error covariances to be
freely estimated. On the other hand, when m (the number of system equations) is the same as
the number of time series observations, then SURE is not feasible. Only when m is reasonably
small relative to n the proposed procedure is feasible. Moreover, although usually the literature
on the particular estimation procedure is concerned with linear cross-equation restrictions, in
our case our concern with the common long-run coefficients implies nonlinear restrictions across
the different equations of the system (e.g., see McElroy and Burmeister (1988) and Ravikumar
et al. (2000)). Furthermore, notice that in pooled models decomposing the short-run from the
long-run effects is of practical relevance (see, Pesaran et al. (1999)). Robust inference approaches
for multivariate time series using M-estimators are proposed by Koenker and Portnoy (1990) and
Bilodeau and Duchesne (2000).

Our limit theory is developed under the Gaussian errors assumption. Thus, we develop asymp-
totics based on the Gaussianity condition on the error terms of system equations. In addition,
our proposed statistical testing methodology is relevant from both the economic as well as the
econometric perspective. From the economic perspective it provides a testing mechanism for the
presence of systemic risk in the constructed network, while from the econometric perspective it
provides insights regarding the presence of strong and weak instruments. As noted by Phillips
and Gao (2017), this is natural since with both strong and weak instruments the reduced-form es-
timates contain information about the structural parameter β, while under irrelevant instruments
these estimates carry no such information. Moreover, it can be proved that the asymptotic distri-
bution of the unrestricted reduced-form (URRF) test statistic, first-order stochastically dominates
the asymptotic distribution of the partially restricted reduced-form (PRRF) under all three dif-
ferent instrument strengths. In addition, under the null hypothesis that the vector of coefficients
of the systemic risk proxy, δ = 0, the asymptotic distribution of the PRRF test statistic also
becomes invariant to the strength of instruments (see, also Andrews and Cheng (2012)), which
in our case implies that the robustness to the unknown persistence properties of regressors is
preserved. Note that the two cases of instrumentation strength which lead to different asymp-
totic theory is the case of strong instruments and the case of totally irrelevant instruments which
implies that there is no information in the reduced form about the structural coefficients and so
the structural parameter β is not identified.
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4.5 Monte Carlo Simulation Study

This section conducts Monte Carlo experiments to investigate the finite sample performances
of our proposed estimators and test statistics. More specifically, in this section, we provide a
complete simulation study for the performance of the proposed estimators as well as the Wald
type statistic based on these estimators. Consider the following Data Generating Process (DGP),
assuming that for example that

{
Y

(g)
ti , X

(g)
ti

}n
i=1

for all g ∈ {1, ...,m} are drawn from P0, a known
"probability law" (as we describe below).

Step 1. Denote with Σ(g)
ww ∼ Wm (V p×p,m) be the covariance matrix of the g−th equation such that

for all g ∈ {1, ...,m}, Σ(g)
ww is an i.i.d random variable that follows a Wishart distribution17,

where V is a p × p positive definite matrix and m are the degrees of freedom such that
m > p+ 1 with p = d+ 1, the number of parameters in each quantile predictive regression
equation of the SUR.

Step 2. For each g ∈ {1, ..., N} we generate the following predictive regression model

y(g)t = β0 +
k∑
j=1

βjxjt−1 + u(g)t (4.106)

x(g)t = Rnx(g)t−1 + v(g)t, x0 = 0. (4.107)

where Rn =
(
Id − Cd

nγ

)
with Cd = diag {c1, ..., cd} and γ = 1 for t = 1, ..., n.

For the Monte Carlo design of this paper we use n =
{
250, 500, 750, 1000

}
, where n is

the sample size, B = 5, 000, where B is the number of monte carlo replications and ci =
{1, 2, 3, 4, 5, 6, 7} for d = 7 the number of regressors in each model.

To generate the predictive regression model given by expressions (4.106)-(4.107), we assume
that each vector w(g)t =

(
u(g)t,v

′
(g)t

)′
is a multivariate Gaussian random variate with mean

zero and covariance matrix given by Σ(g)
ww := E

[
w(g)tw

′
(g)t

]
, that is w(g)t ∼ N

(
0p×p,Σ(g)

ww

)
.

The parametrization of the covariance matrix Σ(g)
ww is shown in Assumption 4.2 (i). More-

over, we assume that βj ∼ Unif[−1, 1].

Step 3. For each pair of simulated data
{
y(g)t,x(g)t

}
, g ∈ {1, ...,m} and t = 1, ..., n, we fit the

quantile predictive regression models and estimate the IVX-Wald statistic.

17Notice that the Wishart distribution corresponds to the random variate of (XX ′) where X is p−dimensional
Gaussian random variable.
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4.6 Empirical Application

As an empirical application of this chapter and motivated from our Monte Carlo simulation
experiments where for each predictive regression we generate nonstationary regressors with dif-
ferent nuisance parameters of persistence across the node specific equations, we implement a
complex tail-dependency system of quantile predictive regressions in order to model systemic risk
based on a large dataset of financial institutions that includes both firm characteristic as well as
macroeconomic variables that capture economic conditions and financial stability.

Specifically, we use the dataset of Härdle et al. (2016) which includes a panel of the top 100 publicly
traded financial institutions by market capitalization. More precisely, these are categorized into
four groups: (i) depositories, (ii) insurance companies, (iii) broker-dealers, and (iv) others; which
allows us to construct a financial network and apply the proposed graph based optimal portfolio
allocation methodology. The dataset contains the stock returns of these firms along with a set of
macroeconomic variables both corresponding to the same period (between 5, January 2007 and 4,
January 2013) based on weekly time series observations. Furthermore, the dataset includes a set
of firm variables which we use as the observable firm factors. In particular, these include balance
sheet information such as: (i) total assets/total equity to capture firm leverage, (ii) short term
debt-cash/total liabilities to capture maturity mismatch, (iii) ratio of the market to the book
value of the total equity to capture the market-to-book firm characteristics and (iv) log of the
total book equity to capture the size of the firm (see, also Katsouris (2021)).

Furthermore, the presence of the generated regressor (systemic risk proxy) in the quantile pre-
dictive regression specification, although is a necessary covariate that captures the Value-at-Risk
can be found to neutralize the appearance of these effects. More precisely, through both the
empirical study as well as simulation experiments we can check whether the addition of the gen-
erated regressor in the model could provide a way of neutralizing these size distortions due to the
presence of high persistence regressors in contrast to the usual increase of size distortions as the
number of the nonstationary regressors increases. In other words, a possible trade off between the
number of nonstationary regressors added in the model and the number of generated covariates
can provide a mechanism for controlling the empirical size close to the nominal size, while keeping
the dimensionality of the statistical problem not growing at a faster rate than the sample size.
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4.7 Conclusion

The third chapter of the thesis proposes an econometric framework for robust inference in quantile
predictive regression systems under a general form of dependence. The dependence structure
we consider combines the cross section with time series data under the assumption that the
underline stochastic processes represents nodes on a graph. Furthermore, such a joint time series
and cross-section limit theory implies that the cross-sectional (network specific) parameters of
interest depend solely on parameters governing the time-series processes, since the network specific
parameters are constructed from i.i.d random covariance matrices (i.e., the innovation sequences)
and so there is a form of separation between cross-section dependence and time series dependence.
An application to systemic risk modelling using both simulated and real data provides evidence
of the practicality of our novel methodology in testing for systemic risk effects in our complex
tail dependency driven system of equations.

Furthermore, we consider the nonstationary properties of predictors in terms of a near unit root
parametrization which depends on the nuisance parameter of persistence. Although, the proposed
complex tail-driven system has a corresponding matrix representation which facilitates estima-
tion and testing, a companion matrix representation is not applicable. In particular, the non
applicability of the companion matrix, similar to when modelling vector autoregression processes
makes it more difficult to discuss the stability of our system in terms if the underlying stochastic
processes. In terms of the inference methodology, propose a Wald type statistic suitable for test-
ing the null hypothesis of linear restrictions in quantile predictive regressions estimated using the
SUR system representation. The individual equations include a set of lagged regressors which
are assumed to be generated as local unit root processes to capture the persistence properties
in the time series of regressors. Furthermore, the set of explanatory variables include the sys-
temic risk covariate which based on the graph structure represents by definition an element of
the vector of regressands not the same as the equation-specific regressand. More precisely, we
aim to show that the limiting distribution of the proposed Wald test is nuisance-parameter free
and is robust to the persistence properties of regressors, for cases such as mildly integrated or
persistence regressors and thus can be generalised in further nonstationary processes. Despite
that fact that our proposed modelling methodology has some computational complexity, this ap-
proach provides a suitable econometric identification and estimation strategy for tail dependency
in multivariate time series under nonstationarity and weak dependence. Therefore, the specific
identification strategy allows to incorporate the main features of nonstationary time series models
especially when modelling tail dependency across regressands that represent nodes in a graph.
Although the current study does not consider explicitly such cointegration dynamics, it is still a
novel contribution to the literature as it helps to alleviate any concerns related to an inconsitent
estimation and non-identification of the econometric environment under both nonstationarity and
network dependence. Our testing framework corresponds to in-sample testing for systemic risk
effects based on our complex tail dependency driven system. Through simulation experiments we
demonstrate the usefulness of our testing methodology in detecting the presence of system risk
when modelling quantile processes under nonstationarity and network dependence.
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Supplement to Chapter 2

A.1 Asymptotic Theory

In this Appendix we present the main mathematical derivations and proofs related to the asymp-
totic results reported in the paper. We derive large sample approximations to the distribution
of the parameter constancy tests based on both the OLS-Wald and IVX-Wald statistics, under
the null hypothesis of no parameter instability. We begin by summarizing via Lemma A.1 below
the limit theory results which can be found in Phillips and Magdalinos (2009) and Kostakis et al.
(2015). We introduce the shorthand notation α∧β ≡ min(α, β) to denote the minimum operator,
employed for the stochastic dominance of the convergence rates.

Lemma A.1. Let Vxz :=
∫ ∞

0
erCV xxe

rCzdr, where V xx :=
∫ ∞

0
esCΩxxe

sCds, and Ωxx is the
long-run covariance of ut. Then, under the null hypothesis of no structural break in the predictive
regression model, the following asymptotic results hold:

(i) the sample covariance satisfies that

1
T

1+γx∧δz
2

⌊Tπ⌋∑
t=1

z̃t−1
(
ut − ūT

)
⇒ U (π) (A.1)

where U (.) is a Brownian motion with variance σ2
uṼ , where Ṽ is defined as

Ṽ =



∫ ∞

0
erCz Ωxxe

rCzdr , if γx > δz

∫ ∞

0
erCz

(
CVxz +CzV′

xzC
)
erCzdr , if γx = δz

∫ ∞

0
erCΩxxe

rCdr , if 0 < γx < δz

E
(
x0,1x

′
0,1

)
, if γx = 0.

(A.2)

where x0,t = ∑∞
j=0 (Ip +C)j ut−j is the corresponding stationary sequence of the regressor vector

xt when γx = 0.
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(ii) the sample second moment satisfies that

1

T
(

1+γx∧δz

) ⌊Tπ⌋∑
t=1

z̃t−1
(
xt−1 − x̄T−1

)′ ⇒ Ψ (π) (A.3)

where Ψ (π) has a different asymptotic convergence result as below, depending on the exponent
rates γx and δz of the original regressor and instrumental regressor respectively.

Ψ (π) =



−C−1
z

(
πΩxx +

∫ π

0
JCdJ

′
C

)
, if γx = 1

−πC−1
z

(
Ωxx +

∫ ∞

0
erCΩxxe

rCdrC

)
, if δx < γx < 1

−πCVxz , if γx = δx

π

∫ ∞

0
erCΩxxe

rCdr , if 0 < γx < δx

πE
(
x0,1x

′
0,1

)
, if γx = 0.

(A.4)

where B(.) is a p−dimensional standard Brownian motion, JC(π) =
∫ π

0 e
C(π−s)dB(π) is an

Ornstein-Uhkenbeck (OU) process and we denote with JC(π) = JC(π) −
∫ 1

0 JC(s)ds and B(π) =
B(π) −

∫ 1
0 B(s)ds the demeaned processes of J(π) and B(π) respectively.

(iii) The weakly joint convergence result applies and the asymptotic terms given by expressions
in (i) and (ii) are stochastically independent.

Notice that for summarizing the above results we used that

1
T 1+δz

T∑
t=1

zt−1z
′
t−1

plim→ V zz :=
∫ ∞

0
erCz Ωxxe

rCzdr (A.5)

Moreover, we have the weakly convergence result from Phillips and Magdalinos (2009):

1
T

1+δz
2

T∑
t=1

(zt−1 ⊗ ut) ⇒ N
(
0,V zz ⊗ Σuu

)
(A.6)

Expression (B.81) proves a mixed Gaussian limiting distribution. This, shows that the limit
distribution of T−(1+δz)/2∑T

t=1 (zt−1 ⊗ ut) is Gaussian with mean zero and covariance matrix
equal to the probability limit of T−(1+δ)/2∑T

t=1 (zt−1 ⊗ ut), which is equal to V zz ⊗ Σuu, where
V zz :=

∫∞
0 erCz Ωxxe

rCzdr. Specifically, the above Mixed Gaussianity convergence, is a powerful
result within the IVX framework and ensures the robustness of the methodology and the estima-
tion procedure. The dependence of the covariance matrix on the degree of persistence of the IVX
instrumentation methodology, induces exactly the Mixed Gaussianity. Similarly,

T−(1+δz)/2
T∑
t=1

(
xt−1 ⊗ ut

)
⇒ N

(
0,V xx ⊗ Σuu

)
, where V xx :=

∫ ∞

0
erCΩxxe

rCdr (A.7)

is proved in Lemma 3.3 of PM.
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Proof of Theorem 2.1.

Proof. We denote with x̃t = (1, x′
t)

′ and with θj = (αj , βj)′ for j = 1, 2 the parameter vector
which is obtained via the OLS estimator. An expression for obtaining the OLS estimator is

θ̂j = arg min
θj∈Rp+1

T∑
t=1

(
yt − x′

t−1θj
)2
, for j ∈ {1, 2} . (A.8)

Under the null hypothesis of no structural break, H0 : θ1 = θ2, against H1 : θ1 ̸= θ2, we obtain

(
θ̂1 − θ0

)
=
(

T∑
t=1

x̃t−1x̃
′
t−1I1t

)−1( T∑
t=1

x̃t−1utI1t

)
(
θ̂2 − θ0

)
=
(

T∑
t=1

x̃t−1x̃
′
t−1I2t

)−1( T∑
t=1

x̃t−1utI2t

)

with I1t and I2t the dummy time variables and θ0 = (α0, β0)′, the population value of the
parameter vector θ. Therefore, we have that

T
(
θ̂1 − θ0

)
=

 1
T 2

⌊Tπ⌋∑
t=1

x̃t−1x̃
′
t−1

−1 1
T

⌊Tπ⌋∑
t=1

x̃′
t−1ut


T
(
θ̂2 − θ0

)
=

 1
T 2

T∑
t=⌊Tπ⌋+1

x̃t−1x̃
′
t−1

−1 1
T

T∑
t=⌊Tπ⌋+1

x̃′
t−1ut


Then, the weakly convergence result for the estimator of β1 follows

T
(
θ̂1 − θ0

)
⇒
(∫ π

0
K̃c(r)K̃ ′

c(r)dr
)−1 (∫ π

0
K̃c(r)dBu

)
(A.9)

Similarly, for the estimator of β2 we have the following weakly convergence result

T
(
θ̂2 − θ0

)
⇒
(∫ 1

π
K̃c(r)K̃ ′

c(r)dr
)−1 (∫ 1

π
K̃c(r)dBu

)
(A.10)

In order to simplify the expression of the Wald OLS statistic we denote with

G̃c(π) :=
∫ π

0
K̃c(r)K̃ ′

c(r)dr and Hc(π) :=
∫ π

0
K̃c(r)dBu(r) (A.11)

which implies that due to the argument π in the expressions for G̃c(π) and H̃c(π)

G̃c(1) :=
∫ 1

0
K̃c(r)K̃ ′

c(r)dr and H̃c(1) :=
∫ 1

0
K̃c(r)dBu(r) (A.12)

Notice that, for example we can deduce that(∫ 1

π
K̃c(r)K̃ ′

c(r)dr
)

=
(∫ 1

0
K̃c(r)K̃ ′

c(r)dr
)

−
(∫ π

0
K̃c(r)K̃ ′

c(r)dr
)

:= G̃c(1) − G̃c(π)
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Thus, the statistical distance component of the sup Wald-OLS statistic is given by

T
(
θ̂1 − θ̂2

)
=
{

G̃c(π)−1H̃c(π) −
[
G̃c(1) − G̃c(π)

]−1[
H̃c(1) − H̃c(π)

]}
(A.13)

Denote with X = [xtI1t xtI2t] ≡ [X1 X2] then the convergence of the covariance matrix

M̃c(π) :=
[
R
(
X ′X

)−1 R′
]

=
[(

X ′
1X1
T 2

)−1
+
(
X ′

2X2
T 2

)−1]

⇒
{(∫ π

0
K̃c(r)K̃ ′

c(r)dr
)−1

+
(∫ 1

π
K̃c(r)K̃ ′

c(r)dr
)−1}

≡
{

G̃c(π)−1 +
[
G̃c(1) − G̃c(π)

]−1
}

Recall that the expression for the Wald statistic is as below

WOLS
T (π) = 1

σ̂2
u

(
θ̂1 − θ̂2

)′ [
R
(
X ′X

)−1 R′
]−1 (

θ̂1 − θ̂2
)

(A.14)

Therefore, we can now derive the limiting distribution of the sup OLS-Wald statistic in the case
of the multiple predictive regression with persistent predictors.

W̃OLS(π) ⇒ sup
π∈[π1,π2]

{
G̃c(π)−1Hc(π) −

[
G̃c(1) − G̃c(π)

]−1[
H̃c(1) − H̃c(π)

]}′

×
{

G̃c(π)−1 +
[
G̃c(1) − G̃c(π)

]−1}−1

×
{

G̃c(π)−1H̃c(π) −
[
G̃c(1) − G̃c(π)

]−1[
H̃c(1) − H̃c(π)

]}
By applying the related inverse matrix formula to M̃c(π)−1 we obtain that

S̃c(π)−1 ≡
{

G̃c(π)−1 +
[
G̃c(1) − G̃c(π)

]−1}−1

= G̃c(π) − G̃c(π)
[
G̃c(π) + G̃c(1) − G̃c(π)

]−1
G̃c(π)

= G̃c(π) − G̃c(π)G̃c(1)−1G̃c(π)

Thus, we show that the limiting distribution of the sup OLS-Wald statistic is given by

W̃OLS(π) ≡ sup
π∈[π1,π2]

WOLS
T (π) ⇒ sup

π∈[π1,π2]

{
Ñ

′
c(π)M̃ c(π)−1Ñ c(π)

}
(A.15)

with quantities M̃ c(π), Ñ c(π),G̃c(π) and H̃c(π) as defined by Theorem 2.1.
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Proof of limit result for Univariate Case.

Proof. Denote with I1t = 1{t ≤ k} and I2t = 1{t > k}. Moreover, we denote the standard
OLS estimators β̂1 and β̂2 of the corresponding model coefficients β1 and β2. Assume that the
structural break is at an unknown break point such as k = ⌊nπ⌋ for π ∈ (0, 1).

Then, using the FCLT we obtain the following weakly convergence results under the null hypoth-
esis, H0 : β1 = β2 given below

n
(
β̂1 − β0

)
=

1
n

⌊nπ⌋∑
t=1

xt−1ut

1
n2

⌊nπ⌋∑
t=1

x2
t−1

⇒

∫ π

0
Kc(r)dBu(r)∫ π

0
K2
c (r)dr

(A.16)

n
(
β̂2 − β0

)
=

1
n

n∑
t=⌊nπ⌋+1

xt−1ut

1
n2

n∑
t=⌊nπ⌋+1

x2
t−1

⇒

∫ 1

π
Kc(r)dBu(r)∫ 1

π
K2
c (r)dr

(A.17)

Thus, using (A.16) and (A.17) we obtain the following simplified expression

n
(
β̂1 − β̂2

)
= n

((
β̂1 − β0

)
−
(
β̂2 − β0

))
⇒

∫ π

0
Kc(r)dBu(r)∫ π

0
K2
c (r)dr

−

∫ 1

π
Kc(r)dBu(r)∫ 1

π
K2
c (r)dr

Denoting with X = [xt−1I1t xt−1I2t] ≡ [X1 X2] then the OLS-Wald statistic has an equivalent
representation as below

Wn(π) = 1
σ̂2
u

(
β̂1 − β̂2

)′ [
R
(
X ′X

)−1 R′
]−1 (

β̂1 − β̂2
)

(A.18)

Using the orthogonality property of X1 and X2 and via a standard matrix inversion application,
we obtain that

[
R
(
X ′X

)−1 R′
]

=

( n∑
t=1

x2
t−1I1t

)−1

+
(

n∑
t=1

x2
t−1I1t

)−1


=

n∑
t=1

x2
t−1I1t +

n∑
t=1

x2
t−1I2t(

n∑
t=1

x2
t−1I1t

)(
n∑
t=1

xt−1I2t

) =

n∑
t=1

x2
t−1(

n∑
t=1

x2
t−1I1t

)(
n∑
t=1

x2
t−1I2t

)
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Therefore, the simplified expression of the Wald statistic is given by

Wn(π) =

(
β̂1 − β̂2

)2

σ̂2
u


n∑
t=1

x2
t−1(

n∑
t=1

x2
t−1I1t

)(
n∑
t=1

x2
t−1I2t

)


−1

=

(
β̂1 − β̂2

)2

σ̂2
u

(
n∑
t=1

x2
t−1I1t

)(
n∑
t=1

x2
t−1I2t

)
n∑
t=1

x2
t−1

= n2

(
β̂1 − β̂2

)2

σ̂2
u

(
n∑
t=1

x2
t−1I1t
n2

)(
n∑
t=1

x2
t−1I2t
n2

)
n∑
t=1

x2
t−1
n2

Moreover, the following asymptotic convergence result also holds(
n∑
t=1

x2
t−1I1t
n2

)(
n∑
t=1

x2
t−1I2t
n2

)
n∑
t=1

x2
t−1
n2

⇒

(∫ π

0
K2
c (r)dr

)(∫ 1

π
K2
c (r)dr

)
∫ 1

0
K2
c (r)dr

(A.19)

Assuming that the convergence in probability σ̂u
p→ σu holds then the limiting distribution of the

Wald test under persistent regressors is given by the following expression:

W∗
n(π) ⇒ sup

π∈[π1,π2]

1
σ2
u


∫ π

0
Kc(r)dBu(r)∫ π

0
K2
c (r)dr

−

∫ 1

π
Kc(r)dBu(r)∫ 1

π
K2
c (r)dr


2 (∫ π

0
K2
c (r)dr

)(∫ 1

π
K2
c (r)dr

)
∫ 1

0
K2
c (r)dr

(A.20)

Moreover, we can simplify further the above expression incorporating the covariance terms, σu and
σv that corresponds to the innovation sequences ut and vt respectively. Recall also that we have:
Bu(r) = σuWu(r) and Kc(r) = σvJc(r) and due to the orthogonality of the two predictors which
implies that

∫ 1
0 J

2
c (r)dr =

∫ π
0 J

2
c (r)dr+

∫ 1
π J

2
c (r)dr and

∫ 1
0 Jc(r)dWu =

∫ π
0 Jc(r)dWu+

∫ 1
π Jc(r)dWu

we obtain the expression below:

∫ π

0
Kc(r)dBu(r)∫ π

0
K2
c (r)dr

=
σuσv

∫ π

0
Jc(r)dWu(r)

σ2
v

∫ π

0
J2
c (r)dr

= σu
σv

∫ π

0
Jc(r)dWu(r)∫ π

0
J2
c (r)dr

(A.21)



APPENDIX A. 143

Similarly we have that,∫ 1

π
Kc(r)dBu(r)∫ 1

π
K2
c (r)dr

=
σuσv

∫ 1

π
Jc(r)dWu(r)

σ2
v

∫ 1

π
J2
c (r)dr

= σu
σv

∫ 1

π
Jc(r)dWu(r)∫ 1

π
J2
c (r)dr

(A.22)

and also (∫ π

0
K2
c (r)dr

)(∫ 1

π
K2
c (r)dr

)
∫ 1

0
K2
c (r)dr

=
σ2
vσ

2
v

(∫ π

0
J2
c (r)dr

)(∫ 1

π
J2
c (r)dr

)
σ2
v

∫ 1

0
J2
c (r)dr

(A.23)

which implies that the limiting distribution of the sup-Wald statistic can be simplified

W∗
n(π) = 1

σ2
u


∫ π

0
Kc(r)dBu(r)∫ π

0
K2
c (r)dr

−

∫ 1

π
Kc(r)dBu(r)∫ 1

π
K2
c (r)dr


2 (∫ π

0
K2
c (r)dr

)(∫ 1

π
K2
c (r)dr

)
∫ 1

0
K2
c (r)dr

= 1
σ2
u

σuσv
∫ π

0
Jc(r)dWu(r)∫ π

0
J2
c (r)dr

− σu
σv

∫ 1

π
Jc(r)dWu(r)∫ 1

π
J2
c (r)dr


2
σ2
v

(∫ π

0
J2
c (r)dr

)(∫ 1

π
J2
c (r)dr

)
∫ 1

0
J2
c (r)dr

Therefore, we obtain that

W∗
n(π) ⇒ sup

π∈[π1,π2]


∫ π

0
Jc(r)dWu∫ π

0
J2
c (r)dr

−

∫ 1

π
Jc(r)dWu∫ 1

π
J2
c (r)dr


2 (∫ π

0
J2
c (r)dr

)(∫ 1

π
J2
c (r)dr

)
∫ 1

0
J2
c (r)dr

(A.24)

which with simple algebra can be further simplified to the following expression

W∗
n(π) ⇒ sup

π∈[π1,π2]

[∫ π

0
Jc(r)dWu −

∫ π
0 J

2
c (r)dr∫ 1

0 J
2
c (r)dr

∫ 1

0
Jc(r)dWu

]2

(∫ 1

0
J2
c (r)dr −

∫ π

0
J2
c (r)dr

)(∫ π

0
J2
c (r)dr

) (A.25)

Expression (A.25) gives the main result of this paper, which is the limiting distribution of the
sup-Wald statistic for testing for a single structural break when the regressor is highly persistent.
Furthermore, letting Mc(π) :=

∫ π

0
Jc(r)dWu and Qc(π) :=

∫ π

0
J2
c (r)dr.

W∗
n(π) ⇒ sup

π∈[π1,π2]

[
Mc(π) − Qc(π)

Qc(1)Mc(1)
]2

Qc(π)
[
1 − Qc(π)

Qc(1)

] (A.26)
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Proof of Theorem 2.2.

