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Abstract

Complex biological processes, such as cellular differentiation, require an
intricate rewiring of intra-cellular signalling networks. Previous char-
acterisations of these networks revealed that promiscuity in signalling,
quantified by a raised network entropy, underlies a less differentiated
and malignant cell state. A theoretical connection between entropy and
Ricci curvature has led to applications of discrete curvatures to char-
acterise biological signalling networks at distinct time points during
differentiation and malignancy. However, understanding and predicting
the dynamics of biological network rewiring remains an open problem.
Here we construct a framework to apply discrete Ricci curvature and
Ricci flow to the problem of biological network rewiring. By investigating
the relationship between network entropy and Forman-Ricci curva-
ture, both theoretically and empirically on single-cell RNA-sequencing
data, we demonstrate that the two measures do not always positively
correlate, as has been previously suggested, and provide complemen-
tary rather than interchangeable information. We next employ discrete
normalised Ricci flow, to derive network rewiring trajectories from tran-
scriptomes of stem cells to differentiated cells, which accurately predict
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true intermediate time points of gene expression time courses. In sum-
mary, we present a differential geometry toolkit for investigation of
dynamic network rewiring during cellular differentiation and cancer.

Keywords: Ricci flow, Network curvature, Waddington’s landscape, Cell
differentiation, Cancer, Differential Networks, Forman-Ricci curvature,
Network entropy

1 Introduction

Cellular differentiation is a complex biological process essential for embryonic
development as well as the maintenance and repair of adult tissues. Aber-
rant differentiation underlies a wide spectrum of pathology. This includes
malignancy, where cells may fail to differentiate or de-differentiate, becom-
ing trapped in a more plastic, proliferative state [1]. A key feature of cellular
differentiation is an orchestrated shift in the intra-cellular transcriptomic dis-
tribution. C. H. Waddington proposed in 1939, a seminal interpretation of the
intra-cellular state during differentiation, known as the Waddington Landscape
[2]. Under this landscape less differentiated cells occupy a higher potential
energy, represented by an elevated position. As cells differentiate they roll
down this complex landscape, following a trajectory determined by it’s hills
and valleys, dropping in potential energy until the cell arrives at an attractor
state: the differentiated cell.
While an intuitive and appealing picture, the deep complexity of the intra-
cellular state revealed by modern transcriptomic and proteomic quantification,
as well as the discovery that we can reprogram cells to earlier phases of
differentiation, motivated a recasting of the Waddington Landscape from a
metaphorical picture into an interpretable mathematical framework [3, 4].
Modern interpretations of Waddington’s Landscape have re-framed cell fate
trajectories via the phase space of transcriptomic dynamics [5–7]. While non-
deterministic elements of these transcriptomic dynamics have motivated more
information theoretic characterisations of cell fate trajectories [8]. The lat-
ter interpretation has revealed the intra-cellular states of less differentiated
cells can be considered more ‘promiscuous’, displaying a higher entropy in
their protein-protein interactions, which decreases during differentiation and
increases in cancer, providing a quantitative correlate for the ‘height’ in
Waddington’s landscape [9–11].
As Waddington’s landscape has evolved from an intuitive picture to a mathe-
matical framework, however, cell fate transitions have maintained a geometric
appeal [12]. Geometric approaches to studying cell fate have often focused
on characterisations of the underlying dynamical system and typically require
detailed knowledge of gene regulatory networks relevant to specific cell fate
transitions [7, 13]. However, at the genome-wide scale we do not have this deep
understanding of intra-cellular interactions and instead rely on sparse graphical
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representations, known as biological networks, which can be weighted by bio-
logical samples to describe relevant dynamics [9]. The notion that a (weighted)
network has an underlying geometry is well studied and there are numerous
methodologies for network embedding [14], with application to biological net-
works [15, 16]. Recently, discrete analogues of tools from differential geometry
[17, 18], a rich mathematical field for studying manifolds and their curvatures,
have been applied to the study of biological networks [19–23]. These tools
provide a new window into the geometry of cell fate and a rich theoretical lit-
erature to apply.
In particular, discrete analogues of Ricci curvature, well known for its use
to describe the curvature of space-time in Einstein’s theory of general rela-
tivity, have been employed to discriminate biological networks weighted with
cancer gene expression data from corresponding healthy tissue [19]. In 2015,
Sandhu et al., [19] proposed a theoretical link between network entropy and
a discrete version of Ricci curvature (Ollivier-Ricci curvature [17]) computed
over edges of a weighted network. This link was motivated by the theoreti-
cal results of Lott and Villani, relating a lower bound of the Ricci curvature
on a metric-measure space to the convexity of an entropy functional [24],
suggesting that Ricci curvature and entropy (computed in this way) may be
positively correlated. Though network entropy is not theoretically equivalent
to the entropy functional from the metric-measure space setting, it was found
that, like network entropy, total Ollivier-Ricci curvature is elevated on net-
works weighted with cancer data, compared to healthy [19]. Subsequently,
similar results have been obtained, using the less computationally intensive
Forman-Ricci curvature [21, 23], including that this curvature decreases dur-
ing cellular differentiation, again like network entropy. It is of note, however,
that depending on the construction of this Forman-Ricci curvature, investiga-
tors have demonstrated both positive [22] and negative [25] correlations with
network entropy.
Cellular differentiation and oncogenesis like all biological events are dynamic
processes, and the recent results detailed above suggest that the geometry
of the underlying space of intra-cellular interactions, described by biological
networks, may change predictably during their progression. The dynamic evo-
lution of manifolds is a well studied topic in differential geometry. In a seminal
contribution to the field, Hamilton introduced Ricci flow as a tool to study
the topological implications of deforming a metric on a manifold according to
its Ricci curvature [26], which led subsequently to the striking solution of the
Poincaré conjecture by Perelman [27, 28]. Like curvature Ricci flow can also
be defined in a discrete setting [29], and recently discrete Ricci flows have been
applied to problems in network theory [30–32] including community detection
[33, 34] and network alignment [35].
In what follows we first present some background on the computation of net-
work entropy and discrete Ricci curvatures in the context of gene expression
weighted protein-protein interaction networks. We then propose a framework



