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Abstract—Solar photovoltaic (PV) generation forecasting is an
important tool to power system operators, but struggles under
conditions of intermittent solar irradiance. Although studying
and forecasting irradiance itself has been the subject of much
research, little progress has been made on the variability (or
fluctuation) of irradiance and its statistical properties, despite
it being an important parameter in generation forecasting, state
estimation and other power system applications. This paper takes
a close look into the statistical nature of irradiance variability and
shows that it can be sufficiently modeled by a Gaussian Mixture
Model (GMM) of six components. Furthermore, an investigation
on the required time resolution demonstrates that sub-minute res-
olution is necessary to accurately capture irradiance variability.
The analysis is performed on a one-second resolution irradiance
dataset provided by NREL.

Index Terms—Gaussian Mixture Model (GMM), RR, solar
irradiance, photovoltaic (PV) forecasting

I. INTRODUCTION

Solar photovoltaic (PV) power forecasting is hindered by
volatile weather, especially in the presence of scattered and
fast-moving clouds [1, 2]. Such conditions lead to highly inter-
mittent and uncertain solar irradiance [3, 4], which translates
to steep PV generation transients that can exceed half the
nominal power within seconds [5, 6]. This high-frequency
variation has been reported to negatively impact the electric
grid in many ways, from power quality, such as voltage
fluctuations and flicker, to stability, such as voltage dips and
frequency oscillations [7, 8]. The field of solar forecasting has
focused in the past on hourly-level resolution for energy yield;
with the increasing levels of PV integration, however, it has
become evident that higher time resolution is also important
for operational reliability [9]. In this context, it is important
to know not only the absolute value of solar generation, but
also how quickly it changes, i.e. its variability (or fluctuation
or ramping or ramp rate).

The research community has adopted the ramp rate (RR)
metric to quantify the irradiance variability [8, 10, 11]. An
analysis using RR to identify the short-term solar intermittency
and its impact on a PV converter system [10] establishes
the importance of solar variation in different timescales.
Furthermore, the study [11] also employs RR to statistically
characterize the irradiance variability that occurs during dif-
ferent weather patterns, demonstrating significant differences
over multiple timescales. Study [8] uses the absolute value
of RR to identify the temporal variability from one second

to two minutes to investigate the short-term fluctuation at
high altitudes, neglecting the negative RR values. Although
these studies highlight the importance of time resolution on
irradiance fluctuation, they do not quantify this impact and do
not look into the statistics of irradiance variability.

National Renewable Energy Laboratories (NREL) was
among the first to study the variability of Global Horizontal
Irradiance (GHI) over time scales from 1 minute to 1 hour [11].
The study showed that the distribution of RR is very peaked
(leptokurtic i.e. tall and skinny) due to the normal movement of
the sun under constant sky conditions. This highly non-normal
pattern was modeled in [11] via the Hyperbolic Distribution
with moderate results. In contrast, this paper adopts Gaussian
Mixture Models (GMM) for this task. GMM has been success-
fully used in the past in load profiling [12], in 15-minute PV
output modeling [13] and GHI probability distribution [14],
but this is the first time to use GMM in irradiance variability
modeling.

In terms of time resolution, many studies have shown the
importance of lower-than-hourly time intervals using minute-
level data [11], but sub-minute resolutions have not been
tested due to data unavailability. NREL raises awareness on
the importance of second-level resolutions [1], but it remains
unclear what the “optimal” resolution for accurate irradiance
variability representation is. This is an important knowledge
gap in light of the ultra-short forecasting/nowcasting of PV
generation increasingly required in rich-solar networks.

This paper provides a holistic look into the irradiance
variability by:

• Representing the irradiance RR at different weather using
GMM for the first time

• Demonstrating that six GMM components offer the right
balance between ’goodness-of-fit’ and complexity

• Quantifying the impact of time resolution on RR and
showing that few-seconds resolution is important

II. DATASET

This study adopts the irradiance dataset from NREL [10],
which comprises measurements from seventeen stations in
Oahu that collected GHI data at 1-second intervals over the
course of more than a year. The data from one of these stations,
the AP3, was selected since it contains the highest level of
robustness with the fewest erroneous values. It is used as a
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Fig. 1: GHI of the (a) rainy, (b) overcast and (c) sunny day.
(d) Ramp Rate of these days.

benchmark, thereafter down-sampled at different resolutions
to explore the impact of time step in RR modeling.