Proof. Let Y denote the vector with all demeaned values of yt and X be the matrix collecting all
demeaned values of xt−1, that is,

Y = (y1 − ȳT , y2 − ȳT , ..., yT − ȳT )′ and X = (x0 − x̄T−1, x1 − x̄T−1, ..., xT−1 − x̄T−1)′ .

Similarly, we use U to denote the corresponding demeaned ut vector. Furthermore, for any
1 ≤ t ≤ T , we define Xt to be a T × p matrix, whose first t rows are the same as X while
the rest are all zeros. Moreover, let Z = (z0, z1, ...zT−1)′ collect all the IVX instruments, and
Zt = (z0, ..., zt, 0, ...., 0)′ be the corresponding time−t truncated matrix. Given these notations,
we express the original predictive regression model as

Y = Xβ2 +Xtη + U (A.27)

where η := β2 − β1 measures the magnitude of structural break. Moreover, we denote with ϕt to
the corresponding estimator which captures the break size associated with the sample partition at
time t. Therefore, given any particular t, testing for structural break in the parameter vector β is
equivalent to testing the null hypothesis ηt = 0. Define with Mxz = Ip −X (Z ′X)−1 Z ′, which is
idempotent and orthogonal to both X and Z and allows to rewrite (A.27) in its canonical form1.
Multiplying Mxz on both sides of (A.27), we deduce that MxzY = MxzXtϕt +MxzU . Now,
using MxzZt as the instrumental variables for MxzXt, we obtain an estimator for the parameter
ηt given by

η̃t =
(
Z ′
tMxzXt

)−1
Z ′
tMxzY (A.28)

Moreover, it holds that η̃t = β̃IV X2 − β̃IV X1 . Thus, the limiting distribution is given by

η̃t − ηt =
(
Z ′
tMxzXt

)−1
Z ′
tMxzU

=
(
Z ′
tXt − Z ′

tX
(
Z ′X

)−1
Z ′Xt

)−1(
Z ′
tUy − Z ′

tXt
(
Z ′X

)−1
Z ′U

)

=

⌊Tπ⌋∑
t=1

z̃t (xt − x̄T−1)′ −
⌊Tπ⌋∑
t=1

z̃t (xt − x̄T−1)′
(

T∑
t=1

z̃t (xt − x̄T−1)′
)−1 ⌊Tπ⌋∑

t=1
z̃t (xt − x̄T−1)′

−1

×

⌊Tπ⌋∑
t=1

z̃t (ut − ūT )′ −
⌊Tπ⌋∑
t=1

z̃t (xt − x̄T−1)′
(

T∑
t=1

z̃t (xt − x̄T−1)′
)−1 T∑

t=1
z̃t (ut − ūT )


(A.29)

1Notice that the reparametrization of the model to its canonical form allows to shift the coordinates which
transforms the model to its more general form within the exponential family.
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We denote the weakly convergence of the above moments as below

⌊Tπ⌋∑
t=1

z̃t (xt − x̄T−1) ⇒ Ψ(π) and
T∑
t=1

z̃t (xt − x̄T−1) ⇒ Ψ(1) (A.30)

Applying the asymptotic results given by Lemma A.1 to (A.29) we obtain

T
1+γx∧δz

2 (η̃t − ηt) ⇒
[
Ψ(π) − Ψ(π)Ψ(1)−1Ψ(π)′

]−1(
U(π) − Ψ(π)Ψ(1)−1U(1)

)

Next, we focus on covariance estimators for Q̃1(t) = (Z ′
tXt)−1 (Z ′

tZt) (X ′
tZt)

−1 and the corre-
sponding one for Q̃2(t).

Q̃1(t) =

⌊Tπ⌋∑
t=1

z̃t (xt − x̄T−1)′

−1⌊Tπ⌋∑
t=1

z̃tz̃
′
t

⌊Tπ⌋∑
t=1

(xt − x̄T−1) z̃′
t

−1

(A.31)

which implies that

T 1+γx∧δzQ̃1(t) ⇒ Ψ(π)−1
(
πσ2

uṼ
)

Ψ(π)−1′ (A.32)

Similarly,

Q̃2(t) =

 T∑
t=⌊Tπ⌋+1

z̃t (xt − x̄T−1)′

−1 T∑
t=⌊Tπ⌋+1

z̃tz̃
′
t

 T∑
t=⌊Tπ⌋+1

(xt − x̄T−1) z̃′
t

−1

(A.33)

which implies that

T 1+γx∧δzQ̃2(t) ⇒
(
Ψ(1) − Ψ(π)

)−1 ((1 − π)σ2
uṼ
) (

Ψ(1) − Ψ(π)
)−1′

(A.34)

Combining all the above we obtain the following result for the Wb(t) test statistic

Wb(t) =
(
β̃IV X2 (t) − β̃IV X1 (t)

)′ [
Q̃1(t) + Q̃2(t)

]−1
(
β̃IV X2 (t) − β̃IV X1 (t)

)
=
{
T

1+γx∧δz
2

(
β̃IV X2 (t) − β̃IV X1 (t)

)}′
×
[
T 1+γx∧δz

(
Q̃1(t) + Q̃2(t)

)]−1

×
{
T

1+γx∧δz
2

(
β̃IV X2 (t) − β̃IV X1 (t)

)}
(A.35)

which implies the following weakly convergence result

WIV X
β (t) ⇒

(
U(π) − Ψ(π)Ψ(1)−1U(1)

)′[
Ψ(π) − Ψ(π)Ψ(1)−1Ψ(π)′

]−1′

×
[
Ψ(π)−1

(
πσ2

yṼ
)

Ψ(π)−1′ +
(
Ψ(1) − Ψ(π)

)−1 ((1 − π)σ2
yṼ
) (

Ψ(1) − Ψ(π)
)−1′

]−1

×
[
Ψ(π) − Ψ(π)Ψ(1)−1Ψ(π)′

]−1(
U(π) − Ψ(π)Ψ(1)−1U(1)

)
(A.36)
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To simplify the notation of expression (A.36), we denote with A = Ψ(π), C = Ψ(1) and Σ = σ2
uṼ .

Then, we have the following equivalent form of the IVX-Wald statistic

WIV X
β (t) ≡

(
U(π) −AC−1U(1)

)′(
A−AC−1A′

)−1′

×
[
πA−1ΣA−1′ + (1 − π)

(
C −A

)−1Σ
(
C −A

)−1′
]−1

×
(
A−AC−1A′

)−1(
U(π) −AC−1U(1)

)
(A.37)

which can be written as below

WIV X
β (t) ≡

(
U(π) −AC−1U(1)

)′

×
(
π

[(
A−AC−1A′

)
A−1ΣA−1′

(
A−AC−1A′

)′]

+ (1 − π)
[(
A−AC−1A′

)
(C −A)−1 Σ (C −A)−1′

(
A−AC−1A′

)′])
×
(
U(π) −AC−1U(1)

)
=
(
U(π) −AC−1U(1)

)′

×
(
π
(
I −AC−1)Σ(I −AC−1)′ + (1 − π)

(
AC−1

)
Σ
(
AC−1

)′
)−1

×
(
U(π) −AC−1U(1)

)
.

(A.38)

Notice that since U(.) is known to be a Brownian motion with variance Σ, the above expression
can be further simplified as following

WIV X
β (t) ≡

(
B(π) −AC−1B(1)

)′

×
(
π
(
I −AC−1)(I −AC−1)′ + (1 − π)

(
AC−1

) (
AC−1

)′
)−1

×
(
B(π) −AC−1B(1)

)
.

(A.39)

Substituting back to expression (A.39) the notation for A = Ψ(π), C = Ψ(1) and Σ = σ2
uṼ ,

WIV X
β (t) ⇒

(
B(π) − Ψ(π)Ψ(1)−1B(1)

)′

×
(
π
(
Ip − Ψ(π)Ψ(1)−1)(Ip − Ψ(π)Ψ(1)−1)′ + (1 − π)

(
Ψ(π)Ψ(1)−1

) (
Ψ(π)Ψ(1)−1

)′
)−1

×
(
B(π) − Ψ(π)Ψ(1)−1B(1)

)
.

where B(.) is a standard Brownian motion.
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Using the asymptotic results given by Lemma A.1, we simplify expression Ψ(π)Ψ(1)−1 to

R(π) := Ψ(π)Ψ(1)−1 =



(
πΩxx +

∫ π

0
JCdJ

′
C

)(
Ωxx +

∫ 1

0
JCdJ

′
C

)−1
, if γx = 1

πIp , 0 < γx < 1.

(A.40)

Notice that the last asymptotic result, that is, the case where 0 < γx < 1 holds because under
the assumption of mildly integrated (or near-stationary) predictors, then we have that Ψ(1) :=∑T
t=1 z̃t (xt − x̄T−1) ⇒ −ΩxxC

−1
z by expression (20) in PM (2009). It also holds that Ψ(π) :=∑⌊Tπ⌋

t=1 z̃t (xt − x̄T−1) ⇒ −πΩxxC
−1
z , which implies that R(π) = πIp

Therefore, by denoting the Brownian functional above with N(π) =
(
B(π) − R(π)B(1)

)
and

M(π) =
(
π (Ip −R(π)) (Ip −R(π))′ + (1 − π)R(π)R(π)′

)
, then we obtain

W̃IV X
β (t) ⇒ sup

π∈[π1,π2]

{
N(π)′M(π)−1N(π)

}
(A.41)

Proof of Corollary 2.2.

Proof. When 0 < γx < 1, we have that R(π) = πIp which implies that

M(π) = π (Ip − πIp) (Ip − πIp)′ + (1 − π)πIp (πIp)′ =
[
π(1 − π)2 + (1 − π)π2

]
Ip = π(1 − π)Ip

(A.42)

Hence, in this case, the limiting distribution in Theorem ?? will reduce to

W̃IV X
β (t) ⇒ sup

π∈[π1,π2]

[
B(π) − πB(1)

]′[
B(π) − πB(1)

]
π(1 − π) . (A.43)

Thus, the above proof demonstrates that when we have predictors generated via the LUR spec-
ification with 0 < γx < 1 (i.e., MI predictors) and we consider testing the null hypothesis of no
parameter instability then the limiting distribution of the IVX Wald statistic converges to a NBB
similar to the result of Andrews (1993) in the case of linear regression models, which allows us to
use already tabulated critical values.
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Proof of Corollary 2.3. (i). Using the above notations, it’s straightforward to obtain that
under the null hypothesis β1 = β2 = 0, we obtain that

WIV X
T = β̃IV X

′
Q̃

−1
R β̃IV X ⇒ U(1)′

[
Ψ(1)−1′ΣΨ(1)−1

]−1
U(1). (A.44)

Combining this result with Theorem 2.2, we can deduce that

Wjoint
β = WIV X

T + WIV X
β (t)

⇒


Ψ(1)−1U(1)

U(τ) − Ψ(π)Ψ(1)−1U(1)


′

Ψ(1)−1′ΣΨ(1)−1 0p×p

0p×p ∆p×p


−1

Ψ(1)−1U(1)

U(π) − Ψ(τ)Ψ(1)−1U(1)



∆ := π
(
Ip − Ψ(π)Ψ(1)−1)Σ(Ip − Ψ(π)Ψ(1)−1)′ + (1 − π)

(
Ip − Ψ(π)Ψ(1)−1

)
Σ
(
Ip − Ψ(π)Ψ(1)−1

)′

Therefore, we obtain that

Wjoint
β = WIV X

T + WIV X
β (t)

⇒


Ψ(1)−1B(1)

B(π) − Ψ(π)Ψ(1)−1B(1)


′

Ψ(1)−1′Ψ(1)−1 0p×p

0p×p ∆̃p×p


−1

Ψ(1)−1B(1)

B(π) − Ψ(π)Ψ(1)−1B(1)



∆̃ := π
(
Ip − Ψ(π)Ψ(1)−1)(Ip − Ψ(π)Ψ(1)−1)′ + (1 − π)

(
Ip − Ψ(π)Ψ(1)−1

) (
Ip − Ψ(π)Ψ(1)−1

)′

which shows that

Wjoint
β ⇒


B(1)

B(π) −R(π)B(1)


′

Ip 0p×p

0p×p M(π)


−1

B(1)

B(π) −R(π)B(1)


≡ B(1)B(1)′ +N(π)′M(π)−1N(π)

Since the first component of the above decomposition is independent of π, then by the Continuous
Mapping Theorem, we conclude that

W̃joint
β = sup

π∈[π1,π2]

{
WIV X
T + WIV X

β (t)
}

⇒ B(1)B(1)′ + sup
π∈[π1,π2]

{
N(π)′M(π)−1N(π)

}
.

(ii). In case that γx < 1, by Corollary 3.1 it holds that the second component of the Wβ test
statistic reduces to a functional of a standard Brownian bridge B(π) − πB(1). Then, since both
B(1) and B(π) − πB(1) are Gaussian processes which implies that Cov

(
B(1), B(π) − πB(1)

)
=

π− π = 0. Therefore, these two stochastic quantities are independent of each other2. Hence, the
proof of the statement follows.

2To validate the asymptotic independence of the two BM functionals, we can apply properties of the BM and
prove that the covariance of the two terms is zero, which ensures independence.
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Proof of Proposition 2.1. Under the null hypothesis, H0 : α1 = α2 and β1 = β2 = β, there is
no break in the model intercept. In this section we consider in more details the estimator of the
model intercept based on the IVX instrumentation before proving the asymptotic distribution
given by Proposition 2.1. In particular, we propose to estimate the model intercept using the
generated instrument instead of the predictor, we refer to this estimate as αIV Z and the econo-
metric intuition is explained below. Based on the IVX estimation procedure, the corresponding
IVX estimate for the model intercept is given by α̂ = ȳT − β̃IV X x̄T−1. However, we notice that
due to the presence of the predictors, then the limit theory for the estimate of the model intercept
will vary with the degree of persistence of predictors. We can see this below

√
T
(
α̂IV X − α

)
=

√
T ūT −

[
T

1+γx∧δz
2

(
β̃IV X − β

)] [
T− γx∧δz

2 x̄T−1
]
, (A.45)

where ūT = 1
T

∑T
t=1 ut. Notice that both

√
T ūT and T

1+γx∧δz
2

(
β̃ − β

)
are both Op(1), while the

order of convergence of the last term depends on the persistence level of predictors. We have the
following convergence rates

T∑
t=1

xt−1 =



Op

(
T−1/2

)
, if γx = 1

Op

(
T 1/2+γx

)
, if 0 < γx < 1

Op

(
T 3/2

)
, γx > 1.

(A.46)

We can observe that the term T− γx∧δz
2 x̄T−1 will dominate in the limit in the case that γx >

(δz + 1) /2 and vanish if the reverse holds. In the case that γx = (δz + 1) /2, all three terms
appear in the asymptotic distribution which will depend on an unknown parameter β. To simplify
the asymptotic theory we need to derive we estimate the model intercept based on the generated
endogenous instrument, that is, αIV Z = ȳT − β̃IV X z̄T−1, where z̄T−1 = 1

T−1
∑T
j=2 z̃j−1. The

advantage of the IVZ model estimate is that the persistence level of the instrument z̃t is controlled
by the choice of the tuning parameters δz and cz therefore the abstract degree of persistence is
filtered out. Moreover, the particular choice of the estimate for the model intercept works as a
power enhancement mechanism against nonzero β values, as seen below(

α̂IV Z − α
)

= ūT −
(
β̃IV X − β

)
z̄T−1 + β (x̄T−1 − z̄T−1) , (A.47)

The order of the first term is Op

(
T−1/2

)
. Moreover, we can show that the second term is

asymptotically dominated by the first term, while the third term does not converge unless the
parameter space for β is within the neighbourhood of zero. Therefore, power against the presence
of predictability when a model intercept is included in the model is achieved when we control
the convergence rate of the third term above. Next, we show that the second term of (A.47) is
asymptotically dominated by the first term by expanding further the expression

√
T
(
β̃IVX − β

)
z̄T−1 ≡

[
T

1+γx∧δz
2

(
β̃IVX − β

)]
.

[
T−(1+ γx∧δz

2 )
T∑
t=1

z̃t−1

]
. (A.48)
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The first term above is Op(1) due to the convergence property of the IVX estimator to the mixed
Gaussian distribution as established by Phillips and Magdalinos (2009). To establish the order of
the second term we consider the convergence rate of the term ∑T

t=1 z̃t−1. For instance, by Lemma
A2 in the Online Appendix of KMS we have that

T∑
t=1

z̃t−1 =


Op

(
T

γx∧1
2 +δz

)
, if δz < γz

Op

(
T γx+ δz

2
)

, if 0 < γx < δz.

(A.49)

Hence, we have that the second term of (A.47) will be Op

(
T

γx∧1+δz
2 +1

)
. Since γx ∧ 1 + δz < 2,

this implies that the order of the second term is op(1). Therefore, we prove that the second term
of
(
α̂IV Z − α

)
is asymptotically dominated by the first term. For the third term of (A.47) we

aim to show that is asymptotically dominated by the first term when β is small enough.

Thus, we rewrite with
√
Tβ (x̄T−1 − z̄T−1) = β 1√

T

∑T
t=1 (xt−1 − z̃t−1). Using the representation

formula of the instrument given by expression (23) of Phillips and Magdalinos (2009), we find an
equivalent expression, that is, β 1√

T

∑T
t=1 (xt−1 − z̃t−1) = −βCzT ( 1

2 +δz)∑T
t=1 ψt−1, where ψt−1 =∑t

j=1R
t−j
T xj−1. Hence, if we set for simplicity Cz = Ip indicating a common degree of persistence

across the instruments, we then obtain the following probability bound for this expression

∥∥∥√Tβ (x̄T−1 − z̄T−1)
∥∥∥ ≤ ∥β∥T−( 1

2 +δz)
T∑
t=1

∥ψt−1∥ ≤ ∥β∥T−( 1
2 +δz)T sup

2≤t≤T
∥ψt−1∥

= ∥β∥T ( 1
2 −δz) sup

2≤t≤T
∥ψt−1∥

≤ ∥β∥T ( 1
2 −δz)Op

(
T

γx
2 +δz

)
= ∥β∥ Op

(
T

γx
2 +δz

)
.

Notice that the above result is justified due to the uniform bound of ∥ψt−1∥, which is shown to
be Op

(
T

γx
2 +δz

)
by PM. Thus, if β = op

(
T− 1+γx

2
)
, then

∥∥∥√Tβ (x̄T−1 − z̄T−1)
∥∥∥ = op(1) and the

third component of
(
α̃IV Z − α

)
will also be asymptotically dominated. Therefore, when β is a

non-zero constant, this term will dominate, and this is the reason we obtain non-zero local power
under the alternative hypothesis of predictability.

Proof of Proposition 2.2.

For the proof of Proposition 2.2, we have already proved most of the required results.The only
step we need to additionally show is that the test statistics Wa(t) and Wb(t) are asymptotically
independent of each other. Notice that since the test statistic Wa(t) is driven by ∑⌊Tr⌋

t=1 ut, while
the test statistic Wb(t) is driven by ∑⌊Tr⌋

t=1 z̃t−1ut. These two partial sums (invariance principles)
have a joint weakly convergence to two independent Brownian motions, as shown by Proposition
A1 in Phillips and Magdalinos (2009). Hence, the asymptotic independence is guaranteed. Then,
convergence of the test statistic Wαβ(t) follows by an application of CMT.
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Supplement to Chapter 3

B.1 Asymptotic Theory

We provide detailed mathematical derivations for the proofs of main asymptotic theory. Relevant
references are Phillips and Magdalinos (2009) and Qu (2008).

B.1.1 Proofs of auxiliary theory results

For b ∈ Rp we define (see, Lee (2016) and Galvao et al. (2014)) the empirical process:

Gn (τ, b) := n−(1+γx)/2
n∑
t=1
zt−1 ×

{
ψτ

(
ut (τ) − x′

t−1b
)

− EFt−1

[
ψτ

(
ut (τ) − x′

t−1b
)] }

such that (τ, b) ∈ Tι ×B 7→ Gn (τ, b) is stochastically equicontinous for any ϵ > 0.

Proof of Corollary 3.2

The consistency of the OLS quantile estimator is derived by Koenker and Xiao (2006). Here, we
prove the convergence rate for the IVX-QR estimator by employing standard methods from the
literature of extremum estimators and the regularity conditions of Bickel (1975) (see Lee (2016)
and Angrist et al. (2006)). Thus, we aim to show that(

β̂
ivx−qr
n (τ) − β (τ)

)
= OP

(
n−(1+γz)/2

)
. (B.1)

Proof. For the remaining of the proof we denote with β̂ivx−qr
n (τ) := β̂

⋆

n(τ) to simplify notation.
Then, consider the estimator distance such that Ê⋆n(τ) =

(
β̂
⋆

n(τ) − β⋆(τ)
)
, which implies that by

evaluating Gn(τ, b) at b = Ê⋆n(τ) we obtain the following expression

Gn(τ, b)
∣∣∣∣
b=Ê

⋆

n(τ)
= n− (1+γz)

2

n∑
t=1
z̃t−1

{
ψτ

(
ut (τ) − x′

t−1Ê⋆n(τ)
)

− EFt−1

[
ψτ

(
ut (τ) − x′

t−1Ê⋆n(τ)
)] }
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Next, we apply the result1 given by Lemma 3.2, which implies that for some constant C1

sup
{∥∥Gn (τ, b) −Gn (τ,0)

∥∥ : ∥b∥ ≤ n(1+γx)/2C1
}

= oP(1). (B.2)

Moreover, for b = 0 the following empirical process holds

Gn(τ,0) = n− (1+γz)
2

n∑
t=1

z̃t−1

{
ψτ

(
ut (τ)

)
− EFt−1

[
ψτ

(
ut (τ)

)]}
(B.3)

Therefore, the argument of Lemma 3.2 is expanded as below

Gn(τ, b) −Gn(τ,0) = n− (1+γz)
2

n∑
t=1
z̃t−1

{
ψτ

(
ut (τ) − x′

t−1Ê⋆n(τ)
)

− EFt−1

[
ψτ

(
ut (τ) − x′

t−1Ê⋆n(τ)
)] }

− n− (1+γz)
2

n∑
t=1
z̃t−1

{
ψτ

(
ut (τ)

)
− EFt−1

[
ψτ

(
ut (τ)

)] }
= n− (1+γz)

2

n∑
t=1
z̃t−1ψτ

(
ut (τ) − x′

t−1Ê⋆n(τ)
) P→ 0

− n− (1+γz)
2

n∑
t=1
z̃t−1EFt−1

[
ψτ

(
ut (τ) − x′

t−1Ê⋆n(τ)
)]

− n− (1+γz)
2

n∑
t=1
z̃t−1ψτ

(
ut (τ)

)
+ n− (1+γz)

2

n∑
t=1

EFt−1

[
ψτ

(
ut (τ)

)]
= 0

Taking the absolute value since the result holds for the Euclidean norm we obtain∣∣∣∣Gn(τ, b) −Gn(τ,0)
∣∣∣∣ = n− (1+γz)

2

n∑
t=1

{
z̃t−1ψτ

(
ut (τ)

)
+ z̃t−1EFt−1

[
ψτ

(
ut (τ) − x′

t−1Ê
⋆

n(τ)
)]}

+ oP(1).

Similarly, with the embedded normalization matrices an equivalent expression holds∣∣∣∣Gn(τ, b) −Gn(τ,0)
∣∣∣∣ =

n∑
t=1

{
Z̃t−1,nψτ

(
ut (τ)

)
+ Z̃t−1,nEFt−1

[
ψτ

(
ut (τ) −X ′

t−1,nÊ
⋆

n(τ)
)]}

+ oP(1).

Then, the conditional expectation EFt−1

[
ψτ

(
ut(τ) − x′

t−1Ê⋆n(τ)
)]

can be expanded around the
point E(τ) = 0 using the first-order taylor expansion.

Since the term β̂
⋆(τ)xt−1 is strictly monotonic, uniformly on {∥xt−1∥ ≤ δ} where ι ≤ τ ≤ 1 − ι

for some δ > 0 (see, Theorem 1 of Neocleous and Portnoy (2008)). Hence, we have that

EFt−1

[
ψτ

(
ut(τ) − x′

t−1Ê⋆n(τ)
)]

≡ EFt−1

[
ψτ

(
ut(τ) − x′

t−1E⋆n(τ)
)]∣∣∣∣

E(τ)=0

+
∂EFt−1

[
ψτ

(
ut(τ) − x′

t−1E(τ)
)]

∂E(τ)

∣∣∣∣
E(τ)=0

× Ê⋆n(τ) + oP
(
Ê⋆n(τ)

)
.