4 Cellular differentiation and Ricci flow

for employing a discrete Ricci curvature and normalised Ricci flow to pre-
dict dynamic trajectories between temporally linked gene expression samples.
We next consider the relationship between our Forman-Ricci curvature con-
struction and network entropy; using a simple toy network we show that
the two network measures are not always positively correlated. We find that
in promiscuous signalling regimes (such as in stem cells) the measures do
positively correlate, but in lower entropy regimes they may anti-correlate,
suggesting the two measures are complementary rather than interchangeable.
By analysing over 6000 single cell transcriptomes, we confirm these proposi-
tions, demonstrating that network entropy and our Forman-Ricci curvature
positively correlate in stem cells, but negatively correlate in cancerous and dif-
ferentiated samples. Lastly, we consider two independent transcriptomic time
courses describing multiple time-points during cellular differentiation in dif-
ferent tissues. Using our Ricci flow construction we derive gene expression
trajectories from the first time point sample to the last, faithfully predicting
the ordering of intermediate samples, without prior knowledge.

2 Results

2.1 Intuition, definitions and preliminaries

Intuitively, we interpret the Waddington Landscape as analogous to the phase
space of transcriptomic dynamics during cellular differentiation (Fig. 1A). Let
n denote the number of genes in the genome and xt := (xt

i)
n
i=1 denote the vec-

tor of transcript abundance for each gene at time t ∈ R+. Consideration of dxt

dt
yields an n dimensional phase space ϕ, describing permissive trajectories of
gene expression. Trajectories between two points in ϕ represent geodesics from
one transcriptomic state to another, and distances along these trajectories can
be computed by equipping ϕ with a Reimanninan metric g. The degree to
which these geodesic distances differ from Euclidean distances can be assessed
via consideration of Ricci curvature, allowing us to recast the n dimensional
manifold (ϕ, g) as an n+1 dimensional manifold Φ with a Euclidean geometry.
This added dimension allows us to interpret the ‘height’ of Waddington’s Land-
scape, and permits investigation of its association with cellular differentiation
states.

A key issue in progressing this construct is the knowledge of dxt

dt , which will
be a highly sophisticated function incorporating transcription, translation and
degradation of mRNA and protein for each gene, as well as the complexities
of epigenetic regulation, gene-regulatory networks, protein-protein interaction
networks and cell-cell/micro-environment interactions.

It has been shown however, that integration of transcriptomic data with
a protein-protein interaction network (PIN), compiled from multiple sources,
yields an entropy rate which is a clear correlate of cellular differentiation
potential, and thus represents a proxy for ‘height’ in Waddington’s differ-

entiation landscape [9]. This suggests a pragmatic approach considering dxt

dt
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Fig. 1 Overview of Ricci curvature and flow approach for biological networks. A. Schematic
of the transcriptomic phase space interpretation of the Waddington Landscape. Permissive
trajectories are interpreted as geodesics which can be considered within a Euclidean geometry
via consideration of Ricci curvature. Protein interaction networks can be used to approximate
height in the landscape by network entropy and possibly by discrete Ricci curvature. B.
Schematic describing mass action principle weighting of protein interaction network with
transcriptomic data, alongside required parameter choices and corresponding constraints to
implement Ricci flow. C. An interpretation of edge curvature in terms of node proximity in
an underlying metric space and consequences for parameter choices.

purely constructed from protein-protein interactions, may be sufficient for ini-
tial interrogation of the structure of Φ, in lieu of a more rigorous theoretical
understanding of other contributors.

2.1.1 Network entropy and discrete Ricci curvature

In our construct we let G = (V,E) denote the undirected graph describing the
human PIN, with adjacency matrix A = (aij)i,j∈V , where |V | = n. For any
x ∈ ϕ we define the weighted adjacency matrix W (x) = (aijxixj)i,j∈V , and
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the row-stochastic matrix, P (x) = (pij(x))i,j∈V , where:

pij(x) =
aijxj∑

k∈V aikxk
. (1)

The entropy rate SR(x) of P (x) (hereafter denoted as network entropy)
decreases as cells differentiate, this has been established in bulk and single
cell transcriptomic data from cells at different stages of differentiation and
throughout differentiation time courses, by us and multiple independent inves-
tigators [9, 11, 22]. Network entropy is also higher in cancerous compared to
healthy tissue, and is prognostic in breast and lung cancer [10, 11, 36].

Sandhu et al., [19] proposed a positive correlation between network entropy
and a discrete version of Ricci curvature computed over edges in a weighted
network (Rice(x))e∈E , with network average or total Ricci curvature defined
by:

Ric(x) =
∑
i∈V

πi(x)
1

deg(i)

∑
j∈V

aijRic(i,j)(x), (2)

where deg(i) =
∑

j∈V aij and where (πi(x))
n
i=1 is the stationary distribution

of P (x). The correlation between network entropy and total discrete Ricci
curvature has since been considered by several studies in the following form
[19, 21, 22]:

∆SR(xt)∆Ric(xt) ≥ 0. (3)

While not an unreasonable deduction, justification for this inequality
derives from a theoretical investigation of metric-measure spaces (M,d,m),
where (M,d) is a metric space and m is a measure on the Borel σ−algebra
of M [24, 37]. Investigation in this setting uncovered a relationship between
convexity of a relative entropy, computed over the space of probability mea-
sures on (M,d), with respect to the measure m and a lower bound of the
Ricci curvature of (M,d,m) [24, 37]. From this association it was concluded
that the negative of the relative entropy and Ricci curvature are positively
correlated [19]. We note, however, that the network setting is not equivalent
to metric-measure spaces. In particular network entropy (an entropy rate) is
not equivalent to the relative entropy described by [24]. The inequality (3) is
therefore not guaranteed from the results on metric-measure spaces [24, 37].