The weather pattern is a characteristic influencing factor
for irradiance fluctuations, and therefore it needs to be con-
sidered in any such study. This paper adopts the weather
classification proposed in [7], defining the weather as: sunny
(minimal cloudiness), overcast (scattered clouds with high
transparency gradients) and rainy (stochastic cloudiness with
rain). Fig. 1(a)-(c) illustrate the irradiance time series for
an indicative rainy, overcast and sunny day from the dataset
used. The irradiance variability is strikingly different in the
three weather types, quantified via the ramp rate in Fig. 1(d)
showing up to 400 Wm−2s−1 in the overcast day.

III. STATISTICAL DISTRIBUTION OF IRRADIANCE
VARIABILITY

Throughout the literature, different metrics have been em-
ployed to quantify the irradiance/power variability, such as the
rate of change, ramp rate, and rate of the ramp. This paper
adopts the metric used in [10] defining the RR as the rate of
change of irradiance within two consequent samples:

RR =
d

dt
GHI (1)

Fig. 2 illustrates the RR of a probability density function
(PDF) histogram of the rainy day in logarithmic y-axis (linear
scale in the zoom box). As already observed in [11], the
normal distribution cannot sufficiently represent such a tall and
skinny trend caused by the sun movement during the constant-
conditions times. The hyperbolic distribution used in [11] can
deliver only minor improvement, as shown later.

This paper adopts the GMM theory for this representation,
according to which the RR distribution X can be modeled
as a weighted sum of k normal distributions ϕ (xj , θi), each
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Fig. 2: Statistical distribution of RR on the rainy day.
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Fig. 3: GMM representation of RR on the rainy day with
different components.

having different mean µi and variance σ2
i .

fX(xj |θ) =
k∑

i=1

wiϕ(xj , θi), xj ≥ 0, j = 1, . . . , N (2)

ϕ (xj , θi) =
1√
2πσ2

i

exp

(
− (xj − µi)

2

2σ2
i

)
(3)

wi is the weight of the i GMM component, N is the number
of datapoints, and θ = ({wi, µi, σ2

i }ki=1).

A. Number of GMM Components

The number of GMM components k required for this task
is not a-priori known. Fig. 3 indicatively shows the GMM
representation with 1, 3, 5 and 7 components for the rainy day;
although 1 component (i.e. the standard normal distribution)
is insufficient, more components lead to quite acceptable
representations.

To measure the impact of the number of GMM components,
the chi-square goodness of fit is adopted here, often used to
evaluate statistical models [15]

χ2 =

N∑
i=1

(Oi − Ei)
2

Ei
(4)

where Oi refers to the i-th observed value and Ei to the i-th
expected value from the hypothesized distribution respectively.
Fig. 4(a) plots the chi-square goodness-of-fit for up to 8
GMM components for the rainy day, showing clear modeling
improvement with more components.
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Fig. 4: Evaluation of GMM components for the rainy day. (a)
Chi-Square Goodness of Fit and (b) AIC and BIC tests.

However, a high number of components may be unneces-
sary, and in fact undesirable in view of the added complexity
entailed. To identify the number of components that strikes the
right balance between accuracy and complexity, the Akaike In-
formation Criterion (AIC) and Bayesian Information Criterion
(BIC) are used [16]:

AIC = −2 lnL+ 2k (5)

BIC = −2 lnL+ lnN · k (6)

L refers to the likelihood but in this study we use
(log)likelihood, N refers to the number of data measurements
and k to the number of model parameters. Fig. 4(b) shows
the AIC and BIC values for the rainy day, indicating that for
≥ 4 components,the additional improvement in the quality of
fit afforded may be outweighed by the added complexity.

Fig. 5 compares the 5-component GMM representation
(GMM-5) to the Normal distribution and the Generalized
Hyperbolic distribution based on [11]; GMM-5 is clearly more
appropriate for RR modeling.

B. Analysis for all Weather Patterns and Yearly

In this section, the steps performed for the rainy day are
repeated for the overcast and sunny days, as well as for the
yearly dataset that captures the RR over the course of an
entire year. Although not a weather pattern, the yearly dataset
reflects weather trends possibly not captured from the existing
classification, and thus serves as a test dataset.

Fig. 6 shows the AIC test for different GMM components
at all four case studies. Although the rainy, overcast and
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Fig. 5: Comparison of all models in RR representation for the
rainy day.
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Fig. 6: AIC for different GMM components and weathers.

sunny days are sufficiently modeled via 5 components, the
yearly dataset benefits from a 6th component. This is possibly
due to the aforementioned unclassified trends not reflected in
the three distinct weather patterns. In conclusion, selecting
6 GMM components is the safe choice for all weathers and
patterns, as indicated by the red line in the plot.