Note that E(τ) = 0 implies that β (τ) = β⋆ (τ). Therefore, using the definition of ψτ(.) and by
applying standard results for the conditional expectation operator we obtain

EFt−1

[
ψτ

(
ut(τ) − E(τ)′xt−1

)]
= τ − EFt−1

[
1
{
ut(τ) < E(τ)′xt−1

}]
= τ −

∫ x′
t−1E(τ)

∞
fut(τ),t−1(s)ds

1The norm ∥.∥ represents the Euclidean norm, i.e., ∥x∥ =
(∑p

i=1 x2
i

)1/2 for x ∈ Rp.
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Hence, by differentiating expression (B.4) around the neighbourhood of E(τ) we get

∂EFt−1

[
ψτ

(
ut(τ) − x′

t−1E(τ)
)]

∂E(τ)

∣∣∣∣
E(τ)=0

= −x′
t−1fut(τ),t−1(0) (B.4)

Therefore, it holds that

EFt−1

[
ψτ

(
ut(τ) − x′

t−1
)]

= −x′
t−1fut(τ),t−1(0)Ê⋆n(τ) + oP(1) (B.5)

Next substituting the limit given by (B.5) into the original expansion for the term
∣∣Gn(τ, b) −

Gn(τ,0)
∣∣ as well as by replacing xt−1 with the corresponding embedded normalization matrix

Xt−1,n we obtain the expression∣∣∣∣Gn(τ, b) −Gn(τ,0)
∣∣∣∣

≡ Knz

(
τ,β⋆(τ)

)
−

n∑
t=1

fut(τ),t−1(0)Z̃t−1,nX
′
t−1n

− 1+γz
2

(
β̂
⋆

n(τ) − β⋆(τ)
)

+ oP(1) (B.6)

where

Knz

(
τ,β⋆(τ)

)
:= D−1

n

n∑
t=1

Z̃t−1ψτ

(
ut(τ)

)
(B.7)

Moreover, we define with

Mnz
(
τ,β⋆(τ)

)
:=

n∑
t=1

fut(τ),t−1(0)Z̃t−1,nX̃
′
t−1,n (B.8)

Next, by noting that from Lemma 3.2 it holds that sup
{

∥Gn(τ, b) −Gn(τ,0)∥
}

= oP(1), then
by rearranging expression (B.6) we obtain that

n
1+γz

2
(
β̂
⋆

n(τ) − β⋆(τ)
)

=
[
Mnz

(
τ,β⋆(τ)

)]−1
Knz

(
τ,β⋆(τ)

)
+ oP(1) (B.9)

which proves the result given by expression (B.1). In summary, we proved that β̂⋆n (τ) is a
consistent estimator of β⋆ (τ) with convergence rate

√
n γz

√
n where γz ∈ (0, 1). Furthermore,

using the result given by expression (B.9) we can prove the limit results summarized in Corollary
3.2. Notice that for the proof of Corollary 3.3, we use the fact that

1√
n

n∑
t=1

ψτ

(
ut(τ)

) P→ N
(
0, τ(1 − τ)

)
for some τ ∈ (0, 1), (B.10)

since due to the structure of the model the quantile regression induced innovation term ψτ

(
ut(τ)

)
∼

mds
(
0, τ(1 − τ)

)
, i.e., it has a covariance which depends on the quantile τ.
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Proof of Corollary 3.3

Part (i)

We begin by considering the limiting distribution of the functional,

Knx

(
τ,θolsn (τ)

)
:= D−1

n

n∑
t=1

Xt−1ψτ

(
ut(τ)

)
⇒ Kx

(
τ,θols(τ)

)
(B.11)

Kx

(
τ,θols(τ)

)
≡



 Bψτ
(1)∫ 1

0
Jc(r)dBψτ

 LUR,

N

0, τ(1 − τ) ×

1 0′

0 V xx

 MI.

Proof. Mildly Integrated: (MI)

By expanding the expression for Knx
(
τ,θolsn (τ)

)
, for the mildly integrated regressors case we

obtain the following expression

Knx

(
τ,θolsn (τ)

)
= D−1

n

n∑
t=1

Xt−1ψτ

(
ut(τ)

)
=

 1√
n

0′

0 n− 1+γx
2 Ip


(p+1)×(p+1)

×
n∑
t=1

[
1
x′
t−1

]
(p+1)×n

× ψτ

(
ut(τ)

)

=


1√
n

n∑
t=1

ψτ

(
ut(τ)

)
⊗ 1′

(1×n)

n− 1+γx
2

n∑
t=1

xt−1ψτ

(
ut(τ)

)
⊗ Ip


(p+1)×n

⇒ Np+1

(
0, τ(1 − τ) ×

[
1 0′

0 V xx

])
.

Since the two scalar processes
{ 1√

n

n∑
t=1

ψτ

(
ut(τ)

)}
and

{
n− 1+γx

2

n∑
t=1
xt−1ψτ

(
ut(τ)

)}
are uncorre-

lated with negligible higher-order moment terms, thus mutually independent Gaussian with zero
mean and variance 1 and and V xx respectively. Therefore, a joint convergence to a Gaussian
random variate holds due to their conditional independence. To see this, consider the following
limit

n− 1+γx
2

n∑
t=1
xt−1ψτ

(
ut(τ)

)
⊗ Ip ⇒ N

(
0, τ(1 − τ)V xx

)
(B.12)

when 0 < γx < 1.
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Remark B.1. Further details regarding these derivations can be found in the proof of Theorem
1 in Xiao (2009). Notice that although the proof of Theorem 1 in Xiao (2009) corresponds to
the framework of quantile cointegrating regression model, after appropriate modifications we can
obtain the limit given by expression (B.12). Furthermore, joint convergence of these two terms
holds to a Gaussian random variable with mean vector zero and covariance matrix determined
by the covariance of each individual term.

Additionally, the following invariance principle for the corresponding partial sum process holds
for the exponent rate 0 < γx < 1 such that

n− 1+γx
2

⌊λn⌋∑
t=1

xt−1ψτ

(
ut(τ)

)
⊗ Ip ⇒ N

(
0, τ(1 − τ)λV xx

)
. (B.13)

which is useful when deriving the convergence limit for the OLS based functionals.

Local Unit Root: (LUR)

Knx

(
τ,θolsn (τ)

)
= D−1

n

n∑
t=1

Xt−1ψτ

(
ut(τ)

)

=

 1√
n

0′

0 1
n
Ip


(p+1)×(p+1)

×
n∑
t=1

[
1′

(1×n)
xt−1

]
(p+1)×n

× ψτ

(
ut(τ)

)

=


1√
n

n∑
t=1

ψτ

(
ut(τ)

)
⊗ 1′

1
n

n∑
t=1

xt−1ψτ

(
ut(τ)

)
⊗ Ip


(p+1)×n

⇒

 Bψτ
(1)∫ 1

0
Jc(r)dBψτ


(p+1)×n

where xt =
(
Ip + Cp

n

)
xt−1 + vt, for 1 ≤ t ≤ n, since Xt−1 =

[
1 x′

t−1
]′.

Therefore, for deriving the limit result above the following weakly convergence arguments can be
applied

1√
n

n∑
t=1

ψτ

(
ut(τ)

)
⇒ Bψτ(1) and 1√

n

⌊λn⌋∑
t=1

ψτ

(
ut(τ)

)
⇒ Bψτ(λ) (B.14)

for some 0 < λ < 1 and τ ∈ (0, 1), where Bψτ(1) is a standard Brownian motion that corresponds
to the error function ψτ

(
ut(τ)

)
.

Remark B.2. Overall, in the case of LUR regressors (i.e., under high persistence) the convergence
to Brownian motion functionals occurs due to the different normalization rates employed for these
terms. Furthermore, since the local unit root coefficient is a general case that covers abstract
degrees of persistence, then in practise we have convergence to correlated Brownian motions.
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Part (ii)

Next, we consider the limiting distribution of the functional, Lnx
(
τ,θolsn (τ)

)
for the two persistence

classes separately as explained below.

Local Unit Root: (LUR)

We obtain the following expression

Lnx
(
τ,θolsn (τ)

) def= D−1
n

[
n∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

]
D−1
n

=

 1√
n

0

0 1
n
Ip




n∑
t=1

fut(τ),t−1(0)
n∑
t=1

fut(τ),t−1(0)x′
t−1

n∑
t=1

fut(τ),t−1(0)xt−1

n∑
t=1

fut(τ),t−1(0)xt−1x
′
t−1


 1√

n
0

0 1
n
Ip



=


1√
n

n∑
t=1

fut(τ),t−1(0) 1√
n

n∑
t=1

fut(τ),t−1(0)x′
t−1

1
n

n∑
t=1

fut(τ),t−1(0)xt−1 ⊗ Ip
1
n

n∑
t=1

fut(τ),t−1(0)xt−1x
′
t−1 ⊗ Ip


 1√

n
0

0 1
n
Ip



=


1
n

n∑
t=1

fut(τ),t−1(0) 1
n

1√
n

n∑
t=1

fut(τ),t−1(0)x′
t−1 ⊗ Ip

1
n

1√
n

n∑
t=1

fut(τ),t−1(0)xt−1 ⊗ Ip
1
n2

n∑
t=1

fut(τ),t−1(0)xt−1x
′
t−1 ⊗ Ip



⇒ fut(τ)(0) ×

 1
∫ 1

0
Jc(r)′∫ 1

0
Jc(r)

∫ 1

0
Jc(r)Jc(r)′


Since, the following convergence in probability holds

1
n

n∑
t=1

fut(τ),t−1(0) P→ E
[
fut(τ),t−1(0)

]
=: fut(τ)(0) (B.15)

Moreover, recall that for the case of LUR regressors it holds that

Dn

(
θ̂
qr

n (τ) − θqr(τ)
)

=
[√

n 0
0 nIp

](
α̂qrn (τ) − α(τ)
β̂
qr

n (τ) − β(τ)

)

≡

{
D−1
n

[
n∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

]
D−1
n

}−1

×

{
D−1
n

n∑
t=1

Xt−1ψτ

(
ut(τ)

)}

⇒

fut(τ)(0) ×

 1
∫ 1

0
Jc(r)′∫ 1

0
Jc(r)

∫ 1

0
Jc(r)Jc(r)′




−1

×

 Bψτ
(1)∫ 1

0
Jc(r)dBψτ


which follows by an application of the continuous mapping theorem to the first term of the

expression above. Notice that in the case of persistent regressors, the limiting distribution of the
normalized quantile OLS based estimator is nonstandard and nonpivotal.



APPENDIX B. 157

Mildly Integrated: (MI)

We obtain the following expression

Lnx
(
τ,θolsn (τ)

) def= D−1
n

[
n∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

]
D−1
n

=


1
n

n∑
t=1

fut(τ),t−1(0) 1
n1+γx

2

n∑
t=1

fut(τ),t−1(0)x′
t−1 ⊗ Ip

1
n1+γx

2

n∑
t=1

fut(τ),t−1(0)xt−1 ⊗ Ip
1

n1+γx

n∑
t=1

fut(τ),t−1(0)xt−1x
′
t−1 ⊗ Ip


⇒ fut(τ)(0) ×

[
1 0′

0 V xx

]
(B.16)

Since it holds that,

1
n1+γx

2

n∑
t=1
xt−1

P→ 0 and 1
n1+γx

n∑
t=1
xt−1x

′
t−1

P→ V xx when γx ∈ (0, 1),

where the second limit follows by Lemma B3 in the Appendix of Kostakis et al. (2015). Therefore,
for the case of mildly integrated regressors in the model we obtain

Dn
(
θ̂
qr

n (τ) − θqr(τ)
)

=
[√

n 0
0 n

1+γx
2 Ip

](
α̂qrn (τ) − α(τ)
β̂
qr

n (τ) − β(τ)

)

≡
{
D−1
n

[
n∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

]
D−1
n

}−1

×
{
D−1
n

n∑
t=1
Xt−1ψτ

(
ut(τ)

)}

⇒
{
fut(τ)(0) ×

[
1 0′

0 V xx

]}−1

× N
(

0, τ(1 − τ) ×
[

1 0′

0 V xx

])

= 1
fut(τ)(0) ×

[
1 0′

0 V −1
xx

]
× N

(
0, τ(1 − τ) ×

[
1 0′

0 V xx

])

≡ N
(

0, τ(1 − τ)
fut(τ)(0)2 ×

[
1 0′

0 V −1
xx

])
(B.17)

by an application of the continuous mapping theorem to the first term.

Remark B.3. Notice also that the limit results given by Corollary 3.3 can be used to prove the
limiting distribution provided by Corollary 3.1 of the paper. This can be done, by employing
the trick presented in the proof of Theorem 1 in Xiao (2009). In particular, by linearizing the
optimization function in terms of an arbitrary centered quantity Dn

(
θ̂n(τ) − θ(τ)

)
. Thus, using

the convexity lemma we take the distributional limit of the linearized part and then minimize to
get the desired expression as in (B.9).



APPENDIX B. 158

Proof of Corollary 3.4

Proof. For the IVX based estimation of the quantile regression model, we use the dequantile
procedure proposed by Lee (2016). Thus, yt(τ) = yt − α(τ) + OP(n−1/2). Furthermore, we
employ the following embedded normalization matrices

Z̃t−1,n := D̃nz̃t−1 and X̃t−1,n := D̃nxt−1, where D̃n := n
1+(γx∧γz)

2 Ip (B.18)

Part (i)

The limit holds regardless of the stochastic dominance of the exponent rates γx and γz

Knz
(
τ,βivxn (τ)

)
:=

n∑
t=1
Z̃t−1ψτ

(
ut(τ)

)
≡ n

1+(γx∧γz)
2

n∑
t=1
z̃t−1ψτ

(
ut(τ)

)
⊗ Ip

⇒ N
(
0, τ(1 − τ)V cxz

)
. (B.19)

Part (ii)

Mnz
(
τ,βivxn (τ)

)
:=

n∑
t=1

fut(τ),t−1(0)Z̃t−1,nZ̃
′
t−1,n ⇒ fut(τ)(0) × V cxz (B.20)

which can be easily shown, since ∑n
t=1 z̃t−1z̃

′
t−1

P→ V cxz.

Part (iii)

Then, Z̃t−1,nX̃
′
t−1,n ≡ D̃nz̃t−1x̃

′
t−1D̃

′
n. Therefore, the limit result follows as below

Mnz
(
τ,βivxn (τ)

)
:=
[
n∑
t=1

fut(τ),t−1(0)Z̃t−1,nX̃
′
t−1,n

]
≡ D̃n

[
n∑
t=1

fut(τ),t−1(0)z̃t−1x̃
′
t−1

]
D̃′
n

⇒ fut(τ)(0) × Γcxz

Since, a convergence in probability holds 1
n

∑n
t=1 fut(τ),t−1(0) P→ E

[
fut(τ),t−1(0)

]
=: fut(τ)(0).

Moreover, we have that

D̃n
(
β̂
ivx−qr
n (τ) − β(τ)

)
≡
{
D̃n

[
n∑
t=1

fut(τ),t−1(0)z̃t−1x
′
t−1

]
D̃′
n

}−1

×
{
D̃n

n∑
t=1
z̃t−1ψτ

(
ut(τ)

)}

⇒
{
fut(τ)(0) × Γcxz

}−1
× N

(
0, τ(1 − τ)V cxz

)
≡ 1
fut(τ)(0) × Γ−1

cxz × N
(
0, τ(1 − τ)V cxz

)
= N

(
0, τ(1 − τ)
fut(τ)(0)2 Γ−1

cxzV cxz

(
Γ−1
cxz

)′
)

≡ N
(

0, τ(1 − τ)
fut(τ)(0)2

(
ΓcxzV −1

cxzΓ′
cxz

)−1
)
.
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The above result proves the Gaussian random variable limit given by Corollary 3.2 which holds
for both the cases of local unit root and mildly integrated regressors in the quantile predictive
regression model. Furthermore, in the case we employ the alternative IVX-QR estimator proposed
by Lee (2016) (IVZ estimator); in which case the set of nonstationary regressors, xt−1, is replaced
by the mildly integrated instruments, z̃t−1, we obtain the following limit result

D̃n
(
β̂
ivz−qr
n (τ) − β(τ)

)
⇒
{
fut(τ)(0) × V cxz

}−1
× N

(
0, τ(1 − τ)V cxz

)
= 1
fut(τ)(0) × V −1

cxz × N
(
0, τ(1 − τ)V cxz

)
= N

(
0, τ(1 − τ)
fut(τ)(0)V

−1
cxz

)
(B.21)

since, ∑n
t=1 fut(τ),t−1(0)Z̃t−1,nZ̃

′
t−1,n ⇒ fut(τ)(0) × V cxz, which is nuisance-parameter free for

both the case of local unit root or mildly integrated regressors in the model.

Remark B.4. Notice that in a standard time series quantile regression with stationary covariates
it holds that the regression τ−quantile is asymptotically normal, with

√
n
(
β̂n − β(τ)

)
d→ N

(
0, τ(1 − τ)D−1

1 (τ)D0D
−1
1 (τ)

)
. (B.22)

with an appropriate defined covariance matrix which is a function of the moments of the under-
line error distribution (see, Goh and Knight (2009)). Therefore, we can clearly see that under
nonstationarity the covariance matrix of the Gaussian random variate is stochastic due to the
presence of the nuisance parameter of persistence.

Remark B.5. Notice that the objective function for the setting of the nonstationary quantile
predictive regression model, becomes globally convex in the parameter. Hence, the method based
on the convexity lemma by Pollard (1991) is applicable. Therefore, our proofs for the asymptotic
theory of test of parameter restrictions is based on the asymptotic theory framework proposed by
Xiao (2009). Consequently, the limit results for the linear parameter restrictions can be employed
when constructing the parameter specific restrictions that correspond to structural break tests.
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Alternative IVZ-QR estimator

Following the framework proposed by Lee (2016) we also consider the limiting distribution of
the IVX-QR estimator when the original persistent regressors are replaced by the instrumental
variables in the optimization function. The particular approach is convenient as it significantly
reduces the computational time by avoiding the nonconvex optimization procedure given by
expression (3.20) which requires to use a grid search with several local optima. More specifically,
we consider

γ̂ivx−qr
n (τ) := arg min

γ∈Rp

n∑
t=1

ρτ
(
yt(τ) − z̃′

t−1γ
)
. (B.23)

Corollary B.1. Under the null hypothesis H0 : β(τ) = 0, it holds that

D̃n
(
γ̂ivx−qr
n (τ) − β(τ)

)
⇒ N

(
0, τ(1 − τ)
fut(τ)(0)2V

−1
cxz

)
(B.24)

both for near unit root and mildly integrated predictors, where D̃n = n
1+γx∧γz

2 Ip.

Lemma B.1. (Self-normalized IVX-QR) Under Assumption 3.1 it holds that,

f̂ut(τ)(0)2

τ(1 − τ)
(
γ̂ivx−qr
n (τ) − β(τ)

)′ (
Z̃ ′Z̃

)−1 (
γ̂ivx−qr
n (τ) − β(τ)

)
⇒ χ2

p (B.25)

such that f̂ut(τ)(0)2 is a consistent estimator of fut(τ)(0)2 and p degrees of freedom.

Therefore, Lemma B.1 provides a uniform inference limit result which allows to easily obtain
critical values since is nuisance-parameter free. Furthermore, if we are interested to test for
example the predictability of a specific subgroup among the predictors, say H0 : β1(τ) = β2(τ) =
0, then the formulation of the Wald statistic with the linear restrictions matrix can be employed.
In the particular example, the restrictions matrix takes the form R =

[
I2,02×(p−2)

]
. Then,

generalizing the specific example for testing a set of linear restrictions, implies that the null
hypothesis is formulated as H0 : Rβ(τ) = 0 where R is a r × p known restriction matrix.

Then, the limiting distribution for the IVX-Wald statistic for the quantile predictive regression
is given by the following expression

f̂ut(τ)(0)2

τ(1 − τ)
(
Rγ̂ivx−qr

n (τ)
)′
[
R
(
Z̃ ′Z̃

)−1
R′
]−1 (

Rγ̂ivx−qr
n (τ)

)
⇒ χ2

p−2

where χ2
p−2 denotes the chi-square random variate with (p − 2) degrees of freedom such that

P
(
χ2 ≥ χ2

p−2;α

)
= α, where 0 < α < 1 denotes the significance level.
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Proof of Lemma C.4

We have that

Wivx−qr
n (τ) =

f̂ut(τ)(0)2

τ(1 − τ)

(
β̂
ivx−qr
n (τ) − β(τ)

)′(
X ′P Z̃X

)(
β̂
ivx−qr
n (τ) − β(τ)

)
⇒ χ2

p (B.26)

where(
X ′P Z̃X

)
:=
(
X ′Z̃

) (
Z̃ ′Z̃

)−1 (
Z̃ ′X

)
≡

(
n∑
t=1

xt−1z̃
′
t−1

)(
n∑
t=1

z̃t−1z̃
′
t−1

)−1( n∑
t=1

xt−1z̃
′
t−1

)′

Moreover, we use the embedded normalization matrices such that(
n∑
t=1

fut(τ),t−1(0)
)

×

(
n∑
t=1

Z̃t−1,nX
′
t−1,n

)
≡

(
n∑
t=1

fut(τ),t−1(0)Z̃t−1,nX
′
t−1,n

)
P→ fut(τ)(0)Γcxz

and the fact that
(

n∑
t=1

zt−1z̃
′
t−1

)
P→ V cxz.

Proof. From Corollary 3.2 we have that

D̃n

(
β̂
ivx−qr
n (τ) − β (τ)

)
=
(

n∑
t=1

fut(τ),t−1(0)Z̃t−1,nX
′
t−1,n

)−1( n∑
t=1

fut(τ),t−1(0)Z̃t−1,nψτ

(
ut(τ)

))

⇒ N
(

0, τ(1 − τ)
fut(τ)(0)2 ×

(
ΓcxzV −1

cxzΓ′
cxz

)−1
)

Denote the consistent sample estimator of f̂ut(τ)(0), with fut(τ)(0) where

f̂ut(τ)(0) =
n∑
t=1

fut(τ),t−1(0) (B.27)

Therefore, the following asymptotic convergence result follows(
X ′P Z̃X

)
⇒
[
fut(τ)(0)Γcxz

]
× V −1

cxz ×
[
fut(τ)(0)Γcxz

]′ ≡ fut(τ)(0)2(ΓcxzV −1
cxzΓ′

cxz

)
Thus, we obtain

W ivx−qr
n (τ) ⇒ 1

τ(1 − τ) × N
(

0, τ(1 − τ)
fut(τ)(0)2 ×

(
ΓcxzV −1

cxzΓ′
cxz

)−1
)

×
{
fut(τ)(0)2 ×

(
ΓcxzV −1

cxzΓ′
cxz

)}
× N

(
0, τ(1 − τ)
fut(τ)(0)2 ×

(
ΓcxzV −1

cxzΓ′
cxz

)−1
)
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W ivx−qr
n (τ) ⇒

fut(τ)(0)2

τ(1 − τ)
τ(1 − τ)
fut(τ)(0)2 ×

[
N
(
0,
(
ΓcxzV −1

cxzΓ′
cxz

)−1) ]′

×
(
ΓcxzV −1

cxzΓ′
cxz

)−1 ×
[
N
(
0,
(
ΓcxzV −1

cxzΓ′
cxz

)−1) ]
= N (0, 1)

[(
ΓcxzV −1

cxzΓ′
cxz

)−1/2]′ ×
(
ΓcxzV −1

cxzΓ′
cxz

)
×
[(

ΓcxzV −1
cxzΓ′

cxz

)−1/2]N (0, 1)

=
[
N (0, 1)

]2 ≡ χ2
2.

which is a standard χ2−distribution with 2 degrees of freedom.

Proof of Proposition 3.1

Proof.

Part (i)

First we consider the limit expression for the case of mildly integrated regressors

L := Ĵn
(
λ, τ0, θ̂

ols

n (τ0)
)

− λĴn
(

1, τ0, θ̂
ols

n (τ0)
)

=
(
D−1
n

[
n∑
t=1

X ′
t−1Xt−1

]
D−1
n

)−1/2
D−1

n

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)
− λD−1

n

n∑
t=1

Xt−1ψτ

(
ut(τ0)

)
⇒

{[
1 0′

0 V xx

]}−1/2{
N

(
0, τ0(1 − τ0)λ

[
1 0′

0 V xx

])
− λN

(
0, τ0(1 − τ0)

[
1 0′

0 V xx

])}

=
√
τ0(1 − τ0)

{[
1 0′

0 V xx

]}−1/2{
N

(
0, λ

[
1 0′

0 V xx

])
− λN

(
0,
[

1 0′

0 V xx

])}

=
√
τ0(1 − τ0)

{[
1 0′

0 V xx

]}−1/2{[
1 0′

0 V xx

]}1/2

×
{

N (0, λIp) − λN (0, Ip)
}

≡
√
τ0(1 − τ0)

[
W p(λ) − λW p(1)

]
.

Therefore, for some 0 < λ < 1 and τ0 ∈ (0, 1)

SQols
n (λ; τ0) ⇒ sup

λ∈[0,1]

∥∥BBp(λ)
∥∥

∞. (B.28)

which is a nuisance-parameter free distribution that holds under the null hypothesis. In summary,
suppose that the data are generated by the quantile predictive regression model and Assumptions
3.1-3.2 are satisfied. Then, under the null null hypothesis H(A)

0 the fluctuation type statistics
weakly converge to the limiting distribution given by expression (B.28) for mildly integrated
regressors for some unknown break-point location 0 < λ < 1.
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Second, for local unit root regressors (high persistence) then, following limit holds

L := Ĵn
(
λ, τ0, θ̂

ols

n (τ0)
)

− λĴn
(

1, τ0, θ̂
ols

n (τ0)
)

=
(
D−1
n

[
n∑
t=1

X ′
t−1Xt−1

]
D−1
n

)−1/2
D−1

n

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)
− λD−1

n

n∑
t=1

Xt−1ψτ

(
ut(τ0)

)
⇒

 1
∫ 1

0
Jc(r)′∫ 1

0
Jc(r)

∫ 1

0
Jc(r)Jc(r)′


−1/2

×


 Bψτ

(λ)∫ λ

0
Jc(r)dBψτ

− λ

 Bψτ
(1)∫ 1

0
Jc(r)dBψτ



≡

 1
∫ 1

0
Jc(r)′∫ 1

0
Jc(r)

∫ 1

0
Jc(r)Jc(r)′


−1/2

×

 Bψτ
(λ) − λBψτ

(1)∫ λ

0
Jc(r)dBψτ

− λ

∫ 1

0
Jc(r)dBψτ



≡

 1
∫ 1

0
Jc(r)′

(1×p)∫ 1

0
Jc(r)(p×1)

∫ 1

0
Jc(r)Jc(r)′

(p×p)


−1/2

(p+1)×(p+1)

×

[
BBψτ

(λ)(1×n)

J Bψτ
(λ)(p×n)

]
(p+1)×n

(B.29)

where BBψτ(λ) := Bψτ(λ) − λBψτ(1) and J Bψτ(λ) :=
∫ λ

0
J c(r)dBψτ − λ

∫ 1

0
J c(r)dBψτ . Thus,

under the null hypothesis the OLS based functional with local unit root regressors converges into
a nonstandard and nonpivotal limiting distribution.