Moreover, discrete Ricci curvatures, though often theoretically rich, are
not exact quantifiers of the continuous Ricci curvature on a manifold. There
are several approaches to computing a discrete Ricci curvature on edges of a
network, including Ollivier-Ricci curvature [17] and Forman-Ricci curvature
[18], both of which have been applied to biological networks and demonstrate
elevated total curvature in cancer [19, 21, 22]. Forman-Ricci curvature follows
a combinatorial construction as follows:

RF (i, j) = Wi +Wj − (ωij)
1/2

[
Wi

∑
k ̸=j

(ωik)
−1/2 +Wj

∑
k ̸=i

(ωkj)
−1/2

]
(4)
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where (Wi)i∈V is a vector of vertex weights and (ωij)(i,j)∈E is a vector of edge
weights. We note that Forman-Ricci curvature is less computationally intensive
to evaluate than Ollivier-Ricci curvature.

Though the discrete entropy and curvature measures do not exactly cor-
respond to the metric-measure space setting, the relation (3) suggests an
intriguing geometrical interpretation for the observation that network entropy
decreases during cellular differentiation. Transcriptomic states representing
undifferentiated cells xstem ∈ ϕ, have higher network entropy compared to dif-
ferentiated cells xdiff ∈ ϕ. Under (3) it follows that Ric(xstem) > Ric(xdiff ).
Tree like networks have a very low curvature, whereas cliques are highly
curved [35], giving a natural interpretation to this inequality in terms of more
deterministic pathway activation during differentiation.

In our phase space analogy to Waddington’s Landscape, with dxt

dt essen-
tially described byW (xt), we see stem cells occupying regions of high curvature
(hill tops) and curvature decreasing as cells differentiate, analogously, rolling
downhill to valleys. This gives us an intuitive, empirical tool to understand
construction of the n + 1 dimensional space Φ for the n dimensional phase
space (ϕ, g) at given data points.

2.1.2 Normalised discrete Ricci flow

Cellular differentiation is a dynamic process and typically we only have data
for start and end points xstem and xdiff and perhaps a handful of points
between. We consider extrapolation between these data points via a discrete
normalised Ricci flow.

We propose to use a discrete version of the 2-dimensional normalised Ricci
flow, which has previously been considered in the context of weighted networks
[30]:

dt+∆t(i, j) = dt(i, j) + ∆t(Ric(xt)(i,j) −Ric(i,j))dt(i, j) (5)

for ∆t > 0, where dt(i, j) is a distance between connected nodes i, j ∈ V at
time t, Ric(xt)(i,j) is the Ricci curvature on edge (i, j) ∈ E at time t and

Ric(i,j) is an edge-wise normaliser to which we want to converge.
Here we consider t = 0 to refer to the undifferentiated cell state xstem and

define the normaliser via the fully differentiated state: Ric(i,j) = Ric(xdiff )(i,j).
We postulate that (5) will permit estimation of a permissive trajectory from
xstem to xdiff in ϕ.

For (5) to generate trajectories the following properties are required (Fig.
1B):

1. Knowledge of dt(i, j) must be sufficient to calculate Ric(xt)(i,j).
2. ∆t must be sufficiently small as to prevent negative values of dt.

The following properties are also desired:

1. Knowledge of dt allows calculation of xt or some transformation thereof
e.g, W (xt). This will permit comparison to intermediate real data points
to validate the approach.
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2. Computation time of Ricci curvatures must be sufficiently short to permit
multiple iterations rapidly, as for large PINs such as those investigated here,
there are typically ∼ 150, 000 edges.

In what follows we compute Ric(xt)(i,j) as a Forman-Ricci curvature
Rt

F (i, j) with edge-weights ωij := ωt
ij =

aij

xt
ix

t
j
and node weights Wi =

1
deg(i) .

Ric(xt)(i,j) = Rt
F (i, j) thus obeys:

Rt
F (i, j) = deg(i)−1 + deg(j)−1−

(xt
ix

t
j)

−1/2

[
deg(i)−1

∑
k ̸=j

(aikx
t
ix

t
k)

1/2 + deg(j)−1
∑
k ̸=i

aik(akjx
t
kx

t
j)

1/2

]

We further choose dt(i, j) = ωt
ij . These choices satisfy all of our required

and desired properties and detailed justification can be found in the Materials
and Methods.

2.2 Positive correlation between network entropy and
total Forman-Ricci curvature requires a specific
signalling regime

Previous studies have demonstrated a positive correlation between network
entropy and network average (or total) discrete Ricci curvature computed on
differentiating stem cells [19, 22]. However, recently it has been demonstrated
using a slightly different construction of Forman-Ricci curvature that a nega-
tive correlation can be observed with network entropy [25]. As discussed above
a positive correlation between network entropy and discrete Ricci curvature
is not guaranteed in general, as the motivating theoretical results relate to
slightly different quantities [24, 37].

To gain intuition we investigated the association between our version of
Forman-Ricci curvature and network entropy on a simple k-star network dis-
played in Fig 2A, consisting of k + 1 nodes, of which k have a single edge
connecting them to a central node i. We assign each node l ̸= j a weight xl = 1
and assign node j a weight xj = ϵ > 0. We can derive analytical expressions for
network entropy (SR) and total Forman-Ricci curvature (RF ) on this simple
network in terms of k and ϵ (Materials and Methods).