The overall performance of the proposed GMM-6 model
over the conventional Normal distribution and Generalized
Hyperbolic for all case studies is given in Fig. 7. Clearly,
GMM-6 is the most accurate by several orders of magnitude in
the three distinct weather types, and by one order of magnitude
in the yearly dataset.

IV. TIME RESOLUTION IMPACT ON IRRADIANCE
VARIABILITY

This section explores how the time resolution affects the RR
in the sub-minute range. For these experiments, the original
1-second dataset was down-sampled at lower resolutions by
averaging the irradiance values as in [17]. Artificial upscaling
was studied by linear interpolating downsampled cases of 15s,
1min across 1s; subtracting them from the original 1s indicates
an unreliable solution for high-resolution RR measurement.

Fig. 8 is an illustrative example of the lower resolution im-
pact, demonstrating how much RR smooths out and decreases
with 15 seconds and 1 minute sampling rates. Such visual
examples have been sporadicly reported in the literature, but
without quantification of the entailed accuracy loss.

An alternative way to illustrate this impact is via distribution
curves, as in Fig. 9. This plot shows the RR distribution at
various time resolutions from 1 second to 1 minute, by means
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Fig. 8: RR time plot of the rainy day for different time
resolutions.

of the respective fitted GMM-6 model. It is surprising that even
slight down-sampling to 3 seconds reduces the distribution tail
by 100 Wm−2s−1, i.e. almost by half. The misrepresentation
is even higher at 15 seconds, but interestingly 45 seconds and
1 minute do not seem to differ much.

To further explore the time resolution impact on the shape
of the RR distribution, the metrics of skewness and kurtosis
are employed[18].

Skewness =
µ3

σ3
(7)

Kurtosis =
µ4

σ4
(8)

µ , refers to central moment and σ to the standard deviation.
Fig. 10(a) shows the recorded skewness for the three

weather patterns at various sub-minute resolutions. The rainy
and overcast days exhibit near-zero skewness which indicates
symmetrical RR distribution; the sunny day displays a more
inconsistent behavior with skewness varying between positive
and negative values. However, a closer look reveals that this
is misleading due to the infrequent irradiance transients on the
sunny day, i.e. small tails comprising few data points. Overall,
the RR distribution is very symmetrical under all weather types
and conditions, and this does not change with time resolution.

The kurtosis test at the same weather patterns and time
resolutions is given in Fig. 10(b). The kurtosis values are
always positive, which verifies that the RR distribution is
leptokurtic, i.e. highly peaked, already known from [11].
However, Fig. 10(b) shows also how kurtosis reduces with
lower time resolution, i.e. how less peaked the distribution
becomes, which is another accuracy loss indication. Again,
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Fig. 10: (a) Skewness and (b) Kurtosis for the three weather
patterns.

this modeling inaccuracy is evident even at 3-second down-
sampling. The kurtosis increase from 1 second to 3 seconds in
the sunny day is misleading for the abovementioned reasons.

The final test to quantify the impact of time resolution
on the RR representation is via the chi-square goodness of
fit. The GMM-6 model was fitted on down-sampled datasets
(resolution of 5 seconds to 1 minute with increments of 5
seconds) and then evaluated against the original 1-second
dataset via the chi-square goodness of fit. The results in
Fig. 11 reach to an interesting conclusion: in all three cases,an
accuracy loss of 2 orders of magnitude takes place in the first
5 seconds. After that, the sunny day loses less than 1 order of
magnitude between 5 seconds and 1 minute, whereas the over-
cast and rainy days suffer about 6 and 10 orders of magnitude
inaccuracy respectively. It is worth noting that these very high
deviations arise from the way the chi-square goodness of fit
is applied (GMM-6 models evaluated at different resolutions
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Fig. 11: Chi-square goodness of fit for different time resolu-
tions.

than fitted on), and they do not entail the same level of impact
on the grid: this remains to be explored. Nevertheless, the main
conclusion is that the irradiance RR requires time resolution
as low as 1 second; if this is not possible, then 1-minute
resolution in sunny days is a reasonable compromise, but for
any other weather pattern every second matters and sub-minute
sampling is highly recommended.

V. CONCLUSIONS

This paper shows that the distribution of irradiance variabil-
ity can be adequately modeled via a GMM distribution and that
six components is a valid selection for all weather types. The
so-called GMM-6 model clearly outperforms alternatives in
the literature. An investigation on time resolution also indicates
that sampling periods of less than 5 seconds are required to
entirely avoid information loss. Sunny days bear acceptable
information loss at lower resolutions of 1 minute or more, but
for overcast and rainy days sub-minute resolution is essential.
Future work will look into ultra-short forecasting of irradiance
variability and quantifying this impact on the electric grid.
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