Part (ii)

The limit expression of the fluctuation type test based on the IVX estimator is given as

L := Ĵn
(
λ, τ0, β̂

ivx

n (τ0)
)

− λĴn
(

1, τ0, β̂
ivx

n (τ0)
)

=
(

n∑
t=1

Z̃t−1,nX
′
t−1,n

)−1/2


⌊λn⌋∑
t=1

Z̃t−1,nψτ

(
ut(τ0)

)
− λ

n∑
t=1

Z̃t−1,nψτ

(
ut(τ0)

)
=
(
D̃−1
n

[
n∑
t=1

z̃t−1x
′
t−1

]
D̃−1
n

)−1/2
D̃−1

n

⌊λn⌋∑
t=1

z̃t−1ψτ

(
ut(τ0)

)
− λD̃−1

n

n∑
t=1

z̃t−1ψτ

(
ut(τ0)

)
⇒ Γ−1/2

cxz ×
{

N
(

0, τ0(1 − τ0)λV cxz

)
− λN

(
0, τ0(1 − τ0)V cxz

)}
=
√

τ0(1 − τ0) × Γ−1/2
cxz ×

{
N
(

0, λV cxz

)
− λN

(
0,V cxz

)}
≡
√
τ0(1 − τ0)

[
W p(λ) − λW p(1)

]
.

provided that Γcxz ≡ V xx, which applies when γx ∈ (0,γz). Proposition 3.1 (ii) shows that the
limiting distribution of the fluctuation type test is nonstandard in general when the IVX estimator
is employed since we employ limit results which hold for both LUR and MI regressors. However,
when the coefficient of persistence of regressors has an exponent rate with an absolute value
less than the exponent rate of the mildly integrated instruments, then the asymptotic covariance
matrix of the Gaussian variant has a simpified form due to the stochastic dominance property of
these covariance matrices.
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Part (iii)

We obtain the following limit result which holds for both LUR and MI regressors

L := Ĵ ivz
n

(
λ, τ0, β̂

ivz

n (τ0)
)

− λĴ ivz
n

(
1, τ0, β̂

ivz

n (τ0)
)

=
(
Z̃ ′Z̃

)−1/2

D̃−1
n

⌊λn⌋∑
t=1

z̃t−1ψτ

(
yt − z̃′

t−1β̂
ivz

n (τ0)
)

− λD̃−1
n

n∑
t=1

z̃t−1ψτ

(
yt − z̃′

t−1β̂
ivz

n (τ0)
)

=
(
D̃−1
n

[
n∑
t=1

z̃t−1z̃
′
t−1

]
D̃−1
n

)−1/2
D̃−1

n

⌊λn⌋∑
t=1

z̃t−1ψτ

(
yt − z̃′

t−1β0(τ0)
)

− λD̃−1
n

n∑
t=1

xt−1ψτ

(
yt − z̃′

t−1β0(τ0)
)

⇒ V −1/2
cxz ×

{
N
(

0, τ0(1 − τ0)λV cxz

)
− λN

(
0, τ0(1 − τ0)V cxz

)}
= V −1/2

cxz ×
√
τ0(1 − τ0) ×

{
N
(

0, λV cxz

)
− λN

(
0,V cxz

)}
=
√
τ0(1 − τ0) V −1/2

cxz × V 1/2
cxz ×

{
N
(
0, λIp

)
− λN

(
0, Ip

)}
=
√
τ0(1 − τ0)

[
W p(λ) − λW p(1)

]
, since V −1/2

cxz × V 1/2
cxz = Ip.

which implies that

1√
τ0(1 − τ0)

[
Jn
(
λ, τ0, β̂

ivz

n (τ0)
)

− λJn
(
1, τ0, β̂

ivz

n (τ0)
)]

⇒
√
τ0(1 − τ0)√
τ0(1 − τ0)

[
W p(λ) − λW p(1)

]

Thus, for some 0 < λ < 1 and τ0 ∈ (0, 1) it holds that

SQivz
n (λ; τ0) ⇒ sup

λ∈[0,1]

∥∥BBp(λ)
∥∥

∞ (B.30)

Overall, it seems that the fluctuation type statistics are non-pivotal, at the first glance, for all
estimators and across the two persistence classes, due to the dependence of their limiting distri-
butions on the nuisance coefficient of persistence; appearing in the estimation of the covariance
matrix V cxz of the Gaussian variant that the corresponding partial sum processes converge to.
However, the IVZ based statistic for both types of persistence induce an approximation which
weakly converges into a Brownian bridge type limit. In practise, when we utilize the IVZ esti-
mator (see also Theorem 3.2 and Proposition 3.2 in Lee (2016)) then the limiting distribution of
the moment matrix between the covariates and the residuals of the model simplifies, and thus
the overall limit is nuisance-parameter free. Furthermore, a similar limit for the IVX based test
hold in the case of mildly integrated regressors. A nonstandard limit distribution appears in the
case of high persistence (e.g., LUR) for both the OLS and IVX based test statistics.
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Proof of Proposition 3.2

We need to prove the following limit result

SWols
n

(
λ; τ0

)
⇒ sup

λ∈[0,1]

∥∥BBp+1(λ)
∥∥2

λ(1 − λ) (B.31)

where the exponent rate that captures the degree of persistence for the original regressors can be
γx = 1 or γx ∈ (0, 1). In particular to prove the Brownian Bridge limit, we need to derive the
limiting distribution of the term Jnx

(
λ, τ0, θ̂

ols

n (τ0)
)

− λJnx
(
1, τ0, θ̂

ols

n (τ0)
)
.

Using Definition 3.3, for the case of mildly integrated regressors, γx ∈ (0, 1), it holds that

J ols
nx

(
λ, τ0, θ̂

ols

n (τ0)
)

:=
(
X ′X

)−1/2
⌊λn⌋∑
t=1

Xt−1ψτ

(
yt −X ′

t−1θ̂
ols

n (τ0)
)

⇒
√
τ0(1 − τ0) ×

[
W p+1(λ) − λW p+1(1)

]
. (B.32)

where W p+1(.) is a p−vector of independent Wiener processes and the convergence holds because{
xt−1ψτ

(
yt −x′

t−1β0(τ0)
)}

is a sequence of martingale differences under the null. The particular
limit is derived in the proof of Proposition 3.1.

Part (i)

Proof. Let Xt−1 =
(
1,x′

t−1
)′ the design matrix and θ(τ0) =

(
α(τ0),β′(τ0)

)′ to be the parameter
vector. Then, to derive the asymptotic distribution of the OLS-Wald test we employ the following
functional

Ŝolsnx
(
λ, τ0, θ̂

ols

n (τ0)
)

:= D−1
n

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)
, for some 0 < λ < 1, (B.33)

where ut(τ0) =
(
yt − X ′

t−1θ̂
ols

n (τ0)
)

with τ0 ∈ (0, 1). Then, the OLS based estimator for the
subsample 1 ≤ t ≤ ⌊λn⌋ denoted with θ̂ols1 (λ; τ0) is given by

θ̂
ols

1 (λ; τ0) =

1
k

⌊λn⌋∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

−11
k

⌊λn⌋∑
t=1

Xt−1yt

 (B.34)

Therefore, it holds that

∥∥∥∥Ŝolsnx (λ, τ0, θ̂
ols

1 (λ; τ0)
)∥∥∥∥ ≤

∥∥∥∥ D−1
n

⌊λn⌋∑
t=1

Xt−1

[
1
{
yt = X ′

t−1θ̂
ols

1 (λ; τ0)
}] ∥∥∥∥

≤ (p+ 1)D−1
n max

1≤i≤n
∥Xt−1∥ P→ 0. (B.35)

which implies that Ŝolsnx
(
λ, τ0, θ̂

ols

1 (λ; τ0)
)

= oP(1).
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Moreover, for the estimator of the first subsample we obtain the following expression

Dn

(
θ̂
ols

1 (λ; τ0) − θ0(τ0)
)

p→
{
fut(τ)(0)λVxx

}−1
× Solsnx

(
λ, τ0,θ0(τ0)

)
+ oP(1)

≡ 1
fut(τ)(0)

1
λ
V−1
xx × N

(
0, τ0(1 − τ0)λ

[
1 0′

0 V xx

])

= 1
fut(τ)(0)

1
λ

√
τ0(1 − τ0)V−1

xx ×

[
1 0′

0 V xx

]1/2

× N
(
0, λ

)
= 1
fut(τ)(0)

1
λ

√
τ0(1 − τ0) × V−1/2

xx ×W p+1(λ). (B.36)

since it holds that Solsx
(
λ, τ0,θ(τ0)

)
≡ N

(
0, τ0(1 − τ0)λ

[
1 0′

0 V xx

])
. Similarly,

Dn

(
θ̂
ols

2 (λ; τ0) − θ0(τ0)
)

p→
{
fut(τ)(0)(1 − λ)Vxx

}−1
× Solsnx

(
λ, τ0,θ0(τ0)

)
+ oP(1)

≡ 1
fut(τ)(0)

1
1 − λ

√
τ0(1 − τ0) × V−1/2

xx ×
[
W p+1(1) −W p+1(λ)

]
. (B.37)

Therefore, combining (B.36) and (B.37) we obtain the following expression

Dn

[
∆θ̂

ols

n (λ; τ0)
]

⇒ − 1
fut(τ)(0)

1
λ(1 − λ)

√
τ0(1 − τ0) × V−1/2

xx ×
[
W p+1(λ) − λW p+1(1)

]
.

Moreover, the convergence of the covariance matrix follows as below

plim
n→∞

V̂
ols

n (λ; τ0) ≡ τ0(1 − τ0) ×
{

plim
n→∞

V̂
ols

1n (λ; τ0) + plim
n→∞

V̂
ols

2n (λ; τ0)
}

(B.38)

Therefore, it holds that

plim
n→∞

V̂
ols

1n (λ; τ0) (B.39)

=
{

plim
n→∞

L̃nx

(
τ0,θ

ols
n (τ0)

)}−1
plim
n→∞

D−1
n

⌊λn⌋∑
t=1

Xt−1X
′
t−1

D−1
n


{

plim
n→∞

L̃nx

(
τ0,θ

ols
n (τ0)

)}−1

=

plim
n→∞

D−1
n

⌊λn⌋∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

D−1
n


−1plim

n→∞
D−1
n

⌊λn⌋∑
t=1

Xt−1X
′
t−1

D−1
n


×

plim
n→∞

D−1
n

⌊λn⌋∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

D−1
n


−1

≡
{
fut(τ)(0)λVxx

}−1
×
{
λVxx

}
×
{
fut(τ)(0)Vxx

}−1

= 1
fut(τ)(0)2

1
λ
V−1
xx (B.40)



APPENDIX B. 167

Similarly, we obtain that

plim
n→∞

V̂
ols

2n (λ; τ0) ⇒ 1
fut(τ)(0)2

1
1 − λ

V−1
xx (B.41)

Thus,

plim
n→∞

V̂
ols

n (λ; τ0) ≡ τ0(1 − τ0)
fut(τ)(0)2 V−1

xx

{ 1
λ

+ 1
1 − λ

}
= 1
fut(τ)(0)2

τ0(1 − τ0)
λ(1 − λ) V−1

xx (B.42)

which implies that

Wols
n (λ; τ0) := Dn

{
∆θ̂olsn (λ; τ0)

}′[
V̂ n(λ; τ0)

]−1{
∆θ̂olsn (λ; τ0)

}
⇒ 1

fut(τ)(0)2
τ0(1 − τ0)
[λ(1 − λ)]2

[
W p+1(λ) − λW p+1(1)

]′ (V−1/2
xx

)′
×
{
fut(τ)(0)2 λ(1 − λ)

τ0(1 − τ0)Vxx
}

× V−1/2
xx

[
W p+1(λ) − λW p+1(1)

]
≡ 1
λ(1 − λ)

[
W p+1(λ) − λW p+1(1)

]′[
W p+1(λ) − λW p+1(1)

]
. (B.43)

Hence, we have that

SWols
n (λ; τ0) := sup

λ∈Λη

Dn

{
∆θ̂olsn (λ; τ0)

}′
×
[
V̂ n(λ; τ0)

]−1
×
{

∆θ̂olsn (λ; τ0)
}

⇒ sup
λ∈Λη

[
W p+1(λ) − λW p+1(1)

]′[
W p+1(λ) − λW p+1(1)

]
λ(1 − λ)

≡ sup
λ∈Λη

∥∥BBp+1(λ)
∥∥2

λ(1 − λ) , for γx ∈ (0, 1), (B.44)

where BBp+1(λ) is a Brownian Bridge process, which holds for the case of mildly integrated
regressors, that is, γx ∈ (0, 1) and holds even under the presence of model intercept. Next, we
provide of some auxiliary derivations employed for Part (i).

Proof.

θ̂
ols

1 (λ; τ0) =

1
κ

⌊λn⌋∑
t=1

Xt−1X
′
t−1

−11
κ

⌊λn⌋∑
t=1

Xt−1yt


=

1
κ

⌊λn⌋∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

−11
κ

⌊λn⌋∑
t=1

Xt−1
[
X ′

t−1θ0(τ0) + ψτ

(
ut(τ0)

)]
= θ0(τ0) +

1
κ

⌊λn⌋∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

−11
κ

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)+ oP(1).
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Thus,

Dn

(
θ̂
ols

1 (λ; τ0) − θ0(τ0)
)

=

D−1
n

⌊λn⌋∑
t=1

Xt−1X
′
t−1

D−1
n

−1D−1
n

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)+ oP(1).

which implies that

Dn

(
θ̂
ols

1 (λ; τ0) − θ0(τ0)
)

⇒
{
λVxx

}−1 × N
(
0, τ0(1 − τ0)λVxx

)
≡ 1
λ

√
τ0(1 − τ0)V−1

xx × V1/2
xx ×W p+1(λ)

= 1
λ

√
τ0(1 − τ0) × V−1/2

xx ×W p+1(λ). (B.45)

Recall that

Solsnx
(
λ, τ0,θ

ols
n (τ0)

)
:= D−1

n

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)
, for (λ, τ0) ∈ (0, 1),

where ut(τ0) =
(
yt −X ′

t−1θn(τ0)
)
. Thus, Solsnx

(
λ, τ0,θ

ols
n (τ0)

)
⇒ N

(
0, τ0(1 − τ0)λ

[
1 0′

0 V xx

])
.

Denote with Vxx :=
[

1 0′

0 V xx

]
, which implies that

Solsnx
(
λ, τ0,θ

ols
n (τ0)

)
⇒ N

(
0, τ0(1 − τ0)λVxx

)
≡
√
τ0(1 − τ0) × V−1/2

xx ×W p+1(λ).

Similarly, we can prove that

Dn

(
θ̂
ols

2 (λ; τ0) − θ0(τ0)
)

⇒ 1
1 − λ

√
τ0(1 − τ0) × V−1/2

xx ×
[
W p+1(1) −W p+1(λ)

]
.

Practically, the above results can be deduced from Assumption 3.2 (b) such that

sup
r∈[0,λ]

∣∣∣∣∣∣ 1
n1+γx

⌊λn⌋∑
t=1

xt−1x
′
t−1 − rE

[
xt−1x

′
t−1
]∣∣∣∣∣∣ = oP(1), as n → ∞. (B.46)

where E
[
xt−1x

′
t−1
]

≡ V xx, which implies that 1
n1+γx

⌊λn⌋∑
t=1

xt−1x
′
t−1

p→ λV xx. Similarly,

sup
r∈(λ,1]

∣∣∣∣∣∣ 1
n1+γx

n∑
t=⌊λn⌋+1

xt−1x
′
t−1 − rE

[
xt−1x

′
t−1
]∣∣∣∣∣∣ = oP(1), as n → ∞. (B.47)

which implies that 1
n1+γx

n∑
t=⌊λn⌋+1

xt−1x
′
t−1

p→ (1 − λ)V xx.



APPENDIX B. 169

Part (ii)

Next, we investigate the asymptotic behaviour of the OLS-Wald test statistic in the case of local
unit root regressors (i.e., high persistent). To minimize complexity of notation for the derivations
of this proof we denote with

Sxx :=

 1
∫ 1

0
Jc(r)′∫ 1

0
Jc(r)

∫ 1

0
Jc(r)Jc(r)′

 and Sxx(λ) :=

 λ

∫ λ

0
Jc(r)′∫ λ

0
Jc(r)

∫ λ

0
Jc(r)Jc(r)′

 (B.48)

Moreover, it holds that
(
D−1
n

[
n∑
t=1
Xt−1X

′
t−1

]
D−1
n

)
⇒ Sxx and

D−1
n

⌊λn⌋∑
t=1

Xt−1X
′
t−1

D−1
n

 ⇒

 λ

∫ λ

0
J c(r)′∫ λ

0
J c(r)

∫ λ

0
J c(r)J c(r)′

 ,when γx = 1. (B.49)

Proof. Therefore, for LUR regressors, γx = 1, we have that

Dn

(
θ̂
ols

1 (λ; τ0) − θ0(τ0)
)

=

D−1
n

⌊λn⌋∑
t=1

Xt−1X
′
t−1

D−1
n

−1D−1
n

⌊λn⌋∑
t=1

Xt−1ψτ

(
ut(τ0)

)+ oP(1)

which implies that

Dn

(
θ̂
ols

1 (λ; τ0) − θ0(τ0)
)

⇒ S−1
xx (λ) ×

 Bψτ(λ)∫ λ

0
J c(r)dBψτ

 (B.50)

Dn

(
θ̂
ols

2 (λ; τ0) − θ0(τ0)
)

⇒
(
Sxx(1) − Sxx(λ)

)−1 ×

 Bψτ(1) −Bψτ(λ)∫ 1

0
J c(r)dBψτ −

∫ λ

0
J c(r)dBψτ

 (B.51)



APPENDIX B. 170

Therefore, combining (B.50) and (B.51) we obtain the following expression

Dn

[
∆θ̂olsn (λ; τ0)

]

⇒


[
Sxx(1) − Sxx(λ)

]−1 ×
{
Bψτ(1) −Bψτ(λ)

}
− S−1

xx (λ) ×Bψτ(λ)[
Sxx(1) − Sxx(λ)

]−1 ×
{∫ 1

0
J c(r)dBψτ −

∫ λ

0
J c(r)dBψτ

}
− S−1

xx (λ) ×
∫ λ

0
J c(r)dBψτ



≡
[
Sxx(1) − Sxx(λ)

]−1 ×

 Bψτ(1) −Bψτ(λ)∫ 1

0
J c(r)dBψτ −

∫ λ

0
J c(r)dBψτ

− S−1
xx (λ) ×

 Bψτ(λ)∫ λ

0
J c(r)dBψτ


(B.52)

Then, the OLS-Wald test for testing the null hypothesis of no parameter instability in the non-
stationary quantile predictive regression model at an unknown break-point location κ = ⌊λn⌋ is
given by the following expression

Wols
n (λ; τ0) := τ0(1 − τ0)Dn

{
∆θ̂olsn (λ; τ0)

}′[
V̂ n(λ; τ0)

]−1{
∆θ̂olsn (λ; τ0)

}
(B.53)

Furthermore, we study the limiting variance of the OLS-Wald test under the null hypothesis. In
particular, the convergence of the covariance matrix follows as below

plim
n→∞

{
V̂
ols

1n (λ; τ0)
}

≡
{

plim
n→∞

Lnx
(
τ0,θ

ols
n (τ0)

)}−1
plim
n→∞

D−1
n

⌊λn⌋∑
t=1

Xt−1X
′
t−1

D−1
n


{

plim
n→∞

Lnx
(
τ0,θ

ols
n (τ0)

)}−1

=

plim
n→∞

D−1
n

⌊λn⌋∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

D−1
n


−1

×

plim
n→∞

D−1
n

⌊λn⌋∑
t=1

Xt−1X
′
t−1

D−1
n


×

plim
n→∞

D−1
n

⌊λn⌋∑
t=1

fut(τ),t−1(0)Xt−1X
′
t−1

D−1
n


−1

≡
{
fut(τ)(0)Sxx(λ)

}−1
× Sxx(λ) ×

{
fut(τ)(0)Sxx(λ)

}−1

= 1
fut(τ)(0)2S

−1
xx (λ). (B.54)

and

plim
n→∞

{
V̂
ols

2n (λ; τ0)
}

⇒ 1
fut(τ)(0)2

[
Sxx(1) − Sxx(λ)

]−1
. (B.55)
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Therefore,

plim
n→∞

{
V̂
ols

n (λ; τ0)
}

⇒ 1
fut(τ)(0)2

{
S−1
xx (λ) +

[
Sxx(1) − Sxx(λ)

]−1}
. (B.56)

We can also simplify further the term
{

plim
n→∞

V̂
ols

n (λ; τ0)
}−1

= fut(τ)(0)2
[
Sxx(λ)−Sxx(λ)S−1

xx (1)Sxx(λ)
]
.

Denote with

∆ols
0
(
λ; τ0

)
:=
[
Sxx(1) − Sxx(λ)

]−1 ×

 Bψτ(1) −Bψτ(λ)∫ 1

0
J c(r)dBψτ −

∫ λ

0
J c(r)dBψτ

− S−1
xx (λ) ×

 Bψτ(λ)∫ λ

0
J c(r)dBψτ


Then, it follows that

Wols
n (λ; τ0) := Dn

{
∆θ̂olsn (λ; τ0)

}′[
V̂
ols

n (λ; τ0)
]−1{

∆θ̂olsn (λ; τ0)
}

⇒ ∆ols
0
(
λ; τ0

)′[Σ−1
0
(
λ; τ0

)]
∆ols

0
(
λ; τ0

)
≡ fut(τ)(0)2

{
∆ols

0
(
λ; τ0

)}′[
Sxx(λ) − Sxx(λ)S−1

xx (1)Sxx(λ)
]{

∆ols
0
(
λ; τ0

)}
.

Therefore, the asymptotic distribution of the sup OLS-Wald test statistic is nonpivotal and non-
standard and has the above analytical expression. Furthermore, we verify that a trivial aspect
such as the inclusion of a model intercept can complicate the asymptotic theory of the struc-
tural break test since the model intercept and the slopes are known to have different rates of
convergence.
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B.1.2 Asymptotic results on stochastic equicontinuity

The limit results we present in this section are related to stochastic equicontinuity and finite
dimensional convergence. In particular, the empirical process Gn (τ, b) is consider stochastically
ϱ−equicontinuous over Tι ×B, such that for any ϵ > 0,

lim
δ→0

lim sup
n→∞

P
(

sup
[δ]

∣∣Gn(τ1, b1
)

−Gn
(
τ2, b2

)∣∣ > ϵ

)
= 0, (B.57)

where [δ] :=
{
(τ1, b1), (τ2, b2) ∈ (T ×B)2 : ϱ

(
(τ1, b1), (τ2, b2)

)
< δ

}
.

Assumption B.1. (Assumption 6 in Qu (2008)) There exist constants ν > 1 and s > 1 and
K < ∞ such that for all 0 ≤ u ≤ v ≤ 1 and for all n,

n−1
⌊vn⌋∑
t=⌊un⌋

E
(
xt−1x

′
t−1
)ν ≤ K(v − u) (B.58)

n−1
⌊vn⌋∑
t=⌊un⌋

E
(
xt−1x

′
t−1
)ν ≤ K(v − u)s (B.59)

Lemma B.2. (Lemma A1 in Qu (2008)) Let K = [0, 1] × [0, 1] be a parameter set with a metric
d(., .) defined as

ϱ
(

{λ1, τ1} , {λ2, τ2}
)

= |λ2 − λ1| + |τ2 − τ1|. (B.60)

Then, it can be proved that the process Sn(λ, τ) is stochastically equicontinuous on (K, d). That
is, for any ϵ > 0, ζ > 0, there exists a δ > 0 such that for any large n,

P
(

sup
[A]

∥∥∥Sn (λ1, τ1, β̂0(τ1)
)

− Sn
(
λ2, τ2, β̂0(τ2)

)∥∥∥ > ζ

)
< ϵ. (B.61)

where [A] :=
{
(s1, s2) ∈ K such that s1 = {λ1, τ1} , s2 = {λ2, τ2} and ϱ (s1, s2) < δ

}
.

Proof. For any given τ ∈ (0, 1), say τ ≡ τ0 we have that

Sn
(
λ, τ0,β0(τ0)

)
= n−1/2

⌊λn⌋∑
t=1

xt−1
[
τ0 − 1

{
yt − β0(τ0)′xt−1 ≤ 0

}]
= n−1/2

⌊λn⌋∑
t=1

xt−1
[
τ0 − 1

{
Fy|x(yt) ≤ τ0

}]
where Fy|x(.) is the conditional distribution function of yt. Notice that the last equality fol-
lows since Assumption 3.2 implies Fy|x(.) is absolute continuous and strictly increasing almost
everywhere in the support of the function.
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Define wt = Fy|x(yt), then wt follows a uniform distribution such that wt ∼ Unif[0, 1]. Hence,

Sn
(
λ, τ0,β0(τ0)

)
= n−1/2

⌊λn⌋∑
t=1

xt−1
[
τ0 − 1

{
wt ≤ τ0

}]
. (B.62)

Moreover, since the term xt−1
[
τ0 −1

{
wt ≤ τ0

}]
is a sequence of vector martingale differences by

construction, then standard martingale convergence results also apply.

Next, we aim to prove that under the assumption of nonstationarity for the model regressors,
then the corresponding matrix moments are well-defined.

Lemma B.3. (Lemma A2 in Qu (2008)) Let D be an arbitrary compact set in Rp. Under
Assumption B.1, it holds that

sup
τ∈T ∗

ι

sup
λ∈[0,1]

sup
ξ∈D

∥∥S̃n(λ, τ0,β0(τ0) + n−1/2ξ
)

− S̃n
(
λ, τ0,β0(τ0)

)∥∥ = oP(1), (B.63)

where T ∗
ι = [ι1, ι2] with 0 < ι1 < ι2 < 1.