We performed a numerical analysis of these expressions for various values
of k ∈ Z+ \ 1 and ϵ > 0 (Fig. 2B-D). By construction SR is maximal for
ϵ = 1, regardless of k. For k = 2, RF also has a global maximum at ϵ = 1 and
the positive correlation with SR expressed in (3) holds. However for all other
values of k, the association between network entropy and total Forman-Ricci
curvature follows two regimes depending on ϵ (Fig 2D). For ϵ < 1 (3) holds and
network entropy and total Forman-Ricci curvature are positively correlated.
However, for ϵ > 1 we can always find a range of values of ϵ for which network
entropy and total Forman-Ricci curvature are negatively correlated, this range
becomes larger as k increases.
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Though these results only apply to a very simple network, they suggest
a fundamental difference in what network entropy and total Forman-Ricci
curvature are measuring. This suggests these measures are complementary,
rather than interchangeable as has been previously proposed [19]. In our simple
network, network entropy is maximised for ϵ = 1. We can reduce network
entropy by reducing ϵ, signalling more the k−1 neighbours of our central node
i at the cost of reducing signalling to our chosen neighbour j, a strategy we
call ‘many for one’ (Fig 2E), in this case RF will also decrease. Alternatively,
we can reduce network entropy by increasing ϵ, and signal more to our chosen
node j at the cost of signalling less to our remaining neighbours, a strategy
we call ‘one for many’ (Fig 2E), in this case for larger values of k, RF may
increase.

Network entropy is blind to the two signalling strategies, but they are bio-
logically distinct. The ‘one for many’ strategy mirrors deterministic pathway
activation, characteristic of a low entropy regime. This strategy is more likely
in a highly committed cell, performing a very specific function [9]. Variation
in gene expression amongst well differentiated cells may therefore capture the
negative correlation between network entropy and total curvature we have
demonstrated possible by our theoretical investigation. Conversely, the ‘many
for one’ signalling strategy, though not maximising entropy, represents a more
disordered state than the ‘one for many’ strategy, maintaining the possibility
of diverse pathway activation without committing. This regime mirrors the
promiscuous signalling of stem cells, which must maintain the option to differ-
entiate and perform a wide variety of functions [9]. Variation in gene expression
amongst stem cells may therefore capture the positive correlation between net-
work entropy and total curvature, which we have theoretically demonstrated
more dominant in ‘many for one’ signalling.

2.3 The degree of correlation between network entropy
and total Forman-Ricci curvature has biological
relevance

Our theoretical results suggest that our SR and RF may be positively cor-
related in stem cells, but negatively correlated in more differentiated tissue.
Previous studies reporting association between network entropy and total
Forman-Ricci curvature typically present results on stem cell populations
[21, 22, 25]. Though the curvatures of more differentiated and cancerous tis-
sues are often also examined, the association with network entropy in these
tissues is typically not reported [25, 38]. We note that these studies also employ
slightly different constructions of Forman-Ricci curvature than our own and
while most show positive correlation with network entropy in stem cells [19, 22],
one shows a negative correlation [25].

We analysed the previously considered scRNAseq datasets of Chu et al.,
2016 [11, 22, 25, 39] describing the early stages of embryonic stem cell (ESC)
differentiation. These data consist of 2 separate experiments, one describing
1018 single cells assayed at different stages of multipotency and a second
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describing 758 single cells assayed at 6 distinct time points during ESC differ-
entiation. On both these data sets we found that network entropy and our total
Forman-Ricci curvature were positively correlated (Pearson’s r > 0.78, p <
2.2× 10−16) and discriminate distinct lineages during stem cell differentiation
(Fig. 3A-B) as previously reported [11, 22, 25].

We next analysed a large scRNAseq dataset describing 1257 malignant and
3256 healthy single cells from 19 patients with malignant melanoma [40], on
which total curvature values have previously been calculated, but the associ-
ation with network entropy not presented [22, 25]. These cells represent more
differentiated tissue and as hypothesised from our theoretical investigation, we
found a negative association between network entropy and our total Forman-
Ricci curvature on these cells (Pearson’s r = −0.77, p < 2.2 × 10−16, Fig
3C). We also found that malignant cells displayed higher values of network
entropy as expected (two-tailed Wilcoxon p < 2.2× 10−16) [9], however, they
displayed lower values of total Forman-Ricci curvature (two-tailed Wilcoxon
p < 2.2× 10−16, Fig 3C).

To confirm this finding we analysed an independent data set describing 272
malignant and 160 healthy cells from patients with colorectal cancer [25, 41].
We again identified a negative correlation between network entropy and total
Forman-Ricci curvature (Pearson’s r = −0.86, p < 2.2× 10−16, Fig 3D), with
higher network entropy (two-tailed Wilcoxon p = 1.5 × 10−6) but lower total
Forman-Ricci curvature (two-tailed Wilcoxon p = 8.0 × 10−4) in cancerous
cells.

This suggests that network entropy and total Forman-Ricci curvature are
not interchangeable measures of cell potency, but complementary. Increasing
network entropy is seen in both less differentiated tissue and cancer, while total
Forman-Ricci curvature increases in less differentiated tissue and decreases in
cancer. Together these measures present a more complete picture of the global
intra-cellular signalling state.

2.4 Ricci flow for approximating transcriptomic
trajectories

We have found that network entropy and our total Forman-Ricci curvature
are related quantities but not interchangeable.