Proof. The proof proceeds along similar lines as the proof of Theorem A3 in Bai (1996). Without
loss of generality, we assume that the components of the near unit root process denoted with xt
are non-negative. However, since this a strong assumption and could be violated when consid-
ering that regressors are generated as near unit root processes, we proceed using a time series
decomposition to account for possible nonnegative values (see, Qu (2008) and Bai (1996)).

Consider the k−th predictor such that k ∈ {1, ..., p} and denote with x(k)
t,j the j−th component

of the k−th predictor, x(k)
t . Then, we can use the following decomposition

x
(k)
t,j =

(
x

(k)
t,j

)+
−
(
x

(k)
t,j

)−
≡ x

(k)
t,j 1

{
x

(k)
t,j ≥ 0

}
− x(k)

t,j 1
{
x

(k)
t,j < 0

}
. (B.64)

Then
(
x

(k)
t,j

)+
and

(
x

(k)
t,j

)−
are nonnegative and satisfy the required assumptions that ensure

the monotonicity of the distribution function. Therefore, similarly to the above derivations, we
assume that these results hold for the corresponding lagged predictor denoted with x(k)

t−1,j . Under
the nonnegativity assumption it holds that

xt−11
(
yt ≤ β0(τ)′xt−1 + n−1/2ξ′xt−1

)
and Fy|x

(
β0(τ)′xt−1 + n−1/2ξ′xt−1

)
(B.65)

are nondecreasing in τ. We partition the compact set Tι into N(ϵn) intervals of equal length such
that ω1 = τ(0) < τ(1) < ... < τN(ϵn) = ω2.
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Suppose that τ ∈ [τj−1, τj ] then

S̃n
(
λ, τ,β0(τ) + n−1/2ξ

)
− Sn

(
λ, τ,β0(τ)

)
≤ S̃n

(
λ, τj ,β0(τj) + n−1/2ξ

)
− S̃n

(
λ, τj−1,β0(τj−1)

)
+ n−1/2

⌊λn⌋∑
t=1

xt−1
{
τj − τj−1

}
+ n−1/2

⌊λn⌋∑
t=1

xt−1

{
Fy|x

(
β0(τj)′xt−1 + n−1/2ξ′xt−1

)
− Fy|x

(
β0(τj−1)′xt−1 + n−1/2ξ′xt−1

)}

Similarly, we have that

S̃n
(
λ, τ,β0(τ) + n−1/2ξ

)
− Sn

(
λ, τ,β0(τ)

)
≥ S̃n

(
λ, τj−1,β0(τj−1) + n−1/2ξ

)
− S̃n

(
λ, τj ,β0(τj)

)
+ n−1/2

⌊λn⌋∑
t=1

xt−1
{
τj−1 − τj

}
+ n−1/2

⌊λn⌋∑
t=1

xt−1

{
Fy|x

(
β0(τj−1)′xt−1 + n−1/2ξ′xt−1

)
− Fy|x

(
β0(τj)′xt−1 + n−1/2ξ′xt−1

)}
.

Hence, we have that

∥∥S̃n(λ, τ,β0(τ) + n−1/2ξ
)

− Sn
(
λ, τ,β0(τ)

)∥∥
≤
∥∥S̃n(λ, τj ,β0(τj) + n−1/2ξ

)
− Sn

(
λ, τj−1,β0(τj−1)

)∥∥
+
∥∥Sdn(λ, τj−1,β0(τj−1) + n−1/2ξ

)
− Sn

(
λ, τj ,β0(τj)

)∥∥
+
∥∥∥∥n−1/2

⌊λn⌋∑
t=1

xt−1
{
τj − τj−1

}∥∥∥∥
+
∥∥∥∥n−1/2

⌊λn⌋∑
t=1

xt−1

{
Fy|x

(
β0(τj)′xt−1 + n−1/2ξ′xt−1

)
− Fy|x

(
β0(τj−1)′xt−1 + n−1/2ξ′xt−1

)}∥∥∥∥
≡ (a) + (b) + (c) + (d).

Therefore, to complete the proof it is sufficient to show that (a), (b), (c), and (d) are op(1)
uniformly in τ ∈ T ∗

ι , λ ∈ [0, 1] and ξ ∈ D. In particular for term (d), we follow the argument
presented by Lemma 2.1 of Koul (1991) (see also Qu (2008)). Notice that similar arguments based
on the monotonicity property of the check function are also employed in the proofs of Escanciano
and Velasco (2010).
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max
1≤j≤N(ϵn)

sup
λ∈[0,1]

sup
ξ∈D

∥∥(c)∥∥
max

1≤j≤N(ϵn)
sup
λ∈[0,1]

sup
ξ∈D

∥∥∥∥n−1
⌊λn⌋∑
t=1

[
ft
(
b(τj)′xt−1

)
− ft

(
b(τj−1)′xt−1

)]
xt−1x

′
t−1ξ

∥∥∥∥+ oP(1)

≤ 2 max
1≤j≤N(ϵn)

sup
λ∈[0,1]

sup
ξ∈D

∥∥∥∥n−1
⌊λn⌋∑
t=1

[
ft
(
b(τj)′xt−1

)
− ft

(
β0(τj)′xt−1

)]
xt−1x

′
t−1ξ

∥∥∥∥
+ max

1≤j≤N(ϵn)
sup
λ∈[0,1]

sup
ξ∈D

∥∥∥∥n−1
⌊λn⌋∑
t=1

[
ft
(
β0(τj)′xt−1

)
− ft

(
β0(τj−1)′xt−1

)]
xt−1x

′
t−1ξ

∥∥∥∥
+ oP(1), (B.66)

where b(τk) for k = j − 1 and j is some vector between β0(τk) and β0(τk) + n−1/2ξ and the first
inequality follows from the mean value theorem and τj − τj−1 ≤ n−1/2−d.

Furthermore, notice that expression (B.66) = oP(1) if the following holds

max
1≤j≤N(ϵn)

max
1≤t≤n

∥∥∥∥ft(b(τj)′xt−1
)

− ft
(
β0(τj)′xt−1

)∥∥∥∥ = oP(1) (B.67)

and

max
1≤j≤N(ϵn)

max
1≤t≤n

∥∥∥∥ft(β0(τj)′xt−1
)

− ft
(
β0(τj−1)′xt−1

)∥∥∥∥ = oP(1). (B.68)

Notice that expression (B.67) holds because ft(s) is uniformly continuous in s for all t

max
1≤j≤N(ϵn)

max
1≤t≤n

∥∥∥∥b(τj)′xt−1 − β0(τj)′xt−1

∥∥∥∥ = max
1≤t≤n

∥∥x′
t−1
∥∥OP

(
n−1/2

)
= oP(1). (B.69)

Furthermore, for expression (B.68) it holds that[
β0(τj)′xt−1 − β0(τj−1)′xt−1

]
= τj − τj−1

ft(zt)
= OP (τj − τj−1) = OP

(
n−1/2−d

)
, (B.70)

where the first equality follows from the mean value theorem with β0(τj−1)′xt−1 ≤ zt ≤ β0(τj)′xt−1,
and the second equality follows because ft(.) is bounded away from 0 for all i. Furthermore, notice
that D is a compact set, for any given δ > 0, D can always be partitioned into a finite number of
subsets, such that the diameter of each subset is less than or equal to δ.
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Hence,

(f) := n−1/2
⌊λn⌋∑
t=1

ft
(
β0(τ)xt−1

)
xt−1x

′
t−1 + oP(1), (B.71)

uniformly in ∥δ∥ ≤ K and 1 ≤ t ≤ n.

Then, Assumption 3 (b) implies that (f) = λH0δ + oP(1). Combing the above results we have
that

S̃n
(
λ, τ0,β0(τ) + n−1/2ξ

)
− Sdn

(
λ, τ0,β0(τ0)

)
(B.72)

which holds uniformly in ∥δ∥ ≤ K and 1 ≤ t ≤ n. This completes the proof.

Proof of Lemma 2

Recall that in Lemma 2 of Qu (2008) we have that

Sn
(
λ, τ0, b

)
= n−1/2

⌊λn⌋∑
t=1

xt−1 ×
[
τ0 − 1

{
yt − b′xt−1 ≤ 0

}]
.

and specifically for b = β0(τ0) we have that

Sn
(
λ, τ0,β0(τ0)

)
= n−1/2

⌊λn⌋∑
t=1

xt−1 ×
[
1
{
yt − β0(τ0)′xt−1 ≤ 0

}
− τ0

]
.

Notice that the crucial step for this proof is to show that

√
n
(
β̂1(λ; τ0) − β0(τ0)

)
= OP(1), (B.73)

uniformly in (λ, τ) ∈ Λη × Tι. In other words, we need to derive a similar convergence type result
in the case we employ the IVX estimator

ℓ̂n(λ; τ0) := n
1+γx

2
(
β̂
ivx−qr
1 (λ; τ0) − β0(τ0)

)
= OP(1) (B.74)

Notice that we have already proved the convergence in probability result given by expression
(B.74) with Corollary 3.2 of the paper. Therefore we need to modify accordingly the remaining
steps of the proof presented by Qu (2008) to account for the nonstationarity structure of the
quantile regression model. Then, the following stochastic convergence result holds∥∥∥∥Sn(λ, τ0, β̂1(λ, τ)

)∥∥∥∥
L1

= oP(1), (B.75)

if for any ϵ > 0 there exists a K0 > 0, N0 > 0 and η > 0, such that if ∥
√
n (β∗(τ) − β0(τ))∥ > K0,

P
(

inf
τ∈Tι

inf
λ∈Λη

∥∥Sn(λ, τ0,β
∗(τ)

∥∥ < η

)
< ϵ for all n > N0. (B.76)
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B.1.3 Asymptotic results on stochastic integrals

In this section we summarize main invariance principles employed for deriving some of the the-
oretical results of the paper. Extensive details on these results can be found in the framework
proposed by Phillips and Magdalinos (2009).

Lemma B.4. Let V xx :=
∫ ∞

0
erCpΩxxe

rCpdr where Ωxx is the long-run covariance of the error
term vt. Then, under the null hypothesis of no structural break in the predictive regression model
the following large sample theory holds:

(i) the sample covariance weakly convergence to the following limit (see Corollary 3.4)

1√
τ0(1 − τ0)

D̃−1
n

⌊λn⌋∑
t=1

z̃t−1ψτ

(
ut(τ0)

)
⇒ Up (λ) (B.77)

where Up (.) is a Brownian motion with variance V cxz as defined below

V cxz ≡


V zz =

∫ ∞

0
erCz Ωxxe

rCzdr , when 0 < γz < γx < 1,

V xx =
∫ ∞

0
erCpΩxxe

rCpdr , when 0 < γx < γz < 1.

(B.78)

(ii) the sample covariance weakly convergence to the following limit

D̃−1
n

⌊λn⌋∑
t=1

xt−1z̃
′
t−1

 D̃−1
n ⇒≡ Γcxz(λ) (B.79)

where the exact analytic form of Ψ (λ) depends on which of the two exponents rates of persistence
stochastically dominates such as

Γcxz(λ) :=



−C−1
z

(
λΩxx +

∫ λ

0
Jµc (r)dJ ′

c

)
, when γx = 1

−λC−1
z

(
Ωxx +CpV xx

)
, when 0 < γz < γx < 1

λ

∫ ∞

0
erCpΩxxe

rCpdr ≡ λV xx , when 0 < γx < γz < 1

where Bp(.) is a p−dimensional standard Brownian motion, J c(λ) =
∫ λ

0 e
(λ−s)CpdB(s) is an

Ornstein-Uhkenbeck process and we denote with Jµc (λ) = J c(λ) −
∫ 1

0 J c(s)ds and Bµ
p (λ) =

B(λ) −
∫ 1

0 B(s)ds the demeaned processes of J c(λ) and Bp(λ) respectively.

(iii) The weakly joint convergence result applies and the asymptotic terms given by expressions
in (i) and (ii) are stochastically independent.
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Proof. We present the main conjectures for deriving the invariance principles presented by Lemma
B.4 (see, Phillips and Magdalinos (2009) and Kostakis et al. (2015) for details)

n−(1+γz)
n∑
t=1
z̃t−1z̃

′
t−1

P→ V zz :=
∫ ∞

0
erCz Ωxxe

rCzdr (B.80)

Moreover, we have the weakly convergence result from Phillips and Magdalinos (2009):

n− 1+γz
2

n∑
t=1

(z̃t−1 ⊗ vt) ⇒ N
(
0,V zz ⊗ Σvv

)
(B.81)

Expression (B.81) shows weakly convergence into a mixed Gaussian limit distribution. In partic-
ular, this implies that the limit distribution of n−(1+γz)/2∑n

t=1 (z̃t−1 ⊗ vt) is Gaussian with mean
zero and covariance matrix equal to the probability limit of n−(1+γz)/2∑n

t=1 (z̃t−1 ⊗ vt), which is
equal to V zz ⊗ Σvv, where V zz is defined in (B.80). Specifically, the above Mixed Gaussianity
convergence argument, is a powerful property of the IVX filtration and ensures the robustness
of the instrumental variable based procedure for abstract persistence. The dependence of the
covariance matrix on the degree of persistence of the IVX instrument, induces exactly the Mixed
Gaussianity. Similarly, the limit distribution below follows from Lemma 3.3 of PM.

n−(1+γz)/2
n∑
t=1

(
xt−1 ⊗ vt

)
⇒ N

(
0,V xx ⊗ Σvv

)
, where V xx :=

∫ ∞

0
erCpΩxxe

rCpdr



Appendix C

Supplement to Chapter 4

C.1 Appendix A: Auxiliary Results

We introduce some useful limit results for deriving the asymptotic theory of our framework. These
limit results are based on asymptotic theory established by Phillips and Magdalinos (2009) and
extensions of some results of Chen et al. (2023). Assume that the g−th equation of the seemingly
unrelated system of nonstationary quantile predictive regression models has an autoregressive
LUR parametrization for the nonstationary regressors of the particular system equation xg,t =
Rgxg,t−1 + vg,t where g ∈ {1, ...,m} (system of m-equations).

Lemma C.1. Let xg,t = Rgxg,t−1 + vg,t where g ∈ {1, ...,m}, be the data generating pro-
cess for the nonstationary regressors for each of the system of m-equations (quantile predictive
regressions).

(i). Denote with Qn(Rg) =
[
Q1,n(R1), ...,Qm,n(Rm)

]′ where

Qg,n(Rg) :=
n∑
t=1

1
√
σg,g

R−t
g vg,t, Rg =

(
I − Cg

n

)
, for g ∈ {1, ...,m} . (C.1)

We have that Qn(Rg) ⇒ Q(Rg) =
[
Q1(R1), ...,Qm(Rm)

]′, where Qg(Rg) := ∑∞
t=1

1√
σg,g
R−t

g vg,t.

(ii). Denote with Q̃n(Rg) =
[
Q̃1,n(R1), ..., Q̃m,n(Rm)

]′ where

Q̃j,n(Rg) :=
n∑
t=1

1
√
σj,j

R−(n−t)−1
g vj,t, Rg =

(
I − Cg

n

)
, for (j, g) ∈ {1, ...,m} . (C.2)

We have that Q̃n(Rg) ⇒ Q̃(Rg) =
[
Q̃1(R1), ..., Q̃m(Rm)

]′, where Q̃j(Rg) := ∑∞
t=1

1√
σg,g
R

−(n−t)−1
g vj,t.

Notice that the subscript j of Q̃j(·) corresponds to the error sequence vj,t.

(iii). We assume that Q(Rg) and Q̃(Rg) are asymptotically independent.
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Lemma C.2. Consider the martingale array given by

Mn(s) :=
[
n∑
t=1
x1,t−1vj,t, ...,

n∑
t=1
xg,t−1vj,t

]
(C.3)

for a fixed j ∈ {1, ...,m} and some g ∈ {1, ...,m}. Then, the following joint converges implies
Mn(s)
1√
n

⌊ns⌋∑
t=1

ut

 ⇒
[
M(s)
B(s)

]
, on the Skorokhod space DRj+m [0, 1],

where M and B are independent Brownian motions with well-defined covariance matrices.

C.2 Asymptotic Theory

Notation For two sequences of real numbers (an) and (bn), we say that an ∼ bn if an/bn → 1 as
n → ∞. Furthermore, notice that our setting operates under the assumption of a fixed quantile
level τ ∈ (0, 1). Further regularity conditions we assume that are satisfied which include: (i) the
spectral density matrix of the vector of equilibrium errors is bounded away from zero, (ii) the
long-run covariance matrix exists, and (iii) the fourth-order cumulants are absolutely summable.

In terms of the asymptotic limit scheme we do not consider the sequential (m,n) → ∞ case unless
we otherwise specify so. In particular, the main limit results correspond to the case where m

remains fixed but n → ∞. This allows to establish the consistency of the pooled IVX estimator
irrespective of whether m is large or not. Moreover, to obtain the asymptotic distribution of
the common long-run coefficients, we will need to impose an additional condition such that m
is a monotonic function of n, say m(n), such that m → ∞ only as n → ∞. In that case, the
correct rate of convergence for ϑ towards its true value is given by

√
mn, in the case of stationary

regressors, denoted with I(0). All long-run coefficients are the same across groups, although we
can allow only a subset of the long-run coefficients to be the same while others to differ.

Lemma C.3. (Consistency of variance-covariance matrix) The following result holds:∣∣∣∣∣ 1
Nn

N∑
i=1

n∑
t=1
X⋆

(i)t−1X
⋆⊤
(i)t−1 − E

[
X⋆

(i)t−1X
⋆⊤
(i)t−1

]∣∣∣∣∣ = op(1). (C.4)

Lemma C.4. (Consistency of variance-covariance matrix) The following result holds:∣∣∣∣∣ 1
mn

m∑
i=1

n∑
t=1
X⋆

(i)t−1X
⋆′
(i)t−1 − E

[
X⋆

(i)t−1X
⋆′
(i)t−1

]∣∣∣∣∣ = op(1). (C.5)

In addition, let fit(·|x) denote the conditional density of uit given Xit−1 = x and let ξi,n denote
the smallest eigenvalue of n−1∑n

t=1 E
[
fit(·|Xit−1)X̃it−1X̃

′
it−1

]
.
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Lemma C.5. (SUR Graph-based Bahadur Representation)

The following representation holds uniformly over the compact set B ⊂ (0, 1) such that τ ∈ B

(
β̂⋆SUR−IV X(τ) − β⋆(τ)

)
= D̂1(τ)

{
1
m

m∑
i=1

1
n

n∑
t=1

ψτ

(
E(i)t(τ)

)
X⋆

(i)t−1

}
+ Rmn (τ) , (C.6)

where ψτ(u) 7→ ρ−1
τ (u) :=

(
τ − 1 {u ≤ 0}

)
and Rmn (τ) is the remainder term. Then,

β̂⋆SUR−IV X(τ) p→ β⋆(τ) uniformly for τ ∈ (0, 1) as min {m,n} → ∞. (C.7)

Proof. Notice that the remainder term of the expression which satisfies supτ∈(0,1) |Rmn (τ)| =
Op

(
1√
mn

)
.

Denote with

E(i)t(τ) :=
(
y(i)t −X⋆′

(i)t−1β
⋆(τ)

)
and Sin

(
β⋆(τ)

)
:= 1

n

n∑
t=1

ψτ

(
E(i)t(τ)

)
X⋆

(i)t−1.

Moreover, let Si
(
β⋆(τ)

)
≡ EFt−1

[
Sin
(
β⋆
)]

= E
[
τ − Fi

(
β⋆(τ) − β⋆i0(τ)|X⋆

i,t−1 = x⋆i,t−1
)]

. Thus,
we can establish the following probability bound

√
n
([
Sin
(
β̂⋆i (τ)

)
− Sin

(
β⋆i0(τ)

)]
−
[
Si
(
β̂⋆i (τ)

)
− Si

(
β⋆i0(τ)

)])
= op(1).

for each cross-sectional unit due to the stochastic equicontinuity of the process and β̂⋆i (τ) p→ β⋆i (τ).

Theorem C.1. Under the conditions of Assumption 3.2, we have that
√
Nn Σ−1/2

β (τ)
(
β̂⋆SUR−IV X(τ) − β⋆(τ)

) D→ BBq+1(τ), (C.8)

as min {N,n} → ∞, where Σβ(τ) = D−1
1 (τ)D0D

−1
1 (τ) with the matrix D0 defined as:

D0 (C.9)

such that BBq+1(τ) is a (q + 1)−dimensional Brownian Bridge.

Corollary C.1. Under Assumption 3.2, for any fixed value of τ in the compact set B, say
τ0 ∈ (0, 1), the following limit result holds:

√
Nn

(
β̂⋆SUR−IV X(τ0) − β⋆(τ0)

) D→ N
(
0, τ0(1 − τ0)Σβ (τ0)

)
as min {N,n} → ∞. (C.10)

Notice that Theorem C.1 provides the limiting distribution for the normalized estimators distance
term. The particular normalization constant allows to construct a self-normalized Wald type
statistic which accounts for the different estimation effects in the SUR system.
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Remark C.1. A discussion of the pivotal property of self-normalized test statistics is presented
by Shao (2010). More precisely, the pivotal property ensures the applicability of conventional
inference methods without the need to use bootstrap based inference methods to obtain critical
values from the bootstrapped distribution of the test statistic. Notice that Corollary C.1 is a
direct implication of Theorem C.1. In particular, Corollary C.1 permits to conduct pointwise
inference, for any fixed value τ0, in the estimated SUR system parameters since we obtain weakly
convergence to a mixed Gaussian random variant. Moreover, notice that the assumption of a
compact set B ⊂ (0, 1), which is an open subset of the boundaries of the parameter space for the
quantile level τ ∈ (0, 1) and the corresponding quantile function, ensures the uniform convergence
of the model estimators.

Proof of Lemma:

Proof. We need to show that the quantities 1
mn

m∑
i=1

n∑
t=1
X⋆

(i)t−1X
⋆′
(i)t−1 and E

[
X⋆

(i)t−1X
⋆′
(i)t−1

]
are

close to each other element by element, such that the following probability limit holds:

1
mn

m∑
i=1

n∑
t=1
X⋆

(i)t−1X
⋆′
(i)t−1

p→


E
[
x(i)t−1x

′
(i)t−1

]
E
[
x(i)t−1y

′
(j)t

]
E
[
y(j)tx

′
(i)t−1

]
E
[
y(j)ty

′
(j)t

]
 , (C.11)

where (i, j) ∈ {1, ...,m} with i ̸= j.

Moreover, since we assume that the set of regressors of the SUR system is the same, then it
remains to obtain the asymptotic behaviour of the elements of the matrix above for the two types
of persistence we consider, that is, γx = 1 for LUR regressors and γx ∈ (0, 1) for mildly integrated
(MI) regressors. For LUR regressors, that is, γx = 1, Kostakis et al. (2015) show that as n → ∞

1
n1+γx

x′
(i)t−1x(i)t−1

p→ V c :=
∫ ∞

0
erCΩvve

rCdr. (C.12)

Consider the asymptotic behaviour for the term 1
mn

∑N
i=1

∑n
t=1 y(j)ty

′
(j)t where

y(j)t = β′
(j)(τ)xt−1 + δ(j)(τ)y(i)t + u(j)t (C.13)

xt =
(
Ik − C

nγx

)
xt−1 + vt (C.14)

such that it expands to

1
mn

m∑
i=1

n∑
t=1

y′
(j)ty(j)t = 1

mn

m∑
i=1

n∑
t=1

[
β′

(j)(τ)xt−1 + δ(j)(τ)y(i)t + u(j)t
] [
β′

(j)(τ)xt−1 + δ(j)(τ)y(i)t + u(j)t
]′

= 1
mn

m∑
i=1

n∑
t=1
β′

(j)(τ)xt−1x
′
t−1β(j)(τ) + 1

mn

m∑
i=1

n∑
t=1
β′

(j)(τ)xt−1y
′
(i)tδ(j)(τ)

+ 1
mn

m∑
i=1

n∑
t=1
β′

(j)(τ)xt−1u
′
(j)t
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+ 1
mn

m∑
i=1

n∑
t=1

δ(j)(τ)y(i)tx
′
t−1β(j)(τ) + 1

mn

m∑
i=1

n∑
t=1

δ(j)(τ)y(i)ty
′
(i)tδ(j)(τ) + 1

mn

m∑
i=1

n∑
t=1

δ(j)(τ)y(i)tu
′
(j)t

+ 1
mn

m∑
i=1

n∑
t=1

u(j)tx
′
t−1β(j)(τ) + 1

mn

m∑
i=1

n∑
t=1

u(j)ty
′
(i)tδ(j)(τ) + 1

mn

m∑
i=1

n∑
t=1

u(j)tu
′
(j)t

Next, we consider the asymptotic behaviour of each of those terms separately such as

β′
(j)(τ)E

[
xt−1x

′
t−1
]
β(j)(τ) (C.15)

β′
(j)(τ)E

[
xt−1y

′
(i)t

]
δ(j)(τ) (C.16)

Next, consider the asymptotic behaviour of the upper right term of the matrix given by expression
(C.11), that is, 1

mn

∑m
i=1

∑n
t=1 x(i)t−1y

′
(j)t, which can be expanded further as

1
mn

m∑
i=1

n∑
t=1
x(i)t−1y

′
(j)t = 1

mn

m∑
i=1

n∑
t=1
x(i)t−1

[
β′

(j)(τ)xt−1 + δ(j)(τ)y(i)t + u(j)t
]′

= 1
mn

m∑
i=1

n∑
t=1
x(i)t−1x

′
(i)t−1β(j)(τ) + 1

mn

m∑
i=1

n∑
t=1
x(i)t−1y

′
(i)tδ(j)(τ)

+ 1
mn

m∑
i=1

n∑
t=1
x(i)t−1u

′
(j)t

For example for the last term, we have that

1
mn

m∑
i=1

n∑
t=1
x(i)t−1u

′
(j)t = 1

m

m∑
i=1

{
1
n

n∑
t=1
x(i)t−1u

′
(j)t

}
(C.17)

Assume that ∀ i ∈ {1, ...,m}, we have a common set of regressors, that is, x(i)t−1 ≡ xt−1 and
that u(j)t represents the error term of the j−th specification such that j ̸= i.

Proof of Theorem 4.2:

Consider the formulation for the SUR-IVX Wald statistic with respect to the proposed SUR-IVX
estimator, β̂⋆SUR−IV X(τ) for any quantile level τ ∈ (0, 1) given by

WSUR−IV X(τ) =
(
Rβ̂⋆SUR−IV X(τ) − q

)⊤Ω−1
R

(
Rβ̂⋆SUR−IV X(τ) − q

)
(C.18)

where ΩR the covariance matrix of the Wald test based on the SUR-IVX estimator. More
precisely, the covariance matrix is defined as below

ΩR =
{
R
[(
X⋆′P Z̃X

⋆)−1 ⊗ Σ̂vv

]
R⊤

}
(C.19)
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where P Z̃ represents the projection matrix with respect to the IVX instrumental variable Z̃ given
by expression (4.37) and R is the linear restrictions matrix.

Proof. We need to show that WSUR−IV X(τ) ⇒ χ2
q for some τ ∈ (0, 1) as T → ∞.

Proof of Theorem C.1:

Recall that a Brownian-Bridge process is defined as below:

BBq+1(τ) :=
[
W q+1(τ) − τW q+1(1)

]⊤[
W q+1(τ) − τW q+1(1)

]
(C.20)

where W q+1(.) is a (q + 1)−dimensional standard Wiener process on the same or equivalent
probability space. Therefore, we need to show that the normalized distance measure for the
SUR-IVX estimator weakly converges to the Brownian Bridge defined by (C.20).

Proof. We denote the following moment matrices as below

D̂0 = 1
NT

N∑
i=1

T∑
t=1
X⋆

(i)t−1X
⋆⊤
(i)t−1, (C.21)

and

D̂1(τ) = 1
NT

N∑
i=1

T∑
t=1

fit
(
X⋆⊤

(i)t−1β
⋆(τ)

)
X⋆

(i)t−1X
⋆⊤
(i)t−1. (C.22)

where fit(.) is a continuous function. Moreover, we have that Σβ(τ) = D−1
1 (τ)D0D

−1
1 (τ) with

the matrix D0 defined as:

Notice that the convergence result requires that both N and T are required to diverge to infinity
to obtain a

√
NT−consistent result.

Proof of Corollary 3.1:

Proof. For any fixed τ0 ∈ (0, 1) we need to show that
√
NT

(
β̂⋆SUR−IV X(τ0) − β⋆(τ0)

) D→ N
(
0, τ0(1 − τ0)Σβ (τ0)

)
as min {N,T} → ∞.

Proof of Theorem 3 (J test for subset predictability)

Denote with 1 = (1, ..., 1)′ be a K × 1. Furthermore, demeaning the original econometric specifi-
cation we obtain the following expression

Y t = X̃t−1δf + x′
t−1δx + ut1 (C.23)
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Therefore, using the particular representation, we can express the IVX estimator as below

θ̂ =
(

n∑
t=1
Z ′
t−1X̃t−1

)−1( n∑
t=1
Z ′
t−1Ỹ t

)
= δ̄f +

(
n∑
t=1
Z ′
t−1X̃t−1

)−1 n∑
t=1

(
Z ′
t−11

) (
x̃t−1δx + ut

)
.

(C.24)

Furthermore, we employ the restriction matrix such that Rδ̄f = 0(N−1)×1, therefore by imple-
menting these linear restrictions we obtain the following expression

β̂ := Rθ̂ = R

(
n∑
t=1
Z ′
t−1X̃t−1

)−1 (
Z ′
t−11

) (
x̃t−1δx + ut

) H0= R

(
n∑
t=1
Z ′
t−1X̃t−1

)−1 (
Z ′
t−11

)
ut

(C.25)

We also define the following matrices we derive the asymptotic behaviour of the above quantity

P =


P1
...

PN−1

 and P =


P1

. . .
PN−1

 (C.26)

Pg =


Imf(

0︸︷︷︸
kg×k1

, ..., 0︸︷︷︸
kg×kg−1

, I︸︷︷︸
kg×kg

, 0︸︷︷︸
kg×kg+1

, ..., 0︸︷︷︸
kg×kN−1

) . (C.27)

Then, we have that Z ′
t−11 = Pzt−1. Furthermore, it holds that

Z ′
t−1 = S

(
IN−1 ⊗Gt−1

)
and Z ′

t−1 = S
(
IN−1 ⊗Gt−1

)
(C.28)

which implies that

Z ′
t−1X̃t−1 = S

(
IN−1 ⊗ zt−1g

′
t−1
)
S′ (C.29)

Then, under the null hypothesis it holds that

n
1+γz

2 β̂ = R

{ n∑
t=1
S

(
IN−1 ⊗ zt−1g̃

′
t−1

)
S′
}−1

. (C.30)

which implies that

n−( 1+γz
2 )

n∑
t=1
Pzt−1ut

d→ R

[
S

(
IN−1 ⊗Qzg

)
S′
]−1

Pσ0Q
1/2
zz Z ≡ R (C.31)

In particular, consider that βi is the limit of the OLS estimator, then we have that

βi = plim
n→∞

(
1
n2

n∑
t=1
xg,t−1x

⊤
g,t−1

)−1( 1
n2

n∑
t=1
xg,t−1X

⊤
t−1

)
β̃, for g ∈ {1, ...,K} (C.32)

where β̃ is the value of the parameter vector under the alternative hypothesis.
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C.3 Doubly Corrected Estimation: Conditional Mean Case

C.3.1 Residual Augmented IVX Estimation Example

We begin our asymptotic theory analysis by considering the framework for the residual aug-
mented IVX estimation methodology previously examined in the literature (see, Demetrescu and
Rodrigues (2020)). The IVX instrumentation provides a methodology such that the asymptotic
distribution of the IVX-Wald based test statistic converges to a nuisance-parameter free distri-
bution. Consider the feasible predictive regression defined with the following form

yµt = βxµt−1 + δv̂t + εt, εt ∼i.i.d and t = 1, ..., n. (C.33)

where yµt and xµt−1 denote the demeaned variates, following the notation employed in several stud-
ies in the literature. Moreover, v̂t represents a generated covariate which in our study corresponds
to the estimated VaR under nonstationarity.

The parameter of interest for inference purposes is the slope coefficient of the quantile predictive
regression of the second-stage procedure. Based on the specification above, the IVX estimator
of β, has a slower convergence rate than the conventional OLS estimator under near integration.
In addition, the IVX estimator is mixed Gaussian in the limit regardless of the degree of endo-
geneity which implies standard inference based on the Wald test. Under low persistence it is
asymptotically equivalent to the OLS procedure which implies that the IVX estimator is easy to
implement. The null hypothesis of no predictability implies the presence of no serial correlation.
Furthermore, we conjecture that the generated regressor since it is stationary it will not affect
the convergence of the IVX estimator to its asymptotic limit, given the lower convergence rate of
IVX compared to the OLS estimator. Although our procedure has some similarities with residual-
based augmentation procedures proposed in the literature, our objective is to demonstrate that
in finite-samples and asymptotically has similar desirable properties. All directly observable vari-
ables and demeaned. Let ȳt = yt − ȳn =

(
yt − 1

n

∑n
t=1 yt

)
, x̄t = xt − x̄n =

(
xt − 1

n

∑n
t=1 xt

)
and

x̄t−1 = xt−1 − x̄n−1 =
(
xt−1 − 1

n

∑n
t=1 xt−1

)
. Then the IVX estimator is defined as below

β̂ivx :=

n∑
t=1

ȳtzt−1

n∑
t=1

x̄t−1zt−1

, with se
(
β̂ivx

)
:=
(

n∑
t=1

x̄t−1zt−1

)−1

σ̂u

(
n∑
t=1

z2
t−1

)1/2

.

where se
(
β̂ivx

)
is the standard error of the IVX estimator. To improve the finite-sample be-

haviour Kostakis et al. (2015) suggest the use of OLS residuals ût for the computation of σ̂u, do not
demean the instrument zt and correct the standard errors by subtracting from σ̂u

(∑n
t=1 z

2
t−1
)1/2.

In addition, we define with ε̃t := ȳt −
(
β̂olsx̄t−1 + δ̂v̂t

)
, and use those instead of the IVX residuals

due to the superconsistency properties of the OLS-based residuals in the near-integrated context.
Recall that the above expressions correspond to the model estimates from a linear predictive
regression model with conditional mean functional form. Based on the above illustrative exam-
ple, we replace the regressor v̂t with the generated dependent variable, ̂̄y1,t, which is used as an
additional covariate. We do this first in the case of a linear predictive regression measure, so the
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estimation procedures does not correspond to the risk measure pair yet.

C.3.2 Generated Regressor in Nonstationary Linear Predictive Regression

In compact form we have that

ȳ2,t = Xt−1Γ′ + εt, εt ∼i.i.d and t = 1, ..., n. (C.34)

where Xt−1 =
(
x̄t−1 ̂̄y1,t

)
and Γ =

(
β δ

)
. Moreover, define with Zt−1 =

(
zt−1 ̂̄y1,t

)
where zt−1

is the IVX instrument for xt−1 and the generated regressor is self-instrumented.

Notice that the generated covariate ̂̄y1,t aims to resemble the estimated VaR under nonstation-
arity. In other words, the generated regressor, denoted with ̂̄y1,t is obtained from a predictive
regression model which includes only the nonstationary predictors. In practise, these nonstation-
ary predictors can be different than the nonstationary predictors corresponding to the regressand
ŷ2,t due to the proposed dependence structure. However, for simplicity we can also consider the
case in which we use the same nonstationary regressors for both predictive regression models.
In this section, we obtain derivations for the linear predictive regression model. However, when
estimating the risk measures of VaR and CoVaR, the nonstationary quantile predictive regression
models are used which implies that all parameters are quantile-dependent for a fixed quantile
τ ∈ (0, 1). Therefore, we are interested for the consistent estimation of the β2 estimator (e.g., via
IVX) as well as constructing hypothesis testing for: (i) only β parameter (e.g., no predictability),
(ii) only δ parameter (e.g., no presence of generated regressor) and (iii) linear restrictions on all
the parameters of the predictive regression model that includes both nonstationary regressors and
the generated regressor (e.g., univariate generated regressor). The covariance estimator for β̃ivx2
expressed as

̂Cov
(
β̃ivx2

)
:=
(
B−1
n

)
Vn
(
B−1
n

)′
, Bn :=

(
n∑
t=1
x̄t−1z

′
t−1

)

Mn :=
(

n∑
t=1
zt−1z

′
t−1ε̃

2
t

)
+

γ⊤ ⊗
(

1
n

n∑
t=1
zt−1x̄

⊤
t−1

)(
1
n

n∑
t=1
x̄t−1x̄

⊤
t−1

)−1
( n∑

t=1
νtν

⊤
t ⊗ x̄t−1x̄

⊤
t−1

)

×

γ ⊗
(

1
n

n∑
t=1
x̄t−1x̄

⊤
t−1

)−1( 1
n

n∑
t=1
x̄t−1z

⊤
t−1

) .
Therefore, the just-identified model for the IV estimator of Γ is given by

Γ̂ =
(

n∑
t=1
Z ′
t−1Xt−1

)−1( n∑
t=1
Z ′
t−1ȳ2,t

)
. (C.35)

Furthermore, notice that the nonstationary regressors xt−1 and the generated regressor are or-
thogonal since the generated regressor can be considered as exogenous variable to the particular
model, then we can compute the generated regressor augmented estimator and test statistic in
two steps. Notice the constructed test statistic refers to the IVX estimator. Therefore, we fo-
cus on deriving the asymptotic distribution for the IVX estimator under the presence of the
generated regressor in the quantile predictive regression model. The estimation procedure is im-
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plemented into two-stages, and our asymptotic theory analysis demonstrates that although the
limit converges into a nonstandard distribution the particular limit is nuisance-parameter free.

Remark C.2. The key point in this estimation step, is that the variance-covariance needs to be
adjusted to account for the first-step estimation error. In other words, when estimating the VaR
using the quantile predictive regression of the first stage, the forecast at the current time period
t, is estimated with some additional source of error. For this reason, an adjustement is necessary.
Consider the estimated coefficient of the quantile predictive regression model of the first stage as

Qτ

(
y2t|xt−1, y1t

)
= θXt−1, τ ∈ (0, 1). (C.36)

In other words, the estimation step needs to account for two sources of errors, that is, the usaul
estimation error in obtaining a consistent estimator that corresponds to the IVX instrumentation
of the nearly integrated regressors, and the second source of error is the sampling error in gener-
ating the forecast for the VaR from the first stage of the process. More specifically, this implies
that using a Bahadur representation of the QR-IVX estimator we need to determine the precise
stochastic order of the remainder term when the generated regressor is included in the conditional
quantile specification of the model. Thus the main focus of the estimation step should be how to
correct for the effect to the overall variance due to the presence of this generated regressor. In
particular, the parameter vector from the first stage has the usual convergence rate that the IVX
estimator has (regardless of the degree of persistence). However, we need to check whether this
convergence rate remains the same for the parameter vector of the second stage estimation under
the presence of the generated regressor. Furthermore, the property of stochastic equicontinuity
still holds in this case, since we have a plug-in estimator, regardless if the underline stochastic
processes correspond to nonstationary time series data.

Estimation Procedure in Nonstationary Linear Predictive Regression Case

Step 1. OLS-regress ȳ2,t on the generated regressor ̂̄y1,t and obtain the OLS estimator below

δ̂ols =
(

n∑
t=1

̂̄y2
1,t

)−1( n∑
t=1

̂̄y1,tȳ2,t

)
. (C.37)

and compute the residual such that η̂t = ȳ2,t − δ̂olŝ̄y1,t. Here we assume that the elements
of the dependent vector are not serially correlated, which implies that y1t and y2t are
uncorrelated. This simplifies the development of the asymptotic theory, despite the presence
of endogeneity and highly persistent regressors.

Step 2. IVX-regress ȳ2,t on x̄t−1, leading to

β̂
ivx

2 =
(

n∑
t=1
x̄t−1z

′
t−1

)−1( n∑
t=1

ỹtz
′
t−1

)
. (C.38)
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Recall the linear predictive regression model (for node 1) is given by

y1,t = β′
1xt−1 + u1,t (C.39)

xt = Rxt−1 + v1,t (C.40)

Then we estimate the following model

ȳ2,t = β′
2x̄t−1 + δ̂̄y1,t + u2,t (C.41)

Moreover, by OLS-regressing ȳ2,t on ̂̄y1,t such that ȳ2,t = θ̂̄y1,t + ηt, where ηt is a disturbance
term, we construct the transformed dependent variable ỹ2,t given by the following expression

ỹ2,t :=
(
ȳ2,t − θ̂olŝ̄y1,t

)
(C.42)

• In the second stage of the estimation procedure, we need to re-estimate the quantile kernel
function when the generated regressor is included in the design matrix, especially when
constructing the Wald test under the null hypothesis of no systemic risk in the network. To
obtain a measure of the performance of the testing procedure, we need to compare the stan-
dard estimation procedure without the variance-covariance matrix correction against the
estimation procedure that includes the adjustment, in both cases under the null hypothesis.
Then, under the alternative hypothesis of deviations, that is, existence of non-zero systemic
risk effect in the network (see, Katsouris (2021, 2023b)), then the larger this distance is,
under the adjustement then the larger the power function of the test would be when all
the individual quantile predictive regression models of the system correspond to a non-zero
coefficient of node-specific systemic risk.

• When the nonstationary regressors for the two nodes are the same then second-order effects
can contribute to the covariance of the estimator. However, due to the proposed dependence
structure (see, Katsouris (2021, 2023b)), in practice we ensure that these nonstationary (or
near unit roots) are not equivalent across the different predictive regression models. Notice
that the quantity ŷ1,t is the forecaster VaR which is obtained using time series observations
from t to (t − 1). Therefore, it might have an effect on the convergence of the parameter
estimate δ. In summary, we need to control for two effects, that is, a bias effect on the
estimate of δ and a variance effect. In particular, the bias effect will disappear when xt−1

and the regressors used to estimate ŷ1,t are uncorrelated. The variance effect appears due
to the choice of the generated regressors. Standard OLS estimation methods do not correct
for the particular variance effect. On the other hand, the variance effect does not influence
the inference methodology for the estimator β̂2 in which case an important property to hold
is to obtain a consistent estimator regardless of the presence of nonstationary regressors.
In the derivations below, we use ŷ1,t e.g., the estimated VaR under nonstationarity (when
we employ the quantile predictive regression model).

Therefore, the IVX estimator for the second econometric specification (CoVaR quantile predictive
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regression) is obtained by the following expression:

β̃ivx2 =
(

n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1

ỹ2,tz
′
2,t−1

)

=
(

n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1

[
β′

2x̄2,t−1 + δŷ1,t + u2,t − δ̂olsŷ1,t

]
z′

2,t−1

)

= β2 −
(
δ̂ols − δ

)( n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1

ŷ1,tz
′
2,t−1

)
+
(

n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1

u2,tz
′
2,t−1

)

which gives

(
β̃ivx2 − β2

)
= −

(
δ̂ols − δ

)( n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1

ŷ1,tz
′
2,t−1

)
+
(

n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1

u2,tz
′
2,t−1

)

Notice that for the first term we have that(
n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1
β̂
ivx

1 x̄1,t−1z
′
2,t−1

)
≡ β̂

ivx

1 (C.43)

Notice that the above expression only holds when we have identical nonstationary regressors such
that x̄1,t−1 ≡ x̄2,t−1. Therefore, we obtain the following expression

(
β̃ivx2 − β2

)
= −

(
δ̂ols − δ

)
× β̂ivx1 +

(
n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1

u2,tz
′
2,t−1

)
(C.44)

Remark C.3. Notice that when xt−1 and ŷ1,t are not correlated, then θ̂ols is a consistent esti-
mator of δ. However, in the case we employ the same nonstationary predictors to estimate the
value of ŷ1,t then these two quantities are correlated and then it is not so clear to determine the
correlation structure due to the presence of different effects. On the other hand, the dependence
structure proposed in Katsouris (2021, 2023b) ensures that this case doesn’t occur, so that we
can consistently estimate these two parameters which are important for inference purposes.
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Note that β̂ivx1 corresponds to the IVX estimator of the quantile predictive regression model for
the VaR risk measure. Additionally, note that from Lemma B4 of Kostakis et al. (2015) it holds,

1
n

1+γz
2

n∑
t=1
z2,t−1u2,t ⇒ N

(
0, σ2

u2 × V cz

)
. (C.45)

Therefore, by incorporating the convergence rate we have that

n
1+γz

2

(
β̃ivx2 − β2

)
= n

1+γz
2
(
δ − δ̂ols

)
× β̂ivx1 +

(
1

n1+γz

n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( 1
n

1+γz
2

n∑
t=1
z2,t−1u2,t

)
.

Thus, for the LUR regressor case we have that the second term of expression (C.46) converges to
(

1
n1+γz

n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( 1
n

1+γz
2

n∑
t=1
z2,t−1u2,t

)
⇒ −

(
Ωuu +

∫ 1

0
Jµc dJ

′
c

)
C−1
z × N

(
0, σ2

u2 × V Cz

)
.

To see this, from the Appendix of KMS expression (27) gives that(
1

n1+γz

n∑
t=1
x̄2,t−1z

′
2,t−1

)
=
(

Ωuu + V CC

)
C−1
z + op(1). (C.46)

where

V C =
∫ ∞

0
erCΩuue

rCdr and V Cz =
∫ ∞

0
erCz Ωuue

rCzdr. (C.47)

Notice that by Kostakis et al. (2015) we have that Ψuu =
(

Ωuu +
∫ 1

0
Jµc dJ

′
c

)
since we consider

local unit root regressors. Therefore, similar to Theorem A (i) of KMS it holds that
(

1
n1+γz

n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( 1
n

1+γz
2

n∑
t=1
z2,t−1u2,t

)
⇒ MN

(
0, σ2

u2 ×
(
Ψ−1
u2u2

)′
CzV CzCzΨ−1

u2u2

)

which is a mixed Gaussian random variate since the covariance matrix is a function of the OU
process. Next we investigate the asymptotic behaviour of the first term of expression (C.46):

A := n
1+γz

2
(
δ − δ̂ols

)
× β̂ivx1 (C.48)

Specifically, assuming that node 1 and 2 have a set of nonstationary regressors that are generated
from non-identical stochastic processes (i.e., not identical regressors), then it follows that

A =
(

n∑
t=1
x̄2,t−1z

′
2,t−1

)−1( n∑
t=1
x̄1,t−1z

′
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)
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=
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)
×

β1 +
(
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t=1
x̄1,t−1z

′
1,t−1

)−1( n∑
t=1

ū1,tz
′
1,t−1

) .
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Regarding the asymptotic behaviour of the first term of the expression we have that the IVX
estimator from the quantile predictive regression that corresponds to the VaR risk measure is

β̂
ivx

1 =
(

n∑
t=1
x̄1,t−1z

′
1,t−1

)−1( n∑
t=1

y1,tz
′
1,t−1

)
, ȳ1,t = β′

1x̄1,t−1 + ū1,t

= β1 +
(

n∑
t=1
x̄1,t−1z

′
1,t−1

)−1( n∑
t=1

ū1,tz
′
1,t−1

)

Moreover, the number of nonstationary regressors for both econometric specifications is the same
although these two sets of regressors possibly have different nuisance parameters of persistence.
The limiting distributions for their IVX estimators have the same dimensions such that

n
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2
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ivx
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)
=
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)
.

Rearranging the above expressions, we obtain the following limit result

n
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β̃ivx2 − β2

)
− β1

]
=
(
δ − δ̂ols
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. (C.49)

Remark C.4. In this paper we are not specifically attempting to solve the endogeneity issue in
quantile predictive regressions models. We employ a well-investigated method in the literature
that tackles the endogeneity problem, meaning it produces weak convergence results into standard
asymptotic distributions (see, Lee (2016), Fan and Lee (2019)). Alternative approaches that
tackle the endogeneity problem and produce uniform valid inference regardless of the unknown
persistence properties are proposed in the frameworks of Cai et al. (2023) and Liu et al. (2023).
In contrast, our study provides a general framework and establish the asymptotic properties
for quantile predictive regression models with a generated regressor, which is particularly useful
when jointly estimating the risk measure pair of (VaR,CoVaR) under the presence of time series
nonstationarity. We conjecture that regardless of the estimation method employed to robustify
the quantile-based model parameters to the unknown persistence, when estimating the CoVaR
based on the specifications we follow (Härdle et al. (2016)) and using the LUR parametrization,
similar challenges are needed to be tackled to ensure statistical properties hold.
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Asymptotic Properties

Next, consider for a moment the limiting distribution of
(
δ̂ols − δ

)
where ȳ2,t = δŷ1,t+ηt. There-

fore, the OLS estimator of δ is given by δ̂ols =
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ŷ2
1,t

)−1( n∑
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, where ŷ1,t := β̂

′ivx
1 x1,t−1

which implies that it can be expressed as below

δ̂ols =
(

n∑
t=1

ŷ2
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ȳ2,t
̂β′ivx

1 x1,t−1

)
=
(

n∑
t=1

ŷ2
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However, ȳ2,t = β′
2x̄2,t−1 + δŷ1,t + u2,t which implies that
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Furthermore, since the nonstationary regressors of node 1 are not correlated with the nonstation-
ary regressors of node 2, then the term plim

n→∞
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K is some positive constant. Therefore, putting all related expressions together we obtain
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The second term above
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)}2
, corresponds to a squared

mixed Gaussian distribution which gives a form of a χ2 distribution. Thus, the limiting distri-
bution of (C.51) is a linear combination of a χ2 distribution and a mixed Gaussian distribution,
which is a Generalized χ2 distribution. Thus the yt inherits the properties of xt, through a
cointegrating relation, especially our goal is to have a stationary innovation sequence such that
ut ∼ I(0). Under the assumption of a consistent estimator for δ̂ols then we have convergence in
probability to zero such that

(
δ̂ols − δ

)
p→ 0. Thus, the first term of the expression asymptotically

tends to zero (negligible) which implies that the second term converges into a mixed Gaussian
distribution.
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C.4 Doubly Corrected Estimation: Conditional Quantile Case

In this section we consider the double corrected conditional quantile estimation methodology
which is the main focus of our research study. The derivations presented in the previous sections
were useful to shed light on some challenges we have to overcome to develop a robust framework in
the proposed setting of quantile predictive regression models. In terms of estimation approach we
focus on the QR estimators under nonstationarity which are adjusted using the IVX filtration.
During the first stage of the estimation procedure in the same spirit as several studies in the
literature related to the joint estimation of the risk measures of (VaR,CoVaR) (see, Härdle et al.
(2016) and Patton et al. (2019) among others), the VaR is estimated given a fixed quantile
τ ∈ (0, 1) level but using information on the nonstationary properties of regressors as given by
the quantile predictive regression system below

Stage 1:

y
(1)
t = α1(τ) + β′

1(τ)x(1)
t−1 + u

(1)
t (τ), for t = 1, ..., n (C.51)

x
(1)
t = R(1)

n x
(1)
t−1 + v(1)

t (C.52)

such that α1(τ) + β′(τ)x(1)
t−1 is the τ−conditional quantile of yt given xt−1, where the

unknown parameters (α1(τ),β1(τ)) are estimated using the QR objective function.

Stage 2:

y
(2)
t = α2(τ) + β′

2(τ)x(2)
t−1 + δ(τ)ŷ1,t

(
θ̂ivx1 (τ)

)
+ u

(2)
t (τ), for t = 1, ..., n (C.53)

x
(2)
t = R(2)

n x
(2)
t−1 + v(2)

t (C.54)

where the parameter of interest corresponds to the estimator ϑivxn =
(
α2(τ),β′

2(τ), δ(τ)
)
.