We next consider whether Ricci flow can approximate realistic trajectories
through gene expression phase space during cellular differentiation. We first
considered the time course scRNAseq data set of Chu et al. [39], describing ESC
differentiation at 6 time points. For each time point we computed the mean
transcriptomic vector across single cells, which we considered representative of
the transcriptomic state at this time point, giving us a set of 6 vectors (xt)5t=0

(Fig. 4A). To provide a null model we considered a straight line trajectory
from W (x0) to W (x5) (Materials and Methods). We computed the Euclidean
distance between points along this straight line and the true intermediate data
points (W (xt))

4
t=1, to determine the ordering of the true data points along the

straight line trajectory (Materials and Methods, Fig 4B). As anticipated the
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Fig. 3 Forman-Ricci curvature and network entropy follow two distinct regimes in biologi-
cal data. Boxplots and scatter plot display network entropy and Forman-Ricci curvature for
A. 1018 single cells during distinct stages of embryonic stem cell (ESC) differentiation, B.
758 single cells sampled at 6 distinct time points of ESC differentiation, C. 1257 malignant
and 3256 control cells from 19 patients with malignant melanoma and D. 272 malignant and
160 healthy cells from patients with colorectal carcinoma. Wilcoxon p-values are displayed
on boxplots, Pearson’s r and corresponding p-values are displayed on scatter plots. In stem
cells network entropy and total Forman-Ricci curvature positively correlate, while for more
committed cells there is a negative correlation.
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straight line trajectory did not pass the true data points in the correct order,
and the distance along the trajectory to the closest pass of the true data point
was not correlated with differentiation time of the true data point (Pearson’s
r = 0.85, p = 0.153, Fig. 4C). We next considered the trajectory from W (x0)
to W (x5) produced by our normalised discrete Ricci flow described by (5)
(Materials and Methods). We found that the Ricci flow trajectory passed by
the true data points in the correct order, and the number of iterations to the
closest pass of the true data points correlated with differentiation time of those
points (Pearson’s r = 0.96, p = 0.04, Fig. 4D).

To confirm the finding that Ricci Flow correctly orders differentiation
trajectories, we considered our data set of bulk RNA-sequencing of human
myoblast differentiation into multinucleated myotubes, with transcriptomic
samples taken at 8 time points in triplicate (Fig 5A) [42]. Performing analysis
as above, separately for each triplicate, we found that closest pass progres-
sion along a null model linear trajectory correlated with differentiation time
but could not robustly discriminate time points across triplicates (Pearson’s
r = 0.79, p = 1.0 × 10−4, Fig. 5B). In contrast, closest pass Ricci flow iter-
ations were highly correlated with differentiation time (Pearson’s r = 0.93,
p = 3.7× 10−8, Fig. 5B) and were tightly reproducible across triplicates, dis-
criminating all time points, with the exception of the first two intermediate
time points. These initial time points were taken only 90 minutes apart and
thus are unlikely to represent a significant dynamic change.
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Fig. 4 Ricci flow correctly orders differentiation time course during embryonic stem cell
(ESC) differentiation. A. Schematic shows samples taken during ESC differentiation. B.
Schematic demonstrates how transcriptomic trajectories are compared to true biological
data points. C. Ordering of data points along a straight Euclidean trajectory, p-value and
Pearson’s r describe the association between closest pass iteration of the trajectory to true
data points and differentiation time of the true data points. D. Ordering of data points along
Ricci flow trajectory, p-value and Pearson’s r describe the association between closest pass
iteration of the trajectory to true data points and differentiation time of the true data points.
The final time point, by construction occurs at iteration 150 at the end of the trajectory. E.
Schematic compares Euclidean straight line to the Ricci flow trajectory.
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Fig. 5 Ricci flow correctly orders differentiation time course during myoblast differenti-
ation. A. Schematic shows samples taken during myoblast differentiation in triplicate. B.
Ordering of data points along Euclidean straight line, p-value and Pearson’s r describe the
association between closest pass iteration of the trajectory to true data points and differen-
tiation time of the true data points. C. Ordering of data points along Ricci flow trajectory,
p-value and Pearson’s r describe the association between closest pass iteration of the tra-
jectory to true data points and differentiation time of the true data points. The final time
point, by construction occurs at iteration 150 at the end of the trajectory.

3 Discussion

Numerous measures have been developed in network theory to analyse net-
work properties. Classic approaches include studying the degree distribution,
clustering coefficient, and shortest path between nodes, all of which provide
insights into the network’s geometry [43]. However, to study the geometric and
topological properties of networks more deeply, discrete adaptations of dif-
ferential geometry have become widely applied [19, 22, 30–32, 34, 35, 38]. In
differential geometry curvature is a key actor, describing the local behaviour
of a manifold, and geometric flows can be employed to perturb this impor-
tant property and examine the consequences. By treating networks as discrete
counterparts of manifolds, we can view them as geometric objects and discrete
curvatures and flows on networks have proven effective tools for addressing
common network theory questions [31, 32, 34, 35].
Here we investigated discrete Ricci curvature and Ricci flow, to study prop-
erties of biological signalling in differentiating and malignant cells. This work
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builds on the finding that network entropy is a proxy for ‘height’ in Wadding-
ton’s Landscape - having higher values on stem cells and malignant cells
compared to healthy differentiated tissue [9–11] - by investigating the enticing
theoretical link between Ricci curvature and entropy [19, 24, 37]. We propose
a framework to calculate the total Forman-Ricci curvature of a single biologi-
cal sample, which is compatible with a discrete Ricci flow, to infer trajectories
between the intra-cellular signalling regimes of two temporally connected tran-
scriptomic samples.
By investigating our framework in a simple analytically tractable setting, we
prove that network entropy and our total Forman-Ricci curvature are not
guaranteed to be positively correlated. Our investigation suggests that posi-
tive correlation is likely across samples with a highly promiscuous signalling
regime (such as stem cells), with negative correlation more likely across cells
with deterministic signalling (differentiated cells). We provide empirical evi-
dence for this theoretical hypothesis through the analysis of > 6000 single
cell transcriptomes. Interestingly, we found that cancer cells have a higher
network entropy but lower total Forman-Ricci curvature than healthy differ-
entiated cells. This is in contrast to stem cells where both network entropy
and total Forman-Ricci curvature are higher than healthy differentiated cells.
Our theoretical results suggest that the inverse change in measures in cancer
cells implies intra-cellular signalling regimes are dominantly ‘one for many’,
as opposed to ‘many for one’. The implication of this finding is that while
malignant signalling is more promiscuous than differentiated cells, pathway
activation remains highly biased on average, in contrast to stem cells.
By applying our normalised discrete Ricci flow to the first and last time point
of time courses of cellular differentiation from two distinct tissues, we derived
biological network rewiring trajectories, which accurately predicted interme-
diate time-points. Predictions made by this approach require experimental
validation, but offer the possibility of deeper insights into the molecular events
underpinning cellular differentiation and early biomarker detection for malig-
nancy and regenerative pathology.
Our findings contrast with other studies, which proposed a positive corre-
lation between network entropy and total discrete curvature of a biological
network, by appealing to results on metric-measure spaces [19, 24, 37]. There
are a number of reasons for this contrast. Firstly, the discrete network setting
is not the exact analogue of the metric-measure space setting and in particu-
lar the definitions of ‘entropy’ in the two settings are not identical. Secondly,
discrete approximations of Ricci curvature for networks are non-unique and
there are several ways of defining them depending upon context, including
Ollivier-Ricci curvature derived from optimal transport considerations [17] and
Forman-Ricci curvature derived from consideration of cell complexes [18]. It
has been shown that node averages of these different discrete Ricci curvatures
computed on the same network do not always correlate [20]. Moreover, if we
focus only on the Forman-Ricci curvature employed here, it can be seen from
(4) that there is considerable flexibility in its definition, via the selection of
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node and edge weights. Indeed a positive correlation between Forman-Ricci
curvature and network entropy [22], became negative across the same samples,
when the investigators used a different choice of edge weights [25]. Our find-
ings therefore motivate theoretical investigation into how to translate the deep
results from metric-measure spaces into the biological network setting with
more fidelity, as well as more robust understanding of the impact of parameter
choices when applying Forman-Ricci curvature to weighted biological networks.
Despite this incomplete theoretical understanding, our Forman-Ricci curva-
ture is an informative biological network measure, complementing rather than
simply correlating with network entropy by providing robust discrimination
between healthy, cancerous and stem cells.

Our work paves the way towards addressing questions related to the pre-
diction of network evolution over time and their study with tools adapted from
differential geometry. Though both theoretical and experimental investigations
are required to fully exploit this area, we demonstrate that important insights
into the molecular mechanisms of health and disease can be achieved through
analysis of discrete Ricci curvatures and flows.

4 Materials and methods

4.1 Network entropy calculation

The computation of network entropy was as previously described [9–11]
employing the SCENT package in R and the symmetric PIN compiled from
multiple sources in 2016 available at https://github.com/aet21/SCENT. We
denote the adjacency matrix of the PIN by A = (aij)

n
i,j=1.

For each gene expression sample, genes were matched to proteins in the
PIN, when multiple genes mapped to a single protein, expression levels were
averaged over and only the largest connected component of the PIN was consid-
ered post matching. For each matched sample x = (xi)

n
i=1 a weighted network

W (x) = (aijxixj)i,j∈V , and row-stochastic matrix, P (x) = (pij(x))i,j∈V ,
where:

pij(x) =
aijxj∑

k∈V aikxk
(6)

were constructed.
We define the local entropy of node i as

Si(x) = −
∑
k∈V

pik(x) log pik(x) (7)

the entropy rate associated with P (x) is then given by

SR(x) =
∑
i∈V

πi(x)Si(x). (8)

https://github.com/aet21/SCENT
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Where π(x) = (πi(x))i∈V is the stationary distribution of P (x) satisfying

π(x) = P (x)π(x). (9)

As G is undirected and a single connected component, by the Perron-Frobenius
theorem the stationary distribution π has an analytical solution given by:

πi(x) =

∑
k∈V aijxixj∑

k,j∈V akjxkxj
. (10)

When presented in figures network entropy was calculated as the above
entropy rate SR(x) normalised by the maximal entropy rate possible from
the topology of the matched PIN, following our prior convention, to allow
comparison across different networks [10, 11].

4.2 Construction of the Ricci flow equation

Formally for a smooth manifold Y a Ricci flow defines for an open interval
(a, b) ∈ R+ a Reimannian metric dt such that:

∂dt
∂t

= −2Ric(dt) (11)

the constant −2 is largely conventional and can be replaced with any k < 0,
to ensure existence of a unique solution in finite time. Normalised Ricci flows
are typically employed for convergence studies when certain properties, e.g.
volume, are required to be finite

∂dt
∂t

= −2Ric(dt) +Ric (12)

where Ric is a normaliser.
In 2 dimensions normalised Ricci flow is well studied theoretically [44] and

takes a special form:
∂dt
∂t

= (Ric(dt)−Ric)dt (13)

For normalised discrete Ricci Flow we employ the following expression
described in the main text and applied previously [21]:

dt+∆t(i, j) = dt(i, j) + ∆t(Ric(xt)(i,j) −Ric(i,j))dt(i, j) (14)

for ∆t > 0, where dt(i, j) is a distance between connected nodes i, j ∈ V at
time t, Ric(xt)(i,j) is the Ricci curvature on edge (i, j) ∈ E at time t and

Ric(i,j) is an edge-wise normaliser to which we want to converge.
We next must choose expressions for dt(i, j) and Ric(xt)(i,j) which satisfy

our required and desired properties outlined in the Results.
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We select Ric(xt)(i,j) to be a Forman-Ricci curvature Rt
F (i, j), as this

discrete form of Ricci curvature is fast to compute compared to other versions
such as Ollivier-Ricci curvature, and we must compute ∼ 150, 000 edge-wise
curvatures per iteration of our Ricci flow. We choose the edge weights of this
curvature to be ωij := ωt

ij =
aij

xt
ix

t
j
and node weights Wi =

1
deg(i) . R

t
F (i, j) thus

obeys:

Rt
F (i, j) = deg(i)−1 + deg(j)−1−

(xt
ix

t
j)

−1/2

[
deg(i)−1

∑
k ̸=j

(aikx
t
ix

t
k)

1/2 + deg(j)−1
∑
k ̸=i

aik(akjx
t
kx

t
j)

1/2

]
.