Remark C.5. Similar to the remark found in Wang and Zhao (2016), we point out that it is up
to the practitioner to determine the specific model and parameter estimation method, which are
the starting point to carry out any subsequent CoVaR estimation and inference. In our study,
we use the nonstationary quantile predictive regression when obtaining an estimate for CoVaR.
Thus, our approach gives a

√
n1+δ−consistent estimator for the unknown coefficient of systemic

risk based on the IVX filter. Recall that β̂⋆(τ) := arg min
β⋆∈Rp+1

∑n
i=1 ρτ

(
yt − x̃′

t−1β
⋆
)

where the set of

regressors x̃t−1 =
[
xt−1 x̂VaR

t

]
. The particular optimization function corresponds to the second-

stage procedure which gives the model estimates to construct the one-period ahead forecasted
CoVaR risk measure. However, our approach differs from the estimation method of ? and Härdle
et al. (2016) since nonstationary time series data are modelled via the LUR parametrization and
thus we employ the QR-IVX estimator proposed by Lee (2016) but with the additional generated
regressor from the first-stage procedure.
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Tables

D.1 Tables of Chapter 2

Table A1: Empirical size with nominal level α = 5%.

sup OLS-Wald test (β1 = β2)
c = 1

T\ρ -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9
100 0.0804 0.0736 0.0704 0.0672 0.0556 0.0540 0.0512 0.0664 0.0700
250 0.0968 0.0812 0.0700 0.0628 0.0564 0.0608 0.0696 0.0764 0.0904
500 0.0924 0.0812 0.0720 0.0644 0.0608 0.0668 0.0744 0.0916 0.1044

1000 0.1060 0.0824 0.0788 0.0716 0.0684 0.0668 0.0760 0.0860 0.1032
c = 5

T\ρ -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9
100 0.0588 0.0564 0.0592 0.0548 0.0492 0.0480 0.0500 0.0552 0.0560
250 0.0740 0.0608 0.0596 0.0548 0.0516 0.0504 0.0568 0.0692 0.0744
500 0.0860 0.0784 0.0696 0.0648 0.0564 0.0572 0.0632 0.0680 0.0848

1000 0.0908 0.0816 0.0732 0.0708 0.0636 0.0596 0.0620 0.0724 0.0864
c = 10

T\ρ -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9
100 0.0448 0.0524 0.0508 0.0488 0.0444 0.0448 0.0480 0.0516 0.0492
250 0.0572 0.0540 0.0528 0.0488 0.0472 0.0472 0.0548 0.0608 0.0604
500 0.0788 0.0768 0.0676 0.0604 0.0544 0.0592 0.0592 0.0648 0.0736

1000 0.0796 0.0768 0.0704 0.0620 0.0568 0.0528 0.0552 0.0652 0.0704
c = 20

T\ρ -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9
100 0.0380 0.0416 0.0440 0.0432 0.0476 0.0416 0.0440 0.0440 0.0388
250 0.0560 0.0476 0.0480 0.0408 0.0436 0.0460 0.0496 0.0480 0.0484
500 0.0620 0.0592 0.0600 0.0560 0.0512 0.0504 0.0564 0.0596 0.0648

1000 0.0676 0.0656 0.0608 0.0548 0.0496 0.0520 0.0548 0.0576 0.0572

Table A1 presents finite-sample empirical sizes for the sup Wald-OLS test, with nominal level α = 5% for
B = 5, 000 replications. The predictive regression model under the null hypothesis, H0 : β1 = β2, is given

by, yt = 0.25xt−1 +ut, xt = (1− c
T )xt−1 +vt, with Σee =

[
1 ρ

ρ 1

]
, where ρ = σuv

σuσv
, is the contemporaneous

correlation coefficient.
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Table A2: Empirical size with nominal level α = 5%.

sup IVX-Wald test (α1 = α2, β1 = β2)
c = 1 (cz = 1, δz = 0.75, cα = 13.42)

T\ρ -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9
100 0.0821 0.0781 0.0821 0.0680 0.0668 0.0596 0.0610 0.0516 0.0526
250 0.0636 0.0878 0.0586 0.0624 0.0532 0.0522 0.0506 0.0538 0.0489
500 0.0616 0.0508 0.0604 0.0606 0.0586 0.0582 0.0562 0.0572 0.0526

1000 0.0576 0.0644 0.0412 0.0564 0.0400 0.0460 0.0598 0.0668 0.0544
c = 5 (cz = 1, δ = 0.75, cα = 13.42)

T\ρ -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9
100 0.0634 0.0604 0.0580 0.0526 0.0450 0.0546 0.0596 0.0550 0.0610
250 0.0598 0.0662 0.0456 0.0548 0.0448 0.0526 0.0452 0.0461 0.0686
500 0.0544 0.0692 0.0510 0.0650 0.0580 0.0582 0.0548 0.0518 0.0516

1000 0.0492 0.0488 0.0618 0.0436 0.0590 0.0450 0.0564 0.0522 0.0488

c = 1 (cz = 1, δz = 0.75, c∗
α)

T\ρ -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9
100 0.0686 0.0710 0.0708 0.0568 0.0632 0.0514 0.0638 0.0492 0.0582
250 0.0604 0.0736 0.0816 0.0631 0.0790 0.0558 0.0622 0.0438 0.0542
500 0.0538 0.0780 0.0828 0.0638 0.0760 0.0536 0.0692 0.0532 0.0501

1000 0.0534 0.0548 0.0672 0.0448 0.0356 0.0454 0.0686 0.0548 0.0564
c = 5 (cz = 1, δz = 0.75, c∗

α)
T\ρ -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9
100 0.0722 0.0734 0.0736 0.0604 0.0668 0.0552 0.0566 0.0532 0.0518
250 0.0588 0.0694 0.0714 0.0548 0.0658 0.0544 0.0766 0.0780 0.0648
500 0.0576 0.0784 0.0716 0.0606 0.0656 0.0594 0.0508 0.0508 0.0522

1000 0.0490 0.0828 0.0578 0.0628 0.0658 0.0556 0.0630 0.0498 0.0526

Table A2 presents finite-sample sizes for the sup Wald-IVX test, with nominal size α = 5%. The predictive
regression model under the null hypothesis is given by yt = 0.25+0.5xt−1 +ut, xt = (1− c1

n )xt−1 +vt, with

Σee =
[

0.25 σuv

σuv 0.75

]
, ρ = σuv

σuσv
, is the contemporaneous correlation coefficient. Furthermore, for the IVX

estimation step, we use an IVX persistence parameter1 δz ∈ {0.75, 0.95} and the localizing coefficient is
set to cz = 1. The number of replications is B = 5, 000 and the critical values are based on the bootstrap.

Remark D.1. As we can observe from the empirical size results presented on Table A2, when
using the sup IVX-Wald statistic for testing parameter constancy in the predictive regression
models with LUR predictors are based on conventional asymptotic critical values, then we obtain
excessive size distortions. This is especially the case for values of the contemporaneous correlation
coefficient, ρ, close to the vicinity of unity. Therefore, to obtain correctly controlled empirical
size within this context, bootstrap based inference is necessary.

1Notice that the IVX persistent parameter δz is chosen to ensure that the instrument zt is mildly integrated.
A value of δz = 0.95 it has been documented in the literature to work well (see, Phillips and Lee (2016)). For
comparability purposes we also use an exponent rate with value δz = 0.75.
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Table A3: Predictability Tests for the Equity Premium

Predictor β̂OLS tHAC R2 β̂IVX WIVX supWOLS supWIVX

Panel A: 1946Q1 - 2019Q4
Dividend payout ratio 0.0056 0.3898 0.0003
Long-term yield -0.0824 -1.5958 0.0032
Dividend yield 0.0150 1.9880 0.0047
Dividend-price-ratio 0.0142 1.8741 0.0042
T-bill rate -0.1043 -2.1461∗ 0.0060
Earnings-price-ratio 0.0115 1.2885 0.0028
Book-to-market ratio 0.0042 0.6590 0.0006
Default yield spread 0.0150 1.9880∗ 0.0047
Net equity expansion -0.0501 -0.6149 0.0005
Term spread 0.1813 1.6834 0.0035
Inflation rate -0.9075 -2.6520∗∗ 0.0096
Panel B: 1990Q1 - 2019Q4
Dividend payout ratio 0.0028 0.1597 0.0001
Long-term yield -0.0883 -0.8409 0.0017
Dividend yield 0.0354 1.6497 0.0102
Dividend-price-ratio 0.0351 1.6389 0.0101
T-bill rate -0.0393 -0.3885 0.0005
Earnings-price-ratio 0.0173 0.8403 0.0041
Book-to-market ratio 0.0317 1.0439 0.0041
Default yield spread 0.5275 0.5506 0.0025
Net equity expansion 0.1188 0.9655 0.0037
Term spread -0.0727 -0.4442 0.0005
Inflation rate 0.2005 0.2831 0.0003

Table A3 presents simple predictability tests of the null hypothesis β = 0 and model estimates based on the

predictive regression with a single predictor given by yt = α + βxt−1 + ut, applied to all individual predictors.

For the t-tests we consider a t-ratio based on the HAC (Newey-West) covariance estimator. For all test statistics,

we denote the rejection probabilities under the null hypothesis of no predictability at significance levels 1%(∗∗∗),

5%(∗∗), and 10%(∗), respectively.
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Table A4: Structural Break Tests for predictors

Panel A: 1990Q1 - 2019Q4
Predictor ρ̂ R2 BP Seq F-test Max LR F-test Exp LR F-test
Dividend payout ratio 0.7477 0.5592 4.0061 49.4450∗∗∗ 19.1970∗∗∗

Long-term yield 0.0429 0.0046 3.4002 2.3062 0.3676
Dividend yield 0.0424 0.0001 3.5761 7.2497 1.4443
Dividend-price-ratio 0.0511 0.0008 3.6305 7.5262 1.5400
T-bill rate 0.4734 0.2169 2.6279 5.4363 0.6033
Earnings-price-ratio 0.4385 0.1922 1.6033 14.6679∗∗∗ 4.6243∗∗∗

Book-to-market ratio -0.0439 0.0012 5.5639 3.1215 0.1470
Default yield spread 0.4616 0.2131 3.1040 7.4651 1.9635∗∗

Net equity expansion 0.2440 0.0596 0.9001 2.5452 0.2197
Term spread 0.1035 0.0107 1.6129 2.1243 0.2136
Inflation rate -0.0979 0.0096 3.2371 5.1032 0.9540
Predictor µ̂ ρ̂ R2 BP Seq F-test Max LR F-test Exp LR F-test
Dividend payout ratio -0.0001 0.7476 0.5592 26.5211∗∗∗ 26.5211∗∗∗ 7.7360∗∗∗

Long-term yield -0.0002 0.0368 0.0014 1.7122 1.1633 0.1840
Dividend yield -0.0007 0.0408 0.0017 3.4744 5.0447 1.1532
Dividend-price-ratio -0.0007 0.0495 0.0024 3.3367 5.0907 1.1876
T-bill rate -0.0001 0.4684 0.2197 1.3134 2.6698 0.4553
Earnings-price-ratio -0.0003 0.4384 0.1922 0.7989 7.5124∗∗∗ 2.2289
Book-to-market ratio -0.0006 -0.0447 0.0020 2.7760 2.0446 0.2170
Default yield spread 0.0000 0.4616 0.2131 1.6369 3.7191 0.7621
Net equity expansion 0.0000 0.2440 0.0596 0.8209 1.6173 0.1941
Term spread 0.0000 0.1034 0.0107 1.3025 1.7316 0.2593
Inflation rate 0.0000 -0.0979 0.0097 1.6209 2.5489 0.4311

Table A4 presents structural break tests and model estimates based on an AR(1) model applied to all individual

stationary predictors (based on first differences2, i.e., ∆x = xt − xt−1) for Panel A with sampling period: 1990Q1

- 2019Q4. The covariance matrix for the AR(1) model is constructed using the HAC (Newey-West) estimator.

We consider the following structural break tests3 (i) Bai-Perron F-test based on the sequential break detection

algorithm of Bai and Perron (2003) with ϵ = 0.15; (ii) Maximum LR F-statistic with ϵ = 0.15; and (iii) Exp LR

F-statistic with ϵ = 0.15. The last two structural break tests represent the Andrews unknown breakpoint tests

(see, Andrews (1993)). Notice also for the BP statistic we assume a common data distribution across the blocks

to ensure consistent estimation of the variance. For all test statistics, we denote the rejection probabilities under

the null hypothesis of no structural break at significance levels 1%(∗∗∗), 5%(∗∗), and 10%(∗), respectively.

2Notice that considering the first differences of the predictors ensures that the structural break tests are asymp-
totically valid, regardless of whether these have unit roots.

3Further details regarding the specification and testing algorithms can be found in the User’s Guide of Eviews
under the section titled "Stability Diagnostics", see https://www.eviews.com/help/

 https://www.eviews.com/help/
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Coding Procedures

E.1 Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Procedure 1: Generating the DGP under the null hypothesis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ysim, xsim] = simulate_null( n , beta1, beta2, c1, c2, gamma, rho );

outputVector = [];
x1 = zeros(n,1);
x2 = zeros(n,1);

sigma_v1v2 = (rho)*sqrt(1)*sqrt(1);
mu = [0 0 0];
Sigma = [1 0.10 -0.29 ; 0.10 1 sigma_v1v2 ; -0.29 sigma_v1v2 1];
innov_e = mvnrnd(mu,Sigma,n);
u = innov_e(:,1);
v1 = innov_e(:,2);
v2 = innov_e(:,3);

for i = 2:n;

x1(i,1) = ( 1 - c1 / ( n^gamma) )*x1(i-1,1) + v1(i,1);
x2(i,1) = ( 1 - c2 / ( n^gamma) )*x2(i-1,1) + v2(i,1);
y(i,1) = beta1*x1(i-1,1) + beta2*x2(i-1,1) + u(i,1);

end

ysim = y;
xsim = [x1(:,1) x2(:,1)];
[ysim , xsim ];

end

200
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Procedure 2: Wald IVX test for structrural break testing under the null hypothesis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [sup_Wald_IVX] = estimate_sup_Wald_IVX( ysim, xsim );

outputVector = [];
pi0 = 0.15;
p = 2;
n = length(ysim);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Obtain the simulated data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xlag = xsim(1:n-1,:);
xt = xsim(2:n,:);
y = ysim(2:n,:);
nn = length(y);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fit the LUR specification
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rn = zeros(p,p);
for i = 1:p

rn(i,i) = regress( xt(:,i),xlag(:,i) );
end

% autoregressive residual estimation
u = xt - xlag*rn;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Construct the IVX instrument
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
K = 1;
n = nn-K+1;
Rz = ( 1 -1/(nn^0.95) )*eye(p);
diffx = xt-xlag;
z = zeros(nn,p);
z(1,:) = diffx(1,:);

for i=2:nn
z(i,:) = z(i-1,:)*Rz+diffx(i,:);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Loop for the supremum functional
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t = length( y );
lower = t*pi0;
upper = t*(1-pi0);
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lower_bound = round(lower);
upper_bound = round(upper);
sequence = ( lower_bound : upper_bound );
dim_seq = ( upper_bound - lower_bound );

% Wald IVX vector that stores the sequence of statistics
Wald_IVX_vector = zeros(dim_seq ,1);

s = 1;
while ( s <= dim_seq );

k = sequence( s );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Step 1: Obtain the estimate of the variance of OLS regression
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xlag1 = xlag;
xlag1( (k+1):nn, : ) = 0;

xlag2 = xlag;
xlag2( 1:k, : ) = 0;

X_matrix = [ xlag1 xlag2 ];

[Aols,bhat,epshat] = regress( y, X_matrix );
covepshat = ( epshat’*epshat ) / nn;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Step 2: Obtain the estimates of the IVX estimators
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We define with Z the IVX instrument
Z = [ zeros(1,p) ; z(1:n-1,:) ];

% Estimate the Z1 (before break) and Z2 (after break) matrices
Z1 = Z;
Z1( (k+1):nn, : ) = 0;

Z2 = Z;
Z2( 1:k, : ) = 0;

beta1_ivx = y’*Z1*pinv(xlag1’*Z1);
beta2_ivx = y’*Z2*pinv(xlag2’*Z2);
beta_ivx_distance = ( beta1_ivx - beta2_ivx );

% covariance matrix estimation (predictive regression)
covu = zeros(p,p);
for t=1:nn

covu=covu+u(t,:)’*u(t,:);
end
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% covariance matrix estimation (autoregression)
covu = covu/nn;
covuhat = zeros(1,p);

for i=1:p
covuhat(1,i) = sum( epshat’*u(:,i));

end

% covariance matrix between ’epshat’ and ’u’
covuhat = covuhat’/nn;
m = floor(nn^(1/3));
uu = zeros(p,p);
for h = 1:m

a = zeros(p,p);
for t = (h+1):nn

a = a+u(t,:)’*u(t-h,:);
end

uu = uu+(1-h/(m+1))*a;
end
uu = uu/nn;
Omegauu = covu+uu+uu’;

q = zeros(m,p);
for h = 1:m

pa = zeros(nn-h,p);
for t = (h+1):nn

pa(t-h,:) = u(t,:)*epshat(t-h)’;
end

q(h,:) = (1-h/(1+m))*sum(pa);
end

residue = sum(q)/nn;
Omegaeu = covuhat+residue’;

% FM is estimated based on the regression model with xlag1 and xlag2 as predictors
FM = covepshat - Omegaeu’*Omegauu^(-1)*Omegaeu;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimation of Q1 and Q2 matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Z1_mean = mean( Z1( 1:k, : ) );
M1_matrix = Z1’*Z1*covepshat - k*Z1_mean’*Z1_mean*FM;
Q1_matrix = pinv(Z1’*xlag1)*( M1_matrix )*pinv(xlag1’*Z1);

Z2_mean = mean( Z2( (k+1):nn, : ) );
M2_matrix = Z2’*Z2*covepshat - ( n - k )*Z2_mean’*Z2_mean*FM;
Q2_matrix = pinv(Z2’*xlag2)*( M2_matrix )*pinv(xlag2’*Z2);

Q_matrix = ( Q1_matrix + Q2_matrix );



APPENDIX E. CODING PROCEDURES 204

Wald_IVX_break = beta_ivx_distance*pinv( Q_matrix )*(beta_ivx_distance’);

Wald_IVX_vector( s, 1 ) = Wald_IVX_break;

% end-of estimation of sequence of Wald-IVX statistics
s = s + 1;
end

% Obtain the sup-Wald statistic
sup_Wald_IVX = max( Wald_IVX_vector );

end
%END-OF-FUNCTION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Procedure 3: Monte Carlo Simulations under the null hypothesis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [empirical_size, sup_Wald_IVX_matrix, sup_Wald_IVX_matrix_bootstrap]
= MC_simulations_size( M, B, n, beta1, beta2, c1, c2, gamma, rho );

outputVector = [];

% Step 1: Simulate a DGP using Function 1
sup_Wald_IVX_matrix = zeros(M,1);
sup_Wald_IVX_matrix_bootstrap = zeros(M,1);
empirical_size = 0;
count = 0;
ysim = 0;
xsim = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MC simulation step
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:M
%begin-of-MC-loop

[ ysim , xsim ] = simulate_null( n , beta1, beta2, c1, c2, gamma, rho );
xlag = xsim(1:n-1,:);
xt = xsim(2:n,:);
y = ysim(2:n,:);
nn = length(y);

Wald_IVX = estimate_sup_Wald_IVX( ysim, xsim );
sup_Wald_IVX_matrix( i, 1 ) = Wald_IVX;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Bootstrap step (Fixed regressor bootstrap)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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yt_star = zeros( nn,B );

for b = 1:B
[Aols,bhat,epshat] = regress( y, xlag );
kappa = normrnd(0,1,[nn,1]);
u_hat_star = ( epshat.*kappa);
yt_star( : , b ) = Aols(1,1)*xlag( :,1) + Aols(2,1)*xlag( :,2) + u_hat_star;

end

bootstrap_Wald_IVX_matrix = zeros( B , 1 );

R = 40;
parfor (j = 1:B, R)

ysim = yt_star( : , j );
estimation_sup_Wald_IVX_step = estimate_sup_Wald_IVX( ysim, xsim );
bootstrap_Wald_IVX_matrix( j, 1) = estimation_sup_Wald_IVX_step;

end

the_boot_statistic = sort( bootstrap_Wald_IVX_matrix );
quantile = round(0.95*B);
boot_IVX_statistic = the_boot_statistic( quantile, 1 );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sup_Wald_IVX_matrix_bootstrap( i, 1 ) = boot_IVX_statistic;
ysim = 0;
xsim = 0;

%end-of-MC-loop
end

% Obtain the empirical size
count = 0;
for j = 1:M

if ( sup_Wald_IVX_matrix( j, 1 ) < sup_Wald_IVX_matrix_bootstrap( j, 1 ) );
count = count + 1;

end
end

empirical_size = count / M;

%%%%%%%%%%%%%%%%%%%%%%%%%
%END-OF-FUNCTION
end
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E.2 R Code

################################################################################
### Function 1: Simulate the i.i.d covariance matrices from Wishart distribution
################################################################################
simulate_Wishart_matrices <- function( n_Nodes = n_Nodes, p = p )
{

n_Nodes = n_Nodes; p = p
S <- toeplitz((p:1)/p)
sim_data <- rWishart( n_Nodes, (p+2), S )
mylist <- 0; mylist <- list(); sigma <- 0
for ( j in 1:n_Nodes )
{

sim_data <- rWishart( n_Nodes, (p+2), S )
Sigma <- sim_data[ , , j ]
mylist[[j]] <- Sigma
Sigma <- 0

}
return( mylist )

}
################################################################################
### Function 2: Simulate data pair under the null hypothesis
################################################################################
simulate_data_null_function <- function( N = N_size, gamma.x = gamma.x, sim_Wishart = sim_Wishart )
{# begin of function

N <- N_size; gamma.x <- gamma.x; sim_Wishart <- sim_Wishart
# We simulate 7 different regressors for each model
p <- 7
mu.vector <- matrix(0, nrow = p+1, ncol = 1 )
Sigma <- as.matrix( simulate_Wishart )
# generate random error sequence from Multivariate Normal Distribution
innov.e <- rmvnorm( n = N, mean = mu.vector, sigma = Sigma )
innov.u <- as.matrix( innov.e[ ,1] )
innov.v <- as.matrix( innov.e[ ,2:8] )
# generates beta from random Uniform distribution in the interval [-1,1]
beta1 <- as.numeric( runif(1, min = -1, max = 1) )
beta2 <- as.numeric( runif(1, min = -1, max = 1) )
beta3 <- as.numeric( runif(1, min = -1, max = 1) )
beta4 <- as.numeric( runif(1, min = -1, max = 1) )
beta5 <- as.numeric( runif(1, min = -1, max = 1) )
beta6 <- as.numeric( runif(1, min = -1, max = 1) )
beta7 <- as.numeric( runif(1, min = -1, max = 1) )
C <- diag(p)
C[1,1] <- 1; C[2,2] <- 2; C[3,3] <- 3; C[4,4] <- 4; C[5,5] <- 5; C[6,6] <- 6; C[7,7] <- 7
Rn <- diag(p) - C/( N^gamma.x )
x <- matrix( 0,N,p)
for (j in 1:p){

for(t in 2:N){
x[t,j] <- Rn[j,j]*x[t-1,j] + innov.v[t,j]
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}
}
y <- matrix(0, nrow = N, ncol = 1)
for (t in 2:N) {

y[t,1] <- beta1*x[t-1,1] + beta2*x[t-1,2] + beta3*x[t-1,3] + beta4*x[t-1,4]
+ beta5*x[t-1,5] + beta6*x[t-1,6] + beta7*x[t-1,7] + innov.u[t,1]

}
simulated.data <- structure( list( y = y, x = x ) )
return( simulated.data )

}# end of function

################################################################################
### Function 3: IVX-QR Estimation Methodology (see, Lee (JoE, 2016))
################################################################################
IVXQR_estimation_function <- function( y_data = y_data, x_data = x_data, tau = tau )
{# begin of function

# obtain the simulated data from Function 1 which are in the form of lists
y_data <- y_data; x_data <- x_data
y <- as.matrix( y_data )
x <- as.matrix( x_data )
tau <- tau
# Lag Adjustment
n <- nrow( x ); p <- ncol( x )
y.t <- as.matrix( y[2:n,1] )
x.t <- as.matrix( x[2:n, ] )
x.lag <- as.matrix( x[1:(n-1), ] )
####################################
# Autoregression Estimation
# Rn contains the estimated coefficients of the autoregression matrix Rn
####################################
Rn <- matrix(0, p, p)
for ( i in 1:p ){

Rn[i, i] <- lm( x.t[, i] ~ 0 + x.lag[, i] )$coefficients
}
OLS.model <- lm( x.t ~ x.lag - 1)
matrix.coef <- OLS.model$coefficients
coef <- matrix( 0, 7, 7)
for (i in 1:7){

coef[i,i] <- matrix.coef[i,i]
}
# autoregressive residual estimation: ( n x p ) matrix with estimated residuals
# Note that these are the individual residuals from each AR(1) separately in each column
u.hat <- as.matrix( x.t - x.lag %*% Rn )
####################################
# Ordinary QR with intercept
####################################
model.QR <- rq( y.t ~ x.lag, tau = tau )
model.QR.summary <- summary( model.QR, se = "boot", bsmethod= "xy" )
model.QR.coef <- as.data.frame( model.QR.summary$coefficients )
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model.QR.coef <- as.matrix( model.QR.coef$Value )
residuals.QR.model <- as.matrix( residuals( model.QR ) )
# estimating lambda
e.tau <- matrix( 0, nrow = nrow(x.lag) , ncol = 1)
for ( i in 1:(n-1) ){

if ( residuals.QR.model[i,1] < 0 ){ e.tau[i,1] <- 1}
}
# lambda <- cor( e.tau, u.hat )
lambda <- as.matrix( ( ( t(e.tau) %*% u.hat ) / (n-1) ) / sqrt( tau*(1-tau) ) )
c <- -6; cz <- -5
delta <- ( 1-(log(-c)-log(-cz))/ log(n) )
# IVX construction
n_ivx <- n^(delta)
z <- matrix( 0 , nrow = n, ncol = ncol(x) )
z[1, ] <- x[1, ]
rho_z <- ( 1 + cz / n_ivx )
for ( t in 2:n ){

z[t, ] <- rho_z*z[t-1, ] + ( x[t, ] - x[t-1, ] )
}
# IVX-QR with dequantiling (see, Lee (JoE, 2016))
intercept.ones <- matrix( 1, nrow = nrow(y.t) , ncol = 1)
z.lag.deq <- z[1:(n-1), ]
beta.tau <- model.QR.coef[1,1]
y.t.tau <- y.t - intercept.ones*beta.tau
# Next we obtain the IVX-QR estimates after dequantiling
model.IVX.QR <- rq( y.t.tau ~ z.lag.deq - 1, tau = tau )
model.IVX.QR.summary <- summary( model.IVX.QR, se = "boot", bsmethod= "xy" )
model.IVX.QR.coef <- as.data.frame( model.IVX.QR.summary$coefficients )
IVX.QR.coef <- as.matrix( model.IVX.QR.coef$Value )
residuals.QR.model <- as.matrix( residuals( model.IVX.QR ) )