We also choose dt(i, j) = ωt
ij . We note that, as for other discrete Ricci flow

studies [30, 35], dt(i, j) is not a metric, as it fails the triangle inequality, how-
ever, it is small, implying ‘close proximity’ of connected vertices i, j ∈ V if the
corresponding transcript levels of genes i and j are high at time t. In addition at
each iteration of (5), this choice of dt(i, j) allows computation of (ωt+∆t

ij )(i,j)∈E ,

which can be input into (4), allowing computation of (Rt+∆t
F (i, j))(i,j)∈E and

thus the next iteration of (5). This iterated dt+∆t can simply be inverted to
give W (xt+∆t) which allows direct comparison of the Ricci flow generated
transcriptomic distribution with real biological data. Our choice of dt thus
satisfies all our desired properties and is a reasonable distance measure.

Wi is chosen to be independent of xt as the Ricci flow iteration only
provides enough equations to calculate updates of edge weights, thus if Wi

depends on t we cannot compute Rt
F (i, j) over each iteration of (5). We select

Wi = 1
deg(i) to normalise the sums in (4), preventing connected high degree

vertices from dominating the total Forman-Ricci curvature.
We further note that:

∂RF (i, j)

∂ωij
= −1

2
(ωij)

−1/2

[
Wi

∑
k ̸=j

(ωik)
−1/2 +Wj

∑
k ̸=i

(ωkj)
−1/2

]
< 0

(15)

implying that as ωij decreases, based on our definition of the distance d(i, j) =
ωij , i and j become ‘closer’, and the Forman-Ricci curvature increases, and
vice versa (Fig. 1C). This behaviour is as expected from a curvature. Moreover,
considering our Ricci flow construction in (5), if Rt

F (i, j) > RF (i, j) then
dt+∆t(i, j) = ωt+∆t

ij will increase, leading to a reduction in Rt
F (i, j) via (15),

driving convergence to RF (i, j).
Thus our choice of Ricci flow construction is computationally efficient,

facilitates convergence of the flow towards the normaliser and satisfies all our
required and desired properties outlined in the results.
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4.3 Investigating correlation between network entropy
and total Forman-Ricci curvature on a simple network

We consider the simple k-star network displayed in Fig 2A, consisting of k+1
vertices, of which k have a single edge connecting them to a central vertex
i. We assign each vertex l ̸= j a weight xl = 1 and assign vertex j a weight
xj = ϵ > 0.

Our Forman-Ricci curvature is defined on an edge as follows:

RF (i, j) = deg(i)−1 + deg(j)−1−

(xixj)
−1/2

[
deg(i)−1

∑
k ̸=j

(aikxixk)
1/2 + deg(j)−1

∑
k ̸=i

aik(akjxkxj)
1/2

]

whence

RF (i, j) = deg(i)−1

[
1 −

∑
k∈N(i)\j

√
xk

xj

]
+ deg(j)−1

[
1 −

∑
k∈N(j)\i

√
xk

xi

]

Which we denote as:

RF (i, j) = rF (i|j) + rF (j|i) (16)

for notational ease, where:

rF (i|j) = deg(i)−1

[
1−

∑
k∈N(i)\j

√
xk

xj

]
(17)

We note that via (1):

xk

xi
=

xk/
∑

l∈N(j) xl

xi/
∑

l∈N(j) xl
(18)

=
pjk
pji

(19)

which gives us the alternative expression, which can be helpful when consid-
ering stochastic matrices

rF (i|j) = deg(i)−1

[
1−

∑
k∈N(i)\j

√
pik
pij

]
. (20)
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Employing the results above it is a simple deduction that for our toy
network:

pij =
ϵ

k + ϵ− 1

pil =
1

k + ϵ− 1
l ̸= j

pli = 1 l ̸= i

plj = 0 l ̸= i

The stationary distribution of the network is also easily calculated from (10)
as:

πi =
1

2

πl =
1

2(k + ϵ− 1)
l ̸= j, i

πj =
ϵ

2(k + ϵ− 1)
.

It is also clear that the local entropies will satisfy:

Si = − ϵ

k + ϵ− 1
log(

ϵ

k + ϵ− 1
)− k − 1

k + ϵ− 1
log(

1

k + ϵ− 1
)

Sl = 0 l ̸= i

The network entropy of this network is thus simply:

SR = −1

2

[
ϵ

k + ϵ− 1
log(

ϵ

k + ϵ− 1
) +

k − 1

k + ϵ− 1
log(

1

k + ϵ− 1
)

]
(21)

Which is a convex function of ϵ maximal at ϵ = 1 (Fig. 2B).
We now consider the total Forman-Ricci curvature, defined by:

RF =
∑
l∈V

πlRF (l) (22)

where

RF (l) =
1

deg(l)

∑
r∈V

alrRF (l, r). (23)

In our example the following can be deduced from equation (20):

rF (l|i) = 1 l ̸= i

rF (i|l) =
1

k
(3− k −

√
ϵ) l ̸= j
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rF (i|j) =
1

k
(1− (k − 1)

√
1

ϵ
)

Which allows calculation of

RF (i) =
1

k

[
k +

1

k

(
1− (k − 1)

√
1

ϵ

)
+

k − 1

k
(3− k −

√
ϵ)

]

RF (j) = 1 +
1

k

(
1− (k − 1)

√
1

ϵ

)
RF (l) = 1 +

k − 1

k
(3− k −

√
ϵ) l ̸= j.

Whence

RF =
1

2k

[
k +

1

k

(
1− (k − 1)

√
1

ϵ

)
+

k − 1

k
(3− k −

√
ϵ)

]
+

ϵ

2(k + ϵ− 1)

[
1 +

1

k

(
1− (k − 1)

√
1

ϵ

)]
+

k − 1

2(k + ϵ− 1)

[
1 +

k − 1

k
(3− k −

√
ϵ)

]
.

4.4 RNA-sequencing data

Normalised read count data corresponding to RNA-sequencing data was down-
loaded from GEO [45]. Data from [39] describing scRNAseq of 1018 single cells
assayed at different stages of multipotency and alongside data describing 758
single cells assayed at 6 distinct time points during ESC differentiation was
downloaded from accession GSE75748. Data from [40] describing scRNAseq
of 1257 malignant and 3256 healthy single cells from 19 patients with malig-
nant melanoma was downloaded from accession GSE72056. Data from [41]
describing scRNAseq of 272 malignant and 160 healthy cells from patients
with colorectal cancer was downloaded from accession GSE81861. Our data
set describing healthy myoblast differentiation at 8 distinct time points was
downloaded from accessions GSE102812 and GSE123468 [42].

4.5 Network entropy and total Forman-Ricci curvature
comparison

Network entropy was calculated on each gene expression sample as described
above. Forman-Ricci curvature was computed over an edge using the following
expression:
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RF (i, j) = deg(i)−1 + deg(j)−1−

(xixj)
−1/2

[
deg(i)−1

∑
k ̸=j

(aikxixk)
1/2 + deg(j)−1

∑
k ̸=i

aik(akjxkxj)
1/2

]

Nodal average Forman-Ricci curvature was computed as previously described
[22, 25] via:

Rici(x) =
1

deg(i)

∑
j∈V

aijRF (i, j) (24)

and network average, or total Forman-Ricci curvature was computed via:

Ric(x) =
∑
i∈V

πi(x)Rici(x), (25)

where (πi(x))
n
i=1 is the stationary distribution of P (x).

Associations between network entropy and total Forman-Ricci curvature
were assessed using Pearson correlation with significance assessed at the 5%
level.

4.6 Computing linear and Ricci flow trajectories
between time ordered gene expression samples

Trajectories for time course gene expression data were derived via two
approaches, a null Euclidean straight line trajectory and by employing our
discrete normalised Ricci flow. For both approaches the first gene expression
time point (x0) was used as a starting state and the final time point (xT) was
the end state. Intermediate time points were not used in the derivation of the
trajectory only for its validation.

For normalised discrete Ricci flow we employ the following expression
described above:

dt+∆t(i, j) = dt(i, j) + ∆t(Ric(xt)(i,j) −Ric(i,j))dt(i, j). (26)

This flow will deform the weight on an edge of the PIN at a rate propor-
tional to the difference between the edge curvature at a starting state and a
final state determined by the normaliser.

We set the normaliser of our Ricci flow as the Forman-Ricci curvature
calculated at final time point T : Ric(i,j) = RT

F (i, j). The time increment ∆t was
selected empirically. If ∆t is too large then negative values of the incremented
distance dt+∆t are possible, which are not acceptable by definition, however if
∆t is very small convergence of the Ricci flow to the normaliser will require
a great number of iterations and will not be computationally practical. We
therefore considered a range of values for ∆t ∈ {10−3, ..., 10−1}. For each gene
expression time course we implemented one time step of the Ricci flow from
the first time point x0 using each ∆t value and selected the optimal ∆t as the
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largest which does not admit negative values of d0+∆t. For both time courses
considered this value was ∆t = 0.06.

For both gene expression time courses we found that after 150 iterations
the normalised Ricci flow converged very close to the normaliser, with little
change in dt+∆t with subsequent iterations, we thus selected 150 as the opti-
mal number of iterations in the flow. We note that by construction the final
transcriptomic time point will always be closest to the end of the trajectory. As
the number of iterations is selected as sufficiently large to ensure convergence,
rather than the minimum number of iterations required for convergence, the
end of the trajectory represents signalling in steady state, as opposed to the
precise moment gene expression matches the final time point.

To derive the Euclidean linear trajectory null model, from the starting
gene expression time point to the final, we constructed a straight line from
W 0 = (aijx

0
ix

0
j )i,j∈V to WT = (aijx

T
i x

T
j )i,j∈V in Rn×n. We selected 150

equally spaced points along this line via the following expression

W t(i, j) = W 0(i, j) +
t(WT (i, j)−W 0(i, j))

150
. (27)

4.7 Comparing inferred trajectories to true time course
gene expression data

For both normalised discrete Ricci flow and the Euclidean linear trajectory
null model we derived a trajectory described by 150 discrete points from the
starting gene expression state to the final, as above. Each of these discrete
data points can be transformed into a prediction of the weighted network:
Wp(x

r) = aijx
r
ix

r
j for r ∈ {1, ..., 150}. In the case of the Euclidean trajectory

the inferred point is exactly this weighted network, while for the normalised
Ricci flow Wp(x

r) = (1/dr(i, j))i,j∈V .
For each true intermediate time point in the gene expression time course

{1, ..., T − 1} we computed the Euclidean distance between each the 150
predictions of Wp(x

r) in each inferred trajectory and the true data points
{W (x1), ...,W (xT−1)}.

The value of r which minimised the distance between Wp(x
r) and W (xt)

was considered the point along the trajectory which most closely corresponded
to the true gene expression trajectory at time t.

Association between the trajectory points corresponding to the measured
time points and the true intermediate time points themselves (excluding
starting and ending time points) was assessed via Pearson correlation, with
significance assessed at the 5% level.
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