# Estimate the kernel density function
kernel.density.residuals.QR.model <- kdensity( residuals.QR.model,

start = "gumbel", kernel = "gaussian", normalized = TRUE)
kde <- kernel.density.residuals.QR.model
f_u <- kde(0)
x.values <- as.matrix( d.residuals$x )
y.values <- as.matrix( d.residuals$y )
position.first.positive <- min( which( x.values > -0.5 ) )
# IVX QR t stats for simulation
ttau <- tau*(1-tau)
zzinv <- inv( t(z.lag.deq)%*%(z.lag.deq) )
sigma.IVX.QR.coef <- ( ttau/ ( f_u^2 ) )*(zzinv)
chi.square.test <- t(IVX.QR.coef)%*%( inv(sigma.IVX.QR.coef) )%*%(IVX.QR.coef)
return( list( IVX.QR.coef, sigma.IVX.QR.coef, chi.square.test ) )

}# end of function
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################################################################################
### Function 4: Obtain Pairwise Data and IVX-QR Estimation for each equation
################################################################################
model_coef_list <- list(); wald_IVX_test <- list()
for ( j in 1:n_Nodes ){

y_data <- as.matrix( y_matrix[ ,j] )
x_data <- as.matrix( x_matrix[[j]] )
estimation_IVXQR_model <- IVXQR_estimation_function( y_data = y_data, x_data = x_data, tau = tau )
IVX_model_coefficients <- as.matrix( estimation_IVXQR_model[[1]] )
model_coef_list[[j]] <- IVX_model_coefficients
Wald_IVX_test[[j]] <- as.matrix( estimation_IVXQR_model[[3]] )

}
# Now in order to ensure that we estimate the QR-SUR estimator we use the de-quantile method
# de-quantiling the errors of the predictive regression model
for (i in 1:NB){

uy[i] = uy[i] - qnorm( tau, 0, sqrt(sigma2[i]) )
}
################################################################################
### Function 5A: Estimate the VaR-CoVaR matrix (stationary time series models)
################################################################################
Risk_Matrix_forecast <- function( Nr_C = Nr_C, nhist = nhist, returns = returns_historical, macro = macro_historical, currenttime = currenttime){#begin of function

# Initialize inputs
Nr_C <- Nr_C; nhist <- nhist
currenttime <- currenttime
returns <- as.matrix(returns_historical)
macro <- as.matrix(macro_historical)
#We match the lag of the two series since the macro in the model is M_{t-1}
nr <- NROW(returns)
#We pick the last observation from the historical period to get the predicted value of the VaR in the next period
current.macro <- macro[nhist-1, ]
current.macro <- as.matrix(as.vector(current.macro))
returns.lag <- returns[1:(nr - 1), , drop = FALSE]
macro.lag <- macro[1:(nr - 1), , drop = FALSE]
returns.t <- returns[2:nr, , drop = FALSE]
macro.t <- macro[2:nr, , drop = FALSE]
returns.t <- as.matrix( returns.t )
macro.lag <- as.matrix( macro.lag )
return.t <- 0
other.return.t <-0; CoVaR.est <- 0; var_est <- 0
forecast_risk_matrix <- matrix( 0, nrow = Nr_C , ncol = Nr_C )
beta.estimate <- matrix( 0, nrow = Nr_C , ncol = Nr_C )
sigma.beta.estimate <- matrix( 0, nrow = Nr_C , ncol = Nr_C )
pvalue.beta.estimate <- matrix( 0, nrow = Nr_C , ncol = Nr_C )
for (i in 1:Nr_C){#begin of outer loop

# Each i iteration first estimates the CoVaR_i|i = VaR_i
var_est <- 0; var_forecast <- 0; return.t <- returns.t[ , i]; return.t <- as.matrix( return.t )
model.var <- rq( return.t ~ macro.lag, tau = 0.05 )
model.var.summary <- summary( model.var, se = "boot", bsmethod= "xy" )
model.coef <- as.data.frame( model.var.summary$coefficients )
coef.macro <- model.coef$Value
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coef.macro <- as.matrix( coef.macro )
# Extract the coefficients of the CoVaR_1|1 model
coef_const_var <- coef.macro[1,1]
var_forecast <- coef_const_var + t(current.macro) %*% coef.macro[2:8,1 ]
forecast_risk_matrix[i,i] <- var_forecast
#get the fitted values of the model
var_est <- fitted.values(model.var)
var_est <- as.vector(var_est)
var_est <- as.matrix(var_est)
##################################
for (j in 1:Nr_C){#begin of inner loop

CoVaR.est <- 0
if (j!=i)
{# condition to estimate

other.return.t <- returns.t[ , j]
other.return.t <- as.matrix( other.return.t )
###Estimation of CoVaR_j|i
model.covar <- rq( other.return.t ~ macro.lag + return.t , tau = 0.05 )
model.covar.summary <- summary( model.covar, se = "boot", bsmethod= "xy" )
model.estimates <- as.data.frame( model.covar.summary$coefficients )
coef.covar <- model.estimates$Value
coef.covar <- as.matrix( coef.covar )
coef.st.error <- model.estimates$‘Std. Error‘
coef.st.error <- as.matrix( coef.st.error )
coef.pvalue <- model.estimates$‘Pr(>|t|)‘
coef.pvalue <- as.matrix( coef.pvalue )
# We need 3 matrices to collect the coefficients of the returns
# Matrix 1: coefficients
# Matrix 2: standard errors
# Matrix 3: p-values
# Define the 3 matrices to keep the above
beta.estimate[j,i] <- coef.covar[9,1]
sigma.beta.estimate[j,i] <- coef.st.error[9,1]
pvalue.beta.estimate[j,i] <- coef.pvalue[9,1]
### Extract the coefficients of the CoVaR_12 model
coef_const_covar <- coef.covar[1,1]
coef_const_covar <- as.numeric(coef_const_covar)
covar_forecast <- coef_const_covar + t(current.macro) %*% coef.covar[2:8,1] + coef.covar[9,1]*var_forecast
forecast_risk_matrix[j,i] <- covar_forecast
covar_forecast<-0

}#end of estimate condition
}#end of inner loop

}#end of outer loop
return(forecast_risk_matrix)

}#end of function
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###########################################################################
# FUNCTION 5B: Constuction of symmetrized time-varying CoVaR Matrices #####
###########################################################################
covar_symmetric_function <- function(sigma_tilda = sigma_tilda )
{#begin of function

sigma_tilda <- sigma_tilda
sigma_tilda <- abs( sigma_tilda )
sigma_tilda_sym <- 0.5*( sigma_tilda + t(sigma_tilda) )
return( sigma_tilda_sym )

}#end of function

###############################################################################
# FUNCTION 6: Bootstrapping the predictive regression model ##########
###############################################################################
bootstrap_data_function <- function( Nr_C = Nr_C, time = time, returns=returns, macro=macro )
{# begin of function

Nr_C <- Nr_C; time <- time
returns <- as.matrix(returns); macro <- as.matrix(macro)
### Step 1: Run OLS predictive regressions to obtain the model coefficients
nr <- NROW(returns); p <- ncol(macro)
returns.t <- as.matrix( returns[2:nr, ] )
macro.t <- as.matrix( macro[2:nr, ] )
macro.lag <- as.matrix( macro[1:(nr-1), ] )
##############################################
### Step 1A: Fit a VAR(1) model for the autoregressive model
##############################################
coefficients.xt.model.matrix <- matrix( 0, nrow = ncol(macro) , ncol = ncol(macro) )
intercepts.xt.model.matrix <- matrix( 0, nrow = ncol(macro) , ncol = 1)
VAR_model <- VAR( y = macro, p = 1 )
B.estimates <- as.matrix( Bcoef(VAR_model) )
B.matrix <- as.matrix( B.estimates[ ,1:p ] )
mu.x.vector <- as.matrix( B.estimates[ ,(p+1)] )
eigenvalues.B.matrix <- as.matrix( roots(VAR_model) )
ux.t.hat <- as.matrix( residuals( VAR_model ) )
ux.t.hat.centered <- matrix(0, nrow = nrow(ux.t.hat), ncol = ncol(ux.t.hat) )
for (j in 1: ncol(ux.t.hat) ){

ux.t.hat.centered[ ,j] <- ( as.matrix( ux.t.hat[ ,j] ) - mean( as.matrix(ux.t.hat[ ,j])) )
}
### Next I construct the bootstrap residuals
ux.t.hat.star <- matrix(0, nrow =nrow(ux.t.hat), ncol = ncol(ux.t.hat) )
data <- 0; x <- 0
for (j in 1: ncol(ux.t.hat) ) {

x <- as.matrix( ux.t.hat.centered[ ,j] )
nboot <- 10000
data <- matrix(sample(x, size = length(x) * nboot, replace = T), nrow = nboot)
for (i in 1:nrow(ux.t.hat) ) {

ux.t.hat.star[i,j] <- mean( data[ ,i] )
}
data <- 0; x <- 0

}
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##############################################
### Bias Correction for the coefficient matrix
### (Reference: Testing for Multiple Horizon Predictability)
####################### #######################
Omega.x.hat <- as.matrix( cov( ux.t.hat ) )
unit.matrix <- diag( ncol(ux.t.hat) )
term1 <- inv( unit.matrix - t(B.matrix) )
term2 <- t(B.matrix)%*%( inv( unit.matrix - t(B.matrix)%*%B.matrix ) )
term3 <- 0
for (j in 1:ncol(ux.t.hat) ){

term3 <- term3
+ eigenvalues.B.matrix[j,1]*( inv( unit.matrix - eigenvalues.B.matrix[j,1]*t(B.matrix) ) )

}
term3 <- as.matrix(term3)
macro.lag.tilde <- matrix( 0, nrow = nrow(macro.lag), ncol= ncol(macro.lag) )
for (j in 1:ncol(macro.lag) ){

macro.lag.tilde[ ,j] <- ( as.matrix( macro.lag[ ,j] ) - mean( macro.lag[ ,j] ) )
}
term4 <- inv( t( macro.lag.tilde )%*%macro.lag.tilde )
B.matrix.hat.bc <- as.matrix( B.matrix + Omega.x.hat%*%( term1 + term2 + term3 )%*%term4 )
##############################################
### Step 1B: Fit the predictive regression model
##############################################
model.yt <- lm( returns.t ~ macro.lag )
model.coef <- as.matrix( model.yt$coefficients )
beta.coefficients <- as.matrix( model.coef[2:8, ] )
mu.y.vector <- as.matrix( model.coef[1, ] )
uy.t.hat <- as.matrix( residuals(model.yt) )
uy.t.hat.centered <- matrix(0, nrow = nrow(uy.t.hat), ncol = ncol(uy.t.hat) )
for (j in 1: ncol(uy.t.hat) ){

uy.t.hat.centered[ ,j] <- ( as.matrix( uy.t.hat[ ,j] ) - mean( as.matrix(uy.t.hat[ ,j])) )
}
### Next we construct the bootstrap residuals
uy.t.hat.star <- matrix(0, nrow =nrow(uy.t.hat), ncol = ncol(uy.t.hat) )
data <- 0; x <- 0
for (j in 1: ncol(uy.t.hat) ){

x <- as.matrix( uy.t.hat.centered[ ,j] )
nboot <- 10000
data <- matrix(sample(x, size = length(x) * nboot, replace = T), nrow = nboot)

for (i in 1:nrow(uy.t.hat) ){
uy.t.hat.star[i,j] <- mean( data[ ,i] )

}
data <- 0
x <- 0

}
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##############################################
### Step 2: Generate the bootstrap sample {yt*, xt*, t =1,...,n =313}
##############################################
#### Generate the xt_star series ####
x.t.star <- matrix( 0, nrow = nrow(macro.lag), ncol = ncol(macro.lag) )
x.t.star[1, ] <- ux.t.hat.star[1,]
ones.matrix <- matrix( 1, nrow = nrow(macro.lag), ncol = ncol(macro.lag) )
intrecepts.x <- matrix( 0, nrow = nrow(macro.lag), ncol = ncol(macro.lag) )
# Define the matrix of intercepts
for (j in 1:ncol(macro.lag) ){

intrecepts.x[, j] <- as.matrix( ones.matrix[ ,j] )*as.numeric( mu.x.vector[j,1] )
}
# Define the x.t.star series
for ( j in 1: ncol(macro.lag)) {

for ( t in 2: nrow(macro.lag) ){
x.t.star[t,j] <- intrecepts.x[t,j]
+ ( B.matrix.hat.bc[ ,j] ) %*% ( as.matrix(x.t.star[t-1, ]) )
+ as.matrix( ux.t.hat.star[t,j] )

}
}
#### Generate the yt_star series ####
y.t.star <- matrix(0, nrow = (nrow(returns.t)), ncol = ncol(returns.t) )
y.t.star[1, ] <- uy.t.hat.star[1,]
ones.matrix <- matrix( 1, nrow = nrow(returns.t), ncol = ncol(returns.t) )
intrecepts.y <- matrix( 0, nrow = nrow(returns.t), ncol = ncol(returns.t) )
# Define the matrix of intercepts
for (j in 1:ncol(returns.t) ){

intrecepts.y[, j] <- as.matrix( ones.matrix[ ,j] )*as.numeric( mu.y.vector[j,1] )
}
for ( j in 1: ncol(returns.t) ){

for ( t in 2: nrow(returns.t) ){
y.t.star[t,j] <- intrecepts.y[t,j]
+ ( beta.coefficients[ ,j] ) %*% ( as.matrix(x.t.star[t-1, ]) )
+ as.matrix( uy.t.hat.star[t,j] )

}
}
return( list( y.t.star = y.t.star, x.t.star = x.t.star) )

}# end of function
###############################################################################
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###############################################################################
# FUNCTION 7: Subset Testing for Quantile Regressions ##########
###############################################################################

p < - nrow(X); nc <- ncol(X); m <- nc; ns <- n; nr <- 1000; h <- 1
for (ii in 1:nr)
{

Xs[, 1, ii] <- 0
Xs1[, 1, ii] <- colMeans(XX[, 2:ncol(XX)])
Us <- t(mvrnorm(ns, mu = rep(0, kk+1), Sigma = Cov))
Ys[, 1, ii] <- Beta1[1] + Us[, 1]
Us <- t(Us)
for (jj in 1:ns) {

Xs[, jj+1, ii] <- Beta %*% Xs[, jj, ii] + Us[2:(kk+1), jj]
Xs1[, jj+1, ii] <- Xs[, jj+1, ii] + mean_X[1:kk, 1]

}
Ys[, 1, ii] <- Ys[, 1, ii] + coef * Xs1[1, 1:(ns-1), ii]

}
Xs1 <- Xs1[, 2:ns, ]
Xs1 <- aperm(Xs1, c(2, 1, 3))
dataset$Y <- Ys
dataset$X <- Xs1

rej_KMS <- matrix(0, nrow = length(kk), ncol = length(hh))
for (kk in 1:length(kk)) {

for (hh in 1:length(hh)) {
result <- compute_size_0608(dataset, nr, h, epsilon)
rej_KMS[kk, hh] <- result[[1]]

}
}

Wald_test <- function(Y, X)
{

n <- nrow(X)
m_x <- ncol(X)
X <- cbind(1, X) # add a constant
b <- solve(t(X) %*% X) %*% t(X) %*% Y
sig2 <- sum((Y - X %*% b)^2) / (n - 1 - (m_x + 1))
V <- solve(t(X) %*% X) * sig2
W <- t(b[-1]) %*% solve(V[-1, -1]) %*% b[-1]
pv <- 1 - pchisq(W, m_x)
return(list(pv = pv, W = W))

}

IV_max_J_IVX_statistic <- function(R, X, h, epsilon)
{

T <- nrow(X); m <- ncol(X); mf <- 0; B <- 1000;
YY <- y[2:T]
XX <- X
YY <- R[2:T]
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XX <- X[1:(T-1), ]
nn <- length(YY)
YY <- YY - mean(YY)
XX <- XX - matrix(rep(mean(XX), nn), nrow = nn, ncol = m, byrow = TRUE)
Yvec <- rep(YY, each = m)
Xmat <- matrix(0, nrow = nn * m, ncol = m * (1 + mf))
for (i in 1:nn) {

for (j in 1:m) {
Xmat[(i - 1) * m + j, 1 + (j - 1) * (1 + mf)] <- XX[i, j]

}
}
theta <- solve(t(Xmat) %*% Xmat) %*% t(Xmat) %*% Yvec
xlag <- X[1:(T-1), ]; xt <- X[2:T, ]
n <- nn - h + 1; Rz <- (1 - 1 / (nn ^ 0.95)) * diag(m + mf)
diffx <- xt - xlag
z <- matrix(0, nrow = nn, ncol = m + mf); z[1, ] <- diffx[1, ]
for (i in 2:nn) {

z[i, ] <- z[i - 1, ] %*% Rz + diffx[i, ]
}
Z <- rbind(matrix(0, nrow = 1, ncol = m + mf), z[1:(n - 1), ])
zz <- rbind(matrix(0, nrow = 1, ncol = m + mf), z[1:(nn - 1), ])
ZK <- matrix(0, nrow = n, ncol = m + mf)
for (i in 1:n) {

ZK[i, ] <- colSums(zz[i:(i + h - 1), ])
}
Zmat <- matrix(0, nrow = nn * m, ncol = m * (1 + mf))
for (i in 1:nn) {

for (j in 1:m) {
Zmat[(i - 1) * m + j, 1 + (j - 1) * (1 + mf)] <- Z[i, j]

}
}
theta_IV <- solve(t(Zmat) %*% Xmat) %*% t(Zmat) %*% Yvec
u <- matrix(0, nrow = nn, ncol = m + mf)

for (i in 1:(m+mf)) {
rn <- lm(xt[,i] ~ xlag[,i])
u[,i] <- xt[,i] - xlag[,i] %*% rn$coefficients[-1]

}
covu <- matrix(0, nrow = m+mf, ncol = m+mf)
for (t in 1:nn) {

covu <- covu + u[t,] %*% t(u[t,])
}
covu <- covu/nn; mm <- floor(nn^(1/3))
uu <- matrix(0, nrow = m+mf, ncol = m+mf)
for (h in 1:mm) {

a <- matrix(0, nrow = m+mf, ncol = m+mf)
for (t in (h+1):nn) {

a <- a + u[t,] %*% t(u[t-h,])
}
uu <- uu + (1-h/(mm+1)) * a

}
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uu <- uu/nn; Omegauu <- covu + uu + t(uu)

UU <- matrix(0, nrow = m, ncol = m)
ZX <- matrix(0, nrow = m*(1+mf), ncol = m*(1+mf))
XZ <- matrix(0, nrow = m*(1+mf), ncol = m*(1+mf))
ZZ <- matrix(0, nrow = m*(1+mf), ncol = m*(1+mf))
ZS <- matrix(0, nrow = m, ncol = m*(1+mf))
XX <- matrix(0, nrow = m*(1+mf), ncol = m*(1+mf))
XS <- matrix(0, nrow = m*(1+mf), ncol = m*(1+mf))

for (ii in 1:nn) {
UU <- UU + W0_mat[,ii] %*% t(W0_mat[,ii])

}
UU <- UU/nn; covepshat <- UU
covuhat <- matrix(0, nrow = m, ncol = m+mf)
for (i in 1:(m+mf)) {

for (j in 1:m) {
covuhat[j,i] <- sum(W0_mat[j,] * u[,i])

}
}
covuhat <- t(covuhat)/nn; m <- floor(nn^(1/3)); uu <- matrix(0, l, l)
for (h in 1:m) {

a <- matrix(0, l, l)
for (t in (h+1):nn) {

a <- a + t(t-h) %*% t(t-h)
}
uu <- uu + (1 - h/(m+1)) * a

}
uu <- uu/nn
Omegauu <- covu + uu + t(uu)
q <- matrix(0, m, l)
for (h in 1:m) {

p <- matrix(0, nn-h, l)
for (t in (h+1):nn) {

p(t-h, ) <- u(t, ) %*% epshat(t-h)
}
q(h, ) <- (1 - h/(1+m)) * colSums(p)

}
residue <- colSums(q)/nn
Omegaeu <- covuhat + t(residue)
n <- nn - K + 1
Rz <- (1 - 1/(nn^0.95)) * diag(l)
diffx <- xt - xlag
z <- matrix(0, nn, l)
z[1, ] <- diffx[1, ]
for (i in 2:nn) {

z[i, ] <- z[i-1, ] %*% Rz + diffx[i, ]
}
Z <- rbind(matrix(0, 1, l), z[1:(n-1), ])
zz <- rbind(matrix(0, 1, l), z[1:(nn-1), ])
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ZK <- matrix(0, n, l)
for (i in 1:n) {

ZK[i, ] <- colSums(zz[i:(i+K-1), ])
}
yy <- matrix(0, n, 1)
for (i in 1:n) {

yy[i] <- sum(y[i:(i+K-1)])
}
xK <- matrix(0, n, l)
for (i in 1:n) {

xK[i, ] <- colSums(xlag[i:(i+K-1), ])
}
meanxK <- colMeans(xK)
Yt <- yy - mean(yy)
Xt <- matrix(0, n, l)
for (i in 1:l) {

Xt[, i] <- xK[, i] - meanxK[i] * rep(1, n)
}
Aivx <- t(Yt) %*% Z %*% solve(t(Xt) %*% Z)
meanzK <- colMeans(ZK)
FM <- covepshat - t(Omegaeu) %*% solve(Omegauu) %*% Omegaeu
M <- t(ZK) %*% ZK %*% covepshat - n * t(meanzK) %*% meanzK %*% FM
H <- diag(l)
Q <- H %*% solve(t(Z) %*% Xt) %*% M %*% solve(t(Xt) %*% Z) %*% H
Wivx <- matrix(0, 2, 1)
Wivx[1, 1] <- t(H %*% Aivx) %*% solve(Q) %*% (H %*% Aivx)
Wivx[2, 1] <- 1 - pchisq(Wivx[1, 1], l)
WivxInd <- matrix(0, 2, l)
WivxInd[1, ] <- (Aivx/((diag(Q))^(1/2)))^2
WivxInd[2, ] <- 1 - pchisq(WivxInd[1, ], 1)
}

###############################################################################
# FUNCTION 8: Testing for Slope Homogeneity ##########
###############################################################################

y <- data[, 1]
x <- data[, 2:ncol(data)]
p <- ncol(x)
for (i in 1:N) {

X[[i]] <- x[((1-T)+(T*i)):(T*i), ]
Y[[i]] <- y[((1-T)+(T*i)):(T*i)]

}
I <- diag(n); tau <- rep(1, n)
M <- I - (tau %*% t(tau) / T)
betahat_ols <- vector("list", n)
for (i in 1:N) {

betahat_ols[[i]] <- solve(t(X[[i]]) %*% M %*% X[[i]], t(X[[i]]) %*% M %*% Y[[i]])
}
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sigsq_hat <- rep(0, n)
for (i in 1:n) {

sigsq_hat[i] <- t(Y[[i]] - X[[i]] %*% betahat_ols[[i]]) %*% M %*% (Y[[i]] - X[[i]] %*% betahat_ols[[i]]) / (T - p - 1)
}
L1 <- vector("list", n); L2 <- vector("list", n)
for (i in 1:n) {

L1[[i]] <- t(X[[i]]) %*% M %*% X[[i]] / sigsq_hat[i]
L2[[i]] <- t(X[[i]]) %*% M %*% Y[[i]] / sigsq_hat[i]

}
sum1 <- matrix(0, nrow = p, ncol = p)
sum2 <- matrix(0, nrow = p, ncol = 1)
for (i in 1:n) {

sum1 <- sum1 + L1[[i]]
sum2 <- sum2 + L2[[i]]

}
betatilde_wfe <- solve(sum1) %*% sum2
swamytilde <- 0
for (i in 1:n) {

swamytilde <- swamytilde + t(betahat_ols[[i]] - betatilde_wfe) %*% ((X[[i]] %*% M %*% X[[i]]) / sigsq_tilde[i]) %*% (betahat_ols[[i]] - betatilde_wfe)
}
delta <- (N^(1/2)) * (((N^-1) * swamytilde - p) / ((2 * p)^(1/2)))
EZ <- p
VZ <- (2 * p) * (n - p - 1) / (n + 1)
deltaadj <- (N^(1/2)) * (((N^-1) * swamytilde - EZ) / (VZ^(1/2)))
if (delta > 0) {

pvalue_delta <- 2 * (1 - pnorm(delta, 0, 1))
} else {

pvalue_delta <- 2 * pnorm(delta, 0, 1)
}
UCV_delta <- qnorm((1 - (alpha/2)), 0, 1)
LCV_delta <- qnorm((alpha/2), 0, 1)
if (deltaadj > 0) {

pvalue_deltaadj <- 2 * (1 - pnorm(deltaadj, 0, 1))
} else {

pvalue_deltaadj <- 2 * pnorm(deltaadj, 0, 1)
}
UCV_deltaadj <- qnorm((1 - (alpha/2)), 0, 1)
LCV_deltaadj <- qnorm((alpha/2), 0, 1)
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